51
|
Foletta VC, Lim MA, Soosairajah J, Kelly AP, Stanley EG, Shannon M, He W, Das S, Massague J, Bernard O, Soosairaiah J. Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. J Cell Biol 2003; 162:1089-98. [PMID: 12963706 PMCID: PMC2172847 DOI: 10.1083/jcb.200212060] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) regulate multiple cellular processes, including cell differentiation and migration. Their signals are transduced by the kinase receptors BMPR-I and BMPR-II, leading to Smad transcription factor activation via BMPR-I. LIM kinase (LIMK) 1 is a key regulator of actin dynamics as it phosphorylates and inactivates cofilin, an actin depolymerizing factor. During a search for LIMK1-interacting proteins, we isolated clones encompassing the tail region of BMPR-II. Although the BMPR-II tail is not involved in BMP signaling via Smad proteins, mutations truncating this domain are present in patients with primary pulmonary hypertension (PPH). Further analysis revealed that the interaction between LIMK1 and BMPR-II inhibited LIMK1's ability to phosphorylate cofilin, which could then be alleviated by addition of BMP4. A BMPR-II mutant containing the smallest COOH-terminal truncation described in PPH failed to bind or inhibit LIMK1. This study identifies the first function of the BMPR-II tail domain and suggests that the deregulation of actin dynamics may contribute to the etiology of PPH.
Collapse
Affiliation(s)
- Victoria C Foletta
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Tang Q, Staub CM, Gao G, Jin Q, Wang Z, Ding W, Aurigemma RE, Mulder KM. A novel transforming growth factor-beta receptor-interacting protein that is also a light chain of the motor protein dynein. Mol Biol Cell 2002; 13:4484-96. [PMID: 12475967 PMCID: PMC138648 DOI: 10.1091/mbc.e02-05-0245] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2002] [Revised: 08/23/2002] [Accepted: 08/29/2002] [Indexed: 11/11/2022] Open
Abstract
The phosphorylated, activated cytoplasmic domains of the transforming growth factor-beta (TGFbeta) receptors were used as probes to screen an expression library that was prepared from a highly TGFbeta-responsive intestinal epithelial cell line. One of the TGFbeta receptor-interacting proteins isolated was identified to be the mammalian homologue of the LC7 family (mLC7) of dynein light chains (DLCs). This 11-kDa cytoplasmic protein interacts with the TGFbeta receptor complex intracellularly and is phosphorylated on serine residues after ligand-receptor engagement. Forced expression of mLC7-1 induces specific TGFbeta responses, including an activation of Jun N-terminal kinase (JNK), a phosphorylation of c-Jun, and an inhibition of cell growth. Furthermore, TGFbeta induces the recruitment of mLC7-1 to the intermediate chain of dynein. A kinase-deficient form of TGFbeta RII prevents both mLC7-1 phosphorylation and interaction with the dynein intermediate chain (DIC). This is the first demonstration of a link between cytoplasmic dynein and a natural growth inhibitory cytokine. Furthermore, our results suggest that TGFbeta pathway components may use a motor protein light chain as a receptor for the recruitment and transport of specific cargo along microtublules.
Collapse
Affiliation(s)
- Qian Tang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Singh K, Batuman OA, Akman HO, Kedees MH, Vakil V, Hussain MM. Differential, tissue-specific, transcriptional regulation of apolipoprotein B secretion by transforming growth factor beta. J Biol Chem 2002; 277:39515-24. [PMID: 12177061 DOI: 10.1074/jbc.m205513200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Apolipoprotein B (apoB) is required for the assembly and secretion of triglyceride-rich lipoproteins. ApoB synthesis is constitutive, and post-translational mechanisms modulate its secretion. Transforming growth factor beta (TGF-beta) increased apoB secretion in both differentiated and nondifferentiated Caco-2 cells and decreased secretion in HepG2 cells without affecting apolipoprotein A-I secretion. TGF-beta altered apoB secretion by changing steady-state mRNA levels and protein synthesis. Expression of SMAD3 and SMAD4 differentially regulated apoB secretion in these cells. Thus, SMADs mediate dissimilar secretion of apoB in both the cell lines by affecting gene transcription. We identified a 485-bp element, 55 kb upstream of the apob gene that contains a SMAD binding motif. This motif increased the expression of chloramphenicol acetyltransferase in Caco-2 cells treated with TGF-beta or transfected with SMADs. Hence, TGF-beta activates SMADs that bind to the 485-bp intestinal enhancer element in the apob gene and increase its transcription and secretion in Caco-2 cells. This is the first example showing differential transcriptional regulation of the apob gene by cytokines and dissimilar regulation of one gene in two different cell lines by TGF-beta. In this regulation, the presence of cytokine-responsive motif in the tissue-specific enhancer element confers cell-specific response.
Collapse
Affiliation(s)
- Karnail Singh
- Department of Anatomy and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
54
|
Danila DC, Zhang X, Zhou Y, Haidar JNS, Klibanski A. Overexpression of wild-type activin receptor alk4-1 restores activin antiproliferative effects in human pituitary tumor cells. J Clin Endocrinol Metab 2002; 87:4741-6. [PMID: 12364468 DOI: 10.1210/jc.2002-020527] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Activin is a member of the TGF beta family of cytokines involved in the control of cell proliferation. We have previously shown that the majority of clinically nonfunctioning pituitary tumors do not respond to activin-induced growth suppression. Human pituitary tumors specifically express alternatively spliced activin type I receptor Alk4 mRNAs, producing C-terminus truncated isoforms designated Alk4-2, 4-3, and 4-4. However, it is not known whether these truncated activin receptors suppress activin effects on cell proliferation in human pituitary cells. Therefore, we investigated activin signaling in a human pituitary tumor cell line, HP75, derived from a clinically nonfunctioning pituitary tumor. HP75 cells express activin A mRNA and secrete activin A, as measured by ELISA and a functional bioassay. TGF beta administration decreases the proliferation of HP75 cells, suggesting that the signaling pathway shared by TGF beta and activin is functional in this cell line. However, activin neither inhibits cell proliferation nor stimulates reporter gene expression in HP75 cells, indicating that activin signaling is specifically blocked at the receptor level. HP75 cells express all truncated activin type I receptor Alk4 isoforms, as determined by RT-PCR. Because truncated Alk4 receptor isoforms inhibit activin signaling by competing with the wild-type receptor for binding to activin type II receptors, we hypothesized that overexpression of wild-type activin type I receptor will restore activin signaling. In HP75 cells, cotransfection of the wild-type activin type I receptor Alk4-1 expression vector increases activin-responsive reporter activity. Furthermore, transfection with wild-type activin receptor type I results in activin-mediated suppression of cell proliferation. These data indicate that truncated Alk4 isoforms interfere with activin signaling pathways and thereby may contribute to uncontrolled cell growth. Overexpression of the wild-type Alk4-1 receptor restores responsiveness to activin in human pituitary tumor-derived cells.
Collapse
Affiliation(s)
- Daniel C Danila
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
55
|
Chen WB, Lenschow W, Tiede K, Fischer JW, Kalthoff H, Ungefroren H. Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-beta in pancreatic tumor cells. J Biol Chem 2002; 277:36118-28. [PMID: 12140283 DOI: 10.1074/jbc.m203709200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Overexpression of the small leucine-rich proteoglycan biglycan (BGN) in fibrosis and desmoplasia results from enhanced activity of transforming growth factor-beta (TGF-beta). In pancreatic adenocarcinoma, the tumor cells themselves may contribute to BGN synthesis in vivo, since 8 of 18 different pancreatic carcinoma cell lines constitutively expressed BGN mRNA, as shown by reverse transcription-PCR analysis. In PANC-1 cells, TGF-beta1 dramatically stimulated BGN mRNA accumulation through a BGN transcription-independent, cycloheximide-sensitive mechanism and strongly increased the synthesis and release of the proteoglycan form of BGN. The ability of TGF-beta1 to induce BGN mRNA was critically dependent on Smad signaling, since 1) the up-regulation of BGN mRNA was preceded by a marked increase in Smad2 phosphorylation in TGF-beta1-treated PANC-1 cells, 2) TGF-beta1 was unable to induce BGN mRNA in pancreatic carcinoma cell lines that carry homozygous deletions of the Smad4/DPC4 gene, 3) inhibition of the Smad pathway in PANC-1 cells by transfection with a dominant negative Smad4/DPC4 mutant significantly reduced TGF-beta1-induced BGN mRNA expression, 4) stable reintroduction of wild type Smad4/DPC4 into Smad4-null CFPAC-1 cells restored the TGF-beta1 effect, and 5) overexpression of Smad2 and Smad3 in PANC-1 cells augmented TGF-beta1 induction of BGN mRNA, whereas forced expression of Smad7, an inhibitory Smad, effectively blocked it. These results clearly show that a functional Smad pathway is crucial for TGF-beta regulation of BGN mRNA expression. Since BGN has been shown to inhibit growth of pancreatic cancer cells, the Smad4/DPC4 mediation of the TGF-beta effect may represent a novel tumor suppressor function for Smad4/DPC4: antiproliferation via expression of autoinhibitory BGN.
Collapse
Affiliation(s)
- Wen-Bin Chen
- Research Unit Molecular Oncology, Clinic for General Surgery and Thoracic Surgery, Christian-Albrechts-University, D-24105 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
56
|
Kakonen SM, Selander KS, Chirgwin JM, Yin JJ, Burns S, Rankin WA, Grubbs BG, Dallas M, Cui Y, Guise TA. Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 2002; 277:24571-8. [PMID: 11964407 DOI: 10.1074/jbc.m202561200] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor (TGF)-beta promotes breast cancer metastasis to bone. To determine whether the osteolytic factor parathyroid hormone-related protein (PTHrP) is the primary mediator of the tumor response to TGF-beta, mice were inoculated with MDA-MB-231 breast cancer cells expressing a constitutively active TGF-beta type I receptor. Treatment of the mice with a PTHrP-neutralizing antibody greatly decreased osteolytic bone metastases. There were fewer osteoclasts and significantly decreased tumor area in the antibody-treated mice. TGF-beta can signal through both Smad and mitogen-activated protein (MAP) kinase pathways. Stable transfection of wild-type Smad2, Smad3, or Smad4 increased TGF-beta-stimulated PTHrP secretion, whereas dominant-negative Smad2, Smad3, or Smad4 only partially reduced TGF-beta-stimulated PTHrP secretion. When the cells were treated with a variety of protein kinases inhibitors, only specific inhibitors of the p38 MAP kinase pathway significantly reduced both basal and TGF-beta-stimulated PTHrP production. The combination of Smad dominant-negative blockade and p38 MAP kinase inhibition resulted in complete inhibition of TGF-beta-stimulated PTHrP production. Furthermore, TGF-beta treatment of MDA-MB-231 cells resulted in a rapid phosphorylation of p38 MAP kinase. Thus, the p38 MAP kinase pathway appears to be a major component of Smad-independent signaling by TGF-beta and may provide a new molecular target for anti-osteolytic therapy.
