51
|
Wang X, Jiang P, Li Y, Jiang W, Dong X. Protection of pigs against post-weaning multisystemic wasting syndrome by a recombinant adenovirus expressing the capsid protein of porcine circovirus type 2. Vet Microbiol 2007; 121:215-24. [PMID: 17215092 DOI: 10.1016/j.vetmic.2006.11.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/04/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Post-weaning multisystemic wating syndrome (PMWS) associated with PCV2 was one of the most costly diseases currently faced by the swine industry. In order to develop a vaccine to control this disease, we previously constructed a recombinant adenovirus expressing the capsid of PCV2. Here, we examined the protection of swine against PMWS by the recombinant adenovirus. Eighteen 32-day-old pigs were assigned to three groups each with six. Group 1 was vaccinated subcutaneously with rAd-Cap and boosted 2 weeks later. Thirty-seven days after first vaccination, Groups 1 and 2 were oronasally challenged with virulent PCV2 isolate, 4 and 7 days later, intramuscularly exposed to keyhole limpet hemocyanin (KLH). Group 3 remained unchallenged but with KLH. The results showed that high level of PCV2-specific ELISA antibody and neutralizing antibody could be induced at 37 days after first vaccination. After challenge, pigs in vaccinated group had no clearly clinical signs, although some of them had increased rectal temperatures (>/=40 degrees C) for short time. The pyrexic phase in vaccinated group was significantly lighter than that in challenge-control group (P<0.05). The relative daily weight gain in vaccinated-challenged group was similar to that in empty control group. But it was significantly high compared to the challenge-control group (P<0.05). Mean while the pathological lesions and virema presented in vaccinated group were milder than those in control group. It indicated that the recombinant adenovirus was able to confer significant protection against clinical disease and reduce pathogenic lesions induced by PCV2 challenge, even though it could not provide complete virological protection. The recombinant adenovirus might be an attractive candidate vaccine for preventing the disease associated with PCV2 infection.
Collapse
Affiliation(s)
- Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
52
|
Demberg T, Florese RH, Heath MJ, Larsen K, Kalisz I, Kalyanaraman VS, Lee EM, Pal R, Venzon D, Grant R, Patterson LJ, Korioth-Schmitz B, Buzby A, Dombagoda D, Montefiori DC, Letvin NL, Cafaro A, Ensoli B, Robert-Guroff M. A replication-competent adenovirus-human immunodeficiency virus (Ad-HIV) tat and Ad-HIV env priming/Tat and envelope protein boosting regimen elicits enhanced protective efficacy against simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques. J Virol 2007; 81:3414-27. [PMID: 17229693 PMCID: PMC1866031 DOI: 10.1128/jvi.02453-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 01/09/2007] [Indexed: 02/05/2023] Open
Abstract
We previously demonstrated that replication-competent adenovirus (Ad)-simian immunodeficiency virus (SIV) recombinant prime/protein boost regimens elicit potent immunogenicity and strong, durable protection of rhesus macaques against SIV(mac251). Additionally, native Tat vaccines have conferred strong protection against simian/human immunodeficiency virus SHIV(89.6P) challenge of cynomolgus monkeys, while native, inactivated, or vectored Tat vaccines have failed to elicit similar protective efficacy in rhesus macaques. Here we asked if priming rhesus macaques with replicating Ad-human immunodeficiency virus (HIV) tat and boosting with the Tat protein would elicit protection against SHIV(89.6P). We also evaluated a Tat/Env regimen, adding an Ad-HIV env recombinant and envelope protein boost to test whether envelope antibodies would augment acute-phase protection. Further, expecting cellular immunity to enhance chronic viremia control, we tested a multigenic group: Ad-HIV tat, -HIV env, -SIV gag, and -SIV nef recombinants and Tat, Env, and Nef proteins. All regimens were immunogenic. A hierarchy was observed in enzyme-linked immunospot responses (with the strongest response for Env, followed by Gag, followed by Nef, followed by Tat) and antibody titers (with the highest titer for Env, followed by Tat, followed by Nef, followed by Gag). Following intravenous SHIV(89.6P) challenge, all macaques became infected. Compared to controls, no protection was seen in the Tat-only group, confirming previous reports for rhesus macaques. However, the multigenic group blunted acute viremia by approximately 1 log (P = 0.017), and both the multigenic and Tat/Env groups reduced chronic viremia by 3 and 4 logs, respectively, compared to controls (multigenic, P = 0.0003; Tat/Env, P < 0.0001). The strikingly greater reduction in the Tat/Env group than in the multigenic group (P = 0.014) was correlated with Tat and Env binding antibodies. Since prechallenge anti-Env antibodies lacked SHIV(89.6P)-neutralizing activity, other functional anti-Env and anti-Tat activities are under investigation, as is a possible synergy between the Tat and Env immunogens.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, National Cancer Institute/NIH, 41 Medlars Drive, Building 41, Bethesda, MD 20892-5065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Kothe DL, Decker JM, Li Y, Weng Z, Bibollet-Ruche F, Zammit KP, Salazar MG, Chen Y, Salazar-Gonzalez JF, Moldoveanu Z, Mestecky J, Gao F, Haynes BF, Shaw GM, Muldoon M, Korber BTM, Hahn BH. Antigenicity and immunogenicity of HIV-1 consensus subtype B envelope glycoproteins. Virology 2007; 360:218-34. [PMID: 17097711 PMCID: PMC1945152 DOI: 10.1016/j.virol.2006.10.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 09/26/2006] [Accepted: 10/06/2006] [Indexed: 11/20/2022]
Abstract
"Centralized" (ancestral and consensus) HIV-1 envelope immunogens induce broadly cross-reactive T cell responses in laboratory animals; however, their potential to elicit cross-reactive neutralizing antibodies has not been fully explored. Here, we report the construction of a panel of consensus subtype B (ConB) envelopes and compare their biologic, antigenic, and immunogenic properties to those of two wild-type Env controls from individuals with early and acute HIV-1 infection. Glycoprotein expressed from full-length (gp160), uncleaved (gp160-UNC), truncated (gp145), and N-linked glycosylation site deleted (gp160-201N/S) versions of the ConB env gene were packaged into virions and, except for the fusion defective gp160-UNC, mediated infection via the CCR5 co-receptor. Pseudovirions containing ConB Envs were sensitive to neutralization by patient plasma and monoclonal antibodies, indicating the preservation of neutralizing epitopes found in contemporary subtype B viruses. When used as DNA vaccines in guinea pigs, ConB and wild-type env immunogens induced appreciable binding, but overall only low level neutralizing antibodies. However, all four ConB immunogens were significantly more potent than one wild-type vaccine at eliciting neutralizing antibodies against a panel of tier 1 and tier 2 viruses, and ConB gp145 and gp160 were significantly more potent than both wild-type vaccines at inducing neutralizing antibodies against tier 1 viruses. Thus, consensus subtype B env immunogens appear to be at least as good as, and in some instances better than, wild-type B env immunogens at inducing a neutralizing antibody response, and are amenable to further improvement by specific gene modifications.
