51
|
Röckle I, Seidenfaden R, Weinhold B, Mühlenhoff M, Gerardy-Schahn R, Hildebrandt H. Polysialic acid controls NCAM-induced differentiation of neuronal precursors into calretinin-positive olfactory bulb interneurons. Dev Neurobiol 2008; 68:1170-84. [DOI: 10.1002/dneu.20649] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
52
|
|
53
|
The Neural Cell Adhesion Molecule and Epidermal Growth Factor Receptor: Signaling Crosstalk. Neurochem Res 2008. [DOI: 10.1007/s11064-008-9651-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
54
|
Nakamichi N, Yoshida K, Ishioka Y, Makanga JO, Fukui M, Yoneyama M, Kitayama T, Nakamura N, Taniura H, Yoneda Y. Group III metabotropic glutamate receptor activation suppresses self-replication of undifferentiated neocortical progenitor cells. J Neurochem 2008; 105:1996-2012. [PMID: 18266930 DOI: 10.1111/j.1471-4159.2008.05289.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We evaluated the possible functional expression of metabotropic glutamate receptors (mGluRs) by neural progenitors from embryonic mouse neocortex. Constitutive expression was seen with group I, II, and III mGluRs in undifferentiated cells and neurospheres formed by clustered cells during culture with epidermal growth factor. The group III mGluR agonist, L-2-amino-4-phosphonobutyrate, drastically reduced proliferation activity at 1-100 microM without inducing cell death, with group I and group II mGluR agonists being ineffective, in these neurospheres. Both forskolin and a group III mGluR antagonist significantly increased the proliferation alone, but significantly prevented the suppression by L-2-amino-4-phosphonobutyrate. Activation of group III mGluR significantly decreased mRNA expression of the cell cycle regulator cyclinD1, in addition to inhibiting the transactivation mediated by cAMP of cyclinD1 gene in the pluripotent P19 progenitor cells. Prior activation of group III mGluR led to a significant decrease in the number of cells immunoreactive for a neuronal marker, with an increase in that for an astroglial marker irrespective of differentiation inducers. These results suggest that group III mGluR may be functionally expressed to suppress self-renewal capacity through a mechanism related to cAMP formation with promotion of subsequent differentiation into astroglial lineage in neural progenitors.
Collapse
Affiliation(s)
- Noritaka Nakamichi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Hildebrandt H, Mühlenhoff M, Weinhold B, Gerardy-Schahn R. Dissecting polysialic acid and NCAM functions in brain development. J Neurochem 2008; 103 Suppl 1:56-64. [PMID: 17986140 DOI: 10.1111/j.1471-4159.2007.04716.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The unique modification of the neural cell adhesion molecule (NCAM) by polysialic acid (polySia) is tightly associated with nervous system development and plasticity. The prevailing view that this large carbohydrate polymer acts as an anti-adhesive factor seems straightforward at first sight. However, during almost 25 years of polySia research it became increasingly clear that the impact of polySia on cell surface interactions can not be explained by one unifying mechanism. Recent progress in the generation of mouse models, which partially or completely lack polySia due to ablation of one or both of the two polySia synthesizing enzymes, provides novel insights into the function of this unique post-translational modification. The present review is focused on a phenotype comparison between the newly established mouse strains which combine polySia-deficiency with normal NCAM expression and the well-characterized NCAM negative mouse model. Analysis of shared and individual phenotypes allows a clear distinction between NCAM and polySia functions and revealed that polySia plays a vital role as a specific control element of NCAM-mediated interactions.
Collapse
Affiliation(s)
- Herbert Hildebrandt
- Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Hannover, Germany.
| | | | | | | |
Collapse
|
56
|
Francavilla C, Loeffler S, Piccini D, Kren A, Christofori G, Cavallaro U. Neural cell adhesion molecule regulates the cellular response to fibroblast growth factor. J Cell Sci 2007; 120:4388-94. [DOI: 10.1242/jcs.010744] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Neural cell adhesion molecule (NCAM) mediates cell-cell adhesion and signaling in the nervous system, yet NCAM is also expressed in non-neural tissues, in which its function has in most parts remained elusive. We have previously reported that NCAM stimulates cell-matrix adhesion and neurite outgrowth by activating fibroblast growth factor receptor (FGFR) signaling. Here, we investigated whether the interplay between NCAM and FGFR has any impact on the response of FGFR to its classical ligands, FGFs. To this end, we employed two fibroblast cell lines, NCAM-negative L cells and NCAM-positive NIH-3T3 cells, in which the expression of NCAM was manipulated by means of transfection or RNAi technologies, respectively. The results demonstrate that NCAM expression reduces FGF-stimulated ERK1/2 activation, cell proliferation and cell-matrix adhesion, in both L and NIH-3T3 cells. Furthermore, our data show that NCAM inhibits the binding of FGF to its high-affinity receptor in a competitive manner, providing the mechanisms for the NCAM-mediated suppression of FGF function. In this context, a small peptide that mimics the binding of NCAM to FGFR was sufficient to block FGF-dependent cell proliferation. These findings point to NCAM as being a major regulator of FGF-FGFR interaction, thus introducing a novel type of control mechanism for FGFR activity and opening new therapeutic perspectives for those diseases characterized by aberrant FGFR function.
Collapse
Affiliation(s)
| | | | - Daniele Piccini
- IFOM-FIRC Institute of Molecular Oncology, I-20139 Milano, Italy
| | - Angelika Kren
- Institute of Biochemistry and Genetics, Department of Clinical-Biological Sciences, Center of Biomedicine, University of Basel, Switzerland
| | - Gerhard Christofori
- Institute of Biochemistry and Genetics, Department of Clinical-Biological Sciences, Center of Biomedicine, University of Basel, Switzerland
| | - Ugo Cavallaro
- IFOM-FIRC Institute of Molecular Oncology, I-20139 Milano, Italy
| |
Collapse
|
57
|
Jensen M, Berthold F. Targeting the neural cell adhesion molecule in cancer. Cancer Lett 2007; 258:9-21. [DOI: 10.1016/j.canlet.2007.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 09/10/2007] [Accepted: 09/11/2007] [Indexed: 11/28/2022]
|
58
|
Povlsen GK, Berezin V, Bock E. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth. J Neurochem 2007; 104:624-39. [PMID: 17995934 DOI: 10.1111/j.1471-4159.2007.05033.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies on axon guidance in Drosophila suggest that NCAM also regulates the epidermal growth factor receptor (EGFR) (Molecular and Cellular Neuroscience, 28, 2005, 141). A possible interaction between NCAM and EGFR in mammalian cells has not been investigated. The present study demonstrates for the first time a functional interaction between NCAM and EGFR in mammalian cells and investigates the molecular mechanisms underlying this interaction. First, NCAM and EGFR are shown to play opposite roles in neurite outgrowth regulation in cerebellar granular neurons. The data presented indicate that negative regulation of EGFR is one of the mechanisms underlying the neuritogenic effect of NCAM. Second, it is demonstrated that expression of the NCAM-180 isoform induces EGFR down-regulation in transfected cells and promotes EGFR down-regulation induced by EGF stimulation. It is demonstrated that the mechanism underlying this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does not require NCAM-mediated fibroblast growth factor receptor activation.
Collapse
|
59
|
Pekcec A, Mühlenhoff M, Gerardy-Schahn R, Potschka H. Impact of the PSA-NCAM system on pathophysiology in a chronic rodent model of temporal lobe epilepsy. Neurobiol Dis 2007; 27:54-66. [PMID: 17513116 DOI: 10.1016/j.nbd.2007.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 03/09/2007] [Accepted: 04/07/2007] [Indexed: 11/28/2022] Open
Abstract
Polysialylation is a posttranslational modification of the neural cell adhesion molecule (NCAM). In the adult brain, polysialylated NCAM (PSA-NCAM) is restricted to regions of neurogenesis and neuroplasticity, where PSA promotes plastic changes. Because a variety of plastic changes including neurogenesis have been suggested to be functionally involved in the pathophysiology of epilepsies, it is of specific interest to define the impact of the PSA-NCAM system on development and progression of this disease and associated comorbidities. Here, we studied the impact of transient enzymatic depolysialylation of NCAM on the pathophysiology in the amygdala kindling model, a chronic rodent model of temporal lobe epilepsy. The investigations focused on seizure-induced neurogenesis, seizure progression, and on the development of kindling-associated changes in behavior and cognition. Loss of PSA decreased the number of hippocampal newborn cells that incorporated BrdU during the kindling process and the number of new neurons that were ectopically located in the hilus. The persistence of basal dendrites has been suggested to be a hallmark of newborn granule cells in the epileptic brain. Loss of PSA increased the number of cells with persistent basal dendrites. The modification of the hippocampal cell proliferation rate and the fate of newborn neurons which occurred as a consequence of PSA removal did not affect the generation of a hyperexcitable kindled network or associated behavioral changes. Kindling progression was comparable in rats with and without removal of PSA. In contrast, loss of PSA increased acute seizure susceptibility as indicated by reduced seizure thresholds before kindling. The data indicate that hippocampal proliferation rates and ectoptic hilar newborn neurons are less critical for epileptic network generation. The PSA-NCAM system was not substantiated as a target for antiepileptogenic strategies. However, its impact on ectopic newborn neurons gives evidence that modulation of PSA-NCAM function may be a strategy to promote neuroregeneration in different central nervous system insults.
