51
|
Swiatnicki MR, Andrechek ER. How to Choose a Mouse Model of Breast Cancer, a Genomic Perspective. J Mammary Gland Biol Neoplasia 2019; 24:231-243. [PMID: 31227983 DOI: 10.1007/s10911-019-09433-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Human breast cancer is a heterogeneous disease with numerous subtypes that have been defined through immunohistological, histological, and gene expression patterns. The diversity of breast cancer has made the study of its various underlying causes complex. To facilitate the examination of particular facets of breast cancer, mouse models have been generated, ranging from carcinogen induced models to genetically engineered mice. While mouse models have been generated to mimic the initiating event, including p53 loss, BRCA loss, or overexpression of HER2 / Neu / erbB2, other genomic events are often not well characterized. However, these secondary genetic events are often critical to the mouse tumor evolution, subtype, and outcome, just as they are in human breast cancer. As such, these other genomic events are a critical component of what models are chosen to study specific subtypes of human breast cancer. Here we review the genomic analyses that have been completed for various genetically engineered mouse models, how they compare to human breast cancer, and detail how this information can be used in choosing a mouse model for analysis.
Collapse
Affiliation(s)
- Matthew R Swiatnicki
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
52
|
Wigton EJ, DeFranco AL, Ansel KM. Antigen Complexed with a TLR9 Agonist Bolsters c-Myc and mTORC1 Activity in Germinal Center B Lymphocytes. Immunohorizons 2019; 3:389-401. [PMID: 31427364 PMCID: PMC6738343 DOI: 10.4049/immunohorizons.1900030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023] Open
Abstract
The germinal center (GC) is the anatomical site where humoral immunity evolves. B cells undergo cycles of proliferation and selection to produce high-affinity Abs against Ag. Direct linkage of a TLR9 agonist (CpG) to a T-dependent Ag increases the number of GC B cells. We used a T-dependent Ag complexed with CpG and a genetic model for ablating the TLR9 signaling adaptor molecule MyD88 specifically in B cells (B-MyD88- mice) together with transcriptomics to determine how this innate pathway positively regulates the GC. GC B cells from complex Ag-immunized B-MyD88- mice were defective in inducing gene expression signatures downstream of c-Myc and mTORC1. In agreement with the latter gene signature, ribosomal protein S6 phosphorylation was increased in GC B cells from wild-type mice compared with B-MyD88- mice. However, GC B cell expression of a c-Myc protein reporter was enhanced by CpG attached to Ag in both wild-type and B-MyD88- mice, indicating a B cell-extrinsic effect on c-Myc protein expression combined with a B cell-intrinsic enhancement of gene expression downstream of c-Myc. Both mTORC1 activity and c-Myc are directly induced by T cell help, indicating that TLR9 signaling in GC B cells either enhances their access to T cell help or directly influences these pathways to further enhance the effect of T cell help. Taken together, these findings indicate that TLR9 signaling in the GC could provide a surrogate prosurvival stimulus, "TLR help," thus lowering the threshold for selection and increasing the magnitude of the GC response.
Collapse
Affiliation(s)
- Eric J Wigton
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143; and.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| | - Anthony L DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| | - K Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143; and .,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
53
|
Lourenco C, Kalkat M, Houlahan KE, De Melo J, Longo J, Done SJ, Boutros PC, Penn LZ. Modelling the MYC-driven normal-to-tumour switch in breast cancer. Dis Model Mech 2019; 12:12/7/dmm038083. [PMID: 31350286 PMCID: PMC6679384 DOI: 10.1242/dmm.038083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
The potent MYC oncoprotein is deregulated in many human cancers, including breast carcinoma, and is associated with aggressive disease. To understand the mechanisms and vulnerabilities of MYC-driven breast cancer, we have generated an in vivo model that mimics human disease in response to MYC deregulation. MCF10A cells ectopically expressing a common breast cancer mutation in the phosphoinositide 3 kinase pathway (PIK3CAH1047R) led to the development of organised acinar structures in mice. Expressing both PIK3CAH1047R and deregulated MYC led to the development of invasive ductal carcinoma. Therefore, the deregulation of MYC expression in this setting creates a MYC-dependent normal-to-tumour switch that can be measured in vivo. These MYC-driven tumours exhibit classic hallmarks of human breast cancer at both the pathological and molecular level. Moreover, tumour growth is dependent upon sustained deregulated MYC expression, further demonstrating addiction to this potent oncogene and regulator of gene transcription. We therefore provide a MYC-dependent model of breast cancer, which can be used to assay invivo tumour signalling pathways, proliferation and transformation from normal breast acini to invasive breast carcinoma. We anticipate that this novel MYC-driven transformation model will be a useful research tool to better understand the oncogenic function of MYC and for the identification of therapeutic vulnerabilities. Summary: We present a MYC-driven transformation model of breast cancer that recapitulates the disease in vivo and which can be used to identify MYC-dependent cancer vulnerabilities.
Collapse
Affiliation(s)
- Corey Lourenco
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Manpreet Kalkat
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Kathleen E Houlahan
- Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada.,Ontario Institute for Cancer Research, 661 University Ave, Suite 510, Toronto, ON M5G 0A3, Canada
| | - Jason De Melo
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3, Canada
| | - Joseph Longo
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Susan J Done
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada.,Ontario Institute for Cancer Research, 661 University Ave, Suite 510, Toronto, ON M5G 0A3, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3, Canada .,Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
54
|
Chen Y, Sun XX, Sears RC, Dai MS. Writing and erasing MYC ubiquitination and SUMOylation. Genes Dis 2019; 6:359-371. [PMID: 31832515 PMCID: PMC6889025 DOI: 10.1016/j.gendis.2019.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor c-MYC (MYC thereafter) controls diverse transcription programs and plays a key role in the development of many human cancers. Cells develop multiple mechanisms to ensure that MYC levels and activity are precisely controlled in normal physiological context. As a short half-lived protein, MYC protein levels are tightly regulated by the ubiquitin proteasome system. Over a dozen of ubiquitin ligases have been found to ubiquitinate MYC whereas a number of deubiquitinating enzymes counteract this process. Recent studies show that SUMOylation and deSUMOylation can also regulate MYC protein stability and activity. Interestingly, evidence suggests an intriguing crosstalk between MYC ubiquitination and SUMOylation. Deregulation of the MYC ubiquitination-SUMOylation regulatory network may contribute to tumorigenesis. This review is intended to provide the current understanding of the complex regulation of the MYC biology by dynamic ubiquitination and SUMOylation and their crosstalk.
Collapse
Affiliation(s)
- Yingxiao Chen
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Xiao-Xin Sun
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Rosalie C Sears
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
55
|
Hashiguchi T, Bruss N, Best S, Lam V, Danilova O, Paiva CJ, Wolf J, Gilbert EW, Okada CY, Kaur P, Drew L, Cidado J, Hurlin P, Danilov AV. Cyclin-Dependent Kinase-9 Is a Therapeutic Target in MYC-Expressing Diffuse Large B-Cell Lymphoma. Mol Cancer Ther 2019; 18:1520-1532. [DOI: 10.1158/1535-7163.mct-18-1023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/10/2018] [Accepted: 06/20/2019] [Indexed: 11/16/2022]
|
56
|
Yan Z, Ohuchida K, Zheng B, Okumura T, Takesue S, Nakayama H, Iwamoto C, Shindo K, Moriyama T, Nakata K, Miyasaka Y, Ohtsuka T, Mizumoto K, Oda Y, Hashizume M, Nakamura M. CD110 promotes pancreatic cancer progression and its expression is correlated with poor prognosis. J Cancer Res Clin Oncol 2019; 145:1147-1164. [PMID: 30770989 DOI: 10.1007/s00432-019-02860-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/08/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE This study aimed at investigating the function and significance of CD110 expression in pancreatic cancer. METHODS We performed immunohistochemical staining for CD110 expression in tumor samples from 86 patients with pancreatic cancer. We evaluated clinical outcomes and other clinicopathological factors to determine the significance of CD110 on survival and liver metastasis. We examine thrombopoietin-CD110 signaling in cancer cell extravasation in vitro and in vivo. We investigated the effects of CD110 knockdown on liver metastasis in a splenic xenograft mouse model. RESULTS CD110 expression in cancer cells was associated with low-histological-grade invasive ductal carcinoma, and patients with high CD110 expression had poorer prognosis (P = 0.0003). High CD110 expression was an independent predictor of liver metastasis (P = 0.0422). Knockdown of CD110 expression significantly attenuated cell migration and invasion. Treatment with thrombopoietin promoted pancreatic cancer cell extravasation. In the presence of thrombopoietin, CD110 increased cell viability through the activation of the ERK-MYC signaling pathway. Knockdown of CD110 expression inhibited liver metastases in the mouse model. CONCLUSIONS CD110 promotes pancreatic cancer progression and it may serve as a predictive factor for liver metastasis.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Biomarkers, Tumor
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Survival
- Disease Models, Animal
- Disease Progression
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Liver Neoplasms/secondary
- Male
- Mice
- Middle Aged
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Prognosis
- Proto-Oncogene Proteins c-myc/metabolism
- RNA Interference
- RNA, Small Interfering/genetics
- Receptors, Thrombopoietin/genetics
- Receptors, Thrombopoietin/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zilong Yan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan.
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Biao Zheng
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
- Department of General Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Takashi Okumura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Shin Takesue
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Hiromichi Nakayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Chika Iwamoto
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Yoshihiro Miyasaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| | | | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Hashizume
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582, Japan
| |
Collapse
|
57
|
Wang J, Merino DM, Light N, Murphy BL, Wang YD, Guo X, Hodges AP, Chau LQ, Liu KW, Dhall G, Asgharzadeh S, Kiehna EN, Shirey RJ, Janda KD, Taylor MD, Malkin D, Ellison DW, VandenBerg SR, Eberhart CG, Sears RC, Roussel MF, Gilbertson RJ, Wechsler-Reya RJ. Myc and Loss of p53 Cooperate to Drive Formation of Choroid Plexus Carcinoma. Cancer Res 2019; 79:2208-2219. [PMID: 30885981 PMCID: PMC6497574 DOI: 10.1158/0008-5472.can-18-2565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/05/2019] [Accepted: 03/13/2019] [Indexed: 02/03/2023]
Abstract
Choroid plexus carcinoma (CPC) is a rare brain tumor that occurs most commonly in very young children and has a dismal prognosis despite intensive therapy. Improved outcomes for patients with CPC depend on a deeper understanding of the mechanisms underlying the disease. Here we developed transgenic models of CPCs by activating the Myc oncogene and deleting the Trp53 tumor suppressor gene in murine neural stem cells or progenitors. Murine CPC resembled their human counterparts at a histologic level, and like the hypodiploid subset of human CPC, exhibited multiple whole-chromosome losses, particularly of chromosomes 8, 12, and 19. Analysis of murine and human CPC gene expression profiles and copy number changes revealed altered expression of genes involved in cell cycle, DNA damage response, and cilium function. High-throughput drug screening identified small molecule inhibitors that decreased the viability of CPC. These models will be valuable tools for understanding the biology of choroid plexus tumors and for testing novel approaches to therapy. SIGNIFICANCE: This study describes new mouse models of choroid plexus carcinoma and uses them to investigate the biology and therapeutic responsiveness of this highly malignant pediatric brain tumor.
Collapse
Affiliation(s)
- Jun Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Diana M Merino
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicholas Light
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Brian L Murphy
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaohui Guo
- Bioinformatics Core Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Andrew P Hodges
- Bioinformatics Core Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Lianne Q Chau
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Kun-Wei Liu
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Girish Dhall
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles
| | - Shahab Asgharzadeh
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles
| | - Erin N Kiehna
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles
| | - Ryan J Shirey
- Department of Chemistry, The Scripps Research Institute, La Jolla, California
- Department of Immunology, The Scripps Research Institute, La Jolla, California
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, California
- Department of Immunology, The Scripps Research Institute, La Jolla, California
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Michael D Taylor
- Division of Neurosurgery and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David Malkin
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott R VandenBerg
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rosalie C Sears
- Molecular and Medical Genetics Department, Oregon Health and Sciences University, Portland, Oregon
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Centre, CRUK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
58
|
Ostermann AL, Wunderlich CM, Schneiders L, Vogt MC, Woeste MA, Belgardt BF, Niessen CM, Martiny B, Schauss AC, Frommolt P, Nikolaev A, Hövelmeyer N, Sears RC, Koch PJ, Günzel D, Brüning JC, Wunderlich FT. Intestinal insulin/IGF1 signalling through FoxO1 regulates epithelial integrity and susceptibility to colon cancer. Nat Metab 2019; 1:371-389. [PMID: 32694718 DOI: 10.1038/s42255-019-0037-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/24/2019] [Indexed: 12/30/2022]
Abstract
Obesity promotes the development of insulin resistance and increases the incidence of colitis-associated cancer (CAC), but whether a blunted insulin action specifically in intestinal epithelial cells (IECs) affects CAC is unknown. Here, we show that obesity impairs insulin sensitivity in IECs and that mice with IEC-specific inactivation of the insulin and IGF1 receptors exhibit enhanced CAC development as a consequence of impaired restoration of gut barrier function. Blunted insulin signalling retains the transcription factor FOXO1 in the nucleus to inhibit expression of Dsc3, thereby impairing desmosome formation and epithelial integrity. Both IEC-specific nuclear FoxO1ADA expression and IEC-specific Dsc3 inactivation recapitulate the impaired intestinal integrity and increased CAC burden. Spontaneous colonic tumour formation and compromised intestinal integrity are also observed upon IEC-specific coexpression of FoxO1ADA and a stable Myc variant, thus suggesting a molecular mechanism through which impaired insulin action and nuclear FOXO1 in IECs promotes CAC.
