51
|
Khoshnood S, Arshadi M, Akrami S, Koupaei M, Ghahramanpour H, Shariati A, Sadeghifard N, Heidary M. An overview on inactivated and live-attenuated SARS-CoV-2 vaccines. J Clin Lab Anal 2022; 36:e24418. [PMID: 35421266 PMCID: PMC9102488 DOI: 10.1002/jcla.24418] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
After about 2 years since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first infections were detected in Wuhan city of China in December 2019, which was followed by a worldwide pandemic with a record of 5.41 million deaths. Due to urgent need for the development of a safe and effective vaccine for coronavirus disease 2019 (COVID-19), attempts for producing efficient vaccines are inexhaustibly continuing. According to a report by the World Health Organization (WHO) on COVID-19 vaccine tracker and landscape, there are 149 vaccine candidates all over the world. Inactivated SARS-CoV-2 vaccines as a conventional vaccine platform consist of whole virus particles grown in cell culture and inactivated by chemicals. Because of benefits such as antigenic similarity to real virion inducing humoral and cellular immune responses and ease for transport and storage, these vaccines, including the vaccines produced by Bharat Biotech, Sinopharm, and Sinovac, are in use at large scales. In this study, we have a review on inactivated SARS-CoV-2 vaccines that are passing their phase 3 and 4 clinical trials, population which was included in the trials, vaccine producers, the efficiency, adverse effects, and components of vaccines, and other vaccine features.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | - Maniya Arshadi
- Department of MicrobiologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Infectious and Tropical Diseases Research CenterHealth Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Sousan Akrami
- Department of MicrobiologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Student Research CommitteeAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Maryam Koupaei
- Department of Microbiology and ImmunologySchool of MedicineKashan University of Medical SciencesKashanIran
| | - Hossein Ghahramanpour
- Department of BacteriologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Aref Shariati
- Molecular and Medicine Research CenterKhomein University of Medical SciencesKhomeinIran
| | | | - Mohsen Heidary
- Department of Laboratory SciencesSchool of Paramedical SciencesSabzevar University of Medical SciencesSabzevarIran
- Cellular and Molecular Research CenterSabzevar University of Medical SciencesSabzevarIran
| |
Collapse
|
52
|
Skarzynska MB, Matusiak M, Skarzynski PH. Adverse Audio-Vestibular Effects of Drugs and Vaccines Used in the Treatment and Prevention of COVID-19: A Review. Audiol Res 2022; 12:224-248. [PMID: 35645195 PMCID: PMC9149960 DOI: 10.3390/audiolres12030025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: The purpose of this article is to review pharmacological treatments for COVID-19 (currently approved by the EMA (European Medical Agency) and FDA (Food and Drug Administration)) and highlight their potential audio-vestibular side-effects as an ototoxic adverse reaction. (2) Methods: Review of the available literature in the scientific databases PubMed, ResearchGate, Scopus, and ScienceDirect, and in summaries of product data sheets. (3) Results: In accordance with EBM (evidence-based medicine) the treatment of COVID-19 by using lopinavir/ritonavir, chloroquine and hydroxychloroquine, azithromycin, favipiravir, amantadine, oseltamivir, and ivermectin is no longer recommended for patients suffering from COVID-19 due to a lack of clinical data, publications, and recommendations. There were 39 publications and 15 summaries of product characteristics (as other sources of data) which were also used in this analysis. Adverse events could be permanent or disappear over time. Following treatment for COVID-19, the most frequent adverse audio-vestibular reactions reported in clinical trials and publications in the area of audiology and otorhinolaryngology were: dizziness, blurry vision with dizziness, nasopharyngitis, dysgeusia, and tinnitus. As far as vaccines are concerned, dizziness as an ototoxic effect was uncommon and occurs only in hypersensitive people who experience anaphylactic shock. (4) Conclusions: The ototoxicity of the drugs discussed here does not have as severe symptoms as the drugs used in the treatment of COVID-19 in 2020 (e.g., hydroxychloroquine), and relates mainly to disorders of the vestibulocochlear system. However, there is still a need to monitor ototoxic side-effects because of potential interactions with other ototoxic drugs. Many of the drugs approved by EMA and FDA are new, and not every side-effect is known.
Collapse
Affiliation(s)
- Magdalena B. Skarzynska
- Institute of Sensory Organs, 05-830 Warsaw, Poland;
- Center of Hearing and Speech Medincus, 05-830 Warsaw, Poland
| | - Monika Matusiak
- World Hearing Center, Oto-Rhino-Laryngology Surgery Department, Institute of Physiology and Pathology of Hearing, 05-830 Warsaw, Poland;
| | - Piotr H. Skarzynski
- Institute of Sensory Organs, 05-830 Warsaw, Poland;
- World Hearing Center, Department of Teleaudiology of Hearing, Institute of Physiology and Pathology of Hearing, 05-830 Warsaw, Poland
- Heart Failure and Cardiac Rehabilitation Department, Faculty of Medicine, Medical University of Warsaw, 03-242 Warsaw, Poland
| |
Collapse
|
53
|
Zhang Z, Shen Q, Chang H. Vaccines for COVID-19: A Systematic Review of Immunogenicity, Current Development, and Future Prospects. Front Immunol 2022; 13:843928. [PMID: 35572592 PMCID: PMC9092649 DOI: 10.3389/fimmu.2022.843928] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/21/2022] [Indexed: 01/09/2023] Open
Abstract
The persistent coronavirus disease 2019 (COVID-19), characterized by severe respiratory syndrome, is caused by coronavirus 2 (SARS-CoV-2), and it poses a major threat to public health all over the world. Currently, optimal COVID-19 management involves effective vaccination. Vaccination is known to greatly enhance immune response against viral infections and reduce public transmission of COVID-19. However, although current vaccines offer some benefits, viral variations and other factors demand the continuous development of vaccines to eliminate this virus from host. Hence, vaccine research and development is crucial and urgent to the elimination of this pandemic. Herein, we summarized the structural and replicatory features of SARS-CoV-2, and focused on vaccine-mediated disease prevention strategies like vaccine antigen selection, vaccine research, and vaccine application. We also evaluated the latest literature on COVID-19 and extensively reviewed action mechanisms, clinical trial (CT) progresses, advantages, as well as disadvantages of various vaccine candidates against SARS-CoV-2. Lastly, we discussed the current viral treatment, prevention trends, and future prospects.
Collapse
Affiliation(s)
- Zhan Zhang
- Ministry of Education (MOE) Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Qi Shen
- Ministry of Education (MOE) Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Haocai Chang
- Ministry of Education (MOE) Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
54
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Qiu X, Ding C. Coronavirus Infection and Cholesterol Metabolism. Front Immunol 2022; 13:791267. [PMID: 35529872 PMCID: PMC9069556 DOI: 10.3389/fimmu.2022.791267] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Host cholesterol metabolism remodeling is significantly associated with the spread of human pathogenic coronaviruses, suggesting virus-host relationships could be affected by cholesterol-modifying drugs. Cholesterol has an important role in coronavirus entry, membrane fusion, and pathological syncytia formation, therefore cholesterol metabolic mechanisms may be promising drug targets for coronavirus infections. Moreover, cholesterol and its metabolizing enzymes or corresponding natural products exert antiviral effects which are closely associated with individual viral steps during coronavirus replication. Furthermore, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 infections are associated with clinically significant low cholesterol levels, suggesting cholesterol could function as a potential marker for monitoring viral infection status. Therefore, weaponizing cholesterol dysregulation against viral infection could be an effective antiviral strategy. In this review, we comprehensively review the literature to clarify how coronaviruses exploit host cholesterol metabolism to accommodate viral replication requirements and interfere with host immune responses. We also focus on targeting cholesterol homeostasis to interfere with critical steps during coronavirus infection.
Collapse
Affiliation(s)
- Jun Dai
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Experimental Animal Center, Zunyi Medical University, Zunyi City, China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| |
Collapse
|
55
|
Martínez L, Malaina I, Salcines-Cuevas D, Terán-Navarro H, Zeoli A, Alonso S, M De la Fuente I, Gonzalez-Lopez E, Ocejo-Vinyals JG, Gozalo-Margüello M, Calvo-Montes J, Alvarez-Dominguez C. First computational design using lambda-superstrings and in vivo validation of SARS-CoV-2 vaccine. Sci Rep 2022; 12:6410. [PMID: 35440789 PMCID: PMC9016385 DOI: 10.1038/s41598-022-09615-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is the greatest threat to global health at the present time, and considerable public and private effort is being devoted to fighting this recently emerged disease. Despite the undoubted advances in the development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, uncertainty remains about their future efficacy and the duration of the immunity induced. It is therefore prudent to continue designing and testing vaccines against this pathogen. In this article we computationally designed two candidate vaccines, one monopeptide and one multipeptide, using a technique involving optimizing lambda-superstrings, which was introduced and developed by our research group. We tested the monopeptide vaccine, thus establishing a proof of concept for the validity of the technique. We synthesized a peptide of 22 amino acids in length, corresponding to one of the candidate vaccines, and prepared a dendritic cell (DC) vaccine vector loaded with the 22 amino acids SARS-CoV-2 peptide (positions 50-71) contained in the NTD domain (DC-CoVPSA) of the Spike protein. Next, we tested the immunogenicity, the type of immune response elicited, and the cytokine profile induced by the vaccine, using a non-related bacterial peptide as negative control. Our results indicated that the CoVPSA peptide of the Spike protein elicits noticeable immunogenicity in vivo using a DC vaccine vector and remarkable cellular and humoral immune responses. This DC vaccine vector loaded with the NTD peptide of the Spike protein elicited a predominant Th1-Th17 cytokine profile, indicative of an effective anti-viral response. Finally, we performed a proof of concept experiment in humans that included the following groups: asymptomatic non-active COVID-19 patients, vaccinated volunteers, and control donors that tested negative for SARS-CoV-2. The positive control was the current receptor binding domain epitope of COVID-19 RNA-vaccines. We successfully developed a vaccine candidate technique involving optimizing lambda-superstrings and provided proof of concept in human subjects. We conclude that it is a valid method to decipher the best epitopes of the Spike protein of SARS-CoV-2 to prepare peptide-based vaccines for different vector platforms, including DC vaccines.
Collapse
Affiliation(s)
- Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain. .,BCAM, Basque Center for Applied Mathematics, 48009, Bilbao, Spain.
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain.,BioCruces Health Research Institute, Cruces University Hospital, 48903, Barakaldo, Spain
| | | | - Héctor Terán-Navarro
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Andrea Zeoli
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain.,María Goyri Building. Animal Biotechnology Center, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain
| | - Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain.,Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, 30100, Murcia, Spain
| | - Elena Gonzalez-Lopez
- Servicio de Inmunología, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain
| | - J Gonzalo Ocejo-Vinyals
- Servicio de Inmunología, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain
| | - Mónica Gozalo-Margüello
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain
| | - Jorge Calvo-Montes
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.,Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain.,CIBER Enfermedades Infecciosas, ISCIII, Madrid, Spain
| | - Carmen Alvarez-Dominguez
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain. .,Universidad Internacional de La Rioja, 26006, Logroño, Spain.