Collapse
Affiliation(s)
- Anton Pekcec
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilian-University, Koeniginstr 16, Munich, Germany
| | | | | | | |
Collapse
|
60
|
Sandi C, Bisaz R. A model for the involvement of neural cell adhesion molecules in stress-related mood disorders. Neuroendocrinology 2007; 85:158-76. [PMID: 17409734 DOI: 10.1159/000101535] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 02/02/2007] [Indexed: 12/18/2022]
Abstract
Critical interactions between genetic and environmental factors -- among which stress is one of the most potent non-genomic factors -- are involved in the development of mood disorders. Intensive work during the past decade has led to the proposal of the network hypothesis of depression [Castren E: Nat Rev Neurosci 2005;6:241-246]. In contrast to the earlier chemical hypothesis of depression that emphasized neurochemical imbalance as the cause of depression, the network hypothesis proposes that problems in information processing within relevant neural networks might underlie mood disorders. Clinical and preclinical evidence supporting this hypothesis are mainly based on observations from depressed patients and animal stress models indicating atrophy (with basic research pointing at structural remodeling and decreased neurogenesis as underlying mechanisms) and malfunctioning of the hippocampus and prefrontal cortex, as well as the ability of antidepressant treatments to have the opposite effects. A great research effort is devoted to identify the molecular mechanisms that are responsible for the network effects of depression and antidepressant actions, with a great deal of evidence pointing at a key role of neurotrophins (notably the brain-derived neurotrophic factor) and other growth factors. In this review, we present evidence that implicates alterations in the levels of the neural cell adhesion molecules of the immunoglobulin superfamily, NCAM and L1, among the mechanisms contributing to stress-related mood disorders and, potentially, in antidepressant action.
Collapse
Affiliation(s)
- Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
61
|
Yoneyama M, Fukui M, Nakamichi N, Kitayama T, Taniura H, Yoneda Y. Activation of GABA(A) receptors facilitates astroglial differentiation induced by ciliary neurotrophic factor in neural progenitors isolated from fetal rat brain. J Neurochem 2006; 100:1667-79. [PMID: 17212695 DOI: 10.1111/j.1471-4159.2006.04322.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunocytochemical analysis confirmed the validity of isolation procedures of neural progenitors capable of self-replication and differentiation from discrete fetal rat brain structures. A reverse transcription-polymerase chain reaction analysis revealed the expression of particular GABA(A) receptor (GABA(A)R), GABA(B)R-1 and GABA(C)R, but not GABA(B)R-2, subunits in neocortical cells before commitment. Sustained exposure to the GABA(A)R agonist muscimol at 100 mumol/L led to significant increases in the mitochondrial activity and the total areas of neocortical neurospheres formed during the cultivation for 12 days in a manner sensitive to a GABA(A)R antagonist, with lactate dehydrogenase release being unchanged. Moreover, prior sustained exposure to muscimol significantly facilitated the subsequent expression of an astroglial marker protein in cells differentiated by ciliary neurotrophic factor (CNTF) toward an astroglial lineage, with a concomitant decrease in the neuronal marker protein expression, in an antagonist-sensitive manner on Western blotting analysis. However, muscimol failed to significantly affect the expression of both marker proteins in cells differentiated in either the presence or absence of all-trans-retinoic acid. These results suggest that prior activation of GABA(A)R may preferentially facilitate the commitment by CNTF of neural progenitor cells toward an astroglial lineage after simulation of the self-replication activity in the developing rat brain.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|
62
|
Warchol ME. Characterization of supporting cell phenotype in the avian inner ear: implications for sensory regeneration. Hear Res 2006; 227:11-8. [PMID: 17081713 DOI: 10.1016/j.heares.2006.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/26/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
The avian inner ear possesses a remarkable capacity for the regeneration of sensory receptors after acoustic trauma or ototoxicity. Most replacement hair cells are created by renewed cell division within the sensory epithelium, although some new hair cells may also arise through nonmitotic mechanisms. Current data indicate that epithelial supporting cells play an essential role in regeneration, by serving as progenitor cells. In order to become progenitors, however, supporting cells may need to undergo partial dedifferentiation. In this review, I describe molecules that are expressed by supporting cells in the avian ear. Although a number of these molecules are likely to be critical to the maintenance of the supporting cell phenotype, we presently know very little about phenotypic changes in supporting cells during the early phase of regeneration.
Collapse
Affiliation(s)
- Mark E Warchol
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
63
|
Santra M, Liu XS, Santra S, Zhang J, Zhang RL, Zhang ZG, Chopp M. Ectopic expression of doublecortin protects adult rat progenitor cells and human glioma cells from severe oxygen and glucose deprivation. Neuroscience 2006; 142:739-52. [PMID: 16962712 DOI: 10.1016/j.neuroscience.2006.06.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 06/23/2006] [Accepted: 06/29/2006] [Indexed: 11/21/2022]
Abstract
Doublecortin (DCX) is a microtubule-associated protein expressed in migrating neuroblasts. DCX expression is increased in subventricular zone (SVZ) cells migrating to the boundary of an ischemic lesion after induction of middle cerebral artery occlusion (MCAO) in adult rats and mice. We tested the hypothesis that DCX, in addition to being a marker of migrating neuroblasts, serves to protect neuroblasts from conditions of stress, such as oxygen and glucose deprivation (OGD). Using gene transfer technology, we overexpressed DCX in rat SVZ and U-87 human glioma cells. The cells remained viable against severe OGD, up to 32 h exhibiting 1% apoptosis compared with 100% apoptosis in control. In addition, these genetically modified cells upregulated expression of E-, VE- and N-cadherin, molecules that promote endothelial survival signals via the VE-cadherin/vascular endothelial growth factor receptor-2/phosphoinositide 3-kinase (PI3-K)/AKT/beta-catenin pathway and inactivate the proapoptotic factor Bad. DCX overexpression also significantly increased cell migration in SVZ tissue explants and U-87 cells and significantly upregulated microtubule-associated protein-2 (MAP2) and nestin protein levels in SVZ and U-87 cells compared with wild-type control cells. Knocking down DCX expression in DCX overexpressing SVZ and U-87 cells with DCX small interfering RNA (siRNA), confirmed the specificity of DCX on cell survival against OGD, and the DCX induced upregulation of E-, VE- and N-cadherin, MAP2 and nestin. In NIH3T3 cells, DCX overexpression had no effect on cell survival against OGD, and indicating that the protective effects of DCX was restricted to brain cells e.g. SVZ and U-87 cells. Our data suggest a novel and an important role for DCX as a protective agent for migrating neuroblasts and tumor cells.
Collapse
Affiliation(s)
- M Santra
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Milhavet O, Casanova D, Chevallier N, McKay RDG, Lehmann S. Neural stem cell model for prion propagation. Stem Cells 2006; 24:2284-91. [PMID: 16741225 DOI: 10.1634/stemcells.2006-0088] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The study of prion transmission and targeting is a major scientific issue with important consequences for public health. Only a few cell culture systems that are able to convert the cellular isoform of the prion protein into the pathologic scrapie isoform of the prion protein (PrP(Sc)) have been described. We hypothesized that central nervous system neural stem cells (NSCs) could be the basis of a new cell culture model permissive to prion infection. Here, we report that monolayers of differentiated fetal NSCs and adult multipotent progenitor cells isolated from mice were able to propagate prions. We also demonstrated the large influence of neural cell fate on the production of PrP(Sc), allowing the molecular study of prion neuronal targeting in relation with strain differences. This new stem cell-based model, which is applicable to different species and to transgenic mice, will allow thoughtful investigations of the molecular basis of prion diseases, and will open new avenues for diagnostic and therapeutic research.
