51
|
Dighe A, Jombart T, Van Kerkhove MD, Ferguson N. A systematic review of MERS-CoV seroprevalence and RNA prevalence in dromedary camels: Implications for animal vaccination. Epidemics 2019; 29:100350. [PMID: 31201040 PMCID: PMC6899506 DOI: 10.1016/j.epidem.2019.100350] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Most adult dromedaries in Africa and the Middle East have been infected with MERS-CoV. Seroprevalence increases with age, while active infection is more common in calves. Prevalence is higher at sites where different dromedary populations mix. Further study is needed to determine if prevalence of infection varies seasonally.
Human infection with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is driven by recurring dromedary-to-human spill-over events, leading decision-makers to consider dromedary vaccination. Dromedary vaccine candidates in the development pipeline are showing hopeful results, but gaps in our understanding of the epidemiology of MERS-CoV in dromedaries must be addressed to design and evaluate potential vaccination strategies. We aim to bring together existing measures of MERS-CoV infection in dromedary camels to assess the distribution of infection, highlighting knowledge gaps and implications for animal vaccination. We systematically reviewed the published literature on MEDLINE, EMBASE and Web of Science that reported seroprevalence and/or prevalence of active MERS-CoV infection in dromedary camels from both cross-sectional and longitudinal studies. 60 studies met our eligibility criteria. Qualitative syntheses determined that MERS-CoV seroprevalence increased with age up to 80–100% in adult dromedaries supporting geographically widespread endemicity of MERS-CoV in dromedaries in both the Arabian Peninsula and countries exporting dromedaries from Africa. The high prevalence of active infection measured in juveniles and at sites where dromedary populations mix should guide further investigation – particularly of dromedary movement – and inform vaccination strategy design and evaluation through mathematical modelling.
Collapse
Affiliation(s)
- Amy Dighe
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom.
| | - Thibaut Jombart
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, WC1E 7HT, United Kingdom; UK Public Health Rapid Support Team, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom.
| | - Maria D Van Kerkhove
- Department of Global Infectious Hazards Management, Health Emergencies Program, World Health Organization, Avenue Appia 20, CH-1211, Geneva, Switzerland.
| | - Neil Ferguson
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom.
| |
Collapse
|
52
|
Zhu S, Zimmerman D, Deem SL. A Review of Zoonotic Pathogens of Dromedary Camels. ECOHEALTH 2019; 16:356-377. [PMID: 31140075 PMCID: PMC7087575 DOI: 10.1007/s10393-019-01413-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Dromedary, or one-humped, camels Camelus dromedarius are an almost exclusively domesticated species that are common in arid areas as both beasts of burden and production animals for meat and milk. Currently, there are approximately 30 million dromedary camels, with highest numbers in Africa and the Middle East. The hardiness of camels in arid regions has made humans more dependent on them, especially as a stable protein source. Camels also carry and may transmit disease-causing agents to humans and other animals. The ability for camels to act as a point source or vector for disease is a concern due to increasing human demands for meat, lack of biosafety and biosecurity protocols in many regions, and a growth in the interface with wildlife as camel herds become sympatric with non-domestic species. We conducted a literature review of camel-borne zoonotic diseases and found that the majority of publications (65%) focused on Middle East respiratory syndrome (MERS), brucellosis, Echinococcus granulosus, and Rift Valley fever. The high fatality from MERS outbreaks during 2012-2016 elicited an immediate response from the research community as demonstrated by a surge of MERS-related publications. However, we contend that other camel-borne diseases such as Yersinia pestis, Coxiella burnetii, and Crimean-Congo hemorrhagic fever are just as important to include in surveillance efforts. Camel populations, particularly in sub-Saharan Africa, are increasing exponentially in response to prolonged droughts, and thus, the risk of zoonoses increases as well. In this review, we provide an overview of the major zoonotic diseases present in dromedary camels, their risk to humans, and recommendations to minimize spillover events.
Collapse
Affiliation(s)
- Sophie Zhu
- Graduate Group in Epidemiology, University of California, Davis, CA, 95616, USA.
| | - Dawn Zimmerman
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, DC, 20008, USA
| | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO, 63110, USA
| |
Collapse
|
53
|
Ramadan N, Shaib H. Middle East respiratory syndrome coronavirus (MERS-CoV): A review. Germs 2019; 9:35-42. [PMID: 31119115 DOI: 10.18683/germs.2019.1155] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/08/2019] [Accepted: 01/26/2019] [Indexed: 12/31/2022]
Abstract
As a novel coronavirus first reported by Saudi Arabia in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) is responsible for an acute human respiratory syndrome. The virus, of 2C beta-CoV lineage, expresses the dipeptidyl peptidase 4 (DPP4) receptor and is densely endemic in dromedary camels of East Africa and the Arabian Peninsula. MERS-CoV is zoonotic but human-to-human transmission is also possible. Surveillance and phylogenetic researches indicate MERS-CoV to be closely associated with bats' coronaviruses, suggesting bats as reservoirs, although unconfirmed. With no vaccine currently available for MERS-CoV nor approved prophylactics, its global spread to over 25 countries with high fatalities highlights its role as ongoing public health threat. An articulated action plan ought to be taken, preferably from a One Health perspective, for appropriately advanced countermeasures against MERS-CoV.
Collapse
Affiliation(s)
- Nour Ramadan
- MSc, Department of Agriculture, Faculty of Agricultural and Food Sciences (FAFS), American University of Beirut (AUB), Riad El Solh 1107-2020, PO Box 11-0236, Beirut, Lebanon
| | - Houssam Shaib
- PhD, Department of Agriculture, Faculty of Agricultural and Food Sciences (FAFS), American University of Beirut (AUB), Riad El Solh 1107-2020, PO Box 11-0236, Beirut, Lebanon
| |
Collapse
|
54
|
Potential Intermediate Hosts for Coronavirus Transmission: No Evidence of Clade 2c Coronaviruses in Domestic Livestock from Ghana. Trop Med Infect Dis 2019; 4:tropicalmed4010034. [PMID: 30744201 PMCID: PMC6473935 DOI: 10.3390/tropicalmed4010034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/04/2022] Open
Abstract
The emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV), nearly a decade ago with worldwide distribution, was believed to be of zoonotic origin from bats with dromedary camels as intermediate hosts. There is a likelihood of other domestic livestock serving as intermediate hosts for this virus. The presence of coronaviruses, closely related to MERS-CoV in Ghanaian bats, presented the opportunity to test the hypothesis of transmissibility of this virus through domestic livestock species. The possible interactions between livestock and bats in 31 household farms were accessed by observation and interviews with farmers. Rectal swabs and serum from cattle, sheep, goats, donkeys, and swine from commercial and household farms were tested for MERS-CoV and a Nycteris sp. bat coronavirus, previously detected in Ghana. A pan-PCR assay to detect clade 2c viruses and recombinant immunofluorescence assay to detect anti-spike IgG antibodies against the target viruses were used. Likely contact between livestock and bats was determined for 13 farms (41.9%) that reported confining their livestock and also observing bats in their homes. Livestock were left unconfined on eight farms (25.8%) that also observed bats roosting in trees close to their homes. No viral RNA or antibodies against the two coronaviruses were detected in any of the livestock species tested. Cattle, sheep, goats, donkeys, and swine are not likely hosts of clade 2c coronaviruses.
Collapse
|
55
|
Kelly-Cirino C, Mazzola LT, Chua A, Oxenford CJ, Van Kerkhove MD. An updated roadmap for MERS-CoV research and product development: focus on diagnostics. BMJ Glob Health 2019; 4:e001105. [PMID: 30815285 PMCID: PMC6361340 DOI: 10.1136/bmjgh-2018-001105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/13/2018] [Accepted: 10/23/2018] [Indexed: 01/12/2023] Open
Abstract
Diagnostics play a central role in the early detection and control of outbreaks and can enable a more nuanced understanding of the disease kinetics and risk factors for the Middle East respiratory syndrome-coronavirus (MERS-CoV), one of the high-priority pathogens identified by the WHO. In this review we identified sources for molecular and serological diagnostic tests used in MERS-CoV detection, case management and outbreak investigations, as well as surveillance for humans and animals (camels), and summarised the performance of currently available tests, diagnostic needs, and associated challenges for diagnostic test development and implementation. A more detailed understanding of the kinetics of infection of MERS-CoV is needed in order to optimise the use of existing assays. Notably, MERS-CoV point-of-care tests are needed in order to optimise supportive care and to minimise transmission risk. However, for new test development, sourcing clinical material continues to be a major challenge to achieving assay validation. Harmonisation and standardisation of laboratory methods are essential for surveillance and for a rapid and effective international response to emerging diseases. Routine external quality assessment, along with well-characterised and up-to-date proficiency panels, would provide insight into MERS-CoV diagnostic performance worldwide. A defined set of Target Product Profiles for diagnostic technologies will be developed by WHO to address these gaps in MERS-CoV outbreak management.
Collapse
Affiliation(s)
| | | | - Arlene Chua
- Department of Information, Evidence and Research, WHO, Geneva, Switzerland.,Medecins Sans Frontières, Geneva, Switzerland
| | | | | |
Collapse
|
56
|
Dawson P, Malik MR, Parvez F, Morse SS. What Have We Learned About Middle East Respiratory Syndrome Coronavirus Emergence in Humans? A Systematic Literature Review. Vector Borne Zoonotic Dis 2019; 19:174-192. [PMID: 30676269 PMCID: PMC6396572 DOI: 10.1089/vbz.2017.2191] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in humans in 2012. A systematic literature review was conducted to synthesize current knowledge and identify critical knowledge gaps. MATERIALS AND METHODS We conducted a systematic review on MERS-CoV using PRISMA guidelines. We identified 407 relevant, peer-reviewed publications and selected 208 of these based on their contributions to four key areas: virology; clinical characteristics, outcomes, therapeutic and preventive options; epidemiology and transmission; and animal interface and the search for natural hosts of MERS-CoV. RESULTS Dipeptidyl peptidase 4 (DPP4/CD26) was identified as the human receptor for MERS-CoV, and a variety of molecular and serological assays developed. Dromedary camels remain the only documented zoonotic source of human infection, but MERS-like CoVs have been detected in bat species globally, as well as in dromedary camels throughout the Middle East and Africa. However, despite evidence of camel-to-human MERS-CoV transmission and cases apparently related to camel contact, the source of many primary cases remains unknown. There have been sustained health care-associated human outbreaks in Saudi Arabia and South Korea, the latter originating from one traveler returning from the Middle East. Transmission mechanisms are poorly understood; for health care, this may include environmental contamination. Various potential therapeutics have been identified, but not yet evaluated in human clinical trials. At least one candidate vaccine has progressed to Phase I trials. CONCLUSIONS There has been substantial MERS-CoV research since 2012, but significant knowledge gaps persist, especially in epidemiology and natural history of the infection. There have been few rigorous studies of baseline prevalence, transmission, and spectrum of disease. Terms such as "camel exposure" and the epidemiological relationships of cases should be clearly defined and standardized. We strongly recommend a shared and accessible registry or database. Coronaviruses will likely continue to emerge, arguing for a unified "One Health" approach.
