51
|
Ha M, Athirasala A, Tahayeri A, Menezes PP, Bertassoni LE. Micropatterned hydrogels and cell alignment enhance the odontogenic potential of stem cells from apical papilla in-vitro. Dent Mater 2020; 36:88-96. [PMID: 31780101 PMCID: PMC7395926 DOI: 10.1016/j.dental.2019.10.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION An understanding of the extracellular matrix characteristics which stimulate and guide stem cell differentiation in the dental pulp is fundamental for the development of enhanced dental regenerative therapies. Our objectives, in this study, were to determine whether stem cells from the apical papilla (SCAP) responded to substrate stiffness, whether hydrogels providing micropatterned topographical cues stimulate SCAP self-alignment, and whether the resulting alignment could influence their differentiation towards an odontogenic lineage in-vitro. METHODS Experiments utilized gelatin methacryloyl (GelMA) hydrogels of increasing concentrations (5, 10 and 15%). We determined their compressive modulus via unconfined compression and analyzed cell spreading via F-actin/DAPI immunostaining. GelMA hydrogels were micropatterned using photolithography, in order to generate microgrooves and ridges of 60 and 120μm, onto which SCAP were seeded and analyzed for self-alignment via fluorescence microscopy. Lastly, we analyzed the odontogenic differentiation of SCAP using alkaline phosphatase protein expression (ANOVA/Tukey α=0.05). RESULTS SCAP appeared to proliferate better on stiffer hydrogels. Both 60 and 120μm micropatterned hydrogels guided the self-alignment of SCAP with no significant difference between them. Similarly, both 60 and 120μm micropattern aligned cells promoted higher odontogenic differentiation than non-patterned controls. SIGNIFICANCE In summary, both substrate mechanics and geometry have a statistically significant influence on SCAP response, and may assist in the odontogenic differentiation of dental stem cells. These results may point toward the fabrication of cell-guiding scaffolds for regenerative endodontics, and may provide cues regarding the development of the pulp-dentin interface during tooth formation.
Collapse
Affiliation(s)
- Michael Ha
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Avathamsa Athirasala
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Anthony Tahayeri
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Paula P Menezes
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA; Postgraduate Program in Health Sciences, Department of Pharmacy, Federal University of Sergipe, Aracaju, SE, Brazil
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA; Center for Regenerative Medicine, Oregon Health and Science University, Portland, OR, USA; Cancer Early Detection Advanced Research, Knight Cancer Institute, Portland, OR, USA.
| |
Collapse
|
52
|
Bilodeau C, Goltsis O, Rogers IM, Post M. Limitations of recellularized biological scaffolds for human transplantation. J Tissue Eng Regen Med 2019; 14:521-538. [PMID: 31826325 DOI: 10.1002/term.3004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
A shortage of donor organs for transplantation and the dependence of the recipients on immunosuppressive therapy have motivated researchers to consider alternative regenerative approaches. The answer may reside in acellular scaffolds generated from cadaveric human and animal tissues. Acellular scaffolds are expected to preserve the architectural and mechanical properties of the original organ, permitting cell attachment, growth, and differentiation. Although theoretically, the use of acellular scaffolds for transplantation should pose no threat to the recipient's immune system, experimental data have revealed significant immune responses to allogeneic and xenogeneic transplanted scaffolds. Herein, we review the various factors of the scaffold that could trigger an inflammatory and/or immune response, thereby compromising its use for human transplant therapy. In addition, we provide an overview of the major cell types that have been considered for recellularization of the scaffold and their potential contribution to triggering an immune response.
Collapse
Affiliation(s)
- Claudia Bilodeau
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Goltsis
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld Research Institute, Mount Sinai Health, Toronto, Ontario, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
53
|
Dou J, Mao S, Li H, Lin JM. Combination Stiffness Gradient with Chemical Stimulation Directs Glioma Cell Migration on a Microfluidic Chip. Anal Chem 2019; 92:892-898. [DOI: 10.1021/acs.analchem.9b03681] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jinxin Dou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sifeng Mao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haifang Li
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
54
|
Hui E, Gimeno KI, Guan G, Caliari SR. Spatiotemporal Control of Viscoelasticity in Phototunable Hyaluronic Acid Hydrogels. Biomacromolecules 2019; 20:4126-4134. [PMID: 31600072 DOI: 10.1021/acs.biomac.9b00965] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Viscoelasticity has emerged as a critical regulator of cell behavior. However, there is an unmet need to develop biomaterials where viscoelasticity can be spatiotemporally controlled to mimic the dynamic and heterogeneous nature of tissue microenvironments. Toward this objective, we developed a modular hyaluronic acid hydrogel combining light-mediated covalent and supramolecular cross-linking to afford spatiotemporal control of network viscoelastic properties. Covalently cross-linked elastic hydrogels or viscoelastic hydrogels combining covalent and supramolecular interactions were fabricated to match healthy and fibrotic liver mechanics. LX-2 human hepatic stellate cells cultured on viscoelastic hydrogels displayed reductions in spreading, actin stress fiber organization, and myocardin-related transcription factor A (MRTF-A) nuclear localization compared to cells on elastic hydrogels. We further demonstrated the dynamic capabilities of our hydrogel system through photo-mediated secondary incorporation of either covalent or supramolecular cross-links to modulate viscoelastic properties. We used photopatterning to create hydrogels with well-controlled patterned regions of stiff elastic mechanics representing fibrotic tissue nodules surrounded by regions of soft viscoelastic hydrogel mimicking healthy tissue. Cells responded to the local mechanics of the patterned substrates with increased spreading in fibrosis-mimicking regions. Together, this work represents an important step forward toward the creation of hydrogel models with spatiotemporal control of both stiffness and viscoelastic cell-instructive cues.
Collapse
|
55
|
Vázquez-Victorio G, Peto-Gutiérrez C, Díaz-Bello B, Cano-Jorge M, Pérez-Calixto D, Jiménez-Escobar A, Espinosa-Matías S, Lara Martínez R, Courson R, Malaquin L, Zamarrón-Hernández D, Hautefeuille M. Building a microfluidic cell culture platform with stiffness control using Loctite 3525 glue. LAB ON A CHIP 2019; 19:3512-3525. [PMID: 31544189 DOI: 10.1039/c9lc00649d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The study of mechanotransduction signals and cell response to mechanical properties requires designing culture substrates that possess some, or ideally all, of the following characteristics: (1) biological compatibility and adhesive properties, (2) stiffness control or tunability in a dynamic mode, (3) patternability on the microscale and (4) integrability in microfluidic chips. The most common materials used to address cell mechanotransduction are hydrogels, due to their softness. However, they may be impractical when complex scaffolds are sought and they lack viscous dissipative properties that are very important in mechanobiology. In this work, we show that an off-the-shelf, biocompatible photosensitive glue, Loctite 3525, may be used readily in mechanobiology assays without any special treatment prior to fabrication of cell culture platforms. Despite a high (MPa) stiffness easily tunable by UV exposure time at a fixed dose, 3T3 fibroblasts showed a response to the mechanics of the material similar to that obtained on much softer (kPa) hydrogels. Loctite's viscous dissipation properties indeed seemed to be responsible for such cell mechanical response, as suggested by recent works where more complex two-phase hydrogels were employed. More interestingly, it was possible to stiffen soft Loctite substrates by post-exposing them during cell culture, to observe changes in cell spreading caused by a dynamic stiffness modification. Thanks to Loctite 3525's patternability, micropillars were also fabricated to demonstrate the compatibility with traction force microscopy studies. Finally, the glue was used as an excellent adhesion layer for hydrogels on glass or PDMS, without the need for additional treatment, enabling the easy fabrication of microfluidic chips integrating hydrogels.
Collapse
Affiliation(s)
- Genaro Vázquez-Victorio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria CP, 04510, Ciudad de México, Mexico.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
McDonald AI, Shirali AS, Aragón R, Ma F, Hernandez G, Vaughn DA, Mack JJ, Lim TY, Sunshine H, Zhao P, Kalinichenko V, Hai T, Pelegrini M, Ardehali R, Iruela-Arispe ML. Endothelial Regeneration of Large Vessels Is a Biphasic Process Driven by Local Cells with Distinct Proliferative Capacities. Cell Stem Cell 2019; 23:210-225.e6. [PMID: 30075129 DOI: 10.1016/j.stem.2018.07.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 04/24/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
The cellular and mechanistic bases underlying endothelial regeneration of adult large vessels have proven challenging to study. Using a reproducible in vivo aortic endothelial injury model, we characterized cellular dynamics underlying the regenerative process through a combination of multi-color lineage tracing, parabiosis, and single-cell transcriptomics. We found that regeneration is a biphasic process driven by distinct populations arising from differentiated endothelial cells. The majority of cells immediately adjacent to the injury site re-enter the cell cycle during the initial damage response, with a second phase driven by a highly proliferative subpopulation. Endothelial regeneration requires activation of stress response genes including Atf3, and aged aortas compromised in their reparative capacity express less Atf3. Deletion of Atf3 reduced endothelial proliferation and compromised the regeneration. These findings provide important insights into cellular dynamics and mechanisms that drive responses to large vessel injury.
Collapse
Affiliation(s)
- Austin I McDonald
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aditya S Shirali
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Raquel Aragón
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gloria Hernandez
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Don A Vaughn
- Department of Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Julia J Mack
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tiffany Y Lim
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hannah Sunshine
- Molecular, Cellular, and Integrative Physiology Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peng Zhao
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vladimir Kalinichenko
- Division of Pulmonary Biology and Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH 45229, USA
| | - Tsonwin Hai
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH 43210, USA
| | - Matteo Pelegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Reza Ardehali
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - M Luisa Iruela-Arispe
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
57
|
Li X, He S, Xu J, Li P, Ji B. Cooperative Contraction Behaviors of a One-Dimensional Cell Chain. Biophys J 2019; 115:554-564. [PMID: 30089244 DOI: 10.1016/j.bpj.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022] Open
Abstract
Collective behaviors of multiple cells play important roles in various physiological and pathological processes, but the mechanisms of coordination among cells are highly unknown. Here, we build a one-dimensional cell-chain model to quantitatively study cell cooperativity. Combining experimental and theoretical approaches, we showed that the matrix stiffness, intercellular adhesion strength, and cell-chain length have a significant effect on the cooperative contraction of the cell chains. Cells have strong cooperativity, i.e., exhibiting a united contraction mode, in shorter cell chains or on softer matrix or with higher intercellular adhesion strength. In contrast, cells would exhibit a divided contraction when the cell chain was long or on stiffer matrix or with weaker adhesion strength. In addition, our quantitative results indicated that the cooperativity of cells is regulated by the coupling between matrix stiffness and intercellular adhesion, which can be quantified by an explicit parameter group. These results may provide guidelines for regulating the cooperativity of cells in their collective behaviors in tissue morphogenesis and tissue engineering in biomedical applications.