| |
Collapse
|
56
|
Zhou H, Ni WJ, Huang W, Wang Z, Cai M, Sun YC. Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARS-CoV-2-Induced COVID-19. Front Immunol 2022; 13:834942. [PMID: 35450063 PMCID: PMC9016159 DOI: 10.3389/fimmu.2022.834942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
As the new year of 2020 approaches, an acute respiratory disease quietly caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as coronavirus disease 2019 (COVID-19) was reported in Wuhan, China. Subsequently, COVID-19 broke out on a global scale and formed a global public health emergency. To date, the destruction that has lasted for more than two years has not stopped and has caused the virus to continuously evolve new mutant strains. SARS-CoV-2 infection has been shown to cause multiple complications and lead to severe disability and death, which has dealt a heavy blow to global development, not only in the medical field but also in social security, economic development, global cooperation and communication. To date, studies on the epidemiology, pathogenic mechanism and pathological characteristics of SARS-CoV-2-induced COVID-19, as well as target confirmation, drug screening, and clinical intervention have achieved remarkable effects. With the continuous efforts of the WHO, governments of various countries, and scientific research and medical personnel, the public's awareness of COVID-19 is gradually deepening, a variety of prevention methods and detection methods have been implemented, and multiple vaccines and drugs have been developed and urgently marketed. However, these do not appear to have completely stopped the pandemic and ravages of this virus. Meanwhile, research on SARS-CoV-2-induced COVID-19 has also seen some twists and controversies, such as potential drugs and the role of vaccines. In view of the fact that research on SARS-CoV-2 and COVID-19 has been extensive and in depth, this review will systematically update the current understanding of the epidemiology, transmission mechanism, pathological features, potential targets, promising drugs and ongoing clinical trials, which will provide important references and new directions for SARS-CoV-2 and COVID-19 research.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Huang
- The Third People’s Hospital of Hefei, The Third Clinical College of Anhui Medical University, Hefei, China
| | - Zhen Wang
- Anhui Provincial Children’s Hospital, Children’s Hospital of Fudan University-Anhui Campus, Hefei, China
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yan-Cai Sun
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
57
|
Gasmi A, Srinath S, Dadar M, Pivina L, Menzel A, Benahmed AG, Chirumbolo S, Bjørklund G. A global survey in the developmental landscape of possible vaccination strategies for COVID-19. Clin Immunol 2022; 237:108958. [PMID: 35218966 PMCID: PMC8865932 DOI: 10.1016/j.clim.2022.108958] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 01/04/2023]
Abstract
The development of COVID-19 vaccines was promptly regulated to ensure the best possible approach. By January 2022, 75 candidates reached preclinical evaluation in various animal models, 114 vaccines were in clinical trials on humans, and 48 were in the final testing stages. Vaccine platforms range from whole virus vaccines to nucleic acid vaccines, which are the most promising in prompt availability and safety. The USA and Europe have approved vaccines developed by Pfizer-BioNTech (BNT162b2) and Moderna (mRNa1273). So far, Pfizer-BioNTech, Moderna, Johnson & Johnson, AstraZeneca-University of Oxford, Sinopharm, Sinovac Biotech Gamaleya, Bharat Biotech, and Novavax have documented effective vaccines. Even with technological advances and a fast-paced development approach, many limitations and problems need to be overcome before a large-scale production of new vaccines can start. The Key is to ensure equal and fair distribution globally through regulatory measures. Recent studies link Bacillus Calmette-Guérin (BCG) vaccination programs and lower disease severity.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Shvetha Srinath
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan; CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | | | - Asma Gasmi Benahmed
- Université Claude Bernard, Villeurbanne, France; Académie Internationale de Médecine Dentaire Intégrative, Paris, France
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| |
Collapse
|
58
|
Wambani J, Okoth P. Scope of SARS-CoV-2 variants, mutations, and vaccine technologies. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2022; 34:34. [PMID: 35368846 PMCID: PMC8962228 DOI: 10.1186/s43162-022-00121-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is disseminated by respiratory aerosols. The virus uses the spike protein to target epithelial cells by binding to the ACE2 receptor on the host cells. As a result, effective vaccines must target the viral spike glycoprotein. However, the appearance of an Omicron variant with 32 mutations in its spike protein raises questions about the vaccine's efficacy. Vaccines are critical in boosting immunity, lowering COVID-19-related illnesses, reducing the infectious burden on the healthcare system, and reducing economic loss, according to current data. An efficient vaccination campaign is projected to increase innate and adaptive immune responses, offering better protection against SARS-CoV-2 variants. Main body The presence of altered SARS-CoV-2 variants circulating around the world puts the effectiveness of vaccines already on the market at risk. The problem is made even worse by the Omicron variant, which has 32 mutations in its spike protein. Experts are currently examining the potential consequences of commercial vaccines on variants. However, there are worries about the vaccines' safety, the protection they provide, and whether future structural changes are required for these vaccines to be more effective. As a result of these concerns, new vaccines based on modern technology should be developed to guard against the growing SARS-CoV-2 variations. Conclusion The choice of a particular vaccine is influenced by several factors including mode of action, storage conditions, group of the vaccinee, immune response mounted, cost, dosage protocol, age, and side effects. Currently, seven SARS-CoV-2 vaccine platforms have been developed. This comprises of inactivated viruses, messenger RNA (mRNA), DNA vaccines, protein subunits, nonreplicating and replicating vector viral-like particles (VLP), and live attenuated vaccines. This review focuses on the SARS-CoV-2 mutations, variants of concern (VOCs), and advances in vaccine technologies.
Collapse
Affiliation(s)
- Josephine Wambani
- Kenya Medical Research Institute (KEMRI) HIV Laboratory-Alupe, P.O Box 3-50400, Busia, Kenya
- Department of Medical Laboratory Sciences, School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100 Kenya
| | - Patrick Okoth
- Department of Biological Sciences, School of Natural Sciences, Masinde Muliro University of Science and Technology, P. O Box 190, Kakamega, 50100 Kenya
| |
Collapse
|
59
|
Perrella A, Mucherino S, Guarino I, Nerilli M, Maraolo AE, Capoluongo N, Coscioni E, Trama U, Menditto E, Orlando V. Postvaccination SARS-CoV-2 Infections among Healthcare Professionals: A Real World Evidence Study. Vaccines (Basel) 2022; 10:511. [PMID: 35455260 PMCID: PMC9024651 DOI: 10.3390/vaccines10040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Due to the COVID-19 pandemic, all countries with a global mobilization started to produce and authorize vaccines, prioritizing healthcare professionals (HCPs) to reduce transmission. The aim of this study was to assess post-vaccination infections' occurrence among HCPs and their correlation with symptom onset. A retrospective cohort study was carried out in the Campania Region from December 2020 to April 2021. Data were retrieved from the Regional Health Information System of the Campania Region (Sinfonia). The study cohort included subjects that had all received at least one vaccine dose. Risk ratios (RRs) adjusted for age and sex (95% confidence intervals) were performed to assess differences in the prevalence between HCPs who tested positive or negative for COVID-19. Univariate and multivariate logistic regression models were used to evaluate the association between symptoms and vaccination status. Findings revealed that HCPs had a lower risk of contracting COVID-19 after receiving at least one vaccine dose, and this risk decreased with age. Furthermore, not having full vaccination coverage may predict a severe/critical evolution of the disease. This study provides a snapshot of the initial state of the Italian vaccination campaign on HCPs. A surveillance approach using Big Data matched to clinical conditions could offer a real analysis in the categorization of subjects most at risk.
Collapse
Affiliation(s)
- Alessandro Perrella
- UOC Emerging Infectious Disease with High Contagiousness, AORN Ospedali dei Colli P.O. C Cotugno, 80131 Naples, Italy
| | - Sara Mucherino
- CIRFF (Center of Drug Utilization and Pharmacoeconomics), Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Ilaria Guarino
- CIRFF (Center of Drug Utilization and Pharmacoeconomics), Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Mariagiovanna Nerilli
- UOC Emerging Infectious Disease with High Contagiousness, AORN Ospedali dei Colli P.O. C Cotugno, 80131 Naples, Italy
| | - Alberto Enrico Maraolo
- UOC Emerging Infectious Disease with High Contagiousness, AORN Ospedali dei Colli P.O. C Cotugno, 80131 Naples, Italy
| | - Nicolina Capoluongo
- UOC Emerging Infectious Disease with High Contagiousness, AORN Ospedali dei Colli P.O. C Cotugno, 80131 Naples, Italy
| | - Enrico Coscioni
- Regional Task Force COVID-19, Campania Region, 80143 Naples, Italy
- Division of Cardiac Surgery, AOU San Giovanni di Dio e Ruggi d'Aragona, 84131 Salerno, Italy
| | - Ugo Trama
- Regional Task Force COVID-19, Campania Region, 80143 Naples, Italy
- Directorate-General for Health Protection, Campania Region, 80143 Naples, Italy
| | - Enrica Menditto
- CIRFF (Center of Drug Utilization and Pharmacoeconomics), Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Valentina Orlando
- CIRFF (Center of Drug Utilization and Pharmacoeconomics), Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
60
|
Huang J, Ding Y, Yao J, Zhang M, Zhang Y, Xie Z, Zuo J. Nasal Nanovaccines for SARS-CoV-2 to Address COVID-19. Vaccines (Basel) 2022; 10:vaccines10030405. [PMID: 35335037 PMCID: PMC8952855 DOI: 10.3390/vaccines10030405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is still prevalent around the globe. Although some SARS-CoV-2 vaccines have been distributed to the population, the shortcomings of vaccines and the continuous emergence of SARS-CoV-2 mutant virus strains are a cause for concern. Thus, it is vital to continue to improve vaccines and vaccine delivery methods. One option is nasal vaccination, which is more convenient than injections and does not require a syringe. Additionally, stronger mucosal immunity is produced under nasal vaccination. The easy accessibility of the intranasal route is more advantageous than injection in the context of the COVID-19 pandemic. Nanoparticles have been proven to be suitable delivery vehicles and adjuvants, and different NPs have different advantages. The shortcomings of the SARS-CoV-2 vaccine may be compensated by selecting or modifying different nanoparticles. It travels along the digestive tract to the intestine, where it is presented by GALT, tissue-resident immune cells, and gastrointestinal lymph nodes. Nasal nanovaccines are easy to use, safe, multifunctional, and can be distributed quickly, demonstrating strong prospects as a vaccination method for SARS-CoV-2, SARS-CoV-2 variants, or SARS-CoV-n.
Collapse
Affiliation(s)
- Jialu Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
| | - Yubo Ding
- Nanhua Hospital Affiliated to University of South China, Hengyang Medical School, University of South China, Hengyang 421002, China; (Y.D.); (J.Y.)
| | - Jingwei Yao
- Nanhua Hospital Affiliated to University of South China, Hengyang Medical School, University of South China, Hengyang 421002, China; (Y.D.); (J.Y.)
| | - Minghui Zhang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
| | - Yu Zhang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
| | - Zhuoyi Xie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
| | - Jianhong Zuo
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; (J.H.); (M.Z.); (Y.Z.); (Z.X.)
- Nanhua Hospital Affiliated to University of South China, Hengyang Medical School, University of South China, Hengyang 421002, China; (Y.D.); (J.Y.)
- The Third Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang 421900, China
- Correspondence: ; Tel.: +86-7345-675219
| |
Collapse
|
61
|
Talukder A, Kalita C, Neog N, Goswami C, Sarma MK, Hazarika I. A comparative analysis on the safety and efficacy of Covaxin versus other vaccines against COVID-19: a review. Z NATURFORSCH C 2022; 77:351-362. [PMID: 35245422 DOI: 10.1515/znc-2021-0301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/04/2022] [Indexed: 10/18/2022]
Abstract
Since the identification of the genomic sequence of SARS-CoV-2, an unprecedented effort is being made until this date for the development of a safe and effective vaccine by pharma companies and laboratories worldwide. To attain herd immunity and quite possibly recover from this pandemic, which has claimed the life of about 4.23 million people, an exceptional effort has been made by the scientific community for the development of a vaccine. Various vaccines have been developed based on different platforms and each of them seems to possess its own merits and demerits based on its safety, immunogenicity, the durability of immunity, dosing schedule, technological platform, and ease of manufacture and transport. Based on these parameters this review aims to critically assess the efficacy of Covaxin and compare it with other vaccines in the WHO EUL list and perform a comparative analysis of COVID-19 vaccines which are in phase 3 and phase 4 of clinical trials. This will help us determine where COVAXIN stands against other vaccines and vaccine candidates based on these parameters which will ultimately help us determine the best vaccine that could potentially eradicate the COVID-19 pandemic.
Collapse
Affiliation(s)
- Abhijita Talukder
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati 781017, India
| | - Chayanika Kalita
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati 781017, India
| | - Nayanika Neog
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati 781017, India
| | - Chayanika Goswami
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati 781017, India
| | - Mrinal Kashyap Sarma
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati 781017, India
| | - Iswar Hazarika
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati 781017, India
| |
Collapse
|
62
|
Liang CK, Lee WJ, Peng LN, Meng LC, Hsiao FY, Chen LK. COVID-19 Vaccines in Older Adults: Challenges in Vaccine Development and Policy-Making. Clin Geriatr Med 2022; 38:605-620. [PMID: 35868676 PMCID: PMC8934735 DOI: 10.1016/j.cger.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chih-Kuang Liang
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wei-Ju Lee
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Family Medicine, Taipei Veterans General Hospital Yuanshan Branch, Yi-Lan, Taiwan
| | - Li-Ning Peng
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Lin-Chieh Meng
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fei-Yuan Hsiao
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan; Taipei Municipal Gan-Dau Hospital (Managed by Taipei Veterans General Hospital), Taipei, Taiwan.
| |
Collapse
|
63
|
Dehkordi EA, Heidari-Soureshjani E, Aryan A, Ganjirad Z, Soveyzi F, Hoseinsalari A, Derisi MM, Rafieian-Kopaei M. Antiviral Compounds Based on Natural ASTRAGALUS POLYSACCHARIDE (APS): Researches and Foresight in the Strategies for Combating SARS-CoV-2 (COVID-19). Mini Rev Med Chem 2022; 22:2299-2307. [PMID: 35232341 DOI: 10.2174/1389557522666220301143113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
Abstract
Today, finding natural polymers with desirable properties for use in various industries is one of the critical axes of research in the world. Polysaccharides are a group of natural polymers that have various applications in the pharmaceutical industry. The attachment of monosaccharides forms polysaccharides through glycosidic bonds that are widely found in various sources, including plants. Genus Astragalus belongs to the Fabaceae family. Plants belonging to this genus have different polysaccharides. Astragalus polysaccharides (APS) have attracted a great deal of attention among natural polymers because they are non-toxic, biodegradable, and biocompatible. Currently, APS has great drug potential for curing or treating various diseases. Due to the different biological activities of polysaccharides, including Astragalus, this study has investigated the chemical structure of APS, research report on antiviral, anti-inflammatory, and stimulation of cytokine secretion by these polysaccharides. Also, in this study, the pharmaceutical approaches of APS compounds, as a natural, new and inexpensive source, have been discussed as suitable candidates for use in pharmaceutical formulations and preparation of new drugs to control COVID-19 infection.