Collapse
Affiliation(s)
- Patrick Dawson
- 1 Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Mamunur Rahman Malik
- 2 Infectious Hazard Management, Department of Health Emergency, World Health Organization Eastern Mediterranean Regional Office (WHO/EMRO), Cairo, Egypt
| | - Faruque Parvez
- 3 Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Stephen S Morse
- 1 Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
57
|
Toosy AH, O'sullivan S. An Overview of Middle East Respiratory Syndrome in the Middle East. FOWLER'S ZOO AND WILD ANIMAL MEDICINE CURRENT THERAPY, VOLUME 9 2019. [PMCID: PMC7152387 DOI: 10.1016/b978-0-323-55228-8.00042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
58
|
Lee K, Ko HL, Lee EY, Park HJ, Kim YS, Kim YS, Cho NH, Park MS, Lee SM, Kim J, Kim H, Seong BL, Nam JH. Development of a diagnostic system for detection of specific antibodies and antigens against Middle East respiratory syndrome coronavirus. Microbiol Immunol 2018; 62:574-584. [PMID: 30117617 PMCID: PMC7168444 DOI: 10.1111/1348-0421.12643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/22/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a single-stranded RNA virus that causes severe respiratory disease in humans with a high fatality rate. Binding of the receptor binding domain (RBD) of the spike (S) glycoprotein to dipeptidyl peptidase 4 is the critical step in MERS-CoV infection of a host cell. No vaccines or clinically applicable treatments are currently available for MERS-CoV. Therefore, rapid diagnosis is important for improving patient outcomes through prompt treatment and protection against viral outbreaks. In this study, the aim was to establish two ELISA systems for detecting antigens and antibodies against MERS-CoV. Using a recombinant full-length S protein, an indirect ELISA was developed and found to detect MERS-CoV-specific antibodies in animal sera and sera of patient with MERS. Moreover, MAbs were induced with the recombinant S protein and RBD and used for sandwich ELISA to detect the MERS-CoV S protein. Neither ELISA system exhibited significant intra-assay or inter-assay variation, indicating good reproducibility. Moreover, the inter-day precision and sensitivity were adequate for use as a diagnostic kit. Thus, these ELISAs can be used clinically to diagnose MERS-CoV.
Collapse
Affiliation(s)
- Kunse Lee
- Department of Biotechnology, Catholic University of Korea, Bucheon 14662, Korea.,Bio Research and Development, SK Chemicals, Seongnam, Gyeonggi-do 13493, Korea
| | - Hae Li Ko
- Department of Biotechnology, Catholic University of Korea, Bucheon 14662, Korea
| | - Eun-Young Lee
- Department of Biotechnology, Catholic University of Korea, Bucheon 14662, Korea
| | - Hyo-Jung Park
- Department of Biotechnology, Catholic University of Korea, Bucheon 14662, Korea
| | - Young Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Man-Seong Park
- Department of Microbiology, College of Medicine, Institute for Viral Diseases, Korea University, Seoul 02841, Korea
| | - Sang-Myeong Lee
- Department of, Biotechnology, Chonbuk National University, Iksan 570-752, Korea
| | - Jihye Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Korea
| | - Hun Kim
- Bio Research and Development, SK Chemicals, Seongnam, Gyeonggi-do 13493, Korea
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, Catholic University of Korea, Bucheon 14662, Korea
| |
Collapse
|
59
|
MERS: Progress on the global response, remaining challenges and the way forward. Antiviral Res 2018; 159:35-44. [PMID: 30236531 PMCID: PMC7113883 DOI: 10.1016/j.antiviral.2018.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/04/2023]
Abstract
This article summarizes progress in research on Middle East Respiratory Syndrome (MERS) since a FAO-OIE-WHO Global Technical Meeting held at WHO Headquarters in Geneva on 25-27 September 2017. The meeting reviewed the latest scientific findings and identified and prioritized the global activities necessary to prevent, manage and control the disease. Critical needs for research and technical guidance identified during the meeting have been used to update the WHO R&D MERS-CoV Roadmap for diagnostics, therapeutics and vaccines and a broader public health research agenda. Since the 2017 meeting, progress has been made on several key actions in animal populations, at the animal/human interface and in human populations. This report also summarizes the latest scientific studies on MERS since 2017, including data from more than 50 research studies examining the presence of MERS-CoV infection in dromedary camels.
Collapse
|
60
|
Al-Omari A, Rabaan AA, Salih S, Al-Tawfiq JA, Memish ZA. MERS coronavirus outbreak: Implications for emerging viral infections. Diagn Microbiol Infect Dis 2018; 93:265-285. [PMID: 30413355 PMCID: PMC7127703 DOI: 10.1016/j.diagmicrobio.2018.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
In September 2012, a novel coronavirus was isolated from a patient who died in Saudi Arabia after presenting with acute respiratory distress and acute kidney injury. Analysis revealed the disease to be due to a novel virus which was named Middle East Respiratory Coronavirus (MERS-CoV). There have been several MERS-CoV hospital outbreaks in KSA, continuing to the present day, and the disease has a mortality rate in excess of 35%. Since 2012, the World Health Organization has been informed of 2220 laboratory-confirmed cases resulting in at least 790 deaths. Cases have since arisen in 27 countries, including an outbreak in the Republic of Korea in 2015 in which 36 people died, but more than 80% of cases have occurred in Saudi Arabia.. Human-to-human transmission of MERS-CoV, particularly in healthcare settings, initially caused a ‘media panic’, however human-to-human transmission appears to require close contact and thus far the virus has not achieved epidemic potential. Zoonotic transmission is of significant importance and evidence is growing implicating the dromedary camel as the major animal host in spread of disease to humans. MERS-CoV is now included on the WHO list of priority blueprint diseases for which there which is an urgent need for accelerated research and development as they have the potential to cause a public health emergency while there is an absence of efficacious drugs and/or vaccines. In this review we highlight epidemiological, clinical, and infection control aspects of MERS-CoV as informed by the Saudi experience. Attention is given to recommended treatments and progress towards vaccine development. 2220 laboratory-confirmed cases of MERS-CoV resulting in at least 790 deaths since 2012 MERS-CoV is on the WHO list of priority blueprint diseases Zoonotic and human-to-human transmission modes need further clarification. No specific therapy has yet been approved. There is a need for well-controlled clinical trials on potential direct therapies.
Collapse
Affiliation(s)
- Awad Al-Omari
- Critical Care and Infection Control Department, Dr. Sulaiman Al-Habib Medical Group, and Al-Faisal University, Riyadh, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia.
| | - Samer Salih
- Internal Medicine Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Medical Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ziad A Memish
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
61
|
Conzade R, Grant R, Malik MR, Elkholy A, Elhakim M, Samhouri D, Ben Embarek PK, Van Kerkhove MD. Reported Direct and Indirect Contact with Dromedary Camels among Laboratory-Confirmed MERS-CoV Cases. Viruses 2018; 10:v10080425. [PMID: 30104551 PMCID: PMC6115845 DOI: 10.3390/v10080425] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/30/2018] [Accepted: 08/09/2018] [Indexed: 12/16/2022] Open
Abstract
Dromedary camels (Camelus dromedarius) are now known to be the vertebrate animal reservoir that intermittently transmits the Middle East respiratory syndrome coronavirus (MERS-CoV) to humans. Yet, details as to the specific mechanism(s) of zoonotic transmission from dromedaries to humans remain unclear. The aim of this study was to describe direct and indirect contact with dromedaries among all cases, and then separately for primary, non-primary, and unclassified cases of laboratory-confirmed MERS-CoV reported to the World Health Organization (WHO) between 1 January 2015 and 13 April 2018. We present any reported dromedary contact: direct, indirect, and type of indirect contact. Of all 1125 laboratory-confirmed MERS-CoV cases reported to WHO during the time period, there were 348 (30.9%) primary cases, 455 (40.4%) non-primary cases, and 322 (28.6%) unclassified cases. Among primary cases, 191 (54.9%) reported contact with dromedaries: 164 (47.1%) reported direct contact, 155 (44.5%) reported indirect contact. Five (1.1%) non-primary cases also reported contact with dromedaries. Overall, unpasteurized milk was the most frequent type of dromedary product consumed. Among cases for whom exposure was systematically collected and reported to WHO, contact with dromedaries or dromedary products has played an important role in zoonotic transmission.
Collapse
Affiliation(s)
- Romy Conzade
- Department of Infectious Hazard Management, Health Emergencies Programme, World Health Organization, 1202 Geneva, Switzerland.
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Epidemiology, D-85764 Neuherberg, Germany.
| | - Rebecca Grant
- Department of Infectious Hazard Management, Health Emergencies Programme, World Health Organization, 1202 Geneva, Switzerland.
- Institut Pasteur, Centre for Global Health Research and Education, 75015 Paris, France.
| | - Mamunur Rahman Malik
- Department of Infectious Hazard Management, Health Emergencies Programme, World Health Organization Regional Office for the Eastern Mediterranean, 11371 Cairo, Egypt.
| | - Amgad Elkholy
- Department of Infectious Hazard Management, Health Emergencies Programme, World Health Organization Regional Office for the Eastern Mediterranean, 11371 Cairo, Egypt.
| | - Mohamed Elhakim
- Department of Infectious Hazard Management, Health Emergencies Programme, World Health Organization Regional Office for the Eastern Mediterranean, 11371 Cairo, Egypt.
| | - Dalia Samhouri
- Department of Country Preparedness and International Health Regulations, World Health Organization Regional Office for the Eastern Mediterranean, 11371 Cairo, Egypt.
| | - Peter K Ben Embarek
- Department of Food Safety and Zoonoses, World Health Organization, 1201 Geneva, Switzerland.
| | - Maria D Van Kerkhove
- Department of Infectious Hazard Management, Health Emergencies Programme, World Health Organization, 1202 Geneva, Switzerland.
| |
Collapse
|
62
|
Experimental infection of dromedaries with Middle East respiratory syndrome-Coronavirus is accompanied by massive ciliary loss and depletion of the cell surface receptor dipeptidyl peptidase 4. Sci Rep 2018; 8:9778. [PMID: 29950581 PMCID: PMC6021449 DOI: 10.1038/s41598-018-28109-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
Middle East respiratory syndrome (MERS) represents an important respiratory disease accompanied by lethal outcome in one-third of human patients. Recent data indicate that dromedaries represent an important source of infection, although information regarding viral cell tropism and pathogenesis is sparse. In the current study, tissues of eight dromedaries receiving inoculation of MERS-Coronavirus (MERS-CoV) after recombinant Modified-Vaccinia-Virus-Ankara (MVA-S)-vaccination (n = 4), MVA-vaccination (mock vaccination, n = 2) and PBS application (mock vaccination, n = 2), respectively, were investigated. Tissues were analyzed by histology, immunohistochemistry, immunofluorescence, and scanning electron microscopy. MERS-CoV infection in mock-vaccinated dromedaries revealed high numbers of MERS-CoV-nucleocapsid positive cells, T cells, and macrophages within nasal turbinates and trachea at day four post infection. Double immunolabeling demonstrated cytokeratin (CK) 18 expressing epithelial cells to be the prevailing target cell of MERS-CoV, while CK5/6 and CK14 expressing cells did not co-localize with virus. In addition, virus was occasionally detected in macrophages. The acute disease was further accompanied by ciliary loss along with a lack of dipeptidyl peptidase 4 (DPP4), known to mediate virus entry. DPP4 was mainly expressed by human lymphocytes and dromedary monocytes, but overall the expression level was lower in dromedaries. The present study underlines significant species-specific manifestations of MERS and highlights ciliary loss as an important finding in dromedaries. The obtained results promote a better understanding of coronavirus infections, which pose major health challenges.