Collapse
Affiliation(s)
- Denise L Kothe
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Kaur A, Sanford HB, Garry D, Lang S, Klumpp SA, Watanabe D, Bronson RT, Lifson JD, Rosati M, Pavlakis GN, Felber BK, Knipe DM, Desrosiers RC. Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus. Virology 2007; 357:199-214. [PMID: 16962628 PMCID: PMC1819472 DOI: 10.1016/j.virol.2006.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/14/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
The immunogenicity and protective capacity of replication-defective herpes simplex virus (HSV) vector-based vaccines were examined in rhesus macaques. Three macaques were inoculated with recombinant HSV vectors expressing Gag, Env, and a Tat-Rev-Nef fusion protein of simian immunodeficiency virus (SIV). Three other macaques were primed with recombinant DNA vectors expressing Gag, Env, and a Pol-Tat-Nef-Vif fusion protein prior to boosting with the HSV vectors. Robust anti-Gag and anti-Env cellular responses were detected in all six macaques. Following intravenous challenge with wild-type, cloned SIV239, peak and 12-week plasma viremia levels were significantly lower in vaccinated compared to control macaques. Plasma SIV RNA in vaccinated macaques was inversely correlated with anti-Rev ELISPOT responses on the day of challenge (P value<0.05), anti-Tat ELISPOT responses at 2 weeks post challenge (P value <0.05) and peak neutralizing antibody titers pre-challenge (P value 0.06). These findings support continued study of recombinant herpesviruses as a vaccine approach for AIDS.
Collapse
Affiliation(s)
- Amitinder Kaur
- New England Primate Research Center, Harvard Medical School, One Pine Hill Drive, P.O. Box 9102, Southborough, MA 01772-9102, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Graham BS, Koup RA, Roederer M, Bailer RT, Enama ME, Moodie Z, Martin JE, McCluskey MM, Chakrabarti BK, Lamoreaux L, Andrews CA, Gomez PL, Mascola JR, Nabel GJ, Vaccine Research Center 004 Study Team. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J Infect Dis 2006; 194:1650-60. [PMID: 17109336 PMCID: PMC2428069 DOI: 10.1086/509259] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/26/2006] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Gene-based vaccine delivery is an important strategy in the development of a preventive vaccine for acquired immunodeficiency syndrome (AIDS). Vaccine Research Center (VRC) 004 is the first phase 1 dose-escalation study of a multiclade HIV-1 DNA vaccine. METHODS VRC-HIVDNA009-00-VP is a 4-plasmid mixture encoding subtype B Gag-Pol-Nef fusion protein and modified envelope (Env) constructs from subtypes A, B, and C. Fifty healthy, uninfected adults were randomized to receive either placebo (n=10) or study vaccine at 2 mg (n=5), 4 mg (n=20), or 8 mg (n=15) by needle-free intramuscular injection. Humoral responses (measured by enzyme-linked immunosorbant assay, Western blotting, and neutralization assay) and T cell responses (measured by enzyme-linked immunospot assay and intracellular cytokine staining after stimulation with antigen-specific peptide pools) were measured. RESULTS The vaccine was well tolerated and induced cellular and humoral responses. The maximal CD4(+) and CD8(+) T cell responses occurred after 3 injections and were in response to Env peptide pools. The pattern of cytokine expression by vaccine-induced HIV-specific T cells evolved over time, with a diminished frequency of interferon- gamma -producing T cells and an increased frequency of interleukin-2-producing T cells at 1 year. CONCLUSIONS DNA vaccination induced antibody to and T cell responses against 3 major HIV-1 subtypes and will be further evaluated as a potential component of a preventive AIDS vaccine regimen.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/adverse effects
- AIDS Vaccines/immunology
- Adolescent
- Adult
- Antibodies, Viral/blood
- Antibody Specificity
- Blotting, Western
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cytokines/analysis
- Cytokines/biosynthesis
- Double-Blind Method
- Enzyme-Linked Immunosorbent Assay
- Female
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Genetic Vectors
- HIV Infections/blood
- HIV Infections/immunology
- HIV-1/immunology
- Humans
- Immunization Schedule
- Injections, Intramuscular
- Male
- Neutralization Tests
- Plasmids
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/adverse effects
- Vaccines, DNA/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3017, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Catanzaro AT, Koup RA, Roederer M, Bailer RT, Enama ME, Moodie Z, Gu L, Martin JE, Novik L, Chakrabarti BK, Butman BT, Gall JGD, King CR, Andrews CA, Sheets R, Gomez PL, Mascola JR, Nabel GJ, Graham BS, the Vaccine Research Center 006 Study Team. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector. J Infect Dis 2006; 194:1638-49. [PMID: 17109335 PMCID: PMC2428071 DOI: 10.1086/509258] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/28/2006] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The development of an effective human immunodeficiency virus (HIV) vaccine is a high global priority. Here, we report the safety, tolerability, and immunogenicity of a replication-defective recombinant adenovirus serotype 5 (rAd5) vector HIV-1 candidate vaccine. METHODS The vaccine is a mixture of 4 rAd5 vectors that express HIV-1 subtype B Gag-Pol fusion protein and envelope (Env) from subtypes A, B, and C. Healthy, uninfected adults were randomized to receive 1 intramuscular injection of placebo (n=6) or vaccine at dose levels of 10(9) (n=10), 10(10) (n=10), or 10(11) (n=10) particle units and were followed for 24 weeks to assess immunogenicity and safety. RESULTS The vaccine was well tolerated but was associated with more reactogenicity at the highest dose. At week 4, vaccine antigen-specific T cell responses were detected in 28 (93.3%) and 18 (60%) of 30 vaccine recipients for CD4(+) and CD8(+) T cells, respectively, by intracellular cytokine staining assay and in 22 (73%) of 30 vaccine recipients by enzyme-linked immunospot assay. Env-specific antibody responses were detected in 15 (50%) of 30 vaccine recipients by enzyme-linked immunosorbant assay and in 28 (93.3%) of 30 vaccine recipients by immunoprecipitation followed by Western blotting. No neutralizing antibody was detected. CONCLUSIONS A single injection induced HIV-1 antigen-specific CD4(+) T cell, CD8(+) T cell, and antibody responses in the majority of vaccine recipients. This multiclade rAd5 HIV-1 vaccine is now being evaluated in combination with a multiclade HIV-1 DNA plasmid vaccine.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/adverse effects
- AIDS Vaccines/immunology
- Adenoviruses, Human/genetics
- Adolescent
- Adult
- Antibodies, Viral/blood
- Antibody Specificity
- Blotting, Western
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cytokines/analysis
- Cytokines/biosynthesis
- Dose-Response Relationship, Immunologic
- Double-Blind Method
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Fusion Proteins, gag-pol/immunology
- Gene Products, env/immunology
- Genetic Vectors
- HIV Infections/immunology
- HIV-1/immunology
- Humans
- Injections, Intramuscular
- Male
- Nausea/etiology
- Recombination, Genetic
- Vaccination
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- env Gene Products, Human Immunodeficiency Virus
Collapse
|
57
|
Santos K, Duke CMP, Rodriguez-Colon SM, Dakwar A, Fan S, Keefer MC, Federoff HJ, Frelinger JG, Bowers WJ, Dewhurst S. Effect of promoter strength on protein expression and immunogenicity of an HSV-1 amplicon vector encoding HIV-1 Gag. Vaccine 2006; 25:1634-46. [PMID: 17145123 PMCID: PMC1851942 DOI: 10.1016/j.vaccine.2006.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 10/24/2006] [Accepted: 11/02/2006] [Indexed: 01/03/2023]
Abstract
Helper-free herpes simplex virus type-1 (HSV-1) amplicon vectors elicit robust immune responses to encoded proteins, including human immunodeficiency virus type-1 (HIV-1) antigens. To improve this vaccine delivery system, seven amplicon vectors were constructed, each encoding HIV-1 Gag under the control of a different promoter. Gag expression levels were analyzed in murine and human cell lines, as well as in biopsied tissue samples from injected mice; these data were then compared with Gag-specific T cell responses in BALB/c mice. The magnitude of the amplicon-induced immune response was found to correlate strongly with the level of Gag production both in vitro and in vivo. Interestingly, the best correlation of the strength of the amplicon-induced immune response was with antigen expression in cultured DC rather than expression at the tissue site of injection or in cultured cell lines. These findings may have implications for the generation of improved HSV-1 amplicon vectors for HIV-1 vaccine delivery.
