51
|
Human HLA-DR transgenes protect mice from fatal virus-induced encephalomyelitis and chronic demyelination. J Virol 2008; 82:3369-80. [PMID: 18234804 DOI: 10.1128/jvi.02243-07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We evaluated the participatory role of human HLA-DR molecules in control of virus from the central nervous system and in the development of subsequent spinal cord demyelination. The experiments utilized intracranial infection with Theiler's murine encephalomyelitis virus (TMEV), a picornavirus that, in some strains of mice, results in primary demyelination. We studied DR2 and DR3 transgenic mice that were bred onto a combined class I-deficient mouse (beta-2 microglobulin deficient; beta2m(0)) and class II-deficient mouse (Abeta(0)) of the H-2(b) background. Abeta(0).beta2m(0) mice infected with TMEV died within 18 days of infection. These mice showed severe encephalomyelitis due to rapid replication of virus genome. In contrast, transgenic mice with insertion of a single human class II major histocompatibility complex (MHC) gene (DR2 or DR3) survived the acute infection. DR2 and DR3 mice controlled virus infection by 45 days and did not develop spinal cord demyelination. Levels of virus RNA were reduced in HLA-DR transgenic mice compared to Abeta(0).beta2m(0) mice. Virus-neutralizing antibody responses did not explain why DR mice survived the infection and controlled virus replication. However, DR mice showed an increase in gamma interferon and interleukin-2 transcripts in the brain, which were associated with protection. The findings support the hypothesis that the expression of a single human class II MHC molecule can, by itself, influence the control of an intracerebral pathogen in a host without a competent class I MHC immune response. The mechanism of protection appears to be the result of cytokines released by CD4(+) T cells.
Collapse
|
52
|
Kang BS, Yahikozawa H, Koh CS, Kim BS. Oral administration of live virus protects susceptible mice from developing Theiler's virus-induced demyelinating disease. Virology 2007; 366:185-96. [PMID: 17507073 PMCID: PMC2025699 DOI: 10.1016/j.virol.2007.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/26/2007] [Accepted: 04/16/2007] [Indexed: 02/04/2023]
Abstract
Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in an immune-mediated demyelinating disease similar to human multiple sclerosis. TMEV infection is widely spread via fecal-oral routes among wild mouse populations, yet these infected mice rarely develop clinical disease. Oral vaccination has often been used to protect the host against many different infectious agents, although the underlying protective mechanism of prior oral exposure is still unknown. To understand the mechanisms involved in protection from demyelinating disease following previous oral infection, immune parameters and disease progression of mice perorally infected with TMEV were compared with those of mice immunized intraperitoneally following intracerebral infection. Mice infected perorally, but not intraperitoneally, prior to CNS viral infection showed lower chronic viral persistence in the CNS and reduced TMEV-induced demyelinating disease. However, a prolonged period of post-oral infection was necessary for effective protection. Mice orally pre-exposed to the virus displayed markedly elevated levels of antibody response to TMEV in the serum, although T cell responses to TMEV in the periphery were not significantly different between perorally and intraperitoneally immunized mice. In addition, orally vaccinated mice showed higher levels of early CNS-infiltration of B cells producing anti-TMEV antibody as well as virus-specific CD4(+) and CD8(+) T cells in the CNS compared to intraperitoneally immunized mice. Therefore, the generation of a sufficient level of protective immune responses appears to require a prolonged time period to confer protection from TMEV-induced demyelinating disease.
Collapse
Affiliation(s)
- Bong-Su Kang
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
53
|
Pavelko KD, Pease LR, David CS, Rodriguez M. Genetic deletion of a single immunodominant T-cell response confers susceptibility to virus-induced demyelination. Brain Pathol 2007; 17:184-96. [PMID: 17388949 PMCID: PMC1859885 DOI: 10.1111/j.1750-3639.2007.00062.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An important question in neuropathology involves determining the antigens that are targeted during demyelinating disease. Viral infection of the central nervous system (CNS) leads to T‐cell responses that can be protective as well as pathogenic. In the Theiler’s murine encephalomyelitis virus (TMEV) model of demyelination it is known that the immune response to the viral capsid protein 2 (VP2) is critical for disease pathogenesis. This study shows that expressing the whole viral capsid VP2 or the minimal CD8‐specific peptide VP2121‐130 as “self” leads to a loss of VP2‐specific immune responses. Loss of responsiveness is caused by T cell‐specific tolerance, as VP2‐specific antibodies are generated in response to infection. More importantly, these mice lose the CD8 T‐cell response to the immunodominant peptide VP2121‐130, which is critical for the development of demyelinating disease. The transgenic mice fail to clear the infection and develop chronic demyelinating disease in the spinal cord white matter. These findings demonstrate that T‐cell responses can be removed by transgenic expression and that lack of responsiveness alters viral clearance and CNS pathology. This model will be important for understanding the mechanisms involved in antigen‐specific T‐cell deletion and the contribution of this response to CNS pathology.
Collapse
Affiliation(s)
| | | | | | - Moses Rodriguez
- Departments of Immunology and
- Neurology, Mayo Clinic College of Medicine, Rochester, Minn
| |
Collapse
|
54
|
Johnson AJ, Suidan GL, McDole J, Pirko I. The CD8 T cell in multiple sclerosis: suppressor cell or mediator of neuropathology? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 79:73-97. [PMID: 17531838 DOI: 10.1016/s0074-7742(07)79004-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is the most common human demyelinating disease of the central nervous system. It is universally accepted that the immune system plays a major role in the pathogenesis of MS. For decades, CD4 T cells have been considered the predominant mediator of neuropathology in MS. This perception was largely due to the similarity between MS and CD4 T-cell-driven experimental allergic encephalomyelitis, the most commonly studied murine model of MS. Over the last decade, several new observations in MS research imply an emerging role for CD8 T cells in neuropathogenesis. In certain experimental autoimmune encephalomyelitis (EAE) models, CD8 T cells are considered suppressors of pathology, whereas in other EAE models, neuropathology can be exacerbated by adoptive transfer of CD8 T cells. Studies using the Theiler's murine encephalomyelitis virus (TMEV) model have demonstrated preservation of motor function and axonal integrity in animals deficient in CD8 T cells or their effector molecules. CD8 T cells have also been demonstrated to be important regulators of blood-brain barrier permeability. There is also an emerging role for CD8 T cells in human MS. Human genetic studies reveal an important role for HLA class I molecules in MS susceptibility. In addition, neuropathologic studies demonstrate that CD8 T cells are the most numerous inflammatory infiltrate in MS lesions at all stages of lesion development. CD8 T cells are also capable of damaging neurons and axons in vitro. In this chapter, we discuss the neuropathologic, genetic, and experimental evidence for a critical role of CD8 T cells in the pathogenesis of MS and its most frequently studied animal models. We also highlight important new avenues for future research.
Collapse
Affiliation(s)
- Aaron J Johnson
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | |
Collapse
|
55
|
Myoung J, Hou W, Kang B, Lyman MA, Kang JA, Kim BS. The immunodominant CD8+ T cell epitope region of Theiler's virus in resistant C57BL/6 mice is critical for anti-viral immune responses, viral persistence, and binding to the host cells. Virology 2006; 360:159-71. [PMID: 17095033 PMCID: PMC1857342 DOI: 10.1016/j.virol.2006.09.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 09/07/2006] [Accepted: 09/26/2006] [Indexed: 11/16/2022]
Abstract
Theiler's virus infection induces an immune-mediated demyelinating disease, providing a relevant animal model of human multiple sclerosis. VP2(121-130)-specific CD8+ T cells in resistant H-2b mice account for the majority of CNS-infiltrating CD8+ T cells. To further study the role of the CD8(+) T cells, we generated a panel of mutant viruses substituted with L, G, or T at the anchor residue (M130) of the VP2(121-130) epitope. M130L virus (M130L-V) with a substitution of M with L displayed similar properties as wild-type virus (WT-V). However, M130G-V and M130T-V could not establish a persistent infection in the CNS. The level of both virus-specific CD8+ and CD4+ T cell responses is significantly reduced in mice infected with these variant viruses. While all mutant and wild-type viruses replicate comparably in BHK cells, replication of M130G-V and M130T-V in macrophages was significantly lower compared to those infected with WT-V and M130L-V. Interestingly, these mutant viruses deficient in replication in primary mouse cells showed drastically reduced binding ability to the cells. These results suggest that the anchor residue of the predominant CD8+ T cell epitope of TMEV in resistant mice is critical for the virus to infect target cells and this deficiency may result in poor viral persistence leading to correspondingly low T cell responses in the periphery and CNS. Thus, selection of the cellular binding region of the virus as the predominant epitope for CD8+ T cells in resistant mice may provide a distinct advantage in controlling viral persistence by preventing escape mutations.