Collapse
Affiliation(s)
- Elahe Aleebrahim Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ehsan Heidari-Soureshjani
- Cellular & Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- SaNa Zist Pardaz Co, Member of Chahar Mahal and Bakhtiari Science and Technology Park, Shahrekord, Iran
| | - Alisam Aryan
- Medical Student, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ganjirad
- Student research committee, Hamedan University of medical sciences, Hamedan, Iran
| | - Faezeh Soveyzi
- Medical Student, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Hoseinsalari
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Mehdi Derisi
- Medical Student, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
64
|
Cao Z, Qiu Z, Tang F, Liang S, Wang Y, Long H, Chen C, Zhang B, Zhang C, Wang Y, Tang K, Tang J, Chen J, Yang C, Xu Y, Yang Y, Xiao S, Tian D, Jiang G, Du X. Drivers and forecasts of multiple waves of the coronavirus disease 2019 pandemic: a systematic analysis based on an interpretable machine learning framework. Transbound Emerg Dis 2022; 69:e1584-e1594. [PMID: 35192224 DOI: 10.1111/tbed.14492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has become a global pandemic and continues to prevail with multiple rebound waves in many countries. The driving factors for the spread of COVID-19 and their quantitative contributions, especially to rebound waves, are not well studied. Multidimensional time-series data, including policy, travel, medical, socioeconomic, environmental, mutant and vaccine related data, were collected from 39 countries up to June 30, 2021, and an interpretable machine learning framework (XGBoost model with Shapley Additive explanation interpretation) was used to systematically analyze the effect of multiple factors on the spread of COVID-19, using the daily effective reproduction number as an indicator. Based on a model of the pre-vaccine era, policy-related factors were shown to be the main drivers of the spread of COVID-19, with a contribution of 60.81%. In the post-vaccine era, the contribution of policy-related factors decreased to 28.34%, accompanied with an increase in the contribution of travel-related factors, such as domestic flights, and contributions emerged for mutant-related (16.49%) and vaccine-related (7.06%) factors. For single-peak countries, the dominant ones were policy-related factors during both the rising and fading stages, with overall contributions of 33.7% and 37.7%, respectively. For double-peak countries, factors from the rebound stage contributed 45.8% and policy-related factors showed the greatest contribution in both the rebound (32.6%) and fading (25.0%) stages. For multiple-peak countries, the Delta variant, domestic flights (current month) and the daily vaccination population are the three greatest contributors (8.12%, 7.59% and 7.26%, respectively). Forecasting models to predict the rebound risk were built based on these findings, with accuracies of 0.78 and 0.81 for the pre- and post-vaccine eras, respectively. These findings quantitatively demonstrate the systematic drivers of the spread of COVID-19, and the framework proposed in this study will facilitate the targeted prevention and control of the ongoing COVID-19 pandemic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zicheng Cao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Zekai Qiu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Feng Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,Foshan Center for Disease Control and Prevention, Foshan, 528010, P.R. China
| | - Shiwen Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350001, P.R. China
| | - Yinghan Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,Clinical research center, Second Affiliated Hospital of Kunming Medical University, Kunming, 650033, P.R. China
| | - Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Cai Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Bing Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Chi Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Yaqi Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Kang Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Jing Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Junhong Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Chunhui Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Yuzhe Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Yulin Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Shenglan Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Dechao Tian
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Guozhi Jiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P.R. China.,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510030, P.R. China
| |
Collapse
|
65
|
Wang Y, Chen XY, Yang L, Yao Q, Chen KP. Human SARS-CoV-2 has evolved to increase U content and reduce genome size. Int J Biol Macromol 2022; 204:356-363. [PMID: 35149094 PMCID: PMC8824384 DOI: 10.1016/j.ijbiomac.2022.02.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
Infections caused by SARS-CoV-2 have brought great harm to human health. After transmission for over two years, SARS-CoV-2 has diverged greatly and formed dozens of different lineages. Understanding the trend of its genome evolution could help foresee difficulties in controlling transmission of the virus. In this study, we conducted an extensive monthly survey and in-depth analysis on variations of nucleotide, amino acid and codon numbers in 311,260 virus samples collected till January 2022. The results demonstrate that the evolution of SARS-CoV-2 is toward increasing U-content and reducing genome-size. C, G and A to U mutations have all contributed to this U-content increase. Mutations of C, G and A at codon position 1, 2 or 3 have no significant difference in most SARS-CoV-2 lineages. Current viruses are more cryptic and more efficient in replication, and are thus less virulent yet more infectious. Delta and Omicron variants have high mutability over other lineages, bringing new threat to human health. This trend of genome evolution may provide a clue for tracing the origin of SARS-CoV-2, because ancestral viruses should have lower U-content and probably bigger genome-size.
Collapse
Affiliation(s)
- Yong Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Xin-Yu Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Liu Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qin Yao
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
66
|
Bortolini MJS, Petriz B, Mineo JR, Resende RDO. Why Physical Activity Should Be Considered in Clinical Trials for COVID-19 Vaccines: A Focus on Risk Groups. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1853. [PMID: 35162875 PMCID: PMC8834774 DOI: 10.3390/ijerph19031853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
Abstract
Since the World Health Organization declared the global COVID-19 state of emergency in early 2020, several vaccine candidates have emerged to control SARS-CoV-2, and some of them have been approved and implemented in vaccination campaigns worldwide. Although clinical trials for these vaccines have been carried out using highly controlled methods with accurate immunological tests, clinical questionnaires did not include questions concerning the physical activity profile among volunteers. It has been well established that physical activity plays a pivotal role in the immune response after vaccination, led by the activation of cytokines, antibodies, and cells. This concept should have been considered when evaluating the efficacy of COVID-19 vaccine candidates, particularly in elderly and obese people. Here, we discuss data from the literature providing strong evidence regarding the importance of analyzing physical activity parameters to improve the accuracy of clinical trials on assessing the efficacy of vaccine candidates.
Collapse
Affiliation(s)
- Miguel Junior Sordi Bortolini
- Laboratory of Translational Immunology, Health and Sports Sciences Center, Federal University of Acre, Rio Branco 69920-900, Brazil
| | - Bernardo Petriz
- Laboratory of Molecular Exercise Physiology, University Center UDF, Brasília 70390-045, Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo", Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-317, Brazil
| | - Rafael de Oliveira Resende
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro 21040-900, Brazil
- Laboratory of Allergy and Clinical Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-317, Brazil
| |
Collapse
|
67
|
Yanis A, Haddadin Z, Spieker AJ, Waqfi D, Rankin DA, Talj R, Thomas L, Birdwell KA, Ezzell L, Blair M, Eason J, Varjabedian R, Warren CM, Nochowicz CH, Olson EC, Simmons JD, Yoder S, Guy M, Thomsen I, Chappell JD, Kalams SA, Halasa NB. Humoral and cellular immune responses to the SARS-CoV-2 BNT162b2 vaccine among a cohort of solid organ transplant recipients and healthy controls. Transpl Infect Dis 2022; 24:e13772. [PMID: 34905653 DOI: 10.1111/tid.13772] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with increased morbidity and mortality in solid organ transplant (SOT) recipients. Despite exclusion from SARS-CoV-2 vaccine clinical trials, these individuals were identified as high-risk and prioritized for vaccination in public health guidelines. METHODS We prospectively evaluated humoral and cellular immune responses to two doses of the SARS-CoV-2 mRNA vaccine, BNT162b2, in 56 SOT recipients and 26 healthy controls (HCs). Blood specimens collected from participants prior to each dose and following the second dose were tested for SARS-CoV-2-specific antibodies, as well as CD4+ and CD8+ T-cell responses. RESULTS SOT recipients demonstrated lower mean anti-SARS-CoV-2 antibody levels compared to HCs after each dose, and only 21.6% achieved an antibody response after the second dose within the range of HC responses. Similarly, the percentage of responsive CD4+ and CD8+ T cells in SOT recipients was lower than in HCs. While most HCs showed notable humoral and cellular responses, responses were less concordant in SOT recipients, with some showing evidence of either humoral or cellular response, but not both. CONCLUSION Humoral and cellular immune responses to the BNT162b2 vaccine are markedly reduced in SOT recipients as compared to HCs, suggesting that SOT recipients may benefit from more tailored regimens such as higher dose and/or additional vaccinations.
Collapse
Affiliation(s)
- Ahmad Yanis
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zaid Haddadin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew J Spieker
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA
| | - Danya Waqfi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Danielle A Rankin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Epidemiology PhD Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Rana Talj
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lora Thomas
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelly A Birdwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lauren Ezzell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcia Blair
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joan Eason
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rebekkah Varjabedian
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christian M Warren
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cynthia H Nochowicz
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric C Olson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joshua D Simmons
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sandra Yoder
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madeline Guy
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Isaac Thomsen
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Spyros A Kalams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Natasha B Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
68
|
Yato K, Matsuda M, Watanabe N, Watashi K, Aizaki H, Kato T, Tamura K, Wakita T, Muramatsu M, Suzuki R. Induction of neutralizing antibodies against hepatitis C virus by a subviral particle-based DNA vaccine. Antiviral Res 2022; 199:105266. [DOI: 10.1016/j.antiviral.2022.105266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/26/2022]
|
69
|
Zhou W, Xu C, Wang P, Anashkina AA, Jiang Q. Impact of mutations in SARS-COV-2 spike on viral infectivity and antigenicity. Brief Bioinform 2022; 23:bbab375. [PMID: 34518867 PMCID: PMC8499914 DOI: 10.1093/bib/bbab375] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
Since the outbreak of SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, the viral genome has acquired numerous mutations with the potential to alter the viral infectivity and antigenicity. Part of mutations in SARS-CoV-2 spike protein has conferred virus the ability to spread more quickly and escape from the immune response caused by the monoclonal neutralizing antibody or vaccination. Herein, we summarize the spatiotemporal distribution of mutations in spike protein, and present recent efforts and progress in investigating the impacts of those mutations on viral infectivity and antigenicity. As mutations continue to emerge in SARS-CoV-2, we strive to provide systematic evaluation of mutations in spike protein, which is vitally important for the subsequent improvement of vaccine and therapeutic neutralizing antibody strategies.
Collapse
Affiliation(s)
- Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | | | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| |
Collapse
|
70
|
Zhang JW, Xiong Y, Wang F, Zhang FM, Yang X, Lin GQ, Tian P, Ge G, Gao D. Discovery of 9,10-dihydrophenanthrene derivatives as SARS-CoV-2 3CL pro inhibitors for treating COVID-19. Eur J Med Chem 2022; 228:114030. [PMID: 34883292 PMCID: PMC8634693 DOI: 10.1016/j.ejmech.2021.114030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/23/2022]
Abstract
The epidemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread worldwide and efficacious therapeutics are urgently needed. 3-Chymotrypsin-like cysteine protease (3CLpro) is an indispensable protein in viral replication and represents an attractive drug target for fighting COVID-19. Herein, we report the discovery of 9,10-dihydrophenanthrene derivatives as non-peptidomimetic and non-covalent inhibitors of the SARS-CoV-2 3CLpro. The structure-activity relationships of 9,10-dihydrophenanthrenes as SARS-CoV-2 3CLpro inhibitors have carefully been investigated and discussed in this study. Among all tested 9,10-dihydrophenanthrene derivatives, C1 and C2 display the most potent SARS-CoV-2 3CLpro inhibition activity, with IC50 values of 1.55 ± 0.21 μM and 1.81 ± 0.17 μM, respectively. Further enzyme kinetics assays show that these two compounds dose-dependently inhibit SARS-CoV-2 3CLprovia a mixed-inhibition manner. Molecular docking simulations reveal the binding modes of C1 in the dimer interface and substrate-binding pocket of the target. In addition, C1 shows outstanding metabolic stability in the gastrointestinal tract, human plasma, and human liver microsome, suggesting that this agent has the potential to be developed as an orally administrated SARS-CoV-2 3CLpro inhibitor.
