51
|
Abstract
In humans, heterozygous mutations in the adenosine triphosphate-dependent chromatin remodeling gene CHD7 cause CHARGE syndrome, a common cause of deaf-blindness, balance disorders, congenital heart malformations, and olfactory dysfunction with an estimated incidence of approximately 1 in 10,000 newborns. The clinical features of CHARGE in humans and mice are highly variable and incompletely penetrant, and most mutations appear to result in haploinsufficiency of functional CHD7 protein. Mice with heterozygous loss of function mutations in Chd7 are a good model for CHARGE syndrome, and analyses of mouse mutant phenotypes have begun to clarify a role for CHD7 during development and into adulthood. Chd7 heterozygous mutant mice have postnatal delayed growth, inner ear malformations, anosmia/hyposmia, and craniofacial defects, and Chd7 homozygous mutants are embryonic lethal. A central question in developmental biology is how chromodomain proteins like CHD7 regulate important developmental processes, and whether they directly activate or repress downstream gene transcription or act more globally to alter chromatin structure and/or function. CHD7 is expressed in a wide variety of tissues during development, suggesting that it has tissue-specific and developmental stage-specific roles. Here, we review recent and ongoing analyses of CHD7 function in mouse models and cell-based systems. These studies explore tissue-specific effects of CHD7 deficiency, known CHD7 interacting proteins, and downstream target sites for CHD7 binding. CHD7 is emerging as a critical regulator of important developmental processes in organs affected by human CHARGE syndrome.
Collapse
Affiliation(s)
- Wanda S. Layman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Elizabeth A. Hurd
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Donna M. Martin
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
52
|
Deng M, Pan L, Xie X, Gan L. Requirement for Lmo4 in the vestibular morphogenesis of mouse inner ear. Dev Biol 2009; 338:38-49. [PMID: 19913004 DOI: 10.1016/j.ydbio.2009.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 02/02/2023]
Abstract
During development, compartmentalization of an early embryonic structure produces blocks of cells with distinct properties and developmental potentials. The auditory and vestibular components of vertebrate inner ears are derived from defined compartments within the otocyst during embryogenesis. The vestibular apparatus, including three semicircular canals, saccule, utricle, and their associated sensory organs, detects angular and linear acceleration of the head and relays the information through vestibular neurons to vestibular nuclei in the brainstem. How the early developmental events manifest vestibular structures at the molecular level is largely unknown. Here, we show that LMO4, a LIM-domain-only transcriptional regulator, is required for the formation of semicircular canals and their associated sensory cristae. Targeted disruption of Lmo4 resulted in the dysmorphogenesis of the vestibule and in the absence of three semicircular canals, anterior and posterior cristae. In Lmo4-null otocysts, canal outpouches failed to form and cell proliferation was reduced in the dorsolateral region. Expression analysis of the known otic markers showed that Lmo4 is essential for the normal expression of Bmp4, Fgf10, Msx1, Isl1, Gata3, and Dlx5 in the dorsolateral domain of the otocyst, whereas the initial compartmentalization of the otocyst remains unaffected. Our results demonstrate that Lmo4 controls the development of the dorsolateral otocyst into semicircular canals and cristae through two distinct mechanisms: regulating the expression of otic specific genes and stimulating the proliferation of the dorsolateral part of the otocyst.
Collapse
Affiliation(s)
- Min Deng
- University of Rochester Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
53
|
Bae GU, Yang YJ, Jiang G, Hong M, Lee HJ, Tessier-Lavigne M, Kang JS, Krauss RS. Neogenin regulates skeletal myofiber size and focal adhesion kinase and extracellular signal-regulated kinase activities in vivo and in vitro. Mol Biol Cell 2009; 20:4920-31. [PMID: 19812254 DOI: 10.1091/mbc.e09-06-0491] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A variety of signaling pathways participate in the development of skeletal muscle, but the extracellular cues that regulate such pathways in myofiber formation are not well understood. Neogenin is a receptor for ligands of the netrin and repulsive guidance molecule (RGM) families involved in axon guidance. We reported previously that neogenin promoted myotube formation by C2C12 myoblasts in vitro and that the related protein Cdo (also Cdon) was a potential neogenin coreceptor in myoblasts. We report here that mice homozygous for a gene-trap mutation in the Neo1 locus (encoding neogenin) develop myotomes normally but have small myofibers at embryonic day 18.5 and at 3 wk of age. Similarly, cultured myoblasts derived from such animals form smaller myotubes with fewer nuclei than myoblasts from control animals. These in vivo and in vitro defects are associated with low levels of the activated forms of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK), both known to be involved in myotube formation, and inefficient expression of certain muscle-specific proteins. Recombinant netrin-2 activates FAK and ERK in cultured myoblasts in a neogenin- and Cdo-dependent manner, whereas recombinant RGMc displays lesser ability to activate these kinases. Together, netrin-neogenin signaling is an important extracellular cue in regulation of myogenic differentiation and myofiber size.
Collapse
Affiliation(s)
- Gyu-Un Bae
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Koo SK, Hill JK, Hwang CH, Lin ZS, Millen KJ, Wu DK. Lmx1a maintains proper neurogenic, sensory, and non-sensory domains in the mammalian inner ear. Dev Biol 2009; 333:14-25. [PMID: 19540218 PMCID: PMC3400700 DOI: 10.1016/j.ydbio.2009.06.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 12/24/2022]
Abstract
Lmx1a is a LIM homeodomain-containing transcription factor, which is required for the formation of multiple organs. Lmx1a is broadly expressed in early stages of the developing inner ear, but its expression is soon restricted to the non-sensory regions of the developing ear. In an Lmx1a functional null mutant, dreher (dr(J)/dr(J)), the inner ears lack a non-sensory structure, the endolymphatic duct, and the membranous labyrinth is poorly developed. These phenotypes are consistent with Lmx1a's role as a selector gene. More importantly, while all three primary fates of the inner ear - neural, sensory, and non-sensory - are specified in dr(J)/dr(J), normal boundaries among these tissues are often violated. For example, the neurogenic domain of the ear epithelium, from which cells delaminate to form the cochleovestibular ganglion, is expanded. Within the neurogenic domain, the demarcation between the vestibular and auditory neurogenic domains is most likely disrupted as well, based on the increased numbers of vestibular neuroblasts and ectopic expression of Fgf3, which normally is associated specifically with the vestibular neurogenic region. Furthermore, aberrant and ectopic sensory organs are observed; most striking among these is vestibular-like hair cells located in the cochlear duct.
Collapse
Affiliation(s)
- Soo Kyung Koo
- National Institute on Deafness and Other Communication Disorders, 5 Research Court, Rm 2B34, Rockville, Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
55
|
Larrivée B, Freitas C, Suchting S, Brunet I, Eichmann A. Guidance of vascular development: lessons from the nervous system. Circ Res 2009; 104:428-41. [PMID: 19246687 DOI: 10.1161/circresaha.108.188144] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The vascular system of vertebrates consists of an organized, branched network of arteries, veins, and capillaries that penetrates all the tissues of the body. One of the most striking features of the vascular system is that its branching pattern is highly stereotyped, with major and secondary branches forming at specific sites and developing highly conserved organ-specific vascular patterns. The factors controlling vascular patterning are not yet completely understood. Recent studies have highlighted the anatomic and structural similarities between blood vessels and nerves. The 2 networks are often aligned, with nerve fibers and blood vessels following parallel routes. Furthermore, both systems require precise control over their guidance and growth. Several molecules with attractive and repulsive properties have been found to modulate the proper guidance of both nerves and blood vessels. These include the Semaphorins, the Slits, and the Netrins and their receptors. In this review, we describe the molecular mechanisms by which blood vessels and axons achieve proper path finding and the molecular cues that are involved in their guidance.