Collapse
Affiliation(s)
- Xiaojun Li
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Shijie He
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Jiayi Xu
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Peiliu Li
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
58
|
Yu Y, Liu S, Wu X, Yu Z, Xu Y, Zhao W, Zavodnik I, Zheng J, Li C, Zhao H. Mechanism of Stiff Substrates up-Regulate Cultured Neuronal Network Activity. ACS Biomater Sci Eng 2019; 5:3475-3482. [PMID: 33405731 DOI: 10.1021/acsbiomaterials.9b00225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our previous work provided compelling evidence showing that substrate stiffness is crucial for regulating synaptic connectivity and excitatory synaptic transmission among neurons in the neuronal network. However, the underlying mechanisms remain elusive. In our study, polydimethylsiloxane (PDMS) substrates with different stiffness have been fabricated to investigate the mechanisms by which the substrate stiffness upregulates the formation and activity of the cultured neuronal network. Here we report that stiff substrate increased both the number of synapses and the efficacy of excitatory synaptic transmission. More colocalization of synaptotagmin and PSD-95 was observed in the neuronal network on stiff substrate, which indicated the synapse number has increased. We also found that the increased synapse number was mediated by Hevin and SPARC that are secreted from astrocyte. The increased efficacy of excitatory synaptic transmission induced by stiff substrate was explored in three aspects. First, stiff substrate enhanced the presynaptic activity through increasing the vesicular release probability (Pr) of neurotransmitters as well as the calcium influx. Second, stiff substrate reduced voltage-dependent Mg2+ blockade to N-methyl-d-aspartate receptor (NMDAR) channels, which led to higher postsynaptic activity. Third, our work suggested that the increased excitatory synaptic transmission in the neural network on stiff substrate involved the upregulated synaptic glutamate concentration. Taken together, these findings may provide a molecular mechanism underlying substrate stiffness regulation of excitatory synaptic transmission in the cultured neural network.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Sisi Liu
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Zhang Yu
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yishi Xu
- Beijing No. 4 High School, Beijing 100034, People's Republic of China
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Ilya Zavodnik
- Department of Biochemistry, Yanka Kupala State University Grodno, Blvd Len Kom 50, Grodno 230030, Belarus
| | - Jinping Zheng
- Department of Physiology, Changzhi Medical College, Changzhi 046000, People's Republic of China
| | - Chen Li
- Department of Physiology, Changzhi Medical College, Changzhi 046000, People's Republic of China
| | - Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
59
|
Vestre K, Kjos I, Guadagno NA, Borg Distefano M, Kohler F, Fenaroli F, Bakke O, Progida C. Rab6 regulates cell migration and invasion by recruiting Cdc42 and modulating its activity. Cell Mol Life Sci 2019; 76:2593-2614. [PMID: 30830239 PMCID: PMC11105640 DOI: 10.1007/s00018-019-03057-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 02/08/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022]
Abstract
Rab proteins are master regulators of intracellular membrane trafficking, but they also contribute to cell division, signaling, polarization, and migration. The majority of the works describing the mechanisms used by Rab proteins to regulate cell motility involve intracellular transport of key molecules important for migration. Interestingly, a few studies indicate that Rabs can modulate the activity of Rho GTPases, important regulators for the cytoskeleton rearrangements, but the mechanisms behind this crosstalk are still poorly understood. In this work, we identify Rab6 as a negative regulator of cell migration in vitro and in vivo. We show that the loss of Rab6 promotes formation of actin protrusions and influences actomyosin dynamics by upregulating Cdc42 activity and downregulating myosin II phosphorylation. We further provide the molecular mechanism behind this regulation demonstrating that Rab6 interacts with both Cdc42 and Trio, a GEF for Cdc42. In sum, our results uncover a mechanism used by Rab proteins to ensure spatial regulation of Rho GTPase activity for coordination of cytoskeleton rearrangements required in migrating cells.
Collapse
Affiliation(s)
- Katharina Vestre
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Ingrid Kjos
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Noemi Antonella Guadagno
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Marita Borg Distefano
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Felix Kohler
- Department of Physics, The NJORD Centre, University of Oslo, Oslo, Norway
| | | | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway.
- Centre for Immune Regulation, University of Oslo, Oslo, Norway.
| |
Collapse
|
60
|
Myosin IIA suppresses glioblastoma development in a mechanically sensitive manner. Proc Natl Acad Sci U S A 2019; 116:15550-15559. [PMID: 31235578 DOI: 10.1073/pnas.1902847116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of glioblastoma to disperse through the brain contributes to its lethality, and blocking this behavior has been an appealing therapeutic approach. Although a number of proinvasive signaling pathways are active in glioblastoma, many are redundant, so targeting one can be overcome by activating another. However, these pathways converge on nonredundant components of the cytoskeleton, and we have shown that inhibiting one of these-the myosin II family of cytoskeletal motors-blocks glioblastoma invasion even with simultaneous activation of multiple upstream promigratory pathways. Myosin IIA and IIB are the most prevalent isoforms of myosin II in glioblastoma, and we now show that codeleting these myosins markedly impairs tumorigenesis and significantly prolongs survival in a rodent model of this disease. However, while targeting just myosin IIA also impairs tumor invasion, it surprisingly increases tumor proliferation in a manner that depends on environmental mechanics. On soft surfaces myosin IIA deletion enhances ERK1/2 activity, while on stiff surfaces it enhances the activity of NFκB, not only in glioblastoma but in triple-negative breast carcinoma and normal keratinocytes as well. We conclude myosin IIA suppresses tumorigenesis in at least two ways that are modulated by the mechanics of the tumor and its stroma. Our results also suggest that inhibiting tumor invasion can enhance tumor proliferation and that effective therapy requires targeting cellular components that drive both proliferation and invasion simultaneously.
Collapse
|
61
|
Soft culture substrates favor stem-like cellular phenotype and facilitate reprogramming of human mesenchymal stem/stromal cells (hMSCs) through mechanotransduction. Sci Rep 2019; 9:9086. [PMID: 31235788 PMCID: PMC6591285 DOI: 10.1038/s41598-019-45352-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/04/2019] [Indexed: 01/26/2023] Open
Abstract
Biophysical cues influence many aspects of cell behavior. Stiffness of the extracellular matrix is probed by cells and transduced into biochemical signals through mechanotransduction protein networks, strongly influencing stem cell behavior. Cellular stemness is intimately related with mechanical properties of the cell, like intracellular contractility and stiffness, which in turn are influenced by the microenvironment. Pluripotency is associated with soft and low-contractility cells. Hence, we postulated that soft cell culture substrates, presumably inducing low cellular contractility and stiffness, increase the reprogramming efficiency of mesenchymal stem/stromal cells (MSCs) into induced pluripotent stem cells (iPSCs). We demonstrate that soft substrates (1.5 or 15 kPa polydimethylsiloxane – PDMS) caused modulation of several cellular features of MSCs into a phenotype closer to pluripotent stem cells (PSCs). MSCs cultured on soft substrates presented more relaxed nuclei, lower maturation of focal adhesions and F-actin assembling, more euchromatic and less heterochromatic nuclear DNA regions, and increased expression of pluripotency-related genes. These changes correlate with the reprogramming of MSCs, with a positive impact on the kinetics, robustness of colony formation and reprogramming efficiency. Additionally, substrate stiffness influences several phenotypic features of iPS cells and colonies, and data indicates that soft substrates favor full iPSC reprogramming.
Collapse
|
62
|
Hosoyama K, Ahumada M, Goel K, Ruel M, Suuronen EJ, Alarcon EI. Electroconductive materials as biomimetic platforms for tissue regeneration. Biotechnol Adv 2019; 37:444-458. [DOI: 10.1016/j.biotechadv.2019.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
|
63
|
Foyt DA, Taheem DK, Ferreira SA, Norman MDA, Petzold J, Jell G, Grigoriadis AE, Gentleman E. Hypoxia impacts human MSC response to substrate stiffness during chondrogenic differentiation. Acta Biomater 2019; 89:73-83. [PMID: 30844569 PMCID: PMC6481516 DOI: 10.1016/j.actbio.2019.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 12/31/2022]
Abstract
Tissue engineering strategies often aim to direct tissue formation by mimicking conditions progenitor cells experience within native tissues. For example, to create cartilage in vitro, researchers often aim to replicate the biochemical and mechanical milieu cells experience during cartilage formation in the developing limb bud. This includes stimulating progenitors with TGF-β1/3, culturing under hypoxic conditions, and regulating mechanosensory pathways using biomaterials that control substrate stiffness and/or cell shape. However, as progenitors differentiate down the chondrogenic lineage, the pathways that regulate their responses to mechanotransduction, hypoxia and TGF-β may not act independently, but rather also impact one another, influencing overall cell response. Here, to better understand hypoxia's influence on mechanoregulatory-mediated chondrogenesis, we cultured human marrow stromal/mesenchymal stem cells (hMSC) on soft (0.167 kPa) or stiff (49.6 kPa) polyacrylamide hydrogels in chondrogenic medium containing TGF-β3. We then compared cell morphology, phosphorylated myosin light chain 2 staining, and chondrogenic gene expression under normoxic and hypoxic conditions, in the presence and absence of pharmacological inhibition of cytoskeletal tension. We show that on soft compared to stiff substrates, hypoxia prompts hMSC to adopt more spread morphologies, assemble in compact mesenchymal condensation-like colonies, and upregulate NCAM expression, and that inhibition of cytoskeletal tension negates hypoxia-mediated upregulation of molecular markers of chondrogenesis, including COL2A1 and SOX9. Taken together, our findings support a role for hypoxia in regulating hMSC morphology, cytoskeletal tension and chondrogenesis, and that hypoxia's effects are modulated, at least in part, by mechanosensitive pathways. Our insights into how hypoxia impacts mechanoregulation of chondrogenesis in hMSC may improve strategies to develop tissue engineered cartilage. STATEMENT OF SIGNIFICANCE: Cartilage tissue engineering strategies often aim to drive progenitor cell differentiation by replicating the local environment of the native tissue, including by regulating oxygen concentration and mechanical stiffness. However, the pathways that regulate cellular responses to mechanotransduction and hypoxia may not act independently, but rather also impact one another. Here, we show that on soft, but not stiff surfaces, hypoxia impacts human MSC (hMSC) morphology and colony formation, and inhibition of cytoskeletal tension negates the hypoxia-mediated upregulation of molecular markers of chondrogenesis. These observations suggest that hypoxia's effects during hMSC chondrogenesis are modulated, at least in part, by mechanosensitive pathways, and may impact strategies to develop scaffolds for cartilage tissue engineering, as hypoxia's chondrogenic effects may be enhanced on soft materials.