Collapse
Affiliation(s)
| | | | | | | | | | - Byung S. Kim
- * All correspondence should be made to Dr. Byung S. Kim, Department of Microbiology-Immunology, Northwestern University Medical School, 303 East Chicago Ave., Chicago, IL 60611. E-mail: ; Tel. (312) 503-8693; Fax. (312) 503-1339
| |
Collapse
|
56
|
Beadling C, Slifka MK. Quantifying viable virus-specific T cells without a priori knowledge of fine epitope specificity. Nat Med 2006; 12:1208-12. [PMID: 17013384 DOI: 10.1038/nm1413] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 04/13/2006] [Indexed: 11/09/2022]
Abstract
Identification of pathogen-specific T cells has been greatly facilitated by the advent of synthetic peptide-major histocompatibility complex (MHC) tetramers. In many cases, however, specific epitopes have not been defined, necessitating detection methods that function independently of exact peptide-MHC specificity. Lymphocytes acquire surface proteins from antigen-presenting cells (APCs), and we have exploited this phenomenon to develop the T-cell recognition of APCs by protein transfer (TRAP) assay. This method is based on biotinylation and streptavidin-fluorochrome labeling of APCs, followed by subsequent acquisition of this label by antigen-specific T cells. The TRAP procedure detects MHC class I-restricted T cells regardless of their cytokine profiles or peptide-MHC affinities, and provides a versatile tool for monitoring the phenomenon of APC membrane acquisition by antigen-specific T cells.
Collapse
Affiliation(s)
- Carol Beadling
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | | |
Collapse
|
57
|
Mohindru M, Kang B, Kim BS. Initial capsid-specific CD4(+) T cell responses protect against Theiler's murine encephalomyelitisvirus-induced demyelinating disease. Eur J Immunol 2006; 36:2106-15. [PMID: 16761311 DOI: 10.1002/eji.200535785] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Central nervous system (CNS) infection by Theiler's murine encephalomyelitis virus (TMEV) causes an immune-mediated demyelinating disease similar to human multiple sclerosis in susceptible mice. To understand the pathogenic mechanisms, we analyzed the level, specificity, and function of CD4(+) Th cells in susceptible SJL/J and resistant C57BL/6 mice. Compared to resistant mice, susceptible mice have three- to fourfold higher levels of overall CNS-infiltrating CD4(+) T cells during acute infection. CD4(+) T cells in the CNS of both strains display various activation markers and produce high levels of IFN-gamma upon stimulation with anti-CD3 antibody. However, susceptible mice display significantly fewer (tenfold) IFN-gamma-producing Th1 cells specific for viral capsid epitopes as compared to resistant mice. Furthermore, preimmunization with capsid-epitope peptides significantly increased capsid-specific CD4(+) T cells in the CNS during the early stages of viral infection and delayed the development of demyelinating disease in SJL/J mice. This suggests a protective role of capsid-reactive Th cells during early viral infection. Therefore, a low level of the protective Th1 response to viral capsid proteins, in conjunction with Th1 responses to unknown epitopes may delay viral clearance in susceptible mice leading to pathogenesis of demyelination during acute infection, as compared to resistant mice.
Collapse
Affiliation(s)
- Mani Mohindru
- Department of Microbiology-Immunology, Northwestern University Feinberg Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
58
|
Drescher KM, Zoecklein LJ, Pavelko KD, Rivera‐Quinones C, Hollenbaugh D, Rodriguez M. CD40L is critical for protection from demyelinating disease and development of spontaneous remyelination in a mouse model of multiple sclerosis. Brain Pathol 2006; 10:1-15. [PMID: 10668891 PMCID: PMC8098531 DOI: 10.1111/j.1750-3639.2000.tb00238.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces acute neuronal disease followed by chronic demyelination in susceptible strains of mice. In this study we examined the role of a limited immune defect (deletion or blocking of CD40 ligand [CD40L]) on the extent of brain disease, susceptibility to demyelination, and the ability of demyelinated mice to spontaneously remyelinate following TMEV infection. We demonstrated that CD40L-dependent immune responses participate in pathogenesis in the cerebellum and the spinal cord white matter but protect the striatum of susceptible SJL/J mice. In mice on a background resistant to TMEV-induced demyelination (C57BL/6), the lack of CD40L resulted in increased striatal disease and meningeal inflammation. In addition, CD40L was required to maintain resistance to demyelination and clinical deficits in H-2b mice. CD40L-mediated interactions were also necessary for development of protective H-2b-restricted cytotoxic T cell responses directed against the VP2 region of TMEV as well as for spontaneous remyelination of the spinal cord white matter. The data presented here demonstrated the critical role of this molecule in both antibody- and cell-mediated protective immune responses in distinct phases of TMEV-mediated pathology.
Collapse
Affiliation(s)
- Kristen M. Drescher
- Departments of Immunology and Neurology, Mayo Medical School, Rochester, MN 55905
| | - Laurie J. Zoecklein
- Departments of Immunology and Neurology, Mayo Medical School, Rochester, MN 55905
| | - Kevin D. Pavelko
- Departments of Immunology and Neurology, Mayo Medical School, Rochester, MN 55905
| | | | | | - Moses Rodriguez
- Departments of Immunology and Neurology, Mayo Medical School, Rochester, MN 55905
| |
Collapse
|
59
|
Zoecklein LJ, Pavelko KD, Gamez J, Papke L, McGavern DB, Ure DR, Njenga MK, Johnson AJ, Nakane S, Rodriguez M. Direct comparison of demyelinating disease induced by the Daniel's strain and BeAn strain of Theiler's murine encephalomyelitis virus. Brain Pathol 2006; 13:291-308. [PMID: 12946019 PMCID: PMC5451092 DOI: 10.1111/j.1750-3639.2003.tb00029.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We compared CNS disease following intracerebral injection of SJL mice with Daniel's (DA) and BeAn 8386 (BeAn) strains of Theiler's murine encephalomyelitis virus (TMEV). In tissue culture, DA was more virulent then BeAn. There was a higher incidence of demyelination in the spinal cords of SJL/J mice infected with DA as compared to BeAn. However, the extent of demyelination was similar between virus strains when comparing those mice that developed demyelination. Even though BeAn infection resulted in lower incidence of demyelination in the spinal cord, these mice showed significant brain disease similar to that observed with DA. There was approximately 100 times more virus specific RNA in the CNS of DA infected mice as compared to BeAn infected mice. This was reflected by more virus antigen positive cells (macrophages/microglia and oligodendrocytes) in the spinal cord white matter of DA infected mice as compared to BeAn. There was no difference in the brain infiltrating immune cells of DA or BeAn infected mice. However, BeAn infected mice showed higher titers of TMEV specific antibody. Functional deficits as measured by Rotarod were more severe in DA infected versus BeAn infected mice. These findings indicate that the diseases induced by DA or BeAn are distinct.
Collapse
Affiliation(s)
- Laurie J. Zoecklein
- Department of Immunology, Mayo Medical and Graduate Schools, Rochester, Minn
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Medical and Graduate Schools, Rochester, Minn
| | - Jeff Gamez
- Department of Immunology, Mayo Medical and Graduate Schools, Rochester, Minn
| | - Louisa Papke
- Department of Immunology, Mayo Medical and Graduate Schools, Rochester, Minn
| | | | - Daren R. Ure
- Department of Immunology, Mayo Medical and Graduate Schools, Rochester, Minn
| | - M. Kariuki Njenga
- Department of Veterinary Pathobiology at University of Minnesota, Minneapolis
| | - Aaron J. Johnson
- Department of Immunology, Mayo Medical and Graduate Schools, Rochester, Minn
| | - Shunya Nakane
- Department of Neurology and Mayo Medical and Graduate Schools, Rochester, Minn
| | - Moses Rodriguez
- Department of Neurology and Mayo Medical and Graduate Schools, Rochester, Minn
- Department of Immunology, Mayo Medical and Graduate Schools, Rochester, Minn
- Department of Program for Molecular Neuroscience, Mayo Medical and Graduate Schools, Rochester, Minn
| |
Collapse
|
60
|
Brahic M, Bureau JF, Michiels T. The genetics of the persistent infection and demyelinating disease caused by Theiler's virus. Annu Rev Microbiol 2006; 59:279-98. [PMID: 16153171 DOI: 10.1146/annurev.micro.59.030804.121242] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Theiler's virus causes a persistent and demyelinating infection of the central nervous system of the mouse, which is one of the best animal models to study multiple sclerosis. This review focuses on the mechanism of persistence. The virus infects neurons for a few weeks and then shifts to white matter, where it persists in glial cells and macrophages. Oligodendrocytes are crucial host cells, as shown by the resistance to persistent infection of mice bearing myelin mutations. Two viral proteins, L and L*, contribute to persistence by interfering with host defenses. L, a small zinc-finger protein, restricts the production of interferon. L*, a unique example of a picornaviral protein translated from an overlapping open reading frame, facilitates the infection of macrophages. Susceptibility to persistent infection, which varies among inbred mouse strains, is multigenic. H2 class I genes have a major effect on susceptibility. Among several non-H2 susceptibility loci, Tmevp3 appears to regulate the expression of important cytokines.
