51
|
Thompson CA, DeLaForest A, Battle MA. Patterning the gastrointestinal epithelium to confer regional-specific functions. Dev Biol 2018; 435:97-108. [PMID: 29339095 PMCID: PMC6615902 DOI: 10.1016/j.ydbio.2018.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/01/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) tract, in simplest terms, can be described as an epithelial-lined muscular tube extending along the cephalocaudal axis from the oral cavity to the anus. Although the general architecture of the GI tract organs is conserved from end to end, the presence of different epithelial tissue structures and unique epithelial cell types within each organ enables each to perform the distinct digestive functions required for efficient nutrient assimilation. Spatiotemporal regulation of signaling pathways and downstream transcription factors controls GI epithelial morphogenesis during development to confer essential regional-specific epithelial structures and functions. Here, we discuss the fundamental functions of each GI tract organ and summarize the diversity of epithelial structures present along the cephalocaudal axis of the GI tract. Next, we discuss findings, primarily from genetic mouse models, that have defined the roles of key transcription factors during epithelial morphogenesis, including p63, SOX2, SOX15, GATA4, GATA6, HNF4A, and HNF4G. Additionally, we examine how the Hedgehog, WNT, and BMP signaling pathways contribute to defining unique epithelial features along the cephalocaudal axis of the GI tract. Lastly, we examine the molecular mechanisms controlling regionalized cytodifferentiation of organ-specific epithelial cell types within the GI tract, concentrating on the stomach and small intestine. The delineation of GI epithelial patterning mechanisms in mice has provided fundamental knowledge to guide the development and refinement of three-dimensional GI organotypic culture models such as those derived from directed differentiation of human pluripotent stem cells and those derived directly from human tissue samples. Continued examination of these pathways will undoubtedly provide vital insights into the mechanisms of GI development and disease and may afford new avenues for innovative tissue engineering and personalized medicine approaches to treating GI diseases.
Collapse
Affiliation(s)
- Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
52
|
Simutis FJ, Sanderson TP, Pilcher GD, Graziano MJ. Nonclinical Safety Assessment of the γ-Secretase Inhibitor Avagacestat. Toxicol Sci 2018. [DOI: 10.1093/toxsci/kfy048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Frank J Simutis
- Drug Safety Evaluation, Bristol-Myers Squibb Research and Development, New Brunswick, New Jersey 08903
| | - Thomas P Sanderson
- Drug Safety Evaluation, Bristol-Myers Squibb Research and Development, New Brunswick, New Jersey 08903
| | - Gary D Pilcher
- Drug Safety Evaluation, Bristol-Myers Squibb Research and Development, New Brunswick, New Jersey 08903
| | - Michael J Graziano
- Drug Safety Evaluation, Bristol-Myers Squibb Research and Development, New Brunswick, New Jersey 08903
| |
Collapse
|
53
|
Carlini M, Appetecchia M. Neuroendocrine Tumors: a Nosologic Framework. Updates Surg 2018. [DOI: 10.1007/978-88-470-3955-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
54
|
Rodrigues Sartori SS, Peixoto JV, Lopes VDPG, Barbosa AJA, Neves CA, Fonseca CC. Neuroendocrine structures of the small intestine of the capybara Hydrochoerus hydrochaeris (Mammalia, Rodentia). ANIM BIOL 2018. [DOI: 10.1163/15707563-17000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
A complex network of nerve fibers of the enteric nervous system and enteroendocrine cells is known to regulate the gastrointestinal tract. The distribution and frequency of the argyrophil, argentaffin and serotonin immunoreactive endocrine cells and of the submucosal and myenteric nervous ganglia were studied in the small intestine of the capybara Hydrochoerus hydrochaeris, aiming to verify the existence of possible numerical correlations between endocrine cells and nervous ganglia. Fragments of the duodenum, jejunum and ileum of adult animals were collected and processed according to routine histological techniques. To study the nervous ganglia, hematoxylin and eosin staining was used, while specific staining techniques were used to study the argyrophil, argentaffin and serotonin immunoreactive endocrine cells: Grimelius, modified Masson-Fontana and peroxidase anti-peroxidase, respectively. Endocrine cells were more abundant in the area of the crypts and, in relation to their morphology, ‘open type’ endocrine cells prevailed. The population of argyrophil cells was larger than that of argentaffin cells, and these cells were larger than serotonin immunoreactive cells. The frequency of endocrine cells was apparently greater in the duodenum, indicating the importance of this intestinal segment in digestive and absorptive functions. Prominent nervous ganglia were observed in the submucosal and myenteric plexi, and were larger and more frequent in the myenteric plexus. A numerical correlation was found among the endocrine cells (argentaffin and serotonin immunoreactive cells) and the myenteric nervous ganglia, suggesting the presence of physiological interactions among the endocrine and nervous systems for the control of intestinal activities. The findings in this study contribute to the understanding of the digestive processes of this species, which may also help in its conservation and future survival.
Collapse
Affiliation(s)
| | - Juliano Vogas Peixoto
- 2Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | | | - Alfredo José Afonso Barbosa
- 3Department of Pathological Anatomy and Legal Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Clóvis Andrade Neves
- 4Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Cláudio César Fonseca
- 5Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
55
|
Classification of Abdominal Neuroendocrine Tumors. Updates Surg 2018. [DOI: 10.1007/978-88-470-3955-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
56
|
El-Salhy M, Patcharatrakul T, Hatlebakk JG, Hausken T, Gilja OH, Gonlachanvit S. Enteroendocrine, Musashi 1 and neurogenin 3 cells in the large intestine of Thai and Norwegian patients with irritable bowel syndrome. Scand J Gastroenterol 2017; 52:1331-1339. [PMID: 28853300 DOI: 10.1080/00365521.2017.1371793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The prevalence, gender distribution and clinical presentation of IBS differ between Asian and Western countries. This study aimed at studying and comparing enteroendocrine, Musashi 1 (Msi 1) and neurogenin 3 (neurog 3) cells in Thai and Norwegian IBS patients. MATERIAL AND METHODS Thirty Thai and 61 Norwegian IBS patients as well as 20 Thai and 24 Norwegian controls were included. Biopsy samples were taken from each of the sigmoid colon and the rectum during a standard colonoscopy. The samples were immunostained for serotonin, peptide YY, oxyntomodulin, pancreatic polypeptide, somatostatin, Msi 1 and neurog 3. The densities of immunoreactive cells were determined with computerized image analysis. RESULTS The densities of several enteroendocrine cell types were altered in both the colon and rectum of both Thai and Norwegian IBS patients. Some of these changes were similar in Thai and Norwegian IBS patients, while others differed. CONCLUSIONS The findings of abnormal densities of the enteroendocrine cells in Thai patients support the notion that enteroendocrine cells are involved in the pathophysiology of IBS. The present observations highlight that IBS differs in Asian and Western countries, and show that the changes in large-intestine enteroendocrine cells in Thai and Norwegian IBS patients might be caused by different mechanisms.
Collapse
Affiliation(s)
- Magdy El-Salhy
- a Department of Medicine, Section for Gastroenterology , Stord Helse-Fonna Hospital , Stord , Norway.,b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine, National Centre for Functional Gastrointestinal Disorders , Haukeland University Hospital , Bergen , Norway
| | - Tanisa Patcharatrakul
- d Department of Medicine, GI Motility Research Unit, Division of Gastroenterology, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand.,e King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| | - Jan Gunnar Hatlebakk
- b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine, National Centre for Functional Gastrointestinal Disorders , Haukeland University Hospital , Bergen , Norway
| | - Trygve Hausken
- b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine, National Centre for Functional Gastrointestinal Disorders , Haukeland University Hospital , Bergen , Norway.,e King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| | - Odd Helge Gilja
- b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine, National Centre for Functional Gastrointestinal Disorders , Haukeland University Hospital , Bergen , Norway.,f Department of Medicine , National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital , Bergen , Norway
| | - Sutep Gonlachanvit
- d Department of Medicine, GI Motility Research Unit, Division of Gastroenterology, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand.,e King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| |
Collapse
|
57
|
Gassler N. Paneth cells in intestinal physiology and pathophysiology. World J Gastrointest Pathophysiol 2017; 8:150-160. [PMID: 29184701 PMCID: PMC5696613 DOI: 10.4291/wjgp.v8.i4.150] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/28/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023] Open
Abstract
Small intestinal mucosa is characterised by villus forming connective tissues with highly specialised surface lining epithelial cells essentially contributing to the establishment of the intestinal border. In order to perform these diverse functions, spatially distinct compartments of epithelial differentiation are found along the crypt-villus axis, including Paneth cells as a highly specialised cell type. Paneth cells locate in crypts and assist undifferentiated columnar cells, called crypt base columnar cells, and rapidly amplifying cells in the regeneration of absorptive and secretory cell types. There is some evidence that Paneth cells are involved in the configuration and function of the stem cell zone as well as intestinal morphogenesis and crypt fission. However, the flow of Paneth cells to crypt bottoms requires strong Wnt signalling guided by EphB3 and partially antagonised by Notch. In addition, mature Paneth cells are essential for the production and secretion of antimicrobial peptides including α-defensins/cryptdins. These antimicrobials are physiologically involved in shaping the composition of the microbiome. The autophagy related 16-like 1 (ATG16L1) is a genetic risk factor and is involved in the exocytosis pathway of Paneth cells as well as a linker molecule to PPAR signalling and lipid metabolism. There is evidence that injuries of Paneth cells are involved in the etiopathogenesis of different intestinal diseases. The review provides an overview of the key points of Paneth cell activities in intestinal physiology and pathophysiology.
Collapse
Affiliation(s)
- Nikolaus Gassler
- Institute of Pathology, RWTH Aachen University, Braunschweig 38114, Germany
| |
Collapse
|
58
|
Ballouhey Q, Richard L, Fourcade L, Ben Rhaiem I, Vallat JM, Sturtz F, Bourthoumieu S. Involvement of the enteroendocrine system in intestinal obstruction. PLoS One 2017; 12:e0186507. [PMID: 29091949 PMCID: PMC5665489 DOI: 10.1371/journal.pone.0186507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/03/2017] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Intestinal atresia, a rare congenital condition, is often associated with intestinal motility disorders despite adequate neonatal surgery. Previous studies have focused on changes in the enteric nervous system (ENS). We hypothesized that other components of the digestive tract could be involved in this condition. MATERIAL AND METHODS In a rat model of surgically-induced intestinal obstruction, a transcriptome analysis was performed to measure the global gene expression. Then, analyzes were focused on genes expressed in ENS and neuroendocrine cells. Rat fetus small intestines at different developmental stages (ED15, ED17, ED19 and ED21, (n = 22)) were studied as controls and compared to the upper and lower segments of small intestines from rat fetuses with surgically-induced obstruction (n = 14; ligature at ED18). The gene expression pattern was confirmed by immunohistochemistry, electron microscopy and RT-qPCR. RESULTS From ED15 to ED21, there was a physiological decrease in the gene expression of ENS markers and an increase in that of neuroendocrine genes. Regarding operated embryos, the changes in global gene expression were significantly higher in the proximal segment compared to the distal segment (18% vs. 9%). More precisely, a decrease in ENS gene expression and an increase in neuroendocrine gene expression were observed in the proximal segment compared to controls, indicating an accelerated maturation pattern. Immunohistochemistry and electron microscopy confirmed these findings. CONCLUSION Fetal intestinal obstruction seems to induce an accelerated maturation in the proximal segment. Moreover, neuroendocrine cells undergo significant unexpected changes, suggesting that ENS changes could be associated with other changes to induce intestinal motility disorders.