Collapse
Affiliation(s)
- Ollivier Milhavet
- Institut de Génétique Humaine, CNRS-UPR1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
65
|
Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 2006; 7:179-93. [PMID: 16495940 DOI: 10.1038/nrn1867] [Citation(s) in RCA: 1033] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The adult brain is a plastic place. To ensure that the mature nervous system's control of behaviour is flexible in the face of a varying environment, morphological and physiological changes are possible at many levels, including that of the entire cell. In two areas of the adult brain - the olfactory bulb and the dentate gyrus - new neurons are generated throughout life and form an integral part of the normal functional circuitry. This process is not fixed, but highly modulated, revealing a plastic mechanism by which the brain's performance can be optimized for a given environment. The functional benefits of this whole-cell plasticity, however, remain a matter for debate.
Collapse
Affiliation(s)
- Pierre-Marie Lledo
- Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associée 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.
| | | | | |
Collapse
|
66
|
Bernabeu R, Yang T, Xie Y, Mehta B, Ma SY, Longo FM. Downregulation of the LAR protein tyrosine phosphatase receptor is associated with increased dentate gyrus neurogenesis and an increased number of granule cell layer neurons. Mol Cell Neurosci 2006; 31:723-38. [PMID: 16488625 DOI: 10.1016/j.mcn.2006.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 12/16/2005] [Accepted: 01/03/2006] [Indexed: 11/18/2022] Open
Abstract
Growth factors stimulating neurogenesis act through protein tyrosine kinases which are counterbalanced by protein tyrosine phosphatases (PTPs); thus, downregulation of progenitor PTP function might provide a novel strategy for promoting neurogenesis. We tested the hypotheses that the leukocyte common antigen-related (LAR) PTP is present in adult dentate gyrus progenitors, and that its downregulation would promote neurogenesis. In adult mice, LAR immunostaining was present in Ki-67- and PCNA-positive subgranular zone cells. At 1 h post-BrdU administration, LAR-/- mice demonstrated an approximately 3-fold increase in BrdU- and PCNA-positive cells, indicating increased progenitor proliferation. At 1 day and 4 weeks following 6 days of BrdU administration, LAR-/- mice exhibited a significant increase in BrdU and NeuN colabeled cells consistent with increased neurogenesis. In association with increased neurogenesis in LAR-/- mice, stereological analysis revealed a significant 37% increase in the number of neurons present in the granule cell layer. In cultured progenitor clones derived from LAR+/+ mice, LAR immunostaining was present in PCNA- and BrdU-positive cells. Progenitor clones derived from adult LAR-/- hippocampus or LAR+/+ clones made LAR-deficient with LAR siRNA demonstrated increased proliferation and, under differentiation conditions, increased proportions of Tuj1- and MAP2-positive cells. These studies introduce LAR as the first PTP found to be expressed in dentate progenitors and point to inhibition of LAR as a potential strategy for promoting neurogenesis. These findings also provide a rare in vivo demonstration of an association between increased dentate neurogenesis and an expanded population of granule cell layer neurons.
Collapse
Affiliation(s)
- Ramon Bernabeu
- UNC School of Medicine, Department of Neurology CB7025, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
67
|
Vutskits L, Gascon E, Zgraggen E, Kiss JZ. The Polysialylated Neural Cell Adhesion Molecule Promotes Neurogenesis in vitro. Neurochem Res 2006; 31:215-25. [PMID: 16572258 DOI: 10.1007/s11064-005-9021-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2005] [Indexed: 10/24/2022]
Abstract
A characteristic feature of neurogenic sites in the postnatal brain is the expression of the polysialylated forms of the neural cell adhesion molecule (PSA-NCAM). To investigate the role of PSA-NCAM in generation of neuronal populations, we developed an in vitro model where neurogenesis occurs in primary cortical cultures following serum withdrawal. We show that removal or inactivation of the PSA tail of NCAM in these cultures leads to a significant decrease in the number of newly generated neurons. Similarly, cultures prepared from NCAM knock-out mice exhibit a significantly reduced neurogenesis. Pulse-chase experiments using the proliferation marker BrdU reveal that the lack of PSA does not affect the mitotic rate of neural progenitors but rather, it reduces the early survival of newly generated neurons. These results suggest that, in addition to its role in the migration of neuronal progenitors, PSA-NCAM is required for the adequate survival of these cells.
Collapse
Affiliation(s)
- Laszlo Vutskits
- Department of Anesthesiology, Pharmacology and Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
68
|
Kiryushko D, Korshunova I, Berezin V, Bock E. Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis. Mol Biol Cell 2006; 17:2278-86. [PMID: 16510522 PMCID: PMC1446100 DOI: 10.1091/mbc.e05-10-0987] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) plays a pivotal role in the development of the nervous system, promoting neuronal differentiation via homophilic (NCAM-NCAM) as well as heterophilic (NCAM-fibroblast growth factor receptor [FGFR]) interactions. NCAM-induced intracellular signaling has been shown to affect and be dependent on the cytoplasmic Ca2+ concentration ([Ca2+]i). However, the molecular basis of this remains unclear. In this study, we determined [Ca2+]i regulating mechanisms involved in intracellular signaling induced by NCAM. To mimic the effect of homophilic NCAM interaction on [Ca2+]i in vitro, we used a peptide derived from a homophilic binding site of NCAM, termed P2, which triggers signaling cascades similar to those activated by NCAM-NCAM interaction. We found that P2 increased [Ca2+]i in primary hippocampal neurons. This effect depended on two signaling pathways. The first pathway was associated with activation of FGFR, phospholipase Cgamma, and production of diacylglycerol, and the second pathway involved Src-family kinases. Moreover, NCAM-mediated Ca2+ entry required activation of nonselective cation and T-type voltage-gated Ca2+ channels. These channels, together with the Src-family kinases, were also involved in neuritogenesis induced by physiological, homophilic NCAM interactions. Thus, unanticipated mechanisms of Ca2+ homeostasis are shown to be activated by NCAM and to contribute to neuronal differentiation.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute, DK-2200 Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
69
|
Horiuchi M, Tomooka Y. An attempt to generate neurons from an astrocyte progenitor cell line FBD-104. Neurosci Res 2005; 53:104-15. [PMID: 16054258 DOI: 10.1016/j.neures.2005.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 06/06/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
In the present study, a clonal astrocyte progenitor cell line derived from p53-deficient fetal brains, named FBD-104, was characterized in monolayer and suspension culture. In monolayer culture with medium containing 10% serum, FBD-104 cells expressed some markers of astrocytes, such as glial fibrillary acidic protein (GFAP), S100beta, and glutamate aspartate transporter (GLAST). They never expressed any markers of neurons or oligodendrocytes. Thus the cell line appears to be restricted to the astroglial lineage. However, in suspension culture in serum-free medium supplemented with EGF and FGF2, FBD-104 cells proliferated and formed neurospheres expressing mRNAs for Mash1 and Math3, generating cells expressing neuron specific beta-III tubulin. Re-plating the spheres onto an adhesive substrate and withdrawal of the growth factors induced the expression of mRNAs for NeuroD and Olig2 and generated more beta-III tubulin-positive cells. The present study demonstrated that neurosphere culture is an efficient method to induce neurogenesis from the astrocyte progenitor cell line FBD-104. We also determined that pretreatment with FGF2 caused a significant increase in yield of neurospheres. Thus, the FBD-104 line is an interesting in vitro model to study effect of trophic factors and adhesive substrates on lineage determination of neural progenitor cells.