Collapse
Affiliation(s)
- Jian-Wei Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Xiong
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feng Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fu-Mao Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaodi Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guo-Qiang Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ping Tian
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Dingding Gao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
71
|
Ozturk D, Gareayaghi N, Tahtasakal CA, Calik M, Altinbilek E. Antibody responses after two doses of CoronaVac of the participants with or without the diagnosis of COVID-19. Ir J Med Sci 2022; 191:2833-2838. [PMID: 35001336 PMCID: PMC8743087 DOI: 10.1007/s11845-021-02883-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/01/2021] [Indexed: 01/06/2023]
Abstract
Background CoronaVac, an inactivated whole-virion vaccine against COVID-19, has been shown to be safe with acceptable antibody responses by various clinical trials. Aims The objective was to investigate the post-vaccination antibody levels of both symptomatic and asymptomatic healthcare workers with or without the diagnosis of COVID-19 in an emergency department (ED) of a hospital serving as a pandemic hospital. Methods This single-centred, prospective study was conducted on 86 participants who were working as nurse or doctor in the ED. The volunteers were older than 18 years and either positive or negative for either computed tomography (CT), real-time reverse transcription polymerase chain reaction (qRT-PCR), or both. Thirty days after the second dose of CoronaVac (3 µg), the antibody levels were chemiluminescent microparticle immunoassay. Results Mean age of all participants were 33.1 ± 9.1 years. The antibody levels in the qRT-PCR( +) and CT( +) groups were significantly higher than the qRT-PCR( −) and CT( −) groups, respectively (p < 0.05). In the CT( +)/qRT-PCR( +) group, the antibody level was significantly higher than the CT( −)/qRT-PCR( −) and CT( −)/qRT-PCR( +) or CT( +)/qRT-PCR( −) group (p < 0.05). On the other hand, antibody levels in the hospitalized group were significantly higher than in the non-hospitalized group (p < 0.05). A significant positive correlation was observed between the time elapsed after vaccination and antibody levels of the participants (r = 0.343; p = 0.000). Conclusion In conclusion, antibody responses of recovered patients COVID-19 diagnosed by both CT and qRT-PCR were much robust than the patients diagnosed by either one of the techniques or undiagnosed/disease-free participants suggesting that severity of the disease likely contributes to the antibody responses after vaccination with CoronaVac.
Collapse
Affiliation(s)
- Derya Ozturk
- Department of Emergency Medicine, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Halaskargazi St, 34371, Sisli/Istanbul, Turkey
| | - Nesrin Gareayaghi
- Department of Microbiology, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Halaskargazi St, 34371, Sisli/Istanbul, Turkey
| | - Ceren Atasoy Tahtasakal
- Department of Infectious Diseases, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Halaskargazi St, 34371, Sisli/Istanbul, Turkey
| | - Mustafa Calik
- Department of Emergency Medicine, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Osmanbey St, 34255, Gaziosmanpasa/Istanbul, Turkey.
| | - Ertugrul Altinbilek
- Department of Emergency Medicine, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Halaskargazi St, 34371, Sisli/Istanbul, Turkey
| |
Collapse
|
72
|
Mohsen MO, Balke I, Zinkhan S, Zeltina V, Liu X, Chang X, Krenger PS, Plattner K, Gharailoo Z, Vogt AS, Augusto G, Zwicker M, Roongta S, Rothen DA, Josi R, da Costa JJ, Sobczak JM, Nonic A, Brand L, Nuss K, Martina B, Speiser DE, Kündig T, Jennings GT, Walton SM, Vogel M, Zeltins A, Bachmann MF. A scalable and highly immunogenic virus-like particle-based vaccine against SARS-CoV-2. Allergy 2022; 77:243-257. [PMID: 34496033 PMCID: PMC8653185 DOI: 10.1111/all.15080] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND SARS-CoV-2 caused one of the most devastating pandemics in the recent history of mankind. Due to various countermeasures, including lock-downs, wearing masks, and increased hygiene, the virus has been controlled in some parts of the world. More recently, the availability of vaccines, based on RNA or adenoviruses, has greatly added to our ability to keep the virus at bay; again, however, in some parts of the world only. While available vaccines are effective, it would be desirable to also have more classical vaccines at hand for the future. Key feature of vaccines for long-term control of SARS-CoV-2 would be inexpensive production at large scale, ability to make multiple booster injections, and long-term stability at 4℃. METHODS Here, we describe such a vaccine candidate, consisting of the SARS-CoV-2 receptor-binding motif (RBM) grafted genetically onto the surface of the immunologically optimized cucumber mosaic virus, called CuMVTT -RBM. RESULTS Using bacterial fermentation and continuous flow centrifugation for purification, the yield of the production process is estimated to be >2.5 million doses per 1000-litre fermenter run. We demonstrate that the candidate vaccine is highly immunogenic in mice and rabbits and induces more high avidity antibodies compared to convalescent human sera. The induced antibodies are more cross-reactive to mutant RBDs of variants of concern (VoC). Furthermore, antibody responses are neutralizing and long-lived. In addition, the vaccine candidate was stable for at least 14 months at 4℃. CONCLUSION Thus, the here presented VLP-based vaccine may be a good candidate for use as conventional vaccine in the long term.
Collapse
|
73
|
Kang H, Kim D, Min K, Park M, Kim SH, Sohn EJ, Choi BH, Hwang I. Recombinant proteins of spike protein of SARS-CoV-2 with the Omicron receptor-binding domain induce production of highly Omicron-specific neutralizing antibodies. Clin Exp Vaccine Res 2022; 11:285-289. [DOI: 10.7774/cevr.2022.11.3.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Hyangju Kang
- BioApplications Inc., Pohang Technopark Complex, Pohang, Korea
| | - Daniel Kim
- BioApplications Inc., Pohang Technopark Complex, Pohang, Korea
| | - Kyungmin Min
- BioApplications Inc., Pohang Technopark Complex, Pohang, Korea
| | - Minhee Park
- BioApplications Inc., Pohang Technopark Complex, Pohang, Korea
| | | | - Eun-Ju Sohn
- BioApplications Inc., Pohang Technopark Complex, Pohang, Korea
| | - Bo-Hwa Choi
- BioApplications Inc., Pohang Technopark Complex, Pohang, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
74
|
Development of Cell Lines for use in COVID-19 Drug Development and Research. Dela J Public Health 2021; 7:32-35. [PMID: 35619971 PMCID: PMC9124558 DOI: 10.32481/djph.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
75
|
Jacob Machado D, White RA, Kofsky J, Janies DA. Fundamentals of genomic epidemiology, lessons learned from the coronavirus disease 2019 (COVID-19) pandemic, and new directions. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2021; 1:e60. [PMID: 36168505 PMCID: PMC9495640 DOI: 10.1017/ash.2021.222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 04/19/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic was one of the significant causes of death worldwide in 2020. The disease is caused by severe acute coronavirus syndrome (SARS) coronavirus 2 (SARS-CoV-2), an RNA virus of the subfamily Orthocoronavirinae related to 2 other clinically relevant coronaviruses, SARS-CoV and MERS-CoV. Like other coronaviruses and several other viruses, SARS-CoV-2 originated in bats. However, unlike other coronaviruses, SARS-CoV-2 resulted in a devastating pandemic. The SARS-CoV-2 pandemic rages on due to viral evolution that leads to more transmissible and immune evasive variants. Technology such as genomic sequencing has driven the shift from syndromic to molecular epidemiology and promises better understanding of variants. The COVID-19 pandemic has exposed critical impediments that must be addressed to develop the science of pandemics. Much of the progress is being applied in the developed world. However, barriers to the use of molecular epidemiology in low- and middle-income countries (LMICs) remain, including lack of logistics for equipment and reagents and lack of training in analysis. We review the molecular epidemiology literature to understand its origins from the SARS epidemic (2002-2003) through influenza events and the current COVID-19 pandemic. We advocate for improved genomic surveillance of SARS-CoV and understanding the pathogen diversity in potential zoonotic hosts. This work will require training in phylogenetic and high-performance computing to improve analyses of the origin and spread of pathogens. The overarching goals are to understand and abate zoonosis risk through interdisciplinary collaboration and lowering logistical barriers.
Collapse
Affiliation(s)
- Denis Jacob Machado
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
| | - Richard Allen White
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
- University of North Carolina at Charlotte, North Carolina Research Campus (NCRC), Kannapolis, North Carolina
| | - Janice Kofsky
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
| | - Daniel A. Janies
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, Charlotte, North Carolina
| |
Collapse
|
76
|
Fan S, Li D, Zhao H, Yu L, Cui P, Wang L, Zhang Y, Liao Y, Xu X, Jiang G, Li Q. Ameliorated immunity elicited by intradermal inoculation in individuals vaccinated with inactivated SARS-CoV-2 vaccine. Vaccine 2021; 39:6980-6983. [PMID: 34732278 PMCID: PMC8531197 DOI: 10.1016/j.vaccine.2021.10.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/13/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022]
Abstract
In clinical trials, antibodies against SARS-CoV-2 were almost eliminated in participants six months after immunization with an inactivated SARS-CoV-2 vaccine. The short duration of antibody persistence is an urgent problem. In this study, the problem was solved by intradermal inoculation with trace antigen. Within 72 h after intradermal inoculation, slight inflammatory reactions, such as redness and swelling, were observed at the inoculation site of the participants. On the 7th, 60th and 180th days after inoculation, the antibodies of the participants were detected, and it was found that the neutralizing antibody and ELISA (IgGs) anti-S antibody levels rapidly increased and were maintained for 6 months. These results indicate that there was a SARS-CoV-2-specific immune response in the participants immunized with an inactivated SARS-CoV-2 vaccine, which could be quickly and massively activated by intradermal trace antigen inoculation to produce an effective clinically protective effect.
Collapse
Affiliation(s)
- Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Dandan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Heng Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Li Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Pingfang Cui
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Xingli Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Guorun Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China.
| |
Collapse
|
77
|
Rotshild V, Hirsh-Raccah B, Miskin I, Muszkat M, Matok I. Comparing the clinical efficacy of COVID-19 vaccines: a systematic review and network meta-analysis. Sci Rep 2021; 11:22777. [PMID: 34815503 PMCID: PMC8611039 DOI: 10.1038/s41598-021-02321-z] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/07/2021] [Indexed: 01/07/2023] Open
Abstract
New Coronavirus Disease 2019 (COVID-19) vaccines are available to prevent the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. We compared the efficacy of new COVID-19 vaccines to prevent symptomatic and severe disease in the adult population and to prevent symptomatic COVID-19 among the elderly. Leading medical databases were searched until August 30, 2021. Published phase 3 randomized controlled trials (RCTs) evaluated efficacy of the vaccine to prevent symptomatic and sever COVID-19 in adults were included. Two reviewers independently evaluated the literature search results and independently extracted summary data. The risk of bias was evaluated using the Cochrane Risk of Bias Assessment Tool. We performed a network meta-analysis (NMA) according to PRISMA-NMA 2015 to pool indirect comparisons between different vaccines regarding their relative efficacy. The primary outcomes were the efficacy of the vaccine against symptomatic COVID-19 in adults (PROSPERO registration number: CRD42021235364). Above 200,000 adult participants from eight phase 3 RCTs were included in NMA, of whom 52% received the intervention (active COVID-19 vaccine). While each of nine vaccines was tested in the unique clinical trial as compared to control, based on indirect comparison, BNT162b2 and mRNA-1273 vaccines were ranked with the highest probability of efficacy against symptomatic COVID-19 (P-scores 0.952 and 0.843, respectively), followed by Gam-COVID-Vac (P-score 0.782), NVX-CoV23730 (P-score 0.700), CoronaVac (P-score 0.570), BN02 (P-score 0.428), WIV04 (P-score 0.327), and Ad26.COV2.S (P-score 0.198). No statistically significant difference was seen in the ability of the vaccines to prevent symptomatic disease in the elderly population. No vaccine was statistically significantly associated with a decreased risk for severe COVID-19 than other vaccines, although mRNA-1273 and Gam-COVID-Vac have the highest P-scores (0.899 and 0.816, respectively), indicating greater protection against severe disease than other vaccines. In our indirect comparison, the BNT162b2 and mRNA-1273 vaccines, which use mRNA technology, were associated with the highest efficacy to prevent symptomatic COVID-19 compared to other vaccines. This finding may have importance when deciding which vaccine to use, together with other important factors as availability of the vaccines, costs, logistics, side effects, and patient acceptability.