Collapse
|
63
|
Bodmer BS, Fiedler AH, Hanauer JRH, Prüfer S, Mühlebach MD. Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model. Virology 2018; 521:99-107. [PMID: 29902727 PMCID: PMC7118890 DOI: 10.1016/j.virol.2018.05.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/04/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
Abstract
Cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to occur, making it one of the WHO´s targets for accelerated vaccine development. One vaccine candidate is based on live-attenuated measles virus (MV) vaccine encoding the MERS-CoV spike glycoprotein (MERS-S). MVvac2-MERS-S(H) induces robust humoral and cellular immunity against MERS-S mediating protection. Here, the induction and nature of immunity after vaccination with MVvac2-MERS-S(H) or novel MVvac2-MERS-N were further characterized. We focused on the necessity for vector replication and the nature of induced T cells, since functional CD8+ T cells contribute importantly to clearance of MERS-CoV. While no immunity against MERS-CoV or MV was detected in MV-susceptible mice after immunization with UV-inactivated virus, replication-competent MVvac2-MERS-S(H) triggered robust neutralizing antibody titers also in adult mice. Furthermore, a significant fraction of MERS CoV-specific CD8+ T cells and MV-specific CD4+ T cells simultaneously expressing IFN-γ and TNF-α were induced, revealing that MVvac2-MERS-S(H) induces multifunctional cellular immunity.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany; German Center for Infection Research, Langen, Germany
| | - Anna H Fiedler
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany; German Center for Infection Research, Langen, Germany
| | - Jan R H Hanauer
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | - Steffen Prüfer
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | - Michael D Mühlebach
- Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany; German Center for Infection Research, Langen, Germany.
| |
Collapse
|
64
|
Gong S, Bao L. The battle against SARS and MERS coronaviruses: Reservoirs and Animal Models. Animal Model Exp Med 2018; 1:125-133. [PMID: 30891557 PMCID: PMC6388065 DOI: 10.1002/ame2.12017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
In humans, infection with the coronavirus, especially the severe acute respiratory syndrome coronavirus (SARS-CoV) and the emerging Middle East respiratory syndrome coronavirus (MERS-CoV), induces acute respiratory failure, resulting in high mortality. Irregular coronavirus related epidemics indicate that the evolutionary origins of these two pathogens need to be identified urgently and there are still questions related to suitable laboratory animal models. Thus, in this review we aim to highlight key discoveries concerning the animal origin of the virus and summarize and compare current animal models.
Collapse
Affiliation(s)
- Shu‐ran Gong
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CenterPeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineMinistry of HealthKey Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijingChina
| | - Lin‐lin Bao
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CenterPeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineMinistry of HealthKey Laboratory for Animal Models of Emerging and Reemerging InfectiousBeijingChina
| |
Collapse
|
65
|
Gikonyo S, Kimani T, Matere J, Kimutai J, Kiambi SG, Bitek AO, Juma Ngeiywa KJZ, Makonnen YJ, Tripodi A, Morzaria S, Lubroth J, Rugalema G, Fasina FO. Mapping Potential Amplification and Transmission Hotspots for MERS-CoV, Kenya. ECOHEALTH 2018; 15:372-387. [PMID: 29549589 PMCID: PMC7088189 DOI: 10.1007/s10393-018-1317-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/21/2017] [Accepted: 01/24/2018] [Indexed: 02/05/2023]
Abstract
Dromedary camels have been implicated consistently as the source of Middle East respiratory syndrome coronavirus (MERS-CoV) human infections and attention to prevent and control it has focused on camels. To understanding the epidemiological role of camels in the transmission of MERS-CoV, we utilized an iterative empirical process in Geographic Information System (GIS) to identify and qualify potential hotspots for maintenance and circulation of MERS-CoV, and produced risk-based surveillance sites in Kenya. Data on camel population and distribution were used to develop camel density map, while camel farming system was defined using multi-factorial criteria including the agro-ecological zones (AEZs), production and marketing practices. Primary and secondary MERS-CoV seroprevalence data from specific sites were analyzed, and location-based prevalence matching with camel densities was conducted. High-risk convergence points (migration zones, trade routes, camel markets, slaughter slabs) were profiled and frequent cross-border camel movement mapped. Results showed that high camel-dense areas and interaction (markets and migration zones) were potential hotspot for transmission and spread. Cross-border contacts occurred with in-migrated herds at hotspot locations. AEZ differential did not influence risk distribution and plausible risk factors for spatial MERS-CoV hotspots were camel densities, previous cases of MERS-CoV, high seroprevalence and points of camel convergences. Although Kenyan camels are predisposed to MERS-CoV, no shedding is documented to date. These potential hotspots, determined using anthropogenic, system and trade characterizations should guide selection of sampling/surveillance sites, high-risk locations, critical areas for interventions and policy development in Kenya, as well as instigate further virological examination of camels.
Collapse
Affiliation(s)
- Stephen Gikonyo
- Emergency Centre for Transboundary Animal Diseases - (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - Tabitha Kimani
- Emergency Centre for Transboundary Animal Diseases - (ECTAD), Regional Office for East Africa Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - Joseph Matere
- Emergency Centre for Transboundary Animal Diseases - (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - Joshua Kimutai
- Emergency Centre for Transboundary Animal Diseases - (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - Stella G Kiambi
- Emergency Centre for Transboundary Animal Diseases - (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - Austine O Bitek
- Emergency Centre for Transboundary Animal Diseases - (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - K J Z Juma Ngeiywa
- Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Yilma J Makonnen
- Emergency Centre for Transboundary Animal Diseases - (ECTAD), Regional Office for East Africa Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - Astrid Tripodi
- Animal Health Service, Animal Production and Health Division, Food and Agriculture Organization of the UN (FAO), Rome, Italy
| | - Subhash Morzaria
- Animal Health Service, Animal Production and Health Division, Food and Agriculture Organization of the UN (FAO), Rome, Italy
| | - Juan Lubroth
- Animal Health Service, Animal Production and Health Division, Food and Agriculture Organization of the UN (FAO), Rome, Italy
| | - Gabriel Rugalema
- Emergency Centre for Transboundary Animal Diseases - (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - Folorunso Oludayo Fasina
- Emergency Centre for Transboundary Animal Diseases - (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya.
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
66
|
Kim YS, Son A, Kim J, Kwon SB, Kim MH, Kim P, Kim J, Byun YH, Sung J, Lee J, Yu JE, Park C, Kim YS, Cho NH, Chang J, Seong BL. Chaperna-Mediated Assembly of Ferritin-Based Middle East Respiratory Syndrome-Coronavirus Nanoparticles. Front Immunol 2018; 9:1093. [PMID: 29868035 PMCID: PMC5966535 DOI: 10.3389/fimmu.2018.01093] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
The folding of monomeric antigens and their subsequent assembly into higher ordered structures are crucial for robust and effective production of nanoparticle (NP) vaccines in a timely and reproducible manner. Despite significant advances in in silico design and structure-based assembly, most engineered NPs are refractory to soluble expression and fail to assemble as designed, presenting major challenges in the manufacturing process. The failure is due to a lack of understanding of the kinetic pathways and enabling technical platforms to ensure successful folding of the monomer antigens into regular assemblages. Capitalizing on a novel function of RNA as a molecular chaperone (chaperna: chaperone + RNA), we provide a robust protein-folding vehicle that may be implemented to NP assembly in bacterial hosts. The receptor-binding domain (RBD) of Middle East respiratory syndrome-coronavirus (MERS-CoV) was fused with the RNA-interaction domain (RID) and bacterioferritin, and expressed in Escherichia coli in a soluble form. Site-specific proteolytic removal of the RID prompted the assemblage of monomers into NPs, which was confirmed by electron microscopy and dynamic light scattering. The mutations that affected the RNA binding to RBD significantly increased the soluble aggregation into amorphous structures, reducing the overall yield of NPs of a defined size. This underscored the RNA-antigen interactions during NP assembly. The sera after mouse immunization effectively interfered with the binding of MERS-CoV RBD to the cellular receptor hDPP4. The results suggest that RNA-binding controls the overall kinetic network of the antigen folding pathway in favor of enhanced assemblage of NPs into highly regular and immunologically relevant conformations. The concentration of the ion Fe2+, salt, and fusion linker also contributed to the assembly in vitro, and the stability of the NPs. The kinetic "pace-keeping" role of chaperna in the super molecular assembly of antigen monomers holds promise for the development and delivery of NPs and virus-like particles as recombinant vaccines and for serological detection of viral infections.
Collapse
Affiliation(s)
- Young-Seok Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Ahyun Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jihoon Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Myung Hee Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Jieun Kim
- Life Science and Biotechnology, Underwood International College, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jemin Sung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Jinhee Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Chan Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
67
|
Paden CR, Yusof MFBM, Al Hammadi ZM, Queen K, Tao Y, Eltahir YM, Elsayed EA, Marzoug BA, Bensalah OKA, Khalafalla AI, Al Mulla M, Khudhair A, Elkheir KA, Issa ZB, Pradeep K, Elsaleh FN, Imambaccus H, Sasse J, Weber S, Shi M, Zhang J, Li Y, Pham H, Kim L, Hall AJ, Gerber SI, Al Hosani FI, Tong S, Al Muhairi SSM. Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE. Zoonoses Public Health 2018; 65:322-333. [PMID: 29239118 PMCID: PMC5893383 DOI: 10.1111/zph.12435] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2017] [Indexed: 02/05/2023]
Abstract
Since the emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, there have been a number of clusters of human-to-human transmission. These cases of human-to-human transmission involve close contact and have occurred primarily in healthcare settings, and they are suspected to result from repeated zoonotic introductions. In this study, we sequenced whole MERS-CoV genomes directly from respiratory samples collected from 23 confirmed MERS cases in the United Arab Emirates (UAE). These samples included cases from three nosocomial and three household clusters. The sequences were analysed for changes and relatedness with regard to the collected epidemiological data and other available MERS-CoV genomic data. Sequence analysis supports the epidemiological data within the clusters, and further, suggests that these clusters emerged independently. To understand how and when these clusters emerged, respiratory samples were taken from dromedary camels, a known host of MERS-CoV, in the same geographic regions as the human clusters. Middle East respiratory syndrome coronavirus genomes from six virus-positive animals were sequenced, and these genomes were nearly identical to those found in human patients from corresponding regions. These data demonstrate a genetic link for each of these clusters to a camel and support the hypothesis that human MERS-CoV diversity results from multiple zoonotic introductions.