Collapse
Affiliation(s)
- Quentin Ballouhey
- EA6309 peripheral neuropathy, University of Medecine, Limoges, France
- Department of pediatric surgery, University Hospital, Limoges, France
- * E-mail: (QB); (SB)
| | - Laurence Richard
- EA6309 peripheral neuropathy, University of Medecine, Limoges, France
- Department of neurology, University Hospital, Limoges, France
| | - Laurent Fourcade
- EA6309 peripheral neuropathy, University of Medecine, Limoges, France
- Department of pediatric surgery, University Hospital, Limoges, France
| | - Ines Ben Rhaiem
- EA6309 peripheral neuropathy, University of Medecine, Limoges, France
| | - Jean Michel Vallat
- EA6309 peripheral neuropathy, University of Medecine, Limoges, France
- Department of neurology, University Hospital, Limoges, France
| | - Franck Sturtz
- EA6309 peripheral neuropathy, University of Medecine, Limoges, France
- Department of biochemistry and molecular genetic, University Hospital, Limoges, France
| | - Sylvie Bourthoumieu
- EA6309 peripheral neuropathy, University of Medecine, Limoges, France
- Department of histology, cytology and cytogenetic, University Hospital, Limoges, France
- * E-mail: (QB); (SB)
| |
Collapse
|
59
|
Abstract
Neuroendocrine neoplasms (NENs) are heterogeneous tumors with a common phenotype. There are two fundamentally different groups of NENs: well-differentiated, low-proliferating NENs, called neuroendocrine tumors (NETs) or carcinoids, and poorly differentiated, highly proliferating NENs, called small- or large-cell neuroendocrine carcinomas (NECs). This NEN dichotomy is probably due to an origin from different neuroendocrine progenitor cells. The current World Health Organization (WHO) classification of gastrointestinal NENs uses the Ki67 proliferation index to grade NETs as G1 or G2, and NECs as G3. In the pancreas, NETs and NECs may overlap in their proliferation index, making the distinction between them difficult and leading to therapeutic uncertainties. Therefore, the WHO classification of pancreatic NENs (PanNENs) from 2017 introduced a new NET G3 category. Helpful for the distinction of NETs G3 from NECs is the expression of p53 and rb1 that is usually negative in PanNETs. Comparison of the WHO classification of digestive system NENs with other NEN classifications reveals site-specific differences in terminology and a general lack of grading systems. However, all classifications recognize the existence of the two major NEN families and provide a general basis for their prognostic and therapeutic stratification. A development of a common NEN classification across organs is desirable.
Collapse
Affiliation(s)
- Günter Klöppel
- Consultation Center for Pancreatic and Endocrine Tumors, Institute of Pathology, Technical University München, Munich, Germany
| |
Collapse
|
60
|
Abstract
The pancreas is a complex organ with exocrine and endocrine components. Many pathologies impair exocrine function, including chronic pancreatitis, cystic fibrosis and pancreatic ductal adenocarcinoma. Conversely, when the endocrine pancreas fails to secrete sufficient insulin, patients develop diabetes mellitus. Pathology in either the endocrine or exocrine pancreas results in devastating economic and personal consequences. The current standard therapy for treating patients with type 1 diabetes mellitus is daily exogenous insulin injections, but cell sources of insulin provide superior glycaemic regulation and research is now focused on the goal of regenerating or replacing β cells. Stem-cell-based models might be useful to study exocrine pancreatic disorders, and mesenchymal stem cells or secreted factors might delay disease progression. Although the standards that bioengineered cells must meet before being considered as a viable therapy are not yet established, any potential therapy must be acceptably safe and functionally superior to current therapies. Here, we describe progress and challenges in cell-based methods to restore pancreatic function, with a focus on optimizing the site for cell delivery and decreasing requirements for immunosuppression through encapsulation. We also discuss the tools and strategies being used to generate exocrine pancreas and insulin-producing β-cell surrogates in situ and highlight obstacles to clinical application.
Collapse
|
61
|
El-Salhy M, Gilja OH. Abnormalities in ileal stem, neurogenin 3, and enteroendocrine cells in patients with irritable bowel syndrome. BMC Gastroenterol 2017; 17:90. [PMID: 28764761 PMCID: PMC5539900 DOI: 10.1186/s12876-017-0643-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
Background This study examined whether the densities of stem- and enteroendocrine cell progenitors are abnormal in the ileum of patients with irritable bowel syndrome (IBS), and whether any abnormalities in ileal enteroendocrine cells are correlated with abnormalities in stem cells and enteroendocrine cell progenitors. Methods One hundred and one IBS patients covering all IBS subtypes were recruited, and 39 non-IBS subjects were included as a control group. The patients and controls underwent standard colonoscopies, during which biopsy specimens were obtained from the ileum. The biopsy specimens were stained with hematoxylin-eosin and immunostained for Musashi-1 (Msi-1), neurogenin 3 (NEUROG3), chromogranin A (CgA), serotonin, peptide YY (PYY), oxyntomodulin (enteroglucagon), pancreatic polypeptide, and somatostatin. The immunoreactive cells were quantified by computerized image analysis. Results The densities of Msi-1, NEUROG3, CgA, and serotonin cells were reduced in all IBS patients and in patients with diarrhea-predominant IBS (IBS-D), mixed-diarrhea-and-constipation IBS (IBS-M), and constipation-predominant (IBS-C) relative to the control subjects. While the PYY cell density was increased in IBS-C relative to controls, it did not differ between control subjects and IBS-D and IBS-M patients. The densities of Msi-1 and NEUROG3 cells were strongly correlated with that of CgA cells. Conclusions The abnormalities in the ileal enteroendocrine cells appear to be caused by two mechanisms: (1) decreases in the clonogenic activity of the stem cells and in the endocrine-cell progenitors differentiating into enteroendocrine cells, and (2) switching on the expression of PYY and switching off the expression of certain other hormones in other types of the enteroendocrine cells.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, Box 4000, 54 09 Stord, Stord, Norway. .,Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway. .,National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Odd Helge Gilja
- Section for Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,National Centre for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
62
|
El-Salhy M, Solomon T, Hausken T, Gilja OH, Hatlebakk JG. Gastrointestinal neuroendocrine peptides/amines in inflammatory bowel disease. World J Gastroenterol 2017; 23:5068-5085. [PMID: 28811704 PMCID: PMC5537176 DOI: 10.3748/wjg.v23.i28.5068] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/15/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent condition whose etiology is unknown, and it includes ulcerative colitis, Crohn’s disease, and microscopic colitis. These three diseases differ in clinical manifestations, courses, and prognoses. IBD reduces the patients’ quality of life and is an economic burden to both the patients and society. Interactions between the gastrointestinal (GI) neuroendocrine peptides/amines (NEPA) and the immune system are believed to play an important role in the pathophysiology of IBD. Moreover, the interaction between GI NEPA and intestinal microbiota appears to play also a pivotal role in the pathophysiology of IBD. This review summarizes the available data on GI NEPA in IBD, and speculates on their possible role in the pathophysiology and the potential use of this information when developing treatments. GI NEPA serotonin, the neuropeptide Y family, and substance P are proinflammatory, while the chromogranin/secretogranin family, vasoactive intestinal peptide, somatostatin, and ghrelin are anti-inflammatory. Several innate and adaptive immune cells express these NEPA and/or have receptors to them. The GI NEPA are affected in patients with IBD and in animal models of human IBD. The GI NEPA are potentially useful for the diagnosis and follow-up of the activity of IBD, and are candidate targets for treatments of this disease.
Collapse
|
63
|
Hartenstein V, Takashima S, Hartenstein P, Asanad S, Asanad K. bHLH proneural genes as cell fate determinants of entero-endocrine cells, an evolutionarily conserved lineage sharing a common root with sensory neurons. Dev Biol 2017; 431:36-47. [PMID: 28751238 DOI: 10.1016/j.ydbio.2017.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 01/02/2023]
Abstract
Entero-endocrine cells involved in the regulation of digestive function form a large and diverse cell population within the intestinal epithelium of all animals. Together with absorptive enterocytes and secretory gland cells, entero-endocrine cells are generated by the embryonic endoderm and, in the mature animal, from a pool of endoderm derived, self-renewing stem cells. Entero-endocrine cells share many structural/functional and developmental properties with sensory neurons, which hints at the possibility of an ancient evolutionary relationship between these two cell types. We will survey in this article recent findings that emphasize the similarities between entero-endocrine cells and sensory neurons in vertebrates and insects, for which a substantial volume of data pertaining to the entero-endocrine system has been compiled. We will then report new findings that shed light on the specification and morphogenesis of entero-endocrine cells in Drosophila. In this system, presumptive intestinal stem cells (pISCs), generated during early metamorphosis, undergo several rounds of mitosis that produce the endocrine cells and stem cells (ISCs) with which the fly is born. Clonal analysis demonstrated that individual pISCs can give rise to endocrine cells expressing different types of peptides. Immature endocrine cells start out as unpolarized cells located basally of the gut epithelium; they each extend an apical process into the epithelium which establishes a junctional complex and apical membrane specializations contacting the lumen of the gut. Finally, we show that the Drosophila homolog of ngn3, a bHLH gene that defines the entero-endocrine lineage in mammals, is expressed and required for the differentiation of this cell type in the fly gut.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA.