Collapse
Affiliation(s)
- Victoria Rotshild
- Pharmacoepidemiology Research Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, 9112102, Jerusalem, Israel.
- Jerusalem Distric, Clalith Health Services Community Division, Jerusalem, Israel.
| | - Bruria Hirsh-Raccah
- Pharmacoepidemiology Research Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, 9112102, Jerusalem, Israel
- Department of Cardiology, Hadassah University Hospital Ein Karem, Jerusalem, Israel
| | - Ian Miskin
- Jerusalem Distric, Clalith Health Services Community Division, Jerusalem, Israel
| | - Mordechai Muszkat
- Department of Medicine, Hadassah University Hospital Mt. Scopus, Jerusalem, Israel
| | - Ilan Matok
- Pharmacoepidemiology Research Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, 9112102, Jerusalem, Israel
| |
Collapse
|
78
|
Jeong S, Lee N, Lee SK, Cho EJ, Hyun J, Park MJ, Song W, Jung EJ, Woo H, Seo YB, Park JJ, Kim HS. Comparison of the Results of Five SARS-CoV-2 Antibody Assays before and after the First and Second ChAdOx1 nCoV-19 Vaccinations among Health Care Workers: a Prospective Multicenter Study. J Clin Microbiol 2021; 59:e0178821. [PMID: 34613799 PMCID: PMC8601234 DOI: 10.1128/jcm.01788-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/28/2021] [Indexed: 01/31/2023] Open
Abstract
Reliable results for serological positivity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody after the second dose of AstraZeneca (AZ) vaccination are important to estimate the real efficacy of vaccination. We evaluated positivity rates and changes in semiquantitative antibody titers before and after the first and second ChAdOx1 nCoV-19 vaccinations using five SARS-CoV-2 antibody assays, including two surrogate virus neutralization tests. A total of 674 serum samples were obtained from 228 participants during three blood sampling periods. A questionnaire on symptoms, severity, and adverse reaction duration was completed by participants after the second vaccination. The overall positive rates for all assays were 0.0 to 0.9% before vaccination, 66.2 to 92.5% after the first vaccination, and 98.2 to 100.0% after the second vaccination. Median antibody titers in five assays after the second dose of vaccination were increased compared to those after the first dose (106.4-fold increase for Roche total antibody, 3.6-fold for Abbott IgG, 3.6-fold for Siemens, 1.2-fold for SD Biosensor V1 neutralizing antibody, and 2.2-fold for GenScript neutralizing antibody). Adverse reactions were reduced after the second dose in 89.9% of participants compared to after the first dose. Overall, the second vaccination led to almost 100% positivity rates based on these SARS-CoV-2 antibody assays. The results should be interpreted with caution, considering the characteristics of the applied assays. Our findings could inform decisions regarding vaccination and the use of immunoassays, thus contributing to SARS-CoV-2 pandemic control.
Collapse
Affiliation(s)
- Seri Jeong
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Nuri Lee
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Su Kyung Lee
- Department of Laboratory Medicine, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - Eun-Jung Cho
- Department of Laboratory Medicine, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - Jungwon Hyun
- Department of Laboratory Medicine, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - Min-Jeong Park
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Wonkeun Song
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Eun Ju Jung
- Division of Infectious Diseases, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - Heungjeong Woo
- Division of Infectious Diseases, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - Yu Bin Seo
- Division of Infectious Diseases, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Jin Ju Park
- Division of Infectious Diseases, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| |
Collapse
|
79
|
Al‐Metwali BZ, Al‐Jumaili AA, Al‐Alag ZA, Sorofman B. Exploring the acceptance of COVID-19 vaccine among healthcare workers and general population using health belief model. J Eval Clin Pract 2021; 27:1112-1122. [PMID: 33960582 PMCID: PMC8242385 DOI: 10.1111/jep.13581] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022]
Abstract
RATIONALE, AIMS AND OBJECTIVES Little is known about hesitancy to receive the COVID-19 vaccines. The objectives of this study were (1) to assess the perceptions of healthcare workers (HCWs) and the general population regarding the COVID-19 vaccines, (2) to evaluate factors influencing the acceptance of vaccination using the health belief model (HBM), and (3) to qualitatively explore the suggested intervention strategies to promote the vaccination. METHODS This was a cross-sectional study based on electronic survey data that was collected in Iraq during December first-19th, 2020. The electronic survey was designed using Qualtrics. HBM was followed to develop the survey items. A regression analysis was used to identify factors influencing people accepting vaccination. Thematic analysis for participant comments to an open-ended question. RESULTS A total of 1680 completed surveys were received. The mean age of 31.2 ± 9.9 years, 53.0% were female and 47.0% were male. The largest group was HCWs (45.7%), followed by general population (37.5%) and health college students (16.8%). Our findings expressed some hesitancy to receive the COVID-19 vaccine with the acceptance rate of 61.7%. The HCWs perceived significantly higher susceptibility and severity of the COVID-19 infection compared to the general population. The HCWs were significantly more likely than the general population to receive COVID-19 vaccine. Concerns with proper storage was the biggest barrier to vaccine receipt. The regression analysis indicated eight factors that were significantly associated with the willingness to receive COVID-19 vaccine: Preventive measures, perceived benefit, perceived barriers, cue to action, subjective norm, supportive of vaccination in general and having received a flu vaccine before. CONCLUSIONS Awareness campaign can focus on enhancing the vaccine perceived benefit, debunking misconceptions, and increasing the disease perceived severity. Additionally, the public health leaders need to minimize the perceived barriers by providing the vaccines and appeasing people concerns about their storage, effectiveness, and adverse events.
Collapse
Affiliation(s)
| | - Ali Azeez Al‐Jumaili
- University of Baghdad College of PharmacyBaghdadIraq
- The University of Iowa College of PharmacyIowa CityIowaUSA
| | | | | |
Collapse
|
80
|
Modak C, Jha A, Sharma N, Kumar A. Chitosan derivatives: A suggestive evaluation for novel inhibitor discovery against wild type and variants of SARS-CoV-2 virus. Int J Biol Macromol 2021; 187:492-512. [PMID: 34324908 PMCID: PMC8313795 DOI: 10.1016/j.ijbiomac.2021.07.144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022]
Abstract
With increasing global cases and mortality rates due to COVID-19 infection, finding effective therapeutic interventions has become a top priority. Marine resources are not explored much and to be taken into consideration for exploring antiviral potential. Chitosan (carbohydrate polymer) is one such bioactive glycan found ubiquitously in marine organisms. The presence of reactive amine/hydroxyl groups, with low toxicity/allergenicity, compels us to explore it against SARS-CoV-2. We have screened a library of chitosan derivatives by site-specific docking at not only spike protein Receptor Binding Domain (RBD) of wild type SARS-CoV-2 but also on RBD of B.1.1.7 (UK) and P.1 (Brazil) SARS-CoV-2 variants. The obtained result was very interesting and ranks N-benzyl-O-acetyl-chitosan, Imino-chitosan, Sulfated-chitosan oligosaccharides derivatives as a potent antiviral candidate due to its high binding affinity of the ligands (-6.0 to -6.6 kcal/mol) with SARS-CoV-2 spike protein RBD and they critically interacting with amino acid residues Tyr 449, Asn 501, Tyr 501, Gln 493, Gln 498 and some other site-specific residues associated with higher transmissibility and severe infection. Further ADMET analysis was done and found significant for exploration of the future therapeutic potential of these three ligands. The obtained results are highly encouraging in support for consideration and exploration in further clinical studies of these chitosan derivatives as anti-SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Chandrima Modak
- Birla Institute of Technology and Sciences (BITS), Pilani campus, Rajasthan, India
| | - Anubhuti Jha
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, Chhattisgarh, India
| | - Nivya Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, Chhattisgarh, India.
| |
Collapse
|
81
|
Halaji M, Heiat M, Faraji N, Ranjbar R. Epidemiology of COVID-19: An updated review. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2021; 26:82. [PMID: 34759999 PMCID: PMC8548902 DOI: 10.4103/jrms.jrms_506_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/30/2020] [Accepted: 04/25/2021] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a zoonotic infection, is responsible for COVID-19 pandemic and also is known as a public health concern. However, so far, the origin of the causative virus and its intermediate hosts is yet to be fully determined. SARS-CoV-2 contains nearly 30,000 letters of RNA that allows the virus to infect cells and hijack them to make new viruses. On the other hand, among 14 detected mutations in the SARS-CoV-2 S protein that provide advantages to virus for transmission and evasion form treatment, the D614G mutation (substitution of aspartic acid [D] with glycine [G] in codon 614 was particular which could provide the facilitation of the transmission of the virus and virulence. To date, in contrary to the global effort to come up with various aspects of SARS-CoV-2, there are still great pitfalls in the knowledge of this disease and many angles remain unclear. That's why, the monitoring and periodical investigation of this emerging infection in an epidemiological study seems to be essential. The present study characterizes the current epidemiological status (i.e., possible transmission route, mortality and morbidity risk, emerging SARS-CoV-2 variants, and clinical feature) of the SARS-CoV-2 in the world during these pandemic.
Collapse
Affiliation(s)
- Mehrdad Halaji
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Niloofar Faraji
- Department of Medical Laboratory Sciences, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
82
|
Ren X, Shen F, Gui Y, Wang W, Xing B, Huang W. The attitudes of psychiatric patients towards COVID-19 vaccination in China: a cross-sectional study. BMC Psychiatry 2021; 21:475. [PMID: 34587935 PMCID: PMC8479711 DOI: 10.1186/s12888-021-03484-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic has become a global health catastrophe. By far, there has been no specific antiviral treatment for COVID-19. Developing a vaccine against COVID-19 appeared to be the most cost-effective strategy to stop the repeated outbreak. This study aimed to investigate the attitudes of psychiatric patients with regards to COVID-19 vaccination and potential factors that might influence their decision-making process. METHODS Psychiatric patients participated in this cross-sectional survey in China. Family caregivers, usually a guardian or next of kin completed the questionnaire when the patient is unable to consent. Data was collected via an online self-administered questionnaire. This questionnaire focused on four main attributes: (1) sociology-demographic characteristics, such as age and sex; (2) questions relating to the COVID-19 pandemic, such as perceived risk of COVID-19; (3) Flu vaccination history; and (4) attitude towards COVID-19 vaccination and affected factors, such as preferred vaccine type and vaccination site. The associated factors that influenced vaccination acceptance were analyzed by Chi-square analysis and binary logistic regression. RESULTS In total, 416 individuals were recruited, from which 408: 229 patients and 179 family caregivers completed the online survey (response rate: 98.1%). 78.7% of the participants (178 patients and 143 family caregivers) said they intended to receive vaccination once the COVID-19 vaccine became available on the market. Our results showed that participants would have a greater likelihood of joining the COVID-9 immunization programme if the people they knew (community residents or their friends and relatives) presented with high vaccine coverage (OR = 0.24; 95% CI:0.09-0.59). If the pandemic returns, participants were also more likely to accept vaccination (OR = 0.21; 95% CI:0.07-0.62). Moreover, those who believed that the vaccination was an important way to control the COVID-19 pandemic also showed a tendency to receive vaccination (OR = 0.21; 95% CI:0.11-0.40). For those who did not intend to get vaccinated either for themselves or their psychiatric family member, the safety of vaccine was their main concern (71.3%). CONCLUSIONS This study showed a high acceptance rate for COVID-19 vaccination amongst psychiatric patients, while worries about the safety of vaccine led to refusal towards vaccination. To increase vaccination uptake amongst this vulnerable group, the public health messaging should include updated vaccination coverage in local communities, and the number of newly COVID-19 infected cases. Specific information about vaccine safety concerning psychiatric patients; as well as the importance of vaccination in controlling the pandemic should be explained in detail.