Collapse
Affiliation(s)
- Daniel A Foyt
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Dheraj K Taheem
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Silvia A Ferreira
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Michael D A Norman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Jonna Petzold
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Gavin Jell
- Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | | | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK.
| |
Collapse
|
64
|
Blyakhman FA, Makarova EB, Fadeyev FA, Lugovets DV, Safronov AP, Shabadrov PA, Shklyar TF, Melnikov GY, Orue I, Kurlyandskaya GV. The Contribution of Magnetic Nanoparticles to Ferrogel Biophysical Properties. NANOMATERIALS 2019; 9:nano9020232. [PMID: 30744036 PMCID: PMC6410145 DOI: 10.3390/nano9020232] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Iron oxide γ-Fe2O3 magnetic nanoparticles (MNPs) were fabricated by laser target evaporation technique (LTE) and their structure and magnetic properties were studied. Polyacrylamide (PAAm) gels with different cross-linking density of the polymer network and polyacrylamide-based ferrogel with embedded LTE MNPs (0.34 wt.%) were synthesized. Their adhesive and proliferative potential with respect to human dermal fibroblasts were studied. At the same value of Young modulus, the adhesive and proliferative activities of the human dermal fibroblasts on the surface of ferrogel were unexpectedly much higher in comparison with the surface of PAAm gel. Properties of PAAm-100 + γ-Fe2O3 MNPs composites were discussed with focus on creation of a new generation of drug delivery systems combined in multifunctional devices, including magnetic field assisted delivery, positioning, and biosensing. Although exact applications are still under development, the obtained results show a high potential of LTE MNPs to be applied for cellular technologies and tissue engineering. PAAm-100 ferrogel with very low concentration of γ-Fe2O3 MNPs results in significant improvement of the cells’ compatibility to the gel-based scaffold.
Collapse
Affiliation(s)
- Felix A Blyakhman
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
| | - Emilia B Makarova
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Ural Scientific Institute of Traumatology and Orthopaedics, 620014 Ekaterinburg, Russia.
| | - Fedor A Fadeyev
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Center of Specialized Types of Medical Care Institute of Medical Cell Technologies, 620026 Ekaterinburg, Russia.
| | - Daiana V Lugovets
- Center of Specialized Types of Medical Care Institute of Medical Cell Technologies, 620026 Ekaterinburg, Russia.
| | - Alexander P Safronov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
- Institute of Electrophysics, Ural Division RAS, 620016 Yekaterinburg, Russia.
| | - Pavel A Shabadrov
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
| | - Tatyana F Shklyar
- Ural State Medical University, 620028 Ekaterinburg, Russia.
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
| | - Grigory Yu Melnikov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
| | - Iñaki Orue
- Advanced Research Facilities (SGIKER), Universidad del País Vasco UPV-EHU, 48080 Bilbao, Spain.
| | - Galina V Kurlyandskaya
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.
- Universidad del País Vasco UPV/EHU, Departamento de Electricidad y Electrónica and BCMaterials, 48080 Bilbao, Spain.
| |
Collapse
|
65
|
Gupta P, Agrawal A, Murali K, Varshney R, Beniwal S, Manhas S, Roy P, Lahiri D. Differential neural cell adhesion and neurite outgrowth on carbon nanotube and graphene reinforced polymeric scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:539-551. [PMID: 30678940 DOI: 10.1016/j.msec.2018.12.065] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 11/04/2018] [Accepted: 12/19/2018] [Indexed: 11/15/2022]
Abstract
Carbon nanomaterials, such as graphene nanoplatelets (GNPs) and multiwalled carbon nanotubes (MWCNTs) are potential candidates in a large number of biomedical applications. The present study investigates the effect of the difference in morphology of these materials on neural cell regeneration on a biodegradable scaffold. Electrical conductivities of all the hybrid scaffolds are found to be in between that of MWCNT/chitosan scaffold (highest-conductivity) and GNP/chitosan scaffold (lowest-conductivity). While, hybrid scaffolds show improvement in elastic modulus and ultimate tensile strength over MWCNT/chitosan and GNP/chitosan scaffolds. The protein adsorption isotherms of bovine serum albumin (BSA) show greater equilibrium constant (Keq) on GNP/chitosan composites as compared to MWCNT/chitosan composites, proving more potential for cell adhesion in the former. Interactions of HT-22 hippocampal neurons with MWCNT/chitosan, GNP/chitosan and various MWCNT/GNP hybrid chitosan matrices prove cytocompatibility. The neurons acquire elongated geometry on the MWCNT/chitosan scaffold, while GNP reinforcement drives the neurons to spread cellular processes radially.
Collapse
Affiliation(s)
- Pallavi Gupta
- Centre of Nanotechnology, IIT Roorkee, India; Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, IIT Roorkee, India.
| | - Akriti Agrawal
- University of Petroleum and Energy Studies, Dehradun, India
| | - Kumarasamy Murali
- Centre of Nanotechnology, IIT Roorkee, India; Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, IIT Roorkee, India; Department of Biotechnology, IIT Roorkee, India
| | | | - Swen Beniwal
- Department of Electronics and Communication Engineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Sanjeev Manhas
- Department of Electronics and Communication Engineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Partha Roy
- Centre of Nanotechnology, IIT Roorkee, India; Department of Biotechnology, IIT Roorkee, India
| | - Debrupa Lahiri
- Centre of Nanotechnology, IIT Roorkee, India; Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, IIT Roorkee, India
| |
Collapse
|
66
|
Abstract
It is increasingly clear that mechanotransduction pathways play important roles in regulating fundamental cellular functions. Of the basic mechanical functions, the determination of cellular morphology is critical. Cells typically use many mechanosensitive steps and different cell states to achieve a polarized shape through repeated testing of the microenvironment. Indeed, morphology is determined by the microenvironment through periodic activation of motility, mechanotesting, and mechanoresponse functions by hormones, internal clocks, and receptor tyrosine kinases. Patterned substrates and controlled environments with defined rigidities limit the range of cell behavior and influence cell state decisions and are thus very useful for studying these steps. The recently defined rigidity sensing process provides a good example of how cells repeatedly test their microenvironment and is also linked to cancer. In general, aberrant extracellular matrix mechanosensing is associated with numerous conditions, including cardiovascular disease, aging, and fibrosis, that correlate with changes in tissue morphology and matrix composition. Hence, detailed descriptions of the steps involved in sensing and responding to the microenvironment are needed to better understand both the mechanisms of tissue homeostasis and the pathomechanisms of human disease.
Collapse
Affiliation(s)
- Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel 31096;
| | - Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore;
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; .,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
67
|
Osteogenesis-Related Behavior of MC3T3-E1 Cells on Substrates with Tunable Stiffness. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4025083. [PMID: 30515396 PMCID: PMC6236916 DOI: 10.1155/2018/4025083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/25/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022]
Abstract
Osteogenic differentiation of cells has considerable clinical significance in bone defect treatment, and cell behavior is linked to extracellular matrix stiffness. This study aimed to determine how matrix stiffness affects cell morphology and subsequently regulates the osteogenic phenotype of osteogenesis precursor cells. Four PDMS substrates were prepared with stiffness corresponding to the elastic modulus ranging from 0.6 MPa to 2.7 MPa by altering the Sylgard 527 and Sylgard 184 concentrations. MC3T3-E1 cells were cultured on the matrices. Cell morphology, vinculin expression, and key osteogenic markers, Col I, OCN, OPN, and calcium nodule, were examined. The activity and expression level of Yes-associated protein (YAP) were evaluated. Results showed that cell spreading exhibited no correlation with the stiffness of matrix designed in this paper, but substratum stiffness did modulate MC3T3-E1 osteogenic differentiation. Col I, OPN, and OCN proteins were significantly increased in cells cultured on soft matrices compared with stiff matrices. Additionally, cells cultured on the 1:3 ratio matrices had more nodules than those on other matrices. Accordingly, cells on substrates with low stiffness showed enhanced expression of the osteogenic markers. Meanwhile, YAP expression was downregulated on soft substrates although the subcellular location was not affected. Our results provide evidence that matrix stiffness (elastic modulus ranging from 0.6 MPa to 2.7 MPa) affects the osteogenic differentiation of MC3T3-E1, but it is not that “the stiffer, the better” as showed in some of the previous studies. The optimal substrate stiffness may exist to promote osteoblast differentiation. Cell differentiation triggered by the changes in substrate stiffness may be independent of the YAP signal. This study has important implications for biomaterial design and stem cell-based tissue engineering.
Collapse
|
68
|
Keshavanarayana P, Ruess M, de Borst R. On the monolithic and staggered solution of cell contractility and focal adhesion growth. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3138. [PMID: 30070031 DOI: 10.1002/cnm.3138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
The mechanical response of cells to stimuli tightly couples biochemical and biomechanical processes, which describe fundamental properties such as cell growth and reorientation. Cells interact continuously with their external surroundings, the extracellular matrix (ECM), by establishing a bond between cell and ECM through the formation of focal adhesions. Focal adhesions are made up of integrins, which are mechanosensitive proteins and responsible for the communication between the cell and the ECM. The governing biochemomechanical processes can be modeled by means of a continuum approach considering mechanical and thermodynamic equilibrium to describe cell contractility and focal adhesion growth. The immanent multiphysical character of cell mechanics involves important aspects such as the coupling of fields of different scales and corresponding interface conditions that are sensitive to the solution of the governing numerical problem. These aspects become even more relevant when considering a feedback loop among the multiphysical solutions fields. In this contribution, we consider solution properties and sensitivity aspects of a nonlinear mechanical continuum model for the prognosis of stress fiber growth and reorientation incorporating a mechanosensitive feedback loop. We provide the governing equations of a Hill model-based stress fiber growth, which is coupled to a thermodynamical approach modeling the focal adhesions. Furthermore, a variational formulation including the algebraic equations is derived for staggered and monolithic solution approaches and the reaction-diffusion equation that models the feedback mechanism. We test both schemes with regard to reliability, accuracy, and numerical efficiency for different model parameters and loading scenarios. We present algorithmic aspects of the considered solution schemes and reveal their robustness with regard to model refinement in space and time and finally provide an assessment of their overall solution performance for multiphysics problems in the context of cell mechanics.