| | - Shigeo Takashima
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Parvana Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Samuel Asanad
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Kian Asanad
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
64
|
El-Salhy M, Ystad SO, Mazzawi T, Gundersen D. Dietary fiber in irritable bowel syndrome (Review). Int J Mol Med 2017; 40:607-613. [PMID: 28731144 PMCID: PMC5548066 DOI: 10.3892/ijmm.2017.3072] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder. It is widely believed that IBS is caused by a deficient intake of dietary fiber, and most physicians recommend that patients with IBS increase their intake of dietary fiber in order to relieve their symptoms. However, different types of dietary fiber exhibit marked differences in physical and chemical properties, and the associated health benefits are specific for each fiber type. Short-chain soluble and highly fermentable dietary fiber, such as oligosaccharides results in rapid gas production that can cause abdominal pain/discomfort, abdominal bloating/distension and flatulence in patients with IBS. By contrast, long-chain, intermediate viscous, soluble and moderately fermentable dietary fiber, such as psyllium results in a low gas production and the absence of the symptoms related to excessive gas production. The effects of type of fiber have been documented in the management of IBS, and it is known to improve the overall symptoms in patients with IBS. Dietary fiber acts on the gastrointestinal tract through several mechanisms, including increased fecal mass with mechanical stimulation/irritation of the colonic mucosa with increasing secretion and peristalsis, and the actions of fermentation byproducts, particularly short-chain fatty acids, on the intestinal microbiota, immune system and the neuroendocrine system of the gastrointestinal tract. Fiber supplementation, particularly psyllium, is both safe and effective in improving IBS symptoms globally. Dietary fiber also has other health benefits, such as lowering blood cholesterol levels, improving glycemic control and body weight management.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, 5416 Stord, Norway
| | - Synne Otterasen Ystad
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, 5020 Bergen, Norway
| | - Tarek Mazzawi
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Doris Gundersen
- Department of Research and Innovation, Helse-Fonna, 5528 Haugesund, Norway
| |
Collapse
|
65
|
Casanova-Martí À, Serrano J, Blay MT, Terra X, Ardévol A, Pinent M. Acute selective bioactivity of grape seed proanthocyanidins on enteroendocrine secretions in the gastrointestinal tract. Food Nutr Res 2017; 61:1321347. [PMID: 28659730 PMCID: PMC5475339 DOI: 10.1080/16546628.2017.1321347] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/11/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Enteroendocrine cells respond to food components by secreting an array of hormones that regulate several functions. We have previously shown that grape seed proanthocyanidins (GSPE) modulate GLP-1 levels. Objective: To deepen on the knowledge of the mechanisms used by GSPE to increase GLP-1, and extend it to its role at modulation of other enterohormones. Design: We used an ex vivo system to test direct modulation of enterohormones; STC-1 cells to test pure phenolic compounds; and rats to test the effects at different gastrointestinal segments. Results: GSPE compounds act at several locations along the gastrointestinal tract modulating enterohormone secretion depending on the feeding condition. GSPE directly promotes GLP-1 secretion in the ileum, while unabsorbed/metabolized forms do so in the colon. Such stimulation requires the presence of glucose. GSPE enhanced GIP and reduced CCK secretion; gallic acid could be partly responsible for this effect. Conclusions: The activity of GSPE modulating enterohormone secretion may help to explain its effects on metabolism. GSPE acts through several mechanisms; its compounds and their metabolites are GLP-1 secretagogues in ileum and colon, respectively. In vivo GLP-1 secretion might also be mediated by indirect pathways involving modulation of other enterohormones that in turn regulate GLP-1 release.
Collapse
Affiliation(s)
- Àngela Casanova-Martí
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Joan Serrano
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - M Teresa Blay
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
66
|
Lu J, Lin L, Dong H, Meng X, Fang F, Wang Q, Huang L, Tan J. Protein therapy using MafA fused to a polyarginine transduction domain attenuates glucose levels of streptozotocin‑induced diabetic mice. Mol Med Rep 2017; 15:4041-4048. [PMID: 28487936 PMCID: PMC5436157 DOI: 10.3892/mmr.2017.6536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/21/2017] [Indexed: 12/02/2022] Open
Abstract
Ectopic expression of musculo aponeurotic fibrosarcoma BZIP transcription factor (Maf) A, has previously been demonstrated to induce insulin expression in non-β-cell lines. Protein transduction domains acting as an alternative delivery strategy may deliver heterogeneous proteins into cells. A sequence of 11 arginine residues (11R) has been demonstrated to act as a particularly efficient vector to introduce proteins into various cell types. The present study constructed 11R-fused MafA to achieve transduction of the protein into cellular membranes and subsequently examined the therapeutic effect of the MafA-11R protein in streptozotocin-induced diabetes. A small animal imaging system was used to demonstrate that 11R introduced proteins into cells. The MafA-11R protein was then injected into the tale vein of healthy male mice, and western blot analysis and immunofluorescence staining was performed to identify the location of the recombinant protein. Ameliorated hyperglycemia in the MafA-11R-treated diabetic mice was demonstrated via the improved intraperitoneal glucose tolerance test (IPGTT) and glucose-stimulated insulin release. Furthermore, insulin producing cells were detected in the jejunum of the MafA-11R treated mice. The results of the present study indicated that MafA-11R delivery may act as a novel and potential therapeutic strategy for the future and will not present adverse effects associated with viral vector-mediated gene therapies.
Collapse
Affiliation(s)
- Jun Lu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Lingjing Lin
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Huiyue Dong
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Xin Meng
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Fang Fang
- Department of Stomatology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Qinghua Wang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Lianghu Huang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Jianming Tan
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
67
|
El-Salhy M, Umezawa K, Hatlebakk JG, Gilja OH. Abnormal differentiation of stem cells into enteroendocrine cells in rats with DSS-induced colitis. Mol Med Rep 2017; 15:2106-2112. [PMID: 28259987 PMCID: PMC5364957 DOI: 10.3892/mmr.2017.6266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to determine whether there is an association between abnormalities in enteroendocrine cells in dextran sulfate sodium (DSS)-induced colitis and the clonogenic and/or proliferative activities of stem cells. A total of 48 male Wistar rats were divided into four groups. Animals in the control group were provided with normal drinking water, whereas DSS colitis was induced in the remaining three groups. The rats with DSS-induced colitis were randomized into the following three groups: i) DSS group, which received 0.5 ml 0.5% carboxymethyl cellulose (CMC; vehicle); ii) DSS-G group, which was treated with 3-[(dodecylthiocarbonyl)-methyl]-glutarimide at 20 mg/kg body weight in 0.5% CMC; and iii) DSS-Q group, which was treated with dehydroxymethylepoxyquinomicin at 15 mg/kg body weight in 0.5% CMC. Treatments were administered intraperitoneally twice daily for 5 days in all groups. Subsequently, tissue samples from the colon were stained with hematoxylin-eosin, or immunostained for chromogranin A (CgA), Musashi 1 (Msi1), Math-1, neurogenin 3 (Neurog3) and neurogenic differentiation D1 (NeuroD1). The densities of CgA, Msi1-, Math-1-, Neurog3- and NeuroD1-immunoreactive cells were determined. DTCM-G, and DHMEQ ameliorated the inflammation in DSS-induced colitis. The density of CgA-, Neurog3- and NeuroD1-immunoreactive cells was significantly higher in the DSS group compared with in the control group, and the density of CgA cells was correlated with the densities of Neurog3- and NeuroD1-immunoreactive cells. There were no significant differences in the densities of Msi1- and Math-1-immunoreactive cells among the four experimental groups. The elevated densities of enteroendocrine cells detected in DSS-induced colitis may be due to the increased differentiation of early enteroendocrine progenitors during secretory lineage. It is probable that the DSS-induced inflammatory processes trigger certain signaling pathways, which control differentiation of the stem-cell secretory lineage into mature enteroendocrine cells.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Hospital, 5409 Stord, Norway
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University, School of Medicine, Nagakute, Aichi 480‑1195, Japan
| | - Jan Gunnar Hatlebakk
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
| | - Odd Helge Gilja
- Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
| |
Collapse
|
68
|
Kim JY, Hong SM. Recent Updates on Neuroendocrine Tumors From the Gastrointestinal and Pancreatobiliary Tracts. Arch Pathol Lab Med 2017; 140:437-48. [PMID: 27128301 DOI: 10.5858/arpa.2015-0314-ra] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT -Gastrointestinal (GI) and pancreatobiliary tracts contain a variety of neuroendocrine cells that constitute a diffuse endocrine system. Neuroendocrine tumors (NETs) from these organs are heterogeneous tumors with diverse clinical behaviors. Recent improvements in the understanding of NETs from the GI and pancreatobiliary tracts have led to more-refined definitions of the clinicopathologic characteristics of these tumors. Under the 2010 World Health Organization classification scheme, NETs are classified as grade (G) 1 NETs, G2 NETs, neuroendocrine carcinomas, and mixed adenoneuroendocrine carcinomas. Histologic grades are dependent on mitotic counts and the Ki-67 labeling index. Several new issues arose after implementation of the 2010 World Health Organization classification scheme, such as issues with well-differentiated NETs with G3 Ki-67 labeling index and the evaluation of mitotic counts and Ki-67 labeling. Hereditary syndromes, including multiple endocrine neoplasia type 1 syndrome, von Hippel-Lindau syndrome, neurofibromatosis 1, and tuberous sclerosis, are related to NETs of the GI and pancreatobiliary tracts. Several prognostic markers of GI and pancreatobiliary tract NETs have been introduced, but many of them require further validation. OBJECTIVE -To understand clinicopathologic characteristics of NETs from the GI and pancreatobiliary tracts. DATA SOURCES -PubMed (US National Library of Medicine) reports were reviewed. CONCLUSIONS -In this review, we briefly summarize recent developments and issues related to NETs of the GI and pancreatobiliary tracts.
Collapse
Affiliation(s)
| | - Seung-Mo Hong
- From the Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea (Dr Kim); and the Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (Dr Hong)
| |
Collapse
|
69
|
Glucagon-like peptide-1 is co-localized with neurotensin in the chicken ileum. Cell Tissue Res 2017; 368:277-286. [PMID: 28108848 DOI: 10.1007/s00441-016-2561-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide (GLP)-1 and neurotensin (NT) are distributed throughout the chicken ileum. Here, we attempt to determine if GLP-1 and NT co-localize in the chicken ileum by using immunofluorescence, immunocytochemistry and in situ hybridization techniques. Three types of enteroendocrine cells, GLP-1+/NT+, GLP-1+/NT- and GLP-1-/NT+ cells, were detected in the mucosal epithelium by the double immunofluorescence method. The ratio of GLP-1+/NT+ cells at the crypts in the distal ileum was significantly higher than that in the proximal ileum. The ratios of the three cell types were similar along the crypt-villous axis in the proximal ileum but the percentage of GLP-1+/NT+ cells significantly decreased at the middle part of villi relative to crypts and the bottom part of villi in the distal ileum. Enteroendocrine cells that were immunoreactive to both GLP-1 and NT peptides and showed both proglucagon and NT precursor mRNA signals were found in the crypts of the distal ileum but not in the villous epithelium. The results from performing an immunocytochemical method with colloidal gold indicated that the GLP-1 content within GLP-1+/NT+ cell secretory granules decreased stepwise from the crypt to the middle part of the villus but the NT content in these granules increased in this direction. These findings reveal that the cells producing both GLP-1 and NT are mainly localized in the crypts of the chicken ileum but these endocrine cells specialize in NT-producing cells at the villous epithelium of the distal ileum.