Collapse
MESH Headings
- 3T3 Cells
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/immunology
- Animals
- Cell Line
- Cells, Cultured
- Dendritic Cells/metabolism
- Female
- Gene Expression Regulation, Viral
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Genes, gag
- Genetic Vectors
- HIV-1/genetics
- HIV-1/metabolism
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/metabolism
- Humans
- Mice
- Mice, Inbred BALB C
- Promoter Regions, Genetic
- T-Lymphocytes/immunology
- Transcription, Genetic
Collapse
Affiliation(s)
- Kathlyn Santos
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Haller AA, Lauer GM, King TH, Kemmler C, Fiolkoski V, Lu Y, Bellgrau D, Rodell TC, Apelian D, Franzusoff A, Duke RC. Whole recombinant yeast-based immunotherapy induces potent T cell responses targeting HCV NS3 and Core proteins. Vaccine 2006; 25:1452-63. [PMID: 17098335 DOI: 10.1016/j.vaccine.2006.10.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 10/13/2006] [Accepted: 10/20/2006] [Indexed: 01/23/2023]
Abstract
Control of primary infection with hepatitis C virus (HCV) is associated with robust and broad T cell immunity. In contrast, chronic infection is characterized by weak T cell responses suggesting that an approach that boosts these responses could be a therapeutic advance. Saccharomyces cerevisiae is an effective inducer of innate and adaptive cellular immunity and we have generated recombinant yeast cells (GI-5005) that produce an HCV NS3-Core fusion protein. Pre-clinical studies in mice showed that GI-5005 induced potent antigen-specific proliferative and cytotoxic T cell responses that were associated with Th1-type cytokine secretion. In studies in which GI-5005 was administered up to 13 times, no detectable vector neutralization or induction of tolerance was observed. Prophylactic as well as therapeutic administration of GI-5005 in mice led to eradication of tumor cells expressing HCV NS3 protein. Immunotherapy with GI-5005 is being evaluated in chronic HCV infected individuals in a Phase 1 clinical trial.
Collapse
Affiliation(s)
- Aurelia A Haller
- GlobeImmune, Inc., 1450 Infinite Drive, Louisville, CO 80027, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Shu Y, Winfrey S, Yang ZY, Xu L, Rao SS, Srivastava I, Barnett SW, Nabel GJ, Mascola JR. Efficient protein boosting after plasmid DNA or recombinant adenovirus immunization with HIV-1 vaccine constructs. Vaccine 2006; 25:1398-408. [PMID: 17113201 PMCID: PMC1821094 DOI: 10.1016/j.vaccine.2006.10.046] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 10/23/2006] [Accepted: 10/24/2006] [Indexed: 01/13/2023]
Abstract
DNA plasmids and recombinant adenovirus serotype-5 (rAd5) vectors are being studied in human clinical trials as HIV-1 vaccine candidates. Each elicits robust T-cell responses and modest antibody levels. Since protein immunization alone elicits antibody but not CD8 T-cell responses, we studied protein boosting of DNA and rAd5 HIV-1 vaccine vectors. A single Env protein immunization provided a marked boost in antibody titer in guinea pigs primed with either DNA or rAd5 vaccines, and the resulting antibody binding and neutralization levels were similar to those attained after thee sequential protein immunizations. Since both T-cell immunity and neutralizing antibodies are thought to be required for protection against HIV-1, it may be possible to establish a balanced T-cell and antibody response with appropriate vectored vaccines and improve the neutralizing antibody titer with protein boosting.
Collapse
Affiliation(s)
- Yuuei Shu
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Haynes BF, Montefiori DC. Aiming to induce broadly reactive neutralizing antibody responses with HIV-1 vaccine candidates. Expert Rev Vaccines 2006; 5:579-95. [PMID: 16989638 DOI: 10.1586/14760584.5.4.579] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neutralizing antibody induction is a key feature of many effective vaccines and is the only immune response that has proven to be capable of completely blocking AIDS virus infection in animal models. Unfortunately, the extensive genetic variability and complex immune-evasion strategies of HIV-1 have thwarted all attempts to date at eliciting an effective neutralizing antibody response with candidate HIV-1 vaccine immunogens. Recent advances in our understanding of how these evasion strategies operate, coupled with growing progress in unravelling the structure and immunobiology of the viral envelope glycoproteins, are contributing to novel immunogen designs to overcome the many barriers to inducing protective antibodies against HIV-1.