Collapse
Affiliation(s)
- Xin Ren
- grid.417168.d0000 0004 4666 9789Tongde Hospital of Zhejiang Province, Mental Health Center of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, Zhejiang Province China
| | - Fang Shen
- grid.417168.d0000 0004 4666 9789Tongde Hospital of Zhejiang Province, Mental Health Center of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, Zhejiang Province China
| | - Yan Gui
- grid.417168.d0000 0004 4666 9789Tongde Hospital of Zhejiang Province, Mental Health Center of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, Zhejiang Province China
| | - Weixin Wang
- grid.417168.d0000 0004 4666 9789Tongde Hospital of Zhejiang Province, Mental Health Center of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, Zhejiang Province China
| | - Baoping Xing
- grid.417168.d0000 0004 4666 9789Tongde Hospital of Zhejiang Province, Mental Health Center of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, Zhejiang Province China
| | - Wanli Huang
- Tongde Hospital of Zhejiang Province, Mental Health Center of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
83
|
Immune Responses against SARS-CoV-2-Questions and Experiences. Biomedicines 2021; 9:biomedicines9101342. [PMID: 34680460 PMCID: PMC8533170 DOI: 10.3390/biomedicines9101342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding immune reactivity against SARS-CoV-2 is essential for coping with the COVID-19 pandemic. Herein, we discuss experiences and open questions about the complex immune responses to SARS-CoV-2. Some people react excellently without experiencing any clinical symptoms, they do not get sick, and they do not pass the virus on to anyone else ("sterilizing" immunity). Others produce antibodies and do not get COVID-19 but transmit the virus to others ("protective" immunity). Some people get sick but recover. A varying percentage develops respiratory failure, systemic symptoms, clotting disorders, cytokine storms, or multi-organ failure; they subsequently decease. Some develop long COVID, a new pathologic entity similar to fatigue syndrome or autoimmunity. In reality, COVID-19 is considered more of a systemic immune-vascular disease than a pulmonic disease, involving many tissues and the central nervous system. To fully comprehend the complex clinical manifestations, a profound understanding of the immune responses to SARS-CoV-2 is a good way to improve clinical management of COVID-19. Although neutralizing antibodies are an established approach to recognize an immune status, cellular immunity plays at least an equivalent or an even more important role. However, reliable methods to estimate the SARS-CoV-2-specific T cell capacity are not available for clinical routines. This deficit is important because an unknown percentage of people may exist with good memory T cell responsibility but a low number of or completely lacking peripheral antibodies against SARS-CoV-2. Apart from natural immune responses, vaccination against SARS-CoV-2 turned out to be very effective and much safer than naturally acquired immunity. Nevertheless, besides unwanted side effects of the currently available vector and mRNA preparations, concerns remain whether these vaccines will be strong enough to defeat the pandemic. Altogether, herein we discuss important questions, and try to give answers based on the current knowledge and preliminary data from our laboratories.
Collapse
|
84
|
ÖZTÜRK R. Exploring healthcare professionals’ views and approaches regarding COVID-19 vaccines. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2021. [DOI: 10.32322/jhsm.952354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
85
|
Ultramicronized Palmitoylethanolamide Inhibits NLRP3 Inflammasome Expression and Pro-Inflammatory Response Activated by SARS-CoV-2 Spike Protein in Cultured Murine Alveolar Macrophages. Metabolites 2021; 11:metabo11090592. [PMID: 34564408 PMCID: PMC8472716 DOI: 10.3390/metabo11090592] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Despite its possible therapeutic potential against COVID-19, the exact mechanism(s) by which palmitoylethanolamide (PEA) exerts its beneficial activity is still unclear. PEA has demonstrated analgesic, anti-allergic, and anti-inflammatory activities. Most of the anti-inflammatory properties of PEA arise from its ability to antagonize nuclear factor-κB (NF-κB) signalling pathway via the selective activation of the PPARα receptors. Acting at this site, PEA can downstream several genes involved in the inflammatory response, including cytokines (TNF-α, Il-1β) and other signal mediators, such as inducible nitric oxide synthase (iNOS) and COX2. To shed light on this, we tested the anti-inflammatory and immunomodulatory activity of ultramicronized(um)-PEA, both alone and in the presence of specific peroxisome proliferator-activated receptor alpha (PPAR-α) antagonist MK886, in primary cultures of murine alveolar macrophages exposed to SARS-CoV-2 spike glycoprotein (SP). SP challenge caused a significant concentration-dependent increase in proinflammatory markers (TLR4, p-p38 MAPK, NF-κB) paralleled to a marked upregulation of inflammasome-dependent inflammatory pathways (NLRP3, Caspase-1) with IL-6, IL-1β, TNF-α over-release, compared to vehicle group. We also observed a significant concentration-dependent increase in angiotensin-converting enzyme-2 (ACE-2) following SP challenge. um-PEA concentration-dependently reduced all the analyzed proinflammatory markers fostering a parallel downregulation of ACE-2. Our data show for the first time that um-PEA, via PPAR-α, markedly inhibits the SP induced NLRP3 signalling pathway outlining a novel mechanism of action of this lipid against COVID-19.
Collapse
|
86
|
Hennon TR, Yu KOA, Penque MD, Abdul-Aziz R, Chang AC, McGreevy MB, Pastore JV, Prout AJ, Schaefer BA, Alibrahim OS, Gomez-Duarte OG, Hicar MD. COVID-19 associated Multisystem Inflammatory Syndrome in Children (MIS-C) guidelines; revisiting the Western New York approach as the pandemic evolves. PROGRESS IN PEDIATRIC CARDIOLOGY 2021; 62:101407. [PMID: 34121829 PMCID: PMC8179839 DOI: 10.1016/j.ppedcard.2021.101407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Multisystem inflammatory syndrome of children (MIS-C) continues to be a highly concerning diagnosis in those recently infected with SARS-CoV-2. The diagnosis of MIS-C cases will likely become even more challenging as vaccine uptake and natural immunity in previously infected persons leads to lower circulating rates of SARS-CoV-2 infection and will make cases sporadic. Febrile children presenting with cardiac dysfunction, symptoms overlapping Kawasaki disease or significant gastrointestinal complaints warrant a thorough screen in emergency departments, urgent care centers, and outpatient pediatric or family medicine practices. An increased index of suspicion and discussion regarding higher level of care (transferring to pediatric tertiary care centers or to intensive care) continues to be recommended. Herein we outline a broad approach with a multidisciplinary team for those meeting the case definition and believe such an approach is crucial for successful outcomes.
Collapse
Key Words
- AP, approved
- ASO, anti-streptolysin O
- BNP, brain-natriuretic peptide
- CDC, Center for Disease Control
- COVID-19
- COVID-19, coronavirus disease 2019
- CRP, C-reactive protein
- CXCL10, C-X-C-motif chemokine ligand 10
- DCBLD2, Discoidin, CUB and LCCL domain-containing protein 2
- E, envelope protein
- E.U., European Union
- ECMO, extracorporeal membrane oxygenation
- EKG, electrocardiogram
- EM, emergency use
- FDA, US Food and Drug Authority
- Fever
- GI, gastrointestinal
- IL, interleukin
- IVIG, intravenous immunoglobulin G
- Inflammation
- KD, Kawasaki disease
- LDH, lactate dehydrogenase
- LFTs, liver function tests
- M, membrane protein
- MIS-C
- MIS-C, Multisystem Inflammatory Syndrome in Children
- Mpred, methylprednisolone
- NP, Nucleoprotein
- PCR, polymerase chain reaction
- PT, prothrombin time
- PTT, partial thromboplastin time
- Pediatric
- RBD, receptor binding domain
- SARS-CoV-2
- TE, thromboembolic events
- TNF, tumor necrosis factor
- TWEAK, TNF-like weak inducer of apoptosis
- U.S., United States of America
- VA, veno-arterial
- VLPs, virus-like particles
- VTE, venous thromboembolic events
Collapse
Affiliation(s)
- Teresa R Hennon
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- John R. Oishei Children's Hospital, Buffalo, NY, United States of America
| | - Karl O A Yu
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- John R. Oishei Children's Hospital, Buffalo, NY, United States of America
| | - Michelle D Penque
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- John R. Oishei Children's Hospital, Buffalo, NY, United States of America
| | - Rabheh Abdul-Aziz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- John R. Oishei Children's Hospital, Buffalo, NY, United States of America
| | - Arthur C Chang
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- John R. Oishei Children's Hospital, Buffalo, NY, United States of America
| | - Megan B McGreevy
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- John R. Oishei Children's Hospital, Buffalo, NY, United States of America
| | - John V Pastore
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- John R. Oishei Children's Hospital, Buffalo, NY, United States of America
| | - Andrew J Prout
- Wayne State University School of Medicine, Detroit, MI, United States of America
- Children's Hospital of Michigan, Detroit, MI, United States of America
| | - Beverly A Schaefer
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- John R. Oishei Children's Hospital, Buffalo, NY, United States of America
| | - Omar S Alibrahim
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- John R. Oishei Children's Hospital, Buffalo, NY, United States of America
| | - Oscar G Gomez-Duarte
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- John R. Oishei Children's Hospital, Buffalo, NY, United States of America
| | - Mark D Hicar
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- John R. Oishei Children's Hospital, Buffalo, NY, United States of America
| |
Collapse
|
87
|
Gupta J, Bavinck M, Ros-Tonen M, Asubonteng K, Bosch H, van Ewijk E, Hordijk M, Van Leynseele Y, Lopes Cardozo M, Miedema E, Pouw N, Rammelt C, Scholtens J, Vegelin C, Verrest H. COVID-19, poverty and inclusive development. WORLD DEVELOPMENT 2021; 145:105527. [PMID: 36570384 PMCID: PMC9758535 DOI: 10.1016/j.worlddev.2021.105527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 05/05/2023]
Abstract
The COVID-19 epidemic provides yet another reason to prioritize inclusive development. Current response strategies of the global community and countries expose a low level of solidarity with poorer nations and poorer people in all nations. Against this background, this paper addresses the question: What are the development challenges that the COVID-19 pandemic lays bare and what lessons can be learnt for the way recovery processes are designed? Using an inclusive development and DPSIR lens to assess the literature, our study finds that, first, the current response prioritises the 'state' and 'impact' concerns of wealthier classes at the expense of the remainder of the world population. Second, responses have ignored underlying 'drivers' and 'pressures', instead aiming at a quick recovery of the economy. Third, a return to business-as-usual using government funding will lead to a vicious cycle of further ecological degradation, socio-economic inequality and domestic abuse that assist in exacerbating the drivers of the pandemic. We argue instead for an inclusive development approach that leads to a virtuous cycle by emphasizing human health, well-being and ecosystem regeneration. We conclude that the lost years for development did not commence in 2020 with the onset of COVID-19; the downward trend has actually been waxing over the past three decades. From this perspective, COVID-19 may be the shock needed to put the last first and transform vicious into virtuous cycles of inclusive development.
Collapse
Affiliation(s)
- Joyeeta Gupta
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| | - Maarten Bavinck
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| | - Mirjam Ros-Tonen
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| | - Kwabena Asubonteng
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| | - Hilmer Bosch
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| | - Edith van Ewijk
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| | - Michaela Hordijk
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| | - Yves Van Leynseele
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| | - Mieke Lopes Cardozo
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| | - Esther Miedema
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| | - Nicky Pouw
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| | - Crelis Rammelt
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| | - Joeri Scholtens
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| | - Courtney Vegelin
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| | - Hebe Verrest
- Amsterdam Institute for Social Science Research (AISSR), University of Amsterdam, Nieuwe Achtergracht 166, Postbus 15629, 1001 NC Amsterdam, The Netherlands
| |
Collapse
|
88
|
Soh SM, Kim Y, Kim C, Jang US, Lee HR. The rapid adaptation of SARS-CoV-2-rise of the variants: transmission and resistance. J Microbiol 2021; 59:807-818. [PMID: 34449057 PMCID: PMC8390340 DOI: 10.1007/s12275-021-1348-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 01/18/2023]
Abstract
The causative factor of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously mutating. Interestingly, identified mutations mainly occur in the spike (S) protein which interacts with the ACE2 receptor and is cleaved via serine protease TMPRSS2. Some mutated strains are becoming dominant in various parts of the globe because of increased transmissibility as well as cell entry efficacy. Remarkably, the neutralizing activity of monoclonal antibodies, convalescent sera, and vaccines against the variants has been reported to be significantly reduced. Therefore, the efficacy of various monoclonal antibodies therapy and vaccines against these variants is becoming a great global concern. We herein summarize the current status of SARS-CoV-2 with gears shifted towards the recent and most common genetic variants in relation to transmission, neutralizing activity, and vaccine efficacy.
Collapse
Affiliation(s)
- Sandrine M Soh
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Yeongjun Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Chanwoo Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Ui Soon Jang
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 30019, Republic of Korea.