Collapse
Affiliation(s)
- A L Ostermann
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
| | - C M Wunderlich
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - L Schneiders
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - M C Vogt
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - M A Woeste
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - B F Belgardt
- Max Planck Institute for Metabolism Research, Cologne, Germany
- German Diabetes Center (DDZ), Düsseldorf, Germany
| | - C M Niessen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - B Martiny
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - A C Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - P Frommolt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - A Nikolaev
- Institute for Molecular Medicine, University Hospital Mainz, Mainz, Germany
| | - N Hövelmeyer
- Institute for Molecular Medicine, University Hospital Mainz, Mainz, Germany
| | - R C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, OR, USA
| | - P J Koch
- Department of Dermatology, Charles C. Gates Regenerative Medicine and Stem Cell Biology Program, University of Colorado Denver, Aurora, CO, USA
| | - D Günzel
- Institute for Clinical Physiology, Charité, Berlin, Germany
| | - J C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - F T Wunderlich
- Max Planck Institute for Metabolism Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany.
| |
Collapse
|
59
|
Wu L, Yi B, Wei S, Rao D, He Y, Naik G, Bae S, Liu XM, Yang WH, Sonpavde G, Liu R, Wang L. Loss of FOXP3 and TSC1 Accelerates Prostate Cancer Progression through Synergistic Transcriptional and Posttranslational Regulation of c-MYC. Cancer Res 2019; 79:1413-1425. [PMID: 30733194 DOI: 10.1158/0008-5472.can-18-2049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/07/2018] [Accepted: 02/04/2019] [Indexed: 01/05/2023]
Abstract
Although c-MYC and mTOR are frequently activated proteins in prostate cancer, any interaction between the two is largely untested. Here, we characterize the functional cross-talk between FOXP3-c-MYC and TSC1-mTOR signaling during tumor progression. Deletion of Tsc1 in mouse embryonic fibroblasts (MEF) decreased phosphorylation of c-MYC at threonine 58 (pT58) and increased phosphorylation at serine 62 (pS62), an observation validated in prostate cancer cells. Conversely, inhibition of mTOR increased pT58 but decreased pS62. Loss of both FOXP3 and TSC1 in prostate cancer cells synergistically enhanced c-MYC expression via regulation of c-Myc transcription and protein phosphorylation. This crosstalk between FOXP3 and TSC1 appeared to be mediated by both the mTOR-4EBP1-c-MYC and FOXP3-c-MYC pathways. In mice, Tsc1 and Foxp3 double deletions in the prostate led to prostate carcinomas at an early age; this did not occur in these mice with an added c-Myc deletion. In addition, we observed synergistic antitumor effects of cotreating mice with inhibitors of mTOR and c-MYC in prostate cancer cells and in Foxp3 and Tsc1 double-mutant mice. In human prostate cancer, loss of nuclear FOXP3 is often accompanied by low expression of TSC1. Because loss of FOXP3 transcriptionally induces c-Myc expression and loss of TSC1 activates mTOR signaling, these data suggest cross-talk between FOXP3-c-MYC and TSC1-mTOR signaling that converges on c-MYC to regulate tumor progression. Coadministration of c-MYC and mTOR inhibitors may overcome the resistance to mTOR inhibition commonly observed in prostate cancer cells. SIGNIFICANCE: These results establish the principle of a synergistic action of TSC1 and FOXP3 during prostate cancer progression and provide new therapeutic targets for patients who have prostate cancer with two signaling defects.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/7/1413/F1.large.jpg.
Collapse
Affiliation(s)
- Lianpin Wu
- Institute of Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Baozhu Yi
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dapeng Rao
- Department of Urology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Youhua He
- Department of Urology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gurudatta Naik
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sejong Bae
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiaoguang M Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia
| | | | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
60
|
Jiang D, Song Y, Cao W, Wang X, Jiang D, Lv Z, Yang Z, Li F. p53-independent role of MYC mutant T58A in the proliferation and apoptosis of breast cancer cells. Oncol Lett 2019; 17:1071-1079. [PMID: 30655867 PMCID: PMC6312996 DOI: 10.3892/ol.2018.9688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022] Open
Abstract
Myc proto-oncogene (MYC) is an oncoprotein that promotes proliferation and apoptosis. MYC mutations frequently disrupt the apoptotic processes during tumorigenesis. In the present study, the effects of the MYC point mutation T58A on the progression of a cellular tumor antigen p53 (p53)-/- human breast cancer cell line was analyzed, and the mechanism of p53-independent MYC-induced apoptosis was investigated. HCC1937 cells were transfected with mutant (T58A) or wild-type (WT) MYC using lentiviral vectors. The proliferation of transfected cells was evaluated by colony formation and MTT assays, and apoptosis was analyzed by flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays. WT MYC was transfected into HCC1937 cells exhibiting p14/p21 silencing through lentivirus-mediated RNA interference. The expression levels of Bim were detected by reverse transcription-quantitative polymerase chain reaction and western blot analyses. Mutant MYC proteins retained the ability to stimulate the proliferation of HCC1937 cells, although they were defective at promoting apoptosis due to a failure to induce the Bcl-2 homology 3 domain-only protein Bim. When p14 was silenced, the effects of mutant MYC on proliferation and apoptosis were weakened. When p21 was silenced, the effects of mutant MYC were strengthened. Breast cancer-derived T58A MYC mutations are unable to activate Bim due to their failure to regulate p14/p21. It was concluded that mutant MYC was more effective compared with WT MYC at promoting the progression of breast cancer.
Collapse
Affiliation(s)
- Dandan Jiang
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yuhua Song
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Weihong Cao
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xingang Wang
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Danni Jiang
- Imaging Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhidong Lv
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhaochuan Yang
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Funian Li
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
61
|
Su Y, Pelz C, Huang T, Torkenczy K, Wang X, Cherry A, Daniel CJ, Liang J, Nan X, Dai MS, Adey A, Impey S, Sears RC. Post-translational modification localizes MYC to the nuclear pore basket to regulate a subset of target genes involved in cellular responses to environmental signals. Genes Dev 2018; 32:1398-1419. [PMID: 30366908 PMCID: PMC6217735 DOI: 10.1101/gad.314377.118] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
In this study, Su et al. investigate how post-translational modifications of Myc that affect stability and oncogenic activity regulate its function. They show that Ser62 phosphorylation and PIN1-mediated isomerization of MYC dynamically regulate the spatial distribution of MYC in the nucleus, promoting its association with the inner basket of the nuclear pore in response to proliferative signals, where it recruits the histone acetyltransferase GCN5 to bind and regulate local gene acetylation and expression, thus providing new insights into how post-translational modification of MYC controls its spatial activity. The transcription factor MYC (also c-Myc) induces histone modification, chromatin remodeling, and the release of paused RNA polymerase to broadly regulate transcription. MYC is subject to a series of post-translational modifications that affect its stability and oncogenic activity, but how these control MYC's function on the genome is largely unknown. Recent work demonstrates an intimate connection between nuclear compartmentalization and gene regulation. Here, we report that Ser62 phosphorylation and PIN1-mediated isomerization of MYC dynamically regulate the spatial distribution of MYC in the nucleus, promoting its association with the inner basket of the nuclear pore in response to proliferative signals, where it recruits the histone acetyltransferase GCN5 to bind and regulate local gene acetylation and expression. We demonstrate that PIN1-mediated localization of MYC to the nuclear pore regulates MYC target genes responsive to mitogen stimulation that are involved in proliferation and migration pathways. These changes are also present at the chromatin level, with an increase in open regulatory elements in response to stimulation that is PIN1-dependent and associated with MYC chromatin binding. Taken together, our study indicates that post-translational modification of MYC controls its spatial activity to optimally regulate gene expression in response to extrinsic signals in normal and diseased states.
Collapse
Affiliation(s)
- Yulong Su
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Carl Pelz
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA.,Oregon Stem Cell Center, Oregon Health and Science University, Oregon 97239, USA
| | - Tao Huang
- Department of Biomedical Engineering, Oregon Health and Science University, Oregon 97239, USA
| | - Kristof Torkenczy
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Xiaoyan Wang
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Allison Cherry
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Juan Liang
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health and Science University, Oregon 97239, USA
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Andrew Adey
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| | - Soren Impey
- Oregon Stem Cell Center, Oregon Health and Science University, Oregon 97239, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Oregon 97239, USA
| |
Collapse
|
62
|
Generating a recombinant phosphothreonine-binding domain for a phosphopeptide of the human transcription factor, c-Myc. N Biotechnol 2018; 45:36-44. [PMID: 29763736 DOI: 10.1016/j.nbt.2018.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 11/21/2022]
Abstract
Transcription factor c-Myc is an oncoprotein that is regulated at the post-translational level through phosphorylation of two conserved residues, Serine 62 (Ser62) and Threonine 58 (Thr58). A highly specific tool capable of recognizing Myc via pThr58 is needed to monitor activation and localization. Through phage display, we have isolated 10 engineered Forkhead-associated (FHA) domains that selectively bind to a phosphothreonine (pThr)-containing peptide (53-FELLPpTPPLSPS-64) segment of human c-Myc. One domain variant was observed to bind to the Myc-pThr58 peptide with a KD value of 800 nM and had >1000-fold discrimination between the phosphorylated and non-phosphorylated peptide. The crystal structure of the engineered FHA Myc-pThr-binding domain (Myc-pTBD) was solved in complex with its cognate ligand. The Myc-pTBD was observed to be structurally similar to the yeast Rad9 FHA1 domain, except that its β4-β5 and β10-β11 loops form a hydrophobic pocket to facilitate the interaction between the domain and the peptide ligand. The Myc-pTBD's specificity for its cognate ligand was demonstrated to be on a par with 3 commercial polyclonal antibodies, suggesting that this recombinant reagent is a viable alternative to antibodies for monitoring Myc regulation.
Collapse
|
63
|
Archer TC, Ehrenberger T, Mundt F, Gold MP, Krug K, Mah CK, Mahoney EL, Daniel CJ, LeNail A, Ramamoorthy D, Mertins P, Mani DR, Zhang H, Gillette MA, Clauser K, Noble M, Tang LC, Pierre-François J, Silterra J, Jensen J, Tamayo P, Korshunov A, Pfister SM, Kool M, Northcott PA, Sears RC, Lipton JO, Carr SA, Mesirov JP, Pomeroy SL, Fraenkel E. Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 2018; 34:396-410.e8. [PMID: 30205044 PMCID: PMC6372116 DOI: 10.1016/j.ccell.2018.08.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/28/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022]
Abstract
There is a pressing need to identify therapeutic targets in tumors with low mutation rates such as the malignant pediatric brain tumor medulloblastoma. To address this challenge, we quantitatively profiled global proteomes and phospho-proteomes of 45 medulloblastoma samples. Integrated analyses revealed that tumors with similar RNA expression vary extensively at the post-transcriptional and post-translational levels. We identified distinct pathways associated with two subsets of SHH tumors, and found post-translational modifications of MYC that are associated with poor outcomes in group 3 tumors. We found kinases associated with subtypes and showed that inhibiting PRKDC sensitizes MYC-driven cells to radiation. Our study shows that proteomics enables a more comprehensive, functional readout, providing a foundation for future therapeutic strategies.
Collapse
Affiliation(s)
- Tenley C Archer
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tobias Ehrenberger
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Filip Mundt
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Maxwell P Gold
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Karsten Krug
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clarence K Mah
- Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Elizabeth L Mahoney
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Alexander LeNail
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Divya Ramamoorthy
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Philipp Mertins
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - D R Mani
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hailei Zhang
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael A Gillette
- Harvard Medical School, Boston, MA, USA; Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Karl Clauser
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Noble
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lauren C Tang
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jessica Pierre-François
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jacob Silterra
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James Jensen
- Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Pablo Tamayo
- Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Andrey Korshunov
- CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, Heidelberg University, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Paul A Northcott
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Jonathan O Lipton
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Steven A Carr
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Jill P Mesirov
- Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA; Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, USA.
| | - Scott L Pomeroy
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ernest Fraenkel
- Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
64
|
Ishida CT, Zhang Y, Bianchetti E, Shu C, Nguyen TTT, Kleiner G, Sanchez-Quintero MJ, Quinzii CM, Westhoff MA, Karpel-Massler G, Prabhu VV, Allen JE, Siegelin MD. Metabolic Reprogramming by Dual AKT/ERK Inhibition through Imipridones Elicits Unique Vulnerabilities in Glioblastoma. Clin Cancer Res 2018; 24:5392-5406. [PMID: 30037819 DOI: 10.1158/1078-0432.ccr-18-1040] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/16/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
Purpose: The goal of this study is to enhance the efficacy of imipridones, a novel class of AKT/ERK inhibitors that displayed limited therapeutic efficacy against glioblastoma (GBM).Experimental Design: Gene set enrichment, LC/MS, and extracellular flux analyses were used to determine the mechanism of action of novel imipridone compounds, ONC206 and ONC212. Orthotopic patient-derived xenografts were utilized to evaluate therapeutic potency.Results: Imipridones reduce the proliferation of patient-derived xenograft and stem-like glioblastoma cell cultures in vitro and in multiple xenograft models in vivo ONC212 displayed the highest potency. High levels of c-myc predict susceptibility to growth inhibition and apoptosis induction by imipridones and increased host survival in orthotopic patient-derived xenografts. As early as 1 hour, imipridones elicit on-target inhibition, followed by dephosphorylation of GSK3β at serine 9. GSK3β promotes phosphorylation of c-myc at threonine 58 and enhances its proteasomal degradation. Moreover, inhibition of c-myc by BRD4 antagonists sensitizes for imipridone-induced apoptosis in stem-like GBM cells in vitro and in vivo Imipridones affect energy metabolism by suppressing both glycolysis and oxidative phosphorylation, which is accompanied by a compensatory activation of the serine-one carbon-glycine (SOG) pathway, involving the transcription factor ATF4. Interference with the SOG pathway through novel inhibitors of PHGDH results in synergistic cell death induction in vitro and in vivo Conclusions: These results suggest that c-myc expression predicts therapeutic responses to imipridones and that imipridones lead to suppression of tumor cell energy metabolism, eliciting unique metabolic vulnerabilities that can be exploited for clinical relevant drug combination therapies. Clin Cancer Res; 24(21); 5392-406. ©2018 AACR.