Collapse
Affiliation(s)
- Sanna-Maria Kakonen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, Institute for Drug Development, Cancer Therapy and Research Center, San Antonio, Texas 78245-3217, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Bollard CM, Rössig C, Calonge MJ, Huls MH, Wagner HJ, Massague J, Brenner MK, Heslop HE, Rooney CM. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood 2002; 99:3179-87. [PMID: 11964281 DOI: 10.1182/blood.v99.9.3179] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta (TGF-beta), a pleiotropic cytokine that regulates cell growth and differentiation, is secreted by many human tumors and markedly inhibits tumor-specific cellular immunity. Tumors can avoid the differentiating and apoptotic effects of TGF-beta by expressing a nonfunctional TGF-beta receptor. We have determined whether this immune evasion strategy can be manipulated to shield tumor-specific cytotoxic T lymphocytes (CTLs) from the inhibitory effects of tumor-derived TGF-beta. As our model we used Epstein-Barr virus (EBV)-specific CTLs that are infused as treatment for EBV-positive Hodgkin disease but that are vulnerable to the TGF-beta produced by this tumor. CTLs were transduced with a retrovirus vector expressing the dominant-negative TGF-beta type II receptor HATGF-betaRII-Deltacyt. HATGF-betaRII-Deltacyt- but not green fluorescence protein (eGFP)-transduced CTLs was resistant to the antiproliferative and anticytotoxic effects of exogenous TGF-beta. Additionally, receptor-transduced cells continued to secrete cytokines in response to antigenic stimulation. TGF-beta receptor ligation results in phosphorylation of Smad2, and this pathway was disrupted in HATGF-betaRII-Deltacyt-transduced CTLs, confirming blockade of the signal transduction pathway. Long-term expression of TGF-betaRII-Deltacyt did not affect CTL function, phenotype, or growth characteristics. Tumor-specific CTLs expressing HATGF-betaRII-Deltacyt should have a selective functional and survival advantage over unmodified CTLs in the presence of TGF-beta-secreting tumors and may be of value in treatment of these diseases.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/therapeutic use
- DNA-Binding Proteins/metabolism
- Genetic Therapy/methods
- Herpesvirus 4, Human
- Hodgkin Disease/immunology
- Hodgkin Disease/therapy
- Hodgkin Disease/virology
- Humans
- Immunotherapy/methods
- Mutation
- Protein Serine-Threonine Kinases
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Receptors, Transforming Growth Factor beta/therapeutic use
- Smad2 Protein
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Trans-Activators/metabolism
- Transduction, Genetic
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- Catherine M Bollard
- Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Akman HO, Zhang H, Siddiqui MA, Solomon W, Smith EL, Batuman OA. Response to hypoxia involves transforming growth factor-beta2 and Smad proteins in human endothelial cells. Blood 2001; 98:3324-31. [PMID: 11719370 DOI: 10.1182/blood.v98.12.3324] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oxygen deprivation (hypoxia) is a consistent component of ischemia that induces an inflammatory and prothrombotic response in the endothelium. In this report, it is demonstrated that exposure of endothelial cells to hypoxia (1% O(2)) increases messenger RNA and protein levels of transforming growth factor-beta2 (TGF-beta2), a cytokine with potent regulatory effects on vascular inflammatory responses. Messenger RNA levels of the TGF-beta2 type II membrane receptor, which is a serine threonine kinase, also increased. The stimulatory effect of hypoxia was found to occur at the level of transcription of the TGF-beta2 gene and involves Smad proteins, a class of intracellular signaling proteins that mediates the downstream effects of TGF-beta receptors. Transient transfection studies showed that the region spanning -77 and -40 base pairs within the TGF-beta2 promoter (harboring a Smad-binding "CAGA box") is activated in hypoxic cells compared with nonhypoxic controls (P <.01). Hypoxia also stimulated transcription from another promoter, 3TP-Lux, a reporter construct responsive to Smads and TGF-beta. In addition, specific binding to a Smad-binding oligonucleotide was observed with nuclear extracts from hypoxic endothelial cells but not from nonhypoxic cells. It is concluded that Smad proteins, which can regulate endothelial responses to mechanical and inflammatory stress, also may play an important role in vascular responses to hypoxia and ischemia.
Collapse
Affiliation(s)
- H O Akman
- Division of Hematology/Oncology, Department of Medicine, Center for Cardiovascular and Molecular Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | |
Collapse
|
59
|
Kim KY, Jeong SY, Won J, Ryu PD, Nam MJ. Induction of angiogenesis by expression of soluble type II transforming growth factor-beta receptor in mouse hepatoma. J Biol Chem 2001; 276:38781-6. [PMID: 11457844 DOI: 10.1074/jbc.m104944200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biological effect of transforming growth factor-beta (TGF-beta) is cell type-specific and complex. The precise role of TGF-beta is not clear in vivo. To elucidate the regulation mechanism of endogenous TGF-beta on hepatoma progression, we modified the MH129F mouse hepatoma cell with a retroviral vector encoding the extracellular region of type II TGF-beta receptor (TRII). Soluble TRII (TRIIs) blocked TGF-beta binding to TRII on the membrane of hepatoma cells. Growth of MH129F cells was inhibited by TGF-beta1 treatment; however, soluble TRII-overexpressing cells (MH129F/TRIIs) did not show any change in proliferation after TGF-beta1 treatment. MH129F/TRIIs cells also increased vascular endothelial growth factor (VEGF) expression, endothelial cell migration, and tube formation. Implantation of MH129F/TRIIs cells into C3H/He mice showed the significantly enhanced tumor formation. According to Western blot and protein kinase C assay, the expression of VEGF, KDR/flk-1 receptor, and endothelial nitric-oxide synthase was enhanced, and the phosphorylation activity of protein kinase C was increased up to 3.7-fold in MH129F/TRIIs tumors. Finally, a PECAM-1-stained intratumoral vessel was shown to be 4.2-fold higher in the MH129F/TRIIs tumor. These results indicate that VEGF expression is up-regulated by a blockade of endogenous TGF-beta signaling in TGF-beta-sensitive hepatoma cells and then stimulates angiogenesis and tumorigenicity. Therefore, we suggest that endogenous TGF-beta is a major regulator of the VEGF/flk-1-mediated angiogenesis pathway in hepatoma progression.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinoma, Hepatocellular/metabolism
- Cell Division
- Cell Movement
- Cells, Cultured
- Disease Progression
- Endothelial Growth Factors/biosynthesis
- Enzyme-Linked Immunosorbent Assay
- Gene Expression Regulation, Neoplastic
- Immunohistochemistry
- Lymphokines/biosynthesis
- Mice
- Mice, Inbred C3H
- Neovascularization, Pathologic
- Nitric Oxide Synthase/biosynthesis
- Nitric Oxide Synthase Type II
- Nitric Oxide Synthase Type III
- Phosphorylation
- Polymerase Chain Reaction
- Protein Binding
- Protein Kinase C/metabolism
- Protein Serine-Threonine Kinases
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Growth Factor/biosynthesis
- Receptors, Transforming Growth Factor beta/biosynthesis
- Receptors, Vascular Endothelial Growth Factor
- Retroviridae/genetics
- Time Factors
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- K Y Kim
- Central Genome Center, National Institute of Health, Seoul 122-701, Korea
| | | | | | | | | |
Collapse
|
60
|
Abstract
Prolactin-secreting adenomas (prolactinomas) are the most prevalent form of pituitary tumors in humans, and increased tumor growth under estrogenic influence in female patients is often of clinical concern. Extensive experimental work has uncovered the roles of estrogen receptors and various growth-regulatory peptides in estradiol action on lactotropes. However, it is only recently that we are beginning to gain insight into how these growth factors interact to regulate estradiol action on lactotrope cell proliferation. Recent studies have identified the regulatory role of TGF-beta-related peptides in estradiol action on lactotropes. Additionally, these studies determined that TGF-beta and FGF interact to facilitate the communication between lactotropes and folliculostellate cells that is necessary for the mitogenic action of estradiol. This review addresses the role of estradiol in prolactinoma formation and summarizes data that support a novel concept: Alterations in the expression and action of TGF-beta isoforms are crucial steps in estradiol-induced tumorigenesis.
Collapse
Affiliation(s)
- S Hentges
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
61
|
Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001; 29:117-29. [PMID: 11586292 DOI: 10.1038/ng1001-117] [Citation(s) in RCA: 1767] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial and hematopoietic cells have a high turnover and their progenitor cells divide continuously, making them prime targets for genetic and epigenetic changes that lead to cell transformation and tumorigenesis. The consequent changes in cell behavior and responsiveness result not only from genetic alterations such as activation of oncogenes or inactivation of tumor suppressor genes, but also from altered production of, or responsiveness to, stimulatory or inhibitory growth and differentiation factors. Among these, transforming growth factor beta (TGF-beta) and its signaling effectors act as key determinants of carcinoma cell behavior. The autocrine and paracrine effects of TGF-beta on tumor cells and the tumor micro-environment exert both positive and negative influences on cancer development. Accordingly, the TGF-beta signaling pathway has been considered as both a tumor suppressor pathway and a promoter of tumor progression and invasion. Here we evaluate the role of TGF-beta in tumor development and attempt to reconcile the positive and negative effects of TGF-beta in carcinogenesis.
Collapse
Affiliation(s)
- R Derynck
- Department of Growth and Development, University of California at San Francisco, San Francisco, California, USA.
| | | | | |
Collapse
|
62
|
Kim JH, Shariat SF, Kim IY, Menesses-Diaz A, Tokunaga H, Wheeler TM, Lerner SP. Predictive value of expression of transforming growth factor-beta(1) and its receptors in transitional cell carcinoma of the urinary bladder. Cancer 2001; 92:1475-83. [PMID: 11745225 DOI: 10.1002/1097-0142(20010915)92:6<1475::aid-cncr1472>3.0.co;2-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The purpose of this study was to describe the expression patterns of transforming growth factor (TGF)-beta(1) and its receptors in transitional cell carcinoma (TCC) of the bladder, to investigate the relation between the TGF-beta(1) and its receptors, and to determine whether altered expression of TGF-beta or its receptors is associated with disease progression and survival in patients with TCC of the bladder. METHODS Immunohistochemical staining for TGF-beta(1) and its receptors I and II was conducted on formalin fixed paraffin embedded archival cystectomy specimens of 80 patients with bladder TCC. Immunoreactivity was categorized as either positive or negative in a blinded fashion. RESULTS Expression of TGF-beta(1), TGF-beta-RI, and TGF-beta-RII was altered in 51 (64%), 34 (43%), and 38 (48%) specimens, respectively. Sixty (75%) specimens had altered expression of at least 1 of the 3 TGF-betas, and 26 (33%) had altered expression of all 3. Expression of the three TGF-betas was highly concordant (P < 0.018). Loss of expression of TGF-beta-RI or TGF-beta-RII was associated with invasive tumor stage (P < 0.001), high grade (P < 0.006), and lymphovascular invasion (P < 0.030). Overexpression of TGF-beta(1) was associated with invasive tumor stage only (P = 0.024). With a median follow-up of 101 months, TGF-beta-RI was an independent predictor of both disease progression (P = 0.007) and disease specific survival (P = 0.006) whereas TGF-beta(1) was an independent predictor of disease progression only (P = 0.050). Transforming growth factor-beta-RII was not independently associated with either disease progression or survival. CONCLUSIONS Altered expression of TGF-beta(1) and its receptors is common in TCC of the bladder. Overexpression of TGF-beta(1) is associated with the loss of expression of its receptors. Transforming growth factor-beta(1) and TGF-beta-RI are independently associated with clinical outcome in patients with bladder TCC treated by radical cystectomy.