Collapse
Affiliation(s)
- Bruno Larrivée
- Institut National de la Santé et de la Recherche Médicale, U833 and Collège de France, Paris, France
| | | | | | | | | |
Collapse
|
56
|
Hammond KL, Loynes HE, Mowbray C, Runke G, Hammerschmidt M, Mullins MC, Hildreth V, Chaudhry B, Whitfield TT. A late role for bmp2b in the morphogenesis of semicircular canal ducts in the zebrafish inner ear. PLoS One 2009; 4:e4368. [PMID: 19190757 PMCID: PMC2629815 DOI: 10.1371/journal.pone.0004368] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/18/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Bone Morphogenetic Protein (BMP) genes bmp2 and bmp4 are expressed in highly conserved patterns in the developing vertebrate inner ear. It has, however, proved difficult to elucidate the function of BMPs during ear development as mutations in these genes cause early embryonic lethality. Previous studies using conditional approaches in mouse and chicken have shown that Bmp4 has a role in semicircular canal and crista development, but there is currently no direct evidence for the role of Bmp2 in the developing inner ear. METHODOLOGY/PRINCIPAL FINDINGS We have used an RNA rescue strategy to test the role of bmp2b in the zebrafish inner ear directly. Injection of bmp2b or smad5 mRNA into homozygous mutant swirl (bmp2b(-/-)) embryos rescues the early patterning defects in these mutants and the fish survive to adulthood. As injected RNA will only last, at most, for the first few days of embryogenesis, all later development occurs in the absence of bmp2b function. Although rescued swirl adult fish are viable, they have balance defects suggestive of vestibular dysfunction. Analysis of the inner ears of these fish reveals a total absence of semicircular canal ducts, structures involved in the detection of angular motion. All other regions of the ear, including the ampullae and cristae, are present and appear normal. Early stages of otic development in rescued swirl embryos are also normal. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate a critical late role for bmp2b in the morphogenesis of semicircular canals in the zebrafish inner ear. This is the first demonstration of a developmental role for any gene during post-embryonic stages of otic morphogenesis in the zebrafish. Despite differences in the early stages of semicircular canal formation between zebrafish and amniotes, the role of Bmp2 in semicircular canal duct outgrowth is likely to be conserved between different vertebrate species.
Collapse
Affiliation(s)
- Katherine L. Hammond
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Helen E. Loynes
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Catriona Mowbray
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Greg Runke
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Victoria Hildreth
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bill Chaudhry
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tanya T. Whitfield
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
57
|
Abstract
Named after the Sanskrit word netr, which means 'one who guides', the netrin family of secreted proteins provides migrational cues in the developing central nervous system. Recently, netrins have also been shown to regulate diverse processes (such as cell adhesion, motility, proliferation, differentiation and, ultimately, cell survival) in a number of non-neuronal tissues. In some cases, netrins affect these functions through non-classic netrin receptors, prompting a renewed interest in these factors in and beyond the nervous system.
Collapse
Affiliation(s)
- Vincenzo Cirulli
- University of California San Diego, Department of Pediatrics, National Center for Microscopy and Imaging Research, Whittier Institute for Diabetes, La Jolla, California 92037, USA.
| | | |
Collapse
|
58
|
Abstract
The forkhead genes are involved in patterning, morphogenesis, cell fate determination, and proliferation. Several Fox genes (Foxi1, Foxg1) are expressed in the developing otocyst of both zebrafish and mammals. We show that Foxg1 is expressed in most cell types of the inner ear of the adult mouse and that Foxg1 mutants have both morphological and histological defects in the inner ear. These mice have a shortened cochlea with multiple rows of hair cells and supporting cells. Additionally, they demonstrate striking abnormalities in cochlear and vestibular innervation, including loss of all crista neurons and numerous fibers that overshoot the organ of Corti. Closer examination shows that some anterior crista fibers exist in late embryos. Tracing these fibers shows that they do not project to the brain but, instead, to the cochlea. Finally, these mice completely lack a horizontal crista, although a horizontal canal forms but comes off the anterior ampulla. Anterior and posterior cristae, ampullae, and canals are reduced to varying degrees, particularly in combination with Fgf10 heterozygosity. Compounding Fgf10 heterozygotic effects suggest an additive effect of Fgf10 on Foxg1, possibly mediated through bone morphogenetic protein regulation. We show that sensory epithelia formation and canal development are linked in the anterior and posterior canal systems. Much of the Foxg1 phenotype can be explained by the participation of the protein binding domain in the delta/notch/hes signaling pathway. Additional Foxg1 effects may be mediated by the forkhead DNA binding domain.
Collapse
Affiliation(s)
- Sarah Pauley
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska
| | - Eseng Lai
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bernd Fritzsch
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska
| |
Collapse
|
59
|
Abstract
The innervation of the cochlear sensory epithelium is intricately organized, allowing the tonotopy established by the auditory hair cells to be maintained along the ascending auditory pathways. These auditory projections are patterned by several gene families that regulate neurite attraction and repulsion, known as axon guidance cues. In this review, the roles of various axon guidance molecules, including fibroblast growth factor, ephs, semaphorins, netrins and slits, are examined in light of their known contribution to auditory development. Additionally, morphogens are discussed in the context of their recently described influence on axonal pathfinding in other sensory systems. The elucidation of these various mechanisms may guide the development of therapies aimed at maximizing the connectivity of auditory neurons in the context of congenital or acquired sensorineural hearing loss, especially as pertains to cochlear implants. Further afield, improved understanding of the molecular processes which regulate innervation of the organ of Corti during normal development may prove useful in connecting regenerated hair cells to the central nervous system.
Collapse
Affiliation(s)
- Audra Webber
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
60
|
Fritzsch B, Pauley S, Beisel KW. Cells, molecules and morphogenesis: the making of the vertebrate ear. Brain Res 2006; 1091:151-71. [PMID: 16643865 PMCID: PMC3904743 DOI: 10.1016/j.brainres.2006.02.078] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 02/15/2006] [Accepted: 02/15/2006] [Indexed: 01/19/2023]
Abstract
The development and evolution of mechanosensory cells and the vertebrate ear is reviewed with an emphasis on delineating the cellular, molecular and developmental basis of these changes. Outgroup comparisons suggests that mechanosensory cells are ancient features of multicellular organisms. Molecular evidence suggests that key genes involved in mechanosensory cell function and development are also conserved among metazoans. The divergent morphology of mechanosensory cells across phyla is interpreted here as 'deep molecular homology' that was in parallel shaped into different forms in each lineage. The vertebrate mechanosensory hair cell and its associated neuron are interpreted as uniquely derived features of vertebrates. It is proposed that the vertebrate otic placode presents a unique embryonic adaptation in which the diffusely distributed ancestral mechanosensory cells became concentrated to generate a large neurosensory precursor population. Morphogenesis of the inner ear is reviewed and shown to depend on genes expressed in and around the hindbrain that interact with the otic placode to define boundaries and polarities. These patterning genes affect downstream genes needed to maintain proliferation and to execute ear morphogenesis. We propose that fibroblast growth factors (FGFs) and their receptors (FGFRs) are a crucial central node to translate patterning into the complex morphology of the vertebrate ear. Unfortunately, the FGF and FGFR genes have not been fully analyzed in the many mutants with morphogenetic ear defects described thus far. Likewise, little information exists on the ear histogenesis and neurogenesis in many mutants. Nevertheless, a molecular mechanism is now emerging for the formation of the horizontal canal, an evolutionary novelty of the gnathostome ear. The existing general module mediating vertical canal growth and morphogenesis was modified by two sets of new genes: one set responsible for horizontal canal morphogenesis and another set for neurosensory formation of the horizontal crista and associated sensory neurons. The dramatic progress in deciphering the molecular basis of ear morphogenesis offers grounds for optimism for translational research toward intervention in human morphogenetic defects of the ear.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Creighton University, Department of Biomedical Sciences, 2500 California Plaza, Omaha, NE 68178, USA.