Collapse
Affiliation(s)
- Chiaki T Ishida
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Yiru Zhang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Elena Bianchetti
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Chang Shu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Trang T T Nguyen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, New York
| | | | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | | | | | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
65
|
Bäumer N, Rehkämper J, Appel N, Terheyden L, Hartmann W, Wardelmann E, Buchholz F, Müller-Tidow C, Berdel WE, Bäumer S. Downregulation of PIK3CA via antibody-esiRNA-complexes suppresses human xenograft tumor growth. PLoS One 2018; 13:e0200163. [PMID: 30001368 PMCID: PMC6042707 DOI: 10.1371/journal.pone.0200163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/20/2018] [Indexed: 11/25/2022] Open
Abstract
Precision cancer therapy requires on the one hand detailed knowledge about a tumor’s driver oncogenes and on the other hand an effective targeted therapy that specifically inhibits these oncogenes. While the determination of genomic landscape of a tumor has reached a very precise level, the respective therapy options are scarce. The application of small inhibitory (si) RNAs is a promising field of investigation. Here, we present the effective in vivo-treatment of colorectal cancer (CRC) xenograft tumors with antibody-complexed, endoribonuclease-prepared small inhibitory (esi)RNAs. We chose heterogeneous endoribonuclease-prepared siRNA pools (esiRNAs) against the frequently mutated genes PIK3CA and KRAS and coupled them to the anti-EGFR antibody cetuximab, which was internalized specifically into the tumor cells. esiRNA pools have been shown to exhibit superior specificity in target gene knockdown compared to classic siRNAs. We identified a significant decrease in tumor growth upon this treatment due to decreased tumor cell proliferation. The ex vivo-analysis of the xenograft CRC tumors revealed the expected downregulation of the intended direct targets PIK3CA and KRAS on protein level. Moreover, known downstream targets for EGFR signaling such as p-ERK, p-AKT, and c-MYC were decreased as well. We therefore propose the use of antibody-esiRNA complexes as a novel experimental treatment option against key components of the EGFR signaling cascade.
Collapse
Affiliation(s)
- Nicole Bäumer
- Department of Medicine A, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Jan Rehkämper
- Gerhard-Domagk Institute for Pathology, University of Muenster, Muenster, Germany
| | - Neele Appel
- Department of Medicine A, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Lisa Terheyden
- Department of Medicine A, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk Institute for Pathology, University of Muenster, Muenster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk Institute for Pathology, University of Muenster, Muenster, Germany
| | - Frank Buchholz
- Universitäts KrebsCentrum (UCC), Medical Systems Biology, Medical Faculty, Technische Universität Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Carsten Müller-Tidow
- Department of Medicine A, Hematology/Oncology, University of Muenster, Muenster, Germany
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang E. Berdel
- Department of Medicine A, Hematology/Oncology, University of Muenster, Muenster, Germany
| | - Sebastian Bäumer
- Department of Medicine A, Hematology/Oncology, University of Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
66
|
Wolpaw AJ, Dang CV. MYC-induced metabolic stress and tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1870:43-50. [PMID: 29791870 DOI: 10.1016/j.bbcan.2018.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/25/2022]
Abstract
The MYC oncogene is commonly altered across human cancers. Distinct from the normal MYC proto-oncogene, which is under tight transcriptional, translational, and post-translational control, deregulated oncogenic MYC drives imbalanced, non-linear amplification of transcription that results in oncogenic 'stress.' The term 'stress' had been a euphemism for our lack of mechanistic understanding, but synthesis of many studies over the past decade provides a more coherent picture of oncogenic MYC driving metastable cellular states, particularly altered metabolism, that activate and depend on cellular stress response pathways to allow for continued growth and survival. Both deregulated metabolism and these stress response pathways represent vulnerabilities that can be exploited therapeutically.
Collapse
Affiliation(s)
- Adam J Wolpaw
- Divisions of Hematology and Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Wistar Institute, Philadelphia, PA 19104, USA
| | - Chi V Dang
- The Wistar Institute, Philadelphia, PA 19104, USA; Ludwig Institute for Cancer Research, New York, NY 10017, USA.
| |
Collapse
|
67
|
Zhang Y, Ishida CT, Ishida W, Lo SFL, Zhao J, Shu C, Bianchetti E, Kleiner G, Sanchez-Quintero MJ, Quinzii CM, Westhoff MA, Karpel-Massler G, Canoll P, Siegelin MD. Combined HDAC and Bromodomain Protein Inhibition Reprograms Tumor Cell Metabolism and Elicits Synthetic Lethality in Glioblastoma. Clin Cancer Res 2018; 24:3941-3954. [PMID: 29764852 DOI: 10.1158/1078-0432.ccr-18-0260] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Glioblastoma remains a challenge in oncology, in part due to tumor heterogeneity.Experimental Design: Patient-derived xenograft and stem-like glioblastoma cells were used as the primary model systems.Results: Based on a transcriptome and subsequent gene set enrichment analysis (GSEA), we show by using clinically validated compounds that the combination of histone deacetylase (HDAC) inhibition and bromodomain protein (BRD) inhibition results in pronounced synergistic reduction in cellular viability in patient-derived xenograft and stem-like glioblastoma cells. Transcriptome-based GSEA analysis suggests that metabolic reprogramming is involved with synergistic reduction of oxidative and glycolytic pathways in the combination treatment. Extracellular flux analysis confirms that combined HDAC inhibition and BRD inhibition blunts oxidative and glycolytic metabolism of cancer cells, leading to a depletion of intracellular ATP production and total ATP levels. In turn, energy deprivation drives an integrated stress response, originating from the endoplasmic reticulum. This results in an increase in proapoptotic Noxa. Aside from Noxa, we encounter a compensatory increase of antiapoptotic Mcl-1 protein. Pharmacologic, utilizing the FDA-approved drug sorafenib, and genetic inhibition of Mcl-1 enhanced the effects of the combination therapy. Finally, we show in orthotopic patient-derived xenografts of GBM, that the combination treatment reduces tumor growth, and that triple therapy involving the clinically validated compounds panobinostat, OTX015, and sorafenib further enhances these effects, culminating in a significant regression of tumors in vivoConclusions: Overall, these results warrant clinical testing of this novel, efficacious combination therapy. Clin Cancer Res; 24(16); 3941-54. ©2018 AACR.
Collapse
Affiliation(s)
- Yiru Zhang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Chiaki Tsuge Ishida
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Wataru Ishida
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sheng-Fu L Lo
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Junfei Zhao
- Department of Biomedical Informatics, Columbia University, New York, New York
| | - Chang Shu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Elena Bianchetti
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Giulio Kleiner
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, New York
| | - Maria J Sanchez-Quintero
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, New York
| | - Catarina M Quinzii
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, New York
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
68
|
Kumar A, Tripathy MK, Pasquereau S, Al Moussawi F, Abbas W, Coquard L, Khan KA, Russo L, Algros MP, Valmary-Degano S, Adotevi O, Morot-Bizot S, Herbein G. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells. EBioMedicine 2018; 30:167-183. [PMID: 29628341 PMCID: PMC5952350 DOI: 10.1016/j.ebiom.2018.03.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) establishes a persistent life-long infection and increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. Breast milk is an important route of HCMV transmission in humans and we hypothesized that mammary epithelial cells could be one of the main cellular targets of HCMV infection. Methods The infectivity of primary human mammary epithelial cells (HMECs) was assessed following infection with the HCMV-DB strain, a clinical isolate with a marked macrophage-tropism. The impact of HCMV-DB infection on expression of p53 and retinoblastoma proteins, telomerase activity and oncogenic pathways (c-Myc, Akt, Ras, STAT3) was studied. Finally the transformation of HCMV-DB infected HMECs was evaluated using soft agar assay. CTH cells (CMV Transformed HMECs) were detected in prolonged cultures of infected HMECs. Tumor formation was observed in NOD/SCID Gamma (NSG) mice injected with CTH cells. Detection of long non coding RNA4.9 (lncRNA4.9) gene was assessed in CTH cells, tumors isolated from xenografted NSG mice and biopsies of patients with breast cancer using qualitative and quantitative PCR. Results We found that HCMV, especially a clinical strain named HCMV-DB, infects HMECs in vitro. The clinical strain HCMV-DB replicates productively in HMECs as evidenced by detection of early and late viral transcripts and proteins. Following infection of HMECs with HCMV-DB, we observed the inactivation of retinoblastoma and p53 proteins, the activation of telomerase activity, the activation of the proto-oncogenes c-Myc and Ras, the activation of Akt and STAT3, and the upregulation of cyclin D1 and Ki67 antigen. Colony formation was observed in soft agar seeded with HCMV-DB-infected HMECs. Prolonged culture of infected HMECs resulted in the development of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs). CTH cells when injected in NOD/SCID Gamma (NSG) mice resulted in the development of tumors. We detected in CTH cells the presence of a HCMV signature corresponding to a sequence of the long noncoding RNA4.9 (lncRNA4.9) gene. We also found the presence of the HCMV lncRNA4.9 sequence in tumors isolated from xenografted NSG mice injected with CTH cells and in biopsies of patients with breast cancer using qualitative and quantitative PCR. Conclusions Our data indicate that key molecular pathways involved in oncogenesis are activated in HCMV-DB-infected HMECs that ultimately results in the transformation of HMECs in vitro with the appearance of CMV-transformed HMECs (CTH cells) in culture. CTH cells display a HCMV signature corresponding to a lncRNA4.9 genomic sequence and give rise to fast growing triple-negative tumors in NSG mice. A similar lncRNA4.9 genomic sequence was detected in tumor biopsies of patients with breast cancer. The infection of primary human mammary epithelial cells (HMECs) with the HCMV-DB strain results in a pro-oncogenic cellular environment. HCMV-DB transforms primary HMECs in vitro as measured by a soft agar assay. Prolonged culture of HMECs infected with HCMV-DB results in the appearance of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs). CTH cells when injected in NOD/SCID Gamma mice resulted in the development of breast tumor. The HCMV lncRNA4.9 sequence was detected in CTH cells, in tumors isolated from xenografted NSG mice injected with CTH cells and in biopsies of patients with breast cancer.
Research in Context: Worldwide breast cancer is the most common cancer diagnosed among women. Etiological factors involved in breast cancer include genetic and environmental risk factors and among these latter viruses could be involved with close to one-fifth of all cancers in the world caused by infectious agents. We found that the cytomegalovirus strain DB, a member of the herpesvirus family, activates oncogenic pathways in infected mammary epithelial cells, transforms these cells in culture and favors the appearance of tumors in xenografted mice. Our findings might lead to a better understanding of the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Amit Kumar
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Manoj Kumar Tripathy
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France.
| | - Fatima Al Moussawi
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France; Lebanese University, Beyrouth, Lebanon
| | | | - Laurie Coquard
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Kashif Aziz Khan
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Laetitia Russo
- Department of Pathology, CHRU Besançon, F-25030 Besançon, France
| | | | | | - Olivier Adotevi
- INSERM UMR1098, University of Bourgogne Franche-Comté, Besançon, France; Department of Medical Oncology, CHRU Besancon, F-25030 Besancon, France.
| | | | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France; Department of Virology, CHRU Besancon, F-25030 Besancon, France.
| |
Collapse
|
69
|
El Nagar S, Zindy F, Moens C, Martin L, Plassard D, Roussel MF, Lamonerie T, Billon N. A new genetically engineered mouse model of choroid plexus carcinoma. Biochem Biophys Res Commun 2018; 496:568-574. [PMID: 29339161 DOI: 10.1016/j.bbrc.2017.11.192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
Choroid plexus carcinomas (CPCs) are highly malignant brain tumours predominantly found in children and associated to poor prognosis. Improved therapy for these cancers would benefit from the generation of animal models. Here we have created a novel mouse CPC model by expressing a stabilised form of c-Myc (MycT58A) and inactivating Trp53 in the choroid plexus of newborn mice. This induced aberrant proliferation of choroid plexus epithelial cells, leading to aggressive tumour development and death within 150 days. Choroid plexus tumours occurred with a complete penetrance in all brain ventricles, with prevalence in the lateral and fourth ventricles. Histological and cellular analysis indicated that these tumours were CPCs resembling their human counterparts. Comparison of gene expression profiles of CPCs and non-neoplastic tissues revealed profound alterations in cell cycle regulation and DNA damage responses, suggesting that dysregulation of cell division and DNA checkpoint pathways may represent key vulnerabilities. This novel animal model of CPC provides an invaluable tool to elucidate the mechanism of CPC formation and to develop successful therapies against this devastating paediatric cancer.