Collapse
Affiliation(s)
- J H Kim
- Scott Department of Urology, Baylor College of Medicine and the Methodist Hospital, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Transforming growth factor (TGF)-beta is a natural and potent growth inhibitor of a variety of cell types, including epithelial, endothelial, and hematopoietic cells. The ability of TGF-beta to potently inhibit the growth of many solid tumors of epithelial origin, including breast and colon carcinomas, is of particular interest. However, many solid tumor cells become refractory to the growth inhibitory effects of TGF-beta due to defects in TGF-beta signaling pathways. In addition, TGF-beta may stimulate the invasiveness of tumor cells via the paracrine effects of TGF-beta. Accordingly, in order to develop more effective anticancer therapeutics, it is necessary to determine the TGF-beta signal transduction pathways underlying the growth inhibitory effects and other cellular effects of TGF-beta in normal epithelial cells. Thus far, two primary signaling cascades downstream of the TGF-beta receptors have been elucidated, the Sma and mothers against decapentaplegic homologues and the Ras/mitogen-activated protein kinase pathways. The major objective of this review is to summarize TGF-beta signaling in epithelial cells, focusing on recent advances involving the Sma and mothers against decapentaplegic homologues and Ras/mitogen-activated protein kinase pathways. This review is particularly timely in that it provides a comprehensive summary of both signal transduction mechanisms and the cell cycle effects of TGF-beta.
Collapse
Affiliation(s)
- J Yue
- Department of Pharmacology, MC H078, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
64
|
Ehrlich M, Shmuely A, Henis YI. A single internalization signal from the di-leucine family is critical for constitutive endocytosis of the type II TGF-(β) receptor. J Cell Sci 2001; 114:1777-86. [PMID: 11309207 DOI: 10.1242/jcs.114.9.1777] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endocytosis has an important contribution to the regulation of the surface expression levels of many receptors. In spite of the central role of the transforming growth factor (β) (TGF-(β)) receptors in numerous cellular and physiological processes, their endocytosis is largely unexplored. Current information on TGF-(β) receptor endocytosis relies exclusively on studies with chimeric constructs containing the extracellular domain of the GM-CSF receptors, following the internalization of the GM-CSF ligand; the conformation and interactions of the chimeric receptors (and therefore their endocytosis) may differ considerably from those of the native TGF-(β) receptors. Furthermore, there are no data on the potential endocytosis motif(s) of the TGF-(β) receptors or other receptor Ser/Thr kinases. Here, we report the use of type II TGF-(β) receptors, myc-tagged at their extracellular terminus, to investigate their endocytosis. Employing fluorescent antibody fragments to label exclusively the cell surface myc-tagged receptors exposed to the external milieu, made it possible to follow the internalization of the receptors, without the complications that render labeling with TGF-(β) (which binds to many cellular proteins) unsuitable for such studies. The results demonstrate that the full-length type II TGF-(β) receptor undergoes constitutive endocytosis via clathrin-coated pits. Using a series of truncation and deletion mutants of this receptor, we identified a short peptide sequence (I(218)I(219)L(220)), which conforms to the consensus of internalization motifs from the di-leucine family, as the major endocytosis signal of the receptor. The functional importance of this sequence in the full-length receptor was validated by the near complete loss of internalization upon mutation of these three amino acids to alanine.
Collapse
Affiliation(s)
- M Ehrlich
- Dept of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
65
|
Mori M, Kida H, Morishita H, Goya S, Matsuoka H, Arai T, Osaki T, Tachibana I, Yamamoto S, Sakatani M, Ito M, Ogura T, Hayashi S. Microsatellite instability in transforming growth factor-beta 1 type II receptor gene in alveolar lining epithelial cells of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2001; 24:398-404. [PMID: 11306432 DOI: 10.1165/ajrcmb.24.4.4206] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It has been reported that transforming growth factor (TGF)-beta, which plays an integral role in the pathogenesis of idiopathic pulmonary fibrosis (IPF), suppresses proliferation of alveolar epithelial cells in vitro. Although hyperplastic lesions of alveolar lining epithelial cells (ALECs) are characteristic pathologic features of IPF, the mechanism of their involvement in the pathogenesis has not yet been extensively studied. On the assumption that the hyperplastic ALECs have escaped from the growth-inhibitory effects of TGF-beta, we searched for mutations in the microsatellite of the TGF-beta receptor type II (T beta RII) gene. To detect a deletion in the polyadenine tract in exon 3 of the T beta RII gene, cells were isolated by microdissection from lung sections of IPF patients, and DNA was extracted from these cells and amplified by high-fidelity polymerase chain reaction. A total of 121 sites of hyperplastic ALECs from 11 IPF patients were analyzed, and a one-base-pair deletion was detected in nine sites from five patients. The mutation was also detected in smooth muscle-like cells of the thickened pulmonary artery. In some tissue areas where the deletion was detected, low T beta RII expression was confirmed by immunohistochemical staining. These data suggest that microsatellite instability in the T beta RII gene occurred in some lesions of hyperplastic ALECs in IPF, although at a low incidence, and that this genetic disorder might play a partial role in the pathologic changes of IPF.
Collapse
Affiliation(s)
- M Mori
- Department of Molecular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Chin BY, Mohsenin A, Li SX, Choi AM, Choi ME. Stimulation of pro-alpha(1)(I) collagen by TGF-beta(1) in mesangial cells: role of the p38 MAPK pathway. Am J Physiol Renal Physiol 2001; 280:F495-504. [PMID: 11181412 DOI: 10.1152/ajprenal.2001.280.3.f495] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor-beta(1) (TGF-beta(1)) is a potent inducer of extracellular matrix protein synthesis and a key mediator of renal fibrosis. However, the intracellular signaling mechanisms by which TGF-beta(1) stimulates this process remain incompletely understood. In this report, we examined the role of a major stress-activated intracellular signaling cascade, belonging to the mitogen-activated protein kinase (MAPK) superfamily, in mediating TGF-beta(1) responses in rat glomerular mesangial cells, using dominant-negative inhibition of TGF-beta(1) signaling receptors. We first stably transfected rat glomerular mesangial cells with a kinase-deleted mutant TGF-beta type II receptor (TbetaR-II(M)) designed to inhibit TGF-beta(1) signaling in a dominant-negative fashion. Next, expression of TbetaR-II(M) mRNA was confirmed by Northern analysis. Cell surface expression and ligand binding of TbetaR-II(M) protein were demonstrated by affinity cross-linking with (125)I-labeled-TGF-beta(1). TGF-beta(1) rapidly induced p38 MAPK phosphorylation in wild-type and empty vector (pcDNA3)-transfected control mesangial cells. Interestingly, transfection with dominant-negative TbetaR-II(M) failed to block TGF-beta(1)-induced p38 MAPK phosphorylation. Moreover, dominant-negative TbetaR-II(M) failed to block TGF-beta(1)-stimulated pro-alpha(1)(I) collagen mRNA expression and cellular protein synthesis, whereas TGF-beta(1)-induced extracellular signal-regulated kinase (ERK) 1/ERK2 activation and antiproliferative responses were blocked by TbetaR-II(M). In the presence of a specific inhibitor of p38 MAPK, SB-203580, TGF-beta(1) was unable to stimulate pro-alpha(1)(I) collagen mRNA expression in the control and TbetaR-II(M)-transfected mesangial cells. Finally, we confirmed that both p38 MAPK activation and pro-alpha(1)(I) collagen stimulation were TGF-beta(1) effects that were abrogated by dominant-negative inhibition of TGF-beta type I receptor. Thus we show first demonstration of p38 MAPK activation by TGF-beta(1) in mesangial cells, and, given the rapid kinetics, this TGF-beta(1) effect is likely a direct one. Furthermore, our findings suggest that the p38 MAPK pathway functions as a component in the signaling of pro-alpha(1)(I) collagen induction by TGF-beta(1) in mesangial cells.
Collapse
Affiliation(s)
- B Y Chin
- Toxicological Sciences, Environmental Health Sciences, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
67
|
Kim TK, Mo EK, Yoo CG, Lee CT, Han SK, Shim YS, Kim YW. Alteration of cell growth and morphology by overexpression of transforming growth factor beta type II receptor in human lung adenocarcinoma cells. Lung Cancer 2001; 31:181-91. [PMID: 11165397 DOI: 10.1016/s0169-5002(00)00169-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
TGF-beta is a potent inhibitory regulator of cell growth, which is transduced through interaction between type I (RI) and type II (RII) receptors that form heteromeric kinase complexes. Abnormal expression of these receptors has been identified in several human epithelial cancers and has been shown to be highly associated with resistance to TGF-beta. In this study, we investigated the expression of RI and RII in 13 human non-small cell lung cancer cell lines (NSCLCs) and demonstrated decreased or loss of RII expression in five lung cancer cell lines, but not of RI. Of these cell lines, the role of RII in NCI-H358 adenocarcinoma, which lacks RII and is insensitive to TGF-beta, was investigated by transducing this cell line with a recombinant retrovirus expressing full-length TGF-beta RII. Stably transfected cells showed significant increase in RII mRNA and protein expression. These cells responded to exogenous TGF-beta1 with suppressed proliferation in a dose-dependent manner and G1 arrest accompanied by morphological change distinct from control cells. We also investigated whether overexpression of dominant-negative RII (dnRII) in NCI-H441 adenocarcinoma, which is sensitive but expresses low levels of RII, could block signaling through the receptor complex. The overexpression of this kinase-domain-truncated RII by expressing the retroviral dnRII construct led to loss of the ability to respond to TGF-beta1 and an exhibition of uncontrolled growth. These results suggest a close association between the loss of the expression of wild-type TGF-beta RII and carcinogenesis in human lung cancer cells.