Collapse
|
70
|
Burrin DG. Trophic Factors and Regulation of Gastrointestinal Tract and Liver Development. FETAL AND NEONATAL PHYSIOLOGY 2017:855-860.e1. [DOI: 10.1016/b978-0-323-35214-7.00086-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
71
|
Modarai SR, Opdenaker LM, Viswanathan V, Fields JZ, Boman BM. Somatostatin signaling via SSTR1 contributes to the quiescence of colon cancer stem cells. BMC Cancer 2016; 16:941. [PMID: 27927191 PMCID: PMC5142402 DOI: 10.1186/s12885-016-2969-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/23/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Neuroendocrine cells (NECs) reside adjacent to colonic stem cells (SCs) in the crypt stem cell (SC) niche, but how NECs are involved in regulation of SCs is unclear. We investigated NECs expressing somatostatin (SST) and somatostatin receptor type 1 (SSTR1) because SST inhibits intestinal proliferation. HYPOTHESIS SSTR1 cells maintain SCs in a quiescent state, and aberrant SST signaling contributes to SC overpopulation in colorectal cancer (CRC). METHODS The proportion of SCs to NECs cells was quantified, by flow cytometry, in CRC cell lines and primary normal/tumor tissues based on cellular ALDH and SSTR1 levels, respectively. Doubling time and sphere-formation was used to evaluate cell proliferation and stemness. CRC cell lines were treated with exogenous SST and SST inhibitor cyclosomatostatin (cycloSST) and analyzed for changes in SCs and growth rate. Paracrine signaling between NECs and SCs was ascertained using transwell cultures of ALDH+ and SSTR1+ cells. RESULTS In CRC cell lines, the proportion of ALDH+ cells inversely correlates with proportion of SSTR1+ cells and with rate of proliferation and sphere-formation. While primary normal tissue shows SST and SSTR1 expression, CRC shows only SSTR1 expression. Moreover, ALDH+ cells did not show SST or SSTR1 expression. Exogenous SST suppressed proliferation but not ALDH+ population size or viability. Inhibition of SSTR1 signaling, via cycloSST treatment, decreased cell proliferation, ALDH+ cell population size and sphere-formation. When co-cultured with SSTR1+ cells, sphere-formation and cell proliferation of ALDH+ cells was inhibited. CONCLUSION That each CRC cell line has a unique ALDH+/SSTR1+ ratio which correlates with its growth dynamics, suggests feedback mechanisms exist between SCs and NECs that contribute to regulation of SCs. The growth suppression by both SST and cycloSST treatments suggests that SST signaling modulates this feedback mechanism. The ability of SSTR1+ cells to decrease sphere formation and proliferation of ALDH+ cells in transwell cultures indicates that the ALDH subpopulation is regulated by SSTR1 via a paracrine mechanism. Since ALDH+ cells lack SST and SSTR1 expression, we conjecture that SST signaling controls the rate of NEC maturation as SCs mature along the NEC lineage, which contributes to quiescence of SCs and inhibition of proliferation.
Collapse
Affiliation(s)
- Shirin R Modarai
- Department of Biological Sciences, University of Delaware, 118 Wolf Hall, Newark, DE, 19716, USA.,Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Rd, Newark, DE, 19713, USA
| | - Lynn M Opdenaker
- Department of Biological Sciences, University of Delaware, 118 Wolf Hall, Newark, DE, 19716, USA.,Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Rd, Newark, DE, 19713, USA
| | - Vignesh Viswanathan
- Department of Biological Sciences, University of Delaware, 118 Wolf Hall, Newark, DE, 19716, USA
| | | | - Bruce M Boman
- Department of Biological Sciences, University of Delaware, 118 Wolf Hall, Newark, DE, 19716, USA. .,Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Rd, Newark, DE, 19713, USA.
| |
Collapse
|
72
|
Li F, Peng Y, Zhang M, Yang P, Qu S. Sleeve gastrectomy activates the GLP-1 pathway in pancreatic β cells and promotes GLP-1-expressing cells differentiation in the intestinal tract. Mol Cell Endocrinol 2016; 436:33-40. [PMID: 27436347 DOI: 10.1016/j.mce.2016.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/25/2016] [Accepted: 07/16/2016] [Indexed: 01/19/2023]
Abstract
Db/db mouse was used to study the underlying mechanisms by which Sleeve gastrectomy (SG) improves β-cell function. We investigated β-cell function, plasma active GLP-1 levels, the GLP-1R pathway in β cells and L cell differentiation. After SG, β-cell function was significantly increased, and the GLP-1R-PKCζ-PDX-1 pathway was active in β cells. Plasma active GLP-1 levels, as well as the number of L cells in the jejunum, were significantly increased after SG. The expression of early transcription factors (TF), including Ngn3, FoxA1 and Nkx2.2, was not compromised by chronic hyperglycemia. In contrast, the expression of the downstream TF PAX6 was affected, and this down-regulation could be reversed by SG. So, SG can maintain L cell differentiation, increase plasma active GLP-1 level, sustain the activation of the GLP-1R pathway and improve β cell function in Db/db mice. Our results show that SG can overall improve the function of the entero-insular axis.
Collapse
Affiliation(s)
- Feng Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, Shanghai, 200072, China.
| | - Ying Peng
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases and Shanghai Institute of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, 197 Rui-Jin 2nd Road, Shanghai, 200025, China
| | - Manna Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, Shanghai, 200072, China
| | - Peng Yang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, Shanghai, 200072, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, Shanghai, 200072, China.
| |
Collapse
|
73
|
Brooks L, Viardot A, Tsakmaki A, Stolarczyk E, Howard JK, Cani PD, Everard A, Sleeth ML, Psichas A, Anastasovskaj J, Bell JD, Bell-Anderson K, Mackay CR, Ghatei MA, Bloom SR, Frost G, Bewick GA. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol Metab 2016; 6:48-60. [PMID: 28123937 PMCID: PMC5220466 DOI: 10.1016/j.molmet.2016.10.011] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/24/2022] Open
Abstract
Objective Dietary supplementation with fermentable carbohydrate protects against body weight gain. Fermentation by the resident gut microbiota produces short-chain fatty acids, which act at free fatty acid receptor 2 (FFAR2). Our aim was to test the hypothesis that FFAR2 is important in regulating the beneficial effects of fermentable carbohydrate on body weight and to understand the role of gut hormones PYY and GLP-1. Methods Wild-type or Ffar2−/− mice were fed an inulin supplemented or control diet. Mice were metabolically characterized and gut hormone concentrations, enteroendocrine cell density measurements were carried out. Intestinal organoids and colonic cultures were utilized to substantiate the in vivo findings. Results We provide new mechanistic insight into how fermentable carbohydrate regulates metabolism. Using mice that lack FFAR2, we demonstrate that the fermentable carbohydrate inulin acts via this receptor to drive an 87% increase in the density of cells that produce the appetite-suppressing hormone peptide YY (PYY), reduce food intake, and prevent diet-induced obesity. Conclusion Our results demonstrate that FFAR2 is predominantly involved in regulating the effects of fermentable carbohydrate on metabolism and does so, in part, by enhancing PYY cell density and release. This highlights the potential for targeting enteroendocrine cell differentiation to treat obesity. Fermentable carbohydrate protects against diet-induced obesity via FFAR2. Fermentable carbohydrate increases GLP-1 cell density independently of FFAR2. FFAR2 signaling increases PYY cell density and circulating PYY concentration.
Collapse
Affiliation(s)
- Lucy Brooks
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, W12 0NN, UK
| | - Alexander Viardot
- Diabetes & Metabolism Division, Garvan Institute of Medical Research, Sydney-Darlinghurst, NSW, 2010, Australia
| | - Anastasia Tsakmaki
- Division of Diabetes and Nutritional Sciences, King's College London, London, SE1 9RT, UK
| | - Emilie Stolarczyk
- Division of Diabetes and Nutritional Sciences, King's College London, London, SE1 9RT, UK
| | - Jane K Howard
- Division of Diabetes and Nutritional Sciences, King's College London, London, SE1 9RT, UK
| | - Patrice D Cani
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Université catholique de Louvain, B-1200, Brussels, Belgium
| | - Amandine Everard
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Université catholique de Louvain, B-1200, Brussels, Belgium
| | - Michelle L Sleeth
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, W12 0NN, UK
| | - Arianna Psichas
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, W12 0NN, UK
| | - Jelena Anastasovskaj
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, London, W12 0NN, UK
| | - Jimmy D Bell
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, London, W12 0NN, UK
| | - Kim Bell-Anderson
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Charles R Mackay
- Charles Perkins Centre, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Department of Immunology, Monash University, Clayton, VIC, 3800, Australia
| | - Mohammad A Ghatei
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, W12 0NN, UK
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, W12 0NN, UK
| | - Gary Frost
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, W12 0NN, UK.
| | - Gavin A Bewick
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, W12 0NN, UK; Division of Diabetes and Nutritional Sciences, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
74
|
Onkoba N, Chimbari M, Kamau J, Mukaratirwa S. Metabolic and adaptive immune responses induced in mice infected with tissue-dwelling nematode Trichinella zimbabwensis. Open Vet J 2016; 6:178-184. [PMID: 27882304 PMCID: PMC5116437 DOI: 10.4314/ovj.v6i3.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022] Open
Abstract
Tissue-dwelling helminths are known to induce intestinal and systemic inflammation accompanied with host compensatory mechanisms to counter balance nutritional and metabolic deficiencies. The metabolic and immune responses of the host depend on parasite species and tissues affected by the parasite. This study investigated metabolic and immuno-inflammatory responses of mice infected with tissue-dwelling larvae of Trichinella zimbabwensis and explored the relationship between infection, metabolic parameters and Th1/Th17 immune responses. Sixty (60) female BALB/c mice aged between 6 to 8 weeks old were randomly assigned into T. zimbabwensis-infected and control groups. Levels of Th1 (interferon-γ) and Th17 (interleukin-17) cytokines, insulin and blood glucose were determined as well as measurements of body weight, food and water intake. Results showed that during the enteric phase of infection, insulin and IFN-γ levels were significantly higher in the Trichinella infected group accompanied with a reduction in the trends of food intake and weight loss compared with the control group. During systemic larval migration, trends in food and water intake were significantly altered and this was attributed to compensatory feeding resulting in weight gain, reduced insulin levels and increased IL-17 levels. Larval migration also induced a Th1/Th17 derived inflammatory response. It was concluded that T. zimbabwensis alters metabolic parameters by instigating host compensatory feeding. Furthermore, we showed for the first time that non-encapsulated T. zimbabwensis parasite plays a role in immunomodulating host Th1/Th17 type responses during chronic infection.