Collapse
Affiliation(s)
- Makoto Horiuchi
- Department of Biological Science and Technology, Tissue Engineering Research Center, Tokyo University of Science, 2641 Yamazaki, Noda City, Chiba 278-8510, Japan
| | | |
Collapse
|
70
|
Anderson AA, Kendal CE, Garcia-Maya M, Kenny AV, Morris-Triggs SA, Wu T, Reynolds R, Hohenester E, Saffell JL. A peptide from the first fibronectin domain of NCAM acts as an inverse agonist and stimulates FGF receptor activation, neurite outgrowth and survival. J Neurochem 2005; 95:570-83. [PMID: 16135080 DOI: 10.1111/j.1471-4159.2005.03417.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neural cell adhesion molecule (NCAM) contributes to axon growth and guidance during development and learning and memory in adulthood. Although the Ig domains mediate homophilic binding, outgrowth activity localizes to two membrane proximal fibronectin-like domains. The first of these contains a site identified as a potential FGF receptor (FGFR) activation motif (FRM) important for NCAM stimulation of neurite outgrowth, but its activity has hitherto remained hypothetical. Here, we have tested the effects of a domain-specific antibody and peptides corresponding to the FRM in cellular assays in vitro. The first fibronectin domain antibody inhibited NCAM-stimulated outgrowth, indicating the importance of the domain for NCAM function. Monomeric FRM peptide behaved as an inverse agonist; low concentrations specifically inhibited neurite outgrowth stimulated by NCAM and cellular responses to FGF2, while saturating concentrations stimulated FGFR-dependent neurite outgrowth equivalent to NCAM itself. Dendrimeric FRM peptide was 125-fold more active and stimulated FGFR activation, FGFR-dependent and FGF-mimetic neurite outgrowth and cell survival (but not proliferation). We conclude that the FRM peptide contains NCAM-mimetic bioactivity accounted for by stimulation of FGF signalling pathways at the level of or upstream from FGF receptors, and discuss the possibility that FRM comprises part of an FGFR activation site on NCAM.
Collapse
Affiliation(s)
- Alexandra A Anderson
- Division of Cell and Molecular Biology, Faculty of Life Sciences, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Nieoullon V, Belvindrah R, Rougon G, Chazal G. mCD24 regulates proliferation of neuronal committed precursors in the subventricular zone. Mol Cell Neurosci 2005; 28:462-74. [PMID: 15737737 DOI: 10.1016/j.mcn.2004.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 10/07/2004] [Accepted: 10/19/2004] [Indexed: 11/16/2022] Open
Abstract
We previously showed that deletion of the cell surface molecule mCD24 resulted in an increased proliferation in adult subventricular zone (SVZ). Here, we report an increased PSA-NCAM+/TuJ1- population in the mCD24-/- in vivo SVZ as well as in vitro neurospheres. Isolated in vitro, these cells were able to generate neurospheres. Proliferation studies, using BrdU incorporation, showed an increased proliferation in P7 mCD24-/- SVZ and neurospheres. Using electron microscopy, the same cell types were identified in the in vivo SVZ as well as in vitro neurospheres from the WT and mCD24-/- mice. In mixed neurospheres, formed with WT and EGFP/KO cells (enhanced green fluorescent protein mCD24-/-), the WT environment was able to control the proliferation rate of the mCD24-/- cells, but was unable to regulate their differentiation. We concluded that mCD24 acts cell nonautonomously to regulate transit-amplifying cells proliferation and/or differentiation.
Collapse
Affiliation(s)
- Vincent Nieoullon
- Neurogenèse et Morphogenèse dans le Développement et chez l'Adulte/Institut de Biologie du Développement de Marseille, Centre National de la Recherche Scientifique, Marseilles, France
| | | | | | | |
Collapse
|
72
|
Kim JH, Lee JH, Park JY, Park CH, Yun CO, Lee SH, Lee YS, Son H. Retrovirally transduced NCAM140 facilitates neuronal fate choice of hippocampal progenitor cells. J Neurochem 2005; 94:417-24. [PMID: 15998292 DOI: 10.1111/j.1471-4159.2005.03208.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neural cell adhesion molecule (NCAM) influences proliferation and differentiation of neuronal cells. However, only a little is known about the downstream effects of NCAM signalling, such as alterations in gene transcription, which are associated with cell fate choice. To examine whether NCAM plays a role in cell fate choice during hippocampal neurogenesis, we performed a gain-of-function study, using a retroviral vector which contained full-length NCAM140 cDNA and the marker gene EGFP, and found that NCAM140 promoted neurogenesis by activating proneural transcription activators with concurrent inhibition of gliogenesis. The enhanced transcript levels of proneural transcription factors in NCAM140-transduced cells were down-regulated by treatment of the cells with mitogen-activated protein kinase kinase (MEK) inhibitor PD098059. Overall, these findings suggest that NCAM140 may facilitate hippocampal neurogenesis via regulation of proneurogenic transcription factors in an extracellular signal-regulated kinase (ERK)-dependent manner.
Collapse
Affiliation(s)
- Ju Hee Kim
- Department of Bicohemistry, Hanyang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Tsatmali M, Walcott EC, Crossin KL. Newborn neurons acquire high levels of reactive oxygen species and increased mitochondrial proteins upon differentiation from progenitors. Brain Res 2005; 1040:137-50. [PMID: 15804435 DOI: 10.1016/j.brainres.2005.01.087] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 01/21/2005] [Accepted: 01/24/2005] [Indexed: 01/19/2023]
Abstract
A population of embryonic rat cortical cells cultured in the presence of FGF2 and having neuronal morphology expressed higher levels of reactive oxygen species (ROS) than did progenitor cells, astrocytes, and several cell lines of neuronal and non-neuronal origin. ROS were assessed using 5-(and-6)-chlormethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCF-DA), and high levels persisted in the presence of antioxidants or lowered levels of ambient oxygen. Greater than 95% of high ROS-producing cells, isolated by fluorescence-activated cell sorting, expressed the neuronal marker beta III tubulin. These cells did not incorporate BrdU or express nestin, unlike low ROS-producing cells, 99% of which exhibited both of these characteristics. Upon growth factor removal, low ROS-expressing cells differentiated into neurons and astrocytes and these neurons expressed high levels of ROS, indicating that ROS accumulation accompanies the differentiation of progenitors into neurons. ROS levels were decreased by added superoxide dismutase and catalase, suggesting that both superoxide and hydrogen peroxide contribute to the ROS signal. High ROS-expressing cells also contained higher levels of several mitochondrial respiratory chain components. Although ROS have been associated with conditions that lead to cell death, our results and recent studies on the role of ROS as regulators of signal pathways are consistent with the possibility that ROS play a role in the development of the neuronal phenotype. Moreover, the differential production of ROS provides a useful method to isolate from mixed populations cells that are highly enriched for either progenitor cells or neurons.
Collapse
Affiliation(s)
- Marina Tsatmali
- Department of Neurobiology, SBR-14, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
74
|
Kitayama T, Yoneyama M, Tamaki K, Yoneda Y. Regulation of neuronal differentiation by N-methyl-D-aspartate receptors expressed in neural progenitor cells isolated from adult mouse hippocampus. J Neurosci Res 2004; 76:599-612. [PMID: 15139019 DOI: 10.1002/jnr.20095] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In vitro culture of neural progenitor cells isolated from adult murine hippocampus according to the Percoll density gradient method resulted in formation of round spheres not immunoreactive to microtubule-associated protein-2 (MAP-2) or glial fibrillary acidic protein in the presence of basic fibroblast growth factor within 12 days in vitro (DIV). Reverse-transcription PCR analysis revealed constitutive expression in these neurospheres of different subunits required for assembly of functional heteromeric N-methyl-D-aspartate (NMDA) receptor channels. Immunocytochemical analysis confirmed expression of NR1, NR2A, and NR2B subunits in neurospheres cultured for 4-12 DIV. Brief (5 min) exposure to NMDA induced marked expression of c-Fos, Fos-B, Fra-2, and c-Jun proteins in neurospheres cultured for 12 DIV 2 hr later. The NMDA receptor antagonist dizocilpine markedly inhibited expression of both c-Jun and c-Fos proteins in NMDA-exposed neurospheres. Sustained exposure to NMDA not only markedly inhibited neurosphere formation by 12 DIV when exposed from 4-12 DIV, but also resulted in facilitation of subsequent differentiation of neurospheres exposed to all-trans retinoic acid to cells immunoreactive to both neuron-specific enolase and neuronal nuclei, in addition to MAP-2, as revealed by Western blot and immunocytochemistry analyses. These results suggest that functional heteromeric NMDA receptors may be expressed constitutively in neural progenitor cells before differentiation to play a crucial role in commitment and differentiation to neurons in adult murine hippocampus.