Collapse
Affiliation(s)
- Michel Brahic
- Unité des Virus Lents, URA CNRS 1930, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
61
|
Rodriguez M, Zoecklein L, Gamez JD, Pavelko KD, Papke LM, Nakane S, Howe C, Radhakrishnan S, Hansen MJ, David CS, Warrington AE, Pease LR. STAT4- and STAT6-signaling molecules in a murine model of multiple sclerosis. FASEB J 2005; 20:343-5. [PMID: 16352646 DOI: 10.1096/fj.05-4650fje] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epidemiological studies suggest that an environmental factor (possibly a virus) acquired early in life may trigger multiple sclerosis (MS). The virus may remain dormant in the central nervous system but then becomes activated in adulthood. All existing models of MS are characterized by inflammation or demyelination that follows days after virus infection or antigen inoculation. While investigating the role of CD4+ T cell responses following Theiler's virus infection in mice deficient in STAT4 or STAT6, we discovered a model in which virus infection was followed by demyelination after a very prolonged incubation period. STAT4-/- mice were resistant to demyelination for 180 days after infection, but developed severe demyelination after this time point. Inflammatory cells and up-regulation of Class I and Class II MHC antigens characterized these lesions. Virus antigen was partially controlled during the early chronic phase of the infection even though viral RNA levels remained high throughout infection. Demyelination correlated with the appearance of virus antigen expression. Bone marrow reconstitution experiments indicated that the mechanism of the late onset demyelination was the result of the STAT4-/- immune system. Thus, virus infection of STAT4-/- mice results in a model that may allow for dissection of the immune events predisposing to late-onset demyelination in MS.
Collapse
Affiliation(s)
- Moses Rodriguez
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Kim BS, Mohindru M, Kang B, Kang HS, Palma JP. Effects of the major histocompatibility complex loci and T-cell receptor beta-chain repertoire on Theiler's virus-induced demyelinating disease. J Neurosci Res 2005; 81:846-56. [PMID: 16049971 DOI: 10.1002/jnr.20611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have investigated the potential effects of H-2 and T-cell receptor (TCR) V beta family genes on induction of T-cell immunity and susceptibility to virally induced demyelinating disease by using BALB.S (H-2K(s)A(s)D(s)) and BALB.S 3 R (H-2K(s)A(s)D(d)/L(d)) mice. These parameters were compared with those of highly susceptible SJL/J (H-2K(s)A(s)D(s)) mice that contain only one-half of TCR V beta family genes compared with the above-mentioned strains. Our results demonstrate that BALB.S but not BALB.S 3 R mice are susceptible similar to SJL/J mice. Although the level of CD4(+) T-cell infiltration to the CNS was elevated in susceptible mice, virus-specific immune responses restricted with H-2(s) were similar in these mice. No preferential use of V beta families associated with differences in the major histocompatibility complex (MHC) components was apparent. However, the pattern and sequence of CDR 3 distribution shows T-cell clonal accumulation in the CNS associated with the H-2 components. Further anti-CD8 antibody treatment of resistant BALB.S 3 R mice abrogated resistance to demyelinating disease, indicating that CD8(+) T cells restricted with H-2D(d)/L(d) are most likely to exert resistance in BALB.S 3 R mice. These studies indicated that TCR V beta and MHC class II genes are the secondary to a particular MHC class I gene expression in susceptibility to virally induced demyelinating disease.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cardiovirus Infections/immunology
- Cardiovirus Infections/pathology
- Cell Proliferation
- Cell Separation
- Cytokines/metabolism
- DNA, Complementary/biosynthesis
- Demyelinating Diseases/immunology
- Demyelinating Diseases/pathology
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Genes, MHC Class I/genetics
- Genes, MHC Class I/immunology
- Genes, MHC Class II/genetics
- Genes, MHC Class II/immunology
- Haplotypes
- Major Histocompatibility Complex/genetics
- Major Histocompatibility Complex/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred Strains
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Theilovirus/radiation effects
- Vaccines, Inactivated
- Viral Plaque Assay
Collapse
Affiliation(s)
- Byung S Kim
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Il 60611, USA.
| | | | | | | | | |
Collapse
|
63
|
Johnson AJ, Mendez-Fernandez Y, Moyer AM, Sloma CR, Pirko I, Block MS, Rodriguez M, Pease LR. Antigen-specific CD8+ T cells mediate a peptide-induced fatal syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 174:6854-62. [PMID: 15905527 DOI: 10.4049/jimmunol.174.11.6854] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptide immunotherapy both activates and suppresses the T cell response against known peptide Ags. Although pretreatment with VP2(121-130) peptide inhibits the development of antiviral CTL specific for the immunodominant D(b):VP2(121-130) epitope expressed during acute Theiler's murine encephalomyelitis virus infection, i.v. injection of this same peptide or MHC tetramers containing the peptide during an ongoing antiviral CTL response results in a peptide-induced fatal syndrome (PIFS) within 48 h. Susceptibility to PIFS is dependent on peptide-specific CD8(+) T cells, varies among inbred strains of mice, and is not mediated by traditionally defined mechanisms of shock. Analyses using bone marrow chimeras and mutant mice demonstrate that susceptibility to PIFS is determined by the genotype of bone marrow-derived cells and requires the expression of perforin. Animals responding to peptide treatment with PIFS develop classical stress responses in the brain. These findings raise important considerations for the development of peptide therapies for active diseases to modify immune responses involving expanded populations of T cells. In summary, treatment with peptides or MHC-tetramers during a peptide-specific immune response can result in a fatal shock-like syndrome. Susceptibility to the syndrome is genetically determined, is mediated by CD8(+) T cells, and requires expression of perforin. These findings raise concerns about the use of peptides and MHC tetramers in therapeutic schemes.
Collapse
Affiliation(s)
- Aaron J Johnson
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Block MS, Mendez-Fernandez YV, Van Keulen VP, Hansen MJ, Allen KS, Taboas AL, Rodriguez M, Pease LR. Inability of bm14 mice to respond to Theiler's murine encephalomyelitis virus is caused by defective antigen presentation, not repertoire selection. THE JOURNAL OF IMMUNOLOGY 2005; 174:2756-62. [PMID: 15728484 DOI: 10.4049/jimmunol.174.5.2756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Natural selection drives diversification of MHC class I proteins, but the mechanism by which selection for polymorphism occurs is not known. New variant class I alleles differ from parental alleles both in the nature of the CD8 T cell repertoire formed and the ability to present pathogen-derived peptides. In the current study, we examined whether T cell repertoire differences, Ag presentation differences, or both account for differential viral resistance between mice bearing variant and parental alleles. We demonstrate that nonresponsive mice have inadequate presentation of viral Ag, but have T cell repertoires capable of mounting Ag-specific responses. Although previous work suggests a correlation between the ability to present an Ag and the ability to generate a repertoire responsive to that Ag, we show that the two functions of MHC class I are independent.
Collapse
Affiliation(s)
- Matthew S Block
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
IL-12, IL-23 and IFN-γ form a loop and have been thought to play a crucial role against infectious viruses, which are the prototype of “intracellular” pathogens. In the last 10 years, the generation of knock-out (KO) mice for genes that control IL-12/IL-23-dependent IFN-γ-dependent mediated immunity (STAT1, IFN-γR1, IFNγR2, IL-12p40 and IL-12Rβ1) and the identification of patients with spontaneous germline mutations in these genes has led to a re-examination of the role of these cytokines in anti-viral immunity. We here review viral infections in mice and humans with genetic defects in the IL-12/IL-23-IFN-γ axis. A comparison of the phenotypes observed in KO mice and deficient patients suggests that the human IL-12/IL-23-IFN-γ axis plays a redundant role in immunity to most viruses, whereas its mouse counterparts play a more important role against several viruses.
Collapse
Affiliation(s)
- Francesco Novelli
- Laboratory of Human Genetics of Infectious Diseases, Necker Medical School, René Descartes University of Paris, INSERM U550, 156 Rue de Vaugirard, 75015 Paris, France.
| | | |
Collapse
|
66
|
Mendez-Fernandez YV, Hansen MJ, Rodriguez M, Pease LR. Anatomical and cellular requirements for the activation and migration of virus-specific CD8+ T cells to the brain during Theiler's virus infection. J Virol 2005; 79:3063-70. [PMID: 15709026 PMCID: PMC548433 DOI: 10.1128/jvi.79.5.3063-3070.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 10/21/2004] [Indexed: 12/25/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection of the brain induces a virus-specific CD8(+) T-cell response in genetically resistant mice. The peak of the immune response to the virus occurs 7 days after infection, with an immunodominant CD8(+) T-cell response against a VP2-derived capsid peptide in the context of the D(b) molecule. The process of activation of antigen-specific T cells that migrate to the brain in the TMEV model has not been defined. The site of antigenic challenge in the TMEV model is directly into the brain parenchyma, a site that is considered immune privileged. We investigated the hypothesis that antiviral CD8(+) T-cell responses are initiated in situ upon intracranial inoculation with TMEV. To determine whether a brain parenchymal antigen-presenting cell is responsible for the activation of virus-specific CD8(+) T cells, we evaluated the CD8(+) T-cell response to the VP2 peptide in bone marrow chimeras and mutant mice lacking peripheral lymphoid organs. The generation of the anti-TMEV CD8(+) T-cell response in the brain requires priming by a bone marrow-derived antigen-presenting cell and the presence of peripheral lymphoid organs. Although our results show that activation of TMEV-specific CD8(+) T cells occurs in the peripheral lymphoid compartment, they do not exclude the possibility that the immune response to TMEV is initiated by a brain-resident, bone marrow-derived, antigen-presenting cell.