Collapse
|
61
|
Vinner L, Therrien D, Wee E, Laursen I, Hanke T, Corbet SL, Fomsgaard A. Immune response in rhesus macaques after mixed modality immunisations with DNA, recombinant adenovirus and recombinant gp120 from human immunodeficiency virus type 1. APMIS 2006; 114:690-9. [PMID: 17004972 DOI: 10.1111/j.1600-0463.2006.apm_395.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The establishment of effective regimens for a vaccine against human immunodeficiency virus type 1 (HIV-1) is urgently needed. In the present study we have produced HIV-1 gp120 from a vaccine-relevant primary R5 isolate in recombinant vaccinia (rVV)-infected Vero cells. We have investigated the effect of boosting with this protein in mixed modality immunisations of rhesus macaques following different immunisation. As reported earlier, animals were primed with codon-optimised HIV-1(BX08)env DNA delivered as plasmid or as replication-deficient recombinant human adenovirus type 5 (rAd5), which both induced specific antibody and cellular immune responses (1). Boosting with rAd5 temporarily had increased the anti-gp120 antibody titres approximately 1 log (rAd5+rAd5) or 3 log (DNA+rAd5) (1). However, secondary rAd5 boosting showed less effect due to the induced vector-specific immunity. To further boost the antibody response, the rgp120(BX08) was injected with Quadri A saponin adjuvant. The protein boosting resulted in a 1-2 log antibody increase and also boosting of the cell-mediated immune response. Neutralising antibodies to the heterologous HIV-1(MN) were detected; however, neutralising antibodies to the primary HIV-1(Bx08) isolate were seen only transiently after rAd5 but not the rgp120 immunisation. It is concluded that the rgp120(Bx08) reagent from rVV-infected Vero cells is functional and immunogenic in macaques, inducing both antibody and cellular immunity. The rgp120(Bx08) is a relevant model antigen that may be used to boost antibody and cellular immunity in mixed modality vaccine regimens against HIV-1 in higher animals.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/immunology
- Adenoviridae/metabolism
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Adenoviruses, Human/metabolism
- Adjuvants, Immunologic
- Animals
- Antibody Specificity
- Genes, env/genetics
- HIV Antibodies/blood
- HIV Envelope Protein gp120/biosynthesis
- HIV Envelope Protein gp120/immunology
- HIV Infections/immunology
- HIV-1/immunology
- Immunization
- Immunization, Secondary
- Injections, Intramuscular
- Interferon-gamma/biosynthesis
- Macaca mulatta
- Neutralization Tests
- Plasmids/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/immunology
- Saponins/immunology
- T-Lymphocytes/immunology
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Lasse Vinner
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
62
|
Liao HX, Sutherland LL, Xia SM, Brock ME, Scearce RM, Vanleeuwen S, Alam SM, McAdams M, Weaver EA, Camacho Z, Ma BJ, Li Y, Decker JM, Nabel GJ, Montefiori DC, Hahn BH, Korber BT, Gao F, Haynes BF. A group M consensus envelope glycoprotein induces antibodies that neutralize subsets of subtype B and C HIV-1 primary viruses. Virology 2006; 353:268-82. [PMID: 17039602 PMCID: PMC1762135 DOI: 10.1016/j.virol.2006.04.043] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
HIV-1 subtype C is the most common HIV-1 group M subtype in Africa and many parts of Asia. However, to date HIV-1 vaccine candidate immunogens have not induced potent and broadly neutralizing antibodies against subtype C primary isolates. We have used a centralized gene strategy to address HIV-1 diversity and generated a group M consensus envelope gene with shortened consensus variable loops (CON-S) for comparative studies with wild-type (WT) Env immunogens. Our results indicate that the consensus HIV-1 group M CON-S Env elicited cross-subtype neutralizing antibodies of similar or greater breadth and titer than the WT Envs tested, indicating the utility of a centralized gene strategy. Our study also shows the feasibility of iterative improvements in Env immunogenicity by rational design of centralized genes.
Collapse
Affiliation(s)
- Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Chiuchiolo MJ, Boyer JL, Krause A, Senina S, Hackett NR, Crystal RG. Protective immunity against respiratory tract challenge with Yersinia pestis in mice immunized with an adenovirus-based vaccine vector expressing V antigen. J Infect Dis 2006; 194:1249-57. [PMID: 17041851 PMCID: PMC7109909 DOI: 10.1086/507644] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 05/14/2006] [Indexed: 01/08/2023] Open
Abstract
The aerosol form of the bacterium Yersinia pestis causes the pneumonic plague, a rapidly fatal disease. At present, no plague vaccines are available for use in the United States. One candidate for the development of a subunit vaccine is the Y. pestis virulence (V) antigen, a protein that mediates the function of the Yersinia outer protein virulence factors and suppresses inflammatory responses in the host. On the basis of the knowledge that adenovirus (Ad) gene-transfer vectors act as adjuvants in eliciting host immunity against the transgene they carry, we tested the hypothesis that a single administration of a replication-defective Ad gene-transfer vector encoding the Y. pestis V antigen (AdsecV) could stimulate strong protective immune responses without a requirement for repeat administration. AdsecV elicited specific T cell responses and high IgG titers in serum within 2 weeks after a single intramuscular immunization. Importantly, the mice were protected from a lethal intranasal challenge of Y. pestis CO92 from 4 weeks up to 6 months after immunization with a single intramuscular dose of AdsecV. These observations suggest that an Ad gene-transfer vector expressing V antigen is a candidate for development of an effective anti-plague vaccine
Collapse
Affiliation(s)
- Maria J. Chiuchiolo
- Department of Genetic Medicine and
- Reprints or correspondence: Dr. R. G. Crystal, Dept. of Genetic Medicine, Weill Medical College of Cornell University, 515 E. 71st St., S-1000, New York, NY 10021 ()
| | | | | | - Svetlana Senina
- Public Health Research Institute at the International Center for Public Health, Newark, New Jersey
| | - Neil R. Hackett
- Department of Genetic Medicine and
- Belfer Gene Therapy Core Facility, Weill Medical College of Cornell University, New York, New York
| | - Ronald G. Crystal
- Department of Genetic Medicine and
- Belfer Gene Therapy Core Facility, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
64
|
Roy S, Zhi Y, Kobinger GP, Figueredo J, Calcedo R, Miller JR, Feldmann H, Wilson JM. Generation of an adenoviral vaccine vector based on simian adenovirus 21. J Gen Virol 2006; 87:2477-2485. [PMID: 16894185 DOI: 10.1099/vir.0.81989-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adenoviral vectors can be used to generate potent humoral and cellular immune responses to transgene products. Use of adenoviral vectors based on non-human isolates may allow for their utilization in populations harbouring neutralizing antibodies to common human serotypes. A vector chimera was constructed using simian adenovirus 22 (a serotype belonging to the species Human adenovirus E) and simian adenovirus 21 (a serotype belonging to the species Human adenovirus B) expressing the Ebola (Zaire) virus glycoprotein (Ad C5/C1-ZGP). This chimeric adenovirus vector was used as a model to test its efficacy as a genetic vaccine and comparisons were made to a vector based on the commonly used human adenovirus C serotype 5 (Adhu5-ZGP). Ebola glycoprotein-specific T- and B-cell responses were measured in B10BR mice vaccinated with either Adhu5-ZGP or Ad C5/C1-ZGP vectors. Both vectors resulted in Ebola glycoprotein-specific gamma interferon-expressing T cells, although the Ad C5/C1-ZGP vector appeared to induce lower frequencies with kinetics slower than those elicited by the Adhu5-ZGP vector. The total immunoglobulin G response to Ebola glycoprotein was similar in sera from mice vaccinated with either vector. Two rhesus macaques vaccinated with the Ad C5/C1-ZGP vector were found to mount T-cell and antibody responses to the Ebola glycoprotein. It was found that a single administration of the chimeric Ad C5/C1-ZGP vector protected mice against a lethal challenge with a mouse-adapted strain of the Ebola (Zaire) virus.