Collapse
Affiliation(s)
- Tomoya Kitayama
- Laboratory of Molecular Pharmacology, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Japan
| | | | | | | |
Collapse
|
75
|
Harada J, Foley M, Moskowitz MA, Waeber C. Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. J Neurochem 2004; 88:1026-39. [PMID: 14756825 DOI: 10.1046/j.1471-4159.2003.02219.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a lipid mediator that exerts multiple cellular functions through activation of G-protein-coupled receptors. Although the role of S1P on angiogenesis is well established, its role in neurogenesis is unknown. We examined the effects of S1P on G-protein activation in brain sections of rat embryo and on neural progenitor cells in culture. Intense S1P-stimulated [35S]GTPgammaS labeling was observed as early as E15 in the neuroepithelium and differentiating fields throughout the brain, suggesting that functional S1P receptors are expressed in brain areas with active neurogenesis. mRNA transcripts for several S1P receptor subtypes (S1P1, S1P2, S1P3 and S1P5) were expressed in neural progenitor cells prepared from embryonic rat hippocampus. S1P induced phosphorylation of extracellular signal-regulated kinase (ERK) and proliferation of neural progenitor cells as determined by BrdU incorporation in a pertussis toxin-sensitive manner. These effects were prevented by the ERK signaling inhibitor U0126. S1P augmented telomerase activity in neural progenitor cells with similar potency as that of FGF-2. Furthermore, S1P induced cell-cell aggregation. This morphological change was transient and prevented by Y-27632, an inhibitor of Rho-associated kinase. These results suggest that S1P plays a pleiotropic role in neurogenesis via pathways involving S1P receptors, MAP kinases and Rho kinase.
Collapse
Affiliation(s)
- Jun Harada
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
76
|
Kim JS, Chang MY, Yu IT, Kim JH, Lee SH, Lee YS, Son H. Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo. J Neurochem 2004; 89:324-36. [PMID: 15056276 DOI: 10.1046/j.1471-4159.2004.02329.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lithium has been demonstrated to increase neurogenesis in the dentate gyrus of rodent hippocampus. The present study was undertaken to investigate the effects of lithium on the proliferation and differentiation of rat neural progenitor cells in hippocampus both in vitro and in vivo. Lithium chloride (1-3 mM) produced a significant increase in the number of bromodeoxyuridine (BrdU)-positive cells in high-density cultures, but did not increase clonal size in low-density cultures. Lithium chloride at 1 mM (within the therapeutic range) also increased the number of cells double-labeled with BrdU antibody and TuJ1 (a class III beta-tubulin antibody) in high-density cultures and the number of TuJ1-positive cells in a clone of low-density cultures, whereas it decreased the number of glial fibrillary acidic protein-positive cells in both cultures. These results suggest that lithium selectively increased differentiation of neuronal progenitors. These actions of lithium appeared to enhance a neuronal subtype, calbindin(D28k)-positive cells, and involved a phosphorylated extracellular signal-regulated kinase and phosphorylated cyclic AMP response element-binding protein-dependent pathway both in vitro and in vivo. These findings suggest that lithium in therapeutic amounts may elicit its beneficial effects via facilitation of neural progenitor differentiation toward a calbindin(D28k)-positive neuronal cell type.
Collapse
Affiliation(s)
- Jin Seuk Kim
- Department of Biochemistry, Hanyang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
77
|
Ahn JI, Lee KH, Shin DM, Shim JW, Lee JS, Chang SY, Lee YS, Brownstein MJ, Lee SH, Lee YS. Comprehensive transcriptome analysis of differentiation of embryonic stem cells into midbrain and hindbrain neurons. Dev Biol 2004; 265:491-501. [PMID: 14732407 DOI: 10.1016/j.ydbio.2003.09.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurogenesis is one of the most complex events in embryonic development. However, little information is available regarding the molecular events that occur during neurogenesis. To identify regulatory genes and underlying mechanisms involved in the differentiation of embryonic stem (ES) cells to neurons, gene expression profiling was performed using cDNA microarrays. In mouse ES cells, we compared the gene expression of each differentiated cell stage using a five-stage lineage selection method. Of 10,368 genes, 1633 (16%) known regulatory genes were differentially expressed at least 2-fold or greater at one or more stages. At stage 3, during which ES cells differentiate into neural stem cells, modulation of nearly 1000 genes was observed. Most of transcription factors (Otx2, Ebf-3, Ptx3, Sox4, 13, 18, engrailed, Irx2, Pax8, and Lim3), signaling molecules (Wnt, TGF, and Shh family members), and extracellular matrix/adhesion molecules (collagens, MAPs, and NCAM) were up-regulated. However, some genes which may play important roles in maintaining the pluripotency of ES cells (Kruppel-like factor 2, 4, 5, 9, myeloblast oncogene like2, ZFP 57, and Esg-1) were down-regulated. The many genes identified with this approach that are modulated during neurogenesis will facilitate studies of the mechanisms underlying ES cell differentiation, neural induction, and neurogenesis.
Collapse
Affiliation(s)
- Joon-Ik Ahn
- Department of Biochemistry, College of Medicine, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Schumm MA, Castellanos DA, Frydel BR, Sagen J. Direct cell-cell contact required for neurotrophic effect of chromaffin cells on neural progenitor cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 146:1-13. [PMID: 14643006 DOI: 10.1016/j.devbrainres.2003.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous studies showed that neural progenitor cultures could be maintained without exogenously added FGF-2 when co-cultured with chromaffin cells. In addition, progenitor cells displayed dramatically increased neuronal differentiation in the presence of chromaffin cells. These findings suggested an approach to improved neural progenitor transplant outcomes using co-transplantation or administration of chromaffin cell-derived factors. The aim of this study was to determine whether the observed survival and differentiation effects were due to diffusible factors or required direct cell-cell contact (DC). Rat neural progenitors were cultured under six different conditions: (1) Standard N2 media with FGF-2; (2) N2 without FGF-2; (3) N2 with FGF+conditioned media (CM) from chromaffin cultures; (4) N2 without FGF-2+CM; (5) Transwells (TW), progenitor+chromaffin cells grown together but separated by a membrane allowing movement of diffusible agents but preventing direct contact; (6) direct contact co-cultures of progenitors and chromaffin cells. Cultures were evaluated for survival, proliferation, and differentiation. Cultures with FGF-2 proliferated and formed floating neurospheres while those grown in N2 without FGF-2 failed to thrive. Those grown either with CM or in transwells showed significantly improved survival. Survival was comparable to the exogenous FGF groups when progenitors were allowed direct contact with chromaffin cells. Proliferation was low in all cultures except those receiving exogenous FGF-2. Direct contact co-cultures exhibited a marked increase in beta-tubulin III+ processes compared to all other groups, indicating differentiation towards a neuronal phenotype. The results of this study suggest that diffusible agents produced by chromaffin cells can sustain viable progenitor cells in vitro even in the absence of added FGF-2 but that the effects on progenitor cell neuronal differentiation require direct cell-cell contact.
Collapse
Affiliation(s)
- Michael A Schumm
- The Miami Project to Cure Paralysis, School of Medicine, University of Miami, Lois Pope Life Center, 1095 NW 14th Terrace (R-48), Miami, FL 33136, USA
| | | | | | | |
Collapse
|
79
|
Marchal-Victorion S, Deleyrolle L, De Weille J, Saunier M, Dromard C, Sandillon F, Privat A, Hugnot JP. The human NTERA2 neural cell line generates neurons on growth under neural stem cell conditions and exhibits characteristics of radial glial cells. Mol Cell Neurosci 2003; 24:198-213. [PMID: 14550780 DOI: 10.1016/s1044-7431(03)00161-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
NTERA2 cells are a human neural cell line generating neurons after exposure to retinoic acid and, as such, are widely used as a model of neurogenesis. We report that these cells form spheres when grown in serum-free medium supplemented with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). These spheres were found to express markers of radial glial cells such as, Pax6, glutamate transporter (GLAST), tenascin C, brain lipid-binding protein (BLBP), and the 3CB2 antigen. On plating on an adhesive substrate, NTERA2 spheres generate a large percentage of immature neurons (30-50%) together with a minority of cells of the oligodendrocyte lineage. Thus NTERA2 cells share properties with neural stem cells. However, at variance with the latter, we found that they produce their own bFGF implicated in an autocrine or paracrine proliferative loop and that they do not generate astrocytes after differentiation. These results provide an interesting model to study radial glial cells and their role in human neurogenesis.