Collapse
Affiliation(s)
- N. Onkoba
- College of Health Sciences, School of Nursing and Public Health, University of KwaZulu-Natal (UKZN), Howard Campus, Durban, South Africa
- Tropical Infectious Diseases, Institute of Primate Research, Karen, Nairobi, Kenya
| | - M.J. Chimbari
- College of Health Sciences, School of Nursing and Public Health, University of KwaZulu-Natal (UKZN), Howard Campus, Durban, South Africa
| | - J.M. Kamau
- Tropical Infectious Diseases, Institute of Primate Research, Karen, Nairobi, Kenya
- School of Medicine, Department of Biochemistry, University of Nairobi, Kenya
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - S. Mukaratirwa
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
75
|
El-Salhy M, Mazzawi T, Umezawa K, Gilja OH. Enteroendocrine cells, stem cells and differentiation progenitors in rats with TNBS-induced colitis. Int J Mol Med 2016; 38:1743-1751. [PMID: 27779708 PMCID: PMC5117771 DOI: 10.3892/ijmm.2016.2787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD), as well as animal models of human IBD have abnormal enteroendocrine cells. The present study aimed to identify the possible mechanisms underlying these abnormalities. For this purpose, 40 male Wistar rats were divided into 4 groups as follows: the control group, the group with trinitrobenzene sulfonic acid (TNBS)-induced colitis with no treatment (TNBS group), the group with TNBS-induced colitis treated with 3-[(dodecylthiocarbonyl)-methyl]-glutarimide (DTCM-G; an activator protein-1 inhibitor) (DTCM-G group), and the group with TNBS-induced colitis treated with dehydroxymethylepoxyquinomicin (DHMEQ; a nuclear factor-κB inhibitor) treatment (DHMEQ group). Three days following the administration of TNBS, the rats were treated as follows: those in the control and TNBS groups received 0.5 ml of the vehicle [0.5% carboxymethyl cellulose (CMC)], those in the DTCM-G group received DTCM-G at 20 mg/kg body weight in 0.5% CMC, and those in the DHMEQ group received DHMEQ at 15 mg/kg body weight in 0.5% CMC. All injections were administered intraperitoneally twice daily for 5 days. The rats were then sacrificed, and tissue samples were taken from the colon. The tissue sections were stained with hemotoxylin-eosin and immunostained for chromogranin A (CgA), serotonin, peptide YY (PYY), oxyntomodulin, pancreatic polypeptide (PP), somatostatin, Musashi1 (Msi1), Math1, Neurogenin3 (Neurog3) and NeuroD1. The staining was quantified using image analysis software. The densities of CgA-, PYY-, PP-, Msi1-, Neurog3- and NeuroD1-positive cells were significantly lower in the TNBS group than those in the control group, while those of serotonin-, oxyntomodulin- and somatostatin-positive cells were significantly higher in the TNBS group than those in the control group. Treatment with either DTCM-G or DHMEQ restored the densities of enteroendocrine cells, stem cells and their progenitors to normal levels. It was thus concluded that the abnormalities in enteroendocrine cells and stem cells and their differentiation progenitors may be caused by certain signaling substances produced under inflammatory processes, resulting in changes in hormone expression in enteroendocrine cells. These substances may also interfere with the colonogenic activity and the differentiation of the stem-cell secretory lineage into mature enteroendocrine cells.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Division of Gastroenterology, Department of Medicine, Stord Helse-Fonna Hospital, 5416 Stord, Norway
| | - Tarek Mazzawi
- Division of Gastroenterology, Institute of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, School of Aichi Medical University, School of Medicine, Nagakute, 480-1195 Aichi, Japan
| | - Odd Helge Gilja
- Division of Gastroenterology, Institute of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
76
|
Teschendorff AE, Zheng SC, Feber A, Yang Z, Beck S, Widschwendter M. The multi-omic landscape of transcription factor inactivation in cancer. Genome Med 2016; 8:89. [PMID: 27562343 PMCID: PMC4997779 DOI: 10.1186/s13073-016-0342-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/05/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hypermethylation of transcription factor promoters bivalently marked in stem cells is a cancer hallmark. However, the biological significance of this observation for carcinogenesis is unclear given that most of these transcription factors are not expressed in any given normal tissue. METHODS We analysed the dynamics of gene expression between human embryonic stem cells, fetal and adult normal tissue, as well as six different matching cancer types. In addition, we performed an integrative multi-omic analysis of matched DNA methylation, copy number, mutational and transcriptomic data for these six cancer types. RESULTS We here demonstrate that bivalently and PRC2 marked transcription factors highly expressed in a normal tissue are more likely to be silenced in the corresponding tumour type compared with non-housekeeping genes that are also highly expressed in the same normal tissue. Integrative multi-omic analysis of matched DNA methylation, copy number, mutational and transcriptomic data for six different matching cancer types reveals that in-cis promoter hypermethylation, and not in-cis genomic loss or genetic mutation, emerges as the predominant mechanism associated with silencing of these transcription factors in cancer. However, we also observe that some silenced bivalently/PRC2 marked transcription factors are more prone to copy number loss than promoter hypermethylation, pointing towards distinct, mutually exclusive inactivation patterns. CONCLUSIONS These data provide statistical evidence that inactivation of cell fate-specifying transcription factors in cancer is an important step in carcinogenesis and that it occurs predominantly through a mechanism associated with promoter hypermethylation.
Collapse
Affiliation(s)
- Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- Statistical Cancer Genomics, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
- Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6BT, UK.
| | - Shijie C Zheng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Andy Feber
- Medical Genomics, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Zhen Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Martin Widschwendter
- Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6BT, UK
| |
Collapse
|
77
|
Massironi S, Zilli A, Cavalcoli F, Conte D, Peracchi M. Chromogranin A and other enteroendocrine markers in inflammatory bowel disease. Neuropeptides 2016; 58:127-134. [PMID: 26804239 DOI: 10.1016/j.npep.2016.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/10/2016] [Accepted: 01/10/2016] [Indexed: 02/08/2023]
Abstract
Changes in the distribution and products of enteroendocrine cells may play a role in immune activation and regulation of gut inflammation. This review aims at critically evaluating the main enteroendocrine markers in inflammatory bowel diseases (IBD). A narrative review was performed by searching inflammatory bowel diseases and enteroendocrine biomarkers in PubMed. Relevant modifications of some enteroendocrine markers, such as Chromogranin A, and their correlation with disease activity have been reported in patients with inflammatory bowel diseases. Even if data about neuroendocrine markers are sometimes contrasting, they may be potentially useful for the diagnosis and clinical management of these patients.
Collapse
Affiliation(s)
- Sara Massironi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Alessandra Zilli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Postgraduate School of Gastroenterology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Federica Cavalcoli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Postgraduate School of Gastroenterology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Dario Conte
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Postgraduate School of Gastroenterology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Maddalena Peracchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Postgraduate School of Gastroenterology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
78
|
Paneth cells in the developing gut: when do they arise and when are they immune competent? Pediatr Res 2016; 80:306-10. [PMID: 27049291 DOI: 10.1038/pr.2016.67] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Little is known about the perinatal development of Paneth cells (PCs) during gestation and the relation with necrotizing enterocolitis (NEC). We aimed to investigate when PCs arise and when they become immune competent during gestation. METHODS We included 57 samples of ileum tissue of fetuses/infants with a gestional age (GA) between 9 and 40 wk taken as part of a standard autopsy procedure. Hematoxylin-eosin staining and anti-human defensin 5 immunohistochemistry were performed. We performed a semi-quantitative assessment of (immune-competent) PC numbers per 10 crypts per tissue section per GA. RESULTS The number of PCs and the number of immune-competent PCs increased with increasing GA (Spearman's ρ = 0.41, P = 0.002 and ρ = 0.61, P < 0.001, respectively). Whereas significantly higher PC numbers were observed after 37 wk gestation (median 7, range 0-12) compared to preterm infants (median 0, range 0-15; P = 0.002), we counted higher numbers of immune-competent PCs already in infants with GA above 29 wk (median 6, range 0-18) compared to infants with GA under 29 wk (median 2, range 0-9; P < 0.001). CONCLUSION The significant increase of immune-competent PCs starting from a GA of 29 wk mimics the rise in incidence of NEC during a similar postmenstrual age in preterm infants.
Collapse
|
79
|
Vandamme T, Beyens M, de Beeck KO, Dogan F, van Koetsveld PM, Pauwels P, Mortier G, Vangestel C, de Herder W, Van Camp G, Peeters M, Hofland LJ. Long-term acquired everolimus resistance in pancreatic neuroendocrine tumours can be overcome with novel PI3K-AKT-mTOR inhibitors. Br J Cancer 2016; 114:650-8. [PMID: 26978006 PMCID: PMC4800296 DOI: 10.1038/bjc.2016.25] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/09/2016] [Accepted: 01/13/2016] [Indexed: 02/08/2023] Open
Abstract
Background: The mTOR-inhibitor everolimus improves progression-free survival in advanced pancreatic neuroendocrine tumours (PNETs). However, adaptive resistance to mTOR inhibition is described. Methods: QGP-1 and BON-1, two human PNET cell lines, were cultured with increasing concentrations of everolimus up to 22 weeks to reach a dose of 1 μM everolimus, respectively, 1000-fold and 250-fold initial IC50. Using total DNA content as a measure of cell number, growth inhibitory dose–response curves of everolimus were determined at the end of resistance induction and over time after everolimus withdrawal. Response to ATP-competitive mTOR inhibitors OSI-027 and AZD2014, and PI3K-mTOR inhibitor NVP-BEZ235 was studied. Gene expression of 10 PI3K-Akt-mTOR pathway-related genes was evaluated using quantitative real-time PCR (RT–qPCR). Results: Long-term everolimus-treated BON-1/R and QGP-1/R showed a significant reduction in everolimus sensitivity. During a drug holiday, gradual return of everolimus sensitivity in BON-1/R and QGP-1/R led to complete reversal of resistance after 10–12 weeks. Treatment with AZD2014, OSI-027 and NVP-BEZ235 had an inhibitory effect on cell proliferation in both sensitive and resistant cell lines. Gene expression in BON-1/R revealed downregulation of MTOR, RICTOR, RAPTOR, AKT and HIF1A, whereas 4EBP1 was upregulated. In QGP-1/R, a downregulation of HIF1A and an upregulation of ERK2 were observed. Conclusions: Long-term everolimus resistance was induced in two human PNET cell lines. Novel PI3K-AKT-mTOR pathway-targeting drugs can overcome everolimus resistance. Differential gene expression profiles suggest different mechanisms of everolimus resistance in BON-1 and QGP-1.
Collapse
Affiliation(s)
- Timon Vandamme
- Center of Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.,Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Dr Molewaterplein 40, 3015GD Rotterdam, The Netherlands
| | - Matthias Beyens
- Center of Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.,Center of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ken Op de Beeck
- Center of Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.,Center of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Fadime Dogan
- Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Dr Molewaterplein 40, 3015GD Rotterdam, The Netherlands
| | - Peter M van Koetsveld
- Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Dr Molewaterplein 40, 3015GD Rotterdam, The Netherlands
| | - Patrick Pauwels
- Department of Pathology, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Geert Mortier
- Center of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Christel Vangestel
- Department of Molecular Imaging, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Wouter de Herder
- Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Dr Molewaterplein 40, 3015GD Rotterdam, The Netherlands
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Marc Peeters
- Center of Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Leo J Hofland
- Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Dr Molewaterplein 40, 3015GD Rotterdam, The Netherlands
| |
Collapse
|
80
|
Li M, Du A, Xu J, Ma Y, Cao H, Yang C, Yang XD, Xing CG, Chen M, Zhu W, Zhang S, Cao J. Neurogenic differentiation factor NeuroD confers protection against radiation-induced intestinal injury in mice. Sci Rep 2016; 6:30180. [PMID: 27436572 PMCID: PMC4951798 DOI: 10.1038/srep30180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract, especially the small intestine, is particularly sensitive to radiation, and is prone to radiation-induced injury as a result. Neurogenic differentiation factor (NeuroD) is an evolutionarily-conserved basic helix-loop-helix (bHLH) transcription factor. NeuroD contains a protein transduction domain (PTD), which allows it to be exogenously delivered across the membrane of mammalian cells, whereupon its transcription activity can be unleashed. Whether NeuroD has therapeutic effects for radiation-induced injury remains unclear. In the present study, we prepared a NeuroD-EGFP recombinant protein, and explored its protective effects on the survival and intestinal damage induced by ionizing radiation. Our results showed that NeuroD-EGFP could be transduced into small intestine epithelial cells and tissues. NeuroD-EGFP administration significantly increased overall survival of mice exposed to lethal total body irradiation (TBI). This recombinant NeuroD also reduced radiation-induced intestinal mucosal injury and apoptosis, and improved crypt survival. Expression profiling of NeuroD-EGFP-treated mice revealed upregulation of tissue inhibitor of metalloproteinase 1 (TIMP-1), a known inhibitor of apoptosis in mammalian cells. In conclusion, NeuroD confers protection against radiation-induced intestinal injury, and provides a novel therapeutic clinical option for the prevention of intestinal side effects of radiotherapy and the treatment of victims of incidental exposure.