| | | | | |
Collapse
|
61
|
Lilleväli K, Haugas M, Matilainen T, Pussinen C, Karis A, Salminen M. Gata3 is required for early morphogenesis and Fgf10 expression during otic development. Mech Dev 2006; 123:415-29. [PMID: 16806848 DOI: 10.1016/j.mod.2006.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/19/2006] [Accepted: 04/26/2006] [Indexed: 01/08/2023]
Abstract
Inner ear develops from an induced surface ectoderm placode that invaginates and closes to form the otic vesicle, which then undergoes a complex morphogenetic process to form the membranous labyrinth. Inner ear morphogenesis is severely affected in Gata3 deficient mouse embryos, but the onset and basis of the phenotype has not been known. We show here that Gata3 deficiency leads to severe and unique abnormalities during otic placode invagination. The invagination problems are accompanied often by the formation of a morphological boundary between the dorsal and ventral otic cup and by the precocious appearance of dorsal endolymphatic characteristics. In addition, the endolymphatic domain often detaches from the rest of the otic epithelium during epithelial closure. The expression of several cell adhesion mediating genes is altered in Gata3 deficient ears suggesting that Gata3 controls adhesion and morphogenetic movements in early otic epithelium. Inactivation of Gata3 leads also to a loss of Fgf10 expression in otic epithelium and auditory ganglion demonstrating that Gata3 is an important regulator of Fgf-signalling during otic development.
Collapse
Affiliation(s)
- Kersti Lilleväli
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00710 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
62
|
Park KW, Urness LD, Senchuk MM, Colvin CJ, Wythe JD, Chien CB, Li DY. Identification of new netrin family members in zebrafish: developmental expression of netrin 2 and netrin 4. Dev Dyn 2006; 234:726-31. [PMID: 15973704 PMCID: PMC2612631 DOI: 10.1002/dvdy.20474] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Netrin 1 is a diffusible factor that attracts commissural axons to the floor plate of the spinal cord. Recent evidence indicates that Netrin 1 is widely expressed and functions in the development of multiple organ systems. In mammals, there are three genes encoding Netrins, whereas in zebrafish, only the Netrin 1 orthologs netrin 1a and netrin 1b have been identified. Here, we have cloned two new zebrafish Netrins, netrin 2 and netrin 4, and present a comparative sequence and expression analysis. Despite significant sequence similarity with netrin 1a/netrin 1b, netrin 2 displays a unique expression pattern. Netrin 2 transcript is first detected in the notochord and in developing somites at early somitogenesis. By late somitogenesis, netrin 2 is expressed in the fourth rhombomere and is subsequently expressed in the hindbrain and otic vesicles. In contrast, netrin 4 is detected only at very low levels during early development. The nonoverlapping expression patterns of these four Netrins suggest that they may play unique roles in zebrafish development.
Collapse
Affiliation(s)
- Kye Won Park
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah
| | - Lisa D. Urness
- Division of Cardiology, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Megan M. Senchuk
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Carrie J. Colvin
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah
| | - Joshua D. Wythe
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Dean Y. Li
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
- Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah
- Division of Cardiology, School of Medicine, University of Utah, Salt Lake City, Utah
- Correspondence to: Dean Y. Li, Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah 84112. E-mail:
| |
Collapse
|
63
|
Lilleväli K, Haugas M, Pituello F, Salminen M. Comparative analysis ofGata3 andGata2 expression during chicken inner ear development. Dev Dyn 2006; 236:306-13. [PMID: 17103399 DOI: 10.1002/dvdy.21011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The inner ear is a complex sensory organ with hearing and balance functions. Gata3 and Gata2 are expressed in the inner ear, and to gain more insight into their roles in otic development, we made a detailed expression analysis in chicken embryos. At early stages, their expression was highly overlapping. At later stages, Gata2 expression became prominent in vestibular and cochlear nonsensory epithelia. In contrast to Gata2, Gata3 was mainly expressed in the developing sensory epithelia, reflecting the importance of this factor in the sensory-neural development of the inner ear. While the later expression patterns of both Gata3 and Gata2 were highly conserved between chicken and mouse, important differences were observed especially with Gata3 during early otic development, providing indications of divergent molecular control during placode invagination in mice and chickens. We also found indications that the regulatory hierarchy observed in mouse, where Gata3 is upstream of Gata2 and Fgf10, could be conserved in chicken.
Collapse
Affiliation(s)
- Kersti Lilleväli
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
64
|
Forrai A, Robb L. The gene trap resource: a treasure trove for hemopoiesis research. Exp Hematol 2005; 33:845-56. [PMID: 16038776 DOI: 10.1016/j.exphem.2005.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/23/2005] [Indexed: 11/16/2022]
Abstract
The laboratory mouse is an invaluable tool for functional gene discovery because of its genetic malleability and a biological similarity to human systems that facilitates identification of human models of disease. A number of mutagenic technologies are being used to elucidate gene function in the mouse. Gene trapping is an insertional mutagenesis strategy that is being undertaken by multiple research groups, both academic and private, in an effort to introduce mutations across the mouse genome. Large-scale, publicly funded gene trap programs have been initiated in several countries with the International Gene Trap Consortium coordinating certain efforts and resources. We outline the methodology of mammalian gene trapping and how it can be used to identify genes expressed in both primitive and definitive blood cells and to discover hemopoietic regulator genes. Mouse mutants with hematopoietic phenotypes derived using gene trapping are described. The efforts of the large-scale gene trapping consortia have now led to the availability of libraries of mutagenized ES cell clones. The identity of the trapped locus in each of these clones can be identified by sequence-based searching via the world wide web. This resource provides an extraordinary tool for all researchers wishing to use mouse genetics to understand gene function.
Collapse
Affiliation(s)
- Ariel Forrai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | |
Collapse
|
65
|
Abstract
Members of the Dlx gene family play essential roles in the development of the zebrafish and mouse inner ear, but little is known regarding Dlx genes and avian inner ear development. We have examined the inner ear expression patterns of Dlx1, Dlx2, Dlx3, Dlx5, and Dlx6 during the first 7 days of chicken embryonic development. Dlx1 and Dlx2 expression was seen only in nonneuronal cells of the cochleovestibular ganglion and nerves from stage 21 to stage 32. Dlx3 marks the otic placode beginning at stage 9 and becomes limited to epithelium adjacent to the hindbrain as invagination of the placode begins. Dlx3 expression then resolves to the dorsal otocyst and gradually becomes limited to the endolymphatic sac by stage 30. Dlx5 and Dlx6 expression in the developing inner ear is first seen at stages 12 and 13, respectively, in the rim of the otic pit, before spreading throughout the dorsal otocyst. As morphogenesis proceeds, Dlx5 and Dlx6 expression is seen throughout the forming semicircular canals and endolymphatic structures. During later stages, both genes are seen to mark the distal surface of the forming canals and display expression complementary to that of BMP4 in the vestibular sensory regions. Dlx5 expression is also seen in the lagena macula and the cochlear and vestibular nerves by stage 30. These findings suggest important roles for Dlx genes in the vestibular and neural development of the avian inner ear.