Collapse
Affiliation(s)
- Soumitra Roy
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Yan Zhi
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Gary P Kobinger
- Vector Design and Immunotherapy, Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3C 1A1, Canada
| | - Joanita Figueredo
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - James R Miller
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Heinz Feldmann
- Special Pathogens Program, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - James M Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
65
|
Mattapallil JJ, Hill B, Douek DC, Roederer M. Systemic vaccination prevents the total destruction of mucosal CD4 T cells during acute SIV challenge. J Med Primatol 2006; 35:217-24. [PMID: 16872285 DOI: 10.1111/j.1600-0684.2006.00170.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Acute human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infections are accompanied by a systemic loss of memory CD4 T cells, with mucosal sites serving as a major site for viral replication, dissemination and CD4 T cell depletion. Protecting the mucosal CD4 T cell compartment thus is critical to contain HIV, and preserve the integrity of the mucosal immune system. The primary objective of this study was to determine if systemic vaccination with DNA/rAd-5 encoding SIV-mac239-env, gag and pol could prevent the destruction of CD4 T cells in mucosal tissues. METHODS Rhesus macaques were immunized with DNA/r-Ad-5 encoding SIV genes and compared with those immunized with sham vectors following high dose intravenous challenge with SIVmac251. SIV specific CD4 and CD8 T cell responses, cell associated viral loads and mucosal CD4 T cell dynamics were evaluated. RESULTS Strong SIV specific immune responses were induced in mucosal tissues of vaccinated animals as compared with sham controls. These responses expanded rapidly following challenge suggesting a strong anamnestic response. Immune responses were associated with a decrease in cell associated viral loads, and a loss of fewer mucosal CD4 T cells. Approximately 25% of mucosal CD4 T cells were preserved in vaccinated animals as compared with <5% in sham controls. These results demonstrate that systemic immunization strategies can induce immune responses in mucosal tissues that can protect mucosal CD4 T cells from complete destruction following challenge. CONCLUSIONS Preservation of mucosal CD4 T cells can contribute to maintaining immune competence in mucosal tissues and provide a substantial immune benefit to the vaccinees.
Collapse
|
66
|
Duerr A, Wasserheit JN, Corey L. HIV vaccines: new frontiers in vaccine development. Clin Infect Dis 2006; 43:500-11. [PMID: 16838241 DOI: 10.1086/505979] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 04/22/2006] [Indexed: 12/31/2022] Open
Abstract
A human immunodeficiency virus (HIV) vaccine is the most promising and feasible strategy to prevent the events during acute infection that simultaneously set the course of the epidemic in the community and the course of the disease for the individual. Because safety concerns limit the use of live, attenuated HIV and inactivated HIV, a variety of alternate approaches is being investigated. Traditional antibody-mediated approaches using recombinant HIV envelope proteins have shown no efficacy in 2 phase III trials. Current HIV vaccine trials are focusing primarily on cytotoxic T lymphocyte-mediated products that use viral vectors, either alone or as boosts to DNA plasmids that contain viral genes. The most immunogenic of these products appear to be the recombinant adenovirus vector vaccines, 2 of which are now in advanced clinical development.
Collapse
Affiliation(s)
- Ann Duerr
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | |
Collapse
|
67
|
|
68
|
Mattapallil JJ, Douek DC, Buckler-White A, Montefiori D, Letvin NL, Nabel GJ, Roederer M. Vaccination preserves CD4 memory T cells during acute simian immunodeficiency virus challenge. J Exp Med 2006; 203:1533-41. [PMID: 16735692 PMCID: PMC2118314 DOI: 10.1084/jem.20060657] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 05/04/2006] [Indexed: 02/03/2023] Open
Abstract
Acute simian immunodeficiency virus (SIV)/human immunodeficiency virus infection is accompanied by a massive destruction of CD4 memory T cells across all the tissue compartments. These early events set the course toward disease progression and immunodeficiency. Here, we demonstrate that prior vaccination reduces this destruction during acute SIV Mac251 infection, leading to better survival and long-term outcome. Systemic vaccination with a DNA-prime recombinant adenovirus boost regimen preserved memory CD4 T cells throughout the body. The vaccine regimen induced broad CD4 and CD8 T cell responses in all tissues examined and, importantly, induced antibodies that neutralized the primary isolate of SIV used for challenge. Finally, we demonstrate that the extent of preservation of the CD4 memory compartment during the acute phase provides a strong predictor for subsequent progression to death. Our data provide a mechanism to explain clinical observations that acute-phase viral loads predict long-term disease progression and underscore the need for interventions that protect against early destruction of CD4 memory T cells during acute infection.
Collapse
Affiliation(s)
- Joseph J Mattapallil
- Vaccine Research Center, National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Eda Y, Takizawa M, Murakami T, Maeda H, Kimachi K, Yonemura H, Koyanagi S, Shiosaki K, Higuchi H, Makizumi K, Nakashima T, Osatomi K, Tokiyoshi S, Matsushita S, Yamamoto N, Honda M. Sequential immunization with V3 peptides from primary human immunodeficiency virus type 1 produces cross-neutralizing antibodies against primary isolates with a matching narrow-neutralization sequence motif. J Virol 2006; 80:5552-62. [PMID: 16699036 PMCID: PMC1472165 DOI: 10.1128/jvi.02094-05] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 03/09/2006] [Indexed: 11/20/2022] Open
Abstract
An antibody response capable of neutralizing not only homologous but also heterologous forms of the CXCR4-tropic human immunodeficiency virus type 1 (HIV-1) MNp and CCR5-tropic primary isolate HIV-1 JR-CSF was achieved through sequential immunization with a combination of synthetic peptides representing HIV-1 Env V3 sequences from field and laboratory HIV-1 clade B isolates. In contrast, repeated immunization with a single V3 peptide generated antibodies that neutralized only type-specific laboratory-adapted homologous viruses. To determine whether the cross-neutralization response could be attributed to a cross-reactive antibody in the immunized animals, we isolated a monoclonal antibody, C25, which neutralized the heterologous primary viruses of HIV-1 clade B. Furthermore, we generated a humanized monoclonal antibody, KD-247, by transferring the genes of the complementary determining region of C25 into genes of the human V region of the antibody. KD-247 bound with high affinity to the "PGR" motif within the HIV-1 Env V3 tip region, and, among the established reference antibodies, it most effectively neutralized primary HIV-1 field isolates possessing the matching neutralization sequence motif, suggesting its promise for clinical applications involving passive immunizations. These results demonstrate that sequential immunization with B-cell epitope peptides may contribute to a humoral immune-based HIV vaccine strategy. Indeed, they help lay the groundwork for the development of HIV-1 vaccine strategies that use sequential immunization with biologically relevant peptides to overcome difficulties associated with otherwise poorly immunogenic epitopes.
Collapse
Affiliation(s)
- Yasuyuki Eda
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Haynes BF, Montefiori DC. Aiming to induce broadly reactive neutralizing antibody responses with HIV-1 vaccine candidates. Expert Rev Vaccines 2006; 5:347-63. [PMID: 16827619 PMCID: PMC2716009 DOI: 10.1586/14760584.5.3.347] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neutralizing antibody induction is a key feature of many effective vaccines and is the only immune response that has proven to be capable of completely blocking AIDS virus infection in animal models. Unfortunately, the extensive genetic variability and complex immune-evasion strategies of HIV-1 have thwarted all attempts to date at eliciting an effective neutralizing antibody response with candidate HIV-1 vaccine immunogens. Recent advances in our understanding of how these evasion strategies operate, coupled with growing progress in unravelling the structure and immunobiology of the viral envelope glycoproteins, are contributing to novel immunogen designs to overcome the many barriers to inducing protective antibodies against HIV-1.