Collapse
Affiliation(s)
- C. R. Paden
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
- Oak Ridge Institute for Science EducationOak RidgeTNUSA
| | | | | | - K. Queen
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
- Oak Ridge Institute for Science EducationOak RidgeTNUSA
| | - Y. Tao
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Y. M. Eltahir
- Abu Dhabi Food Control AuthorityAbu DhabiUnited Arab Emirates
| | - E. A. Elsayed
- Abu Dhabi Food Control AuthorityAbu DhabiUnited Arab Emirates
| | - B. A. Marzoug
- Abu Dhabi Food Control AuthorityAbu DhabiUnited Arab Emirates
| | | | | | - M. Al Mulla
- Health Authority Abu DhabiAbu DhabiUnited Arab Emirates
| | - A. Khudhair
- Health Authority Abu DhabiAbu DhabiUnited Arab Emirates
| | - K. A. Elkheir
- Health Authority Abu DhabiAbu DhabiUnited Arab Emirates
| | - Z. B. Issa
- Health Authority Abu DhabiAbu DhabiUnited Arab Emirates
| | - K. Pradeep
- Health Authority Abu DhabiAbu DhabiUnited Arab Emirates
| | - F. N. Elsaleh
- Health Authority Abu DhabiAbu DhabiUnited Arab Emirates
| | - H. Imambaccus
- Sheikh Khalifa Medical CityAbu DhabiUnited Arab Emirates
| | - J. Sasse
- Sheikh Khalifa Medical CityAbu DhabiUnited Arab Emirates
| | - S. Weber
- Sheikh Khalifa Medical CityAbu DhabiUnited Arab Emirates
| | - M. Shi
- The University of SydneySydneyNSWAustralia
| | - J. Zhang
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Y. Li
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - H. Pham
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - L. Kim
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - A. J. Hall
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - S. I. Gerber
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | | | - S. Tong
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | | |
Collapse
|
68
|
Abuhammad A, Al‐Aqtash RA, Anson BJ, Mesecar AD, Taha MO. Computational modeling of the bat HKU4 coronavirus 3CL pro inhibitors as a tool for the development of antivirals against the emerging Middle East respiratory syndrome (MERS) coronavirus. J Mol Recognit 2017; 30:e2644. [PMID: 28608547 PMCID: PMC7166879 DOI: 10.1002/jmr.2644] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/22/2022]
Abstract
UNLABELLED The Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging virus that poses a major challenge to clinical management. The 3C-like protease (3CLpro ) is essential for viral replication and thus represents a potential target for antiviral drug development. Presently, very few data are available on MERS-CoV 3CLpro inhibition by small molecules. We conducted extensive exploration of the pharmacophoric space of a recently identified set of peptidomimetic inhibitors of the bat HKU4-CoV 3CLpro . HKU4-CoV 3CLpro shares high sequence identity (81%) with the MERS-CoV enzyme and thus represents a potential surrogate model for anti-MERS drug discovery. We used 2 well-established methods: Quantitative structure-activity relationship (QSAR)-guided modeling and docking-based comparative intermolecular contacts analysis. The established pharmacophore models highlight structural features needed for ligand recognition and revealed important binding-pocket regions involved in 3CLpro -ligand interactions. The best models were used as 3D queries to screen the National Cancer Institute database for novel nonpeptidomimetic 3CLpro inhibitors. The identified hits were tested for HKU4-CoV and MERS-CoV 3CLpro inhibition. Two hits, which share the phenylsulfonamide fragment, showed moderate inhibitory activity against the MERS-CoV 3CLpro and represent a potential starting point for the development of novel anti-MERS agents. To the best of our knowledge, this is the first pharmacophore modeling study supported by in vitro validation on the MERS-CoV 3CLpro . HIGHLIGHTS MERS-CoV is an emerging virus that is closely related to the bat HKU4-CoV. 3CLpro is a potential drug target for coronavirus infection. HKU4-CoV 3CLpro is a useful surrogate model for the identification of MERS-CoV 3CLpro enzyme inhibitors. dbCICA is a very robust modeling method for hit identification. The phenylsulfonamide scaffold represents a potential starting point for MERS coronavirus 3CLpro inhibitors development.
Collapse
Affiliation(s)
- Areej Abuhammad
- Department of Pharmaceutical Sciences, School of PharmacyThe University of JordanAmmanJordan
| | - Rua'a A. Al‐Aqtash
- Department of Pharmaceutical Sciences, School of PharmacyThe University of JordanAmmanJordan
| | - Brandon J. Anson
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Andrew D. Mesecar
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- Department of ChemistryPurdue UniversityWest LafayetteINUSA
- Centers for Cancer Research & Drug DiscoveryPurdue UniversityWest LafayetteINUSA
| | - Mutasem O. Taha
- Department of Pharmaceutical Sciences, School of PharmacyThe University of JordanAmmanJordan
| |
Collapse
|
69
|
Kasem S, Qasim I, Al-Hufofi A, Hashim O, Alkarar A, Abu-Obeida A, Gaafer A, Elfadil A, Zaki A, Al-Romaihi A, Babekr N, El-Harby N, Hussien R, Al-Sahaf A, Al-Doweriej A, Bayoumi F, Poon LLM, Chu DKW, Peiris M, Perera RAPM. Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia. J Infect Public Health 2017; 11:331-338. [PMID: 28993171 PMCID: PMC7102853 DOI: 10.1016/j.jiph.2017.09.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/22/2017] [Accepted: 09/09/2017] [Indexed: 12/20/2022] Open
Abstract
Background Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerged coronavirus that is associated with a severe respiratory disease in humans in the Middle East. The epidemiological profiles of the MERS-CoV infections suggest zoonotic transmission from an animal reservoir to humans. Methods This study was designed to investigate animal herds associated with Middle East respiratory syndrome (MERS)-infected patients in Saudi Arabia, during the last three years (2014–2016). Nasal swabs and serum samples from 584 dromedary camels, 39 sheep, 51 goats, and 2 cattle were collected. Nasal samples from camels, sheep, goats, and cattle were examined by real-time reverse-transcription PCR (RT-PCR) to detect MERS-CoV RNA, and the Anti-MERS ELISA assay was performed to detect camel humeral immune response (IgG) to MERS-CoV S1 antigen infection. The complete genome sequencing of ten MERS-CoV camel isolates and phylogenetic analysis was performed. Results The data indicated that seventy-five dromedary camels were positive for MERS-CoV RNA; the virus was not detected in sheep, goats, and cattle. MERS-CoV RNA from infected camels was not detected beyond 2 weeks after the first positive result was detected in nasal swabs obtained from infected camels. Anti-MERS ELISA assays showed that 70.9% of camels related to human cases had antibodies to MERS-CoV. The full genome sequences of the ten MERS-CoV camel isolates were identical to their corresponding patients and were grouped together within the larger MERS-CoV sequences cluster for human and camel isolates reported form the Arabian Peninsula. Conclusions These findings indicate that camels are a significant reservoir for the maintenance of MERS-CoVs, and they are an important source of human infection with MERS.
Collapse
Affiliation(s)
- Samy Kasem
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia; Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, El Geish Street, Kafrelsheikh 33516, Egypt.
| | - Ibraheem Qasim
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Al-Hufofi
- Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Osman Hashim
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Alkarar
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Abu-Obeida
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Albagir Gaafer
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Abdelhamid Elfadil
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ahmed Zaki
- Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ahmed Al-Romaihi
- Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Nasereldeen Babekr
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Nadr El-Harby
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Raed Hussien
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Al-Sahaf
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Al-Doweriej
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Faisal Bayoumi
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Leo L M Poon
- Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Daniel K W Chu
- Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Malik Peiris
- Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Ranawaka A P M Perera
- Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
70
|
Novel Alphacoronaviruses and Paramyxoviruses Cocirculate with Type 1 and Severe Acute Respiratory System (SARS)-Related Betacoronaviruses in Synanthropic Bats of Luxembourg. Appl Environ Microbiol 2017; 83:AEM.01326-17. [PMID: 28710271 DOI: 10.1128/aem.01326-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/05/2017] [Indexed: 01/21/2023] Open
Abstract
Several infectious disease outbreaks with high mortality in humans have been attributed to viruses that are thought to have evolved from bat viruses. In this study from Luxembourg, the genetic diversity and epidemiology of paramyxoviruses and coronaviruses shed by the bat species Rhinolophus ferrumequinum and Myotis emarginatus were evaluated. Feces collection (n = 624) was performed longitudinally in a mixed-species colony in 2015 and 2016. In addition, feces (n = 254) were collected cross-sectionally from six Myotis emarginatus colonies in 2016. By use of degenerate primers in a nested format, overall prevalences of 1.1% (10/878) and 4.9% (43/878) were determined for paramyxoviruses and coronaviruses. Sequences of the partial RNA-dependent RNA polymerase and spike glycoprotein genes of coronaviruses, as well as sequences of the partial L gene of paramyxoviruses, were obtained. Novel paramyxovirus and Alphacoronavirus strains were identified in different Myotis emarginatus colonies, and severe acute respiratory syndrome (SARS)-related Betacoronavirus strains were shed by Rhinolophus ferrumequinum Logistic regression revealed that the level of Alphacoronavirus shedding was highest in July (odds ratio, 2.8; P < 0.01), probably due to periparturient stress. Phylogenetic analyses point to close virus-host coevolution, and the high genetic similarity of the study strains suggests that the Myotis emarginatus colonies in Luxembourg are socially connected. Most interestingly, we show that bats also host Betacoronavirus1 strains. The high similarity of the spike gene sequences of these viruses with mammalian Betacoronavirus 1 strains may be of concern. Both the SARS-related and Betacoronavirus 1 strains detected in bats in Luxembourg may cross the species barrier after a host adaptation process.IMPORTANCE Bats are a natural reservoir of a number of zoonotic pathogens. Several severe outbreaks in humans (e.g., a Nipah virus outbreak in Malaysia in 1998, and the almost global spread of severe acute respiratory syndrome in 2003) have been caused by bat-borne viruses that were transmitted to humans mostly after virus adaptation (e.g., in intermediate animal hosts). Despite the indigenousness of bat species that host viruses with suspected zoonotic potential and despite the zoonotic transmission of European bat 1 lyssavirus in Luxembourg, knowledge about the diversity and epidemiology of bat viruses remains limited in this country. Moreover, in contrast to other European countries, bat viruses are currently not included in the national surveillance activities of this land-locked country. We suggest that this gap in disease surveillance should be addressed, since we show here that synanthropic bats host viruses that may be able to cross the species barrier.
Collapse
|
71
|
Abstract
Since the identification of the first patients with Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, over 1,600 cases have been reported as of February 2016. Most cases have occurred in Saudi Arabia or in other countries on or near the Arabian Peninsula, but travel-associated cases have also been seen in countries outside the Arabian Peninsula. MERS-CoV causes a severe respiratory illness in many patients, with a case fatality rate as high as 40%, although when contacts are investigated, a significant proportion of patients are asymptomatic or only have mild symptoms. At this time, no vaccines or treatments are available. Epidemiological and other data suggest that the source of most primary cases is exposure to camels. Person-to-person transmission occurs in household and health care settings, although sustained and efficient person-to-person transmission has not been observed. Strict adherence to infection control recommendations has been associated with control of previous outbreaks. Vigilance is needed because genomic changes in MERS-CoV could result in increased transmissibility, similar to what was seen in severe acute respiratory syndrome coronavirus (SARS-CoV).
Collapse
|
72
|
Woo PCY, Lau SKP, Tsoi HW, Patteril NG, Yeung HC, Joseph S, Wong EYM, Muhammed R, Chow FWN, Wernery U, Yuen KY. Two novel dromedary camel bocaparvoviruses from dromedaries in the Middle East with unique genomic features. J Gen Virol 2017; 98:1349-1359. [PMID: 28613145 DOI: 10.1099/jgv.0.000775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The recent emergence of Middle East respiratory syndrome (MERS) coronavirus and its discovery from dromedary camels has boosted interest in the search for novel viruses in dromedaries. While bocaparvoviruses are known to infect various animals, it was not known that they exist in dromedaries. In this study, we describe the discovery of two novel dromedary camel bocaparvoviruses (DBoVs), DBoV1 and DBoV2, from dromedary faecal samples in Dubai. Among 667 adult dromedaries and 72 dromedary calves, 13.9 % of adult dromedaries and 33.3 % of dromedary calves were positive for DBoV1, while 7.0 % of adult dromedaries and 25.0 % of dromedary calves were positive for DBoV2, as determined by PCR. Sequencing of 21 DBoV1 and 18 DBoV2 genomes and phylogenetic analysis showed that DBoV1 and DBoV2 formed two distinct clusters, with only 32.6-36.3 % amino acid identities between the DBoV1 and DBoV2 strains. Quasispecies were detected in both DBoVs. The amino acid sequences of the NS1 proteins of all the DBoV1 and DBoV2 strains showed <85 % identity to those of all the other bocaparvoviruses, indicating that DBoV1 and DBoV2 are two bocaparvovirus species according to the ICTV criteria. Although the typical genome structure of NS1-NP1-VP1/VP2 was observed in DBoV1 and DBoV2, no phospholipase A2 motif and associated calcium binding site were observed in the predicted VP1 sequences for any of the 18 sequenced DBoV2, and no start codons were found for their VP1. For all 18 DBoV2 genomes, an AT-rich region of variable length and composition was present downstream to NP1. Further studies will be crucial to understand the pathogenic potential of DBoVs in this unique group of animals.