Collapse
Affiliation(s)
| | - Martin Ruess
- School of Engineering, University of Glasgow, Glasgow, UK
| | - René de Borst
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
69
|
Muzzio NE, Pasquale MA, Marmisollé WA, von Bilderling C, Cortez ML, Pietrasanta LI, Azzaroni O. Self-assembled phosphate-polyamine networks as biocompatible supramolecular platforms to modulate cell adhesion. Biomater Sci 2018; 6:2230-2247. [PMID: 29978861 DOI: 10.1039/c8bm00265g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The modulation of cell adhesion via biologically inspired materials plays a key role in the development of realistic platforms to envisage not only mechanistic descriptions of many physiological and pathological processes but also new biointerfacial designs compatible with the requirements of biomedical devices. In this work, we show that the cell adhesion and proliferation of three different cell lines can be easily manipulated by using a novel biologically inspired supramolecular coating generated via dip coating of the working substrates in an aqueous solution of polyallylamine in the presence of phosphate anions-a simple one-step modification procedure. Our results reveal that selective cell adhesion can be controlled by varying the deposition time of the coating. Cell proliferation experiments showed a cell type-dependent quasi-exponential growth demonstrating the nontoxic properties of the supramolecular platform. After reaching a certain surface coverage, the supramolecular films based on phosphate-polyamine networks displayed antiadhesive activity towards cells, irrespective of the cell type. However and most interestingly, these antiadherent substrates developed strong adhesive properties after thermal annealing at 37 °C for 3 days. These results were interpreted based on the changes in the coating hydrophilicity, topography and stiffness, with the latter being assessed by atomic force microscopy imaging and indentation experiments. The reported approach is simple, robust and flexible, and would offer opportunities for the development of tunable, biocompatible interfacial architectures to control cell attachment for various biomedical applications.
Collapse
Affiliation(s)
- Nicolás E Muzzio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | | | | | | | | | | | | |
Collapse
|
70
|
Moriarty RA, Stroka KM. Physical confinement alters sarcoma cell cycle progression and division. Cell Cycle 2018; 17:2360-2373. [PMID: 30304981 PMCID: PMC6237433 DOI: 10.1080/15384101.2018.1533776] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/18/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022] Open
Abstract
Tumor cells experience physical confinement on one or multiple axes, both in the primary tumor and at multiple stages during metastasis. Recent work has shown that confinement in a 3D spheroid alters nucleus geometry and delays cell division, and that vertical confinement impairs mitotic spindle rounding, resulting in abnormal division events. Meanwhile, the effects of bi-axial confinement on cell cycle progression has received little attention. Given the critical role of nuclear shape and mechanics in cell division, we hypothesized that bi-axial physical confinement of the cell body and nucleus would alter cell cycle progression. We used sarcoma cells stably expressing the fluorescence ubiquitination cell cycle indicator (FUCCI), along with fibronectin-coated microchannel devices, and explored the impact of bi-axial physical confinement on cell cycle progression. Our results demonstrate that bi-axial physical confinement reduces the frequency of cell division, which we found to be attributed to an arrest in the S/G2/M phase of the cell cycle, and increases the frequency of abnormal division events. Cell and nuclear morphology were both altered in confinement, with the most confining channels preventing cells from undergoing the normal increase in size from G1 to S/G2/M during cell cycle progression. Finally, our results suggest that confinement induces a mechanical memory to the cells, given our observation of lasting effects on cell division and morphology, even after cells exited confinement. Together, our results provide new insights into the possible impact of mechanical forces on primary and secondary tumor formation and growth.
Collapse
Affiliation(s)
- Rebecca A. Moriarty
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Biophysics Program, University of Maryland, College Park, MD, USA
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
71
|
Venugopal B, Mogha P, Dhawan J, Majumder A. Cell density overrides the effect of substrate stiffness on human mesenchymal stem cells' morphology and proliferation. Biomater Sci 2018. [PMID: 29528341 PMCID: PMC5933002 DOI: 10.1039/c7bm00853h] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effect of substrate stiffness on the cellular morphology, proliferation, and differentiation of human mesenchymal stem cells (hMSCs) has been extensively researched and well established. However, the majority of these studies are done with a low seeding density where cell to cell interactions do not play a significant role. While these conditions permit an analysis of cell-substratum interactions at the single cell level, such a model system fails to capture a critical aspect of the cellular micro-environment in vivo, i.e. the cell-cell interaction via matrix deformation (i.e., strain). To address this question, we seeded hMSCs on soft poly-acrylamide (PAA) gels, at a seeding density that permits cells to be mechanically interacting via the underlying substrate. We found that as the intercellular distance decreases with the increasing seeding density, cellular sensitivity towards the substrate rigidity becomes significantly diminished. With the increasing seeding density, the cell spread area increased on a soft substrate (500 Pa) but reduced on an even slightly stiffer substrate (2 kPa) as well as on glass making them indistinguishable at a high seeding density. Not only in terms of cell spread area but also at a high seeding density, cells formed mature focal adhesions and prominent stress fibres on a soft substrate similar to that of the cells being cultured on a stiff substrate. The decreased intercellular distance also influenced the proliferation rate of the cells: higher seeding density on the soft substrate showed cell cycle progression similar to that of the cells on glass substrates. In summary, this paper demonstrates how the effect of substrate rigidity on the cell morphology and fate is a function of inter-cellular distance when seeded on a soft substrate. Our AFM data suggest that such changes happen due to local strain stiffening of the soft PAA gel, an effect that has been rarely reported in the literature so far.
Collapse
Affiliation(s)
- Balu Venugopal
- Institute of Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India.
| | | | | | | |
Collapse
|
72
|
Silva CR, Babo PS, Gulino M, Costa L, Oliveira JM, Silva-Correia J, Domingues RM, Reis RL, Gomes ME. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomater 2018; 77:155-171. [PMID: 30031163 DOI: 10.1016/j.actbio.2018.07.035] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Bioengineered soft tissues on any meaningful scale or complexity must incorporate aspects of the functional tissue, namely a vasculature, providing cells oxygen and nutrients critical for their survival. However, the ability of tissue engineering strategies to promote a fast revascularization is critically limited. Particularly in endodontic regenerative therapies, the complicated anatomy of the root canal system, and the narrow apical access limit the supply of new blood vessels and pulp tissue ingrowth. Here we characterize the viscoelastic and microstructural properties of a class of injectable hyaluronic acid (HA) hydrogels formed in situ, reinforced with cellulose nanocrystals (CNCs) and enriched with platelet lysate (PL), and test its ability to promote cells recruitment and proangiogenic activity in vitro. The incorporation of CNCs enhanced the stability of the materials against hydrolytic and enzymatic degradation. Moreover, the release of the chemotactic and pro-angiogenic growth factors (GFs) (PDGF and VEGF) from the PL-laden hydrogels showed an improved sustained profile proportional to the amount of incorporated CNCs. The PL-laden hydrogels exhibited preferential supportive properties of encapsulated human dental pulp cells (hDPCs) in in vitro culture conditions. Finally, PL-laden hydrogels stimulated chemotactic and pro-angiogenic activity by promoting hDPCs recruitment and cell sprouting in hDPCs/human umbilical vein endothelial cell co-cultures in vitro, and in an ex vivo model. These results support the use of the combined system as a scaffold for GFs delivery and cells recruitment, thereby exhibiting great clinical potential in treating injuries in vascularized tissues. STATEMENT OF SIGNIFICANCE Innovative strategies for improved chemotactic and pro-angiogenic features of TE constructs are needed. In this study, we developed an injectable HA/CNC/PL hydrogel with improved structural and biologic properties, that not only provide a sustained release of chemotactic and proangiogenic GFs from PL but also enhance the cells' viability and angiogenic activity. As a result of their unique traits, the developed hydrogels are ideally suited to simultaneously act as a GFs controlled delivery system and as a supportive matrix for cell culture, recruitment, and revascularization induction, holding great potential for the regeneration of vascularized soft tissues, such as the dentin-pulp complex.
Collapse
|
73
|
Basu S, Sutradhar S, Paul R. Substrate stiffness and mechanical stress due to intercellular cooperativity guides tissue structure. J Theor Biol 2018; 457:124-136. [PMID: 30144408 DOI: 10.1016/j.jtbi.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022]
Abstract
A key challenge in cell and tissue morphogenesis is to understand how a crucial balance between cell proliferation and apoptosis maintains an evolving tissue structure. These processes are mutually non-exclusive and require stiffness monitoring of the host substrate. Adhered cells actively mechanosense the tension in the extracellular matrix (ECM). They collectively alter self-organization and generate a host of tissue patterns. Using an in silico elastic fiber-network in two dimensions, we simulate cell-ECM composite structures and characterize features of the emerging tissue patterns during successive cell proliferation and apoptosis. Our data reveals that, in general, cell viability is a function of the cell-induced effective ECM stiffness supported by intercellular cooperativity. Translating this into a remodeling tissue, we find that average cell cycle duration in concert with the locally stressed regions of the ECM promote heterogeneous proliferation and apoptosis inducing finger-like protrusions along the tissue periphery - a feature normally observed during tumorigenesis. Further, we find that recovery of a scratch wound is delayed for cells harbored on a compliant or (and) in a highly collagen depleted ECM.
Collapse
Affiliation(s)
- S Basu
- Department of Solid State Physics, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India.
| | - S Sutradhar
- Department of Solid State Physics, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
| | - R Paul
- Department of Solid State Physics, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India.
| |
Collapse
|
74
|
Giannini M, Primerano C, Berger L, Giannaccini M, Wang Z, Landi E, Cuschieri A, Dente L, Signore G, Raffa V. Nano-topography: Quicksand for cell cycle progression? NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2656-2665. [PMID: 30010000 DOI: 10.1016/j.nano.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 01/01/2023]
Abstract
The 3-D spatial and mechanical features of nano-topography can create alternative environments, which influence cellular response. In this paper, murine fibroblast cells were grown on surfaces characterized by protruding nanotubes. Cells cultured on such nano-structured surface exhibit stronger cellular adhesion compared to control groups, but despite the fact that stronger adhesion is generally believed to promote cell cycle progression, the time cells spend in G1 phase is doubled. This apparent contradiction is solved by confocal microscopy analysis, which shows that the nano-topography inhibits actin stress fiber formation. In turn, this impairs RhoA activation, which is required to suppress the inhibition of cell cycle progression imposed by p21/p27. This finding suggests that the generation of stress fibers, required to impose the homeostatic intracellular tension, rather than cell adhesion/spreading is the limiting factor for cell cycle progression. Indeed, nano-topography could represent a unique tool to inhibit proliferation in adherent well-spread cells.