Collapse
Affiliation(s)
- S Marchal-Victorion
- INSERM U336, Développement, Plasticité et Vieillissement du Système Nerveux Central, USTL, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Seidenfaden R, Krauter A, Schertzinger F, Gerardy-Schahn R, Hildebrandt H. Polysialic acid directs tumor cell growth by controlling heterophilic neural cell adhesion molecule interactions. Mol Cell Biol 2003; 23:5908-18. [PMID: 12897159 PMCID: PMC166353 DOI: 10.1128/mcb.23.16.5908-5918.2003] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polysialic acid (PSA), a carbohydrate polymer attached to the neural cell adhesion molecule (NCAM), promotes neural plasticity and tumor malignancy, but its mode of action is controversial. Here we establish that PSA controls tumor cell growth and differentiation by interfering with NCAM signaling at cell-cell contacts. Interactions between cells with different PSA and NCAM expression profiles were initiated by enzymatic removal of PSA and by ectopic expression of NCAM or PSA-NCAM. Removal of PSA from the cell surface led to reduced proliferation and activated extracellular signal-regulated kinase (ERK), inducing enhanced survival and neuronal differentiation of neuroblastoma cells. Blocking with an NCAM-specific peptide prevented these effects. Combinatorial transinteraction studies with cells and membranes with different PSA and NCAM phenotypes revealed that heterophilic NCAM binding mimics the cellular responses to PSA removal. In conclusion, our data demonstrate that PSA masks heterophilic NCAM signals, having a direct impact on tumor cell growth. This provides a mechanism for how PSA may promote the genesis and progression of highly aggressive PSA-NCAM-positive tumors.
Collapse
Affiliation(s)
- Ralph Seidenfaden
- Institut für Zoologie (220), Universität Hohenheim, 70593 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
81
|
Dihné M, Bernreuther C, Sibbe M, Paulus W, Schachner M. A new role for the cell adhesion molecule L1 in neural precursor cell proliferation, differentiation, and transmitter-specific subtype generation. J Neurosci 2003; 23:6638-50. [PMID: 12878705 PMCID: PMC6740621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Adhesion molecules play important roles in the development and regeneration of the CNS and PNS. We found that the immunoglobulin superfamily recognition molecule L1 influences proliferation and differentiation of neural precursor cells. Substrate-coated L1 reduced proliferation of precursor cells in a dose-dependent manner and increased neuronal and decreased astrocytic differentiation when compared with poly-l-lysine or laminin substrates. Enhancement of neuronal differentiation was more effective if L1 was offered via the cell surface of transfected fibroblasts compared with substrate-coated purified L1. Furthermore, L1 decreased cholinergic-subtype differentiation and accelerated GABAergic differentiation of precursor cell-derived neurons in comparison with poly-l-lysine or laminin. Generation of dopaminergic neurons was not influenced by L1. Experiments with precursor cells generated from L1-deficient mice indicate that L1 acts via heterophilic interaction on proliferation and differentiation of L1-negative precursor cells and via a homophilic or L1 coreceptor-mediated interaction on maturation of precursor cell-derived L1-positive neurons. Clonal analysis revealed that L1 equally inhibits proliferation of monopotential, bipotential, and multipotential precursor cells, but selectively enhances neuronal differentiation of multipotential and bipotential neuron-astrocyte precursors. Our observations support a new role for L1 or L1 ligands in neural precursor cell proliferation and differentiation.
Collapse
Affiliation(s)
- Marcel Dihné
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, D-20251 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
82
|
Lautrette C, Cardot PJP, Vermot-Desroches C, Wijdenes J, Jauberteau MO, Battu S. Sedimentation field flow fractionation purification of immature neural cells from a human tumor neuroblastoma cell line. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 791:149-60. [PMID: 12798175 DOI: 10.1016/s1570-0232(03)00229-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The use of stem cells for therapeutic applications is now an important objective for the future. Stem cell preparation is difficult and time-consuming depending on the origin of cells. Sedimentation field flow fractionation (SdFFF) is an effective tool for cell separation, respecting integrity and viability. We used the human neuroblastic SH-SY5Y clone of the SK-N-SH cell line as a source of immature neural cells. Our results demonstrated that by using SdFFF cell sorter under strictly defined conditions, and immunological cell characterization, we are now able to provide, in less than 15 min, a sterile, viable, usable and purified immature neural cell fraction without inducting cell differentiation.
Collapse
Affiliation(s)
- C Lautrette
- Laboratoire de Neuro-Immunologie, CNRS UMR 6101, Faculté de Médecine, Université de Limoges, 2 Rue du Dr. Marcland, 87025 Limoges Cedex, France
| | | | | | | | | | | |
Collapse
|
83
|
Bizzoca A, Virgintino D, Lorusso L, Buttiglione M, Yoshida L, Polizzi A, Tattoli M, Cagiano R, Rossi F, Kozlov S, Furley A, Gennarini G. Transgenic mice expressing F3/contactin from the TAG-1 promoter exhibit developmentally regulated changes in the differentiation of cerebellar neurons. Development 2003; 130:29-43. [PMID: 12441289 DOI: 10.1242/dev.00183] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
F3/contactin (CNTN1) and TAG-1 (CNTN2) are closely related axonal glycoproteins that are differentially regulated during development. In the cerebellar cortex TAG-1 is expressed first as granule cell progenitors differentiate in the premigratory zone of the external germinal layer. However, as these cells begin radial migration, TAG-1 is replaced by F3/contactin. To address the significance of this differential regulation, we have generated transgenic mice in which F3/contactin expression is driven by TAG-1 gene regulatory sequences, which results in premature expression of F3/contactin in granule cells. These animals (TAG/F3 mice) display a developmentally regulated cerebellar phenotype in which the size of the cerebellum is markedly reduced during the first two postnatal weeks but subsequently recovers. This is due in part to a reduction in the number of granule cells, most evident in the external germinal layer at postnatal day 3 and in the inner granular layer between postnatal days 8 and 11. The reduction in granule cell number is accompanied by a decrease in precursor granule cell proliferation at postnatal day 3, followed by an increase in the number of cycling cells at postnatal day 8. In the same developmental window the size of the molecular layer is markedly reduced and Purkinje cell dendrites fail to elaborate normally. These data are consistent with a model in which deployment of F3/contactin on granule cells affects proliferation and differentiation of these neurons as well as the differentiation of their synaptic partners, the Purkinje cells. Together, these findings indicate that precise spatio-temporal regulation of TAG-1 and F3/contactin expression is critical for normal cerebellar morphogenesis.
Collapse
Affiliation(s)
- Antonella Bizzoca
- Dipartimento di Farmacologia e Fisiologia Umana, Università di Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Bielas SL, Gleeson JG. Cytoskeletal-associated proteins in the migration of cortical neurons. ACTA ACUST UNITED AC 2003; 58:149-59. [PMID: 14598377 DOI: 10.1002/neu.10280] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuronal migration is a hallmark of cerebral cortical development as neurons born deep within the brain migrate to the surface in a highly choreographed process. The cytoskeleton extends throughout the cell, mediating the dramatic morphological changes that accompany migration. On a cellular level, proper migration is accompanied by polarization of the cytoskeleton and cellular contents and by dynamic reorganization that generates the force for cell locomotion. Genetic analyses of human brain malformations, as well as genetically engineered mouse mutants, have highlighted a number of cytoskeletal-associated proteins underlying these functions, which are necessary for proper cortical development. While these proteins are involved in diverse molecular mechanisms, disruption during development results in the ectopic placement of neurons in the cortex. We review key cytoskeletal events and the critical cytoskeletal-associated proteins involved in cortical neuronal migration.
Collapse
Affiliation(s)
- Stephanie L Bielas
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
85
|
Geisert EE, Williams RW, Geisert GR, Fan L, Asbury AM, Maecker HT, Deng J, Levy S. Increased brain size and glial cell number in CD81-null mice. J Comp Neurol 2002; 453:22-32. [PMID: 12357429 DOI: 10.1002/cne.10364] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A key issue in the development of the central nervous system (CNS) is understanding the molecular mechanisms regulating cell number. The present study examines the role of CD81 (previously known as TAPA, the target of the antiproliferative antibody) in the control of brain size and glial cell number. CD81 is a member of the tetraspanin family of proteins. This group of small membrane proteins is associated with the regulation of cell migration and mitotic activity. Glial cells express CD81, and antibodies directed against this protein suppress the mitotic activity of cultured cells. In this study, we examine the effects of the CD81 -/- mutation on the CNS of mature mice. These mice have extremely large brains, as much as 30% larger than the brains of wild-type (+/+) littermates. The increase in brain weight is accompanied by an increase in the number astrocytes and microglia, whereas the number of neurons and oligodendrocytes in the CD81 -/- animals appears to be normal. When the CD81 -/- mutation is placed on different genetic backgrounds, there is a remarkable range in the penetrance of the null allele phenotype, demonstrating that the mutation can be affected by modifier loci. This work provides support for the role of CD81 in the regulation of astrocyte and microglial number, perhaps by regulating cell proliferation by a contact inhibition-dependent mechanism.