Collapse
Affiliation(s)
- Patrick C Y Woo
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR
| | - Susanna K P Lau
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR
| | - Hoi-Wah Tsoi
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | | | - Hazel C Yeung
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | | | - Emily Y M Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | | | - Franklin W N Chow
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | | | - Kwok-Yung Yuen
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
73
|
Widagdo W, Okba NM, Stalin Raj V, Haagmans BL. MERS-coronavirus: From discovery to intervention. One Health 2017; 3:11-16. [PMID: 28616497 PMCID: PMC5454172 DOI: 10.1016/j.onehlt.2016.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 01/16/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) still causes outbreaks despite public awareness and implementation of health care measures, such as rapid viral diagnosis and patient quarantine. Here we describe the current epidemiological picture of MERS-CoV, focusing on humans and animals affected by this virus and propose specific intervention strategies that would be appropriate to control MERS-CoV. One-third of MERS-CoV patients develop severe lower respiratory tract infection and succumb to a fatal outcome; these patients would require effective therapeutic antiviral therapy. Because of the lack of such intervention strategies, supportive care is the best that can be offered at the moment. Limiting viral spread from symptomatic human cases to health care workers and family members, on the other hand, could be achieved through prophylactic administration of MERS-CoV neutralizing antibodies and vaccines. To ultimately prevent spread of the virus into the human population, however, vaccination of dromedary camels - currently the only confirmed animal host for MERS-CoV - may be the best option to achieve a sustained drop in human MERS cases in time. In the end, a One Health approach combining all these different efforts is needed to tackle this zoonotic outbreak.
Collapse
Affiliation(s)
| | | | | | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
74
|
Alharbi NK, Padron-Regalado E, Thompson CP, Kupke A, Wells D, Sloan MA, Grehan K, Temperton N, Lambe T, Warimwe G, Becker S, Hill AVS, Gilbert SC. ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice. Vaccine 2017; 35:3780-3788. [PMID: 28579232 PMCID: PMC5516308 DOI: 10.1016/j.vaccine.2017.05.032] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/30/2017] [Accepted: 05/10/2017] [Indexed: 01/28/2023]
Abstract
Inserting tPA leader sequence enhanced humoral responses of ChAdOx1 MERS. ChAdOx1 MERS elicited cellular immunity and neutralising antibodies. ChAdOx1 MERS responses were boosted by MVA MERS. Immunogenicity of a single dose of ChAdOx1 MERS was equivalent to 2 doses of MVA MERS. In MVA, F11 promoter enhanced cellular, but not humoral, immunogenicity, comparing to mH5 promoter.
The Middle East respiratory syndrome coronavirus (MERS-CoV) has infected more than 1900 humans, since 2012. The syndrome ranges from asymptomatic and mild cases to severe pneumonia and death. The virus is believed to be circulating in dromedary camels without notable symptoms since the 1980s. Therefore, dromedary camels are considered the only animal source of infection. Neither antiviral drugs nor vaccines are approved for veterinary or medical use despite active research on this area. Here, we developed four vaccine candidates against MERS-CoV based on ChAdOx1 and MVA viral vectors, two candidates per vector. All vaccines contained the full-length spike gene of MERS-CoV; ChAdOx1 MERS vaccines were produced with or without the leader sequence of the human tissue plasminogen activator gene (tPA) where MVA MERS vaccines were produced with tPA, but either the mH5 or F11 promoter driving expression of the spike gene. All vaccine candidates were evaluated in a mouse model in prime only or prime-boost regimens. ChAdOx1 MERS with tPA induced higher neutralising antibodies than ChAdOx1 MERS without tPA. A single dose of ChAdOx1 MERS with tPA elicited cellular immune responses as well as neutralising antibodies that were boosted to a significantly higher level by MVA MERS. The humoral immunogenicity of a single dose of ChAdOx1 MERS with tPA was equivalent to two doses of MVA MERS (also with tPA). MVA MERS with mH5 or F11 promoter induced similar antibody levels; however, F11 promoter enhanced the cellular immunogenicity of MVA MERS to significantly higher magnitudes. In conclusion, our study showed that MERS-CoV vaccine candidates could be optimized by utilising different viral vectors, various genetic designs of the vectors, or different regimens to increase immunogenicity. ChAdOx1 and MVA vectored vaccines have been safely evaluated in camels and humans and these MERS vaccine candidates should now be tested in camels and in clinical trials.
Collapse
Affiliation(s)
- Naif Khalaf Alharbi
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | | | - Craig P Thompson
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; Department of Zoology, University of Oxford, Oxford, UK
| | - Alexandra Kupke
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, TTU Emerging Infections, Germany
| | - Daniel Wells
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Megan A Sloan
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Keith Grehan
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent ME4 4TB, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent ME4 4TB, UK
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - George Warimwe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, TTU Emerging Infections, Germany
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
75
|
Rabaan AA, Bazzi AM, Al-Ahmed SH, Al-Tawfiq JA. Molecular aspects of MERS-CoV. Front Med 2017; 11:365-377. [PMID: 28500431 PMCID: PMC7089120 DOI: 10.1007/s11684-017-0521-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/23/2017] [Indexed: 01/19/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a betacoronavirus which can cause acute respiratory distress in humans and is associated with a relatively high mortality rate. Since it was first identified in a patient who died in a Jeddah hospital in 2012, the World Health Organization has been notified of 1735 laboratory-confirmed cases from 27 countries, including 628 deaths. Most cases have occurred in Saudi Arabia. MERS-CoVancestors may be found in OldWorld bats of the Vespertilionidae family. After a proposed bat to camel switching event, transmission of MERS-CoV to humans is likely to have been the result of multiple zoonotic transfers from dromedary camels. Human-to-human transmission appears to require close contact with infected persons, with outbreaks mainly occurring in hospital environments. Outbreaks have been associated with inadequate infection prevention and control implementation, resulting in recommendations on basic and more advanced infection prevention and control measures by the World Health Organization, and issuing of government guidelines based on these recommendations in affected countries including Saudi Arabia. Evolutionary changes in the virus, particularly in the viral spike protein which mediates virus-host cell contact may potentially increase transmission of this virus. Efforts are on-going to identify specific evidence-based therapies or vaccines. The broad-spectrum antiviral nitazoxanide has been shown to have in vitro activity against MERS-CoV. Synthetic peptides and candidate vaccines based on regions of the spike protein have shown promise in rodent and non-human primate models. GLS-5300, a prophylactic DNA-plasmid vaccine encoding S protein, is the first MERS-CoV vaccine to be tested in humans, while monoclonal antibody, m336 has given promising results in animal models and has potential for use in outbreak situations.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia.
| | - Ali M Bazzi
- Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif, 32654, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia.,University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
76
|
Tissue Distribution of the MERS-Coronavirus Receptor in Bats. Sci Rep 2017; 7:1193. [PMID: 28446791 PMCID: PMC5430768 DOI: 10.1038/s41598-017-01290-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/18/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) has been shown to infect both humans and dromedary camels using dipeptidyl peptidase-4 (DPP4) as its receptor. The distribution of DPP4 in the respiratory tract tissues of humans and camels reflects MERS-CoV tropism. Apart from dromedary camels, insectivorous bats are suggested as another natural reservoir for MERS-like-CoVs. In order to gain insight on the tropism of these viruses in bats, we studied the DPP4 distribution in the respiratory and extra-respiratory tissues of two frugivorous bat species (Epomophorus gambianus and Rousettus aegyptiacus) and two insectivorous bat species (Pipistrellus pipistrellus and Eptesicus serotinus). In the frugivorous bats, DPP4 was present in epithelial cells of both the respiratory and the intestinal tract, similar to what has been reported for camels and humans. In the insectivorous bats, however, DPP4 expression in epithelial cells of the respiratory tract was almost absent. The preferential expression of DPP4 in the intestinal tract of insectivorous bats, suggests that transmission of MERS-like-CoVs mainly occurs via the fecal-oral route. Our results highlight differences in the distribution of DPP4 expression among MERS-CoV susceptible species, which might influence variability in virus tropism, pathogenesis and transmission route.
Collapse
|
77
|
Ali M, El-Shesheny R, Kandeil A, Shehata M, Elsokary B, Gomaa M, Hassan N, El Sayed A, El-Taweel A, Sobhy H, Fasina FO, Dauphin G, El Masry I, Wolde AW, Daszak P, Miller M, VonDobschuetz S, Morzaria S, Lubroth J, Makonnen YJ. Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016. Euro Surveill 2017; 22:30487. [PMID: 28333616 PMCID: PMC5356426 DOI: 10.2807/1560-7917.es.2017.22.11.30487] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/05/2016] [Indexed: 02/05/2023] Open
Abstract
A cross-sectional study was conducted in Egypt to determine the prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in imported and resident camels and bats, as well as to assess possible transmission of the virus to domestic ruminants and equines. A total of 1,031 sera, 1,078 nasal swabs, 13 rectal swabs, and 38 milk samples were collected from 1,078 camels in different types of sites. In addition, 145 domestic animals and 109 bats were sampled. Overall, of 1,031 serologically-tested camels, 871 (84.5%) had MERS-CoV neutralising antibodies. Seroprevalence was significantly higher in imported (614/692; 88.7%) than resident camels (257/339; 5.8%) (p < 0.05). Camels from Sudan (543/594; 91.4%) had a higher seroprevalence than those from East Africa (71/98; 72.4%) (p < 0.05). Sampling site and age were also associated with MERS-CoV seroprevalence (p < 0.05). All tested samples from domestic animals and bats were negative for MERS-CoV antibodies except one sheep sample which showed a 1:640 titre. Of 1,078 camels, 41 (3.8%) were positive for MERS-CoV genetic material. Sequences obtained were not found to cluster with clade A or B MERS-CoV sequences and were genetically diverse. The presence of neutralising antibodies in one sheep apparently in contact with seropositive camels calls for further studies on domestic animals in contact with camels.
Collapse
Affiliation(s)
- Mohamed Ali
- National Research Center, Division of Environmental Research, Giza, Egypt
| | - Rabeh El-Shesheny
- National Research Center, Division of Environmental Research, Giza, Egypt
| | - Ahmed Kandeil
- National Research Center, Division of Environmental Research, Giza, Egypt
| | - Mahmoud Shehata
- National Research Center, Division of Environmental Research, Giza, Egypt
| | - Basma Elsokary
- General Organizations of Veterinary Services, Ministry of Agriculture and Land reclamation (MoALR), Giza, Egypt
| | - Mokhtar Gomaa
- National Research Center, Division of Environmental Research, Giza, Egypt
| | - Naglaa Hassan
- General Organizations of Veterinary Services, Ministry of Agriculture and Land reclamation (MoALR), Giza, Egypt
| | - Ahmed El Sayed
- National Research Center, Division of Environmental Research, Giza, Egypt
| | - Ahmed El-Taweel
- National Research Center, Division of Environmental Research, Giza, Egypt
| | - Heba Sobhy
- Food and Agriculture Organization of the United Nations, Emergency Center for Transboundary Animal Diseases (ECTAD), Egypt
| | - Folorunso Oludayo Fasina
- Food and Agriculture Organization of the United Nations, Emergency Center for Transboundary Animal Diseases (ECTAD), Egypt
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Gwenaelle Dauphin
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Ihab El Masry
- Food and Agriculture Organization of the United Nations, Emergency Center for Transboundary Animal Diseases (ECTAD), Egypt
| | - Abebe Wossene Wolde
- Food and Agriculture Organization of the United Nations, Emergency Center for Transboundary Animal Diseases (ECTAD), Egypt
| | - Peter Daszak
- EcoHealth Alliance, New York, New York, United States
| | | | | | - Subhash Morzaria
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Juan Lubroth
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Yilma Jobre Makonnen
- Food and Agriculture Organization of the United Nations, Emergency Center for Transboundary Animal Diseases (ECTAD), Egypt
| |
Collapse
|
78
|
Falzarano D, Kamissoko B, de Wit E, Maïga O, Cronin J, Samaké K, Traoré A, Milne-Price S, Munster VJ, Sogoba N, Niang M, Safronetz D, Feldmann H. Dromedary camels in northern Mali have high seropositivity to MERS-CoV. One Health 2017; 3:41-43. [PMID: 28616502 PMCID: PMC5454179 DOI: 10.1016/j.onehlt.2017.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/02/2022] Open
Abstract
A high percentage (up to 90%) of dromedary camels in the Middle East as well as eastern and central Africa have antibodies to Middle East respiratory syndrome coronavirus (MERS-CoV). Here we report comparably high positivity of MERS-CoV antibodies in dromedary camels from northern Mali. This extends the range of MERS-CoV further west in Africa than reported to date and cautions that MERS-CoV should be considered in cases of severe respiratory disease in the region. Dromedary camels in northern Mali have serological evidence of exposure to MERS-CoV. 88% of camels tested were ELISA positive. 78% of camels had neutralizing antibodies. MERS should be considered to be present in northern Malian camels.