Collapse
Affiliation(s)
| | | | - Liron Berger
- Department of Biology, Università di Pisa, Pisa, Italy.
| | | | - Zhigang Wang
- Institute for Medical Science and Technology, University of Dundee, Dundee, United Kingdom.
| | - Elena Landi
- Department of Biology, Università di Pisa, Pisa, Italy.
| | - Alfred Cuschieri
- Institute for Medical Science and Technology, University of Dundee, Dundee, United Kingdom.
| | - Luciana Dente
- Department of Biology, Università di Pisa, Pisa, Italy.
| | - Giovanni Signore
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy; NEST, Scuola Normale Superiore, and Istituto Nanoscienze-CNR, Pisa, Italy.
| | | |
Collapse
|
75
|
Regulation of cell cycle progression by cell-cell and cell-matrix forces. Nat Cell Biol 2018; 20:646-654. [PMID: 29802405 DOI: 10.1038/s41556-018-0107-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
It has long been proposed that the cell cycle is regulated by physical forces at the cell-cell and cell-extracellular matrix (ECM) interfaces1-12. However, the evolution of these forces during the cycle has never been measured in a tissue, and whether this evolution affects cell cycle progression is unknown. Here, we quantified cell-cell tension and cell-ECM traction throughout the complete cycle of a large cell population in a growing epithelium. These measurements unveil temporal mechanical patterns that span the entire cell cycle and regulate its duration, the G1-S transition and mitotic rounding. Cells subjected to higher intercellular tension exhibit a higher probability to transition from G1 to S, as well as shorter G1 and S-G2-M phases. Moreover, we show that tension and mechanical energy are better predictors of the duration of G1 than measured geometric properties. Tension increases during the cell cycle but decreases 3 hours before mitosis. Using optogenetic control of contractility, we show that this tension drop favours mitotic rounding. Our results establish that cell cycle progression is regulated cooperatively by forces between the dividing cell and its neighbours.
Collapse
|
76
|
Jeong J, Keum S, Kim D, You E, Ko P, Lee J, Kim J, Kim JW, Rhee S. Spindle pole body component 25 homolog expressed by ECM stiffening is required for lung cancer cell proliferation. Biochem Biophys Res Commun 2018; 500:937-943. [PMID: 29709477 DOI: 10.1016/j.bbrc.2018.04.205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
Accumulating evidence has shown that matrix stiffening in cancer tissue by the deposition of extracellular matrix (ECM) is closely related with severe tumor progression. However, much less is known about the genes affected by matrix stiffness and its signaling for cancer progression. In the current research, we investigated the differential gene expression of a non-small lung adenocarcinoma cell line, H1299, cultured under the conditions of soft (∼0.5 kPa) and stiff (∼40 kPa) matrices, mimicking the mechanical environments of normal and cancerous tissues, respectively. For integrated transcriptome analysis, the genes identified by ECM stiffening were compared with 8248 genes retrieved from The Cancer Genome Atlas Lung Adenocarcinoma (TCGA). In stiff matrix, 29 genes were significantly upregulated, while 75 genes were downregulated. The screening of hazard ratios for these genes using the Kaplan-Meier Plotter identified 8 genes most closely associated with cancer progression under the condition of matrix stiffening. Among these genes, spindle pole body component 25 homolog (SPC25) was one of the most up-regulated genes in stiff matrix and tumor tissue. Knockdown of SPC25 in H1299 cells using shRNA significantly inhibited cell proliferation with downregulation of the expression of checkpoint protein, Cyclin B1, under the condition of stiff matrix whereas the proliferation rate in soft matrix was not affected by SPC25 silencing. Thus, our findings provide novel key molecules for studying the relationship of extracellular matrix stiffening and cancer progression.
Collapse
Affiliation(s)
- Jangho Jeong
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seula Keum
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Daehwan Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunae You
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Panseon Ko
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jieun Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jaegu Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
77
|
Burgstaller G, Sengupta A, Vierkotten S, Preissler G, Lindner M, Behr J, Königshoff M, Eickelberg O. Distinct niches within the extracellular matrix dictate fibroblast function in (cell free) 3D lung tissue cultures. Am J Physiol Lung Cell Mol Physiol 2018; 314:L708-L723. [DOI: 10.1152/ajplung.00408.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cues from the extracellular matrix (ECM) and their functional interplay with cells play pivotal roles for development, tissue repair, and disease. However, the precise nature of this interplay remains elusive. We used an innovative 3D cell culture ECM model by decellularizing 300-µm-thick ex vivo lung tissue scaffolds (d3D-LTCs) derived from diseased and healthy mouse lungs, which widely mimics the native (patho)physiological in vivo ECM microenvironment. We successfully repopulated all d3D-LTCs with primary human and murine fibroblasts, and moreover, we demonstrated that the cells also populated the innermost core regions of the d3D-LTCs in a real 3D fashion. The engrafted fibroblasts revealed a striking functional plasticity, depending on their localization in distinct ECM niches of the d3D-LTCs, affecting the cells’ tissue engraftment, cellular migration rates, cell morphologies, and protein expression and phosphorylation levels. Surprisingly, we also observed fibroblasts that were homing to the lung scaffold’s interstitium as well as fibroblasts that were invading fibrotic areas. To date, the functional nature and even the existence of 3D cell matrix adhesions in vivo as well as in 3D culture models is still unclear and controversial. Here, we show that attachment of fibroblasts to the d3D-LTCs evidently occurred via focal adhesions, thus advocating for a relevant functional role in vivo. Furthermore, we found that protein levels of talin, paxillin, and zyxin and phosphorylation levels of paxillin Y118, as well as the migration-relevant small GTPases RhoA, Rac, and CDC42, were significantly reduced compared with their attachment to 2D plastic dishes. In summary, our results strikingly indicate that inherent physical or compositional characteristics of the ECM act as instructive cues altering the functional behavior of engrafted cells. Thus, d3D-LTCs might aid to obtain more realistic data in vitro, with a high relevance for drug discovery and mechanistic studies alike.
Collapse
Affiliation(s)
- Gerald Burgstaller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Arunima Sengupta
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sarah Vierkotten
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerhard Preissler
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michael Lindner
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Fachkliniken München-Gauting, Munich, Germany
| | - Jürgen Behr
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Fachkliniken München-Gauting, Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| | - Oliver Eickelberg
- Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| |
Collapse
|
78
|
Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel. Acta Biomater 2018; 70:110-119. [PMID: 29410241 DOI: 10.1016/j.actbio.2018.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/30/2022]
Abstract
A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. STATEMENT OF SIGNIFICANCE Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function. Currently, most synthetic biomaterials used to independently tune these parameters lack the fibrous structure characteristic of stromal extracellular matrix, which can be important to cells naturally residing within stromal tissues. In this manuscript, we describe a 3D hydrogel encapsulation system that provides user-friendly control over matrix stiffness and binding site concentration within the context of a stromal-like microarchitecture. Binding site concentration and gel stiffness both influenced cell spreading and differentiation, highlighting the utility of this system to study the independent effects of these material properties on cell function.
Collapse
|
79
|
Srinivasan A, Chang SY, Zhang S, Toh WS, Toh YC. Substrate stiffness modulates the multipotency of human neural crest derived ectomesenchymal stem cells via CD44 mediated PDGFR signaling. Biomaterials 2018; 167:153-167. [PMID: 29571051 DOI: 10.1016/j.biomaterials.2018.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have been isolated from various mesodermal and ectodermal tissues. While the phenotypic and functional heterogeneity of MSCs stemming from their developmental origins has been acknowledged, the genetic and environmental factors underpinning these differences are not well-understood. Here, we investigated whether substrate stiffness mediated mechanical cues can directly modulate the development of ectodermal MSCs (eMSCs) from a precursor human neural crest stem cell (NCSC) population. We showed that NCSC-derived eMSCs were transcriptionally and functionally distinct from mesodermal bone marrow MSCs. eMSCs derived on lower substrate stiffness specifically increased their expression of the MSC marker, CD44 in a Rho-ROCK signaling dependent manner, which resulted in a concomitant increase in the eMSCs' adipogenic and chondrogenic differentiation potential. This mechanically-induced effect can only be maintained for short-term upon switching back to a stiff substrate but can be sustained for longer-term when the eMSCs were exclusively maintained on soft substrates. We also discovered that CD44 expression modulated eMSC self-renewal and multipotency via the downregulation of downstream platelet-derived growth factor receptor beta (PDGFRβ) signaling. This is the first instance demonstrating that substrate stiffness not only influences the differentiation trajectories of MSCs but also their derivation from upstream progenitors, such as NCSCs.
Collapse
Affiliation(s)
- Akshaya Srinivasan
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583
| | - Shu-Yung Chang
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583
| | - Shipin Zhang
- Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083
| | - Wei Seong Toh
- NUS Tissue Engineering Program (NUSTEP), National University of Singapore, DSO (Kent Ridge), 27 Medical Drive, #04-01, Singapore 117510; Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583; Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Centre for Life Sciences, 28 Medical Drive, #05-COR, Singapore 117456; NUS Tissue Engineering Program (NUSTEP), National University of Singapore, DSO (Kent Ridge), 27 Medical Drive, #04-01, Singapore 117510; Biomedical Institute for Global Health, Research and Technology (BIGHEART), MD6, 14 Medical Drive, #14-01, Singapore 117599.
| |
Collapse
|
80
|
Vite A, Zhang C, Yi R, Emms S, Radice GL. α-Catenin-dependent cytoskeletal tension controls Yap activity in the heart. Development 2018; 145:dev.149823. [PMID: 29467248 PMCID: PMC5868989 DOI: 10.1242/dev.149823] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/07/2018] [Indexed: 01/08/2023]
Abstract
Shortly after birth, muscle cells of the mammalian heart lose their ability to divide. At the same time, the N-cadherin/catenin cell adhesion complex accumulates at the cell termini, creating a specialized type of cell-cell contact called the intercalated disc (ICD). To investigate the relationship between ICD maturation and proliferation, αE-catenin (Ctnna1) and αT-catenin (Ctnna3) genes were deleted to generate cardiac-specific α-catenin double knockout (DKO) mice. DKO mice exhibited aberrant N-cadherin expression, mislocalized actomyosin activity and increased cardiomyocyte proliferation that was dependent on Yap activity. To assess effects on tension, cardiomyocytes were cultured on deformable polyacrylamide hydrogels of varying stiffness. When grown on a stiff substrate, DKO cardiomyocytes exhibited increased cell spreading, nuclear Yap and proliferation. A low dose of either a myosin or RhoA inhibitor was sufficient to block Yap accumulation in the nucleus. Finally, activation of RhoA was sufficient to increase nuclear Yap in wild-type cardiomyocytes. These data demonstrate that α-catenins regulate ICD maturation and actomyosin contractility, which, in turn, control Yap subcellular localization, thus providing an explanation for the loss of proliferative capacity in the newborn mammalian heart.