- Department of Lab Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
89
|
Rotondo JC, Martini F, Maritati M, Mazziotta C, Di Mauro G, Lanzillotti C, Barp N, Gallerani A, Tognon M, Contini C. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses 2021; 13:1687. [PMID: 34578269 PMCID: PMC8473168 DOI: 10.3390/v13091687] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly discovered coronavirus responsible for the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 has rapidly become a public health emergency of international concern. Although remarkable scientific achievements have been reached since the beginning of the pandemic, the knowledge behind this novel coronavirus, in terms of molecular and pathogenic characteristics and zoonotic potential, is still relatively limited. Today, there is a vaccine, or rather several vaccines, which, for the first time in the history of highly contagious infectious diseases that have plagued mankind, has been manufactured in just one year. Currently, four vaccines are licensed by regulatory agencies, and they use RNA or viral vector technologies. The positive effects of the vaccination campaign are being felt in many parts of the world, but the disappearance of this new infection is still far from being a reality, as it is also threatened by the presence of novel SARS-CoV-2 variants that could undermine the effectiveness of the vaccine, hampering the immunization control efforts. Indeed, the current findings indicate that SARS-CoV-2 is adapting to transmission in humans more efficiently, while further divergence from the initial archetype should be considered. In this review, we aimed to provide a collection of the current knowledge regarding the molecular, phylogenetic, and pathogenetic insights into SARS-CoV-2. The most recent findings obtained with respect to the impact of novel emerging SARS-CoV-2 variants as well as the development and implementation of vaccines are highlighted.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Giulia Di Mauro
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Nicole Barp
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| | - Altea Gallerani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| |
Collapse
|
90
|
Awadasseid A, Yin Q, Wu Y, Zhang W. Potential protective role of the anti-PD-1 blockade against SARS-CoV-2 infection. Biomed Pharmacother 2021; 142:111957. [PMID: 34339917 PMCID: PMC8315943 DOI: 10.1016/j.biopha.2021.111957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
The outbreak of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan, China, in December 2019, and its global dissemination became the coronavirus disease 2019 (COVID-19) pandemic declared by the World Health Organization (WHO) on 11 March 2020. In patients undergoing immunotherapy, the effect and path of viral infection remain uncertain. In addition, viral-infected mice and humans show T-cell exhaustion, which is identified after infection with SARS-CoV-2. Notably, they regain their T-cell competence and effectively prevent viral infection when treated with anti-PD-1 antibodies. Four clinical trials are officially open to evaluate anti-PD-1 antibody administration's effectiveness for cancer and non-cancer individuals influenced by COVID-19 based on these findings. The findings may demonstrate the hypothesis that a winning strategy to combat SARS-CoV-2 infection could be the restoration of exhausted T-cells. In this review, we outline the potential protective function of the anti-PD-1 blockade against SARS-CoV-2 infection with the aim to develop SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China; Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid 51111, Sudan
| | - Qiang Yin
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
91
|
Tanriover MD, Doğanay HL, Akova M, Güner HR, Azap A, Akhan S, Köse Ş, Erdinç FŞ, Akalın EH, Tabak ÖF, Pullukçu H, Batum Ö, Şimşek Yavuz S, Turhan Ö, Yıldırmak MT, Köksal İ, Taşova Y, Korten V, Yılmaz G, Çelen MK, Altın S, Çelik İ, Bayındır Y, Karaoğlan İ, Yılmaz A, Özkul A, Gür H, Unal S. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021; 398:213-222. [PMID: 34246358 PMCID: PMC8266301 DOI: 10.1016/s0140-6736(21)01429-x] [Citation(s) in RCA: 628] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND CoronaVac, an inactivated whole-virion SARS-CoV-2 vaccine, has been shown to be well tolerated with a good safety profile in individuals aged 18 years and older in phase 1/2 trials, and provided a good humoral response against SARS-CoV-2. We present the interim efficacy and safety results of a phase 3 clinical trial of CoronaVac in Turkey. METHODS This was a double-blind, randomised, placebo-controlled phase 3 trial. Volunteers aged 18-59 years with no history of COVID-19 and with negative PCR and antibody test results for SARS-CoV-2 were enrolled at 24 centres in Turkey. Exclusion criteria included (but were not limited to) immunosuppressive therapy (including steroids) within the past 6 months, bleeding disorders, asplenia, and receipt of any blood products or immunoglobulins within the past 3 months. The K1 cohort consisted of health-care workers (randomised in a 1:1 ratio), and individuals other than health-care workers were also recruited into the K2 cohort (randomised in a 2:1 ratio) using an interactive web response system. The study vaccine was 3 μg inactivated SARS-CoV-2 virion adsorbed to aluminium hydroxide in a 0·5 mL aqueous suspension. Participants received either vaccine or placebo (consisting of all vaccine components except inactivated virus) intramuscularly on days 0 and 14. The primary efficacy outcome was the prevention of PCR-confirmed symptomatic COVID-19 at least 14 days after the second dose in the per protocol population. Safety analyses were done in the intention-to-treat population. This study is registered with ClinicalTrials.gov (NCT04582344) and is active but no longer recruiting. FINDINGS Among 11 303 volunteers screened between Sept 14, 2020, and Jan 5, 2021, 10 218 were randomly allocated. After exclusion of four participants from the vaccine group because of protocol deviations, the intention-to-treat group consisted of 10 214 participants (6646 [65·1%] in the vaccine group and 3568 [34·9%] in the placebo group) and the per protocol group consisted of 10 029 participants (6559 [65·4%] and 3470 [34·6%]) who received two doses of vaccine or placebo. During a median follow-up period of 43 days (IQR 36-48), nine cases of PCR-confirmed symptomatic COVID-19 were reported in the vaccine group (31·7 cases [14·6-59·3] per 1000 person-years) and 32 cases were reported in the placebo group (192·3 cases [135·7-261·1] per 1000 person-years) 14 days or more after the second dose, yielding a vaccine efficacy of 83·5% (95% CI 65·4-92·1; p<0·0001). The frequencies of any adverse events were 1259 (18·9%) in the vaccine group and 603 (16·9%) in the placebo group (p=0·0108) with no fatalities or grade 4 adverse events. The most common systemic adverse event was fatigue (546 [8·2%] participants in the vaccine group and 248 [7·0%] the placebo group, p=0·0228). Injection-site pain was the most frequent local adverse event (157 [2·4%] in the vaccine group and 40 [1·1%] in the placebo group, p<0·0001). INTERPRETATION CoronaVac has high efficacy against PCR-confirmed symptomatic COVID-19 with a good safety and tolerability profile. FUNDING Turkish Health Institutes Association.
Collapse
Affiliation(s)
- Mine Durusu Tanriover
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey; Hacettepe University Vaccine Institute, Ankara, Turkey
| | - Hamdi Levent Doğanay
- Department of Gastroenterology, Turkish Republic Ministry of Health, İstanbul Provincial Health Directorate, University of Health Sciences İstanbul Ümraniye Training and Research Hospital, İstanbul, Turkey
| | - Murat Akova
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey; Hacettepe University Vaccine Institute, Ankara, Turkey.
| | - Hatice Rahmet Güner
- Department of Infectious Diseases and Clinical Microbiology, Ankara Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Alpay Azap
- Department of Infectious Diseases and Clinical Microbiology, Ankara University School of Medicine, Ankara, Turkey
| | - Sıla Akhan
- Department of Infectious Diseases and Clinical Microbiology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Şükran Köse
- Department of Infectious Diseases, Turkish Republic Ministry of Health, İzmir Provincial Health Directorate, İzmir University of Health Sciences Tepecik Training and Research Hospital, İzmir, Turkey
| | - Fatma Şebnem Erdinç
- Department of Infectious Diseases, Turkish Republic Ministry of Health, Ankara Provincial Health Directorate, Ankara Training and Research Hospital, Ankara, Turkey
| | - Emin Halis Akalın
- Department of Infectious Diseases and Clinical Microbiology, Bursa Uludağ University Health Application and Research Centre, Bursa Uludağ University Hospital, Bursa, Turkey
| | - Ömer Fehmi Tabak
- Department of Infectious Diseases and Clinical Microbiology, İstanbul University-Cerrahpaşa, Cerrahpaşa School of Medicine, İstanbul, Turkey
| | - Hüsnü Pullukçu
- Department of Infectious Diseases and Clinical Microbiology, Ege University School of Medicine, İzmir, Turkey
| | - Özgür Batum
- Department of Chest Diseases, Turkish Republic Ministry of Health, İzmir Provincial Health Directorate, University of Health Sciences Dr Suat Seren Chest Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| | - Serap Şimşek Yavuz
- Department of Infectious Diseases and Clinical Microbiology, İstanbul University, İstanbul School of Medicine, İstanbul, Turkey
| | - Özge Turhan
- Department of Infectious Diseases and Clinical Microbiology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Mustafa Taner Yıldırmak
- Department of Infectious Diseases and Clinical Microbiology, Turkish Republic Ministry of Health, İstanbul Provincial Health Directorate, Prof Dr Cemil Taşcıoğlu City Hospital, İstanbul, Turkey
| | - İftihar Köksal
- Department of Infectious Diseases and Clinical Microbiology, Acıbadem University Atakent Hospital, İstanbul, Turkey
| | - Yeşim Taşova
- Department of Infectious Diseases and Clinical Microbiology, Çukurova University Balcalı Hospital Health Application and Research Centre, Adana, Turkey
| | - Volkan Korten
- Department of Infectious Diseases and Clinical Microbiology, Marmara University School of Medicine, İstanbul, Turkey
| | - Gürdal Yılmaz
- Department of Infectious Diseases and Clinical Microbiology, Karadeniz Technical University School of Medicine, Trabzon, Turkey; Department of Chest Diseases, Turkish Republic Ministry of Health, Ankara Provincial Health Directorate, Ankara Keçiören Sanatorium, Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey
| | - Mustafa Kemal Çelen
- Department of Infectious Diseases and Clinical Microbiology, Dicle University School of Medicine, Diyarbakır, Turkey
| | - Sedat Altın
- Department of Chest Diseases, Turkish Republic Ministry of Health, İstanbul Provincial Health Directorate, University of Health Sciences İstanbul Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, İstanbul, Turkey
| | - İlhami Çelik
- Department of Infectious Diseases and Clinical Microbiology, Turkish Republic Ministry of Health, Kayseri City Training and Research Hospital, Kayseri, Turkey
| | - Yaşar Bayındır
- Department of Infectious Diseases and Clinical Microbiology, İnönü University Turgut Özal Health Centre, Malatya, Turkey
| | - İlkay Karaoğlan
- Department of Infectious Diseases and Clinical Microbiology, Gaziantep University Şahinbey Research and Application Centre, Gaziantep, Turkey
| | - Aydın Yılmaz
- Department of Infectious Diseases and Clinical Microbiology, Karadeniz Technical University School of Medicine, Trabzon, Turkey; Department of Chest Diseases, Turkish Republic Ministry of Health, Ankara Provincial Health Directorate, Ankara Keçiören Sanatorium, Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital, Ankara, Turkey
| | - Aykut Özkul
- Department of Virology, Ankara University Faculty of Veterinary Medicine, Ankara, Turkey
| | - Hazal Gür
- Department of Medical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Serhat Unal
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey; Hacettepe University Vaccine Institute, Ankara, Turkey
| |
Collapse
|
92
|
Motamedi H, Ari MM, Dashtbin S, Fathollahi M, Hossainpour H, Alvandi A, Moradi J, Abiri R. An update review of globally reported SARS-CoV-2 vaccines in preclinical and clinical stages. Int Immunopharmacol 2021; 96:107763. [PMID: 34162141 PMCID: PMC8101866 DOI: 10.1016/j.intimp.2021.107763] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the rapidly spreading pandemic COVID-19 in the world. As an effective therapeutic strategy is not introduced yet and the rapid genetic variations in the virus, there is an emerging necessity to design, evaluate and apply effective new vaccines. An acceptable vaccine must elicit both humoral and cellular immune responses, must have the least side effects and the storage and transport systems should be available and affordable for all countries. These vaccines can be classified into different types: inactivated vaccines, live-attenuated virus vaccines, subunit vaccines, virus-like particles (VLPs), nucleic acid-based vaccines (DNA and RNA) and recombinant vector-based vaccines (replicating and non-replicating viral vector). According to the latest update of the WHO report on April 2nd, 2021, at least 85 vaccine candidates were being studied in clinical trial phases and 184 candidate vaccines were being evaluated in pre-clinical stages. In addition, studies have shown that other vaccines, including the Bacillus Calmette-Guérin (BCG) vaccine and the Plant-derived vaccine, may play a role in controlling pandemic COVID-19. Herein, we reviewed the different types of COVID-19 candidate vaccines that are currently being evaluated in preclinical and clinical trial phases along with advantages, disadvantages or adverse reactions, if any.