Collapse
Affiliation(s)
- T K Kim
- Department of Internal Medicine, College of Medicine and Lung Institute, SNUMRC, Seoul National University and Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, South Korea
| | | | | | | | | | | | | |
Collapse
|
68
|
Zhou Y, Sun H, Danila DC, Johnson SR, Sigai DP, Zhang X, Klibanski A. Truncated activin type I receptor Alk4 isoforms are dominant negative receptors inhibiting activin signaling. Mol Endocrinol 2000; 14:2066-75. [PMID: 11117535 DOI: 10.1210/mend.14.12.0570] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activin, a member of the transforming growth factor beta (TGFbeta) superfamily of cytokines, inhibits cell proliferation in a variety of cell types. The functions of activin are mediated by type I and type II serine/threonine kinase receptors. The main type I receptor mediating activin signaling in human cells is ActRIB, also called Alk4. We have previously reported that several truncated Alk4 receptor isoforms are exclusively expressed in human pituitary tumors, and that the majority of such tumors did not exhibit activin-induced growth arrest in culture. We therefore studied the function of these truncated receptor isoforms. Transient expression of these truncated receptors inhibited activin-activated transcription from an activin-responsive reporter construct, 3TPLux. When each of these truncated Alk4 receptors was stably transfected into K562 cells, activin-induced expression of an endogenous gene, junB, was blocked, indicating that inhibition of gene expression also occurred at the chromosomal level. Furthermore, activin administration failed to cause growth inhibition and an increase of the G1 population in these cells. Coimmunoprecipitation experiments showed that the truncated Alk4 receptors formed complexes with type II activin receptors, but were not phosphorylated. These data indicate that the truncated activin type I receptors, predominantly expressed in human pituitary adenomas, function as dominant negative receptors to interfere with wild-type receptor function and block the antiproliferative effect of activin. This may contribute to uncontrolled pituitary cell growth and the development of human pituitary tumors.
Collapse
Affiliation(s)
- Y Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Liu X, Sun Y, Ehrlich M, Lu T, Kloog Y, Weinberg RA, Lodish HF, Henis YI. Disruption of TGF-beta growth inhibition by oncogenic ras is linked to p27Kip1 mislocalization. Oncogene 2000; 19:5926-35. [PMID: 11127824 DOI: 10.1038/sj.onc.1203991] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Expression of oncogenic Ras in epithelial tumor cells is linked to the loss of transforming growth factor-beta (TGF-beta) anti-proliferative activity, and was proposed to involve inhibition of Smad2/3 nuclear translocation. Here we studied several epithelial cell lines expressing oncogenic N-RasK61 and show that TGF-beta-induced nuclear translocation of and transcriptional activation by Smad2/3 were unaffected. In contrast, oncogenic Ras mediated nuclearto-cytoplasmic mislocalization of p27KiP1 (p27) and of the cyclin-dependent kinase (CDK) CDK6, but not CDK2. Concomitantly, oncogenic Ras abrogated the ability of TGF-beta to release p27 from CDK6, to enhance its binding to CDK2 and to inhibit CDK2 activity. Inactivation of Ras by a specific antagonist restored the growth inhibitory response to TGF-beta with concurrent normalization of p27 and CDK6 localization. Therefore, the disruption of TGF-beta-mediated growth inhibition by oncogenic Ras appears to be due to lack of inhibition of CDK2, caused by the sequestration of p27 and CDK2 in different subcellular compartments and by the loss of TGF-beta-induced partner switching of p27 from CDK6 to CDK2.
Collapse
Affiliation(s)
- X Liu
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Zhao Y, Shah DU. Expression of transforming growth factor-beta type I and type II receptors is altered in rat lungs undergoing bleomycin-induced pulmonary fibrosis. Exp Mol Pathol 2000; 69:67-78. [PMID: 11001857 DOI: 10.1006/exmp.2000.2319] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is a family of autocrine/paracrine/endocrine cytokines involved in controlling cell growth and extracellular matrix metabolism. TGF-beta exerts its biological effects via binding to type I (TbetaRI) and type II (TbetaRII) receptors. To gain insight into the possible role of TGF-beta receptors in the pathogenesis of pulmonary fibrosis, we investigated the expression of TGF-beta receptors and their ligands in a bleomycin-induced model of pulmonary fibrosis. We found that the expression of both TbetaRI and TbetaRII was altered in rat lungs during pulmonary fibrosis induced by bleomycin. The increase in TbetaRI mRNA level was evident after 3 days of bleomycin administration, and TbetaRI mRNA continually increased for over 12 days after bleomycin instillation, whereas TbetaRII mRNA declined at day 3 post bleomycin instillation and then increased during the reparative phase of lung injury (days 8 and 12). The immunoreactivity for both TbetaRI and TbetaRII was detected in the cells of the interstitium, the epithelium, and the blood vessels of normal rat lungs. In bleomycin-induced pulmonary fibrosis, an extensive immunostaining for TbetaRI and TbetaRII was present in the cells at the sites of injury and active fibrosis. These results demonstrate that the expression of TGF-beta type I and type II receptors was altered during pulmonary fibrosis, suggesting that the TGF-beta signal transduction pathway may be involved in the pathogenesis of lung fibrosis.
Collapse
Affiliation(s)
- Y Zhao
- Department of Medicine, Duke University Medical Center and Medical Research, Durham Veterans Affairs Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
71
|
Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, Hodge SE, Knowles JA. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 2000; 67:737-44. [PMID: 10903931 PMCID: PMC1287532 DOI: 10.1086/303059] [Citation(s) in RCA: 754] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2000] [Accepted: 07/14/2000] [Indexed: 12/21/2022] Open
Abstract
Familial primary pulmonary hypertension is a rare autosomal dominant disorder that has reduced penetrance and that has been mapped to a 3-cM region on chromosome 2q33 (locus PPH1). The phenotype is characterized by monoclonal plexiform lesions of proliferating endothelial cells in pulmonary arterioles. These lesions lead to elevated pulmonary-artery pressures, right-ventricular failure, and death. Although primary pulmonary hypertension is rare, cases secondary to known etiologies are more common and include those associated with the appetite-suppressant drugs, including phentermine-fenfluramine. We genotyped 35 multiplex families with the disorder, using 27 microsatellite markers; we constructed disease haplotypes; and we looked for evidence of haplotype sharing across families, using the program TRANSMIT. Suggestive evidence of sharing was observed with markers GGAA19e07 and D2S307, and three nearby candidate genes were examined by denaturing high-performance liquid chromatography on individuals from 19 families. One of these genes (BMPR2), which encodes bone morphogenetic protein receptor type II, was found to contain five mutations that predict premature termination of the protein product and two missense mutations. These mutations were not observed in 196 control chromosomes. These findings indicate that the bone morphogenetic protein-signaling pathway is defective in patients with primary pulmonary hypertension and may implicate the pathway in the nonfamilial forms of the disease.
Collapse
Affiliation(s)
- Zemin Deng
- Department of Psychiatry, College of Physicians and Surgeons at Columbia University and the New York State Psychiatric Institute, Departments of Medicine and Pediatrics and Columbia Genome Center, College of Physicians and Surgeons at Columbia University, Division of Biostatistics, School of Public Health, Columbia University, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York
| | - Jane H. Morse
- Department of Psychiatry, College of Physicians and Surgeons at Columbia University and the New York State Psychiatric Institute, Departments of Medicine and Pediatrics and Columbia Genome Center, College of Physicians and Surgeons at Columbia University, Division of Biostatistics, School of Public Health, Columbia University, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York
| | - Susan L. Slager
- Department of Psychiatry, College of Physicians and Surgeons at Columbia University and the New York State Psychiatric Institute, Departments of Medicine and Pediatrics and Columbia Genome Center, College of Physicians and Surgeons at Columbia University, Division of Biostatistics, School of Public Health, Columbia University, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York
| | - Nieves Cuervo
- Department of Psychiatry, College of Physicians and Surgeons at Columbia University and the New York State Psychiatric Institute, Departments of Medicine and Pediatrics and Columbia Genome Center, College of Physicians and Surgeons at Columbia University, Division of Biostatistics, School of Public Health, Columbia University, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York
| | - Keith J. Moore
- Department of Psychiatry, College of Physicians and Surgeons at Columbia University and the New York State Psychiatric Institute, Departments of Medicine and Pediatrics and Columbia Genome Center, College of Physicians and Surgeons at Columbia University, Division of Biostatistics, School of Public Health, Columbia University, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York
| | - George Venetos
- Department of Psychiatry, College of Physicians and Surgeons at Columbia University and the New York State Psychiatric Institute, Departments of Medicine and Pediatrics and Columbia Genome Center, College of Physicians and Surgeons at Columbia University, Division of Biostatistics, School of Public Health, Columbia University, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York
| | - Sergey Kalachikov
- Department of Psychiatry, College of Physicians and Surgeons at Columbia University and the New York State Psychiatric Institute, Departments of Medicine and Pediatrics and Columbia Genome Center, College of Physicians and Surgeons at Columbia University, Division of Biostatistics, School of Public Health, Columbia University, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York
| | - Eftihia Cayanis
- Department of Psychiatry, College of Physicians and Surgeons at Columbia University and the New York State Psychiatric Institute, Departments of Medicine and Pediatrics and Columbia Genome Center, College of Physicians and Surgeons at Columbia University, Division of Biostatistics, School of Public Health, Columbia University, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York
| | - Stuart G. Fischer
- Department of Psychiatry, College of Physicians and Surgeons at Columbia University and the New York State Psychiatric Institute, Departments of Medicine and Pediatrics and Columbia Genome Center, College of Physicians and Surgeons at Columbia University, Division of Biostatistics, School of Public Health, Columbia University, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York
| | - Robyn J. Barst
- Department of Psychiatry, College of Physicians and Surgeons at Columbia University and the New York State Psychiatric Institute, Departments of Medicine and Pediatrics and Columbia Genome Center, College of Physicians and Surgeons at Columbia University, Division of Biostatistics, School of Public Health, Columbia University, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York
| | - Susan E. Hodge
- Department of Psychiatry, College of Physicians and Surgeons at Columbia University and the New York State Psychiatric Institute, Departments of Medicine and Pediatrics and Columbia Genome Center, College of Physicians and Surgeons at Columbia University, Division of Biostatistics, School of Public Health, Columbia University, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York
| | - James A. Knowles
- Department of Psychiatry, College of Physicians and Surgeons at Columbia University and the New York State Psychiatric Institute, Departments of Medicine and Pediatrics and Columbia Genome Center, College of Physicians and Surgeons at Columbia University, Division of Biostatistics, School of Public Health, Columbia University, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York
| |
Collapse
|
72
|