Collapse
Affiliation(s)
- Yanice V Mendez-Fernandez
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Ave. SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
67
|
Whitton JL, Slifka MK, Liu F, Nussbaum AK, Whitmire JK. The regulation and maturation of antiviral immune responses. Adv Virus Res 2005; 63:181-238. [PMID: 15530562 PMCID: PMC7125551 DOI: 10.1016/s0065-3527(04)63003-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- J Lindsay Whitton
- Department of Neuropharmacology, CVN-9, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
68
|
Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD. Theiler's virus infection: a model for multiple sclerosis. Clin Microbiol Rev 2004; 17:174-207. [PMID: 14726460 PMCID: PMC321460 DOI: 10.1128/cmr.17.1.174-207.2004] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Both genetic background and environmental factors, very probably viruses, appear to play a role in the etiology of multiple sclerosis (MS). Lessons from viral experimental models suggest that many different viruses may trigger inflammatory demyelinating diseases resembling MS. Theiler's virus, a picornavirus, induces in susceptible strains of mice early acute disease resembling encephalomyelitis followed by late chronic demyelinating disease, which is one of the best, if not the best, animal model for MS. During early acute disease the virus replicates in gray matter of the central nervous system but is eliminated to very low titers 2 weeks postinfection. Late chronic demyelinating disease becomes clinically apparent approximately 2 weeks later and is characterized by extensive demyelinating lesions and mononuclear cell infiltrates, progressive spinal cord atrophy, and axonal loss. Myelin damage is immunologically mediated, but it is not clear whether it is due to molecular mimicry or epitope spreading. Cytokines, nitric oxide/reactive nitrogen species, and costimulatory molecules are involved in the pathogenesis of both diseases. Close similarities between Theiler's virus-induced demyelinating disease in mice and MS in humans, include the following: major histocompatibility complex-dependent susceptibility; substantial similarities in neuropathology, including axonal damage and remyelination; and paucity of T-cell apoptosis in demyelinating disease. Both diseases are immunologically mediated. These common features emphasize the close similarities of Theiler's virus-induced demyelinating disease in mice and MS in humans.
Collapse
Affiliation(s)
- Emilia L Oleszak
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19106, USA.
| | | | | | | | | |
Collapse
|
69
|
Njenga MK, Marques C, Rodriguez M. The role of cellular immune response in Theiler's virus-induced central nervous system demyelination. J Neuroimmunol 2004; 147:73-7. [PMID: 14741431 DOI: 10.1016/j.jneuroim.2003.10.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) persists in spinal cord white matter of susceptible mice (e.g., SJL/J), resulting in chronic inflammation and demyelination. Reconstitution of severe combined immunodeficient (SCID) mice with CD4(+) T- or CD8(+) T-lymphocytes results in extensive TMEV-induced demyelination, and depletion of CD8(+) T-lymphocytes in the early or late phase of the disease decreases the extent of demyelination, indicating that the cellular immune response against the virus plays a key role in myelin destruction. In susceptible mice, the demyelinated lesions are characterized by infiltration of a large numbers of B- and T-lymphocytes; whereas in mice resistant to TMEV-induced demyelination (e.g., C57BL/6), virus clearance requires infiltration of between 2.9 x 10(5) and 5.7 x 10(5) CD8(+) T-lymphocytes and between 3.4 x 10(5) and 6.1 x 10(5) CD4(+) T-lymphocytes per mouse in the brain 5-9 days post infection. Transgenic expression of capsid proteins of TMEV abrogates resistance in C56BL/6 mice, rendering the mice susceptible to TMEV persistence and demyelination. Comparison of the kinetics of virus replication and B- and T-lymphocyte infiltration in mice lacking key adhesion molecules (L-selectin (L-sel(-/-)), P-selectin (P-sel(-/-)), intracellular adhesion molecule-1 (ICAM-1(-/-)), or leukocyte function-associated antigen-1 (LFA-1(-/-))) demonstrates a role for individual adhesion molecules in recruitment of immune cells into central nervous system (CNS), but the role is not significant to prevent eventual virus clearance.
Collapse
Affiliation(s)
- M Kariuki Njenga
- Department of Veterinary Pathobiology, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| | | | | |
Collapse
|
70
|
Nakane S, Zoecklein LJ, Gamez JD, Papke LM, Pavelko KD, Bureau J, Brahic M, Pease LR, Rodriguez M. A 40-cM region on chromosome 14 plays a critical role in the development of virus persistence, demyelination, brain pathology and neurologic deficits in a murine viral model of multiple sclerosis. Brain Pathol 2004; 13:519-33. [PMID: 14655757 PMCID: PMC8095950 DOI: 10.1111/j.1750-3639.2003.tb00482.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Theiler virus persists and induces immune-mediated demyelination in susceptible mice and serves as a model of multiple sclerosis. Previously, we identified 4 markers--D14Mit54, D14Mit60, D14Mit61, and D14Mit90--in a 40-cM region of chromosome 14 that are associated with demyelination in a cross between susceptible DBA/2 and resistant B10.D2 mice. We generated congenic-inbred mice to examine the contribution of this 40-cM region to disease. DBA Chr.14B10 mice, containing the chromosomal segment marked by the microsatellite polymorphisms, developed less spinal cord demyelination than did DBA/2 mice. More demyelination was found in the reciprocal congenic mouse B10.D2 Chr.14D2 than in the B10.D2 strain. Introduction of the DBA/2 chromosomal region onto the B10.D2 genetic background resulted in more severe disease in the striatum and cortex relative to B10.D2 mice. The importance of the marked region of chromosome 14 is indicated by the decrease in neurological performance using the Rotarod test during chronic disease in B10.D2 Chr.14D2 mice in comparison to B10.D2 mice. Viral replication was increased in B10.D2 Chr.14D2 mice as determined by quantitative real-time RT-PCR. These results indicate that the 40-cM region on chromosome 14 of DBA/2 mice contributes to viral persistence, subsequent demyelination, and loss of neurological function.
Collapse
Affiliation(s)
- Shunya Nakane
- Department of Neurology and Mayo Clinic and Foundation, Rochester, Minn
| | | | - Jeffrey D. Gamez
- Department of Neurology and Mayo Clinic and Foundation, Rochester, Minn
| | - Louisa M. Papke
- Department of Neurology and Mayo Clinic and Foundation, Rochester, Minn
| | - Kevin D. Pavelko
- Department of Neurology and Mayo Clinic and Foundation, Rochester, Minn
| | | | - Michel Brahic
- Unité des Virus Lents, URA CNRS 1930, Institut Pasteur, Paris, France
| | | | - Moses Rodriguez
- Department of Neurology and Mayo Clinic and Foundation, Rochester, Minn
- Immunology, Mayo Clinic and Foundation, Rochester, Minn
| |
Collapse
|
71
|
Ciric B, Van Keulen V, Paz Soldan M, Rodriguez M, Pease LR. Antibody-mediated remyelination operates through mechanism independent of immunomodulation. J Neuroimmunol 2004; 146:153-61. [PMID: 14698858 DOI: 10.1016/j.jneuroim.2003.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A set of antibodies capable of binding glial cells promotes remyelination in models of multiple sclerosis (MS). Within this set, the mouse antibody, SCH94.03, was immunomodulatory implying that immune system mobilization might be integral to remyelination. We evaluated whether the human remyelination-promoting antibody rHIgM22 influences acquired immunity. The antibody did not bind to immune cells, or influence humoral immune responses, antigen presentation, T cell proliferation or cytokine production. Treatment with rHIgM22 had no effect on demyelination or virus infection in two disease models. These results demonstrate that the remyelination-promoting activity of antibody rHIgM22 is not dependent on immunomodulation.
Collapse
Affiliation(s)
- Bogoljub Ciric
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
72
|
Experimental Models of Virus-Induced Demyelination. MYELIN BIOLOGY AND DISORDERS 2004. [PMCID: PMC7155523 DOI: 10.1016/b978-012439510-7/50097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This chapter reviews two of the most widely studied animal models of virus-induced demyelinating disease. These are Theiler's murine encephalomyelitis virus and murine hepatitis virus. Both viruses produce acute inflammatory encephalitis that is followed by chronic central-nervous-system (CNS) demyelinating disease. The clinical and pathologic correlates of virus-induced demyelination are largely immune mediated. Furthermore, several pathologic mechanisms have been proposed to explain the development of myelin damage and neurologic deficits, and each of the proposed mechanisms may play a role in disease progression depending on the genetic constitution of the infected animal. The induction of demyelinating disease by virus may be directly relevant to human MS. Several viruses are known to cause demyelination in humans and viral infection is an epidemiologic factor that is consistently associated with clinical exacerbation of MS. It is suggested that viral infection may be a cause of MS, although no specific virus has been identified as a causative agent.