Collapse
Affiliation(s)
- Barton F Haynes
- Box 3258, RP-1 Building, Building 107, Circuit Drive, Duke University Medical Center, Durham, NC 27710, USA, Tel: +1919 684 5279, Fax: +1 919 684 5230,
| | - David C Montefiori
- Department of Surgery, Box 2926, Duke University Medical Center, Durham, NC 27710, USA, Tel: +1 919 684 5278, Fax: +1 919 684 4288,
| |
Collapse
|
71
|
Wang S, Pal R, Mascola JR, Chou THW, Mboudjeka I, Shen S, Liu Q, Whitney S, Keen T, Nair BC, Kalyanaraman VS, Markham P, Lu S. Polyvalent HIV-1 Env vaccine formulations delivered by the DNA priming plus protein boosting approach are effective in generating neutralizing antibodies against primary human immunodeficiency virus type 1 isolates from subtypes A, B, C, D and E. Virology 2006; 350:34-47. [PMID: 16616287 DOI: 10.1016/j.virol.2006.02.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/20/2006] [Accepted: 02/09/2006] [Indexed: 10/24/2022]
Abstract
A major challenge in developing an HIV-1 vaccine is to identify immunogens and their delivery methods that can elicit broad neutralizing antibodies against primary isolates of different genetic subtypes. Recently, we demonstrated that priming with DNA vaccines expressing primary HIV-1 envelope glycoprotein (Env) followed by recombinant Env protein boosting was successful in generating positive neutralizing antibody responses against a clade B primary HIV-1 isolate, JR-FL, that was not easily neutralized. In the current study, we examined whether the DNA priming plus recombinant protein boosting approach delivering a polyvalent primary Env formulation was able to generate neutralizing antibodies against primary HIV-1 viral isolates from various genetic subtypes. New Zealand White rabbits were first immunized with DNA vaccines expressing one, three or eight primary HIV-1 gp120 antigens delivered by a gene gun followed by recombinant gp120 protein boosting. Neutralizing antibody responses were examined by two independently executed neutralization assays: the first one was a single round infection neutralization assay against a panel of 10 primary HIV-1 isolates of subtypes A, B, C and E and the second one used the PhenoSense assay against a panel of 12 pseudovirues expressing primary HIV-1 Env antigens from subtypes A, B, C, D and E as well as 2 pseudoviruses expressing the Env antigens from MN and NL4-3 viruses. Rabbit sera immunized with the DNA priming plus protein boosting approach, but not DNA vaccine alone or Env protein alone, were capable of neutralizing 7 of 10 viruses in the first assay and 12 of 14 viruses in the second assay. More importantly, sera immunized with the polyvalent Env antigens were able to neutralize a significantly higher percentage of viruses than the sera immunized with the monovalent antigens. Our results suggest that DNA priming followed by recombinant Env protein boosting can be used to deliver polyvalent Env-antigen-based HIV-1 vaccines to elicit neutralizing antibody responses against viruses with diverse genetic sequence variations.
Collapse
Affiliation(s)
- Shixia Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Lazare Research Building, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Tumanova I, Boyer J, Ausar SF, Burzynski J, Rosencrance D, White J, Scheidel J, Parkinson R, Maguire H, Middaugh CR, Weiner D, Green AP. Analytical and biological characterization of supercoiled plasmids purified by various chromatographic techniques. DNA Cell Biol 2006; 24:819-31. [PMID: 16332179 DOI: 10.1089/dna.2005.24.819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Supercoiled plasmids are an important component of gene-based delivery vehicles. A number of production methods for clinical applications have been developed, each resulting in very high-quality product with low levels of residual contaminants. There is, however, no consensus on the optimal methods to characterize plasmid quality, and further, to determine if these methods are predictive of either product stability or biological activity. We have produced two plasmids using four production purification methodologies based on PolyFlo and hydrophobic interaction chromatography (HIC), either alone or in tandem processes. In each case, the product was analyzed using standard molecular biological methods. We also performed a number of biophysical analyses such as dynamic light scattering (DLS), circular dichroism (CD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Minimal differences were detected among the preparations based on the more standard molecular biological methods. Some small differences were detected, however, using biophysical techniques, particularly FTIR and DSC, which may reflect small variations in plasmid tertiary structure and thermal stability. Stability after heat exposure at 60 degrees C, exposure to fetal bovine serum and long-term storage at 4 degrees C varied between plasmids. One plasmid showed no difference in stability depending on the production process, but the other showed significant differences. Evaluation in vivo in models for gene immunization and gene therapy showed significant differences in the response depending on the method of purification. Preparations using a tandem process of PolyFlo used in two separation modes provided higher biological activity compared to a tandem HIC/PolyFlo process or either resin used alone in a single column process. These data indicate that the process by which supercoiled plasmids are made can influence plasmid stability and biological activity and emphasize the need for more rigorous methods to evaluate supercoiled plasmids as gene-delivery vehicles.
Collapse
|
73
|
Van den Bosch GA, Ponsaerts P, Vanham G, Van Bockstaele DR, Berneman ZN, Van Tendeloo VFI. Cellular immunotherapy for cytomegalovirus and HIV-1 infection. J Immunother 2006; 29:107-21. [PMID: 16531812 DOI: 10.1097/01.cji.0000184472.28832.d3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Current antiviral drugs do not fully reconstitute the specific antiviral immune control in chronically human immunodeficiency virus (HIV)-1-infected patients or in cytomegalovirus (CMV)-infected patients after hematopoietic stem cell transplantation. Therefore, immunotherapy in which the patient's immune system is manipulated to enhance antiviral immune responses has become a promising area of viral immunology research. In this review, an overview is provided on the cellular immunotherapy strategies that have been developed for HIV infection and CMV reactivation in immunocompromised patients. As an introduction, the mechanisms behind the cellular immune system and their importance for the development of a workable immunotherapy approach are discussed. Next, the focus is shifted to the immunopathogenesis of CMV and HIV-1 infections to correlate these findings with the concepts and ideas behind the viral-specific immunotherapies discussed. Current and future perspectives of active and passive cellular immunotherapy for the treatment of CMV and HIV-1 infections are reviewed. Finally, pitfalls and key issues with regard to the development of immunotherapy protocols that can be applied in a clinical setting are addressed.
Collapse
Affiliation(s)
- Glenn A Van den Bosch
- Laboratory of Experimental Hematology, Faculty of Medicine, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | | | | | | | | | | |
Collapse
|
74
|
Ulmer JB, Wahren B, Liu MA. Gene-based vaccines: recent technical and clinical advances. Trends Mol Med 2006; 12:216-22. [PMID: 16621717 DOI: 10.1016/j.molmed.2006.03.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/03/2006] [Accepted: 03/29/2006] [Indexed: 11/20/2022]
Abstract
DNA vaccines have been widely used in efforts to develop vaccines against various pathogens as well as for cancer, autoimmune diseases and allergy. DNA vaccines offer broad efficacy (particularly for their ability to generate both cellular and humoral immunity), ease of construction and manufacture and the potential for world-wide usage even in low-resource settings. However, despite their successful application in many preclinical disease models, their potency in human clinical trials has been insufficient to provide protective immunity. Nevertheless, two DNA vaccines were recently licensed for use in animals (horse and fish), underscoring the potential of this technology. Here, we describe recent advances in increasing the potency of these vaccines, in understanding their immunological mechanisms, and in their applications and efficacy in clinical trials so far.