Collapse
Affiliation(s)
- Stephen T Brown
- Gonda Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, California 90057-1922, USA
| | | | | |
Collapse
|
66
|
Lilleväli K, Matilainen T, Karis A, Salminen M. Partially overlapping expression of Gata2 and Gata3 during inner ear development. Dev Dyn 2005; 231:775-81. [PMID: 15499560 DOI: 10.1002/dvdy.20185] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Gata2 and Gata3 belong to the Gata family of transcription factors in vertebrates that bind to a consensus "GATA" DNA sequence. The Gata3 gene is one of the earliest markers for the developing mouse inner ear. Ear morphogenesis is blocked in Gata3-deficient embryos, whereas nothing was known of the role of Gata2 in mouse inner ear. Here, we have compared the expression patterns of Gata2 and Gata3 during normal inner ear development and investigated their relationship in mice where either Gata3 or Gata2 has been inactivated. The expression of the two Gata genes is highly overlapping at embryonic day (E)10.5 but becomes increasingly distinct later. Whereas Gata2 is predominantly expressed in the dorsal vestibular system, Gata3 was detected mainly in the ventral cochlear duct and ganglion. No phenotypic abnormalities were observed in the inner ear of Gata2-/- embryos before lethality at E10.5 and Gata3 expression was unchanged. In contrast, a delay and strong reduction of Gata2 expression was detected in Gata3-/- otic epithelium.
Collapse
Affiliation(s)
- Kersti Lilleväli
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
67
|
Gillespie LN, Marzella PL, Clark GM, Crook JM. Netrin-1 as a guidance molecule in the postnatal rat cochlea. Hear Res 2005; 199:117-23. [PMID: 15574306 DOI: 10.1016/j.heares.2004.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 07/01/2004] [Indexed: 11/30/2022]
Abstract
During synaptogenesis a number of growth factors and peptides control the guidance of auditory neuron (spiral ganglion neuron, SGN) axons to their target cells. Furthermore, evidence suggests that these factors exert their actions at discrete times and sites during development. This study demonstrates that the guidance molecule netrin-1 is expressed in the early postnatal rat cochlea, but shows decreasing expression with increasing age. These results suggest that netrin-1 may be involved in guiding axonal growth from SGNs for the onset of innervation, but is not required for maintenance of synaptic connections.
Collapse
Affiliation(s)
- Lisa N Gillespie
- Department of Otolaryngology, The University of Melbourne, Second Floor, Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia.
| | | | | | | |
Collapse
|
68
|
Cozzolino M, Ferraro E, Ferri A, Rigamonti D, Quondamatteo F, Ding H, Xu ZS, Ferrari F, Angelini DF, Rotilio G, Cattaneo E, Carrì MT, Cecconi F. Apoptosome inactivation rescues proneural and neural cells from neurodegeneration. Cell Death Differ 2005; 11:1179-91. [PMID: 15257302 DOI: 10.1038/sj.cdd.4401476] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Deficiency of the apoptosome component Apaf1 leads to accumulation of supernumerary brain cells in mouse embryos. We observed that neural precursor cells (NPCs) in Apaf1(-/-) embryos escape programmed cell death, proliferate and retain their potential to differentiate. To evaluate the circumstances of Apaf1(-/-) NPC survival and investigate their fate under neurodegenerative conditions, we established cell lines of embryonic origin (ETNA). We found that Apaf1(-/-) NPCs resist common apoptotic stimuli and neurodegenerative inducers such as amyloid-beta peptide (typical of Alzheimer's disease) and mutant G93A superoxide dismutase 1 (typical of familial amyotrophic lateral sclerosis). Similar results were obtained in Apaf1(-/-) primary cells. When death is prevented by Apaf1 deficiency, cytochrome c is released from mitochondria and rapidly degraded by the proteasome, but mitochondria remain intact. Under these conditions, neither activation by cleavage of initiator caspases nor release of alternative apoptotic inducers from mitochondria takes place. In addition, NPCs can still differentiate, as revealed by neurite outgrowth and expression of differentiation markers. Our findings imply that the mitochondrion/apoptosome pathway is the main route of proneural and neural cells to death and that its inhibition prevents them from dismantling in neurodegenerative conditions. Indeed, the ETNA cell model is ideally suited for exploring the potential of novel cell therapies for the treatment of human neurodegenerations.
Collapse
Affiliation(s)
- M Cozzolino
- Dulbecco Telethon Institute, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Barallobre MJ, Pascual M, Del Río JA, Soriano E. The Netrin family of guidance factors: emphasis on Netrin-1 signalling. ACTA ACUST UNITED AC 2005; 49:22-47. [PMID: 15960985 DOI: 10.1016/j.brainresrev.2004.11.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 10/14/2004] [Accepted: 11/29/2004] [Indexed: 12/13/2022]
Abstract
During the development of the nervous system, neurons respond to the coordinated action of a variety of attractive and repulsive signals from the embryonic environment. Netrins form a family of extracellular proteins that regulate the migration of neurons and axonal growth cones. These proteins are bifunctional signals that are chemoattractive for some neurons and chemorepellent for others. Netrins mainly interact with the specific receptors DCC and UNC-5 family. To date, several Netrins have been described in mouse and humans: Netrin-1, -3/NTL2, -4/beta and G-Netrins. Netrin-1 is the most studied member of the family. It is involved in the development many projections of the nervous system. When Netrin-1 interacts with its specific receptors, a cascade of local cytoplasmic events is triggered. Several signal transduction pathways and effector molecules have been implicated in the response to Netrin-1: small Rho-GTPases, MAP-Kinases, second messengers and the Microtubule Associated Protein 1B (MAP1B).
Collapse
Affiliation(s)
- María J Barallobre
- Department of Cell Biology and IRBB-Barcelona Science Park, University of Barcelona, Barcelona E-08028, Spain.