Collapse
Affiliation(s)
| | - Frederique Zindy
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Charlotte Moens
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France; Present address: Institut des sciences de la vie, Université catholique de Louvain, Louvain-la-neuve, Belgium
| | - Luc Martin
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | |
Collapse
|
70
|
Gagliardi PA, Puliafito A, Primo L. PDK1: At the crossroad of cancer signaling pathways. Semin Cancer Biol 2018; 48:27-35. [DOI: 10.1016/j.semcancer.2017.04.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/28/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
|
71
|
Chakraborty D, Benham V, Jdanov V, Bullard B, Leal AS, Liby KT, Bernard JJ. A BET Bromodomain Inhibitor Suppresses Adiposity-Associated Malignant Transformation. Cancer Prev Res (Phila) 2017; 11:129-142. [PMID: 29246955 DOI: 10.1158/1940-6207.capr-17-0262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/24/2017] [Accepted: 12/07/2017] [Indexed: 11/16/2022]
Abstract
Almost half a million of all new cancers have been attributed to obesity and epidemiologic evidence implicates visceral adipose tissue (VAT) and high-fat diets (HFD) in increasing cancer risk. We demonstrated that VAT-derived fibroblast growth factor 2 (FGF2) from mice fed an HFD or obese individuals stimulates the malignant transformation of epithelial cells. Mechanism-based strategies to prevent this VAT-enhanced tumorigenesis have not been explored. Clinical studies have indicated that bromodomain inhibitors have considerable potential as therapeutic agents for cancer by inhibiting the activity of several oncogenes, including c-Myc; however, their chemopreventive activity is unknown. We show herein that mice with visceral adiposity have elevated nuclear c-Myc expression in their epidermis. We hypothesized that the bromodomain inhibitor I-BET-762 (I-BET) would have efficacy in the prevention of malignant transformation by VAT and FGF2. We tested this hypothesis using our novel models of VAT-stimulated transformation in vitro and FGF2- stimulated tumor formation in vivo We found that I-BET significantly attenuates VAT and FGF2-stimulated transformation and inhibits VAT-induced c-Myc protein expression in several skin and breast epithelial cell lines. Moreover, I-BET attenuated tumor growth significantly in FGF2-treated nude mice. Work is ongoing to determine the role of visceral adiposity in c-Myc activity in several tissues and determine the inhibitory effect of I-BET on VAT-promoted tumors in vivoCancer Prev Res; 11(3); 129-42. ©2017 AACRSee related editorial by Berger and Scacheri, p. 125.
Collapse
Affiliation(s)
- Debrup Chakraborty
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Vanessa Benham
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Vladislav Jdanov
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Blair Bullard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Ana S Leal
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Jamie J Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
72
|
Singleton KR, Crawford L, Tsui E, Manchester HE, Maertens O, Liu X, Liberti MV, Magpusao AN, Stein EM, Tingley JP, Frederick DT, Boland GM, Flaherty KT, McCall SJ, Krepler C, Sproesser K, Herlyn M, Adams DJ, Locasale JW, Cichowski K, Mukherjee S, Wood KC. Melanoma Therapeutic Strategies that Select against Resistance by Exploiting MYC-Driven Evolutionary Convergence. Cell Rep 2017; 21:2796-2812. [PMID: 29212027 PMCID: PMC5728698 DOI: 10.1016/j.celrep.2017.11.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/02/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022] Open
Abstract
Diverse pathways drive resistance to BRAF/MEK inhibitors in BRAF-mutant melanoma, suggesting that durable control of resistance will be a challenge. By combining statistical modeling of genomic data from matched pre-treatment and post-relapse patient tumors with functional interrogation of >20 in vitro and in vivo resistance models, we discovered that major pathways of resistance converge to activate the transcription factor, c-MYC (MYC). MYC expression and pathway gene signatures were suppressed following drug treatment, and then rebounded during progression. Critically, MYC activation was necessary and sufficient for resistance, and suppression of MYC activity using genetic approaches or BET bromodomain inhibition was sufficient to resensitize cells and delay BRAFi resistance. Finally, MYC-driven, BRAFi-resistant cells are hypersensitive to the inhibition of MYC synthetic lethal partners, including SRC family and c-KIT tyrosine kinases, as well as glucose, glutamine, and serine metabolic pathways. These insights enable the design of combination therapies that select against resistance evolution.
Collapse
Affiliation(s)
- Katherine R Singleton
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Lorin Crawford
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Elizabeth Tsui
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Haley E Manchester
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ophelia Maertens
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Maria V Liberti
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Molecular Biology and Genetics, Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Anniefer N Magpusao
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elizabeth M Stein
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jennifer P Tingley
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Dennie T Frederick
- Harvard Medical School, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Genevieve M Boland
- Harvard Medical School, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Keith T Flaherty
- Harvard Medical School, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | | | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Drew J Adams
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC 27708, USA; Departments of Mathematics and Computer Science, Duke University, Durham, NC 27708, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
73
|
Janghorban M, Langer EM, Wang X, Zachman D, Daniel CJ, Hooper J, Fleming WH, Agarwal A, Sears RC. The tumor suppressor phosphatase PP2A-B56α regulates stemness and promotes the initiation of malignancies in a novel murine model. PLoS One 2017; 12:e0188910. [PMID: 29190822 PMCID: PMC5708644 DOI: 10.1371/journal.pone.0188910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/15/2017] [Indexed: 01/13/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed Serine-Threonine phosphatase mediating 30–50% of protein phosphatase activity. PP2A functions as a heterotrimeric complex, with the B subunits directing target specificity to regulate the activity of many key pathways that control cellular phenotypes. PP2A-B56α has been shown to play a tumor suppressor role and to negatively control c-MYC stability and activity. Loss of B56α promotes cellular transformation, likely at least in part through its regulation of c-MYC. Here we report generation of a B56α hypomorph mouse with very low B56α expression that we used to study the physiologic activity of the PP2A-B56α phosphatase. The predominant phenotype we observed in mice with B56α deficiency in the whole body was spontaneous skin lesion formation with hyperproliferation of the epidermis, hair follicles and sebaceous glands. Increased levels of c-MYC phosphorylation on Serine62 and c-MYC activity were observed in the skin lesions of the B56αhm/hm mice. B56α deficiency was found to increase the number of skin stem cells, and consistent with this, papilloma initiation was accelerated in a carcinogenesis model. Further analysis of additional tissues revealed increased inflammation in spleen, liver, lung, and intestinal lymph nodes as well as in the skin lesions, resembling elevated extramedullary hematopoiesis phenotypes in the B56αhm/hm mice. We also observed an increase in the clonogenicity of bone marrow stem cells in B56αhm/hm mice. Overall, this model suggests that B56α is important for stem cells to maintain homeostasis and that B56α loss leading to increased activity of important oncogenes, including c-MYC, can result in aberrant cell growth and increased stem cells that can contribute to the initiation of malignancy.
Collapse
Affiliation(s)
- Mahnaz Janghorban
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ellen M. Langer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Xiaoyan Wang
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Derek Zachman
- Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Department of Pediatrics, Portland, Oregon, United States of America
| | - Colin J. Daniel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jody Hooper
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William H. Fleming
- Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Department of Pediatrics, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
74
|
microRNA-206 impairs c-Myc-driven cancer in a synthetic lethal manner by directly inhibiting MAP3K13. Oncotarget 2017; 7:16409-19. [PMID: 26918941 PMCID: PMC4941324 DOI: 10.18632/oncotarget.7653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/05/2016] [Indexed: 12/18/2022] Open
Abstract
c-Myc (Myc) is one of the most frequently dysregulated oncogenic transcription factors in human cancer. By functionally screening a microRNA (miR) library, we identified miR-206 as being a synthetic lethal in Myc over-expressing human cancer cells. miR-206 inhibited MAP3K13, which resulted in Myc protein de-stabilization, and an inhibition of anchorage-independent growth and in vivo tumorigenesis by Myc over-expressing human cancer cells. Eliminating MAP3K13 by shRNA recapitulated the effects caused by miR-206, thus supporting the idea that miR-206's effect on Myc was mediated through MAP3K13. Conversely, enforced expression of MAP3K13 stabilized Myc by promoting its N-terminal phosphorylation and enhancing its transcriptional activity. Gene expression analyses of breast cancers expressing high levels of Myc indicated that low miR-206 expression and high MAP3K13 expression correlated with poor patient survival. The critical link between miR-206 and MAP3K13 in the development of Myc over-expressing human cancers suggests potential points of therapeutic intervention for this molecular sub-category.
Collapse
|
75
|
Farrell AS, Joly MM, Allen-Petersen BL, Worth PJ, Lanciault C, Sauer D, Link J, Pelz C, Heiser LM, Morton JP, Muthalagu N, Hoffman MT, Manning SL, Pratt ED, Kendsersky ND, Egbukichi N, Amery TS, Thoma MC, Jenny ZP, Rhim AD, Murphy DJ, Sansom OJ, Crawford HC, Sheppard BC, Sears RC. MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance. Nat Commun 2017; 8:1728. [PMID: 29170413 PMCID: PMC5701042 DOI: 10.1038/s41467-017-01967-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/26/2017] [Indexed: 01/06/2023] Open
Abstract
Intratumoral phenotypic heterogeneity has been described in many tumor types, where it can contribute to drug resistance and disease recurrence. We analyzed ductal and neuroendocrine markers in pancreatic ductal adenocarcinoma, revealing heterogeneous expression of the neuroendocrine marker Synaptophysin within ductal lesions. Higher percentages of Cytokeratin-Synaptophysin dual positive tumor cells correlate with shortened disease-free survival. We observe similar lineage marker heterogeneity in mouse models of pancreatic ductal adenocarcinoma, where lineage tracing indicates that Cytokeratin-Synaptophysin dual positive cells arise from the exocrine compartment. Mechanistically, MYC binding is enriched at neuroendocrine genes in mouse tumor cells and loss of MYC reduces ductal-neuroendocrine lineage heterogeneity, while deregulated MYC expression in KRAS mutant mice increases this phenotype. Neuroendocrine marker expression is associated with chemoresistance and reducing MYC levels decreases gemcitabine-induced neuroendocrine marker expression and increases chemosensitivity. Altogether, we demonstrate that MYC facilitates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma, contributing to poor survival and chemoresistance.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Carcinoma, Neuroendocrine/drug therapy
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Differentiation
- Cell Line, Tumor
- Cell Lineage
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/therapeutic use
- Drug Resistance, Neoplasm
- Female
- Heterografts
- Humans
- Keratins/metabolism
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Transplantation
- Neuroendocrine Cells/metabolism
- Neuroendocrine Cells/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- Proto-Oncogene Proteins c-myc/metabolism
- Synaptophysin/metabolism
- Gemcitabine
Collapse
Affiliation(s)
- Amy S Farrell
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Meghan Morrison Joly
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Brittany L Allen-Petersen
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Patrick J Worth
- Department of Surgery, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Christian Lanciault
- Department of Pathology, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - David Sauer
- Department of Pathology, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Jason Link
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 S.W Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Carl Pelz
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 S.W Sam Jackson Park Road, Portland, OR, 97239, USA
- Computational Biology, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Laura M Heiser
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Jennifer P Morton
- Cancer Research UK, Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Nathiya Muthalagu
- Cancer Research UK, Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Megan T Hoffman
- Department of Molecular and Integrative Physiology, University of Michigan, 7744 MS II, 1137 E. Catherine St., Ann Arbor, MI, 48109, USA
| | - Sara L Manning
- Department of Gastroenterology, Hepatology and Nutrition and Zayed Center for Pancreatic Cancer Research, University of Texas M.D. Anderson Cancer Center, Unit 1466, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Erica D Pratt
- Department of Gastroenterology, Hepatology and Nutrition and Zayed Center for Pancreatic Cancer Research, University of Texas M.D. Anderson Cancer Center, Unit 1466, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Nicholas D Kendsersky
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Nkolika Egbukichi
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Taylor S Amery
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 S.W Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Mary C Thoma
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Zina P Jenny
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Andrew D Rhim
- Department of Gastroenterology, Hepatology and Nutrition and Zayed Center for Pancreatic Cancer Research, University of Texas M.D. Anderson Cancer Center, Unit 1466, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Daniel J Murphy
- Cancer Research UK, Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Owen J Sansom
- Cancer Research UK, Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, 7744 MS II, 1137 E. Catherine St., Ann Arbor, MI, 48109, USA
| | - Brett C Sheppard
- Department of Surgery, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 S.W Sam Jackson Park Road, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA.
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 S.W Sam Jackson Park Road, Portland, OR, 97239, USA.