Collapse
|
73
|
Rodriguez M, Zoecklein LJ, Howe CL, Pavelko KD, Gamez JD, Nakane S, Papke LM. Gamma interferon is critical for neuronal viral clearance and protection in a susceptible mouse strain following early intracranial Theiler's murine encephalomyelitis virus infection. J Virol 2003; 77:12252-65. [PMID: 14581562 PMCID: PMC254254 DOI: 10.1128/jvi.77.22.12252-12265.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We evaluated the role of gamma interferon (IFN-gamma) in protecting neurons from virus-induced injury following central nervous system infection. IFN-gamma(-/-) and IFN-gamma(+/+) mice of the resistant major histocompatibility complex (MHC) H-2(b) haplotype and intracerebrally infected with Theiler's murine encephalomyelitis virus (TMEV) cleared virus infection from anterior horn cell neurons. IFN-gamma(+/+) H-2(b) mice also cleared virus from the spinal cord white matter, whereas IFN-gamma(-/-) H-2(b) mice developed viral persistence in glial cells of the white matter and exhibited associated spinal cord demyelination. In contrast, infection of IFN-gamma(-/-) mice of the susceptible H-2(q) haplotype resulted in frequent deaths and severe neurologic deficits within 16 days of infection compared to the results obtained for controls. Morphologic analysis demonstrated severe injury to spinal cord neurons in IFN-gamma(-/-) H-2(q) mice during early infection. More virus RNA was detected in the brain and spinal cord of IFN-gamma(-/-) H-2(q) mice than in those of control mice at 14 and 21 days after TMEV infection. Virus antigen was localized predominantly to anterior horn cells in infected IFN-gamma(-/-) H-2(q) mice. IFN-gamma deletion did not affect the humoral response directed against the virus. However, the level of expression of CD4, CD8, class I MHC, or class II MHC in the central nervous system of IFN-gamma(-/-) H-2(q) mice was lower than those in IFN-gamma(+/+) H-2(q) mice. Finally, in vitro analysis of virus-induced death in NSC34 cells and spinal motor neurons showed that IFN-gamma exerted a neuroprotective effect in the absence of other aspects of the immune response. These data support the hypothesis that IFN-gamma plays a critical role in protecting spinal cord neurons from persistent infection and death.
Collapse
Affiliation(s)
- Moses Rodriguez
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
74
|
Pirko I, Johnson A, Ciric B, Gamez J, Macura SI, Pease LR, Rodriguez M. In vivo magnetic resonance imaging of immune cells in the central nervous system with superparamagnetic antibodies. FASEB J 2003; 18:179-82. [PMID: 14630708 DOI: 10.1096/fj.02-1124fje] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We developed a novel MRI technique to image immune cell location and homing in vivo to the central nervous system (CNS). Superparamagnetic antibodies specific for cell surface markers allowed imaging of CD4+ T cells, CD8+ T cells, and Mac1+ cells in the CNS of mice infected with Theiler's murine encephalomyelitis virus (TMEV) and in mice with experimental autoimmune encephalomyelitis (EAE). Superparamagnetic antibodies have excellent T2, T2*, and good T1 relaxation properties, which makes them ideal MRI contrast materials. Immunohistochemistry of corresponding sections confirmed the specificity of the technique to detect immune cell types in the CNS. This powerful technique has potential to image any cell with unique surface antigens. Because superparamagnetic antibodies similar to those used in the study are approved for human use, the in vivo MRI technique we have described could be developed for human use.
Collapse
Affiliation(s)
- Istvan Pirko
- Department of Neurology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Wuthrich M, Filutowicz HI, Warner T, Deepe GS, Klein BS. Vaccine immunity to pathogenic fungi overcomes the requirement for CD4 help in exogenous antigen presentation to CD8+ T cells: implications for vaccine development in immune-deficient hosts. J Exp Med 2003; 197:1405-16. [PMID: 12782709 PMCID: PMC2193905 DOI: 10.1084/jem.20030109] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Systemic fungal infections with primary and opportunistic pathogens have become increasingly common and represent a growing health menace in patients with AIDS and other immune deficiencies. T lymphocyte immunity, in particular the CD4+ Th 1 cells, is considered the main defense against these pathogens, and their absence is associated with increased susceptibility. It would seem illogical then to propose vaccinating these vulnerable patients against fungal infections. We report here that CD4+ T cells are dispensable for vaccine-induced resistance against experimental fungal pulmonary infections with two agents, Blastomyces dermatitidis an extracellular pathogen, and Histoplasma capsulatum a facultative intracellular pathogen. In the absence of T helper cells, exogenous fungal antigens activated memory CD8+ cells in a major histocompatibility complex class I-restricted manner and CD8+ T cell-derived cytokines tumor necrosis factor alpha, interferon gamma, and granulocyte/macrophage colony-stimulating factor-mediated durable vaccine immunity. CD8+ T cells could also rely on alternate mechanisms for robust vaccine immunity, in the absence of some of these factors. Our results demonstrate an unexpected plasticity of immunity in compromised hosts at both the cellular and molecular level and point to the feasibility of developing vaccines against invasive fungal infections in patients with severe immune deficiencies, including those with few or no CD4+ T cells.
Collapse
Affiliation(s)
- Marcel Wuthrich
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792, USA
| | | | | | | | | |
Collapse
|
76
|
Kang BS, Lyman MA, Kim BS. Differences in avidity and epitope recognition of CD8(+) T cells infiltrating the central nervous systems of SJL/J mice infected with BeAn and DA strains of Theiler's murine encephalomyelitis virus. J Virol 2002; 76:11780-4. [PMID: 12388742 PMCID: PMC136797 DOI: 10.1128/jvi.76.22.11780-11784.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection induces immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infectious model for human multiple sclerosis. To investigate the pathogenic mechanisms, two strains of TMEV (DA and BeAn), capable of inducing chronic demyelination in the central nervous system (CNS), have primarily been used. Here, we have compared the T-cell responses induced after infection with DA and BeAn strains in highly susceptible SJL/J mice. CD4(+) T-cell responses to known epitopes induced by these two strains were virtually identical. However, the CD8(+) T-cell response induced following DA infection in susceptible SJL/J mice was unable to recognize two of three H-2K(s)-restricted epitope regions of BeAn, due to single-amino-acid substitutions. Interestingly, T cells specific for the H-2K(s)-restricted epitope (VP1(11-20)) recognized by both strains showed a drastic increase in frequency as well as avidity after infection with DA virus. These results strongly suggest that the level and avidity of virus-specific CD8(+) T cells infiltrating the CNS could be drastically different after infection with these two strains of TMEV and may differentially influence the pathogenic and/or protective outcome.
Collapse
Affiliation(s)
- Bong-Su Kang
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
77
|
Lin X, Njenga MK, Johnson AJ, Pavelko KD, David CS, Pease LR, Rodriguez M. Transgenic expression of Theiler's murine encephalomyelitis virus genes in H-2(b) mice inhibits resistance to virus-induced demyelination. J Virol 2002; 76:7799-811. [PMID: 12097592 PMCID: PMC136370 DOI: 10.1128/jvi.76.15.7799-7811.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the role of the immune system in protecting against virus-induced demyelination by generating lines of transgenic B10 (H-2(b)) congenic mice expressing three independent contiguous coding regions of the Theiler's murine encephalomyelitis virus (TMEV) under the control of a class I major histocompatibility complex (MHC) promoter. TMEV infection of normally resistant B10 mice results in virus clearance and development of inflammatory demyelination in the spinal cord. Transgenic expression of the viral capsid genes resulted in inactivation of virus-specific CD8(+) T lymphocytes (class I MHC immune function) directed against the relevant peptides, but it did not affect production of virus capsid-specific antibodies or lymphocyte proliferation to the virus antigen (class II MHC immune functions). Following intracerebral infection with TMEV, all three lines of mice survived the acute encephalitis but transgenic mice expressing VP1 (or the cluster of virus capsid proteins [VP4, VP2, and VP3] mapping to the left of VP1 in the TMEV genome) developed virus persistence and subsequent demyelination in spinal cord white matter. Transgenic mice expressing noncapsid proteins mapping to the right of VP1 (2A, 2B, 2C, 3A, 3B, 3C, and 3D) cleared the virus and did not develop demyelination. These results are consistent with the hypothesis that virus capsid gene products of TMEV stimulate class I-restricted CD8(+) T-cell immune responses, which are important for virus clearance and for protection against myelin destruction. Presented within the context of self-antigens, inactivation of these cells by ubiquitous expression of relevant virus capsid peptides partially inhibited resistance to virus-induced demyelination.
Collapse
Affiliation(s)
- Xiaoqi Lin
- Department of Neurology, University of Chicago Medical Center, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Kang BS, Lyman MA, Kim BS. The majority of infiltrating CD8+ T cells in the central nervous system of susceptible SJL/J mice infected with Theiler's virus are virus specific and fully functional. J Virol 2002; 76:6577-85. [PMID: 12050370 PMCID: PMC136254 DOI: 10.1128/jvi.76.13.6577-6585.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains, such as SJL/J, and serves as a relevant infectious model for human multiple sclerosis. It has been previously suggested that susceptible SJL/J mice do not mount an efficient cytotoxic T-lymphocyte (CTL) response to the virus. In addition, genetic studies have shown that resistance to Theiler's virus-induced demyelinating disease is linked to the H-2D major histocompatibility complex class I locus, suggesting that a compromised CTL response may contribute to the susceptibility of SJL/J mice. Here we show that SJL/J mice do, in fact, generate a CD8(+) T-cell response in the CNS that is directed against one dominant (VP3(159-166)) and two subdominant (VP1(11-20) and VP3(173-181)) capsid protein epitopes. These virus-specific CD8(+) T cells produce gamma interferon (IFN-gamma) and lyse target cells in the presence of the epitope peptides, indicating that these CNS-infiltrating CD8(+) T cells are fully functional effector cells. Intracellular IFN-gamma staining analysis indicates that greater than 50% of CNS-infiltrating CD8(+) T cells are specific for these viral epitopes at 7 days postinfection. Therefore, the susceptibility of SJL/J mice is not due to the lack of an early functional Theiler's murine encephalomyelitis virus-specific CTL response. Interestingly, T-cell responses to all three epitopes are restricted by the H-2K(s) molecule, and this skewed class I restriction may be associated with susceptibility to demyelinating disease.