Go C, He W, Zhong L, Li P, Huang J, Brinkley BR, Wang XJ. Aberrant cell cycle progression contributes to the early-stage accelerated carcinogenesis in transgenic epidermis expressing the dominant negative TGFbetaRII. Oncogene 2000; 19:3623-31. [PMID: 10951568 DOI: 10.1038/sj.onc.1203701] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutations in the transforming growth factor beta type II receptor (TGFbetaRII) have been found in various malignant tumors, suggesting that loss of TGFbeta signaling plays a causal role in late-stage cancer development. To test whether loss of TGFbetaRII is involved in early-stage carcinogenesis, we have generated transgenic mice expressing a dominant negative TGFbetaRII (deltabetaRII) in the epidermis. These mice exhibited an increased susceptibility to chemical carcinogenesis protocols at both early and late stages. In the current study, parameters for cell cycle progression and chromosome instability were analysed in deltabetaRII tumors. DeltabetaRII papillomas showed an increased S phase in flow cytometry. Bromodeoxyuridine (BrdU) labeling and mitotic indices in deltabetaRII papillomas also showed a threefold increase compared to papillomas developing in non-transgenic mice. When papillomas further progressed to squamous cell carcinomas (SCC), both control and deltabetaRII SCC showed similar BrdU labeling indices and percentages of S phase cells. However, deltabetaRII SCC cells showed a sixfold increase in the G2/M population. Mitotic indices in deltabetaRII SCC also showed a threefold increase compared to non-transgenic SCC. Consistent with a perturbed cell cycle, deltabetaRII papillomas and SCC showed reduced expression of the TGFbeta target genes p15 (INK4b), p21 (WAF-1) and p27 (Kip1), inhibitors of cyclin-dependent kinases (cdks). However, most deltabetaRII papilloma cells exhibited normal centrosome numbers, and deltabetaRII SCC exhibited a similar extent of centrosome abnormalities compared to control SCC (35-40% cells). Most of deltabetaRII SCC exhibited diploid chromosome profiles. These data indicate that inactivation of TGFbetaRII accelerates skin tumorigenesis at early stages by the acceleration of loss of cell cycle control, but not by increased chromosome instability.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/adverse effects
- 9,10-Dimethyl-1,2-benzanthracene/pharmacology
- Animals
- Bromodeoxyuridine/pharmacokinetics
- Carcinogens/adverse effects
- Carcinogens/pharmacology
- Carcinoma, Squamous Cell/chemically induced
- Carcinoma, Squamous Cell/pathology
- Carrier Proteins/genetics
- Cell Cycle
- Cell Cycle Proteins
- Cell Transformation, Neoplastic
- Centrosome
- Cyclin-Dependent Kinase Inhibitor p15
- Cyclin-Dependent Kinase Inhibitor p16
- Cyclin-Dependent Kinase Inhibitor p27
- Epidermal Cells
- Gene Expression
- Mice
- Mice, Transgenic
- Microtubule-Associated Proteins/genetics
- Mitosis
- Papilloma/chemically induced
- Papilloma/pathology
- Protein Serine-Threonine Kinases
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/biosynthesis
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/physiology
- Tetradecanoylphorbol Acetate/adverse effects
- Tetradecanoylphorbol Acetate/pharmacology
- Time Factors
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- C Go
- Department of Otolaryngology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
BACKGROUND Breast carcinoma commonly metastasizes to the skeleton in patients with advanced disease to cause bone destruction and the associated pain, hypercalcemia, fracture, and nerve-compression syndromes. In this scenario, the bone destruction is mediated by the osteoclast. Tumor-produced parathyroid hormone-related protein (PTHrP), a known stimulator of osteoclastic bone resorption, is a major mediator of the osteolytic process. Transforming growth factor beta (TGFbeta), which is abundant in bone matrix and is released as a consequence of osteoclastic bone resorption, may promote breast carcinoma osteolysis by stimulating PTHrP production by tumor cells. METHODS Stable breast carcinoma MDA-MB-231 cell lines were constructed that expressed mutant TGFbeta receptors, Smad proteins, or estrogen receptor (ER)-alpha and were used to determine the role of TGFbeta in modulating tumor production of PTHrP. These stable cell lines were applied to a mouse model of human breast carcinoma metastases to the bone to dissect the molecular mechanisms responsible for osteolytic bone metastases. RESULTS TGFbeta promoted the development and progression of osteolytic bone metastases by inducing tumor production of PTHrP, the effect of which was mediated through the Smad signaling pathway. PTHrP stimulated osteoclastic bone resorption by increasing osteoblast production of the receptor activator of nuclear factor K B (RANK) ligand and decreasing osteoblast production of osteoprotegerin (OPG). A constitutively active ER-alpha mutation (Tyr537Asn), identified from a human bone metastases, when it was expressed in human breast carcinoma cells, caused increased production of PTHrP. TGFbeta significantly enhanced the ER-alpha-mediated transcriptional activity induced by ER-alpha (Tyr537Asn), and this resulted in further stimulation of PTHrP production. CONCLUSIONS These data indicate a central role for TGFbeta in the pathogenesis of osteolytic bone metastases from breast carcinoma by 1) the induction of PTHrP through the Smad signaling pathway and 2) the potentiation of ER-alpha-mediated transcription induced by a constitutively active ER-alpha. Understanding the mechanisms of osteolysis at a molecular level will generate more effective therapeutic agents for patients with this devastating complication of cancer.
Collapse
Affiliation(s)
- T A Guise
- Department of Medicine, University of Texas Health Science Center at San Antonio 78229-3900, USA
| |
Collapse
|
74
|
Zhao Y, Young SL, McIntosh JC, Steele MP, Silbajoris R. Ontogeny and localization of TGF-beta type I receptor expression during lung development. Am J Physiol Lung Cell Mol Physiol 2000; 278:L1231-9. [PMID: 10835329 DOI: 10.1152/ajplung.2000.278.6.l1231] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor (TGF)-beta is a family of multifunctional cytokines controlling cell growth, differentiation, and extracellular matrix deposition in the lung. The biological effects of TGF-beta are mediated by type I (TbetaR-I) and II (TbetaR-II) receptors. Our previous studies show that the expression of TbetaR-II is highly regulated in a spatial and temporal fashion during lung development. In the present studies, we investigated the temporal-spatial pattern and cellular expression of TbetaR-I during lung development. The expression level of TbetaR-I mRNA in rat lung at different embryonic and postnatal stages was analyzed by Northern blotting. TbetaR-I mRNA was expressed in fetal rat lungs in early development and then decreased as development proceeded. The localization of TbetaR-I in fetal and postnatal rat lung tissues was investigated by using in situ hybridization performed with an antisense RNA probe. TbetaR-I mRNA was present in the mesenchyme and epithelium of gestational day 14 rat lungs. An intense TbetaR-I signal was observed in the epithelial lining of the developing bronchi. In gestational day 16 lungs, the expression of TbetaR-I mRNA was increased in the mesenchymal tissue. The epithelium in both the distal and proximal bronchioles showed a similar level of TbetaR-I expression. In postnatal lungs, TbetaR-I mRNA was detected in parenchymal tissues and blood vessels. We further studied the expression of TbetaR-I in cultured rat lung cells. TbetaR-I was expressed by cultured rat lung fibroblasts, microvascular endothelial cells, and alveolar epithelial cells. These studies demonstrate a differential regulation and localization of TbetaR-I that is different from that of TbetaR-II during lung development. TbetaR-I, TbetaR-II, and TGF-beta isoforms exhibit distinct but overlapping patterns of expression during lung development. This implies a distinct role for TbetaR-I in mediating TGF-beta signal transduction during lung development.
Collapse
MESH Headings
- Activin Receptors, Type I
- Aging/metabolism
- Animals
- Animals, Newborn/growth & development
- Animals, Newborn/metabolism
- Blotting, Northern
- Cells, Cultured
- Embryonic and Fetal Development
- Fetus/physiology
- In Situ Hybridization
- Lung/cytology
- Lung/embryology
- Lung/metabolism
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Y Zhao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
75
|
Chen W, Woodruff TK, Mayo KE. Activin A-induced HepG2 liver cell apoptosis: involvement of activin receptors and smad proteins. Endocrinology 2000; 141:1263-72. [PMID: 10698204 DOI: 10.1210/endo.141.3.7361] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A balance between cell proliferation and apoptosis is important for regulating normal liver function. Proteins of the transforming growth factor-beta superfamily are known to be important mediators of apoptosis in the liver. In this study we demonstrate that activin A potently induces apoptotic cell death in a hepatoma cell line, HepG2 cells. To determine the roles of activin receptors and downstream signaling proteins in activin A-induced apoptosis in these cells, the activin signaling pathway was analyzed using the transcription of an activin-responsive reporter gene, p3TP-Lux, as an assay. Although individual activin receptors had little effect on transcriptional activity, coexpression of an activin type I receptor and a type II receptor significantly increased both basal and activin-induced transcriptional activation, with the combination ofreceptors IB and IIB being the most potent. Similarly, expression of individual Smad proteins had only a modest effect on reporter gene activity, but the combination of Smad2 and Smad4 strongly stimulated transcription. Activin signaling induced a rapid relocation of Smad2 to the nucleus, as determined using a green fluorescence protein-Smad2 fusion protein. In contrast, green fluorescence protein-Smad4 remained localized to the cytoplasm unless it was coexpressed with Smad2. In agreement with the transcriptional response assays, overexpression or suppression of activin signaling components in HepG2 cells altered apoptosis. Overexpression of receptors IB and IIB or Smad proteins 2 and 4 stimulated apoptosis, whereas dominant negative mutant forms of the activin type IIB receptor or Smad2 blocked activin-stimulated apoptosis. These studies suggest that signaling from the cell surface to the nucleus through Smad proteins is a required component of the activin A-induced cell death process in liver cells.
Collapse
Affiliation(s)
- W Chen
- Department of Biochemistry, Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
76
|
Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12:171-81. [PMID: 10714683 DOI: 10.1016/s1074-7613(00)80170-3] [Citation(s) in RCA: 762] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Targeted mutation of TGFbeta1 in mice demonstrated that TGFbeta1 is one of the key negative regulators of immune homeostasis, as its absence leads to activation of a self-targeted immune response. Nevertheless, because of the highly pleiotropic properties of TGFbeta and the presence of TGFbeta receptors on most cell types, its biologic role in the regulation of immune homeostasis is not yet understood. To limit the consequences of TGFbeta effects to a single cell type, we developed a transgenic approach to abrogate the TGFbeta response in key immune cells. Specifically, we expressed a dominant-negative TGFbeta receptor type II under a T cell-specific promoter and created a mouse model where signaling by TGFbeta is blocked specifically in T cells. Using this transgenic model, we show that T cell homeostasis requires TGFbeta signaling in T cells.
Collapse
Affiliation(s)
- L Gorelik
- Section of Immunobiology, Howard Hughes Medical Institute and Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
77
|
Le Roy C, Maisnier-Patin K, Leduque P, Li JY, Saez JM, Langlois D. Overexpression of a dominant-negative type II TGFbeta receptor tagged with green fluorescent protein inhibits the effects of TGFbeta on cell growth and gene expression of mouse adrenal tumor cell line Y-1 and enhances cell tumorigenicity. Mol Cell Endocrinol 1999; 158:87-98. [PMID: 10630409 DOI: 10.1016/s0303-7207(99)00176-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transforming growth factor beta (TGFbeta) has been reported to be a potent growth inhibitor of epithelial cells. The purpose of the present work was to study in vitro and in vivo the effects of overexpression of a dominant-negative type II TGFbeta receptor on the proliferation and differentiation of Y-1 cells. Stable transfections were performed with a mutant TbetaRII (TbetaRII-KR) fused with the Enhanced Fluorescent Green Protein (EGFP). The expression of this fusion protein and its overexpression were demonstrated by northern blot and immunoblot with EGFP and TbetaRII probes and antibodies respectively. The membrane localization of this fusion protein was confirmed by confocal microscopy. The functionality of this fusion protein was demonstrated by its blocking effects on TGFbeta action on DNA synthesis and on Y-1 expression of steroidogenic acute regulatory protein (StAR) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD). Moreover, in nude mice the tumorigenicity of cells stably transfected with the fusion protein was higher than that of cells stably transfected with EGFP alone. Taken together, the present results show that TbetaRII-KR/EGFP blocks the effects of TGFbeta1 on Y-1 cells and acts as a potent dominant-negative receptor preventing TGFbeta signaling.