- Knight Cancer Institute, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
76
|
Gu Y, Zhang J, Ma X, Kim BW, Wang H, Li J, Pan Y, Xu Y, Ding L, Yang L, Guo C, Wu X, Wu J, Wu K, Gan X, Li G, Li L, Forman SJ, Chan WC, Xu R, Huang W. Stabilization of the c-Myc Protein by CAMKIIγ Promotes T Cell Lymphoma. Cancer Cell 2017; 32:115-128.e7. [PMID: 28697340 PMCID: PMC5552197 DOI: 10.1016/j.ccell.2017.06.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 04/19/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Abstract
Although high c-Myc protein expression is observed alongside MYC amplification in some cancers, in most cases protein overexpression occurs in the absence of gene amplification, e.g., T cell lymphoma (TCL). Here, Ca2+/calmodulin-dependent protein kinase II γ (CAMKIIγ) was shown to stabilize the c-Myc protein by directly phosphorylating it at serine 62 (S62). Furthermore, CAMKIIγ was shown to be essential for tumor maintenance. Inhibition of CAMKIIγ with a specific inhibitor destabilized c-Myc and reduced tumor burden. Importantly, high CAMKIIγ levels in patient TCL specimens correlate with increased c-Myc and pS62-c-Myc levels. Together, the CAMKIIγ:c-Myc axis critically influences the development and maintenance of TCL and represents a potential therapeutic target for TCL.
Collapse
Affiliation(s)
- Ying Gu
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jiawei Zhang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaoxiao Ma
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Byung-Wook Kim
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hailong Wang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jinfan Li
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yi Pan
- Department of Pathology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yang Xu
- Department of Hematology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Lili Ding
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Lu Yang
- The Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Chao Guo
- The Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiwei Wu
- The Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jun Wu
- Division of Comparative Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Kirk Wu
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaoxian Gan
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Gang Li
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Ling Li
- Division of Hematopoietic Stem Cell & Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Stephen J Forman
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Wing-Chung Chan
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Pathology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Rongzhen Xu
- Department of Hematology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Wendong Huang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
77
|
Dejure FR, Royla N, Herold S, Kalb J, Walz S, Ade CP, Mastrobuoni G, Vanselow JT, Schlosser A, Wolf E, Kempa S, Eilers M. The MYC mRNA 3'-UTR couples RNA polymerase II function to glutamine and ribonucleotide levels. EMBO J 2017; 36:1854-1868. [PMID: 28408437 PMCID: PMC5494468 DOI: 10.15252/embj.201796662] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Deregulated expression of MYC enhances glutamine utilization and renders cell survival dependent on glutamine, inducing "glutamine addiction". Surprisingly, colon cancer cells that express high levels of MYC due to WNT pathway mutations are not glutamine-addicted but undergo a reversible cell cycle arrest upon glutamine deprivation. We show here that glutamine deprivation suppresses translation of endogenous MYC via the 3'-UTR of the MYC mRNA, enabling escape from apoptosis. This regulation is mediated by glutamine-dependent changes in adenosine-nucleotide levels. Glutamine deprivation causes a global reduction in promoter association of RNA polymerase II (RNAPII) and slows transcriptional elongation. While activation of MYC restores binding of MYC and RNAPII function on most promoters, restoration of elongation is imperfect and activation of MYC in the absence of glutamine causes stalling of RNAPII on multiple genes, correlating with R-loop formation. Stalling of RNAPII and R-loop formation can cause DNA damage, arguing that the MYC 3'-UTR is critical for maintaining genome stability when ribonucleotide levels are low.
Collapse
Affiliation(s)
- Francesca R Dejure
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nadine Royla
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Steffi Herold
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jacqueline Kalb
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | - Susanne Walz
- Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Carsten P Ade
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | - Guido Mastrobuoni
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Jens T Vanselow
- Mass Spectrometry and Proteome Research, Rudolf-Virchow-Center, University of Würzburg, Würzburg, Germany
| | - Andreas Schlosser
- Mass Spectrometry and Proteome Research, Rudolf-Virchow-Center, University of Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Cancer Systems Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Stefan Kempa
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
78
|
MYC Modulation around the CDK2/p27/SKP2 Axis. Genes (Basel) 2017; 8:genes8070174. [PMID: 28665315 PMCID: PMC5541307 DOI: 10.3390/genes8070174] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/20/2022] Open
Abstract
MYC is a pleiotropic transcription factor that controls a number of fundamental cellular processes required for the proliferation and survival of normal and malignant cells, including the cell cycle. MYC interacts with several central cell cycle regulators that control the balance between cell cycle progression and temporary or permanent cell cycle arrest (cellular senescence). Among these are the cyclin E/A/cyclin-dependent kinase 2 (CDK2) complexes, the CDK inhibitor p27KIP1 (p27) and the E3 ubiquitin ligase component S-phase kinase-associated protein 2 (SKP2), which control each other by forming a triangular network. MYC is engaged in bidirectional crosstalk with each of these players; while MYC regulates their expression and/or activity, these factors in turn modulate MYC through protein interactions and post-translational modifications including phosphorylation and ubiquitylation, impacting on MYC's transcriptional output on genes involved in cell cycle progression and senescence. Here we elaborate on these network interactions with MYC and their impact on transcription, cell cycle, replication and stress signaling, and on the role of other players interconnected to this network, such as CDK1, the retinoblastoma protein (pRB), protein phosphatase 2A (PP2A), the F-box proteins FBXW7 and FBXO28, the RAS oncoprotein and the ubiquitin/proteasome system. Finally, we describe how the MYC/CDK2/p27/SKP2 axis impacts on tumor development and discuss possible ways to interfere therapeutically with this system to improve cancer treatment.
Collapse
|
79
|
Critical role of Myc activation in mouse hepatocarcinogenesis induced by the activation of AKT and RAS pathways. Oncogene 2017; 36:5087-5097. [PMID: 28481866 PMCID: PMC5596209 DOI: 10.1038/onc.2017.114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 02/27/2017] [Accepted: 03/18/2017] [Indexed: 12/13/2022]
Abstract
MYC activation at modest levels has been frequently found in hepatocellular carcinoma. However, its significance in hepatocarcinogenesis has remained obscure. Here we examined the role of Myc activation in mouse liver tumours induced by hepatocytic expression of myristoylated AKT (AKT) and/or mutant HRASV12 (HRAS) via transposon-mediated gene integration. AKT or HRAS alone required 5 months to induce liver tumours, whereas their combination generated hepatocellular carcinoma within 8 weeks. Co-introduction of AKT and HRAS induced lipid-laden preneoplastic cells that grew into nodules composed of tumour cells with or without intracytoplasmic lipid, with the latter being more proliferative and associated with spontaneous Myc expression. AKT/HRAS-induced tumorigenesis was almost completely abolished when MadMyc, a competitive Myc inhibitor, was expressed simultaneously. The Tet-On induction of MadMyc in preneoplastic cells significantly inhibited the progression of AKT/HRAS-induced tumours; its induction in transformed cells suppressed their proliferative activity with alterations in lipid metabolism and protein translation. Transposon-mediated Myc overexpression facilitated tumorigenesis by AKT or HRAS, and when it was co-introduced with AKT and HRAS, diffusely infiltrating tumours without lipid accumulation developed as early as 2 weeks. Examination of the dose-responses of Myc in the enhancement of AKT/HRAS-induced tumorigenesis revealed that a reduction to one-third retained enhancing effect but three-times greater introduction damped the process with increased apoptosis. Myc overexpression suppressed the mRNA expression of proteins involved in the synthesis of fatty acids, and when combined with HRAS introduction, it also suppressed the mRNA expression of proteins involved in their degradation. Finally, the MYC-positive human hepatocellular carcinoma was characterized by the cytoplasm devoid of lipid accumulation, prominent nucleoli and a higher proliferative activity. Our results demonstrate that in hepatocarcinogenesis induced by both activated AKT and HRAS, activation of endogenous Myc is an enhancing factor and adequate levels of Myc deregulation further facilitate the process with alterations in cellular metabolism.
Collapse
|
80
|
Chakravorty D, Jana T, Das Mandal S, Seth A, Bhattacharya A, Saha S. MYCbase: a database of functional sites and biochemical properties of Myc in both normal and cancer cells. BMC Bioinformatics 2017; 18:224. [PMID: 28454513 PMCID: PMC5410051 DOI: 10.1186/s12859-017-1652-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
Background Myc is an essential gene having multiple functions such as in cell growth, differentiation, apoptosis, genomic stability, angiogenesis, and disease biology. A large number of researchers dedicated to Myc biology are generating a substantial amount of data in normal and cancer cells/tissues including Burkitt’s lymphoma and ovarian cancer. Results MYCbase (http://bicresources.jcbose.ac.in/ssaha4/mycbase) is a collection of experimentally supported functional sites in Myc that can influence the biological cellular processes. The functional sites were compiled according to their role which includes mutation, methylation pattern, post-translational modifications, protein-protein interactions (PPIs), and DNA interactions. In addition, biochemical properties of Myc are also compiled, which includes metabolism/pathway, protein abundance, and modulators of protein-protein interactions. The OMICS data related to Myc- like gene expression, proteomics expression using mass-spectrometry and miRNAs targeting Myc were also compiled in MYCbase. The mutation and pathway data from the MYCbase were analyzed to look at the patterns and distributions across different diseases. There were few proteins/genes found common in Myc-protein interactions and Myc-DNA binding, and these can play a significant role in transcriptional feedback loops. Conclusion In this report, we present a comprehensive integration of relevant information regarding Myc in the form of MYCbase. The data compiled in MYCbase provides a reliable data resource for functional sites at the residue level and biochemical properties of Myc in various cancers.
Collapse
Affiliation(s)
- Debangana Chakravorty
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Road, Scheme-VII (M), Kolkata, 700054, India
| | - Tanmoy Jana
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Road, Scheme-VII (M), Kolkata, 700054, India
| | - Sukhen Das Mandal
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Road, Scheme-VII (M), Kolkata, 700054, India.,Current Address: Department of Biological sciences, Indian Institute of Science Education and Research, Kolkata, India
| | | | | | - Sudipto Saha
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Road, Scheme-VII (M), Kolkata, 700054, India.
| |
Collapse
|
81
|
Sarver AL, Murray CD, Temiz NA, Tseng YY, Bagchi A. MYC and PVT1 synergize to regulate RSPO1 levels in breast cancer. Cell Cycle 2017; 15:881-5. [PMID: 26889781 DOI: 10.1080/15384101.2016.1149660] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Copy number gain of the 8q24 region including the v-myc avian myelocytomatosis viral oncogene homolog (MYC) oncogene has been observed in many different cancers and is associated with poor outcomes. While the role of MYC in tumor formation has been clearly delineated, we have recently shown that co-operation between adjacent long non-coding RNA plasmacytoma variant transcription 1 (PVT1) and MYC is necessary for tumor promotion. Chromosome engineered mice containing an increased copy of Myc-Pvt1 (Gain Myc-Pvt1) accelerates mammary tumors in MMTV-Neu mice, while single copy increase of each is not sufficient. In addition, mammary epithelium from the Gain Myc-Pvt1 mouse show precancerous phenotypes, notably increased DNA replication, elevated -H2AX phosphorylation and increased ductal branching. In an attempt to capture the molecular signatures in pre-cancerous cells we utilized RNA sequencing to identify potential targets of supernumerary Myc-Pvt1 cooperation in mammary epithelial cells. In this extra view we show that an extra copy of both Myc and Pvt1 leads to increased levels of Rspo1, a crucial regulator of canonical β-catenin signaling required for female development. Human breast cancer tumors with high levels of MYC transcript have significantly more PVT1 transcript and RSPO1 transcript than tumors with low levels of MYC showing that the murine results are relevant to a subset of human tumors. Thus, this work identifies a key mechanism in precancerous and cancerous tissue by which a main player in female differentiation is transcriptionally activated by supernumerary MYC and PVT1, leading to increased premalignant features, and ultimately to tumor formation.
Collapse
Affiliation(s)
- Aaron L Sarver
- a Masonic Cancer Center, University of Minnesota , Minneapolis , MN , USA
| | - Collin D Murray
- b Computer Science Department, University of Minnesota , Minneapolis , MN , USA
| | - Nuri A Temiz
- a Masonic Cancer Center, University of Minnesota , Minneapolis , MN , USA
| | - Yuen-Yi Tseng
- c Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis , MN , USA
| | - Anindya Bagchi
- a Masonic Cancer Center, University of Minnesota , Minneapolis , MN , USA.,c Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
82
|
Wang L, Barth CW, Sibrian-Vazquez M, Escobedo JO, Lowry M, Muschler J, Li H, Gibbs SL, Strongin RM. Far-Red and Near-Infrared Seminaphthofluorophores for Targeted Pancreatic Cancer Imaging. ACS OMEGA 2017; 2:154-163. [PMID: 28180189 PMCID: PMC5286460 DOI: 10.1021/acsomega.6b00403] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/27/2016] [Indexed: 05/09/2023]
Abstract
Molecular probes that selectively highlight pancreatic cancer (PC) tissue have the potential to improve pancreatic ductal adenocarcinoma (PDAC) margin assessment through the selective highlighting of individual PC cells. Herein, we report a simple and unique family of systematically modified red and near-infrared fluorescent probes that exhibit a field-effect-derived redshift. Two of thirteen probes distributed to the normal mouse pancreas following systemic administration. One selectively accumulated in genetically modified mouse models of PDAC. The probe exhibited intracellular accumulation and enabled visualization of four levels of the structure, including the whole organ, resected tissue, individual cells, and subcellular organelles. In contrast to the small-molecule probes reported previously, it possesses an inherent affinity toward PDAC cells and thus does not require conjugation to any targeting agent. The fluorescent probe can thus promote new strategies not only for precision image-guided surgery, but also for PC detection, monitoring of therapeutic outcomes, and basic research.