Collapse
Affiliation(s)
- Bong-Su Kang
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
79
|
Wilcox RA, Flies DB, Zhu G, Johnson AJ, Tamada K, Chapoval AI, Strome SE, Pease LR, Chen L. Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J Clin Invest 2002. [PMID: 11877473 DOI: 10.1172/jci0214184] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Treatment of advanced, poorly immunogenic tumors in animal models, considered the closest simulation available thus far for conditions observed in cancer patients, remains a major challenge for cancer immunotherapy. We reported previously that established tumors in mice receiving an agonistic mAb to the T cell costimulatory molecule 4-1BB (CD137) regress due to enhanced tumor antigen-specific cytotoxic T lymphocyte responses. In this study, we demonstrate that several poorly immunogenic tumors, including C3 tumor, TC-1 lung carcinoma, and B16-F10 melanoma, once established as solid tumors or metastases, are refractory to treatment by anti-4-1BB mAb. We provide evidence that immunological ignorance, rather than anergy or deletion, of tumor antigen--specific CTLs during the progressive growth of tumors prevents costimulation by anti-4-1BB mAb. Breaking CTL ignorance by immunization with a tumor antigen-derived peptide, although insufficient to stimulate a curative CTL response, is necessary for anti--4-1BB mAb to induce a CTL response leading to the regression of established tumors. Our results suggest a new approach for immunotherapy of human cancers.
Collapse
Affiliation(s)
- Ryan A Wilcox
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Lyman MA, Lee HG, Kang BS, Kang HK, Kim BS. Capsid-specific cytotoxic T lymphocytes recognize three distinct H-2D(b)-restricted regions of the BeAn strain of Theiler's virus and exhibit different cytokine profiles. J Virol 2002; 76:3125-34. [PMID: 11884537 PMCID: PMC136020 DOI: 10.1128/jvi.76.7.3125-3134.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The role of virus-specific cytotoxic T lymphocytes (CTL) in Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease, a viral model for multiple sclerosis, is not yet clear. To investigate the specificity and function of CTL generated in response to TMEV infection, we generated a panel of overlapping 20-mer peptides encompassing the entire capsid and leader protein region of the BeAn strain of TMEV. Binding of these peptides to H-2K(b) and H-2D(b) class I molecules of resistant mice was assessed using RMA-S cells. Several peptides displayed significant binding to H-2K(b), H-2D(b), or both. However, infiltrating cytotoxic T cells in the central nervous system of virus-infected mice preferentially lysed target cells pulsed with VP2(111-130/121-140) or VP2(121-130), a previously defined CTL epitope shared by the DA strain of TMEV and other closely related cardioviruses. In addition, at a high effector-to-target cell ratio, two additional peptides (VP2(161-180) and VP3(101-120)) sensitized target cells for cytolysis by infiltrating T cells or splenic T cells from virus-infected mice. The minimal epitopes within these peptides were defined as VP2(165-173) and VP3(110-120). Based on cytokine profiles, CTL specific for these subdominant epitopes are Tc2, in contrast to CTL for the immunodominant epitope, which are of the Tc1 type. Interestingly, CTL function towards both of these subdominant epitopes is restricted by the H-2D molecule, despite the fact that these epitopes bind both H-2K and H-2D molecules. This skewing toward an H-2D(b)-restricted response may confer resistance to TMEV-induced demyelinating disease, which is known to be associated with the H-2D genetic locus.
Collapse
Affiliation(s)
- Michael A Lyman
- Department of Microbiology-Immunology and Institute of Neuroscience, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
81
|
Murray PD, McGavern DB, Pease LR, Rodriguez M. Cellular sources and targets of IFN-gamma-mediated protection against viral demyelination and neurological deficits. Eur J Immunol 2002; 32:606-15. [PMID: 11857334 PMCID: PMC5319413 DOI: 10.1002/1521-4141(200203)32:3<606::aid-immu606>3.0.co;2-d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IFN-gamma is an anti-viral and immunomodulatory cytokine critical for resistance to multiple pathogens. Using mice with targeted disruption of the gene for IFN-gamma, we previously demonstrated that this cytokine is critical for resistance to viral persistence and demyelination in the Theiler's virus model of multiple sclerosis. During viral infections, IFN-gamma is produced by natural killer (NK) cells, CD4(+) and CD8(+) T cells; however, the proportions of lymphocyte subsets responding to virus infection influences the contributions to IFN-gamma-mediated protection. To determine the lymphocyte subsets that produce IFN-gamma to maintain resistance, we used adoptive transfer strategies to generate mice with lymphocyte-specific deficiencies in IFN-gamma-production. We demonstrate that IFN-gamma production by both CD4(+) and CD8(+) T cell subsets is critical for resistance to Theiler's murine encephalomyelitis virus (TMEV)-induced demyelination and neurological disease, and that CD4(+) T cells make a greater contribution to IFN-gamma-mediated protection. To determine the cellular targets of IFN-gamma-mediated responses, we used adoptive transfer studies and bone marrow chimerism to generate mice in which either hematopoietic or somatic cells lacked the ability to express IFN-gamma receptor. We demonstrate that IFN-gamma receptor must be present on central nervous system glia, but not bone marrow-derived lymphocytes, in order to maintain resistance to TMEV-induced demyelination.
Collapse
MESH Headings
- Animals
- Antigens, Viral/analysis
- Bone Marrow Transplantation
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cardiovirus Infections/complications
- Cardiovirus Infections/immunology
- Cardiovirus Infections/pathology
- Cardiovirus Infections/therapy
- Crosses, Genetic
- Demyelinating Diseases/etiology
- Demyelinating Diseases/immunology
- Demyelinating Diseases/pathology
- Demyelinating Diseases/therapy
- Disease Models, Animal
- Disease Susceptibility
- Immunotherapy, Adoptive
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interferon-gamma/physiology
- Lymphocyte Subsets/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis
- Psychomotor Performance
- RNA, Viral/analysis
- Radiation Chimera
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/physiology
- Spinal Cord/pathology
- Theilovirus/immunology
- Theilovirus/physiology
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Paul D. Murray
- Department of Immunology, Mayo Clinic and Foundation, Rochester, USA
| | - Dorian B. McGavern
- Department of Molecular Neuroscience, Mayo Clinic and Foundation, Rochester, USA
| | - Larry R. Pease
- Department of Immunology, Mayo Clinic and Foundation, Rochester, USA
| | - Moses Rodriguez
- Department of Immunology, Mayo Clinic and Foundation, Rochester, USA
- Department of Neurology, Mayo Clinic and Foundation, Rochester, USA
| |
Collapse
|
82
|
Wilcox RA, Flies DB, Zhu G, Johnson AJ, Tamada K, Chapoval AI, Strome SE, Pease LR, Chen L. Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J Clin Invest 2002; 109:651-9. [PMID: 11877473 PMCID: PMC150893 DOI: 10.1172/jci14184] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Treatment of advanced, poorly immunogenic tumors in animal models, considered the closest simulation available thus far for conditions observed in cancer patients, remains a major challenge for cancer immunotherapy. We reported previously that established tumors in mice receiving an agonistic mAb to the T cell costimulatory molecule 4-1BB (CD137) regress due to enhanced tumor antigen-specific cytotoxic T lymphocyte responses. In this study, we demonstrate that several poorly immunogenic tumors, including C3 tumor, TC-1 lung carcinoma, and B16-F10 melanoma, once established as solid tumors or metastases, are refractory to treatment by anti-4-1BB mAb. We provide evidence that immunological ignorance, rather than anergy or deletion, of tumor antigen--specific CTLs during the progressive growth of tumors prevents costimulation by anti-4-1BB mAb. Breaking CTL ignorance by immunization with a tumor antigen-derived peptide, although insufficient to stimulate a curative CTL response, is necessary for anti--4-1BB mAb to induce a CTL response leading to the regression of established tumors. Our results suggest a new approach for immunotherapy of human cancers.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antigens, CD
- Antigens, Neoplasm/metabolism
- Female
- Humans
- Immune Tolerance
- Immunotherapy/methods
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred C57BL
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Oncogene Proteins, Viral/immunology
- Papillomavirus E7 Proteins
- Receptors, Nerve Growth Factor/immunology
- Receptors, Tumor Necrosis Factor/immunology
- Signal Transduction/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
- Tumor Necrosis Factor Receptor Superfamily, Member 9
Collapse
Affiliation(s)
- Ryan A Wilcox
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Schell TD, Tevethia SS. Control of advanced choroid plexus tumors in SV40 T antigen transgenic mice following priming of donor CD8(+) T lymphocytes by the endogenous tumor antigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6947-56. [PMID: 11739514 DOI: 10.4049/jimmunol.167.12.6947] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse models in which tumors arise spontaneously due to the transgenic expression of an oncoprotein provide an opportunity to test approaches that target the immune-mediated control of tumor progression. In this report we investigated the role of SV40 Tag-specific CD8(+) T cells in the control of advanced choroid plexus tumor progression using large tumor Ag (Tag) transgenic mice. Since mice of the SV11 line are tolerant to the immunodominant SV40 Tag-derived CTL epitopes, mice with advanced stage tumors were reconstituted with naive C57BL/6 spleen cells following a low dose of gamma-irradiation. This led to the priming of CTLs specific for the H2-K(b)-restricted epitope IV by the endogenous Tag and a significant increase in the life span of Tag transgenic mice. Epitope IV-specific CD8(+) T cells accumulated and persisted in the brains and tumors of SV11 mice, as determined by analysis with epitope-specific MHC class I tetramers. Brain-infiltrating epitope IV-specific T cells were capable of producing IFN-gamma as well as lysing syngeneic Tag-transformed cells in vitro. In addition, the adoptive transfer of spleen cells from Tag-immune C57BL/6 mice resulted in a dramatic increase in the control of tumor progression in SV11 mice and was associated with the accumulation of CD8(+) T cells specific for multiple Tag epitopes in the brain. These results indicate that the control of advanced stage spontaneous choroid plexus tumors is associated with the induction of a strong and persistent CD8(+) T cell response to Tag.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/immunology