Collapse
Affiliation(s)
- Eldon E Geisert
- Department of Anatomy and Neurobiology, and Neuroscience Institute, University of Tennessee, Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Schumm MA, Castellanos DA, Frydel BR, Sagen J. Enhanced viability and neuronal differentiation of neural progenitors by chromaffin cell co-culture. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 137:115-25. [PMID: 12220703 DOI: 10.1016/s0165-3806(02)00415-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transplantation of neural stem cells and progenitors has potential in restoring lost cellular populations following central nervous system (CNS) injury or disease, but survival and neuronal differentiation in the adult CNS may be insufficient in the absence of exogenous trophic support. Adrenal medullary chromaffin cells produce a trophic cocktail including basic fibroblast growth factor (FGF-2) and neurotrophins. The aim of this study was to evaluate whether chromaffin cells can provide a supportive microenvironment for neural progenitor cells. In order to assess this, the growth and differentiation of neural progenitor cell cultures from embryonic rat cortex were compared in standard FGF-2-supplemented neural progenitor growth media, in standard media but lacking FGF-2, or in media lacking FGF-2 but co-cultured with bovine chromaffin cells. Using bromodeoxyuridine (BrdU)-prelabeling, findings indicated poor survival of progenitor cultures in the absence of FGF-2. In contrast, the addition of chromaffin cells in co-culture appeared to 'rescue' the progenitor cultures and resulted in robust neurospheres containing numerous BrdU-labeled cells interspersed with and closely apposed to chromaffin cells. As indicated by H3 labeling, cells in co-cultures continued to proliferate, but at a substantially reduced rate compared with standard FGF-2 supplemented growth media. The co-cultures contained more beta-tubulin III-positive processes than parallel cultures maintained in FGF-2-supplemented media and these cells displayed a more mature phenotype with numerous varicosities and complex processes. These findings indicate that chromaffin cells can provide a supportive environment for the survival and neuronal differentiation of neural progenitor cells and suggest that their addition may be useful as a sustained source of trophic support to improve outcomes of neural stem cell transplantation.
Collapse
Affiliation(s)
- Michael A Schumm
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Lois Pope Life Center, 1095 NW 14th Terrace (R-48), Miami, FL 33136, USA
| | | | | | | |
Collapse
|
87
|
Owens GC, Mistry S, Edelman GM, Crossin KL. Efficient marking of neural stem cell-derived neurons with a modified murine embryonic stem cell virus, MESV2. Gene Ther 2002; 9:1044-8. [PMID: 12101436 DOI: 10.1038/sj.gt.3301780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Accepted: 04/04/2002] [Indexed: 11/09/2022]
Abstract
Treatments for nervous system disorders that involve transplanting genetically modified neural stem cells may ultimately be feasible. As a step towards this therapeutic approach, a novel murine embryonic stem cell gammaretroviral vector was developed with features designed to optimize transgene expression in neural stem cells and to increase vector safety. All potential start sites of translation in the 5' leader were removed. These sites may compete with an inserted transgene for translation initiation, and also produce potentially immunogenic peptides. Further, all of the gag gene sequences were replaced with a well-defined constitutive transport element from avian leukemia virus to promote nuclear export of viral RNA, and to eliminate any homology between the vector and a murine leukemia virus-derived gag-pol packaging plasmid. Two versions of the virus were made in which EGFP expression was driven either by the Rous sarcoma virus U3 enhancer or by a combination of sequences from the Syn1 and Pgk-1 promoters. Both of these viruses efficiently transduced neural stem cells isolated from embryonic rat hippocampus, and robust EGFP expression was observed in neurons derived from these cells following differentiation in vitro.
Collapse
Affiliation(s)
- G C Owens
- The Neurosciences Institute, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
88
|
Feng Z, Li L, Ng PY, Porter AG. Neuronal differentiation and protection from nitric oxide-induced apoptosis require c-Jun-dependent expression of NCAM140. Mol Cell Biol 2002; 22:5357-66. [PMID: 12101231 PMCID: PMC133958 DOI: 10.1128/mcb.22.15.5357-5366.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
c-Jun, a crucial component of the dimeric transcription factor activating protein 1 (AP-1), can regulate apoptosis induced by oxidative stress and has been implicated in neuronal differentiation, but the mechanisms are largely unknown. We found that specific inhibition of transcription or stable transfection with cDNA encoding dominant-negative c-Jun sensitized SH-SY5Y neuroblastoma cells (TAM-67 cells) to apoptosis induced by the nitric oxide (NO) donor sodium nitroprusside or SIN-1. TAM-67 cells also became refractory to nerve growth factor (NGF)-induced neuronal differentiation. Dominant-negative c-Jun abolished expression of a 140-kDa neural cell adhesion molecule (NCAM140) and dramatically enhanced the expression of NCAM180 in TAM-67 cells. Inhibition of c-Jun in TAM-67 cells also resulted in a corresponding decrease in the amount of NCAM140 mRNA and an increase in the amount of NCAM180 mRNA. Reexpression of NCAM140 in TAM-67 cells restored NGF-induced neuronal differentiation and resistance to NO-induced apoptosis. Our results show that c-Jun/AP-1, through up-regulation of NCAM140, plays an important role in both NGF-induced neuronal differentiation and resistance to apoptosis induced by NO in neuroblastoma cells. As NCAM140 and NCAM180 are translated from differentially spliced mRNAs transcribed from the same gene, alternative splicing of NCAM pre-mRNA (and consequently the synthesis of the smaller NCAM140 species) appears to be regulated by c-Jun/AP-1.
Collapse
Affiliation(s)
- Zhiwei Feng
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | | | |
Collapse
|
89
|
Kiss JZ, Muller D. Contribution of the neural cell adhesion molecule to neuronal and synaptic plasticity. Rev Neurosci 2002; 12:297-310. [PMID: 11783716 DOI: 10.1515/revneuro.2001.12.4.297] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The neural cell adhesion molecule (NCAM) and its polysialylated form PSA-NCAM contribute to many aspects of the development and plasticity of the central nervous system. This includes mechanisms of cell differentiation and migration, neurite outgrowth, establishment of specific patterns of synaptic connections, synaptic plasticity and long-term potentiation. How NCAM and PSA-NCAM contribute to regulate all these different mechanisms remains essentially unknown. Adhesive properties appear to be important, but recent studies also point to possible interactions between NCAM and PSA-NCAM with intracellular signalling cascades that are essential to biological functions. Some of these mechanisms are discussed and a hypothesis is proposed based on the existence of cross-talk between these molecules and signalling pathways mediated by growth factors.
Collapse
Affiliation(s)
- J Z Kiss
- Department of Morphology, Centre Médical Universitaire, Geneva, Switzerland
| | | |
Collapse
|
90
|
Mistry SK, Keefer EW, Cunningham BA, Edelman GM, Crossin KL. Cultured rat hippocampal neural progenitors generate spontaneously active neural networks. Proc Natl Acad Sci U S A 2002; 99:1621-6. [PMID: 11818538 PMCID: PMC122240 DOI: 10.1073/pnas.022646599] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We previously demonstrated that the neural cell adhesion molecule (N-CAM) inhibited the proliferation of cultured rat hippocampal progenitor cells and increased the number of neurons generated. We demonstrate here that the continued presence of fibroblast growth factor 2 along with N-CAM or brain-derived neurotrophic factor over 12 days of culture greatly increased the number of both progenitors and neurons. These progenitor-derived neurons expressed neurotransmitters, neurotransmitter receptors, and synaptic proteins in vitro consistent with those expressed in the mature hippocampus. Progenitor cells cultured on microelectrode plates formed elaborate neural networks that exhibited spontaneously generated action potentials after 21 days. This activity was observed only in cultures grown in the presence of fibroblast growth factor 2 and either N-CAM or brain-derived neurotrophic factor. Analysis of neuronal activity after various pharmacological treatments indicated that the networks formed functional GABAergic and glutamatergic synapses. We conclude that mitogenic growth factors can synergize with N-CAM or neurotrophins to generate spontaneously active neural networks from neural progenitors.