Collapse
MESH Headings
- 3-Hydroxysteroid Dehydrogenases/metabolism
- Animals
- Blotting, Northern
- Blotting, Western
- DNA/biosynthesis
- Female
- Green Fluorescent Proteins
- Immunohistochemistry
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Luminescent Proteins/ultrastructure
- Mice
- Mice, Nude
- Microscopy, Confocal
- Neoplasm Transplantation
- Phosphoproteins/metabolism
- Protein Serine-Threonine Kinases
- RNA, Messenger/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Receptors, Transforming Growth Factor beta/ultrastructure
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/ultrastructure
- Transfection
- Transforming Growth Factor beta/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- C Le Roy
- INSERM-INRA U 418 and IFREL d'Endocrinologie, Hôpital Debrousse, Lyon, France
| | | | | | | | | | | |
Collapse
|
78
|
Yamamoto H, Atsuchi N, Tanaka H, Ogawa W, Abe M, Takeshita A, Ueno H. Separate roles for H-Ras and Rac in signaling by transforming growth factor (TGF)-beta. H-Ras is essential for activation of MAP kinase, partially required for transcriptional activation by TGF-beta, but not required for signaling of growth suppression by TGF-beta. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:110-9. [PMID: 10447679 DOI: 10.1046/j.1432-1327.1999.00584.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The signaling components located downstream of the transforming growth factor (TGF)-beta receptor are poorly understood. We constructed adenoviral vectors expressing a dominant-negative form of either H-Ras (AdCARasY57) or Rac (AdCARacN17), and used them to examine the roles of H-Ras and Rac in TGF-beta signaling using arterial endothelial cells in primary culture, and several established cells including a mink lung epithelial cell line (Mv1Lu). The rapid activation of p42/44 MAP kinase (MAPK) by TGF-beta1 was eliminated completely, and transcriptional activation by TGF-beta1 of the plasminogen activator inhibitor-1 gene was reduced by 50% in both endothelial cells and Mv1Lu when they were infected with AdCARasY57. However, the antiproliferative effect of TGF-beta, as assessed by the induction of the mRNA for Cdk4/6-specific inhibitor p15INK4B and by DNA synthesis, was not affected in AdCARasY57-infected cells. A MAPK kinase (MEK)1/2 inhibitor, U0126 also abolished MAPK activation and partially inhibited transcriptional activation by TGF-beta, suggesting that MAPK may be partially involved in this pathway. MAPK activation, transcriptional activation and growth suppression by TGF-beta were all unaffected in cells infected with AdCARacN17, although the DNA synthesis elicited by serum mitogens was suppressed completely in the infected cells. Our data indicate that H-Ras is essential for mitogen-activated protein kinase activation, partly required for transcriptional activation by TGF-beta, but not critically involved in the signaling that exerts the antiproliferative effect of TGF-beta. The results also suggest that Rac may not serve as an essential molecule in signaling by TGF-beta in the cells tested.
Collapse
Affiliation(s)
- H Yamamoto
- Molecular Cardiology Unit, Research Institute of Angiocardiology and Cardiology Clinic, Kyushu University School of Medicine, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
79
|
Chai Y, Zhao J, Mogharei A, Xu B, Bringas P, Shuler C, Warburton D. Inhibition of transforming growth factor-beta type II receptor signaling accelerates tooth formation in mouse first branchial arch explants. Mech Dev 1999; 86:63-74. [PMID: 10446266 DOI: 10.1016/s0925-4773(99)00112-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily signal through their cognate receptors to determine cell phenotypes during embryogenesis. Our previous studies on the regulation of first branchial arch morphogenesis have identified critical components of a hierarchy of different TGF-beta isoforms and their possible functions in regulating tooth and cartilage formation during mandibular morphogenesis. Here we tested the hypothesis that TGF-beta type II receptor (TGF-beta IIR) is a critical component in the TGF-beta signaling pathway regulating tooth formation. To establish the precise location of TGF-beta ligand and its cognate receptor, we first performed detailed analyses of the localization of both TGF-beta2 and TGF-beta IIR during initiation and subsequent morphogenesis of developing embryonic mouse tooth organs. A possible autocrine functional role for TGF-beta and its cognate receptor (TGF-beta IIR) was inferred due to the temporal and spatial localization patterns during the early inductive stages of tooth morphogenesis. Second, loss of function of TGF-beta IIR in a mandibular explant culture model resulted in the acceleration of tooth formation to the cap stage while the mandibular explants in the control group only showed bud stage tooth formation. In addition, there was a significant increase in odontogenic epithelial cell proliferation following TGF-beta IIR abrogation. These results demonstrate, for the first time, that abrogation of the TGF-beta IIR stimulates embryonic tooth morphogenesis in culture and reverses the negative regulation of endogenous TGF-beta signaling upon enamel organ epithelial cell proliferation.
Collapse
Affiliation(s)
- Y Chai
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | |
Collapse
|
80
|
Lu SL, Kawabata M, Imamura T, Miyazono K, Yuasa Y. Two divergent signaling pathways for TGF-beta separated by a mutation of its type II receptor gene. Biochem Biophys Res Commun 1999; 259:385-90. [PMID: 10362519 DOI: 10.1006/bbrc.1999.0788] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transforming growth factor beta (TGF-beta) can inhibit epithelial cell growth and induce extracellular matrix formation through signal transduction via its two receptors and its downstream intracellular Smad proteins. We recently reported a germline mutation, i.e., substitution of methionine for threonine at codon 315 in the kinase subdomain IV, of the TGF-beta type II receptor gene in a kindred of hereditary nonpolyposis colorectal cancer without microsatellite instability and found that the mutant receptor abolished the signal transduction for growth inhibition by TGF-beta. In this study, we performed further functional analysis of this mutant receptor. The results showed that, in contrast to its failure to mediate growth inhibition by TGF-beta, the mutant receptor still retained the ability to induce one of the extracellular matrix proteins, plasminogen activator inhibitor type 1, upon TGF-beta treatment. However, coincident with its failure to mediate growth inhibition by TGF-beta, the mutant receptor failed to transcriptionally upregulate one of the cyclin-dependent kinase inhibitors, p15(INK4B), in response to TGF-beta. These data suggest that threonine 315 of the TGF-beta type II receptor is dispensable for extracellular matrix protein production, but is essential for the growth inhibition by TGF-beta, and that the lack of growth inhibition due to the mutant receptor is possibly mediated through its failure to upregulate p15(INK4B).
Collapse
Affiliation(s)
- S L Lu
- Department of Hygiene and Oncology, Tokyo Medical and Dental University School of Medicine, 1-5-45 Yushima, Tokyo, Bunkyo-ku, 113-8519, Japan
| | | | | | | | | |
Collapse
|
81
|
Roulot D, Sevcsik AM, Coste T, Strosberg AD, Marullo S. Role of transforming growth factor beta type II receptor in hepatic fibrosis: studies of human chronic hepatitis C and experimental fibrosis in rats. Hepatology 1999; 29:1730-8. [PMID: 10347115 DOI: 10.1002/hep.510290622] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Transforming growth factor beta (TGF-beta) is an antiproliferative and profibrogenic cytokine that signals through a receptor consisting of type I and type II (TbetaRII) components. We have examined changes in the expression of TbetaRII during liver injury, correlating this with the antiproliferative and profibrogenic effects of TGF-beta1. The experimental material consisted of biopsy samples of liver from patients with chronic hepatitis C and rats in which liver injury was induced by ligation of the common bile duct. Stellate cells were isolated from normal or injured rat liver and studied as fresh isolates. In the biopsy samples from patients, mRNAs for TGF-beta1 and TbetaRII were measured using competitive reverse polymerase chain reaction (PCR). TGF-beta1 mRNA was significantly increased in chronic hepatitis C relative to healthy controls (P =.03), while TbetaRII mRNA was significantly decreased (P =.001). In the rat model, 5 days after bile duct ligation during increased TGF-beta expression, mRNA for TbetaRII in stellate cells was 40% of that in stellate cells from control livers. This coincided with increased expression of collagen I mRNA and proliferation of stellate cells. The reciprocal relationship between expression of TGF-beta and the type II receptor suggest ligand-mediated receptor down-regulation. The decreased level of TbetaRII appears to be permissive for proliferation while supporting ongoing fibrogenesis. We conclude that modulation of this receptor may be critical to the progression of wound repair in liver.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Bile Ducts/physiology
- Biopsy
- Cells, Cultured
- Endothelium/cytology
- Endothelium/immunology
- Endothelium/pathology
- Female
- Gene Expression Regulation
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/pathology
- Humans
- Liver/cytology
- Liver/immunology
- Liver/pathology
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/immunology
- Liver Cirrhosis, Experimental/pathology
- Male
- Middle Aged
- Polymerase Chain Reaction
- Protein Serine-Threonine Kinases
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Reference Values
- Transcription, Genetic
- Transforming Growth Factor beta/genetics
Collapse
Affiliation(s)
- D Roulot
- Liver Center Laboratory, San Francisco General Hospital, San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|
82
|
Zhao Y. Transforming growth factor-beta (TGF-beta) type I and type II receptors are both required for TGF-beta-mediated extracellular matrix production in lung fibroblasts. Mol Cell Endocrinol 1999; 150:91-7. [PMID: 10411303 DOI: 10.1016/s0303-7207(99)00021-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transforming growth factor-beta (TGF-beta) regulates a variety of cellular activities including cell growth, differentiation and extracellular matrix production. The TGF-beta type I and type II serine/threonine kinase receptors (TbetaRI and TbetaRII) have been identified as signal-transducing TGF-beta receptors. This study was undertaken to examine the role of the type I and type II receptors in TGF-beta-induced extracellular matrix production of lung fibroblasts. We constructed expression plasmids containing truncated derivatives of TbetaRI and TbetaRII that lacked the cytoplasmic serine/threonine kinase domain (TbetaRI deltaK and TbetaRII deltaK), and transfected them into lung fibroblasts. TbetaRII deltaK expressed by lung fibroblasts was able to bind 125I-TGF-beta1, whereas TbetaRI deltaK was unable to bind ligand when expressed alone. Co-expression with TbetaRII was required for binding and cross-linking of TGF-beta1 to TbetaRI deltaK. Lung fibroblasts upregulate tenascin and fibronectin production when treated with TGF-beta1. The kinase-defective deletions of both TbetaRI and TbetaRII were dominant-acting inhibitors of TGF-beta signal transduction. Expression of either TbetaRI deltaK or TbetaRII deltaK alone was sufficient to block TGF-beta-induced tenascin and fibronectin production of lung fibroblasts. The results indicate that both TbetaRI and TbetaRII were required for TGF-beta signaling in regulation of extracellular matrix production by lung fibroblasts.