Collapse
Affiliation(s)
- Alexia Vite
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Caimei Zhang
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Roslyn Yi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sabrina Emms
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Glenn L Radice
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
81
|
Zhang X, Han F, Syed A, Bukhari EM, Siang BCJ, Yang S, Zhou B, Wen WJ, Jiang D. Fabrication of highly modulable fibrous 3D extracellular microenvironments. Biomed Microdevices 2018; 19:53. [PMID: 28608128 DOI: 10.1007/s10544-017-0187-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) in vitro scaffolds that mimic the irregular fibrous structures of in vivo extracellular matrix (ECM) are critical for many important biological applications. However, structural properties modulation of fibrous 3D scaffolds remains a challenge. Here, we report the first highly modulable 3D fibrous scaffolds self-assembled by high-aspect-ratio (HAR) microfibers. The scaffolds structural properties can be easily tailored to incorporate various physical cues, including geometry, stiffness, heterogeneity and nanotopography. Moreover, the fibrous scaffolds are readily and accurately patterned on desired locations of the substrate. Cell culture exhibits that our scaffolds can elicit strong bidirectional cell-material interactions. Furthermore, a functional disparity between the two-dimensional substrate and our 3D scaffolds is identified by cell spreading and proliferation data. These results prove the potential of the proposed scaffold as a biomimetic extracellular microenvironment for cell study.
Collapse
Affiliation(s)
- Xixiang Zhang
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Fangfei Han
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, People's Republic of China
| | - Ahad Syed
- Imaging & Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ebtihaj M Bukhari
- Advanced Nanofabrication Core Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Basil Chew Joo Siang
- Imaging & Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Shan Yang
- Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bingpu Zhou
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| | - Wei-Jia Wen
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, People's Republic of China.
| |
Collapse
|
82
|
Ramakrishnan N, Sreeja KK, Roychoudhury A, Eckmann DM, Ayyaswamy PS, Baumgart T, Pucadyil T, Patil S, Weaver VM, Radhakrishnan R. Excess area dependent scaling behavior of nano-sized membrane tethers. Phys Biol 2018; 15:026002. [PMID: 29116056 DOI: 10.1088/1478-3975/aa9905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thermal fluctuations in cell membranes manifest as an excess area ([Formula: see text]) which governs a multitude of physical process at the sub-micron scale. We present a theoretical framework, based on an in silico tether pulling method, which may be used to reliably estimate [Formula: see text] in live cells. We perform our simulations in two different thermodynamic ensembles: (i) the constant projected area and (ii) the constant frame tension ensembles and show the equivalence of our results in the two. The tether forces estimated from our simulations compare well with our experimental measurements for tethers extracted from ruptured GUVs and HeLa cells. We demonstrate the significance and validity of our method by showing that all our calculations performed in the initial tether formation regime (i.e. when the length of the tether is comparable to its radius) along with experiments of tether extraction in 15 different cell types collapse onto two unified scaling relationships mapping tether force, tether radius, bending stiffness κ, and membrane tension σ. We show that [Formula: see text] is an important determinant of the radius of the extracted tether, which is equal to the characteristic length [Formula: see text] for [Formula: see text], and is equal to [Formula: see text] for [Formula: see text]. We also find that the estimated excess area follows a linear scaling behavior that only depends on the true value of [Formula: see text] for the membrane, based on which we propose a self-consistent technique to estimate the range of excess membrane areas in a cell.
Collapse
Affiliation(s)
- N Ramakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Stiffness-dependent motility and proliferation uncoupled by deletion of CD44. Sci Rep 2017; 7:16499. [PMID: 29184125 PMCID: PMC5705666 DOI: 10.1038/s41598-017-16486-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/14/2017] [Indexed: 01/16/2023] Open
Abstract
Information in the microenvironment guides complex cellular decisions such as whether or not to proliferate and migrate. The effects of soluble extracellular signals on these cellular functions are fairly well understood, but relatively little is known about how the extracellular matrix (ECM), and particularly the mechanical information in the ECM, guides these cellular decisions. Here, we show that CD44, a major receptor for the glycosaminoglycan ECM component hyaluronan, coordinates the motility and proliferative responses to ECM stiffening. We analyzed these cellular responses on fibronectin-coated polyacrylamide hydrogels prepared at a physiologic range of ECM stiffness and found that stiffening of the ECM leads to both cell cycling and cell motility in serum-stimulated primary mouse dermal fibroblasts. Remarkably, deletion of CD44 impaired stiffness-stimulated motility of the primary cells without affecting other hallmark cellular responses to ECM stiffening including cell spread area, stress fiber formation, focal adhesion maturation, and intracellular stiffening. Even stiffness-mediated cell proliferation was unaffected by deletion of CD44. Our results reveal a novel effect of CD44, which is imposed downstream of ECM-mechanosensing and determines if cells couple or uncouple their proliferative and motility responses to ECM stiffness.
Collapse
|
84
|
Li Y, Tang CB, Kilian KA. Matrix Mechanics Influence Fibroblast-Myofibroblast Transition by Directing the Localization of Histone Deacetylase 4. Cell Mol Bioeng 2017; 10:405-415. [PMID: 31719870 PMCID: PMC6816600 DOI: 10.1007/s12195-017-0493-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION The propagation of mechanochemical signals from the extracellular matrix to the cell nucleus has emerged as a central feature in regulating cellular differentiation and de-differentiation. This process of outside-in signaling and the associated mechanotransduction pathways have been well described in numerous developmental and pathological contexts. However, it remains less clear how mechanotransduction influences the activity of chromatin modifying enzymes that direct gene expression programs. OBJECTIVES The primary objective of this study was to explore how matrix mechanics and geometric confinement influence histone deacetylase (HDAC) activity in fibroblast culture. METHODS Polyacrylamide hydrogels were formed and functionalized with fibronectin patterns using soft lithography. Primary mouse embryonic fibroblasts (MEFs) were cultured on the islands until confluent, fixed, and immunolabeled for microscopy. RESULTS After 24 h MEFs cultured on soft hydrogels (0.5 kPa) show increased expression of class I HDACs relative to MEFs cultured on stiff hydrogels (100 kPa). A member of the class II family, HDAC4 shows a similar trend; however, there is a pronounced cytoplasmic localization on soft hydrogels suggesting a role in outside-in cytoplasmic signaling. Pharmacological inhibitor studies suggest that the opposing activities of extracellular related kinase 1/2 (ERK) and protein phosphatase 2a (PP2a) influence the localization of HDAC4. MEFs cultured on the soft hydrogels show enhanced expression of markers associated with a fibroblast-myofibroblast transition (Paxillin, αSMA). CONCLUSIONS We show that the phosphorylation state and cellular localization of HDAC4 is influenced by matrix mechanics, with evidence for a role in mechanotransduction and the regulation of gene expression associated with fibroblast-myofibroblast transitions. This work establishes a link between outside-in signaling and epigenetic regulation, which will assist efforts aimed at controlling gene regulation in engineered extracellular matrices.
Collapse
Affiliation(s)
- Yanfen Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Claire B. Tang
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Kristopher A. Kilian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
85
|
Hildebrand S, Hultin S, Subramani A, Petropoulos S, Zhang Y, Cao X, Mpindi J, Kalloniemi O, Johansson S, Majumdar A, Lanner F, Holmgren L. The E-cadherin/AmotL2 complex organizes actin filaments required for epithelial hexagonal packing and blastocyst hatching. Sci Rep 2017; 7:9540. [PMID: 28842668 PMCID: PMC5572699 DOI: 10.1038/s41598-017-10102-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Epithelial cells connect via cell-cell junctions to form sheets of cells with separate cellular compartments. These cellular connections are essential for the generation of cellular forms and shapes consistent with organ function. Tissue modulation is dependent on the fine-tuning of mechanical forces that are transmitted in part through the actin connection to E-cadherin as well as other components in the adherens junctions. In this report we show that p100 amotL2 forms a complex with E-cadherin that associates with radial actin filaments connecting cells over multiple layers. Genetic inactivation or depletion of amotL2 in epithelial cells in vitro or zebrafish and mouse in vivo, resulted in the loss of contractile actin filaments and perturbed epithelial packing geometry. We further showed that AMOTL2 mRNA and protein was expressed in the trophectoderm of human and mouse blastocysts. Genetic inactivation of amotL2 did not affect cellular differentiation but blocked hatching of the blastocysts from the zona pellucida. These results were mimicked by treatment with the myosin II inhibitor blebbistatin. We propose that the tension generated by the E-cadherin/AmotL2/actin filaments plays a crucial role in developmental processes such as epithelial geometrical packing as well as generation of forces required for blastocyst hatching.
Collapse
Affiliation(s)
- Sebastian Hildebrand
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet and Division of Obstetrics and Gynecology, Karolinska University Hospital, Huddinge, Sweden.,Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Sara Hultin
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Aravindh Subramani
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet and Division of Obstetrics and Gynecology, Karolinska University Hospital, Huddinge, Sweden
| | - Yuanyuan Zhang
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Xiaofang Cao
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center (BMC), Uppsala University, Uppsala, Sweden
| | - John Mpindi
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Olli Kalloniemi
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Staffan Johansson
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center (BMC), Uppsala University, Uppsala, Sweden
| | - Arindam Majumdar
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden.,Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet and Division of Obstetrics and Gynecology, Karolinska University Hospital, Huddinge, Sweden.
| | - Lars Holmgren
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
86
|
Kim D, Kim SM, Lee S, Yoon MH. Investigation of neuronal pathfinding and construction of artificial neuronal networks on 3D-arranged porous fibrillar scaffolds with controlled geometry. Sci Rep 2017; 7:7716. [PMID: 28798490 PMCID: PMC5552865 DOI: 10.1038/s41598-017-08231-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/06/2017] [Indexed: 12/24/2022] Open
Abstract
Herein, we investigated the neurite pathfinding on electrospun microfibers with various fiber densities, diameters, and microbead islands, and demonstrated the development of 3D connected artificial neuronal network within a nanofiber-microbead-based porous scaffold. The primary culture of rat hippocampal embryonic neurons was deposited on geometry-controlled polystyrene (PS) fiber scaffolds while growth cone morphology, neurite outgrowth patterns, and focal adhesion protein expression were cautiously examined by microscopic imaging of immunostained and live neuronal cells derived from actin-GFP transgenic mice. It was demonstrated that the neurite outgrowth was guided by the overall microfiber orientation, but the increase in fiber density induced the neurite path alteration, thus, the reduction in neurite linearity. Indeed, we experimentally confirmed that growth cone could migrate to a neighboring, but, spatially disconnected microfiber by spontaneous filopodium extrusion, which is possibly responsible for the observed neurite steering. Furthermore, thinner microfiber scaffolds showed more pronounced expression of focal adhesion proteins than thicker ones, suggesting that the neuron-microfiber interaction can be delicately modulated by the underlying microfiber geometry. Finally, 3D connected functional neuronal networks were successfully constructed using PS nanofiber-microbead scaffolds where enhanced porosity and vertical fiber orientation permitted cell body inclusion within the scaffold and substantial neurite outgrowth in a vertical direction, respectively.