| | | | | | | |
Collapse
|
70
|
Ohuchi H, Yasue A, Ono K, Sasaoka S, Tomonari S, Takagi A, Itakura M, Moriyama K, Noji S, Nohno T. Identification ofcis-element regulating expression of the mouseFgf10 gene during inner ear development. Dev Dyn 2005; 233:177-87. [PMID: 15765517 DOI: 10.1002/dvdy.20319] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling is crucial for the induction and growth of the ear, a sensory organ that involves intimate tissue interactions. Here, we report the abnormality of Fgf10 null ear and the identification of a cis-regulatory element directing otic expression of Fgf10. In Fgf10 null inner ears, we found that the initial development of semicircular, vestibular, and cochlear divisions is roughly normal, after which there are abnormalities of semicircular canal/cristae and vestibular development. The mutant semicircular disks remain without canal formation by the perinatal stage. To elucidate regulation of the Fgf10 expression during inner ear development, we isolated a 6.6-kb fragment of its 5'-upstream region and examined its transcriptional activity with transgenic mice, using a lacZ-reporter system. From comparison of the mouse sequences of the 6.6-kb fragment with corresponding sequences of the human and chicken Fgf10, we identified a 0.4-kb enhancer sequence that drives Fgf10 expression in the developing inner ear. The enhancer sequences have motifs for many homeodomain-containing proteins (e.g., Prx, Hox, Nkx), in addition to POU-domain factors (e.g., Brn3), zinc-finger transcription factors (e.g., GATA-binding factors), TCF/LEF-1, and a SMAD-interacting protein. Thus, FGF10 signaling is dispensable for specification of otic compartment identity but is required for hollowing the semicircular disk. Furthermore, the analysis of a putative inner ear enhancer of Fgf10 has disclosed a complicated regulation of Fgf10 during inner ear development by numerous transcription factors and signaling pathways.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Biological Science and Technology, Faculty of Engineering, University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Wang W, Grimmer JF, Van De Water TR, Lufkin T. Hmx2 and Hmx3 Homeobox Genes Direct Development of the Murine Inner Ear and Hypothalamus and Can Be Functionally Replaced by Drosophila Hmx. Dev Cell 2004; 7:439-53. [PMID: 15363417 DOI: 10.1016/j.devcel.2004.06.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 06/16/2004] [Accepted: 06/17/2004] [Indexed: 11/19/2022]
Abstract
The Hmx homeobox gene family appears to play a conserved role in CNS development in all animal species examined, and in higher vertebrates has an additional role in sensory organ development. Here, we show that murine Hmx2 and Hmx3 have both overlapping and distinct functions in the development of the inner ear's vestibular system, whereas their functions in the hypothalamic/pituitary axis of the CNS appear to be interchangeable. As in analogous knockin studies of Otx and En function, Drosophila Hmx can rescue conserved functions in the murine CNS. However, in contrast to Otx and En, Drosophila Hmx also rescues significant vertebrate-specific functions outside the CNS. Our work suggests that the evolution of the vertebrate inner ear may have involved (1) the redeployment of ancient Hmx activities to regulate the cell proliferation of structural components and (2) the acquisition of additional, vertebrate-specific Hmx activities to regulate the sensory epithelia.
Collapse
Affiliation(s)
- Weidong Wang
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
72
|
Wang J, Laurie GW. Organogenesis of the exocrine gland. Dev Biol 2004; 273:1-22. [PMID: 15302594 DOI: 10.1016/j.ydbio.2004.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 04/06/2004] [Accepted: 05/15/2004] [Indexed: 11/16/2022]
Abstract
Morphogenesis of exocrine glands is a complex stepwise process of epithelial ingrowth, ductal elongation, ductal branching, and alveolar or acinar differentiation. Emerging from an increasing number of mouse gene knockout, dominant-negative, and antisense models is the identification of a remarkable collection of cell adhesion molecules, growth factors, and their receptors whose time-dependent contributions to glandular organogenesis are essential. Many have cryptically overlapping and interdependent but noncompensatory roles. Discoidin domain receptor 1 tyrosine kinase (DDR1) and the ErbB1 receptor of amphiregulin are, for example, required for ductal branching and elongation. Each is in turn dependent on the Wnt family of morphogenic factors for autophosphorylation or transactivation, respectively. Here we review the current cast of exocrine glandular morphogens, as a foundation for a global or systems biology appreciation of the interweaving signaling pathways that underlie mammalian glandular morphogenesis.
Collapse
Affiliation(s)
- Jiahu Wang
- Department of Cell Biology, University of Virginia, Charlottesville 22908-0732, USA
| | | |
Collapse
|
73
|
Pirvola U, Zhang X, Mantela J, Ornitz DM, Ylikoski J. Fgf9 signaling regulates inner ear morphogenesis through epithelial–mesenchymal interactions. Dev Biol 2004; 273:350-60. [PMID: 15328018 DOI: 10.1016/j.ydbio.2004.06.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2004] [Revised: 06/16/2004] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
The mammalian inner ear comprises the cochleovestibular labyrinth, derived from the ectodermal otic placode, and the encasing bony labyrinth of the temporal bone. Epithelial-mesenchymal interactions are thought to control inner ear development, but the modes and the molecules involved are largely unresolved. We show here that, during the precartilage and cartilage stages, Fgf9 is expressed in specific nonsensory domains of the otic epithelium and its receptors, Fgfr1(IIIc) and Fgfr2(IIIc), widely in the surrounding mesenchyme. To address the role of Fgf9 signaling, we analyzed the inner ears of mice homozygous for Fgf9 null alleles. Fgf9 inactivation leads to a hypoplastic vestibular component of the otic capsule and to the absence of the epithelial semicircular ducts. Reduced proliferation of the prechondrogenic mesenchyme was found to underlie capsular hypoplasticity. Semicircular duct development is blocked at the initial stages, since fusion plates do not form. Our results show that the mesenchyme directs fusion plate formation and they give direct evidence for the existence of reciprocal epithelial-mesenchymal interactions in the developing inner ear. In addition to the vestibule, in the cochlea, Fgf9 mutation caused defects in the interactions between the Reissner's membrane and the mesenchymal cells, leading to a malformed scala vestibuli. Together, these data show that Fgf9 signaling is required for inner ear morphogenesis.
Collapse
Affiliation(s)
- Ulla Pirvola
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
74
|
Liu Y, Stein E, Oliver T, Li Y, Brunken WJ, Koch M, Tessier-Lavigne M, Hogan BL. Novel role for Netrins in regulating epithelial behavior during lung branching morphogenesis. Curr Biol 2004; 14:897-905. [PMID: 15186747 PMCID: PMC2925841 DOI: 10.1016/j.cub.2004.05.020] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/23/2004] [Accepted: 03/24/2004] [Indexed: 01/18/2023]
Abstract
The development of many organs, including the lung, depends upon a process known as branching morphogenesis, in which a simple epithelial bud gives rise to a complex tree-like system of tubes specialized for the transport of gas or fluids. Previous studies on lung development have highlighted a role for fibroblast growth factors (FGFs), made by the mesodermal cells, in promoting the proliferation, budding, and chemotaxis of the epithelial endoderm. Here, by using a three-dimensional culture system, we provide evidence for a novel role for Netrins, best known as axonal guidance molecules, in modulating the morphogenetic response of lung endoderm to exogenous FGFs. This effect involves inhibition of localized changes in cell shape and phosphorylation of the intracellular mitogen-activated protein kinase(s) (ERK1/2, for extracellular signal-regulated kinase-1 and -2), elicited by exogenous FGFs. The temporal and spatial expression of netrin 1, netrin 4, and Unc5b genes and the localization of Netrin-4 protein in vivo suggest a model in which Netrins in the basal lamina locally modulate and fine-tune the outgrowth and shape of emergent epithelial buds.
Collapse
Affiliation(s)
- Yuru Liu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Elke Stein
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06510
| | - Timothy Oliver
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yong Li
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - William J. Brunken
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Manuel Koch
- Institute for Biochemistry II, University of Köln, 50931 Köln, Germany
| | | | - Brigid L.M. Hogan
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
- Correspondence:
| |
Collapse
|
75
|
Galy B, Ferring D, Benesova M, Benes V, Hentze MW. Targeted mutagenesis of the murine IRP1 and IRP2 genes reveals context-dependent RNA processing differences in vivo. RNA (NEW YORK, N.Y.) 2004; 10:1019-1025. [PMID: 15208438 PMCID: PMC1370593 DOI: 10.1261/rna.7220704] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 03/31/2004] [Indexed: 05/24/2023]
Abstract
We report the targeted mutagenesis of the murine iron regulatory protein (IRP)-1 and IRP2 genes, respectively, with a classical gene trap construct. Insertion of the targeting cassette into the second intron of either gene by homologous recombination interrupts their open reading frames near the N termini. Mice that are homozygous for the correctly modified IRP1 or IRP2 alleles, respectively, display a strong reduction (90%, IRP1(-/-)) or nondetectable levels (IRP2(-/-)) of the targeted proteins. Interestingly, the pre-mRNAs transcribed from the identical targeting cassettes are processed differently within the two different contexts. Detailed analysis of the respective products identifies the choice of alternative splice and 3' end processing sites in the same tissues in vivo. We discuss the implications for the understanding of RNA processing and for targeting strategies for functional genomics in the mouse.