Collapse
Affiliation(s)
- Y Zhao
- Department of Medicine, Duke University Medical Center and Research Service, Durham Veterans Affairs Medical Center, NC 27710, USA.
| |
Collapse
|
83
|
Chin BY, Petrache I, Choi AM, Choi ME. Transforming growth factor beta1 rescues serum deprivation-induced apoptosis via the mitogen-activated protein kinase (MAPK) pathway in macrophages. J Biol Chem 1999; 274:11362-8. [PMID: 10196228 DOI: 10.1074/jbc.274.16.11362] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell death and cell survival are central components of normal development and pathologic states. Transforming growth factor beta1 (TGF-beta1) is a pleiotropic cytokine that regulates both cell growth and cell death. To better understand the molecular mechanisms that control cell death or survival, we investigated the role of TGF-beta1 in the apoptotic process by dominant-negative inhibition of both TGF-beta1 and mitogen-activated protein kinase (MAPK) signaling pathways. Murine macrophages (RAW 264.7) undergo apoptosis following serum deprivation, as determined by DNA laddering assay. However, apoptosis is prevented in serum-deprived macrophages by the presence of exogenous TGF-beta1. Using stably transfected RAW 264.7 cells with the kinase-deleted dominant-negative mutant of TbetaR-II (TbetaR-IIM) cDNA, we demonstrate that this protective effect by TGF-beta1 is completely abrogated. To determine the downstream signaling pathways, we examined TGF-beta1 effects on the MAPK pathway. We show that TGF-beta1 induces the extracellular signal-regulated kinase (ERK) activity in a time-dependent manner up to 4 h after stimulation. Furthermore, TGF-beta1 does not rescue serum deprivation-induced apoptosis in RAW 264.7 cells transfected with a dominant-negative mutant MAPK (ERK2) cDNA or in wild type RAW 264.7 cells in the presence of the MAPK kinase (MEK1) inhibitor. Taken together, our data demonstrate for the first time that TGF-beta1 is an inhibitor of apoptosis in cultured macrophages and may serve as a cell survival factor via TbetaR-II-mediated signaling and downstream intracellular MAPK signaling pathway.
Collapse
Affiliation(s)
- B Y Chin
- Toxicological Sciences, Environmental Health Sciences, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
84
|
Joseph H, Gorska AE, Sohn P, Moses HL, Serra R. Overexpression of a kinase-deficient transforming growth factor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. Mol Biol Cell 1999; 10:1221-34. [PMID: 10198068 PMCID: PMC25256 DOI: 10.1091/mbc.10.4.1221] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily signal through heteromeric type I and type II serine/threonine kinase receptors. Transgenic mice that overexpress a dominant-negative mutation of the TGF-beta type II receptor (DNIIR) under the control of a metallothionein-derived promoter (MT-DNIIR) were used to determine the role of endogenous TGF-betas in the developing mammary gland. The expression of the dominant-negative receptor was induced with zinc and was primarily localized to the stroma underlying the ductal epithelium in the mammary glands of virgin transgenic mice from two separate mouse lines. In MT-DNIIR virgin females treated with zinc, there was an increase in lateral branching of the ductal epithelium. We tested the hypothesis that expression of the dominant-negative receptor may alter expression of genes that are expressed in the stroma and regulated by TGF-betas, potentially resulting in the increased lateral branching seen in the MT-DNIIR mammary glands. The expression of hepatocyte growth factor mRNA was increased in mammary glands from transgenic animals relative to the wild-type controls, suggesting that this factor may play a role in TGF-beta-mediated regulation of lateral branching. Loss of responsiveness to TGF-betas in the mammary stroma resulted in increased branching in mammary epithelium, suggesting that TGF-betas play an important role in the stromal-epithelial interactions required for branching morphogenesis.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Estrus
- Female
- Fibroblasts/cytology
- Fibroblasts/physiology
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/physiology
- Metallothionein/genetics
- Mice
- Mice, Transgenic
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases
- Receptor Protein-Tyrosine Kinases/deficiency
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/physiology
- Recombinant Fusion Proteins/biosynthesis
- Stromal Cells/cytology
- Stromal Cells/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- H Joseph
- Department of Cell Biology and The Vanderbilt Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
85
|
Chu TY, Lai JS, Shen CY, Liu HS, Chao CF. Frequent aberration of the transforming growth factor-beta receptor II gene in cell lines but no apparent mutation in pre-invasive and invasive carcinomas of the uterine cervix. Int J Cancer 1999; 80:506-10. [PMID: 9935148 DOI: 10.1002/(sici)1097-0215(19990209)80:4<506::aid-ijc4>3.0.co;2-e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The type II transforming growth factor-beta (TGF-beta) receptor (RII) gene located at 3p22 plays an important role in regulating growth and differentiation of epithelium, including that of the uterine cervix. Loss-of-function mutations of RII have frequently been found in gastrointestinal cancers, with a replication-error (RER) phenotype characterized by the presence of microsatellite instability (MI). In this study, genomic PCR, SSCP and DNA sequencing were conducted to investigate the coding sequences of the RII gene in cell lines (n = 5) and tissues (n = 15) of squamous carcinomas of the uterine cervix. Intragenic deletions were noted in 2 of 5 cervical-cancer cell lines (ME180 and HeLa cells). However, no mutation, other than DNA polymorphisms, was found in 15 cervical cancers with either alleleic loss at 3p22 (n = 11) or MI (n = 4). Further analysis of squamous intraepithelial lesions (SIL) with (n = 12) or without (n = 4) MI for the (A)10 change, a prototypic mutation found in over 90% of RER-positive colon cancers, also showed no aberration. Our study concludes that the RII gene is frequently disrupted in cervical-cancer cell lines, but is rarely mutated in CC and SIL tissues, including those showing MI or alleleic loss at 3p22. The underlined mechanism of genomic instability in CC and SIL may thus differ from that of colorectal cancer. The allelic loss at 3p22-24 in CC does not involve the coding sequence of the RII gene. The non-coding sequence of RII or an unidentified gene may be responsible for it.
Collapse
Affiliation(s)
- T Y Chu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
86
|
Kim YS, Yi Y, Choi SG, Kim SJ. Development of TGF-beta resistance during malignant progression. Arch Pharm Res 1999; 22:1-8. [PMID: 10071951 DOI: 10.1007/bf02976427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is the prototypical multifunctional cytokine, participating in the regulation of vital cellular activities such as proliferation and differentiation as well as a number of basic physiological functions. The effects of TGF-beta are critically dependent on the expression and distribution of a family of TGF-beta receptors, the TGF-beta types I, II, and III. It is now known that a wide variety of human pathology can be caused by aberrant expression and function of these receptors. The coding sequence of the type II receptor (RII) appears to render it uniquely susceptible to DNA replication errors in the course of normal cell division. By virtue of its key role in the regulation of cell proliferation, TGF-beta RII should be considered as a tumor suppressor gene. High levels of mutation in the TGF-beta RII gene have been observed in a wide range of primarily epithelial malignancies, including colon and gastric cancer. It appears likely that mutation of the TGF-beta RII gene may be a very critical step in the pathway of carcinogenesis.
Collapse
Affiliation(s)
- Y S Kim
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892-5055, USA
| | | | | | | |
Collapse
|
87
|
Abstract
The pathogenesis of both ulcerative colitis and Crohn's disease is unknown but these forms of inflammatory bowel disease (IBD) may be associated with an inability of the intestinal mucosa to protect itself from luminal challenges and/or inappropriate repair following intestinal injury. Numerous cell populations regulate these broad processes through the expression of a complex array of peptides and other agents. Growth factors can be distinguished by their actions regulating cell proliferation. These factors also mediate processes such as extracellular matrix formation, cell migration and differentiation, immune regulation, and tissue remodeling. Several families of growth factors may play an important role in IBD including: epidermal growth factor family (EGF) [transforming growth factor alpha (TGF alpha), EGF itself, and others], the transforming growth factor beta (TGF beta) super family, insulin-like growth factors (IGF), fibroblast growth factors (FGF), hepatocyte growth factor (HGF), trefoil factors, platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF) and others. Collectively these families may determine susceptibility of IBD mucosa to injury and facilitate tissue repair.
Collapse
Affiliation(s)
- P L Beck
- Department of Medicine, Massachusetts General Hospital 02114, USA
| | | |
Collapse
|
88
|
Abstract
The pathogenesis of both ulcerative colitis and Crohn's disease is unknown but these forms of inflammatory bowel disease (IBD) may be associated with an inability of the intestinal mucosa to protect itself from luminal challenges and/or inappropriate repair following intestinal injury. Numerous cell populations regulate these broad processes through the expression of a complex array of peptides and other agents. Growth factors can be distinguished by their actions regulating cell proliferation. These factors also mediate processes such as extracellular matrix formation, cell migration and differentiation, immune regulation, and tissue remodeling. Several families of growth factors may play an important role in IBD including: epidermal growth factor family (EGF) [transforming growth factor alpha (TGF alpha), EGF itself, and others], the transforming growth factor beta (TGF beta) super family, insulin-like growth factors (IGF), fibroblast growth factors (FGF), hepatocyte growth factor (HGF), trefoil factors, platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF) and others. Collectively these families may determine susceptibility of IBD mucosa to injury and facilitate tissue repair.
Collapse
Affiliation(s)
- P L Beck
- Department of Medicine, Massachusetts General Hospital 02114, USA
| | | |
Collapse
|
89
|
Sheng H, Shao J, O'Mahony CA, Lamps L, Albo D, Isakson PC, Berger DH, DuBois RN, Beauchamp RD. Transformation of intestinal epithelial cells by chronic TGF-beta1 treatment results in downregulation of the type II TGF-beta receptor and induction of cyclooxygenase-2. Oncogene 1999; 18:855-67. [PMID: 10023661 DOI: 10.1038/sj.onc.1202397] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The precise role of TGF-beta in colorectal carcinogenesis is not clear. The purpose of this study was to determine the phenotypic alterations caused by chronic exposure to TGF-beta in non-transformed intestinal epithelial (RIE-1) cells. Growth of RIE-1 cells was inhibited by >75% following TGF-beta1 treatment for 7 days, after which the cells resumed a normal growth despite the presence of TGF-beta1. These 'TGF-beta-resistant' cells (RIE-Tr) were continuously exposed to TGF-beta for >50 days. Unlike the parental RIE cells, RIE-Tr cells lost contact inhibition, formed foci in culture, grew in soft agarose. RIE-Tr cells demonstrated TGF-beta-dependent invasive potential in an in vitro assay and were resistant to Matrigel and Na-butyrate-induced apoptosis. The RIE-Tr cells were also tumorigenic in nude mice. The transformed phenotype of RIE-Tr cells was associated with a 95% decrease in the level of the type II TGF-beta receptor (TbetaRII) protein, a 40-fold increase in cyclooxygenase-2 (COX-2) protein, and 5.9-fold increase in the production of prostacyclin. Most RIE-Tr subclones that expressed low levels of TbetaRII and high levels of COX-2 were tumorigenic. Those subclones that express abundant TbetaRII and low levels of COX-2 were not tumorigenic in nude mice. A selective COX-2 inhibitor inhibited RIE-Tr cell growth in culture and tumor growth in nude mice. The reduced expression of TbetaRII, increased expression of COX-2, and the ability to form colonies in Matrigel were all reversible upon withdrawal of exogenous TGF-beta1 for the RIE-Tr cells.