- Brain/immunology
- Brain/pathology
- Cell Line
- Cell Line, Transformed
- Cells, Cultured
- Choroid Plexus Neoplasms/immunology
- Choroid Plexus Neoplasms/pathology
- Cytotoxicity Tests, Immunologic
- Disease Progression
- Epitopes, T-Lymphocyte/immunology
- Interferon-gamma/biosynthesis
- Lymphocytes, Tumor-Infiltrating/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Spleen/immunology
- Survival Rate
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/transplantation
Collapse
Affiliation(s)
- T D Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | |
Collapse
|
84
|
Johnson AJ, Upshaw J, Pavelko KD, Rodriguez M, Pease LR. Preservation of motor function by inhibition of CD8+ virus peptide-specific T cells in Theiler's virus infection. FASEB J 2001; 15:2760-2. [PMID: 11606479 DOI: 10.1096/fj.01-0373fje] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Central nervous system-infiltrating CD8+ T cells are potential mediators of neuropathology in models of multiple sclerosis induced by Theiler's murine encephalomyelitis virus (TMEV) infection. C57BL/6 mice mount a vigorous cytotoxic T lymphocyte (CTL) response against the immunodominant virus peptide VP2121-130 and clear TMEV infection. Interferon-g (IFN-g)R-/- mice also mount a strong CTL response against the VP2121-130 epitope, but because of genetic deficiencies in critical IFN-g signaling pathways, they do not clear TMEV infection and develop prominent neurological deficits within 6 wk. This pronounced disease process, coupled with a defined CTL response, provides an ideal model for evaluating the importance of antiviral CTL activity in the development of severe demyelination and loss of motor neuron function. By administering the VP2121-130 peptide before and during TMEV infection, 99% of the VP2121-130-specific CD8+ T cell response was inhibited. No decrease in virus infection was observed. Peptide treatment did result in significantly less motor dysfunction, even when no differences in levels of demyelination were observed. Although most investigators focus on the role of CD4+ T cells in demyelinating disease, these studies are the first to demonstrate a clear contribution of antiviral CD8+ T cells in neurological injury in a chronic-progressive model of multiple sclerosis.
Collapse
Affiliation(s)
- A J Johnson
- Departments of, Immunology and, Neurology, Mayo Graduate and Medical Schools, Rochester, Minnesota 55901, USA
| | | | | | | | | |
Collapse
|
85
|
Topham DJ, Cardin RC, Christensen JP, Brooks JW, Belz GT, Doherty PC. Perforin and Fas in murine gammaherpesvirus-specific CD8(+) T cell control and morbidity. J Gen Virol 2001; 82:1971-1981. [PMID: 11458005 DOI: 10.1099/0022-1317-82-8-1971] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The immune system uses both virus-specific T cells and B cells to control the acute and latent phases of respiratory infection with the murine gammaherpesvirus 68 (gammaHV-68). We sought to further define the important effector mechanisms for CD8(+) T cells. First, depletion of the CD4(+) T cells resulted in a failure of most animals to drive the virus into latency, although lytic virus in the lung was reduced by approximately 1000-fold from its peak. Second, the absence of either perforin or Fas alone had no impact on the ability to reduce titres of lytic virus in the lung. Further neutralization of IFN-gamma in CD4-depleted P(+/+), P(-/-) or Fas(-/-) mice had no effect. To define the requirements for Fas or perforin more clearly, two sets of chimeric mice were constructed differing in perforin expression by the T cells, and Fas on infected epithelial cells or lymphocytes. Animals with P(-/-) T cells and a Fas(-/-) lung failed to limit the shedding of infectious virus, regardless of whether CD4 T cells were present. In addition, we noted that having P(-/-) T cells in irradiated Fas(+/+) hosts caused a lethal disease that was not apparent in the non-chimeric (unirradiated) P(-/-) (Fas(+/+)) mice. In another set of chimeric mice, P(-/-) T cells were able to limit persistent infection of B cells that expressed Fas, but not B cells that were Fas-deficient. These studies demonstrate that some degree of cytotoxicity via either perforin or Fas is essential for CD8(+) T cells to control this DNA virus.
Collapse
Affiliation(s)
- David J Topham
- Department of Immunology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38101, USA1
| | - Rhonda C Cardin
- Department of Immunology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38101, USA1
| | - Jan P Christensen
- Department of Immunology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38101, USA1
| | - James W Brooks
- Department of Immunology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38101, USA1
| | - Gabrielle T Belz
- Department of Immunology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38101, USA1
| | - Peter C Doherty
- Department of Immunology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38101, USA1
| |
Collapse
|
86
|
Wang B, Norbury CC, Greenwood R, Bennink JR, Yewdell JW, Frelinger JA. Multiple paths for activation of naive CD8+ T cells: CD4-independent help. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1283-9. [PMID: 11466344 DOI: 10.4049/jimmunol.167.3.1283] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CD8(+) CTLs play a pivotal role in immune responses against many viruses and tumors. Two models have been proposed. The "three-cell" model focuses on the role of CD4(+) T cells, proposing that help is only provided to CTLs by CD4(+) T cells that recognize Ag on the same APC. The sequential "two-cell" model proposes that CD4(+) T cells can first interact with APCs, which in turn activate naive CTLs. Although these models provide a general framework for the role of CD4(+) T cells in mediating help for CTLs, a number of issues are unresolved. We have investigated the induction of CTL responses using dendritic cells (DCs) to immunize mice against defined peptide Ags. We find that help is required for activation of naive CTLs when DCs are used as APCs, regardless of the origin or MHC class I restriction of the peptides we studied in this system. However, CD8(+) T cells can provide self-help if they are present at a sufficiently high precursor frequency. The important variable is the total number of T cells responding, because class II-knockout DCs pulsed with two noncompeting peptides are effective in priming.
Collapse
Affiliation(s)
- B Wang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
87
|
Block MS, Johnson AJ, Mendez-Fernandez Y, Pease LR. Monomeric class I molecules mediate TCR/CD3 epsilon/CD8 interaction on the surface of T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:821-6. [PMID: 11441088 DOI: 10.4049/jimmunol.167.2.821] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both CD8 and the TCR bind to MHC class I molecules during physiologic T cell activation. It has been shown that for optimal T cell activation to occur, CD8 must be able to bind the same class I molecule that is bound by the TCR. However, no direct evidence for the class I-dependent association of CD8 and the TCR has been demonstrated. Using fluorescence resonance energy transfer, we show directly that a single class I molecule causes TCR/CD8 interaction by serving as a docking molecule for both CD8 and the TCR. Furthermore, we show that CD3epsilon is brought into close proximity with CD8 upon TCR/CD8 association. These interactions are not dependent on the phosphorylation events characteristic of T cell activation. Thus, MHC class I molecules, by binding to both CD8 and the TCR, mediate the reorganization of T cell membrane components to promote cellular activation.
Collapse
Affiliation(s)
- M S Block
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
88
|
Zhang X, Brewer L, Walcheck B, Johnson A, Pease LR, Njenga MK. Theiler's virus-infected L-selectin-deficient mice have decreased infiltration of CD8(+) T lymphocytes in central nervous system but clear the virus. J Neuroimmunol 2001; 116:178-87. [PMID: 11438172 DOI: 10.1016/s0165-5728(01)00296-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice with targeted deletion of L-selectin gene (L-sel(-/-)) were used to investigate the role of adhesion molecule in immunologic responses following virus infection in the central nervous system (CNS). L-Sel(-/-) mice from a resistant H-2(b) genetic background and parental wild-type H-2(b) (C57BL/6) mice were infected with Theiler's murine encephalomyelitis virus (TMEV) intracerebrally and the kinetics of virus replication and infiltration of immune cells in the CNS determined. The levels of infectious TMEV, as measured by plaque assay at 3, 7, 14, and 28 days after infection were between 4 and 6 log(10) PFU of virus per gram of CNS tissues at days 3 and 7 post-infection, and then decreased to undetectable levels by day 14 after infection in both strains of mice. The L-sel(-/-) mice had decreased numbers of CD8(+) T lymphocytes (17.72%+/-2.4) infiltrating into the CNS at 7 days post-infection when compared to wild-type mice (31.02%+/-7.5). In addition, the L-sel(-/-) mice had significantly lower levels of TMEV-specific serum IgG resulting in lower virus neutralizing activity of the serum when compared to wild-type mice. However, the L-sel(-/-) mice had 2.5-fold increase in B lymphocytes in the CNS (8.29%+/-1.1) when compared to wild-type mice (3.2%+/-0.4). Taken together, these data indicate that L-selectin plays a role in recruitment of B and CD8(+) T lymphocytes into the CNS following virus infection, which, however, did not affect the ability of the mice to clear TMEV infection.