Collapse
Affiliation(s)
- Lei Wang
- Department
of Chemistry, Portland State University, 1719 SW 10th Avenue, Portland, Oregon 97201, United States
| | - Connor W. Barth
- Biomedical Engineering Department, Knight Cancer Institute, OHSU Center for Spatial Systems
Biomedicine, Oregon Health & Science
University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Martha Sibrian-Vazquez
- Department
of Chemistry, Portland State University, 1719 SW 10th Avenue, Portland, Oregon 97201, United States
| | - Jorge O. Escobedo
- Department
of Chemistry, Portland State University, 1719 SW 10th Avenue, Portland, Oregon 97201, United States
| | - Mark Lowry
- Department
of Chemistry, Portland State University, 1719 SW 10th Avenue, Portland, Oregon 97201, United States
| | - John Muschler
- Biomedical Engineering Department, Knight Cancer Institute, OHSU Center for Spatial Systems
Biomedicine, Oregon Health & Science
University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Haiyan Li
- Biomedical Engineering Department, Knight Cancer Institute, OHSU Center for Spatial Systems
Biomedicine, Oregon Health & Science
University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Summer L. Gibbs
- Biomedical Engineering Department, Knight Cancer Institute, OHSU Center for Spatial Systems
Biomedicine, Oregon Health & Science
University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Robert M. Strongin
- Department
of Chemistry, Portland State University, 1719 SW 10th Avenue, Portland, Oregon 97201, United States
- Biomedical Engineering Department, Knight Cancer Institute, OHSU Center for Spatial Systems
Biomedicine, Oregon Health & Science
University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
- E-mail:
| |
Collapse
|
83
|
Prognostic impact of MYC protein expression in central nervous system diffuse large B-cell lymphoma: comparison with MYC rearrangement and MYC mRNA expression. Mod Pathol 2017; 30:4-14. [PMID: 27687005 DOI: 10.1038/modpathol.2016.56] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
Abstract
The prognostic role of MYC has been well documented in non-central nervous system diffuse large B-cell lymphoma; however, it remains controversial in central nervous system diffuse large B-cell lymphoma. To investigate the prognostic value of MYC, we analyzed the MYC protein expression by immunohistochemistry, mRNA expression by RNA in situ hybridization, and gene status by fluorescence in situ hybridization in 74 cases of central nervous system diffuse large B-cell lymphoma. Moreover, we examined the correlation between MYC translocation, mRNA expression, and protein expression. The mean percentage of MYC immunopositive cells was 49%. Using a 44% cutoff value, 49 (66%) cases showed MYC protein overexpression. The result of mRNA in situ hybridization using the RNA scope technology was obtained using the H-scoring system; the median value was 34.2. Using the cutoff value of 63.5, 16 (22%) cases showed MYC mRNA overexpression. MYC gene rearrangement was detected in five out of 68 (7%) cases. MYC translocation showed no statistically significant correlation with mRNA expression; however, all MYC translocation-positive cases showed MYC protein overexpression, with a higher mean percentage of MYC protein expression than that of translocation-negative cases (78 vs 48%, P=0.001). The level of MYC mRNA expression was moderately correlated with the level of MYC protein expression (P<0.001). The mean percentage of MYC protein expression in the high MYC mRNA group was higher than that in the low MYC mRNA group (70 vs 47%, P<0.001). A univariate analysis showed that age over 60 years, Eastern Cooperative Oncology Group (ECOG) performance status ≥2 and MYC protein overexpression were significantly associated with an increased risk of death. MYC translocation and MYC mRNA expression had no prognostic significance. On multivariate analysis, MYC protein overexpression and ECOG score retained prognostic significance.
Collapse
|
84
|
Fang X, Zhou W, Wu Q, Huang Z, Shi Y, Yang K, Chen C, Xie Q, Mack SC, Wang X, Carcaboso AM, Sloan AE, Ouyang G, McLendon RE, Bian XW, Rich JN, Bao S. Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. J Exp Med 2016; 214:245-267. [PMID: 27923907 PMCID: PMC5206492 DOI: 10.1084/jem.20151673] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 07/20/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Fang et al. show that the deubiquitinase USP13 stabilizes c-Myc in glioblastoma stem cells (GSCs) by counteracting FBXL14-mediated Myc ubiquitination. c-Myc stabilization maintains GSC self-renewal and tumorigenic potential. Glioblastoma is the most lethal brain tumor and harbors glioma stem cells (GSCs) with potent tumorigenic capacity. The function of GSCs in tumor propagation is maintained by several core transcriptional regulators including c-Myc. c-Myc protein is tightly regulated by posttranslational modification. However, the posttranslational regulatory mechanisms for c-Myc in GSCs have not been defined. In this study, we demonstrate that the deubiquitinase USP13 stabilizes c-Myc by antagonizing FBXL14-mediated ubiquitination to maintain GSC self-renewal and tumorigenic potential. USP13 was preferentially expressed in GSCs, and its depletion potently inhibited GSC proliferation and tumor growth by promoting c-Myc ubiquitination and degradation. In contrast, overexpression of the ubiquitin E3 ligase FBXL14 induced c-Myc degradation, promoted GSC differentiation, and inhibited tumor growth. Ectopic expression of the ubiquitin-insensitive mutant T58A–c-Myc rescued the effects caused by FBXL14 overexpression or USP13 disruption. These data suggest that USP13 and FBXL14 play opposing roles in the regulation of GSCs through reversible ubiquitination of c-Myc.
Collapse
Affiliation(s)
- Xiaoguang Fang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Wenchao Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Zhi Huang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Yu Shi
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Kailin Yang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Cong Chen
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Qi Xie
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Xiuxing Wang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Angel M Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Fundacio Sant Joan de Deu, 08950 Barcelona, Spain
| | - Andrew E Sloan
- Department of Neurological Surgery, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, OH 44106.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Gaoliang Ouyang
- The State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Roger E McLendon
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 .,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 .,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
85
|
Diefenbacher M, Orian A. Stabilization of nuclear oncoproteins by RNF4 and the ubiquitin system in cancer. Mol Cell Oncol 2016; 4:e1260671. [PMID: 28197534 PMCID: PMC5287002 DOI: 10.1080/23723556.2016.1260671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
RNF4, a SUMO-targeted ubiquitin ligase, stabilizes a selected group of oncoproteins. It potentiates oncoprotein activity and serves as a positive feedback agonist of Wnt and Notch pathways. RNF4 is essential for cancer cell survival and its levels are elevated in human cancers, correlating with poor outcome in a subset of cancer patients.
Collapse
Affiliation(s)
| | - A. Orian
- Rappaport Research Institute and Faculty of Medicine, TICC, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
86
|
Horiuchi D, Camarda R, Zhou AY, Yau C, Momcilovic O, Balakrishnan S, Corella AN, Eyob H, Kessenbrock K, Lawson DA, Marsh LA, Anderton BN, Rohrberg J, Kunder R, Bazarov AV, Yaswen P, McManus MT, Rugo HS, Werb Z, Goga A. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression. Nat Med 2016; 22:1321-1329. [PMID: 27775705 PMCID: PMC5341692 DOI: 10.1038/nm.4213] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcome. No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC-an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes-is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors. Direct inhibition of the oncogenic transcriptional activity of MYC has been challenging to achieve. Here, by conducting a shRNA screen targeting the kinome, we identified PIM1, a non-essential serine-threonine kinase, in a synthetic lethal interaction with MYC. PIM1 expression was higher in TN tumors than in RP tumors and was associated with poor prognosis in patients with hormone- and HER2-negative tumors. Small-molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic mouse models of breast cancer by inhibiting the oncogenic transcriptional activity of MYC and restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that have elevated MYC expression.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinoma, Ductal, Breast/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Female
- Humans
- In Situ Nick-End Labeling
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mice, Transgenic
- Microscopy, Fluorescence
- Prognosis
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors
- Proto-Oncogene Proteins c-pim-1/metabolism
- RNA, Small Interfering
- Real-Time Polymerase Chain Reaction
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Dai Horiuchi
- Department of Cell & Tissue Biology, University of California, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
- Department of Pharmacology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Roman Camarda
- Department of Cell & Tissue Biology, University of California, San Francisco, California, USA
| | - Alicia Y. Zhou
- Department of Cell & Tissue Biology, University of California, San Francisco, California, USA
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, California, USA
- Cancer and Developmental Therapeutics Program, Buck Institute for Research on Aging, Novato, California, USA
| | - Olga Momcilovic
- Department of Cell & Tissue Biology, University of California, San Francisco, California, USA
| | - Sanjeev Balakrishnan
- Department of Cell & Tissue Biology, University of California, San Francisco, California, USA
| | - Alexandra N. Corella
- Department of Cell & Tissue Biology, University of California, San Francisco, California, USA
| | - Henok Eyob
- Department of Cell & Tissue Biology, University of California, San Francisco, California, USA
| | - Kai Kessenbrock
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Devon A. Lawson
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Lindsey A. Marsh
- Department of Pharmacology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Brittany N. Anderton
- Department of Cell & Tissue Biology, University of California, San Francisco, California, USA
| | - Julia Rohrberg
- Department of Cell & Tissue Biology, University of California, San Francisco, California, USA
| | - Ratika Kunder
- Department of Pharmacology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Alexey V. Bazarov
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Michael T. McManus
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Hope S. Rugo
- Department of Medicine, University of California, San Francisco, California, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Andrei Goga
- Department of Cell & Tissue Biology, University of California, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| |
Collapse
|
87
|
Brasó-Maristany F, Filosto S, Catchpole S, Marlow R, Quist J, Francesch-Domenech E, Plumb DA, Zakka L, Gazinska P, Liccardi G, Meier P, Gris-Oliver A, Cheang MCU, Perdrix-Rosell A, Shafat M, Noël E, Patel N, McEachern K, Scaltriti M, Castel P, Noor F, Buus R, Mathew S, Watkins J, Serra V, Marra P, Grigoriadis A, Tutt AN. PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nat Med 2016; 22:1303-1313. [PMID: 27775704 DOI: 10.1038/nm.4198] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022]
Abstract
Triple-negative breast cancers (TNBCs) have poor prognosis and lack targeted therapies. Here we identified increased copy number and expression of the PIM1 proto-oncogene in genomic data sets of patients with TNBC. TNBC cells, but not nonmalignant mammary epithelial cells, were dependent on PIM1 for proliferation and protection from apoptosis. PIM1 knockdown reduced expression of the anti-apoptotic factor BCL2, and dynamic BH3 profiling of apoptotic priming revealed that PIM1 prevents mitochondrial-mediated apoptosis in TNBC cell lines. In TNBC tumors and their cellular models, PIM1 expression was associated with several transcriptional signatures involving the transcription factor MYC, and PIM1 depletion in TNBC cell lines decreased, in a MYC-dependent manner, cell population growth and expression of the MYC target gene MCL1. Treatment with the pan-PIM kinase inhibitor AZD1208 impaired the growth of both cell line and patient-derived xenografts and sensitized them to standard-of-care chemotherapy. This work identifies PIM1 as a malignant-cell-selective target in TNBC and the potential use of PIM1 inhibitors for sensitizing TNBC to chemotherapy-induced apoptotic cell death.
Collapse
Affiliation(s)
- Fara Brasó-Maristany
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Simone Filosto
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Steven Catchpole
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Rebecca Marlow
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Jelmar Quist
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK.,Cancer Bioinformatics, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Erika Francesch-Domenech
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Darren A Plumb
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Leila Zakka
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Patrycja Gazinska
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Gianmaria Liccardi
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Pascal Meier
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Albert Gris-Oliver
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Maggie Chon U Cheang
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Anna Perdrix-Rosell
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Manar Shafat
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Elodie Noël
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Nirmesh Patel
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | | | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pau Castel
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Farzana Noor
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Richard Buus
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Sumi Mathew
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Johnathan Watkins
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Pierfrancesco Marra
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Anita Grigoriadis
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK.,Cancer Bioinformatics, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Andrew N Tutt
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK.,Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| |
Collapse
|
88
|
Abstract
Ubiquitination plays a key and complex role in the regulation of c-Myc stability, transactivation, and oncogenic activity. c-Myc is ubiquitinated by a number of ubiquitin ligases (E3s), such as SCF(Fbw7) and SCF(Skp2). Depending on the E3s, ubiquitination can either positively or negatively regulate c-Myc levels and activity. Meanwhile, c-Myc ubiquitination can be reversed by deubiquitination. An early study showed that USP28 deubiquitinates c-Myc via interacting with Fbw7α whereas a recent study reveals that USP37 deubiquitinates c-Myc independently of Fbw7 and c-Myc phosphorylation. Consequently, both USP28 and USP37 stabilize c-Myc and enhance its activity. We recently found the nucleolar USP36 as a novel c-Myc deubiquitinase that controls the end-point of c-Myc degradation pathway in the nucleolus. Here we briefly review the current understanding of ubiquitination and deubiquitination regulation of c-Myc and further discuss the USP36-c-Myc regulatory pathway.