Collapse
Affiliation(s)
- Jeffrey B Ulmer
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | | | | |
Collapse
|
75
|
Wang X, Jiang W, Jiang P, Li Y, Feng Z, Xu J. Construction and immunogenicity of recombinant adenovirus expressing the capsid protein of porcine circovirus 2 (PCV2) in mice. Vaccine 2006; 24:3374-80. [PMID: 16524646 DOI: 10.1016/j.vaccine.2005.12.068] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 12/26/2005] [Accepted: 12/26/2005] [Indexed: 10/25/2022]
Abstract
Porcine circovirus 2 (PCV2) has been implicated as the etiological agent of some diseases, mainly postweaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS). The capsid (Cap) protein encoded by the PCV2 ORF2 gene may be an excellent candidate for vaccination. In this study, the Cap protein gene was amplified by PCR, and cloned into the transfer vector pShuttle-CMV. After co-transformation of PmeI-linearized recombinant plasmid pShuttle-CMV-ORF2 and the bone vector pAdEasy-1 into Escherichia coli bacteria strain BJ5183, recombinant plasmid containing Cap protein gene (pAd-ORF2) was obtained and identified with PCR. Upon transfection of PacI-linearized plasmid pAd-ORF2 in 293 cell line, a recombinant adenovirus was obtained and named as rAd-Cap with viral titer of 10(13.0) TCID(50)/ml. The expression of the Cap protein in the 293 cells infected with rAd-Cap was confirmed with specific antibody to PCV2 by Western blotting and IPMA. Mice were inoculated with 10(8), 10(10) and 10(12) TCID(50)/mouse of rAd-Cap and boosted 2 weeks later, and they could generate antibody against PCV2 detected by indirect ELISA, Western blot and neutralizing activity assay. It indicated that the rAd-Cap was able to express the capsid of PCV2 and could elicit immune responses against the PCV2 in mice. The recombinant adenovirus might be an attractive candidate vaccine for preventing the disease associated with PCV2 infection.
Collapse
Affiliation(s)
- Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agriculture University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
76
|
Abstract
HIV poses a serious health threat in the world. Mucosal transmission of HIV through the genitourinary tract may be the most important route of transmission. Intranasal immunisations induce vaginal and systemic immune responses. Various protein-, DNA- and RNA-based immunopotentiating adjuvants/delivery systems and live bacterial and viral vectors are available for intranasal immunisations, and these systems may differ in their ability to induce a specific type of immune response (e.g., a cytotoxic T cell versus an antibody response). As the protection against HIV may require both cytotoxic T cell and antibodies, a combination of adjuvants/delivery systems for combinations of mucosal and parenteral immunisations may be required in order to develop a protective anti-HIV vaccine.
Collapse
Affiliation(s)
- Michael Vajdy
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA.
| | | |
Collapse
|
77
|
Rodriguez-Chavez IR, Allen M, Hill EL, Sheets RL, Pensiero M, Bradac JA, D'Souza MP. Current advances and challenges in HIV-1 vaccines. Curr HIV/AIDS Rep 2006; 3:39-47. [PMID: 16522258 DOI: 10.1007/s11904-006-0007-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent advances in science, which have aided HIV-1 vaccine development, include an improved understanding of HIV-1 envelope structure and function, expansion of the pipeline with innovative vaccine strategies, promising multi-gene and multi-clade vaccines that elicit cellular immunity, conduct of clinical trials in a global network, and development of validated techniques that enable simultaneous measurement of multiple T cell vaccine-induced immune responses in humans. A common feature of several preventive vaccine strategies now in early clinical trials is their ability in nonhuman primates to attenuate clinical disease rather than completely prevent HIV-1 infection. One vaccine concept has been tested in large-scale clinical trials, two are currently in efficacy trials, and one more is poised to enter efficacy trial in the next few years. Simultaneously, expanded efforts continue to identify new designs that induce mucosal immunity as well as broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Isaac R Rodriguez-Chavez
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Forsell MNE, Li Y, Sundbäck M, Svehla K, Liljeström P, Mascola JR, Wyatt R, Karlsson Hedestam GB. Biochemical and immunogenic characterization of soluble human immunodeficiency virus type 1 envelope glycoprotein trimers expressed by semliki forest virus. J Virol 2005; 79:10902-14. [PMID: 16103142 PMCID: PMC1193613 DOI: 10.1128/jvi.79.17.10902-10914.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The current lack of envelope glycoprotein immunogens that elicit broadly neutralizing antibody responses remains a major challenge for human immunodeficiency virus type 1 (HIV-1) vaccine development. However, the recent design and construction of stable soluble gp140 trimers have shown that some neutralization breadth can be achieved by using immunogens that better mimic the functional viral spike complex. The use of genetic delivery systems to drive the in vivo expression of such immunogens for the stimulation of neutralizing antibodies against HIV-1 may offer advantages by maintaining the quaternary structure of the trimeric envelope glycoproteins. Here, we describe the biochemical and immunogenic properties of soluble HIV-1 envelope glycoprotein trimers expressed by recombinant Semliki Forest virus (rSFV). The results presented here demonstrate that rSFV supports the expression of stable soluble gp140 trimers that retain recognition by conformationally sensitive antibodies. Further, we show that rSFV particle immunizations efficiently primed immune responses as measured after a single boost with purified trimeric gp140 protein, resulting in a Th1-biased antibody response. This differed from the Th2-biased antibody response obtained after repeated immunizations with purified gp140 protein trimers. Despite this difference, both regimens stimulated neutralizing antibody responses of similar potency. This suggests that rSFV may be a useful component of a viral vector prime-protein boost regimen aimed at stimulating both cell-mediated immune responses and neutralizing antibodies against HIV-1.
Collapse
Affiliation(s)
- Mattias N E Forsell
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Bangari DS, Mittal SK. Development of nonhuman adenoviruses as vaccine vectors. Vaccine 2005; 24:849-62. [PMID: 16297508 PMCID: PMC1462960 DOI: 10.1016/j.vaccine.2005.08.101] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/29/2005] [Accepted: 08/25/2005] [Indexed: 12/30/2022]
Abstract
Human adenoviral (HAd) vectors have demonstrated great potential as vaccine vectors. Preclinical and clinical studies have demonstrated the feasibility of vector design, robust antigen expression and protective immunity using this system. However, clinical use of adenoviral vectors for vaccine purposes is anticipated to be limited by vector immunity that is either preexisting or develops rapidly following the first inoculation with adenoviral vectors. Vector immunity inactivates the vector particles and rapidly removes the transduced cells, thereby limiting the duration of transgene expression. Due to strong vector immunity, subsequent use of the same vector is usually less efficient. In order to circumvent this limitation, nonhuman adenoviral vectors have been proposed as alternative vectors. In addition to eluding HAd immunity, these vectors possess most of the attractive features of HAd vectors. Several replication-competent or replication-defective nonhuman adenoviral vectors have been developed and investigated for their potential as vaccine-delivery vectors. Here, we review recent advances in the design and characterization of various nonhuman adenoviral vectors, and discuss their potential applications for human and animal vaccination.