Collapse
Affiliation(s)
- H Sheng
- Department of Surgery, The Vanderbilt Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massagué J, Mundy GR, Guise TA. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 1999; 103:197-206. [PMID: 9916131 PMCID: PMC407876 DOI: 10.1172/jci3523] [Citation(s) in RCA: 722] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Breast cancer frequently metastasizes to the skeleton, and the associated bone destruction is mediated by the osteoclast. Growth factors, including transforming growth factor-beta (TGF-beta), released from bone matrix by the action of osteoclasts, may foster metastatic growth. Because TGF-beta inhibits growth of epithelial cells, and carcinoma cells are often defective in TGF-beta responses, any role of TGF-beta in metastasis is likely to be mediated by effects on the surrounding normal tissue. However, we present evidence that TGF-beta promotes breast cancer metastasis by acting directly on the tumor cells. Expression of a dominant-negative mutant (TbetaRIIDeltacyt) of the TGF-beta type II receptor rendered the human breast cancer cell line MDA-MB-231 unresponsive to TGF-beta. In a murine model of bone metastases, expression of TbetaRIIDeltacyt by MDA-MB-231 resulted in less bone destruction, less tumor with fewer associated osteoclasts, and prolonged survival compared with controls. Reversal of the dominant-negative signaling blockade by expression of a constitutively active TGF-beta type I receptor in the breast cancer cells increased tumor production of parathyroid hormone-related protein (PTHrP), enhanced osteolytic bone metastasis, and decreased survival. Transfection of MDA-MB-231 cells that expressed the dominant-negative TbetaRIIDeltacyt with the cDNA for PTHrP resulted in constitutive tumor PTHrP production and accelerated bone metastases. These data demonstrate an important role for TGF-beta in the development of breast cancer metastasis to bone, via the TGF-beta receptor-mediated signaling pathway in tumor cells, and suggest that the bone destruction is mediated by PTHrP.
Collapse
Affiliation(s)
- J J Yin
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7877, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
The t(3;21) Fusion Product, AML1/Evi-1, Interacts With Smad3 and Blocks Transforming Growth Factor-β–Mediated Growth Inhibition of Myeloid Cells. Blood 1998. [DOI: 10.1182/blood.v92.11.4003.423a56_4003_4012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The t(3;21)(q26;q22) chromosomal translocation associated with blastic crisis of chronic myelogenous leukemia results in the formation of the AML1/Evi-1 chimeric protein, which is thought to play a causative role in leukemic transformation of hematopoietic cells. Here we show that AML1/Evi-1 represses growth-inhibitory signaling by transforming growth factor-β (TGF-β) in 32Dcl3 myeloid cells. The activity of AML1/Evi-1 to repress TGF-β signaling depends on the two separate regions of the Evi-1 portion, one of which is the first zinc finger domain. AML1/Evi-1 interacts with Smad3, an intracellular mediator of TGF-β signaling, through the first zinc finger domain, and represses the Smad3 activity, as Evi-1 does. We also show that suppression of endogenous Evi-1 in leukemic cells carrying inv(3) restores TGF-β responsiveness. Taken together, AML1/Evi-1 acts as an inhibitor of TGF-β signaling by interfering with Smad3 through the Evi-1 portion, and both AML1/Evi-1 and Evi-1 repress TGF-β–mediated growth suppression in hematopoietic cells. Thus, AML1/Evi-1 may contribute to leukemogenesis by specifically blocking growth-inhibitory signaling of TGF-β in the t(3;21) leukemia.
Collapse
|
92
|
The t(3;21) Fusion Product, AML1/Evi-1, Interacts With Smad3 and Blocks Transforming Growth Factor-β–Mediated Growth Inhibition of Myeloid Cells. Blood 1998. [DOI: 10.1182/blood.v92.11.4003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AbstractThe t(3;21)(q26;q22) chromosomal translocation associated with blastic crisis of chronic myelogenous leukemia results in the formation of the AML1/Evi-1 chimeric protein, which is thought to play a causative role in leukemic transformation of hematopoietic cells. Here we show that AML1/Evi-1 represses growth-inhibitory signaling by transforming growth factor-β (TGF-β) in 32Dcl3 myeloid cells. The activity of AML1/Evi-1 to repress TGF-β signaling depends on the two separate regions of the Evi-1 portion, one of which is the first zinc finger domain. AML1/Evi-1 interacts with Smad3, an intracellular mediator of TGF-β signaling, through the first zinc finger domain, and represses the Smad3 activity, as Evi-1 does. We also show that suppression of endogenous Evi-1 in leukemic cells carrying inv(3) restores TGF-β responsiveness. Taken together, AML1/Evi-1 acts as an inhibitor of TGF-β signaling by interfering with Smad3 through the Evi-1 portion, and both AML1/Evi-1 and Evi-1 repress TGF-β–mediated growth suppression in hematopoietic cells. Thus, AML1/Evi-1 may contribute to leukemogenesis by specifically blocking growth-inhibitory signaling of TGF-β in the t(3;21) leukemia.
Collapse
|
93
|
Choy L, Derynck R. The type II transforming growth factor (TGF)-beta receptor-interacting protein TRIP-1 acts as a modulator of the TGF-beta response. J Biol Chem 1998; 273:31455-62. [PMID: 9813058 DOI: 10.1074/jbc.273.47.31455] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transforming growth factor-beta (TGF-beta) receptor interacting protein TRIP-1 was originally identified as a WD40 repeat-containing protein that has the ability to associate with the TGF-beta type II receptor and is phosphorylated by it (1). However, its function was not known. We now show that TRIP-1 expression represses the ability of TGF-beta to induce transcription from the plasminogen activator inhibitor-1 promoter, a common reporter of the TGF-beta-induced gene expression response, but does not affect the ability of TGF-beta to inhibit cyclin A transcription. TRIP-1 can also inhibit the plasminogen activator inhibitor-1 expression induced by Smads as well as activated TGF-beta type I receptors. Its inhibitory effect is exerted by a combination of receptor-dependent and receptor-independent mechanisms. Deletion mutational analysis revealed that two distinct regions, which do not contain recognizable WD40 repeats, are required for the ability of TRIP-1 to inhibit the gene expression response. Expression of other segments of TRIP-1 increased the TGF-beta-induced gene expression response and therefore may exert a dominant negative phenotype. We conclude that TRIP-1 acts as a modulator of the TGF-beta response.
Collapse
Affiliation(s)
- L Choy
- Departments of Growth and Development, and Anatomy, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, California 94143-0640, USA
| | | |
Collapse
|
94
|
Kanzaki T, Morisaki N, Shiina R, Saito Y. Role of transforming growth factor-beta pathway in the mechanism of wound healing by saponin from Ginseng Radix rubra. Br J Pharmacol 1998; 125:255-62. [PMID: 9786496 PMCID: PMC1565613 DOI: 10.1038/sj.bjp.0702052] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The effects of saponin from Ginseng Radix rubra on extracellular matrix metabolism, the activation and synthesis of TGF-beta1, and the modification of TGF-beta receptor in fibroblasts were examined to elucidate the contribution of the TGF-beta pathway to the mechanism of wound healing by saponin. 2. Fibronectin synthesis was analysed by the immunoprecipitation method. Activation and synthesis of TGF-beta1 were measured by ELISA. The expressions of TGF-beta receptors in fibroblasts were examined at protein and mRNA levels by the cross-linking method and Northern blot analysis, respectively. 3. The fibronectin synthesis increased 2.3- and 3.9-fold at fibroblasts treated with 1 and 10 microg ml(-1) of saponin, respectively, compared with that in non-treated cells. Fibronectin synthesis stimulated with 10 microg ml(-1) of saponin was inhibited with 69% by 5 microg ml(-1) of an anti-TGF-beta1 antibody. mRNA of TGF-beta type I receptor increased 4.8- and 4.4-fold at fibroblasts treated with 1 and 10 microg ml(-1) of saponin, respectively, and that of TGF-beta type II receptor also increased 3.4- and 3.2-fold at fibroblasts treated with 1 and 10 microg ml(-1) of saponin, respectively. The significant increases of TGF-beta type I and II receptors and of fibronectin synthesis were observed at the same concentrations of saponin. TGF-beta content increased 1.74- and 1.87-fold at conditioned medium of fibroblasts treated with 100 and 250 microg ml(-1) of saponin, respectively, higher concentrations than those which accelerated fibronectin synthesis. Furthermore, the active TGF-beta content was below 10% of total TGF-beta at each concentration of saponin. 4. These results indicate that saponin stimulates fibronectin synthesis through the changes of TGF-beta receptor expressions in fibroblasts.
Collapse
Affiliation(s)
- T Kanzaki
- The Second Department of Internal Medicine, School of Medicine, Chiba University, Chiba City, Japan
| | | | | | | |
Collapse
|
95
|
Affiliation(s)
- T Sakou
- Department of Orthopaedic Surgery, Faculty of Medicine, Kagoshima University, Japan.
| |
Collapse
|
96
|
Affiliation(s)
- T A Guise
- Department of Medicine, University of Texas Health Science Center at San Antonio 78284-7877, USA.
| | | |
Collapse
|
97
|
Abstract
The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms. Work over the past few years has led to the elucidation of a TGF-beta signal transduction network. This network involves receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins, which move into the nucleus, where they activate target gene transcription in association with DNA-binding partners. Distinct repertoires of receptors, SMAD proteins, and DNA-binding partners seemingly underlie, in a cell-specific manner, the multifunctional nature of TGF-beta and related factors. Mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
Collapse
Affiliation(s)
- J Massagué
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| |
Collapse
|
98
|
Hoodless PA, Wrana JL. Mechanism and function of signaling by the TGF beta superfamily. Curr Top Microbiol Immunol 1997; 228:235-72. [PMID: 9401209 DOI: 10.1007/978-3-642-80481-6_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- P A Hoodless
- Program in Developmental Biology, Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
99
|
Vellucci VF, Reiss M. Cloning and genomic organization of the human transforming growth factor-beta type I receptor gene. Genomics 1997; 46:278-83. [PMID: 9417915 DOI: 10.1006/geno.1997.5023] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transforming growth factor-beta (TGF beta) regulates cell cycle progression by a unique signaling mechanism that involves its binding to the type II (T beta R-II) TGF beta receptor and activation of type I (T beta R-I). Both are transmembrane serine-threonine receptor kinases. As various types of human tumor cells are often refractory to TGF beta-mediated cell cycle arrest, it is likely that the T beta R-I receptor is inactivated in many of these cases. We determined the intron-exon organization of the TGFBR1 gene. We report here that this gene is approximately 31 kb in length and consists of nine exons. The organization of the segment of the TGFBR1 gene that encodes the C-terminal portion of the serine-threonine kinase domain appears to be highly conserved between members of the R-I gene family. This information should facilitate and expedite the structural analysis of TGFBR1 in human tumors and possibly other disease states.
Collapse
Affiliation(s)
- V F Vellucci
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8032, USA
| | | |
Collapse
|
100
|
Affiliation(s)
- R Derynck
- Department of Growth and Development, University of California at San Francisco, 94143-0640, USA.
| | | |
Collapse
|