Collapse
Affiliation(s)
- Ming Li
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Aonan Du
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jing Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yanchao Ma
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Han Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chao Yang
- Department of Transfusion Medicine, The General Hospital of the PLA Rocket Force, Beijing 100088, China
| | - Xiao-Dong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun-Gen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ming Chen
- Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
81
|
D'Addio F, Fiorina P. Type 1 Diabetes and Dysfunctional Intestinal Homeostasis. Trends Endocrinol Metab 2016; 27:493-503. [PMID: 27185326 DOI: 10.1016/j.tem.2016.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/09/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022]
Abstract
Despite the relatively high frequency of gastrointestinal (GI) disorders in individuals with type 1 diabetes (T1D), termed diabetic enteropathy (DE), the pathogenic mechanisms of these disorders remain to be elucidated. While previous studies have assumed that DE is a manifestation of diabetic autonomic neuropathy, other contributing factors such as enteric hormones, inflammation, and microbiota were later recognized. More recently, the emerging role of intestinal stem cells (ISCs) in several GI diseases has led to a new understanding of DE. Given the absence of diagnostic methods and the lack of broadly efficacious therapeutic remedies in DE, targeting factors and pathways that control ISC homeostasis and are dysfunctional in DE may represent a new path for the detection and cure of DE.
Collapse
Affiliation(s)
- Francesca D'Addio
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Transplant Medicine, IRCCS Ospedale San Raffaele, Milan 20132, Italy
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Transplant Medicine, IRCCS Ospedale San Raffaele, Milan 20132, Italy.
| |
Collapse
|
82
|
Abstract
The symptom-based diagnosis of irritable bowel syndrome (IBS) has not been established in everyday clinical practice, and the diagnosis of this disorder remains one of exclusion. It has been demonstrated that the densities of duodenal chromogranin A, rectal peptide YY and somatostatin cells are good biomarkers for the diagnosis of sporadic IBS, and low-grade mucosal inflammation is a promising biomarker for the diagnosis of postinfectious IBS. Genetic markers are not useful as biomarkers for IBS since the potential risk genes have yet to be validated, and the intestinal microbiota cannot be used because of the lack of an association between a specific bacterial species and IBS. Furthermore, gastrointestinal dysmotility and visceral hypersensitivity tests produce results that are too nonconsistent and noncharacteristic to be used in the diagnosis of IBS. A combination of symptom-based assessment, exclusion of overlapping gastrointestinal diseases and positive biomarkers appears to be the best way to diagnose IBS.
Collapse
Affiliation(s)
- Magdy El-Salhy
- a Department of Medicine, Section for Gastroenterology, Stord Hospital, Stord, Norway
| |
Collapse
|
83
|
van Rijn JM, Schneeberger K, Wiegerinck CL, Nieuwenhuis EES, Middendorp S. Novel approaches: Tissue engineering and stem cells--In vitro modelling of the gut. Best Pract Res Clin Gastroenterol 2016; 30:281-93. [PMID: 27086891 DOI: 10.1016/j.bpg.2016.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/05/2016] [Indexed: 01/31/2023]
Abstract
In many intestinal diseases, the function of the epithelial lining is impaired. In this review, we describe the recent developments of in vitro intestinal stem cell cultures. When these stem cells are grown in 3D structures (organoids), they provide a model of the intestinal epithelium, which is closely similar to the growth and development of the in vivo gut. This model provides a new tool to study various diseases of malabsorption in functional detail and therapeutic applications, which could not be achieved with traditional cell lines. First, we describe the organization and function of the healthy small intestinal epithelium. Then, we discuss the establishment of organoid cultures and how these structures represent the healthy epithelium. Finally, we discuss organoid cultures as a tool for studying intrinsic properties of the epithelium, as a model for intestinal disease, and as a possible source for stem cell transplantations.
Collapse
Affiliation(s)
- Jorik M van Rijn
- Division of Pediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Regenerative Medicine Center Utrecht, Uppsalalaan 6, 3584 CT, Utrecht, The Netherlands
| | - Kerstin Schneeberger
- Division of Pediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Regenerative Medicine Center Utrecht, Uppsalalaan 6, 3584 CT, Utrecht, The Netherlands
| | - Caroline L Wiegerinck
- Division of Pediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Regenerative Medicine Center Utrecht, Uppsalalaan 6, 3584 CT, Utrecht, The Netherlands
| | - Edward E S Nieuwenhuis
- Division of Pediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Regenerative Medicine Center Utrecht, Uppsalalaan 6, 3584 CT, Utrecht, The Netherlands
| | - Sabine Middendorp
- Division of Pediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Regenerative Medicine Center Utrecht, Uppsalalaan 6, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
84
|
Ariyachet C, Tovaglieri A, Xiang G, Lu J, Shah MS, Richmond CA, Verbeke C, Melton DA, Stanger BZ, Mooney D, Shivdasani RA, Mahony S, Xia Q, Breault DT, Zhou Q. Reprogrammed Stomach Tissue as a Renewable Source of Functional β Cells for Blood Glucose Regulation. Cell Stem Cell 2016; 18:410-21. [PMID: 26908146 DOI: 10.1016/j.stem.2016.01.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/05/2015] [Accepted: 01/08/2016] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) epithelium is a highly regenerative tissue with the potential to provide a renewable source of insulin(+) cells after undergoing cellular reprogramming. Here, we show that cells of the antral stomach have a previously unappreciated propensity for conversion into functional insulin-secreting cells. Native antral endocrine cells share a surprising degree of transcriptional similarity with pancreatic β cells, and expression of β cell reprogramming factors in vivo converts antral cells efficiently into insulin(+) cells with close molecular and functional similarity to β cells. Induced GI insulin(+) cells can suppress hyperglycemia in a diabetic mouse model for at least 6 months and regenerate rapidly after ablation. Reprogramming of antral stomach cells assembled into bioengineered mini-organs in vitro yielded transplantable units that also suppressed hyperglycemia in diabetic mice, highlighting the potential for development of engineered stomach tissues as a renewable source of functional β cells for glycemic control.
Collapse
Affiliation(s)
- Chaiyaboot Ariyachet
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Alessio Tovaglieri
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Guanjue Xiang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jiaqi Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Manasvi S Shah
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Camilla A Richmond
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Catia Verbeke
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ben Z Stanger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ramesh A Shivdasani
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - David T Breault
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Qiao Zhou
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
85
|
Selective and reversible suppression of intestinal stem cell differentiation by pharmacological inhibition of BET bromodomains. Sci Rep 2016; 6:20390. [PMID: 26856877 PMCID: PMC4746593 DOI: 10.1038/srep20390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/31/2015] [Indexed: 12/13/2022] Open
Abstract
Absorptive and secretory cells of the small intestine are derived from a single population of Lgr5-expressing stem cells. While key genetic pathways required for differentiation into specific lineages have been defined, epigenetic programs contributing to this process remain poorly characterized. Members of the BET family of chromatin adaptors contain tandem bromodomains that mediate binding to acetylated lysines on target proteins to regulate gene expression. In this study, we demonstrate that mice treated with a small molecule inhibitor of BET bromodomains, CPI203, exhibit greater than 90% decrease in tuft and enteroendocrine cells in both crypts and villi of the small intestine, with no changes observed in goblet or Paneth cells. BET bromodomain inhibition did not alter the abundance of Lgr5-expressing stem cells in crypts, but rather exerted its effects on intermediate progenitors, in part through regulation of Ngn3 expression. When BET bromodomain inhibition was combined with the chemotherapeutic gemcitabine, pervasive apoptosis was observed in intestinal crypts, revealing an important role for BET bromodomain activity in intestinal homeostasis. Pharmacological targeting of BET bromodomains defines a novel pathway required for tuft and enteroendocrine differentiation and provides an important tool to further dissect the progression from stem cell to terminally differentiated secretory cell.
Collapse
|
86
|
Posovszky C, Wabitsch M. Regulation of appetite, satiation, and body weight by enteroendocrine cells. Part 1: characteristics of enteroendocrine cells and their capability of weight regulation. Horm Res Paediatr 2015; 83:1-10. [PMID: 25471008 DOI: 10.1159/000368898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/23/2014] [Indexed: 11/19/2022] Open
Abstract
The gastrointestinal tract is the gateway for food in our body. Food ingestion and the ensuing digestive processes depend on the composition and amount of ingested nutrients. This complex process of nutrient digestion and absorption is effectively regulated by the enteroendocrine system. Enteroendocrine cells (EECs) reside scattered throughout the intestinal epithelium. They express nutrient receptors that face the lumen and secrete peptide hormones in response to food. Besides regulating digestion, gastrointestinal endocrine cells are involved in the regulation of appetite and satiety. The first part of this review describes the anatomical and biological characteristics of EECs and discusses the capability of their hormones to influence appetite, satiety, and body weight. In the second part, we then discuss the therapeutic potential of EECs in the treatment of obesity.
Collapse
Affiliation(s)
- Carsten Posovszky
- University Outpatient Clinic for Pediatric Gastroenterology, and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | |
Collapse
|
87
|
Posovszky C, Wabitsch M. Regulation of appetite, satiation, and body weight by enteroendocrine cells. Part 2: therapeutic potential of enteroendocrine cells in the treatment of obesity. Horm Res Paediatr 2015; 83:11-8. [PMID: 25592084 DOI: 10.1159/000369555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
Obesity is an epidemic and medical issue. Investigating the pathways regulating appetite, food intake, and body weight is crucial to find strategies for the prevention and treatment of obesity. In the context of therapeutic strategies, we focus here on the potential of enteroendocrine cells (EECs) and their secreted hormones in the regulation of body weight. We review the role of the enteroendocrine system during weight loss after lifestyle intervention or after bariatric surgery. We discuss the therapeutic potential of EECs and their hormones as targets for new treatment strategies. In fact, targeting nutrient receptors of EECs with a nutritional approach, pharmaceutical agents or prebiotics delivered to the lumen may provide a promising new approach.