Collapse
Affiliation(s)
- Bruno Galy
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
76
|
Yu KK, Mukherji S, Carrasco V, Pillsbury HC, Shores CG. Molecular Genetic Advances in Semicircular Canal Abnormalities and Sensorineural Hearing Loss: A Report of 16 Cases. Otolaryngol Head Neck Surg 2003; 129:637-46. [PMID: 14663429 DOI: 10.1016/s0194-59980301593-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVES: The study goals were (1) to determine if the degree and pattern of semicircular canal dysmorphology and the presence or absence of a cochlea in patients with congenital sensorineural hearing loss predict audiologic outcome, severity, or the frequencies involved and (2) to review the recent advances in molecular genetics of the semicircular canals and correlate this information with audiologic and anatomic patterns seen in our series of patients
DESIGN AND SETTING: We conducted a retrospective study at a tertiary care center with a large otologic and cochlear implant service.
PATIENTS AND METHODS: The study population consisted of 16 patients with congenital sensorineural hearing loss in 28 congenitally malformed inner ears consisting of semicircular canal dysplasia or aplasia, with or without cochlear malformation. History, physical examination, computed tomography scans, and serial audiograms were reviewed. Factors analyzed included other phenotypic dysmorphology characteristic of syndromes, audiometric configuration, severity and type of hearing loss, and the presence of associated inner ear anomalies other than the vestibular system. An extensive review of the literature regarding molecular genetic factors in semicircular canal anomalies, with or without cochlear abnormalities, was performed.
RESULTS: Sixteen patients (31 ears) were identified with profound sensorineural hearing loss and semicircular canal abnormalities. Only 3 patients had known syndromes, although 4 patients had other congenital anomalies. Most radiographic detectable abnormalities were bilateral. Audiograms of the patients demonstrated pure tone averages between 90 and 100 dB in the affected ears with few exceptions. No correlation was found between type and severity of malformation of either the cochlea or semicircular canals with the severity of hearing loss. There was no stepwise progression of hearing loss increasing malformation severity. Seven of the 16 patients received cochlear implants. Of these 7, 3 patients had cochlear hypoplasia and 1 patient had a common cavity deformity. Audiologic follow-up on all 7 patients revealed improvement in both speech assessment threshold and pure tone average. Presence or absence of the cochlea was not a factor in outcome after cochlear implantation.
CONCLUSION: We have assembled the largest series of patients with semicircular canal dysmorphology, with or without various cochlear abnormalities. Our study failed to correlate the type and severity of semicircular canal malformation with any specific audiologic outcome. The variation in hearing loss severity and pattern even in patients with similar bony radiographic findings must be explained by other non-radiologically detectable defects, likely abnormalities in membranous labyrinthine development. New molecular genetic discoveries have linked specific genes to the development of certain inner ear structures in mice studies. The independent development of the individual semicircular canals in relation to the cochlea and vestibule and the variability in hearing loss suggest a more complex embryologic process than merely an arrest in development as previously thought. As genetic studies are extended into humans, we will likely be able to stratify these patients by molecular defect and severity of hearing loss. (Otolaryngol Head Neck Surg 2003;129:637-46.)
Collapse
Affiliation(s)
- Kathy K Yu
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | | | | | | | | |
Collapse
|
77
|
Yebra M, Montgomery AMP, Diaferia GR, Kaido T, Silletti S, Perez B, Just ML, Hildbrand S, Hurford R, Florkiewicz E, Tessier-Lavigne M, Cirulli V. Recognition of the Neural Chemoattractant Netrin-1 by Integrins α6β4 and α3β1 Regulates Epithelial Cell Adhesion and Migration. Dev Cell 2003; 5:695-707. [PMID: 14602071 DOI: 10.1016/s1534-5807(03)00330-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Netrins, axon guidance cues in the CNS, have also been detected in epithelial tissues. In this study, using the embryonic pancreas as a model system, we show that Netrin-1 is expressed in a discrete population of epithelial cells, localizes to basal membranes, and specifically associates with elements of the extracellular matrix. We demonstrate that alpha6beta4 integrin mediates pancreatic epithelial cell adhesion to Netrin-1, whereas recruitment of alpha6beta4 and alpha3beta1 regulate the migration of CK19+/PDX1+ putative pancreatic progenitors on Netrin-1. These results provide evidence for the activation of epithelial cell adhesion and migration by a neural chemoattractant, and identify Netrin-1/integrin interactions as adhesive/guidance cues for epithelial cells.
Collapse
Affiliation(s)
- Mayra Yebra
- Department of Pediatrics, The Whittier Institute for Diabetes, University of California, San Diego, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Løes S, Luukko K, Hals Kvinnsland I, Salminen M, Kettunen P. Developmentally regulated expression of Netrin-1 and -3 in the embryonic mouse molar tooth germ. Dev Dyn 2003; 227:573-7. [PMID: 12889066 DOI: 10.1002/dvdy.10317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Netrins form a small, conserved family of laminin-related signaling proteins regulating axon guidance in the developing nervous system. Here, we analyzed the roles of Netrin-1 and -3 in trigeminal axon guidance to the first lower molar of the embryonic mouse. Netrin-1 showed a restricted epithelial expression domain buccal to the tooth germ, toward which the pioneer tooth axons initially appear to navigate. Later, before birth, transcripts were colocalized with nerve fibers around the bell stage tooth germ. Analysis of Netrin-1-deficient mice, however, did not reveal any obvious disturbances in the axon growth or pattern of tooth innervation. In contrast, Netrin-3 showed a prominent, distinct expression in the axon pathway and target field mesenchyme around the tooth. Hence, it is possible that Netrin-3 may regulate pioneer axon growth toward and within the embryonic tooth target field.
Collapse
Affiliation(s)
- Sigbjørn Løes
- Department of Anatomy and Cell Biology, University of Bergen, Norway
| | | | | | | | | |
Collapse
|
79
|
Dalvin S, Anselmo MA, Prodhan P, Komatsuzaki K, Schnitzer JJ, Kinane TB. Expression of Netrin-1 and its two receptors DCC and UNC5H2 in the developing mouse lung. Gene Expr Patterns 2003; 3:279-83. [PMID: 12799072 DOI: 10.1016/s1567-133x(03)00047-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ligand Netrin-1 and its receptors DCC and UNC5H2 are critical for the regulation of neuronal migration in nervous system development. Here we demonstrate expression of these molecules in lung development. The mRNA expression profiles of Netrin-1, DCC and UNC5H2 are developmentally regulated during embryonic mouse lung formation. Netrin-1 shows a bimodal expression pattern with elevated mRNA levels early followed by a second peak in late gestation. Peak expression of DCC occurs early in development whereas expression of UNC5H2 peaks late in development. We also demonstrate localization of Netrin-1, DCC and UNC5H2 during the stages of lung development. We present evidence that these proteins are modulated spatially in the mesenchyme and epithelium during lung organogenesis.