Collapse
Affiliation(s)
- X Zhang
- Department of Veterinary PathoBiology, University of Minnesota, 1971 Commonwealth Avenue, 55108, St. Paul, MN, USA
| | | | | | | | | | | |
Collapse
|
89
|
Cameron K, Zhang X, Seal B, Rodriguez M, Njenga MK. Antigens to viral capsid and non-capsid proteins are present in brain tissues and antibodies in sera of Theiler's virus-infected mice. J Virol Methods 2001; 91:11-9. [PMID: 11164481 DOI: 10.1016/s0166-0934(00)00246-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recombinant proteins to the LP, VP1, VP2, VP3, VP4, 2A, 2B, 2C, 3A, and 3D genes of Theiler's murine encephalomyelitis virus (TMEV) were generated and antibodies were produced against them for use in analysis of the TMEV epitopes responsible for eliciting the antibody responses observed during acute and chronic disease. Antibodies against recombinant VP1, VP2, and VP3 recognized the corresponding proteins from purified TMEV particles. In immunohistochemical analysis, antibodies against recombinant capsid (VP1, VP2, and VP3), and non-capsid (2A, 2C, 3A) proteins were reactive with PO-2D cells (astrocytes) infected with TMEV in vitro and with brain tissues of acutely infected mice. Antibodies against VP4, 2B, and 3D antigens were not reactive with corresponding viral proteins in infected astrocytes cells or brain tissues, but they reacted with TMEV precursor proteins produced during the early viral replication phase. Sera from SJL/J mice infected with TMEV acutely (14 days) and chronically (45 days) reacted with VP1, VP2, VP4, 2A, and 2C proteins. In an in vitro assay for neutralization, only anti-VP1 antibodies neutralized TMEV infection. These findings suggest that both capsid and non-capsid proteins of TMEV play a role in the immunopathology of the TMEV disease in the central nervous system.
Collapse
Affiliation(s)
- K Cameron
- Department of Veterinary Pathobiology, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
90
|
Riberdy JM, Christensen JP, Branum K, Doherty PC. Diminished primary and secondary influenza virus-specific CD8(+) T-cell responses in CD4-depleted Ig(-/-) mice. J Virol 2000; 74:9762-5. [PMID: 11000251 PMCID: PMC112411 DOI: 10.1128/jvi.74.20.9762-9765.2000] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Optimal expansion of influenza virus nucleoprotein (D(b)NP(366))-specific CD8(+) T cells following respiratory challenge of naive Ig(-/-) microMT mice was found to require CD4(+) T-cell help, and this effect was also observed in primed animals. Absence of the CD4(+) population was consistently correlated with diminished recruitment of virus-specific CD8(+) T cells to the infected lung, delayed virus clearance, and increased morbidity. The splenic CD8(+) set generated during the recall response in Ig(-/-) mice primed at least 6 months previously showed a normal profile of gamma interferon production subsequent to short-term, in vitro stimulation with viral peptide, irrespective of a concurrent CD4(+) T-cell response. Both the magnitude and the localization profiles of virus-specific CD8(+) T cells, though perhaps not their functional characteristics, are thus modified in mice lacking CD4(+) T cells.
Collapse
Affiliation(s)
- J M Riberdy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
91
|
Romero P, Pittet MJ, Valmori D, Speiser DE, Cerundolo V, Liénard D, Lejeune F, Cerottini JC. Immune monitoring in cancer immunotherapy. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2000:75-97. [PMID: 10943317 DOI: 10.1007/978-3-662-04183-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- P Romero
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Doherty PC, Riberdy JM, Belz GT. Quantitative analysis of the CD8+ T-cell response to readily eliminated and persistent viruses. Philos Trans R Soc Lond B Biol Sci 2000; 355:1093-101. [PMID: 11186311 PMCID: PMC1692813 DOI: 10.1098/rstb.2000.0647] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recent development of techniques for the direct staining of peptide-specific CD8+ T cells has revolutionized the analysis of cell-mediated immunity (CMI) in virus infections. This approach has been used to quantify the acute and long-term consequences of infecting laboratory mice with the readily eliminated influenza A viruses (fluA) and a persistent gammaherpesvirus (gammaHV). It is now, for the first time, possible to work with real numbers in the analysis of CD8+ T CMI, and to define various characteristics of the responding lymphocytes both by direct flow cytometric analysis and by sorting for further in vitro manipulation. Relatively little has yet been done from the latter aspect, though we are rapidly accumulating a mass of numerical data. The acute, antigen-driven phases of the fluA and gammaHV-specific response look rather similar, but CD8+ T-cell numbers are maintained in the long term at a higher 'set point' in the persistent infection. Similarly, these 'memory' T cells continue to divide at a much greater rate in the gammaHV-infected mice. New insights have also been generated on the nature of the recall response following secondary challenge in both experimental systems, and the extent of protection conferred by large numbers of virus-specific CD8+ T cells has been determined. However, there are still many parameters that have received little attention, partly because they are difficult to measure. These include the rate of antigen-specific CD8+ T-cell loss, the extent of the lymphocyte 'diaspora' to other tissues, and the diversity of functional characteristics, turnover rates, clonal life spans and recirculation profiles. The basic question for immunologists remains how we reconcile the extraordinary plasticity of the immune system with the mechanisms that maintain a stable milieu interieur. This new capacity to quantify CD8+ T-cell responses in readily manipulated mouse models has obvious potential for illuminating homeostatic control, particularly if the experimental approaches to the problem are designed in the context of appropriate predictive models.
Collapse
Affiliation(s)
- P C Doherty
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38104, USA.
| | | | | |
Collapse
|
93
|
Whitmire JK, Ahmed R. Costimulation in antiviral immunity: differential requirements for CD4(+) and CD8(+) T cell responses. Curr Opin Immunol 2000; 12:448-55. [PMID: 10899032 DOI: 10.1016/s0952-7915(00)00119-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A key step toward improving vaccines is understanding the molecular interactions responsible for inducing antiviral T cell responses. An emerging theme from recent studies is that CD4(+) and CD8(+) T cell responses require distinct costimulatory pathways for activation. In addition, these costimulatory interactions can play a crucial role during the death phase of the T cell response and determine the number of effector T cells that survive to become memory T cells.
Collapse
Affiliation(s)
- J K Whitmire
- Department of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.
| | | |
Collapse
|
94
|
Abstract
The cellular dynamics of the immune system are complex and difficult to measure. Access to this problematic area has been greatly enhanced by the recent development of tetrameric complexes of MHC class I glycoprotein + peptide (tetramers) for the direct staining of freshly isolated, antigen-specific CD8(+ )T cells. Analysis to date with both naturally acquired and experimentally induced infections has established that the numbers of virus-specific CD8(+) T cells present during both the acute and memory phases of the host response are more than tenfold in excess of previously suspected values. The levels are such that the virus-specific CD8(+) set is readily detected in the human peripheral blood lymphocyte compartment, particularly during persistent infections. Experimentally, it is now possible to measure the extent of cycling for tetramer (+)CD8(+) T cells during the acute and memory phases of the host response to viruses. Dissection of the phenotypic, functional, and molecular diversity of CD8(+) T cell populations has been greatly facilitated. It is hoped it will also soon be possible to analyze CD4(+) T cell populations in this way. Though these are early days and there is an enormous amount to be done, our perceptions of the shape of virus-specific cell-mediated immunity are changing rapidly.
Collapse
Affiliation(s)
- P C Doherty
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
95
|
Tamada K, Shimozaki K, Chapoval AI, Zhu G, Sica G, Flies D, Boone T, Hsu H, Fu YX, Nagata S, Ni J, Chen L. Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat Med 2000; 6:283-9. [PMID: 10700230 DOI: 10.1038/73136] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
LIGHT was recently described as a member of the tumor necrosis factor (TNF) 'superfamily'. We have isolated a mouse homolog of human LIGHT and investigated its immunoregulatory functions in vitro and in vivo. LIGHT has potent, CD28-independent co-stimulatory activity leading to T-cell growth and secretion of gamma interferon and granulocyte-macrophage colony-stimulating factor. Gene transfer of LIGHT induced an antigen-specific cytolytic T-cell response and therapeutic immunity against established mouse P815 tumor. In contrast, blockade of LIGHT by administration of soluble receptor or antibody led to decreased cell-mediated immunity and ameliorated graft-versus-host disease. Our studies identify a previously unknown T-cell co-stimulatory pathway as a potential therapeutic target.
Collapse
Affiliation(s)
- K Tamada
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|