Collapse
Affiliation(s)
- Carsten Posovszky
- University Outpatient Clinic for Pediatric Gastroenterology and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | |
Collapse
|
88
|
Sampson LL, Davis AK, Grogg MW, Zheng Y. mTOR disruption causes intestinal epithelial cell defects and intestinal atrophy postinjury in mice. FASEB J 2015; 30:1263-75. [PMID: 26631481 DOI: 10.1096/fj.15-278606] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022]
Abstract
Intestinal stem cells (ISCs) drive small intestinal epithelial homeostasis and regeneration. Mechanistic target of rapamycin (mTOR) regulates stem and progenitor cell metabolism and is frequently dysregulated in human disease, but its physiologic functions in the mammalian small intestinal epithelium remain poorly defined. We disrupted the genes mTOR, Rptor, Rictor, or both Rptor and Rictor in mouse ISCs, progenitors, and differentiated intestinal epithelial cells (IECs) using Villin-Cre. Mutant tissues and wild-type or heterozygous littermate controls were analyzed by histologic immunostaining, immunoblots, and proliferation assays. A total of 10 Gy irradiation was used to injure the intestinal epithelium and induce subsequent crypt regeneration. We report that mTOR supports absorptive enterocytes and secretory Paneth and goblet cell function while negatively regulating chromogranin A-positive enteroendocrine cell number. Through additional Rptor, Rictor, and Rptor/Rictor mutant mouse models, we identify mechanistic target of rapamycin complex 1 as the major IEC regulatory pathway, but mechanistic target of rapamycin complex 2 also contributes to ileal villus maintenance and goblet cell size. Homeostatic adult small intestinal crypt cell proliferation, survival, and canonical wingless-int (WNT) activity are not mTOR dependent, but Olfm4(+) ISC/progenitor population maintenance and crypt regeneration postinjury require mTOR. Overall, we conclude that mTOR regulates multiple IEC lineages and promotes stem and progenitor cell activity during intestinal epithelium repair postinjury.
Collapse
Affiliation(s)
- Leesa L Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ashley K Davis
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew W Grogg
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
89
|
El-Salhy M, Hatlebakk JG, Hausken T. Reduction in duodenal endocrine cells in irritable bowel syndrome is associated with stem cell abnormalities. World J Gastroenterol 2015; 21:9577-9587. [PMID: 26327765 PMCID: PMC4548118 DOI: 10.3748/wjg.v21.i32.9577] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/09/2015] [Accepted: 04/03/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether the decreased density of duodenal endocrine cells in irritable bowel syndrome (IBS) is associated with abnormalities in stem cell differentiation.
METHODS: The study sample comprised 203 patients with IBS (180 females and 23 males with a mean age of 36 years) and a control group of 86 healthy subjects without gastrointestinal complaints (77 females and 9 males with a mean age of 38 years). The patients included 80 with mostly diarrhoea (IBS-D), 47 with both diarrhoea and constipation (IBS-M), and 76 with mostly constipation (IBS-C). Both the patients and controls underwent gastroscopy and four biopsy samples were taken from the descending part of the duodenum, proximal to the papilla of Vater. The biopsy samples were sectioned and immunostained for Musashi 1 (Msi-1), neurogenin 3 (NEUROG3), secretin, cholecystokinin (CCK), gastric inhibitory peptide (GIP), somatostatin and serotonin. Immunostaining was performed with an ultraView Universal DAB Detection Kit (v1.02.0018, Venata Medical Systems, Basal, Switzerland) using the BenchMark Ultra immunohistochemistry/in situ hybridization staining module (Venata Medical Systems). Endocrine cell densities were quantified by computerized image analysis using the Olympus cellSens imaging program.
RESULTS: The densities of Msi-1 and NEUROG3 cells were significantly lower in IBS patients, regardless of the subtype, than in the controls (77 ± 17 vs 8 ± 2; P = 0.0001, and 351 ± 33 vs 103 ± 22; P = 0.00002, respectively). Furthermore, the densities of secretin, and CCK cells were significantly lower in patients with diarrhoea as the predominant IBS symptom (IBS-D) than in the controls (161 ± 11 vs 88 ± 8; P = 0.00007, and 325 ± 41 vs 118 ± 10; P = 0.00006, respectively), but not in patients with constipation as the predominant IBS symptom (IBS-C) or those with both diarrhoea and constipation (IBS-M). The GIP cell density was significantly reduced in both IBS-D (152 ± 12 vs 82 ± 7; P = 0.00003), and IBS-C (152 ± 12 vs 107 ± 8; P = 0.01), but not in IBS-M. The densities of somatostatin cells in the controls and the IBS-total, IBS-D, IBS-M and IBS-C patients were 81 ± 8, 28 ± 3, 20 ± 4, 37 ± 5 and 28 ± 4 cells/mm2 epithelium, respectively. The density of somatostatin cells was lower in IBS-total, IBS-D, IBS-M and IBS-C patients than in the controls (P = 0.00009, 0.00006, 0.009 and 0.00008, respectively). The density of serotonin cells did not differ between IBS patients and controls.
CONCLUSION: The reduction in duodenal endocrine cells in IBS patients found in this study is probably attributable to the reduction in cells expressing Msi-1 and NEUROG3.
Collapse
|
90
|
Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers H, van Oudenaarden A. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 2015; 525:251-5. [PMID: 26287467 DOI: 10.1038/nature14966] [Citation(s) in RCA: 845] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 07/23/2015] [Indexed: 12/16/2022]
Abstract
Understanding the development and function of an organ requires the characterization of all of its cell types. Traditional methods for visualizing and isolating subpopulations of cells are based on messenger RNA or protein expression of only a few known marker genes. The unequivocal identification of a specific marker gene, however, poses a major challenge, particularly if this cell type is rare. Identifying rare cell types, such as stem cells, short-lived progenitors, cancer stem cells, or circulating tumour cells, is crucial to acquire a better understanding of normal or diseased tissue biology. To address this challenge we first sequenced the transcriptome of hundreds of randomly selected cells from mouse intestinal organoids, cultured self-organizing epithelial structures that contain all cell lineages of the mammalian intestine. Organoid buds, like intestinal crypts, harbour stem cells that continuously differentiate into a variety of cell types, occurring at widely different abundances. Since available computational methods can only resolve more abundant cell types, we developed RaceID, an algorithm for rare cell type identification in complex populations of single cells. We demonstrate that this algorithm can resolve cell types represented by only a single cell in a population of randomly sampled organoid cells. We use this algorithm to identify Reg4 as a novel marker for enteroendocrine cells, a rare population of hormone-producing intestinal cells. Next, we use Reg4 expression to enrich for these rare cells and investigate the heterogeneity within this population. RaceID confirmed the existence of known enteroendocrine lineages, and moreover discovered novel subtypes, which we subsequently validated in vivo. Having validated RaceID we then applied the algorithm to ex vivo-isolated Lgr5-positive stem cells and their direct progeny. We find that Lgr5-positive cells represent a homogenous abundant population of stem cells mixed with a rare population of Lgr5-positive secretory cells. We envision broad applicability of our method for discovering rare cell types and the corresponding marker genes in healthy and diseased organs.
Collapse
Affiliation(s)
- Dominic Grün
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT Utrecht, The Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, 3584 CG Utrecht, The Netherlands
| | - Anna Lyubimova
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT Utrecht, The Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, 3584 CG Utrecht, The Netherlands
| | - Lennart Kester
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT Utrecht, The Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, 3584 CG Utrecht, The Netherlands
| | - Kay Wiebrands
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT Utrecht, The Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, 3584 CG Utrecht, The Netherlands
| | - Onur Basak
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT Utrecht, The Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, 3584 CG Utrecht, The Netherlands
| | - Nobuo Sasaki
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT Utrecht, The Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, 3584 CG Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT Utrecht, The Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, 3584 CG Utrecht, The Netherlands
| | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT Utrecht, The Netherlands.,University Medical Center Utrecht, Cancer Genomics Netherlands, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
91
|
Yamane S, Inagaki N. Control of intestinal stem cell fate: A novel approach to treating diabetes. J Diabetes Investig 2015; 7:166-8. [PMID: 27042266 PMCID: PMC4773665 DOI: 10.1111/jdi.12390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 11/30/2022] Open
Abstract
Targeting L‐cell development and enrichment of incretin‐secreting cells could potentially evolve as novel, effective therapeutics for diabetes.![]()
Collapse
Affiliation(s)
- Shunsuke Yamane
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition Graduate School of Medicine Kyoto University Kyoto Japan
| |
Collapse
|
92
|
Vasu S, Moffett RC, McClenaghan NH, Flatt PR. Differential molecular and cellular responses of GLP-1 secreting L-cells and pancreatic alpha cells to glucotoxicity and lipotoxicity. Exp Cell Res 2015; 336:100-8. [DOI: 10.1016/j.yexcr.2015.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 12/25/2022]
|
93
|
Baraille F, Ayari S, Carrière V, Osinski C, Garbin K, Blondeau B, Guillemain G, Serradas P, Rousset M, Lacasa M, Cardot P, Ribeiro A. Glucose Tolerance Is Improved in Mice Invalidated for the Nuclear Receptor HNF-4γ: A Critical Role for Enteroendocrine Cell Lineage. Diabetes 2015; 64:2744-56. [PMID: 25829452 DOI: 10.2337/db14-0993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/21/2015] [Indexed: 11/13/2022]
Abstract
Intestine contributes to energy homeostasis through the absorption, metabolism, and transfer of nutrients to the organism. We demonstrated previously that hepatocyte nuclear receptor-4α (HNF-4α) controls intestinal epithelium homeostasis and intestinal absorption of dietary lipids. HNF-4γ, the other HNF-4 form highly expressed in intestine, is much less studied. In HNF-4γ knockout mice, we detect an exaggerated insulin peak and improvement in glucose tolerance during oral but not intraperitoneal glucose tolerance tests, highlighting the involvement of intestine. Moreover, the enteroendocrine L-type cell lineage is modified, as assessed by the increased expression of transcription factors Isl1, Foxa1/2, and Hnf4a, leading to an increase of both GLP-1-positive cell number and basal and stimulated GLP-1 plasma levels potentiating the glucose-stimulated insulin secretion. Using the GLP-1 antagonist exendin (9-39), we demonstrate a direct effect of GLP-1 on improved glucose tolerance. GLP-1 exerts a trophic effect on pancreatic β-cells, and we report an increase of the β-cell fraction correlated with an augmented number of proliferative islet cells and with resistance to streptozotocin-induced diabetes. In conclusion, the loss of HNF-4γ improves glucose homeostasis through a modulation of the enteroendocrine cell lineage.