Collapse
Affiliation(s)
- Sanjay K Mistry
- Department of Neurobiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
91
|
Decker L, Durbec P, Rougon G, Baron-Van Evercooren A. Loss of polysialic residues accelerates CNS neural precursor differentiation in pathological conditions. Mol Cell Neurosci 2002; 19:225-38. [PMID: 11860275 DOI: 10.1006/mcne.2001.1072] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using the model of lysolecithin-induced demyelination of the corpus callosum in wild-type, NCAM-deficient, and endoneuraminidase-injected mice, we have analyzed the consequences of the loss of expression of NCAM or PSA residues on the migration and proliferation capacities of neural precursors of the subventricular zone (SVZ). We showed that the absence of PSA or NCAM delayed migration of neural precursors to the olfactory bulb and consequently enhanced their recruitment at the lesion site. Moreover, after demyelination, the lack of NCAM but not PSA promoted proliferation in the SVZ and the lesion while the lack of PSA favored the differentiation of the traced cells into the oligodendroglial fate both in the SVZ and in the lesion. As previously demonstrated in vitro (L. Decker et al., 2000, Mol. Cell. Neurosci. 16, 422-439), these data illustrate the involvement of PSA and NCAM in neural precursor motility and differentiation in the normal and injured central nervous system, suggesting distinct roles for these two molecules under pathophysiological conditions.
Collapse
Affiliation(s)
- Laurence Decker
- INSERM U-546, Laboratoire des Affections la Myéline et des Canaux Ioniques Musculaires, IFRNS, CHU Pitié-Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
92
|
Little EB, Crossin KL, Krushel LA, Edelman GM, Cunningham BA. A short segment within the cytoplasmic domain of the neural cell adhesion molecule (N-CAM) is essential for N-CAM-induced NF-kappa B activity in astrocytes. Proc Natl Acad Sci U S A 2001; 98:2238-43. [PMID: 11226223 PMCID: PMC30122 DOI: 10.1073/pnas.041597098] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2000] [Indexed: 01/04/2023] Open
Abstract
The neural cell adhesion molecule (N-CAM) is expressed on the surface of astrocytes, where its homophilic binding leads to the activation of the transcription factor NF-kappaB. Transfection of astrocytes with a construct encompassing the transmembrane region and the cytoplasmic domain of N-CAM (designated Tm-Cyto, amino acids 685-839 in the full-length molecule) inhibited this activation up to 40%, and inhibited N-CAM-induced translocation of NF-kappaB to the nucleus. N-CAM also activated NF-kappaB in astrocytes from N-CAM knockout mice, presumably through binding to a heterophile. This activation, however, was not blocked by Tm-Cyto expression, indicating that the inhibitory effect of the Tm-Cyto construct is specific for cell surface N-CAM. Deletions and point mutations of the cytoplasmic portion of the Tm-Cyto construct indicated that the region between amino acids 780 and 800 were essential for inhibitory activity. This region contains four threonines (788, 793, 794, and 797). Mutation to alanine of T788, T794, or T797, but not T793, abolished inhibitory activity, as did mutation of T788 or T797 to aspartic acid. A Tm-Cyto construct with T794 mutated to aspartic acid retained inhibitory activity but did not itself induce a constitutive NF-kappaB response. This result suggests that phosphorylation of T794 may be necessary but is not the triggering event. Overall, these findings define a short segment of the N-CAM cytoplasmic domain that is critical for N-CAM-induced activation of NF-kappaB and may be important in other N-CAM-mediated signaling.
Collapse
Affiliation(s)
- E B Little
- Department of Neurobiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
93
|
Abstract
Recently, a number of molecules originally thought to have a primary role in cell determination have been shown to affect the cell cycle at specific check points, while other molecules discovered for their roles in the cell cycle progression are known to affect the determination and differentiation of neurons. These discoveries have led to a more detailed investigation of the complex molecular machinery that co-ordinates proliferation and differentiation.
Collapse
Affiliation(s)
- S Ohnuma
- Department of Anatomy, University of Cambridge, Downing Street, CB2 3DY, UK.
| | | | | |
Collapse
|
94
|
Mani S, Shen Y, Schaefer J, Meiri KF. Failure to express GAP-43 during neurogenesis affects cell cycle regulation and differentiation of neural precursors and stimulates apoptosis of neurons. Mol Cell Neurosci 2001; 17:54-66. [PMID: 11161469 DOI: 10.1006/mcne.2000.0931] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GAP-43 is first expressed in proliferating neuroblasts and is required for maturation of neurons. When GAP-43 is not expressed in differentiating embryonal carcinoma P19 cells, reduced numbers of neurons were generated. Here we show that neuronal differentiation is initially disrupted at the onset of cell-cycle arrest in aggregated, proliferating neuronal precursors. The ratio of nestin:beta-tubulin-labeled progeny generated at this stage suggests that the differentiation is asymmetric. Apoptosis of immature neurons subsequently produced was also significantly induced. In vivo, too, proliferation of neuroblasts was significantly reduced in cortex of GAP-43(-/-) mice at E14.5. These data demonstrate that when GAP-43 is not expressed in proliferating neuroblasts, neural differentiation is not initiated appropriately, inducing apoptosis. Moreover, the concurrent inhibition of Ca2+-dependent adhesion between differentiating P19 cells in aggregates implicates GAP-43 in CAM-mediated signaling during neurogenesis, as has been previously shown in growth cones.
Collapse
Affiliation(s)
- S Mani
- Program in Neuroscience, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
95
|
Decker L, Avellana-Adalid V, Nait-Oumesmar B, Durbec P, Baron-Van Evercooren A. Oligodendrocyte precursor migration and differentiation: combined effects of PSA residues, growth factors, and substrates. Mol Cell Neurosci 2000; 16:422-39. [PMID: 11085879 DOI: 10.1006/mcne.2000.0885] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using the oligosphere strategy (V. Avellana-Adalid et al., 1996, J. Neurosci. Res. 45, 558-570), we compared the migratory behavior of oligodendrocyte preprogenitors (OPP) that expressed the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) and of GD3-positive oligodendrocyte progenitors (OP). To study the role of PSA in OPP migration, we used endoneuraminidase-N, which specifically cleaves PSA from NCAM. Kinetic data showed that (i) migration velocity decreased with time and was favored on polyornithine compared to Matrigel; (ii) cells emerging from spheres enriched in PSA-NCAM+ OPP migrated farther than those from spheres enriched in GD3+ OP, their migration being enhanced by the addition of growth factors; (iii) removal of PSA from NCAM moderately reduced OPP migration and induced their differentiation in GD3+ OP and GFAP+ astrocytes; (iv) blocking integrins reduced their migration, suggesting an alternative mechanism of migration. Altogether these data illustrate that motility and differentiation of OPP involve the combinatorial action of PSA-NCAM, molecules of the ECM and their receptors, and growth factors.
Collapse
Affiliation(s)
- L Decker
- Laboratoire des Pathologies de la Myéline, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | | | | | | |
Collapse
|
96
|
Abstract
Neural cell adhesion molecules (CAMs) of the immunoglobulin superfamily nucleate and maintain groups of cells at key sites during early development and in the adult. In addition to their adhesive properties, binding of CAMs can affect intracellular signaling. Their ability to influence developmental events, including cell migration, proliferation, and differentiation can therefore result both from their adhesive as well as their signaling properties. This review focuses on the two CAMs for which the most information is known, the neural CAM, N-CAM, and L1. N-CAM was the first CAM to be characterized and, therefore, has been studied extensively. The binding of N-CAM to cells leads to a number of signaling events, some of which result in changes in gene expression. Interest in L1 derives from the fact that mutations in its gene lead to human genetic diseases including mental retardation. Much is known about modifications of the L1 cytoplasmic domain and its interaction with cytoskeletal molecules. The study of CAM signaling mechanisms has been assay-dependent rather than molecule-dependent, with particular emphasis on assays of neurite outgrowth and gene expression, an emphasis that is maintained throughout the review. The signals generated following CAM binding that lead to alterations in cell morphology and gene expression have been linked directly in only a few cases. We also review information on other CAMs, giving special consideration to those that are anchored in the membrane by a phospholipid anchor. These proteins, including a form of N-CAM, are presumed to be localized in lipid rafts, membrane substructures that include distinctive subsets of cytoplasmic signaling molecules such as members of the src-family of nonreceptor protein tyrosine kinases. In the end, these studies may reveal that what CAMs do after they bind cells together may have as profound consequences for the cells as the adhesive interactions themselves. This area will therefore remain a rich ground for future studies.
Collapse
Affiliation(s)
- K L Crossin
- Department of Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|