Collapse
Affiliation(s)
- Xiao-Xin Sun
- a Departments of Molecular & Medical Genetics ; School of Medicine and the OHSU Knight Cancer Institute; Oregon Health & Science University ; Portland , OR USA
| | - Rosalie C Sears
- a Departments of Molecular & Medical Genetics ; School of Medicine and the OHSU Knight Cancer Institute; Oregon Health & Science University ; Portland , OR USA
| | - Mu-Shui Dai
- a Departments of Molecular & Medical Genetics ; School of Medicine and the OHSU Knight Cancer Institute; Oregon Health & Science University ; Portland , OR USA
| |
Collapse
|
89
|
MYC-nick promotes cell migration by inducing fascin expression and Cdc42 activation. Proc Natl Acad Sci U S A 2016; 113:E5481-90. [PMID: 27566402 DOI: 10.1073/pnas.1610994113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
MYC-nick is a cytoplasmic, transcriptionally inactive member of the MYC oncoprotein family, generated by a proteolytic cleavage of full-length MYC. MYC-nick promotes migration and survival of cells in response to chemotherapeutic agents or withdrawal of glucose. Here we report that MYC-nick is abundant in colonic and intestinal tumors derived from mouse models with mutations in the Wnt, TGF-β, and PI3K pathways. Moreover, MYC-nick is elevated in colon cancer cells deleted for FBWX7, which encodes the major E3 ligase of full-length MYC frequently mutated in colorectal cancers. MYC-nick promotes the migration of colon cancer cells assayed in 3D cultures or grown as xenografts in a zebrafish metastasis model. MYC-nick accelerates migration by activating the Rho GTPase Cdc42 and inducing fascin expression. MYC-nick, fascin, and Cdc42 are frequently up-regulated in cells present at the invasive front of human colorectal tumors, suggesting a coordinated role for these proteins in tumor migration.
Collapse
|
90
|
Jin YJ, Wang S, Cho J, Selim MA, Wright T, Mosialos G, Zhang JY. Epidermal CYLD inactivation sensitizes mice to the development of sebaceous and basaloid skin tumors. JCI Insight 2016; 1. [PMID: 27478875 DOI: 10.1172/jci.insight.86548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The deubiquitinase-encoding gene Cyld displays a dominant genetic linkage to a wide spectrum of skin-appendage tumors, which could be collectively designated as CYLD mutant-syndrome (CYLDm-syndrome). Despite recent advances, little is understood about the molecular mechanisms responsible for this painful and difficult-to-treat skin disease. Here, we generated a conditional mouse model with epidermis-targeted expression of a catalytically deficient CYLDm through K14-Cre-mediated deletion of exon 9 (hereafter refer to CyldEΔ9/Δ9 ). CyldEΔ9/Δ9 mice were born alive but developed hair and sebaceous gland abnormalities and dental defects at 100% and 60% penetrance, respectively. Upon topical challenge with DMBA/TPA, these animals primarily developed sebaceous and basaloid tumors resembling human CYLDm-syndrome as opposed to papilloma, which is most commonly induced in WT mice by this treatment. Molecular analysis revealed that TRAF6-K63-Ubiquitination (K63-Ub), c-Myc-K63-Ub, and phospho-c-Myc (S62) were markedly elevated in CyldEΔ9/Δ9 skin. Topical treatment with a pharmacological c-Myc inhibitor induced sebaceous and basal cell apoptosis in CyldEΔ9/Δ9 skin. Consistently, c-Myc activation was readily detected in human cylindroma and sebaceous adenoma. Taken together, our findings demonstrate that CyldEΔ9/Δ9 mice represent a disease-relevant animal model and identify TRAF6 and c-Myc as potential therapeutic targets for CYLDm-syndrome.
Collapse
Affiliation(s)
- Yingai Jane Jin
- Department of Dermatology, Duke University, Duke University Medical Center, Durham, North Carolina, USA
| | - Sally Wang
- Department of Dermatology, Duke University, Duke University Medical Center, Durham, North Carolina, USA
| | - Joshua Cho
- Department of Dermatology, Duke University, Duke University Medical Center, Durham, North Carolina, USA
| | - M Angelica Selim
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Tim Wright
- Dental School, University North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University, Duke University Medical Center, Durham, North Carolina, USA; Department of Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
91
|
Xu-Monette ZY, Deng Q, Manyam GC, Tzankov A, Li L, Xia Y, Wang XX, Zou D, Visco C, Dybkær K, Li J, Zhang L, Liang H, Montes-Moreno S, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, van Krieken JH, Huh J, Ponzoni M, Ferreri AJM, Parsons BM, Møller MB, Wang SA, Miranda RN, Piris MA, Winter JN, Medeiros LJ, Li Y, Young KH. Clinical and Biologic Significance of MYC Genetic Mutations in De Novo Diffuse Large B-cell Lymphoma. Clin Cancer Res 2016; 22:3593-3605. [PMID: 26927665 PMCID: PMC4947447 DOI: 10.1158/1078-0432.ccr-15-2296] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/09/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE MYC is a critical driver oncogene in many cancers, and its deregulation in the forms of translocation and overexpression has been implicated in lymphomagenesis and progression of diffuse large B-cell lymphoma (DLBCL). The MYC mutational profile and its roles in DLBCL are unknown. This study aims to determine the spectrum of MYC mutations in a large group of patients with DLBCL, and to evaluate the clinical significance of MYC mutations in patients with DLBCL treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) immunochemotherapy. EXPERIMENTAL DESIGN We identified MYC mutations in 750 patients with DLBCL using Sanger sequencing and evaluated the prognostic significance in 602 R-CHOP-treated patients. RESULTS The frequency of MYC mutations was 33.3% at the DNA level (mutations in either the coding sequence or the untranslated regions) and 16.1% at the protein level (nonsynonymous mutations). Most of the nonsynonymous mutations correlated with better survival outcomes; in contrast, T58 and F138 mutations (which were associated with MYC rearrangements), as well as several mutations occurred at the 3' untranslated region, correlated with significantly worse survival outcomes. However, these mutations occurred infrequently (only in approximately 2% of DLBCL). A germline SNP encoding the Myc-N11S variant (observed in 6.5% of the study cohort) was associated with significantly better patient survival, and resulted in reduced tumorigenecity in mouse xenografts. CONCLUSIONS Various types of MYC gene mutations are present in DLBCL and show different impact on Myc function and clinical outcomes. Unlike MYC gene translocations and overexpression, most MYC gene mutations may not have a role in driving lymphomagenesis. Clin Cancer Res; 22(14); 3593-605. ©2016 AACR.
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qipan Deng
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ling Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yi Xia
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiao-Xiao Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dehui Zou
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - April Chiu
- Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Attilio Orazi
- Weill Medical College of Cornell University, New York, New York
| | - Youli Zu
- The Methodist Hospital, Houston, Texas
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, New York
| | - Kristy L Richards
- University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | - William W L Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - J Han van Krieken
- Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | - Ben M Parsons
- Gundersen Lutheran Health System, La Crosse, Wisconsin
| | | | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Miguel A Piris
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yong Li
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio.
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
92
|
Kim WE, Yue B, Serrero G. Signaling Pathway of GP88 (Progranulin) in Breast Cancer Cells: Upregulation and Phosphorylation of c-myc by GP88/Progranulin in Her2-Overexpressing Breast Cancer Cells. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 9:71-7. [PMID: 27168723 PMCID: PMC4859449 DOI: 10.4137/bcbcr.s29371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/08/2016] [Accepted: 03/06/2016] [Indexed: 12/16/2022]
Abstract
Her2 is a receptor tyrosine kinase overexpressed in 25% of breast tumors. We have shown that the 88 kDa autocrine growth and survival factor GP88 (progranulin) stimulated Her2 phosphorylation and proliferation and conferred Herceptin resistance in Her2-overexpressing cells. Herein, we report that GP88 stimulates c-myc phosphorylation and upregulates c-myc levels in Her2-overexpressing cells. c-myc phosphorylation and upregulation by GP88 were not observed in non-Her2-overexpressing breast cancer cells. c-myc activation was inhibited upon treatment with ERK, PI3 kinase, and c-src pathway inhibitors, U0126, LY294002, and PP2. GP88 also stimulated c-src phosphorylation, a known upstream regulator of c-myc. Thus, we describe here a signaling pathway for GP88 in Her2-overexpressing cells, with GP88 stimulating Src phosphorylation, followed by phosphorylation and upregulation of c-myc. These data would suggest that targeting GP88 could provide a novel treatment approach in breast cancer.
Collapse
Affiliation(s)
- Wes E Kim
- A&G Pharmaceutical Inc., Columbia, MD, USA
| | - Binbin Yue
- A&G Pharmaceutical Inc., Columbia, MD, USA
| | - Ginette Serrero
- A&G Pharmaceutical Inc., Columbia, MD, USA.; Member of the Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
93
|
Jo MJ, Paek AR, Choi JS, Ok CY, Jeong KC, Lim JH, Kim SH, You HJ. Regulation of cancer cell death by a novel compound, C604, in a c-Myc-overexpressing cellular environment. Eur J Pharmacol 2015; 769:257-65. [PMID: 26607468 DOI: 10.1016/j.ejphar.2015.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/06/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022]
Abstract
The proto-oncogene c-Myc has been implicated in a variety of cellular processes, such as proliferation, differentiation and apoptosis. Several c-Myc targets have been studied; however, selective regulation of c-Myc is not easy in cancer cells. Herein, we attempt to identify chemical compounds that induce cell death in c-Myc-overexpressing cells (STF-cMyc and STF-Control) by conducting MTS assays on approximately 4000 chemical compounds. One compound, C604, induced cell death in STF-cMyc cells but not STF-Control cells. Apoptotic proteins, including caspase-3 and poly(ADP-ribose) polymerase (PARP), were cleaved in C604-treated STF-cMyc cells. In addition, SW620, HCT116 and NCI-H23 cells, which exhibit higher basal levels of c-Myc, underwent apoptotic cell death in response to C604, suggesting a role for C604 as an inducer of apoptosis in cancer cells with c-Myc amplification. C604 induced cell cycle arrest at the G2/M phase in cells, which was not affected by apoptotic inhibitors. Interestingly, C604 induced accumulation of c-Myc and Cdc25A proteins. In summary, a chemical compound was identified that may induce cell death in cancer cells with c-Myc amplification specifically through an apoptotic pathway.
Collapse
Affiliation(s)
- Mun Jeong Jo
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - A Rome Paek
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Ji Seung Choi
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Chang Youp Ok
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Kyung Chae Jeong
- Biomolecular Function Research Branch, Division of Convergence Technology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Seok Hyun Kim
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea
| | - Hye Jin You
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi, South Korea.
| |
Collapse
|
94
|
Pre-Anchoring of Pin1 to Unphosphorylated c-Myc in a Fuzzy Complex Regulates c-Myc Activity. Structure 2015; 23:2267-2279. [PMID: 26655473 DOI: 10.1016/j.str.2015.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022]
Abstract
Hierarchic phosphorylation and concomitant Pin1-mediated proline isomerization of the oncoprotein c-Myc controls its cellular stability and activity. However, the molecular basis for Pin1 recognition and catalysis of c-Myc and other multisite, disordered substrates in cell regulation and disease is unclear. By nuclear magnetic resonance, surface plasmon resonance, and molecular modeling, we show that Pin1 subdomains jointly pre-anchor unphosphorylated c-Myc1-88 in the Pin1 interdomain cleft in a disordered, or "fuzzy", complex at the herein named Myc Box 0 (MB0) conserved region N-terminal to the highly conserved Myc Box I (MBI). Ser62 phosphorylation in MBI intensifies previously transient MBI-Pin1 interactions in c-Myc1-88 binding, and increasingly engages Pin1PPIase and its catalytic region with maintained MB0 interactions. In cellular assays, MB0 mutated c-Myc shows decreased Pin1 interaction, increased protein half-life, but lowered rates of Myc-driven transcription and cell proliferation. We propose that dynamic Pin1 recognition of MB0 contributes to the regulation of c-Myc activity in cells.
Collapse
|
95
|
Rangarajan N, Fox Z, Singh A, Kulkarni P, Rangarajan G. Disorder, oscillatory dynamics and state switching: the role of c-Myc. J Theor Biol 2015; 386:105-14. [PMID: 26408335 DOI: 10.1016/j.jtbi.2015.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022]
Abstract
In this paper, using the intrinsically disordered oncoprotein Myc as an example, we present a mathematical model to help explain how protein oscillatory dynamics can influence state switching. Earlier studies have demonstrated that, while Myc overexpression can facilitate state switching and transform a normal cell into a cancer phenotype, its downregulation can reverse state-switching. A fundamental aspect of the model is that a Myc threshold determines cell fate in cells expressing p53. We demonstrate that a non-cooperative positive feedback loop coupled with Myc sequestration at multiple binding sites can generate bistable Myc levels. Normal quiescent cells with Myc levels below the threshold can respond to mitogenic signals to activate the cyclin/cdk oscillator for limited cell divisions but the p53/Mdm2 oscillator remains nonfunctional. In response to stress, the p53/Mdm2 oscillator is activated in pulses that are critical to DNA repair. But if stress causes Myc levels to cross the threshold, Myc inactivates the p53/Mdm2 oscillator, abrogates p53 pulses, and pushes the cyclin/cdk oscillator into overdrive sustaining unchecked proliferation seen in cancer. However, if Myc is downregulated, the cyclin/cdk oscillator is inactivated and the p53/Mdm2 oscillator is reset and the cancer phenotype is reversed.