Collapse
Affiliation(s)
- Darryl Falzarano
- Laboratory of Virology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Badian Kamissoko
- Laboratoire Central Vétérinaire, Route de Koulikoro, BP 2295 Bamako, Mali
| | - Emmie de Wit
- Laboratory of Virology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Ousmane Maïga
- International Center for Excellence in Research, Malaria Research and Training Center, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Jacqueline Cronin
- Laboratory of Virology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Kassim Samaké
- Laboratoire Central Vétérinaire, Route de Koulikoro, BP 2295 Bamako, Mali
| | - Abdalah Traoré
- Laboratoire Central Vétérinaire, Route de Koulikoro, BP 2295 Bamako, Mali
| | - Shauna Milne-Price
- Laboratory of Virology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Vincent J Munster
- Laboratory of Virology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Nafomon Sogoba
- International Center for Excellence in Research, Malaria Research and Training Center, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mamadou Niang
- Laboratoire Central Vétérinaire, Route de Koulikoro, BP 2295 Bamako, Mali
| | - David Safronetz
- Laboratory of Virology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Heinz Feldmann
- Laboratory of Virology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
79
|
Neo JPS, Tan BH. The use of animals as a surveillance tool for monitoring environmental health hazards, human health hazards and bioterrorism. Vet Microbiol 2017; 203:40-48. [PMID: 28619165 PMCID: PMC7130562 DOI: 10.1016/j.vetmic.2017.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/19/2022]
Abstract
It discusses the use of animal sentinels for surveillance. It discusses the use of animals as a surveillance tool for monitoring environmental health hazards. It discusses the use of animals as a surveillance tool for monitoring human health hazards. It discusses the use of animals as a surveillance tool for monitoring bioterrorism. It discusses the One Health approach.
This review discusses the utilization of wild or domestic animals as surveillance tools for monitoring naturally occurring environmental and human health hazards. Besides providing early warning to natural hazards, animals can also provide early warning to societal hazards like bioterrorism. Animals are ideal surveillance tools to humans because they share the same environment as humans and spend more time outdoors than humans, increasing their exposure risk. Furthermore, the biologically compressed lifespans of some animals may allow them to develop clinical signs more rapidly after exposure to specific pathogens. Animals are an excellent channel for monitoring novel and known pathogens with outbreak potential given that more than 60 % of emerging infectious diseases in humans originate as zoonoses. This review attempts to highlight animal illnesses, deaths, biomarkers or sentinel events, to remind human and veterinary public health programs that animal health can be used to discover, monitor or predict environmental health hazards, human health hazards, or bioterrorism. Lastly, we hope that this review will encourage the implementation of animals as a surveillance tool by clinicians, veterinarians, ecosystem health professionals, researchers and governments.
Collapse
|
80
|
Vergara-Alert J, van den Brand JMA, Widagdo W, Muñoz M, Raj S, Schipper D, Solanes D, Cordón I, Bensaid A, Haagmans BL, Segalés J. Livestock Susceptibility to Infection with Middle East Respiratory Syndrome Coronavirus. Emerg Infect Dis 2017; 23:232-240. [PMID: 27901465 PMCID: PMC5324816 DOI: 10.3201/eid2302.161239] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Middle East respiratory syndrome (MERS) cases continue to be reported, predominantly in Saudi Arabia and occasionally other countries. Although dromedaries are the main reservoir, other animal species might be susceptible to MERS coronavirus (MERS-CoV) infection and potentially serve as reservoirs. To determine whether other animals are potential reservoirs, we inoculated MERS-CoV into llamas, pigs, sheep, and horses and collected nasal and rectal swab samples at various times. The presence of MERS-CoV in the nose of pigs and llamas was confirmed by PCR, titration of infectious virus, immunohistochemistry, and in situ hybridization; seroconversion was detected in animals of both species. Conversely, in sheep and horses, virus-specific antibodies did not develop and no evidence of viral replication in the upper respiratory tract was found. These results prove the susceptibility of llamas and pigs to MERS-CoV infection. Thus, the possibility of MERS-CoV circulation in animals other than dromedaries, such as llamas and pigs, is not negligible.
Collapse
|
81
|
Alhamlan FS, Majumder MS, Brownstein JS, Hawkins J, Al-Abdely HM, Alzahrani A, Obaid DA, Al-Ahdal MN, BinSaeed A. Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015. BMJ Open 2017; 7:e011865. [PMID: 28082362 PMCID: PMC5253590 DOI: 10.1136/bmjopen-2016-011865] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES As of 1 November 2015, the Saudi Ministry of Health had reported 1273 cases of Middle East respiratory syndrome (MERS); among these cases, which included 9 outbreaks at several hospitals, 717 (56%) patients recovered, 14 (1%) remain hospitalised and 543 (43%) died. This study aimed to determine the epidemiological, demographic and clinical characteristics that distinguished cases of MERS contracted during outbreaks from those contracted sporadically (ie, non-outbreak) between 2012 and 2015 in Saudi Arabia. DESIGN Data from the Saudi Ministry of Health of confirmed outbreak and non-outbreak cases of MERS coronavirus (CoV) infections from September 2012 through October 2015 were abstracted and analysed. Univariate and descriptive statistical analyses were conducted, and the time between disease onset and confirmation, onset and notification and onset and death were examined. RESULTS A total of 1250 patients (aged 0-109 years; mean, 50.825 years) were reported infected with MERS-CoV. Approximately two-thirds of all MERS cases were diagnosed in men for outbreak and non-outbreak cases. Healthcare workers comprised 22% of all MERS cases for outbreak and non-outbreak cases. Nosocomial infections comprised one-third of all Saudi MERS cases; however, nosocomial infections occurred more frequently in outbreak than non-outbreak cases (p<0.001). Patients contracting MERS during an outbreak were significantly more likely to die of MERS (p<0.001). CONCLUSIONS To date, nosocomial infections have fuelled MERS outbreaks. Given that the Kingdom of Saudi Arabia is a worldwide religious travel destination, localised outbreaks may have massive global implications and effective outbreak preventive measures are needed.
Collapse
Affiliation(s)
- F S Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - M S Majumder
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - J Hawkins
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - H M Al-Abdely
- Public Health Deputy, Ministry of Health, Riyadh, Saudi Arabia
| | - A Alzahrani
- Public Health Deputy, Ministry of Health, Riyadh, Saudi Arabia
| | - D A Obaid
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - M N Al-Ahdal
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - A BinSaeed
- Public Health Deputy, Ministry of Health, Riyadh, Saudi Arabia
| |
Collapse
|
82
|
Emerging Infectious Diseases in Camelids. EMERGING AND RE-EMERGING INFECTIOUS DISEASES OF LIVESTOCK 2017. [PMCID: PMC7121465 DOI: 10.1007/978-3-319-47426-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Growing interest in camelids presents a unique challenge to scientists and veterinarians engaged in diagnosing infectious diseases of this species. It is estimated that 65 % of fatalities in Old World camels (OWC, i.e., Camelus dromedarius and C. bactrianus) and 50 % in New World camelids/South American camelids (NWC/SAC, i.e., the domestic alpaca (Vicugna pacos) and llama (Lama glama)) are caused by infectious diseases. Factors that contribute to disease emergence in camelids involve climate change and increased demand for camel products resulting in the intensification of production and expanding camel contacts with other animal species and humans. In this chapter, the most important emerging diseases of camelids are described and discussed. The most notable emerging viral infections in OWC include camelpox, Rift Valley fever (RVF), peste des petits ruminants (PPR), and Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Brucellosis, Johne’s disease (JD), and dermatophilosis are the emerging bacterial diseases in OWC. Emerging diseases of NWC include infections with bovine viral diarrhea virus (BVDV), bluetongue (BT), and coronavirus. Parasitic emerging infections in NWCs include the small liver fluke (Dicrocoelium dendriticum) and meningeal worm (Parelaphostrongylus tenuis).
Collapse
|
83
|
van Doremalen N, Hijazeen ZSK, Holloway P, Al Omari B, McDowell C, Adney D, Talafha HA, Guitian J, Steel J, Amarin N, Tibbo M, Abu-Basha E, Al-Majali AM, Munster VJ, Richt JA. High Prevalence of Middle East Respiratory Coronavirus in Young Dromedary Camels in Jordan. Vector Borne Zoonotic Dis 2016; 17:155-159. [PMID: 28009529 DOI: 10.1089/vbz.2016.2062] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) was determined in 45 dromedary camels from two geographically separated herds in Jordan. Virus shedding was only detected in swabs obtained from the respiratory tract and primarily observed in camels younger than 3 years. MERS-CoV seroprevalence increased with age of camels. Bovine and sheep sera were seronegative. Phylogenetic analysis of partial S2 clustered the Jordanian MERS-CoV strains with contemporary MERS-CoV strains associated with nosocomial outbreaks.