Collapse
Affiliation(s)
| | - Suresh K. Mittal
- Corresponding author. Tel.: +1 765 496 2894; fax: +1 765 494 9830.
| |
Collapse
|
80
|
Wu L, Kong WP, Nabel GJ. Enhanced breadth of CD4 T-cell immunity by DNA prime and adenovirus boost immunization to human immunodeficiency virus Env and Gag immunogens. J Virol 2005; 79:8024-31. [PMID: 15956548 PMCID: PMC1143709 DOI: 10.1128/jvi.79.13.8024-8031.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of gene-based vaccination approaches have been used to enhance the immune response to viral pathogens. Among them, the ability to perform heterologous immunization by priming with DNA and boosting with replication-defective adenoviral (ADV) vectors encoding foreign antigens has proven particularly effective in eliciting enhanced cellular and humoral immunity compared to either agent alone. Because adenoviral vector immunization alone can elicit substantial cellular and humoral immune responses in a shorter period of time, we asked whether the immune response induced by the prime-boost immunization was different from adenoviral vaccines with respect to the potency and breadth of T-cell recognition. While DNA/ADV immunization stimulated the CD8 response, it was directed to the same epitopes in Gag and Env immunogens of human immunodeficiency virus as DNA or ADV alone. In contrast, the CD4 response to these immunogens diversified after DNA/ADV immunization compared to each vector alone. These findings suggest that the diversity of the CD4 immune response is increased by DNA/ADV prime-boost vaccination and that these components work synergistically to enhance T-cell epitope recognition.
Collapse
Affiliation(s)
- Lan Wu
- Vaccine Research Center, NIAID, National Institutes of Health, Room 4502, Bldg. 40, MSC-3005, 40 Convent Drive, Bethesda, MD 20892-3005, USA
| | | | | |
Collapse
|
81
|
Sundbäck M, Douagi I, Dayaraj C, Forsell MNE, Nordström EKL, McInerney GM, Spångberg K, Tjäder L, Bonin E, Sundström M, Liljeström P, Karlsson Hedestam GB. Efficient expansion of HIV-1-specific T cell responses by homologous immunization with recombinant Semliki Forest virus particles. Virology 2005; 341:190-202. [PMID: 16098555 DOI: 10.1016/j.virol.2005.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 06/01/2005] [Accepted: 07/14/2005] [Indexed: 11/16/2022]
Abstract
Vaccines based on recombinant viruses represent a promising strategy for the development of a prophylactic vaccine against HIV-1. However, despite a proven capacity to stimulate potent HIV-1-specific immune responses, viral systems have limited utility in homologous prime-boost regimens due to the generation of anti-vector immune responses. It is therefore important to develop a diverse set of vaccine candidates that can be combined in different heterologous prime-boost regimens and/or to identify a vaccine candidate that is less sensitive to anti-vector mediated immunity. In this report, we describe the design and pre-clinical immunogenicity of a Semliki Forest virus-based vaccine, VREP-C, encoding Indian origin HIV-1 clade C antigens. We show that a single immunization with VREP-C stimulates HIV-1-specific IFNgamma ELISPOT responses, which were efficiently boosted by a second and a third homologous VREP-C immunization resulting in highly potent cytotoxic T cell responses. These results suggest that VREP-C may be a valuable component of a future prophylactic vaccine against HIV-1.
Collapse
Affiliation(s)
- Maria Sundbäck
- Microbiology and Tumor Biology Center, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Rao SS, Gomez P, Mascola JR, Dang V, Krivulka GR, Yu F, Lord CI, Shen L, Bailer R, Nabel GJ, Letvin NL. Comparative evaluation of three different intramuscular delivery methods for DNA immunization in a nonhuman primate animal model. Vaccine 2005; 24:367-73. [PMID: 16194587 DOI: 10.1016/j.vaccine.2005.07.072] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 07/05/2005] [Indexed: 12/22/2022]
Abstract
Although plasmid DNA vaccines induce potent cell-mediated immune responses and prime for antibody responses in experimental laboratory animals, their immunogenicity in humans has been less remarkable. A number of strategies have been proposed to improve the immunogenicity of these vaccines, including using novel means of vaccine delivery. In the present study, the immunogenicity of three different methods of intramuscular plasmid DNA administration was compared in cynomolgus monkeys: needle and syringe, Biojector 2000, and Mini-Ject. The elicited cellular and humoral immune responses were comparable in monkeys immunized using these different delivery techniques, suggesting that the needle-free approaches to vaccine administration do not significantly improve the immunogenicity of the plasmid DNA vaccine used in the study.
Collapse
Affiliation(s)
- Srinivas S Rao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Seaman MS, Xu L, Beaudry K, Martin KL, Beddall MH, Miura A, Sambor A, Chakrabarti BK, Huang Y, Bailer R, Koup RA, Mascola JR, Nabel GJ, Letvin NL. Multiclade human immunodeficiency virus type 1 envelope immunogens elicit broad cellular and humoral immunity in rhesus monkeys. J Virol 2005; 79:2956-63. [PMID: 15709015 PMCID: PMC548456 DOI: 10.1128/jvi.79.5.2956-2963.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of a human immunodeficiency virus type 1 (HIV-1) vaccine that elicits potent cellular and humoral immune responses recognizing divergent strains of HIV-1 will be critical for combating the global AIDS epidemic. The present studies were initiated to examine the magnitude and breadth of envelope (Env)-specific T-lymphocyte and antibody responses generated by vaccines containing either a single or multiple genetically distant HIV-1 Env immunogens. Rhesus monkeys were immunized with DNA prime-recombinant adenovirus boost vaccines encoding a Gag-Pol-Nef polyprotein in combination with either a single Env or a mixture of clade-A, clade-B, and clade-C Envs. Monkeys receiving the multiclade Env immunization developed robust immune responses to all vaccine antigens and, importantly, a greater breadth of Env recognition than monkeys immunized with vaccines including a single Env immunogen. All groups of vaccinated monkeys demonstrated equivalent immune protection following challenge with the pathogenic simian-human immunodeficiency virus 89.6P. These data suggest that a multicomponent vaccine encoding Env proteins from multiple clades of HIV-1 can generate broad Env-specific T-lymphocyte and antibody responses without antigenic interference. This study demonstrates that it is possible to generate protective immune responses by vaccination with genetically diverse isolates of HIV-1.
Collapse
Affiliation(s)
- Michael S Seaman
- Beth Israel Deaconess Medical Center, Division of Viral Pathogenesis, 330 Brookline Ave./RE-113, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|