Collapse
Affiliation(s)
- Floriane Baraille
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Sami Ayari
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Véronique Carrière
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Céline Osinski
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Kevin Garbin
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Bertrand Blondeau
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Ghislaine Guillemain
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Patricia Serradas
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Monique Rousset
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Michel Lacasa
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Philippe Cardot
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Agnès Ribeiro
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
94
|
Xu G, Li Z, Ding L, Tang H, Guo S, Liang H, Wang H, Zhang W. Intestinal mTOR regulates GLP-1 production in mouse L cells. Diabetologia 2015; 58:1887-97. [PMID: 26037201 DOI: 10.1007/s00125-015-3632-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/20/2015] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide (GLP-1), an intestinal incretin produced in L cells through proglucagon processing, is released in response to meal intake. The intracellular mechanism by which L cells sense the organism energy level to coordinate the production of GLP-1 remains unclear. Mechanistic target of rapamycin (mTOR) is an intracellular fuel sensor critical for energy homeostasis. In this study, we investigated whether intestinal mTOR regulates GLP-1 production in L cells. METHODS The effects of mTOR on GLP-1 production were examined in lean- or high-fat diet (HFD) induced diabetic C57/BL6, db/db, Neurog3-Tsc1(-/-) mice, and STC-1 cells. GLP-1 expression was investigated by real-time PCR and western blotting. Plasma GLP-1 and insulin were detected by enzyme immunoassay and radioimmunoassay, respectively. RESULTS Fasting downregulated mTOR activity, which was associated with a decrement of intestinal proglucagon and circulating GLP-1. Upon re-feeding, these alterations returned to the levels of fed animals. In HFD induced diabetic mice, ileal mTOR signalling, proglucagon and circulating GLP-1 were significantly decreased. Inhibition of mTOR signalling by rapamycin decreased levels of intestinal and plasma GLP-1 in both normal and diabetic mice. Activation of the intestinal mTOR signalling by L-leucine or Tsc1 gene deletion increased levels of intestinal proglucagon and plasma GLP-1. Overexpression of mTOR stimulated proglucagon promoter activity and GLP-1 production, whereas inhibition of mTOR activity by overexpression of tuberous sclerosis 1 (TSC1) or TSC2 decreased proglucagon promoter activity and GLP-1 production in STC-1 cells. CONCLUSIONS/INTERPRETATION mTOR may link energy supply with the production of GLP-1 in L cells.
Collapse
Affiliation(s)
- Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
95
|
El-Salhy M. Recent developments in the pathophysiology of irritable bowel syndrome. World J Gastroenterol 2015; 21:7621-7636. [PMID: 26167065 PMCID: PMC4491952 DOI: 10.3748/wjg.v21.i25.7621] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/31/2015] [Accepted: 05/21/2015] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder, the pathophysiology of which is not completely known, although it has been shown that genetic/social learning factors, diet, intestinal microbiota, intestinal low-grade inflammation, and abnormal gastrointestinal endocrine cells play a major role. Studies of familial aggregation and on twins have confirmed the heritability of IBS. However, the proposed IBS risk genes are thus far nonvalidated hits rather than true predisposing factors. There is no convincing evidence that IBS patients suffer from food allergy/intolerance, with the effect exerted by diet seemingly caused by intake of poorly absorbed carbohydrates and fiber. Obesity is a possible comorbidity of IBS. Differences in the microbiota between IBS patients and healthy controls have been reported, but the association between IBS symptoms and specific bacterial species is uncertain. Low-grade inflammation appears to play a role in the pathophysiology of a major subset of IBS, namely postinfectious IBS. The density of intestinal endocrine cells is reduced in patients with IBS, possibly as a result of genetic factors, diet, intestinal microbiota, and low-grade inflammation interfering with the regulatory signals controlling the intestinal stem-cell clonogenic and differentiation activities. Furthermore, there is speculation that this decreased number of endocrine cells is responsible for the visceral hypersensitivity, disturbed gastrointestinal motility, and abnormal gut secretion seen in IBS patients.
Collapse
|
96
|
McCauley HA, Guasch G. Three cheers for the goblet cell: maintaining homeostasis in mucosal epithelia. Trends Mol Med 2015; 21:492-503. [PMID: 26144290 DOI: 10.1016/j.molmed.2015.06.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 12/16/2022]
Abstract
Many organs throughout the body maintain epithelial homeostasis by employing a mucosal barrier which acts as a lubricant and helps to preserve a near-sterile epithelium. Goblet cells are largely responsible for secreting components of this mucosal barrier and represent a major cellular component of the innate defense system. In this review we summarize what is known about the signaling pathways that control goblet cell differentiation in the intestine, the lung, and the ocular surface, and we discuss a novel functional role for goblet cells in mucosal epithelial immunology. We highlight the cell type-specificity of the circuitry regulating goblet cell differentiation and shed light on how changes to these pathways lead to altered goblet cell function, a prominent feature of mucosa-associated diseases.
Collapse
Affiliation(s)
- Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| | - Géraldine Guasch
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati, OH 45229, USA; CRCM, Inserm UMR1068, Département d'Oncologie Moléculaire, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Univ, UM 105, 13009, Marseille, France.
| |
Collapse
|
97
|
Lipid-rich diet enhances L-cell density in obese subjects and in mice through improved L-cell differentiation. J Nutr Sci 2015; 4:e22. [PMID: 26157580 PMCID: PMC4459237 DOI: 10.1017/jns.2015.11] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 10/10/2014] [Accepted: 02/06/2015] [Indexed: 12/15/2022] Open
Abstract
The enterohormone glucagon-like peptide-1 (GLP-1) is required to amplify glucose-induced
insulin secretion that facilitates peripheral glucose utilisation. Alteration in GLP-1
secretion during obesity has been reported but is still controversial. Due to the high
adaptability of intestinal cells to environmental changes, we hypothesised that the
density of GLP-1-producing cells could be modified by nutritional factors to prevent the
deterioration of metabolic condition in obesity. We quantified L-cell density in jejunum
samples collected during Roux-en-Y gastric bypass in forty-nine severely obese subjects
analysed according to their fat consumption. In mice, we deciphered the mechanisms by
which a high-fat diet (HFD) makes an impact on enteroendocrine cell density and function.
L-cell density in the jejunum was higher in obese subjects consuming >30 % fat
compared with low fat eaters. Mice fed a HFD for 8 weeks displayed an increase in
GLP-1-positive cells in the jejunum and colon accordingly to GLP-1 secretion. The
regulation by the HFD appears specific to GLP-1-producing cells, as the number of PYY
(peptide YY)-positive cells remained unchanged. Moreover, genetically obese
ob/ob mice did not show alteration of GLP-1-positive cell density in the
jejunum or colon, suggesting that obesity per se is not sufficient to
trigger the mechanism. The higher L-cell density in HFD-fed mice involved a rise in L-cell
terminal differentiation as witnessed by the increased expression of transcription factors
downstream of neurogenin3 (Ngn3). We suggest that the observed increase
in GLP-1-positive cell density triggered by high fat consumption in humans and mice might
favour insulin secretion and therefore constitute an adaptive response of the intestine to
balance diet-induced insulin resistance.
Collapse
Key Words
- BrdU, bromodeoxyuridine
- CD, control diet
- Enteroendocrine cells
- GIP, glucose-dependent insulinotropic polypeptide
- GLP-1, glucagon-like peptide-1
- Gut hormones
- HFD, high-fat diet
- High-fat diet
- Intestine
- PYY, peptide YY
- foxa1, forkhead box protein A1
- foxa2, forkhead box protein A2
- isl1, insulin gene enhancer protein-1
- ngn3, neurogenin3
- pax6, paired box protein-6
Collapse
|
98
|
Beehler-Evans R, Micchelli CA. Generation of enteroendocrine cell diversity in midgut stem cell lineages. Development 2015; 142:654-64. [PMID: 25670792 DOI: 10.1242/dev.114959] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endocrine system mediates long-range peptide hormone signaling to broadcast changes in metabolic status to distant target tissues via the circulatory system. In many animals, the diffuse endocrine system of the gut is the largest endocrine tissue, with the full spectrum of endocrine cell subtypes not yet fully characterized. Here, we combine molecular mapping, lineage tracing and genetic analysis in the adult fruit fly to gain new insight into the cellular and molecular mechanisms governing enteroendocrine cell diversity. Neuropeptide hormone distribution was used as a basis to generate a high-resolution cellular map of the diffuse endocrine system. Our studies show that cell diversity is seen at two distinct levels: regional and local. We find that class I and class II enteroendocrine cells can be distinguished locally by combinatorial expression of secreted neuropeptide hormones. Cell lineage tracing studies demonstrate that class I and class II cells arise from a common stem cell lineage and that peptide profiles are a stable feature of enteroendocrine cell identity during homeostasis and following challenge with the enteric pathogen Pseudomonas entomophila. Genetic analysis shows that Notch signaling controls the establishment of class II cells in the lineage, but is insufficient to reprogram extant class I cells into class II enteroendocrine cells. Thus, one mechanism by which secretory cell diversity is achieved in the diffuse endocrine system is through cell-cell signaling interactions within individual adult stem cell lineages.
Collapse
Affiliation(s)
- Ryan Beehler-Evans
- Washington University School of Medicine, Department of Developmental Biology, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Craig A Micchelli
- Washington University School of Medicine, Department of Developmental Biology, 660 South Euclid Avenue, St Louis, MO 63110, USA
| |
Collapse
|
99
|
Vasu S, Moffett RC, McClenaghan NH, Flatt PR. Responses of GLP1-secreting L-cells to cytotoxicity resemble pancreatic β-cells but not α-cells. J Mol Endocrinol 2015; 54:91-104. [PMID: 25527608 DOI: 10.1530/jme-14-0214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Little is known about responses of intestinal L-cells to chemical or cytokine-mediated attack and how these compare with pancreatic β- or α-cells. Administration of streptozotocin to mice induced severe diabetes, islet lymphocytic infiltration, increased α-cell proliferation and decreased numbers of β- and L-cells. In vitro, streptozotocin and cytokines reduced cell viability with higher lethal dose 50 values for α-TC1 cells. mRNA expression of Glut2 was lower and Cat was greater in GLUTag and α-TC1 cells compared with MIN6 cells. Cytotoxins affected the transcription of genes involved in secretion in GLUTag and MIN6 cells. They are also involved in upregulation of antioxidant defence enzymes, transcription of NfκB and Nos2, and production of nitrite in all cell types. Cytotoxin-induced DNA damage and apoptosis were apparent in all cells, but α-TC1 cells were less severely affected. Thus, responses of GLP1-secreting L-cells to cytotoxicity resemble β-cells, whereas α-cells are resistant due to differences in the expression of genes involved in cytotoxicity or antioxidant defence.
Collapse
Affiliation(s)
- Srividya Vasu
- SAAD Centre for Pharmacy and DiabetesUniversity of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and DiabetesUniversity of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
| | - Neville H McClenaghan
- SAAD Centre for Pharmacy and DiabetesUniversity of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and DiabetesUniversity of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
| |
Collapse
|
100
|
Fulde M, Hornef MW. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol Rev 2015; 260:21-34. [PMID: 24942679 DOI: 10.1111/imr.12190] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The innate immune system instructs the host on microbial exposure and infection. This information is critical to mount a protective innate and adaptive host response to microbial challenge, but is also involved in homeostatic and adaptive processes that adjust the organism to meet environmental requirements. This is of particular importance for the neonatal host during the transition from the protected fetal life to the intense and dynamic postnatal interaction with commensal and pathogenic microorganisms. Here, we discuss both adaptive and developmental mechanisms of the mucosal innate immune system that prevent inappropriate stimulation and facilitate establishment of a stable homeostatic host-microbial interaction after birth.
Collapse
Affiliation(s)
- Marcus Fulde
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|