Collapse
Affiliation(s)
- Sussie Dalvin
- Department of Pediatrics, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
80
|
Srinivasan K, Strickland P, Valdes A, Shin GC, Hinck L. Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Dev Cell 2003; 4:371-82. [PMID: 12636918 DOI: 10.1016/s1534-5807(03)00054-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Netrin-1 and its receptors play an essential role patterning the nervous system by guiding neurons and axons to their targets. To explore whether netrin-1 organizes nonneural tissues, we examined its role in mammary gland morphogenesis. Netrin-1 is expressed in prelumenal cells, and its receptor neogenin is expressed in a complementary pattern in adjacent cap cells of terminal end buds (TEBs). We discovered that loss of either gene results in disorganized TEBs characterized by exaggerated subcapsular spaces, breaks in basal lamina, dissociated cap cells, and an increased influx of cap cells into the prelumenal compartment. Cell aggregation assays demonstrate that neogenin mediates netrin-1-dependent cell clustering. Thus, netrin-1 appears to act locally through neogenin to stabilize the multipotent progenitor (cap) cell layer during mammary gland development. Our results suggest that netrin-1 and its receptor neogenin provide an adhesive, rather than a guidance, function during nonneural organogenesis.
Collapse
Affiliation(s)
- Karpagam Srinivasan
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
81
|
Bober E, Rinkwitz S, Herbrand H. Molecular Basis of Otic Commitment and Morphogenesis: A Role for Homeodomain-Containing Transcription Factors and Signaling Molecules. Curr Top Dev Biol 2003; 57:151-75. [PMID: 14674480 DOI: 10.1016/s0070-2153(03)57005-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Eva Bober
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, Holly Strasse 1, D-06097, Halle, Germany
| | | | | |
Collapse
|
82
|
Abstract
The Caenorhabditis elegans gene unc-5 and it's vertebrate homologues are Netrin receptors. In this study, I report the cloning of three mouse Unc5 family members, namely, Unc5h1, Unc5h2 and Unc5h4. Furthermore, a comparative expression analysis is presented with Unc5h3, deleted in colorectal cancer and Netrin-1. Transcript distribution is studied during early eye development, mammary bud formation, vascularisation, and limb development. The most widely expressed Unc5 family member is Unc5h2 and it's mRNA is observed during early blood vessel formation, in the semicircular canal and in a dorsal to ventral gradient in the retina. Unc5h1 expression is restricted to the central nervous system, whereas, sites of Unc5h4 expression are in the developing limb and mammary gland.
Collapse
Affiliation(s)
- Dieter Engelkamp
- Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt, Germany.
| |
Collapse
|
83
|
Abstract
Genetically engineered strains of mice, modified by gene targeting (knockouts), are increasingly being employed as alternative effective research tools in elucidating the genetic basis of human deafness. An impressive array of auditory and vestibular mouse knockouts is already available as a valuable resource for studying the ontogenesis, morphogenesis and function of the mammalian inner ear. This article provides a current catalog of mouse knockouts with inner ear morphogenetic malformations and hearing or balance deficits resulting from ablation of genes that are regionally expressed in the inner ear and/or within surrounding tissues, such as the hindbrain, neural crest and mesenchyme.
Collapse
|
84
|
Merlo GR, Paleari L, Mantero S, Zerega B, Adamska M, Rinkwitz S, Bober E, Levi G. The Dlx5 homeobox gene is essential for vestibular morphogenesis in the mouse embryo through a BMP4-mediated pathway. Dev Biol 2002; 248:157-69. [PMID: 12142028 DOI: 10.1006/dbio.2002.0713] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the mouse embryo, Dlx5 is expressed in the otic placode and vesicle, and later in the semicircular canals of the inner ear. In mice homozygous for a null Dlx5/LacZ allele, a severe dysmorphogenesis of the vestibular region is observed, characterized by the absence of semicircular canals and the shortening of the endolymphatic duct. Minor defects are observed in the cochlea, although Dlx5 is not expressed in this region. Cristae formation is severely impaired; however, sensory epithelial cells, recognized by calretinin immunostaining, are present in the vestibular epithelium of Dlx5(-/-) mice. The maculae of utricle and saccule are present but cells appear sparse and misplaced. The abnormal morphogenesis of the semicircular canals is accompanied by an altered distribution of proliferating and apoptotic cells. In the Dlx5(-/-) embryos, no changes in expression of Nkx5.1(Hmx3), Pax2, and Lfng have been seen, while expression of bone morphogenetic protein-4 (Bmp4) was drastically reduced. Notably, BMP4 has been shown to play a fundamental role in vestibular morphogenesis of the chick embryo. We propose that development of the semicircular canals and the vestibular inner ear requires the independent control of several homeobox genes, which appear to exert their function via tight regulation of BPM4 expression and the regional organization of cell differentiation, proliferation, and apoptosis.
Collapse
Affiliation(s)
- Giorgio R Merlo
- Dulbecco Telethon Institute (DTI), Advanced Biotechnology Center, Largo R. Benzi 10, 16132 Genoa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Astic L, Pellier-Monnin V, Saucier D, Charrier C, Mehlen P. Expression of netrin-1 and netrin-1 receptor, DCC, in the rat olfactory nerve pathway during development and axonal regeneration. Neuroscience 2002; 109:643-56. [PMID: 11927147 DOI: 10.1016/s0306-4522(01)00535-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Netrin-1 is a bifunctional secreted protein that directs axon extension in various groups of developing axonal tracts. The transmembrane DCC (deleted in colorectal cancer) receptor is described as netrin-1 receptor and is involved in the attractive effects of netrin-1. In this study, we examined the spatio-temporal expression patterns of both netrin-1 and DCC in the rat olfactory system at different stages of development and during axonal regeneration following unilateral bulbectomy. High DCC expression was detected on the pioneer olfactory axons as they are extending toward the telencephalon. This expression was transient since from embryonic day 16 onwards, DCC was no longer detected along the olfactory nerve path. From embryonic day 14 until birth, DCC was also expressed within the mesenchyme surrounding the olfactory epithelium. During the same period, netrin-1 protein was detected along the trajectory of olfactory axons up to the olfactory bulb and its expression pattern in the nasal mesenchyme largely overlapped that of DCC. Moreover, netrin-1 continued to be present during the two first post-natal weeks, and a weak protein expression still persisted in the dorso-medial region of the olfactory epithelium in adult rats. While unilateral bulbectomy induced a transient up-regulation of netrin-1 in the lamina propria, particularly in the dorso-medial region of the neuroepithelium, no DCC expression was detected on the regenerating olfactory axons. In the developing olfactory bulb, the extension of mitral cell axons was associated with DCC presence while netrin-1 was absent along this axonal path. DCC was also highly expressed in the newly formed glomeruli after birth, and a weak DCC expression was still detected in the glomerular layer in adult rats. Taken together, these data support the notion that netrin-1, via DCC expressed on axons, may play a role in promoting outgrowth and/or guidance of pioneering olfactory axons toward the olfactory bulb primordium. Moreover, association of netrin-1 with mesenchymal DCC may provide a permissive environment to the growth of both pioneer and later-growing axons. The maintenance of netrin-1 expression in the nasal mesenchyme of adult rats as well as its regional up-regulation following unilateral bulbectomy infer that netrin-1, even in the absence of DCC, may be involved in the process of axonal growth of newly differentiated olfactory receptor neurons probably through the use of other receptors.