Collapse
Affiliation(s)
- Neeltje van Doremalen
- 1 Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton, Montana
| | | | - Peter Holloway
- 3 Veterinary Epidemiology, Economics and Public Health Group, The Royal Veterinary College , Hatfield, United Kingdom
| | - Bilal Al Omari
- 4 Department of Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology , Irbid, Jordan
| | - Chester McDowell
- 5 Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| | - Danielle Adney
- 6 Department of Microbiology, Immunology, and Pathology, Colorado State University , Fort Collins, Colorado
| | - Hani A Talafha
- 4 Department of Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology , Irbid, Jordan
| | - Javier Guitian
- 3 Veterinary Epidemiology, Economics and Public Health Group, The Royal Veterinary College , Hatfield, United Kingdom
| | - John Steel
- 7 Department of Microbiology and Immunology, Emory University School of Medicine , Atlanta, Georgia
| | - Nadim Amarin
- 8 Boehringer Ingelheim , MENA, Dubai, United Arab Emirates
| | - Markos Tibbo
- 9 FAO Regional Office for the Near East and North Africa , Cairo, Egypt
| | - Ehab Abu-Basha
- 4 Department of Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology , Irbid, Jordan
| | - Ahmad M Al-Majali
- 4 Department of Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology , Irbid, Jordan
| | - Vincent J Munster
- 1 Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton, Montana
| | - Juergen A Richt
- 5 Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| |
Collapse
|
84
|
Luke T, Wu H, Zhao J, Channappanavar R, Coleman CM, Jiao JA, Matsushita H, Liu Y, Postnikova EN, Ork BL, Glenn G, Flyer D, Defang G, Raviprakash K, Kochel T, Wang J, Nie W, Smith G, Hensley LE, Olinger GG, Kuhn JH, Holbrook MR, Johnson RF, Perlman S, Sullivan E, Frieman MB. Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo. Sci Transl Med 2016; 8:326ra21. [PMID: 26888429 DOI: 10.1126/scitranslmed.aaf1061] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As of 13 November 2015, 1618 laboratory-confirmed human cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection, including 579 deaths, had been reported to the World Health Organization. No specific preventive or therapeutic agent of proven value against MERS-CoV is currently available. Public Health England and the International Severe Acute Respiratory and Emerging Infection Consortium identified passive immunotherapy with neutralizing antibodies as a treatment approach that warrants priority study. Two experimental MERS-CoV vaccines were used to vaccinate two groups of transchromosomic (Tc) bovines that were genetically modified to produce large quantities of fully human polyclonal immunoglobulin G (IgG) antibodies. Vaccination with a clade A γ-irradiated whole killed virion vaccine (Jordan strain) or a clade B spike protein nanoparticle vaccine (Al-Hasa strain) resulted in Tc bovine sera with high enzyme-linked immunosorbent assay (ELISA) and neutralizing antibody titers in vitro. Two purified Tc bovine human IgG immunoglobulins (Tc hIgG), SAB-300 (produced after Jordan strain vaccination) and SAB-301 (produced after Al-Hasa strain vaccination), also had high ELISA and neutralizing antibody titers without antibody-dependent enhancement in vitro. SAB-301 was selected for in vivo and preclinical studies. Administration of single doses of SAB-301 12 hours before or 24 and 48 hours after MERS-CoV infection (Erasmus Medical Center 2012 strain) of Ad5-hDPP4 receptor-transduced mice rapidly resulted in viral lung titers near or below the limit of detection. Tc bovines, combined with the ability to quickly produce Tc hIgG and develop in vitro assays and animal model(s), potentially offer a platform to rapidly produce a therapeutic to prevent and/or treat MERS-CoV infection and/or other emerging infectious diseases.
Collapse
Affiliation(s)
- Thomas Luke
- Viral and Rickettsial Diseases Department, Navy Medical Research Center, The Henry Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD 20910, USA.
| | - Hua Wu
- SAB Biotherapeutics Inc., Sioux Falls, SD 57104, USA
| | - Jincun Zhao
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA. State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | | | - Christopher M Coleman
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Jin-An Jiao
- SAB Biotherapeutics Inc., Sioux Falls, SD 57104, USA
| | | | - Ye Liu
- Novavax Inc., Gaithersburg, MD 20878, USA
| | - Elena N Postnikova
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Britini L Ork
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | - Gabriel Defang
- Department of Virology, Naval Medical Research Unit-3, Cairo FPO AP 09835, Egypt
| | | | - Tadeusz Kochel
- Viral and Rickettsial Diseases Department, Navy Medical Research Center, Silver Spring, MD 20910, USA.
| | - Jonathan Wang
- Thermo Fisher Scientific, South San Francisco, CA 94080, USA
| | - Wensheng Nie
- Thermo Fisher Scientific, South San Francisco, CA 94080, USA
| | - Gale Smith
- Novavax Inc., Gaithersburg, MD 20878, USA
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Gene G Olinger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
85
|
Omrani AS, Al-Tawfiq JA, Memish ZA. Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction. Pathog Glob Health 2016; 109:354-62. [PMID: 26924345 PMCID: PMC4809235 DOI: 10.1080/20477724.2015.1122852] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel enzootic betacoronavirus that was first described in September 2012. The clinical spectrum of MERS-CoV infection in humans ranges from an asymptomatic or mild respiratory illness to severe pneumonia and multi-organ failure; overall mortality is around 35.7%. Bats harbour several betacoronaviruses that are closely related to MERS-CoV but more research is needed to establish the relationship between bats and MERS-CoV. The seroprevalence of MERS-CoV antibodies is very high in dromedary camels in Eastern Africa and the Arabian Peninsula. MERS-CoV RNA and viable virus have been isolated from dromedary camels, including some with respiratory symptoms. Furthermore, near-identical strains of MERS-CoV have been isolated from epidemiologically linked humans and camels, confirming inter-transmission, most probably from camels to humans. Though inter-human spread within health care settings is responsible for the majority of reported MERS-CoV cases, the virus is incapable at present of causing sustained human-to-human transmission. Clusters can be readily controlled with implementation of appropriate infection control procedures. Phylogenetic and sequencing data strongly suggest that MERS-CoV originated from bat ancestors after undergoing a recombination event in the spike protein, possibly in dromedary camels in Africa, before its exportation to the Arabian Peninsula along the camel trading routes. MERS-CoV serosurveys are needed to investigate possible unrecognized human infections in Africa. Amongst the important measures to control MERS-CoV spread are strict regulation of camel movement, regular herd screening and isolation of infected camels, use of personal protective equipment by camel handlers and enforcing rules banning all consumption of unpasteurized camel milk and urine.
Collapse
Affiliation(s)
- Ali S Omrani
- 1 Department of Medicine, Section of Infectious Diseases, King Faisal Specialist Hospital and Research Centre , Riyadh, Saudi Arabia
| | | | | |
Collapse
|
86
|
Funk AL, Goutard FL, Miguel E, Bourgarel M, Chevalier V, Faye B, Peiris JSM, Van Kerkhove MD, Roger FL. MERS-CoV at the Animal-Human Interface: Inputs on Exposure Pathways from an Expert-Opinion Elicitation. Front Vet Sci 2016; 3:88. [PMID: 27761437 PMCID: PMC5051548 DOI: 10.3389/fvets.2016.00088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/14/2016] [Indexed: 12/30/2022] Open
Abstract
Nearly 4 years after the first report of the emergence of Middle-East respiratory syndrome Coronavirus (MERS-CoV) and nearly 1800 human cases later, the ecology of MERS-CoV, its epidemiology, and more than risk factors of MERS-CoV transmission between camels are poorly understood. Knowledge about the pathways and mechanisms of transmission from animals to humans is limited; as of yet, transmission risks have not been quantified. Moreover the divergent sanitary situations and exposures to animals among populations in the Arabian Peninsula, where human primary cases appear to dominate, vs. other regions in the Middle East and Africa, with no reported human clinical cases and where the virus has been detected only in dromedaries, represents huge scientific and health challenges. Here, we have used expert-opinion elicitation in order to obtain ideas on relative importance of MERS-CoV risk factors and estimates of transmission risks from various types of contact between humans and dromedaries. Fourteen experts with diverse and extensive experience in MERS-CoV relevant fields were enrolled and completed an online questionnaire that examined pathways based on several scenarios, e.g., camels-camels, camels-human, bats/other species to camels/humans, and the role of diverse biological substances (milk, urine, etc.) and potential fomites. Experts believed that dromedary camels play the largest role in MERS-CoV infection of other dromedaries; however, they also indicated a significant influence of the season (i.e. calving or weaning periods) on transmission risk. All experts thought that MERS-CoV-infected dromedaries and asymptomatic humans play the most important role in infection of humans, with bats and other species presenting a possible, but yet undefined, risk. Direct and indirect contact of humans with dromedary camels were identified as the most risky types of contact, when compared to consumption of various camel products, with estimated "most likely" incidence risks of at least 22 and 13% for direct and indirect contact, respectively. The results of our study are consistent with available, yet very limited, published data regarding the potential pathways of transmission of MERS-CoV at the animal-human interface. These results identify key knowledge gaps and highlight the need for more comprehensive, yet focused research to be conducted to better understand transmission between dromedaries and humans.
Collapse
Affiliation(s)
| | | | - Eve Miguel
- Cirad, UPR AGIRs Research Unit, Montpellier, France; UMR MIVEGEC, IRD 224-CNRS 5290-UM, Montpellier, France
| | | | | | - Bernard Faye
- Cirad, UPR AGIRs Research Unit , Montpellier , France
| | - J S Malik Peiris
- HKU-Pasteur Research Pole, Hong Kong, China; School of Public Health, University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
87
|
Alraddadi BM, Watson JT, Almarashi A, Abedi GR, Turkistani A, Sadran M, Housa A, Almazroa MA, Alraihan N, Banjar A, Albalawi E, Alhindi H, Choudhry AJ, Meiman JG, Paczkowski M, Curns A, Mounts A, Feikin DR, Marano N, Swerdlow DL, Gerber SI, Hajjeh R, Madani TA. Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Illness in Humans, Saudi Arabia, 2014. Emerg Infect Dis 2016; 22:49-55. [PMID: 26692185 PMCID: PMC4696714 DOI: 10.3201/eid2201.151340] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Risk factors for primary Middle East respiratory syndrome coronavirus (MERS-CoV) illness in humans are incompletely understood. We identified all primary MERS-CoV cases reported in Saudi Arabia during March-November 2014 by excluding those with history of exposure to other cases of MERS-CoV or acute respiratory illness of unknown cause or exposure to healthcare settings within 14 days before illness onset. Using a case-control design, we assessed differences in underlying medical conditions and environmental exposures among primary case-patients and 2-4 controls matched by age, sex, and neighborhood. Using multivariable analysis, we found that direct exposure to dromedary camels during the 2 weeks before illness onset, as well as diabetes mellitus, heart disease, and smoking, were each independently associated with MERS-CoV illness. Further investigation is needed to better understand animal-to-human transmission of MERS-CoV.
Collapse
|
88
|
Inoculation of Goats, Sheep, and Horses with MERS-CoV Does Not Result in Productive Viral Shedding. Viruses 2016; 8:v8080230. [PMID: 27548203 PMCID: PMC4997592 DOI: 10.3390/v8080230] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/26/2016] [Accepted: 08/13/2016] [Indexed: 01/21/2023] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) was first recognized in 2012 and can cause severe disease in infected humans. Dromedary camels are the reservoir for the virus, although, other than nasal discharge, these animals do not display any overt clinical disease. Data from in vitro experiments suggest that other livestock such as sheep, goats, and horses might also contribute to viral transmission, although field data has not identified any seropositive animals. In order to understand if these animals could be infected, we challenged young goats and horses and adult sheep with MERS-CoV by intranasal inoculation. Minimal or no virus shedding was detected in all of the animals. During the four weeks following inoculation, neutralizing antibodies were detected in the young goats, but not in sheep or horses.
Collapse
|
89
|
Younan M, Bornstein S, Gluecks IV. MERS and the dromedary camel trade between Africa and the Middle East. Trop Anim Health Prod 2016; 48:1277-82. [PMID: 27324244 PMCID: PMC7089074 DOI: 10.1007/s11250-016-1089-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Dromedary camels are the most likely source for the coronavirus that sporadically causes Middle East respiratory syndrome (MERS) in humans. Serological results from archived camel sera provide evidence for circulation of MERS coronavirus (MERS-CoV) among dromedary camels in the Greater Horn of Africa as far back as 1983 and in Saudi Arabia as far back as 1992. High seroprevalences of MERS-CoV antibodies and the high virus prevalence in Saudi Arabian dromedary camels indicate an endemicity of the virus in the Arabian Peninsula, which predates the 2012 human MERS index case. Saudi Arabian dromedary camels show significantly higher MERS-CoV carrier rates than dromedary camels imported from Africa. Two MERS-CoV lineages identified in Nigerian camels were found to be genetically distinct from those found in camels and humans in the Middle East. This supports the hypothesis that camel imports from Africa are not of significance for circulation of the virus in camel populations of the Arabian Peninsula.