Collapse
Affiliation(s)
- Dongyoon Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seong-Min Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seyeong Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
- Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
87
|
Beamish JA, Chen E, Putnam AJ. Engineered extracellular matrices with controlled mechanics modulate renal proximal tubular cell epithelialization. PLoS One 2017; 12:e0181085. [PMID: 28715434 PMCID: PMC5513452 DOI: 10.1371/journal.pone.0181085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is common and associated with significant morbidity and mortality. Recovery from many forms of AKI involves the proliferation of renal proximal tubular epithelial cells (RPTECs), but the influence of the microenvironment in which this recovery occurs remains poorly understood. Here we report the development of a poly(ethylene glycol) (PEG) hydrogel platform to study the influence of substrate mechanical properties on the proliferation of human RPTECs as a model for recovery from AKI. PEG diacrylate based hydrogels were generated with orthogonal control of mechanics and cell-substrate interactions. Using this platform, we found that increased substrate stiffness promotes RPTEC spreading and proliferation. RPTECs showed similar degrees of apoptosis and Yes-associated protein (YAP) nuclear localization regardless of stiffness, suggesting these were not key mediators of the effect. However, focal adhesion formation, cytoskeletal organization, focal adhesion kinase (FAK) activation, and extracellular signal-regulated kinase (ERK) activation were all enhanced with increasing substrate stiffness. Inhibition of ERK activation substantially attenuated the effect of stiffness on proliferation. In long-term culture, hydrogel stiffness promoted the formation of more complete epithelial monolayers with tight junctions, cell polarity, and an organized basement membrane. These data suggest that increased stiffness potentially may have beneficial consequences for the renal tubular epithelium during recovery from AKI.
Collapse
Affiliation(s)
- Jeffrey A. Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Evan Chen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
88
|
Heo SJ, Han WM, Szczesny SE, Cosgrove BD, Elliott DM, Lee DA, Duncan RL, Mauck RL. Mechanically Induced Chromatin Condensation Requires Cellular Contractility in Mesenchymal Stem Cells. Biophys J 2017; 111:864-874. [PMID: 27558729 DOI: 10.1016/j.bpj.2016.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/27/2016] [Accepted: 07/11/2016] [Indexed: 02/07/2023] Open
Abstract
Mechanical cues play important roles in directing the lineage commitment of mesenchymal stem cells (MSCs). In this study, we explored the molecular mechanisms by which dynamic tensile loading (DL) regulates chromatin organization in this cell type. Our previous findings indicated that the application of DL elicited a rapid increase in chromatin condensation through purinergic signaling mediated by ATP. Here, we show that the rate and degree of condensation depends on the frequency and duration of mechanical loading, and that ATP release requires actomyosin-based cellular contractility. Increases in baseline cellular contractility via the addition of an activator of G-protein coupled receptors (lysophosphatidic acid) induced rapid ATP release, resulting in chromatin condensation independent of loading. Conversely, inhibition of contractility through pretreatment with either a RhoA/Rock inhibitor (Y27632) or MLCK inhibitor (ML7) abrogated ATP release in response to DL, blocking load-induced chromatin condensation. With loading, ATP release occurred very rapidly (within the first 10-20 s), whereas changes in chromatin occurred at a later time point (∼10 min), suggesting a downstream biochemical pathway mediating this process. When cells were pretreated with blockers of the transforming growth factor (TGF) superfamily, purinergic signaling in response to DL was also eliminated. Further analysis showed that this pretreatment decreased contractility, implicating activity in the TGF pathway in the establishment of the baseline contractile state of MSCs (in the absence of exogenous ligands). These data indicate that chromatin condensation in response to DL is regulated through the interplay between purinergic and RhoA/Rock signaling, and that ligandless activity in the TGF/bone morphogenetic proteins signaling pathway contributes to the establishment of baseline contractility in MSCs.
Collapse
Affiliation(s)
- Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Woojin M Han
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Spencer E Szczesny
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, Pennsylvania
| | - Brian D Cosgrove
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, Pennsylvania
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - David A Lee
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Randall L Duncan
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware; Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, Pennsylvania.
| |
Collapse
|
89
|
Xie J, Bao M, Bruekers SC, Huck WTS. Collagen Gels with Different Fibrillar Microarchitectures Elicit Different Cellular Responses. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19630-19637. [PMID: 28537381 PMCID: PMC5473018 DOI: 10.1021/acsami.7b03883] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/23/2017] [Indexed: 05/29/2023]
Abstract
The extracellular matrix consists of a complex mixture of fibrillar proteins, in which the architecture and mechanical properties of the protein fibrils vary considerably in various tissues. Here, we systematically polymerized collagen gels at different temperatures, providing substrates with tunable mechanics and defined local microarchitecture. We studied the dependence of spreading dynamics, proliferation, migration, and differentiation of human mesenchymal stem cells (hMSCs) on the fibrillar properties as compared to the bulk properties of the matrix. We found that high fiber stiffness, together with shorter fiber lengths, limited the transfer of cellular traction forces to nearby fibers. As a result, cells were not able to build up sufficient tension, which suppressed cell spreading, proliferation, and migration. Cells on such fibers also showed limited focal adhesion formation and different lineage selection preferences. In contrast, cell spreading, proliferation, and migration was always associated with fiber recruitment, long-range deformations in the collagen gel networks and an increase in collagen density around cells. Typically, cells on such substrates had a preference for osteogenic differentiation and showed higher levels of focal adhesions formation. These results contribute to a further understanding of the mechanotransduction process and to the design criteria for future biomimetic materials for tissue-engineering applications.
Collapse
|
90
|
Domura R, Sasaki R, Ishikawa Y, Okamoto M. Cellular Morphology-Mediated Proliferation and Drug Sensitivity of Breast Cancer Cells. J Funct Biomater 2017; 8:E18. [PMID: 28587314 PMCID: PMC5491999 DOI: 10.3390/jfb8020018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/12/2017] [Accepted: 05/26/2017] [Indexed: 01/01/2023] Open
Abstract
The interpretation of the local microenvironment of the extracellular matrix for malignant tumor cells is in intimate relation with metastatic spread of cancer cells involving the associated issues of cellular proliferation and drug responsiveness. This study was aimed to assess the combination of both surface topographies (fiber alignments) and different stiffness of the polymeric substrates (poly(l-lactic acid) and poly(ε-caprolactone), PLLA and PCL, respectively) as well as collagen substrates (coat and gel) to elucidate the effect of the cellular morphology on cellular proliferation and drug sensitivities of two different types of breast cancer cells (MDA-MB-231 and MCF-7). The morphological spreading parameter (nucleus/cytoplasm area ratio) induced by the anthropogenic substrates has correlated intimately with the cellular proliferation and the drug sensitivity the half maximal inhibitory concentration (IC50) of cancer cells. This study demonstrated the promising results of the parameter for the evaluation of cancer cell malignancy.
Collapse
Affiliation(s)
- Ryota Domura
- Advanced Polymeric Nanostructured Materials Engineering, Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468 8511, Japan.
| | - Rie Sasaki
- Advanced Polymeric Nanostructured Materials Engineering, Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468 8511, Japan.
| | - Yuma Ishikawa
- Advanced Polymeric Nanostructured Materials Engineering, Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468 8511, Japan.
| | - Masami Okamoto
- Advanced Polymeric Nanostructured Materials Engineering, Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468 8511, Japan.
| |
Collapse
|
91
|
Asano S, Ito S, Takahashi K, Furuya K, Kondo M, Sokabe M, Hasegawa Y. Matrix stiffness regulates migration of human lung fibroblasts. Physiol Rep 2017; 5:5/9/e13281. [PMID: 28507166 PMCID: PMC5430127 DOI: 10.14814/phy2.13281] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022] Open
Abstract
In patients with pulmonary diseases such as idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome, progressive pulmonary fibrosis is caused by dysregulated wound healing via activation of fibroblasts after lung inflammation or severe damage. Migration of fibroblasts toward the fibrotic lesions plays an important role in pulmonary fibrosis. Fibrotic tissue in the lung is much stiffer than normal lung tissue. Emerging evidence supports the hypothesis that the stiffness of the matrix is not only a consequence of fibrosis, but also can induce fibroblast activation. Nevertheless, the effects of substrate rigidity on migration of lung fibroblasts have not been fully elucidated. We evaluated the effects of substrate stiffness on the morphology, α-smooth muscle actin (α-SMA) expression, and cell migration of primary human lung fibroblasts by using polyacrylamide hydrogels with stiffnesses ranging from 1 to 50 kPa. Cell motility was assessed by platelet-derived growth factor (PDGF)-induced chemotaxis and random walk migration assays. As the stiffness of substrates increased, fibroblasts became spindle-shaped and spread. Expression of α-SMA proteins was higher on the stiffer substrates (25 kPa gel and plastic dishes) than on the soft 2 kPa gel. Both PDGF-induced chemotaxis and random walk migration of fibroblasts precultured on stiff substrates (25 kPa gel and plastic dishes) were significantly higher than those of cells precultured on 2 kPa gel. Transfection of the fibroblasts with short interfering RNA for α-SMA inhibited cell migration. These findings suggest that fibroblast activation induced by a stiff matrix is involved in mechanisms of the pathophysiology of pulmonary fibrosis.
Collapse
Affiliation(s)
- Shuichi Asano
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan .,Department of Respiratory Medicine and Allergology, Aichi Medical University, Nagakute, Japan
| | - Kota Takahashi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kishio Furuya
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Kondo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
92
|
Domura R, Sasaki R, Okamoto M, Hirano M, Kohda K, Napiwocki B, Turng LS. Comprehensive study on cellular morphologies, proliferation, motility, and epithelial-mesenchymal transition of breast cancer cells incubated on electrospun polymeric fiber substrates. J Mater Chem B 2017; 5:2588-2600. [PMID: 32264037 DOI: 10.1016/j.mtchem.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The progress of microenvironment-mediated tumor progression in an artificial extracellular matrix explores the design criteria to understand the cancer progression mechanism and metastatic potential. This study was aimed at examining the combination of both surface topographies (fiber alignments) and different stiffness of polymeric substrates (PLLA and PCL) to evaluate the effects on the cellular morphologies, proliferation, motility, and gene expression regarding epithelial to mesenchymal transition (EMT) of two different types of breast cancer cells (MDA-MB-231 and MCF-7). The cellular morphologies (roundness and nuclear elongation factor), E-cadherin and vimentin expression, and cellular motility in terms of cellular migration speed, persistent time, and diffusivity have been comprehensively discussed. We demonstrated that the microenvironment of cell culture substrates influences cancer progression and metastatic potential.