Collapse
Affiliation(s)
- L Astic
- Laboratoire de Neurosciences et Systèmes Sensoriels, CNRS UMR 5020, Université VClaude Bernard/Lyon 1, France.
| | | | | | | | | |
Collapse
|
86
|
Ponnio T, Burton Q, Pereira FA, Wu DK, Conneely OM. The nuclear receptor Nor-1 is essential for proliferation of the semicircular canals of the mouse inner ear. Mol Cell Biol 2002; 22:935-45. [PMID: 11784868 PMCID: PMC133552 DOI: 10.1128/mcb.22.3.935-945.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nor-1 belongs to the nur subfamily of nuclear receptor transcription factors. The precise role of Nor-1 in mammalian development has not been established. However, recent studies indicate a function for this transcription factor in oncogenesis and apoptosis. To examine the spatiotemporal expression pattern of Nor-1 and the developmental and physiological consequences of Nor-1 ablation, Nor-1-null mice were generated by insertion of the lacZ gene into the Nor-1 genomic locus. Disruption of the Nor-1 gene results in inner ear defects and partial bidirectional circling behavior. During early otic development, Nor-1 is expressed exclusively in the semicircular canal forming fusion plates. After formation of the membranous labyrinth, Nor-1 expression in the vestibule is limited to nonsensory epithelial cells localized at the inner edge of the semicircular canals and to the ampullary and utricular walls. In the absence of Nor-1, the vestibular walls fuse together as normal; however, the endolymphatic fluid space in the semicircular canals is diminished and the roof of the ampulla appears flattened due to defective continual proliferative growth of the semicircular canals.
Collapse
Affiliation(s)
- Tiia Ponnio
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
87
|
Abstract
The inner ear, also called the membranous labyrinth, contains the cochlea, which is responsible for the sense of hearing, and the vestibular apparatus, which is necessary for the sense of balance and gravity. The inner ear arises in the embryo from placodes, which are epithelial thickenings of the cranial ectoderm symmetrically located on either side of hindbrain rhombomeres 5 and 6. Placode formation in mice is first visible at the 12-somite stage and is controlled by surrounding tissues, the paraxial mesoderm and neural ectoderm. Diffusible molecules such as growth factors play an important role in this process. The activity of several genes confers the identity to the placodal cells. Subsequent cellular proliferation processes under influences from the adjacent hindbrain cause the inner ear epithelium to invaginate and form a vesicle called the otocyst. Combinatorial expression of several genes and diffusible factors secreted from the vesicle epithelium and hindbrain control specification of distinct inner ear compartments. Transplantation studies and inner ear in vitro cultures show that each of these compartments is already committed to develop unique inner ear structures. Later developmental periods are principally characterized by intrinsic differentiation processes. In particular, sensory patches differentiate into fully functional sensory epithelia, and the semicircular canals along with the cochlear duct are elaborated and ossified.
Collapse
Affiliation(s)
- S Rinkwitz
- Department of Physiology and Neuroscience, New York University School of Medicine, New York 10016, USA.
| | | | | |
Collapse
|
88
|
Abstract
The punc gene, encoding a member of the neural cell adhesion molecule family expressed in the developing central nervous system, limbs, and inner ear, was identified. To extend studies of the normal expression pattern of punc and to determine its function, a mouse strain bearing a lacZ/neo insertion in a 5' coding exon was created. The complex pattern of punc expression in embryos from embryonic day 9.5 (E9.5) to E11.5 was mimicked accurately by beta-galactosidase (beta-Gal) activity. As development proceeded, the distribution of beta-Gal activity was increasingly restricted, finally becoming confined to the brain and inner ear by E15.5. In the adult, beta-Gal activity was detected in several regions of the inner ear and brain and was particularly strong in the cerebellar Bergmann glia. Genetic analysis of this null allele demonstrated that punc is not required for normal embryogenesis. Interestingly, comparisons of beta-Gal activity and punc transcripts in heterozygous and homozygous mutant individuals demonstrated that punc is negatively autoregulated in some tissues. Adult punc-deficient mice were overtly normal and had normal hearing. Compared with control littermates, however, homozygous mutants had significantly reduced retention times on the Rotarod, suggesting a role for Bergmann glia-expressed Punc in the cerebellar control of motor coordination.
Collapse
Affiliation(s)
- W Yang
- Department of Human Genetics, University of Utah, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
89
|
Alavizadeh A, Kiernan AE, Nolan P, Lo C, Steel KP, Bucan M. The Wheels mutation in the mouse causes vascular, hindbrain, and inner ear defects. Dev Biol 2001; 234:244-60. [PMID: 11356033 DOI: 10.1006/dbio.2001.0241] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In a screen for mouse mutations with dominant behavioral anomalies, we identified Wheels, a mutation associated with circling and hyperactivity in heterozygotes and embryonic lethality in homozygotes. Mutant Wheels embryos die at E10.5-E11.5 and exhibit a host of morphological anomalies which include growth retardation and anomalies in vascular and hindbrain development. The latter includes perturbation of rhombomeric boundaries as detected by Krox20 and Hoxb1. PECAM-1 staining of embryos revealed normal formation of the primary vascular plexus. However, subsequent stages of branching and remodeling do not proceed normally in the yolk sac and in the embryo proper. To obtain insights into the circling behavior, we examined development of the inner ear by paint-filling of membranous labyrinths of Whl/+ embryos. This analysis revealed smaller posterior and lateral semicircular canal primordia and a delay in the canal fusion process at E12.5. By E13.5, the lateral canal was truncated and the posterior canal was small or absent altogether. Marker analysis revealed an early molecular phenotype in heterozygous embryos characterized by perturbed expression of Bmp4 and Msx1 in prospective lateral and posterior cristae at E11.5. We have constructed a genetic and radiation hybrid map of the centromeric portion of mouse Chromosome 4 across the Wheels region and refined the position of the Wheels locus to the approximately 1.1-cM region between D4Mit104 and D4Mit181. We have placed the locus encoding Epha7, in the Wheels candidate region; however, further analysis showed no mutations in the Epha7-coding region and no detectable changes in mRNA expression pattern. In summary, our findings indicate that Wheels, a gene which is essential for the survival of the embryo, may link diverse processes involved in vascular, hindbrain, and inner ear development.
Collapse
Affiliation(s)
- A Alavizadeh
- Department of Psychiatry and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
90
|
Gustafsson E, Fässler R. Insights into extracellular matrix functions from mutant mouse models. Exp Cell Res 2000; 261:52-68. [PMID: 11082275 DOI: 10.1006/excr.2000.5042] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- E Gustafsson
- Department of Experimental Pathology, Lund University, Lund, SE-221 85, Sweden.
| | | |
Collapse
|
91
|
Abstract
The gene trap methodology is a powerful tool to characterize novel genes and analyze their importance in biological phenomena. It is based on the use of mouse embryonic stem cells and reporter vectors designed to randomly integrate into the genome, tagging an insertion site and generating a mutation. Theoretically, all the 100,000 genes present in the mouse genome could be tagged and functionally inactivated at the same time. Here we describe the basic concepts and perspectives of this methodology and show some results obtained by the gene trap approach used to study molecular cascades in basic cell biology and in developmental processes.
Collapse
Affiliation(s)
- F Cecconi
- Department of Molecular Cell Biology, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany.
| | | |
Collapse
|