Collapse
Affiliation(s)
- M Younan
- Animal Health and Livestock Consultant, P.O. Box 847-10400, Nanyuki, Kenya.
| | - S Bornstein
- National Veterinary Institute, Uppsala, Sweden
| | - I V Gluecks
- Animal Health and Livestock Consultant, P.O. Box 25654-00603, Nairobi, Kenya
| |
Collapse
|
90
|
First isolation of West Nile virus from a dromedary camel. Emerg Microbes Infect 2016; 5:e53. [PMID: 27273223 PMCID: PMC4932647 DOI: 10.1038/emi.2016.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/22/2016] [Accepted: 03/07/2016] [Indexed: 12/04/2022]
Abstract
Although antibodies against West Nile virus (WNV) have been detected in the sera of dromedaries in the Middle East, North Africa and Spain, no WNV has been isolated or amplified from dromedary or Bactrian camels. In this study, WNV was isolated from Vero cells inoculated with both nasal swab and pooled trachea/lung samples from a dromedary calf in Dubai. Complete-genome sequencing and phylogenetic analysis using the near-whole-genome polyprotein revealed that the virus belonged to lineage 1a. There was no clustering of the present WNV with other WNVs isolated in other parts of the Middle East. Within lineage 1a, the dromedary WNV occupied a unique position, although it was most closely related to other WNVs of cluster 2. Comparative analysis revealed that the putative E protein encoded by the genome possessed the original WNV E protein glycosylation motif NYS at E154–156, which contained the N-linked glycosylation site at N-154 associated with increased WNV pathogenicity and neuroinvasiveness. In the putative NS1 protein, the A70S substitution observed in other cluster 2 WNVs and P250, which has been implicated in neuroinvasiveness, were present. In addition, the foo motif in the putative NS2A protein, which has been implicated in neuroinvasiveness, was detected. Notably, the amino-acid residues at 14 positions in the present dromedary WNV genome differed from those in most of the closely related WNV strains in cluster 2 of lineage 1a, with the majority of these differences observed in the putative E and NS5 proteins. The present study is the first to demonstrate the isolation of WNV from dromedaries. This finding expands the possible reservoirs of WNV and sources of WNV infection.
Collapse
|
91
|
Lamers MM, Smits SL, Hundie GB, Provacia LB, Koopmans M, Osterhaus ADME, Haagmans BL, Raj VS. Naturally occurring recombination in ferret coronaviruses revealed by complete genome characterization. J Gen Virol 2016; 97:2180-2186. [PMID: 27283016 PMCID: PMC7079585 DOI: 10.1099/jgv.0.000520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ferret coronaviruses (FRCoVs) exist as an enteric and a systemic pathotype, of which the latter is highly lethal to ferrets. To our knowledge, this study provides the first full genome sequence of a FRCoV, tentatively called FRCoV-NL-2010, which was detected in 2010 in ferrets in The Netherlands. Phylogenetic analysis showed that FRCoV-NL-2010 is most closely related to mink CoV, forming a separate clade of mustelid alphacoronavirus that split off early from other alphacoronaviruses. Based on sequence homology of the complete genome, we propose that these mustelid coronaviruses may be assigned to a new species. Comparison of FRCoV-NL-2010 with the partially sequenced ferret systemic coronavirus MSU-1 and ferret enteric coronavirus MSU-2 revealed that recombination in the spike, 3c and envelope genes occurred between different FRCoVs.
Collapse
Affiliation(s)
- Mart M Lamers
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Saskia L Smits
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Gadissa B Hundie
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Marion Koopmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Albert D M E Osterhaus
- Artemis One Health, Utrecht, The Netherlands.,Center for Infection Medicine and Zoonoses Research, University of Veterinary Medicine, Hannover, Germany
| | - Bart L Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - V Stalin Raj
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
92
|
Mohd HA, Al-Tawfiq JA, Memish ZA. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir. Virol J 2016; 13:87. [PMID: 27255185 PMCID: PMC4891877 DOI: 10.1186/s12985-016-0544-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/18/2016] [Indexed: 02/08/2023] Open
Abstract
Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans. Though not confirmed yet, multiple surveillance and phylogenetic studies suggest a bat origin. The disease is heavily endemic in dromedary camel populations of East Africa and the Middle East. It is unclear as to when the virus was introduced to dromedary camels, but data from studies that investigated stored dromedary camel sera and geographical distribution of involved dromedary camel populations suggested that the virus was present in dromedary camels several decades ago. Though bats and alpacas can serve as potential reservoirs for MERS-CoV, dromedary camels seem to be the only animal host responsible for the spill over human infections.
Collapse
Affiliation(s)
| | - Jaffar A Al-Tawfiq
- Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia.,Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ziad A Memish
- Saudi Ministry of Health, Riyadh, Saudi Arabia. .,College of Medicine, Alfaisal University, P.O. Box 54146, Riyadh, 11514, Kingdom of Saudi Arabia.
| |
Collapse
|
93
|
Adney DR, van Doremalen N, Brown VR, Bushmaker T, Scott D, de Wit E, Bowen RA, Munster VJ. Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels. Emerg Infect Dis 2016; 20:1999-2005. [PMID: 25418529 PMCID: PMC4257817 DOI: 10.3201/eid2012.141280] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In 2012, a novel coronavirus associated with severe respiratory disease in humans emerged in the Middle East. Epidemiologic investigations identified dromedary camels as the likely source of zoonotic transmission of Middle East respiratory syndrome coronavirus (MERS-CoV). Here we provide experimental support for camels as a reservoir for MERS-CoV. We inoculated 3 adult camels with a human isolate of MERS-CoV and a transient, primarily upper respiratory tract infection developed in each of the 3 animals. Clinical signs of the MERS-CoV infection were benign, but each of the camels shed large quantities of virus from the upper respiratory tract. We detected infectious virus in nasal secretions through 7 days postinoculation, and viral RNA up to 35 days postinoculation. The pattern of shedding and propensity for the upper respiratory tract infection in dromedary camels may help explain the lack of systemic illness among naturally infected camels and the means of efficient camel-to-camel and camel-to-human transmission.
Collapse
|
94
|
Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary Camels. J Virol 2016; 90:4838-4842. [PMID: 26889022 DOI: 10.1128/jvi.02994-15] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor--dipeptidyl peptidase 4 (DPP4)--is expressed in the upper respiratory tract epithelium of camels but not in that of humans. Lack of DPP4 expression may be the primary cause of limited MERS-CoV replication in the human upper respiratory tract and hence restrict transmission.
Collapse
|
95
|
Abstract
First identified in 2012, Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is listed as a new Category C Priority Pathogen. While the high mortality of MERS-CoV infection is further intensified by potential human-to-human transmissibility, no MERS vaccines are available for human use. This review explains immune responses resulting from MERS-CoV infection, describes MERS vaccine criteria, and presents available small animal models to evaluate the efficacy of MERS vaccines. Current advances in vaccine development are summarized, focusing on specific applications and limitations of each vaccine category. Taken together, this review provides valuable guidelines toward the development of an effective and safe MERS vaccine. This article is written for a Special Focus Issue of Expert Review of Vaccines on 'Vaccines for Biodefence'.
Collapse
Affiliation(s)
- Lanying Du
- a Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA
| | - Wanbo Tai
- a Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA.,b State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yusen Zhou
- b State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Shibo Jiang
- a Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA.,c Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences , Fudan University , Shanghai , China
| |
Collapse
|
96
|
Cross host transmission in the emergence of MERS coronavirus. Curr Opin Virol 2016; 16:55-62. [PMID: 26826951 PMCID: PMC7102731 DOI: 10.1016/j.coviro.2016.01.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/08/2016] [Indexed: 11/24/2022]
Abstract
MERS-CoV genomes have been detected in nasal swabs of dromedaries. Bat CoVs characterized thus far are relatively distantly related to MERS-CoV. Routes of MERS-CoV zoonotic transmission are not well established. Preventive measures should be taken to reduce zoonotic transmission of MERS-CoV.
Coronaviruses (CoVs) able to infect humans emerge through cross-host transmission from animals. There is substantial evidence that the recent Middle East respiratory syndrome (MERS)-CoV outbreak is fueled by zoonotic transmission from dromedary camels. This is largely based on the fact that closely related viruses have been isolated from this but not any other animal species. Given the widespread geographical distribution of dromedaries found seropositive for MERS-CoV, continued transmission may likely occur in the future. Therefore, a further understanding of the cross host transmission of MERS-CoV is needed to limit the risks this virus poses to man.
Collapse
|
97
|
Shehata MM, Gomaa MR, Ali MA, Kayali G. Middle East respiratory syndrome coronavirus: a comprehensive review. Front Med 2016; 10:120-36. [PMID: 26791756 PMCID: PMC7089261 DOI: 10.1007/s11684-016-0430-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/18/2015] [Indexed: 01/07/2023]
Abstract
The Middle East respiratory syndrome coronavirus was first identified in 2012 and has since then remained uncontrolled. Cases have been mostly reported in the Middle East, however travel-associated cases and outbreaks have also occurred. Nosocomial and zoonotic transmission of the virus appear to be the most important routes. The infection is severe and highly fatal thus necessitating rapid and efficacious interventions. Here, we performed a comprehensive review of published literature and summarized the epidemiology of the virus. In addition, we summarized the virological aspects of the infection and reviewed the animal models used as well as vaccination and antiviral tested against it.
Collapse
Affiliation(s)
- Mahmoud M Shehata
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mokhtar R Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ghazi Kayali
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
98
|
Al-Tawfiq JA, Memish ZA. Drivers of MERS-CoV transmission: what do we know? Expert Rev Respir Med 2016; 10:331-8. [PMID: 26848513 PMCID: PMC7103679 DOI: 10.1586/17476348.2016.1150784] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
Middle East Respiratory Syndrome coronavirus (MERS-CoV) emerged in 2012 has since resulted in sporadic cases, intra-familial transmission and major outbreaks in healthcare settings. The clinical picture of MERS-CoV includes asymptomatic infections, mild or moderately symptomatic cases and fatal disease. Transmissions of MERS-CoV within healthcare settings are facilitated by overcrowding, poor compliance with basic infection control measures, unrecognized infections, the superspreaders phenomenon and poor triage systems. The actual contributing factors to the spread of MERS-CoV are yet to be systematically studied, but data to date suggest viral, host and environmental factors play a major role. Here, we summarize the known factors for the diverse transmission of MERS-CoV.
Collapse
Affiliation(s)
- Jaffar A. Al-Tawfiq
- Medical Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ziad A. Memish
- Medical Department, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
99
|
Abstract
Recent studies have clearly shown that bats are the reservoir hosts of a wide diversity of novel viruses with representatives from most of the known animal virus families. In many respects bats make ideal reservoir hosts for viruses: they are the only mammals that fly, thus assisting in virus dispersal; they roost in large numbers, thus aiding transmission cycles; some bats hibernate over winter, thus providing a mechanism for viruses to persist between seasons; and genetic factors may play a role in the ability of bats to host viruses without resulting in clinical disease. Within the broad diversity of viruses found in bats are some important neurological pathogens, including rabies and other lyssaviruses, and Hendra and Nipah viruses, two recently described viruses that have been placed in a new genus, Henipaviruses in the family Paramyxoviridae. In addition, bats can also act as alternative hosts for the flaviviruses Japanese encephalitis and St Louis encephalitis viruses, two important mosquito-borne encephalitogenic viruses, and bats can assist in the dispersal and over-wintering of these viruses. Bats are also the reservoir hosts of progenitors of SARS and MERS coronaviruses, although other animals act as spillover hosts. This chapter presents the physiological and ecological factors affecting the ability of bats to act as reservoirs of neurotropic viruses, and describes the major transmission cycles leading to human infection.
Collapse
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
100
|
The middle east respiratory syndrome coronavirus respiratory infection: an emerging infection from the arabian peninsula. THE MICROBIOLOGY OF RESPIRATORY SYSTEM INFECTIONS 2016. [PMCID: PMC7149635 DOI: 10.1016/b978-0-12-804543-5.00004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|