Collapse
Affiliation(s)
- Ryota Domura
- Advanced Polymeric Nanostructured Materials Engineering, Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468 8511, Japan.
| | | | | | | | | | | | | |
Collapse
|
93
|
Actomyosin contractility provokes contact inhibition in E-cadherin-ligated keratinocytes. Sci Rep 2017; 7:46326. [PMID: 28406163 PMCID: PMC5390311 DOI: 10.1038/srep46326] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/15/2017] [Indexed: 01/09/2023] Open
Abstract
Confluence-dependent inhibition of epithelial cell proliferation, termed contact inhibition, is crucial for epithelial homeostasis and organ size control. Here we report that among epithelial cells, keratinocytes, which compose the stratified epithelium in the skin, possess a unique, actomyosin-dependent mechanism for contact inhibition. We have observed that under actomyosin-inhibited conditions, cell-cell contact itself through E-cadherin promotes proliferation of keratinocytes. Actomyosin activity in confluent keratinocytes, however, inhibits nuclear localization of β-catenin and YAP, and causes attenuation of β-catenin- and YAP-driven cell proliferation. Confluent keratinocytes develop E-cadherin-mediated punctate adhesion complexes, to which radial actin cables are connected. Eliminating the actin-to-E-cadherin linkage by depleting α-catenin increases proliferation of confluent keratinocytes. By contrast, enforced activation of RhoA-regulated actomyosin or external application of pulling force to ligated E-cadherin attenuates their proliferation, suggesting that tensile stress at E-cadherin-mediated adhesion complexes inhibits proliferation of confluent keratinocytes. Our results highlight actomyosin contractility as a crucial factor that provokes confluence-dependent inhibition of keratinocyte proliferation.
Collapse
|
94
|
Robu IS, Walters HL, Matthew HW. Morphological and growth responses of vascular smooth muscle and endothelial cells cultured on immobilized heparin and dextran sulfate surfaces. J Biomed Mater Res A 2017; 105:1725-1735. [DOI: 10.1002/jbm.a.36037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/08/2016] [Accepted: 02/10/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Irina S. Robu
- Department of Chemical Engineering & Materials Science; Wayne State University; Detroit MI 48202
| | - Henry L. Walters
- Department of Cardiovascular Surgery; Children's Hospital of Michigan; Detroit MI 48201
| | - Howard W.T. Matthew
- Department of Chemical Engineering & Materials Science; Wayne State University; Detroit MI 48202
| |
Collapse
|
95
|
Levengood SL, Erickson AE, Chang FC, Zhang M. Chitosan-Poly(caprolactone) Nanofibers for Skin Repair. J Mater Chem B 2017; 5:1822-1833. [PMID: 28529754 PMCID: PMC5433941 DOI: 10.1039/c6tb03223k] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dermal wounds, both acute and chronic, represent a significant clinical challenge and therefore the development of novel biomaterial-based skin substitutes to promote skin repair is essential. Nanofibers have garnered attention as materials to promote skin regeneration due to the similarities in morphology and dimensionality between nanofibers and native extracellular matrix proteins, which are critical in guiding cutaneous wound healing. Electrospun chitosan-poly(caprolactone) (CPCL) nanofiber scaffolds, which combine the important intrinsic biological properties of chitosan and the mechanical integrity and stability of PCL, were evaluated as skin tissue engineering scaffolds using a mouse cutaneous excisional skin defect model. Gross assessment of wound size and measurement of defect recovery over time as well as histological evaluation of wound healing showed that CPCL nanofiber scaffolds increased wound healing rate and promoted more complete wound closure as compared with Tegaderm, a commercially available occlusive dressing. CPCL nanofiber scaffolds represent a biomimetic approach to skin repair by serving as an immediately available provisional matrix to promote wound closure. These nanofiber scaffolds may have significant potential as a skin substitute or as the basis for more complex skin tissue engineering constructs involving integration with biologics.
Collapse
Affiliation(s)
- Sheeny Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Ariane E. Erickson
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Fei-chien Chang
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
96
|
A biomimetic gelatin-based platform elicits a pro-differentiation effect on podocytes through mechanotransduction. Sci Rep 2017; 7:43934. [PMID: 28262745 PMCID: PMC5338254 DOI: 10.1038/srep43934] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 01/12/2023] Open
Abstract
Using a gelatin microbial transglutaminase (gelatin-mTG) cell culture platform tuned to exhibit stiffness spanning that of healthy and diseased glomeruli, we demonstrate that kidney podocytes show marked stiffness sensitivity. Podocyte-specific markers that are critical in the formation of the renal filtration barrier are found to be regulated in association with stiffness-mediated cellular behaviors. While podocytes typically de-differentiate in culture and show diminished physiological function in nephropathies characterized by altered tissue stiffness, we show that gelatin-mTG substrates with Young’s modulus near that of healthy glomeruli elicit a pro-differentiation and maturation response in podocytes better than substrates either softer or stiffer. The pro-differentiation phenotype is characterized by upregulation of gene and protein expression associated with podocyte function, which is observed for podocytes cultured on gelatin-mTG gels of physiological stiffness independent of extracellular matrix coating type and density. Signaling pathways involved in stiffness-mediated podocyte behaviors are identified, revealing the interdependence of podocyte mechanotransduction and maintenance of their physiological function. This study also highlights the utility of the gelatin-mTG platform as an in vitro system with tunable stiffness over a range relevant for recapitulating mechanical properties of soft tissues, suggesting its potential impact on a wide range of research in cellular biophysics.
Collapse
|
97
|
Yang Y, Wang K, Gu X, Leong KW. Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography. ENGINEERING (BEIJING, CHINA) 2017; 3:36-54. [PMID: 29071164 PMCID: PMC5653318 DOI: 10.1016/j.eng.2017.01.014] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Kai Wang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
98
|
Domura R, Sasaki R, Okamoto M, Hirano M, Kohda K, Napiwocki B, Turng LS. Comprehensive study on cellular morphologies, proliferation, motility, and epithelial–mesenchymal transition of breast cancer cells incubated on electrospun polymeric fiber substrates. J Mater Chem B 2017; 5:2588-2600. [DOI: 10.1039/c7tb00207f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aligned fibers substrates caused elongation and alignment of the MDA-MB-231 cells along the fiber directionsviareducing the cell roundness and E-cadherin expression.
Collapse
Affiliation(s)
- Ryota Domura
- Advanced Polymeric Nanostructured Materials Engineering
- Graduate School of Engineering
- Toyota Technological Institute
- Tempaku
- Japan
| | - Rie Sasaki
- Advanced Polymeric Nanostructured Materials Engineering
- Graduate School of Engineering
- Toyota Technological Institute
- Tempaku
- Japan
| | - Masami Okamoto
- Advanced Polymeric Nanostructured Materials Engineering
- Graduate School of Engineering
- Toyota Technological Institute
- Tempaku
- Japan
| | | | | | - Brett Napiwocki
- Department of Engineering Physics
- University of Wisconsin-Madison
- USA
| | - Lih-Sheng Turng
- Wisconsin Institute for Discovery and Polymer Engineering Center
- Department of Mechanical Engineering
- University of Wisconsin-Madison
- USA
| |
Collapse
|
99
|
Tan Q, Choi KM, Sicard D, Tschumperlin DJ. Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials 2016; 113:118-132. [PMID: 27815996 DOI: 10.1016/j.biomaterials.2016.10.046] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/14/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
Abstract
Organoids represent both a potentially powerful tool for the study cell-cell interactions within tissue-like environments, and a platform for tissue regenerative approaches. The development of lung tissue-like organoids from human adult-derived cells has not previously been reported. Here we combined human adult primary bronchial epithelial cells, lung fibroblasts, and lung microvascular endothelial cells in supportive 3D culture conditions to generate airway organoids. We demonstrate that randomly-seeded mixed cell populations undergo rapid condensation and self-organization into discrete epithelial and endothelial structures that are mechanically robust and stable during long term culture. After condensation airway organoids generate invasive multicellular tubular structures that recapitulate limited aspects of branching morphogenesis, and require actomyosin-mediated force generation and YAP/TAZ activation. Despite the proximal source of primary epithelium used in the airway organoids, discrete areas of both proximal and distal epithelial markers were observed over time in culture, demonstrating remarkable epithelial plasticity within the context of organoid cultures. Airway organoids also exhibited complex multicellular responses to a prototypical fibrogenic stimulus (TGF-β1) in culture, and limited capacity to undergo continued maturation and engraftment after ectopic implantation under the murine kidney capsule. These results demonstrate that the airway organoid system developed here represents a novel tool for the study of disease-relevant cell-cell interactions, and establishes this platform as a first step toward cell-based therapy for chronic lung diseases based on de novo engineering of implantable airway tissues.
Collapse
Affiliation(s)
- Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
100
|
Zhang Q, Yu Y, Zhao H. The effect of matrix stiffness on biomechanical properties of chondrocytes. Acta Biochim Biophys Sin (Shanghai) 2016; 48:958-965. [PMID: 27590061 DOI: 10.1093/abbs/gmw087] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/16/2016] [Indexed: 01/14/2023] Open
Abstract
The behavior of chondrocytes is regulated by multiple mechanical microenvironmental cues. During development and degenerative disease of articular cartilage, as an external signal, the extracellular matrix stiffness of chondrocytes changes significantly, but whether and how this biophysical cue affects biomechanical properties of chondrocytes remain elusive. In the present study, we designed supporting-biomaterials as mimics of native pericellular matrix to study the effect of matrix stiffness on chondrocyte morphology and F-actin distribution. Furthermore, the active mechanical behavior of chondrocytes during sensing and responding to different matrix stiffness was quantitatively investigated using atom force microscope technique and theoretical model. Our results indicated that stiffer matrix tends to increase the cell spreading area, the percentage of irregular cell shape distribution and mechanical parameters including elastic modulus (Eelastic), instantaneous modulus (E0), relaxed modulus (ER) and apparent viscosity (μ) of chondrocytes. Knowledge of matrix stiffness-dependent biomechanical behaviors of chondrocytes has important implications for optimizing matrix material and advancing chondrocyte-based applications for functional tissue engineering.
Collapse
Affiliation(s)
- Quanyou Zhang
- Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yang Yu
- Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Hucheng Zhao
- Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|