Collapse
Affiliation(s)
| | - Zach Fox
- Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Abhyudai Singh
- Biomedical Engineering, University of Delaware, Newark, DE, USA; Electrical and Computer Engineering, University of Delaware, Newark, DE, USA
| | - Prakash Kulkarni
- Department of Urology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore, India; Centre for Neuroscience, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
96
|
Georgy SR, Cangkrama M, Srivastava S, Partridge D, Auden A, Dworkin S, McLean CA, Jane SM, Darido C. Identification of a Novel Proto-oncogenic Network in Head and Neck Squamous Cell Carcinoma. J Natl Cancer Inst 2015; 107:djv152. [PMID: 26063791 PMCID: PMC4836819 DOI: 10.1093/jnci/djv152] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 01/09/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The developmental transcription factor Grainyhead-like 3 (GRHL3) plays a critical tumor suppressor role in the mammalian epidermis through direct regulation of PTEN and the PI3K/AKT/mTOR signaling pathway. GRHL3 is highly expressed in all tissues derived from the surface ectoderm, including the oral cavity, raising a question about its potential role in suppression of head and neck squamous cell carcinoma (HNSCC). METHODS We explored the tumor suppressor role of Grhl3 in HNSCC using a conditional knockout (Grhl3 (∆/-) /K14Cre (+) ) mouse line (n = 26) exposed to an oral chemical carcinogen. We defined the proto-oncogenic pathway activated in the HNSCC derived from these mice and assessed it in primary human HNSCC samples, normal oral epithelial cell lines carrying shRNA to GRHL3, and human HNSCC cell lines. Data were analyzed with two-sided chi square and Student's t tests. RESULTS Deletion of Grhl3 in oral epithelium in mice did not perturb PTEN/PI3K/AKT/mTOR signaling, but instead evoked loss of GSK3B expression, resulting in stabilization and accumulation of c-MYC and aggressive HNSCC. This molecular signature was also evident in a subset of primary human HNSCC and HNSCC cell lines. Loss of Gsk3b in mice, independent of Grhl3, predisposed to chemical-induced HNSCC. Restoration of GSK3B expression blocked proliferation of normal oral epithelial cell lines carrying shRNA to GRHL3 (cell no., Day 8: Scramble ctl, 616±21.8 x 10(3) vs GRHL3-kd, 1194±44 X 10(3), P < .001; GRHL3-kd vs GRHL3-kd + GSK3B, 800±98.84 X 10(3), P = .003) and human HNSCC cells. CONCLUSIONS We defined a novel molecular signature in mammalian HNSCC, suggesting new treatment strategies targeting the GRHL3/GSK3B/c-MYC proto-oncogenic network.
Collapse
Affiliation(s)
- Smitha R Georgy
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| | - Michael Cangkrama
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| | - Seema Srivastava
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| | - Darren Partridge
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| | - Alana Auden
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| | - Sebastian Dworkin
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| | - Catriona A McLean
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| | - Stephen M Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ).
| | - Charbel Darido
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia (SRG, MC, SS, DP, AA, SD, SMJ, CD); Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia (CAM); Department of Hematology, Alfred Hospital, Prahran VIC 3181, Australia (SMJ)
| |
Collapse
|
97
|
Myant K, Qiao X, Halonen T, Come C, Laine A, Janghorban M, Partanen JI, Cassidy J, Ogg EL, Cammareri P, Laiterä T, Okkeri J, Klefström J, Sears RC, Sansom OJ, Westermarck J. Serine 62-Phosphorylated MYC Associates with Nuclear Lamins and Its Regulation by CIP2A Is Essential for Regenerative Proliferation. Cell Rep 2015; 12:1019-31. [PMID: 26235622 PMCID: PMC4535171 DOI: 10.1016/j.celrep.2015.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/24/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023] Open
Abstract
An understanding of the mechanisms determining MYC's transcriptional and proliferation-promoting activities in vivo could facilitate approaches for MYC targeting. However, post-translational mechanisms that control MYC function in vivo are poorly understood. Here, we demonstrate that MYC phosphorylation at serine 62 enhances MYC accumulation on Lamin A/C-associated nuclear structures and that the protein phosphatase 2A (PP2A) inhibitor protein CIP2A is required for this process. CIP2A is also critical for serum-induced MYC phosphorylation and for MYC-elicited proliferation induction in vitro. Complementary transgenic approaches and an intestinal regeneration model further demonstrated the in vivo importance of CIP2A and serine 62 phosphorylation for MYC activity upon DNA damage. However, targeting of CIP2A did not influence the normal function of intestinal crypt cells. These data underline the importance of nuclear organization in the regulation of MYC phosphorylation, leading to an in vivo demonstration of a strategy for inhibiting MYC activity without detrimental physiological effects.
Collapse
Affiliation(s)
- Kevin Myant
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Xi Qiao
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Pathology, University of Turku, 20520 Turku, Finland
| | - Tuuli Halonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Christophe Come
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Anni Laine
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Mahnaz Janghorban
- Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Johanna I Partanen
- Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | - John Cassidy
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Erinn-Lee Ogg
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | | | - Tiina Laiterä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Juha Okkeri
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Juha Klefström
- Research Programs Unit, Translational Cancer Biology and Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Owen J Sansom
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK.
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Pathology, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
98
|
Wiese KE, Haikala HM, von Eyss B, Wolf E, Esnault C, Rosenwald A, Treisman R, Klefström J, Eilers M. Repression of SRF target genes is critical for Myc-dependent apoptosis of epithelial cells. EMBO J 2015; 34:1554-71. [PMID: 25896507 PMCID: PMC4474530 DOI: 10.15252/embj.201490467] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 12/22/2022] Open
Abstract
Oncogenic levels of Myc expression sensitize cells to multiple apoptotic stimuli, and this protects long-lived organisms from cancer development. How cells discriminate physiological from supraphysiological levels of Myc is largely unknown. Here, we show that induction of apoptosis by Myc in breast epithelial cells requires association of Myc with Miz1. Gene expression and ChIP-Sequencing experiments show that high levels of Myc invade target sites that lack consensus E-boxes in a complex with Miz1 and repress transcription. Myc/Miz1-repressed genes encode proteins involved in cell adhesion and migration and include several integrins. Promoters of repressed genes are enriched for binding sites of the serum-response factor (SRF). Restoring SRF activity antagonizes Myc repression of SRF target genes, attenuates Myc-induced apoptosis, and reverts a Myc-dependent decrease in Akt phosphorylation and activity, a well-characterized suppressor of Myc-induced apoptosis. We propose that high levels of Myc engage Miz1 in repressive DNA binding complexes and suppress an SRF-dependent transcriptional program that supports survival of epithelial cells.
Collapse
Affiliation(s)
- Katrin E Wiese
- Biocenter Theodor Boveri Institute University of Würzburg, Würzburg, Germany
| | - Heidi M Haikala
- Faculty of Medicine, Cancer Cell Circuitry Laboratory, Translational Cancer Biology Research Program and Institute of Biomedicine Biomedicum Helsinki University of Helsinki, Helsinki, Finland
| | - Björn von Eyss
- Biocenter Theodor Boveri Institute University of Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Biocenter Theodor Boveri Institute University of Würzburg, Würzburg, Germany
| | - Cyril Esnault
- Cancer Research UK London Research Institute Lincoln's Inn Fields Laboratories Transcription Laboratory, London, UK
| | - Andreas Rosenwald
- Institute of Pathology University of Würzburg, Würzburg, Germany Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| | - Richard Treisman
- Cancer Research UK London Research Institute Lincoln's Inn Fields Laboratories Transcription Laboratory, London, UK
| | - Juha Klefström
- Faculty of Medicine, Cancer Cell Circuitry Laboratory, Translational Cancer Biology Research Program and Institute of Biomedicine Biomedicum Helsinki University of Helsinki, Helsinki, Finland
| | - Martin Eilers
- Biocenter Theodor Boveri Institute University of Würzburg, Würzburg, Germany Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| |
Collapse
|
99
|
Shai A, Dankort D, Juan J, Green S, McMahon M. TP53 Silencing Bypasses Growth Arrest of BRAFV600E-Induced Lung Tumor Cells in a Two-Switch Model of Lung Tumorigenesis. Cancer Res 2015; 75:3167-80. [PMID: 26001956 DOI: 10.1158/0008-5472.can-14-3701] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/03/2015] [Indexed: 01/29/2023]
Abstract
Lung carcinogenesis is a multistep process in which normal lung epithelial cells are converted to cancer cells through the sequential acquisition of multiple genetic or epigenetic events. Despite the utility of current genetically engineered mouse (GEM) models of lung cancer, most do not allow temporal dissociation of the cardinal events involved in lung tumor initiation and cancer progression. Here we describe a novel two-switch GEM model for BRAF(V600E)-induced lung carcinogenesis allowing temporal dissociation of these processes. In mice carrying a Flp recombinase-activated allele of Braf (Braf(FA)) in conjunction with Cre-regulated alleles of Trp53, Cdkn2a, or c-MYC, we demonstrate that secondary genetic events can promote bypass of the senescence-like proliferative arrest displayed by BRAF(V600E)-induced lung adenomas, leading to malignant progression. Moreover, restoring or activating TP53 in cultured BRAF(V600E)/TP53(Null) or BRAF(V600E)/INK4A-ARF(Null) lung cancer cells triggered a G1 cell-cycle arrest regardless of p19(ARF) status. Perhaps surprisingly, neither senescence nor apoptosis was observed upon TP53 restoration. Our results establish a central function for the TP53 pathway in restricting lung cancer development, highlighting the mechanisms that limit malignant progression of BRAF(V600E)-initiated tumors.
Collapse
Affiliation(s)
- Anny Shai
- Helen Diller Family Comprehensive Cancer Center and Department of Cell and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - David Dankort
- Helen Diller Family Comprehensive Cancer Center and Department of Cell and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Joseph Juan
- Helen Diller Family Comprehensive Cancer Center and Department of Cell and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Shon Green
- Helen Diller Family Comprehensive Cancer Center and Department of Cell and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Martin McMahon
- Helen Diller Family Comprehensive Cancer Center and Department of Cell and Molecular Pharmacology, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
100
|
Koh CM, Khattar E, Leow SC, Liu CY, Muller J, Ang WX, Li Y, Franzoso G, Li S, Guccione E, Tergaonkar V. Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. J Clin Invest 2015; 125:2109-22. [PMID: 25893605 PMCID: PMC4463203 DOI: 10.1172/jci79134] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/12/2015] [Indexed: 12/25/2022] Open
Abstract
Constitutively active MYC and reactivated telomerase often coexist in cancers. While reactivation of telomerase is thought to be essential for replicative immortality, MYC, in conjunction with cofactors, confers several growth advantages to cancer cells. It is known that the reactivation of TERT, the catalytic subunit of telomerase, is limiting for reconstituting telomerase activity in tumors. However, while reactivation of TERT has been functionally linked to the acquisition of several "hallmarks of cancer" in tumors, the molecular mechanisms by which this occurs and whether these mechanisms are distinct from the role of telomerase on telomeres is not clear. Here, we demonstrated that first-generation TERT-null mice, unlike Terc-null mice, show delayed onset of MYC-induced lymphomagenesis. We further determined that TERT is a regulator of MYC stability in cancer. TERT stabilized MYC levels on chromatin, contributing to either activation or repression of its target genes. TERT regulated MYC ubiquitination and proteasomal degradation, and this effect of TERT was independent of its reverse transcriptase activity and role in telomere elongation. Based on these data, we conclude that reactivation of TERT, a direct transcriptional MYC target in tumors, provides a feed-forward mechanism to potentiate MYC-dependent oncogenesis.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Enzyme Activation
- Feedback, Physiological
- Gene Expression Regulation, Neoplastic/genetics
- Genes, myc
- Glycogen Synthase Kinase 3/physiology
- Glycogen Synthase Kinase 3 beta
- Heterografts
- Humans
- Lymphoma, Non-Hodgkin/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/physiology
- Neoplasm Transplantation
- Phosphorylation
- Promoter Regions, Genetic
- Protein Processing, Post-Translational
- Protein Stability
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/physiology
- RNA/genetics
- RNA/physiology
- RNA Interference
- Telomerase/deficiency
- Telomerase/genetics
- Telomerase/physiology
- Telomere Homeostasis/genetics
- Time Factors
- Transcription, Genetic
- Ubiquitination
Collapse
Affiliation(s)
- Cheryl M. Koh
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
| | - Ekta Khattar
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shi Chi Leow
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chia Yi Liu
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Julius Muller
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
| | - Wei Xia Ang
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
| | - Yinghui Li
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Guido Franzoso
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Shang Li
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
- Department of Physiology and
| | - Ernesto Guccione
- Division of Cancer Genetics and Therapeutics, Laboratory of Methyltransferases in Development and Disease, and
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|