Collapse
Affiliation(s)
- Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Matin Fathollahi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Hossainpour
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhoushang Alvandi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jale Moradi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
93
|
Liu J, Yan W, Liu Z, Han Y, Xia Y, Yu J. A colloidal gold-based immunochromatographic strip for rapid detection of SARS-CoV-2 antibodies after vaccination. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021; 11:100084. [PMID: 34222853 PMCID: PMC8234432 DOI: 10.1016/j.medntd.2021.100084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/10/2023] Open
Abstract
Vaccination interventions is consideredan important preventive measure to block the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and protect the organism from pathogen infection effectively. However, a quick and accurate technique to evaluate the immune efficacy of the SARS-CoV-2 inactivated vaccine remains scarce. In this paper, an IgM-IgG antibody combined detection colloidal gold immunochromatography assay kit was optimized and developed, which can assess the efficacy of the inactivated SARS-CoV-2 vaccine. We collected fingertip blood samples from 3 vaccinees and 1 unvaccinated sample. The results showed that the proportion of antibody was high after the second shots immunization. The colloidal gold-based immunochromatographic strip is rapid, convenient and easy to operate. It can be used as an auxiliary method for preliminary evaluation of the antibody effect of vaccine recipients, and provide a reference index for the potential clinical application value of the vaccine.
Collapse
Affiliation(s)
- Jia Liu
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Weiqi Yan
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhuojun Liu
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yizhao Han
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yuanshi Xia
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jian Yu
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
94
|
Di Gaetano S, Capasso D, Delre P, Pirone L, Saviano M, Pedone E, Mangiatordi GF. More Is Always Better Than One: The N-Terminal Domain of the Spike Protein as Another Emerging Target for Hampering the SARS-CoV-2 Attachment to Host Cells. Int J Mol Sci 2021; 22:6462. [PMID: 34208755 PMCID: PMC8235207 DOI: 10.3390/ijms22126462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022] Open
Abstract
Although the approved vaccines are proving to be of utmost importance in containing the Coronavirus disease 2019 (COVID-19) threat, they will hardly be resolutive as new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, a single-stranded RNA virus) variants might be insensitive to the immune response they induce. In this scenario, developing an effective therapy is still a dire need. Different targets for therapeutic antibodies and diagnostics have been identified, among which the SARS-CoV-2 spike (S) glycoprotein, particularly its receptor-binding domain, has been defined as crucial. In this context, we aim to focus attention also on the role played by the S N-terminal domain (S1-NTD) in the virus attachment, already recognized as a valuable target for neutralizing antibodies, in particular, building on a cavity mapping indicating the presence of two druggable pockets and on the recent literature hypothesizing the presence of a ganglioside-binding domain. In this perspective, we aim at proposing S1-NTD as a putative target for designing small molecules hopefully able to hamper the SARS-CoV-2 attachment to host cells.
Collapse
Affiliation(s)
- Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, CNR, 80134 Naples, Italy; (S.D.G.); (L.P.)
- CIRPEB, University of Naples “Federico II”, 80134 Naples, Italy; (D.C.); (M.S.)
| | - Domenica Capasso
- CIRPEB, University of Naples “Federico II”, 80134 Naples, Italy; (D.C.); (M.S.)
- CESTEV, University of Naples “Federico II”, 80145 Naples, Italy
| | - Pietro Delre
- Institute of Crystallography, CNR, 70126 Bari, Italy; (P.D.); (G.F.M.)
- Chemistry Department, University of Bari, 70121 Bari, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, 80134 Naples, Italy; (S.D.G.); (L.P.)
| | - Michele Saviano
- CIRPEB, University of Naples “Federico II”, 80134 Naples, Italy; (D.C.); (M.S.)
- Institute of Crystallography, CNR, 70126 Bari, Italy; (P.D.); (G.F.M.)
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, CNR, 80134 Naples, Italy; (S.D.G.); (L.P.)
- CIRPEB, University of Naples “Federico II”, 80134 Naples, Italy; (D.C.); (M.S.)
| | | |
Collapse
|
95
|
Damodharan K, Arumugam GS, Ganesan S, Doble M, Thennarasu S. A comprehensive overview of vaccines developed for pandemic viral pathogens over the past two decades including those in clinical trials for the current novel SARS-CoV-2. RSC Adv 2021; 11:20006-20035. [PMID: 35479882 PMCID: PMC9033969 DOI: 10.1039/d0ra09668g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
The unprecedented coronavirus disease 2019 (COVID-19) is triggered by a novel strain of coronavirus namely, Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Researchers are working around the clock to control this pandemic and consequent waves of viral reproduction, through repurposing existing drugs as well as designing new vaccines. Several countries have hastened vaccine design and clinical trials to quickly address this outbreak. Currently, more than 250 aspirants against SARS-CoV-2 are in progress, including mRNA-replicating or non-replicating viral vectored-, DNA-, autologous dendritic cell-based-, and inactivated virus-vaccines. Vaccines work by prompting effector mechanisms such as cells/molecules, which target quickly replicating pathogens and neutralize their toxic constituents. Vaccine-stimulated immune effectors include adjuvant, affinity, avidity, affinity maturation, antibodies, antigen-presenting cells, B lymphocytes, carrier protein, CD4+ T-helper cells. In this review, we describe updated information on the various vaccines available over the last two decades, along with recent progress in the ongoing battle developing 63 diverse vaccines against SARS-CoV-2. The inspiration of our effort is to convey the current investigation focus on registered clinical trials (as of January 08, 2021) that satisfy the safety and efficacy criteria of international wide vaccine development.
Collapse
Affiliation(s)
- Kannan Damodharan
- Department of Organic and Bioorganic Chemistry, CSIR-Central Leather Research Institute (CLRI) Chennai 600020 India
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM) Chennai 600032 India
| | | | - Suresh Ganesan
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM) Chennai 600032 India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras (IITM) Chennai 600032 India
| | - Sathiah Thennarasu
- Department of Organic and Bioorganic Chemistry, CSIR-Central Leather Research Institute (CLRI) Chennai 600020 India
| |
Collapse
|
96
|
Costanzo M, De Giglio MAR, Roviello GN. Anti-Coronavirus Vaccines: Past Investigations on SARS-CoV-1 and MERS-CoV, the Approved Vaccines from BioNTech/Pfizer, Moderna, Oxford/AstraZeneca and others under Development Against SARS-CoV-2 Infection. Curr Med Chem 2021; 29:4-18. [PMID: 34355678 DOI: 10.2174/0929867328666210521164809] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 11/22/2022]
Abstract
The aim of this review article is to summarize the knowledge available to date on prophylaxis achievements to fight against Coronavirus. This work will give an overview of what is reported in the most recent literature on vaccines (under investigation or already developed like BNT162b2, mRNA-1273, and ChAdOx1-S) effective against the most pathogenic Coronaviruses (SARS-CoV-1, MERS-CoV-1, and SARS-CoV-2), with of course particular attention paid to those under development or already in use to combat the current COVID-19 (COronaVIrus Disease 19) pandemic. Our main objective is to make a contribution to the comprehension, additionally at a molecular level, of what is currently ready for anti-SARS-CoV-2 prophylactic intervention, as well as to provide the reader with an overall picture of the most innovative approaches for the development of vaccines that could be of general utility in the fight against the most pathogenic Coronaviruses.
Collapse
Affiliation(s)
- Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples 'Federico II', Via S. Pansini 5, I-80131 Naples, Italy
| | | | - Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini IBB - CNR, Via Mezzocannone 16; I-80134 Naples, Italy
| |
Collapse
|
97
|
Strategies for the Production of Soluble Interferon-Alpha Consensus and Potential Application in Arboviruses and SARS-CoV-2. Life (Basel) 2021; 11:life11060460. [PMID: 34063766 PMCID: PMC8223780 DOI: 10.3390/life11060460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Biopharmaceutical production is currently a multibillion-dollar industry with high growth perspectives. The research and development of biologically sourced pharmaceuticals are extremely important and a reality in our current healthcare system. Interferon alpha consensus (cIFN) is a non-natural synthetic antiviral molecule that comprises all the most prevalent amino acids of IFN-α into one consensus protein sequence. For clinical use, cIFN is produced in E. coli in the form of inclusion bodies. Here, we describe the use of two solubility tags (Fh8 and DsbC) to improve soluble cIFN production. Furthermore, we analyzed cIFN production in different culture media and temperatures in order to improve biopharmaceutical production. Our results demonstrate that Fh8-cIFN yield was improved when bacteria were cultivated in autoinduction culture medium at 30 °C. After hydrolysis, the recovery of soluble untagged cIFN was 58% from purified Fh8-cIFN molecule, fourfold higher when compared to cIFN recovered from the DsbC-cIFN, which achieved 14% recovery. The biological activity of cIFN was tested on in vitro model of antiviral effect against Zika, Mayaro, Chikungunya and SARS-CoV-2 virus infection in susceptible VERO cells. We show, for the first time, that cIFN has a potent activity against these viruses, being very low amounts of the molecule sufficient to inhibit virus multiplication. Thus, this molecule could be used in a clinical approach to treat Arboviruses and SARS-CoV-2.
Collapse
|
98
|
Kamel NA, El Wakeel LM, Aboshanab KM. Exploring SARS-CoV-2 Spikes Glycoproteins for Designing Potential Antiviral Targets. Viral Immunol 2021; 34:510-521. [PMID: 34018828 DOI: 10.1089/vim.2021.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Till today, the globe is still struggling with the newly emerging infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and known as coronavirus disease 2019 (COVID-19). It has resulted in multiple fatalities from SARSs all around the world. A year after the global pandemic, the World Health Organization (WHO) has reported more than 79 million confirmed cases of COVID-19 and over 1.7 million deaths, making it one of the worst and most difficult pandemics encompassed in the modern history. The ongoing triad of escalating infections, mortality, and economic loss has urgently called for recognizing SARS-CoV-2 cell entry mechanisms as a crucial step in the initial stages of infection and to which possible interventional strategies should be targeted. To mediate host cell infections, Coronaviruses utilize the immunogenic studded spikes glycoproteins on its surface as a key factor for attachment, fusion, and entrance to host cells. Herein, we shed the light on a potential strategy involving disruption of SARS-CoV-2 S protein interaction with host cell receptors through design of neutralizing antibodies targeting receptor binding domain in S1 subunit, small peptide inhibitors, peptide fusion inhibitors against S2, host cell angiotensin converting enzymes 2 (ACE2), and protease inhibitors, aiming to pave the way for controlling viral cell entrance. In this review, we also highlight the recent research advances in the antiviral drugs that target the highly exposed spike protein, aiming to stem the COVID-19 pandemic.
Collapse
Affiliation(s)
- Noha A Kamel
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Lamia M El Wakeel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
99
|
Hernández AF, Calina D, Poulas K, Docea AO, Tsatsakis AM. Safety of COVID-19 vaccines administered in the EU: Should we be concerned? Toxicol Rep 2021; 8:871-879. [PMID: 33898273 PMCID: PMC8055532 DOI: 10.1016/j.toxrep.2021.04.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
mRNA and viral vector vaccines are currently used in the EU for COVID-19 prophylaxis. EMA has assessed the safety of the three vaccines currently used in the EU. Local and systemic reactions are reported during vaccinations campaigns. Vaccine-induced immune thrombotic thrombocytopenia has been linked to Vaxzevria. Follow-up and surveillance studies for vaccines’ safety monitoring will be needed.
The COVID-19 pandemic has had an unprecedented and devastating impact on public health, society and economics around the world. As a result, the development of vaccines to protect individuals from symptomatic COVID-19 infections has represented the only feasible health tool to combat the spread of the disease. However, at the same time the development and regulatory assessment of different vaccines has challenged pharmaceutical industries and regulatory agencies as this process has occurred in the shorter time ever though. So far, two mRNA and two adenovirus-vectored vaccines have received a conditional marketing authorisation in the EU and other countries. This review summarized and discusses the assessment reports of the European Medicine Agency (EMA) concerning the safety of the 3 vaccines currently used in the EU (Pfizer, Moderna and Astra-Zeneca). A particular focus has been paid to safety information from pre-clinical (animal) and clinical (phase 3 trials) studies. Overall, the most frequent adverse effects reported after the administration of these vaccines consisted of local reactions at the injection site (sore arm and erythema) followed by non-specific systemic effects (myalgia, chills, fatigue, headache, and fever), which occurred soon after vaccination and resolved shortly. Rare cases of vaccine-induced immune thrombotic thrombocytopenia have been reported for Vaxzevria. Data on long-term studies, interaction with other vaccines, use in pregnancy/breast-feeding, use in immunocompromised subjects, and in subjects with comorbidities, autoimmune or inflammatory disorders are still missing for these vaccines. Therefore, careful follow-up and surveillance studies for continued vaccine safety monitoring will be needed to ascertain the potential risks of such adverse events or diseases. In conclusion, the benefits and risks of current COVID-19 vaccines must be weighed against the real possibility of contract the disease and develop complications and long-term sequels; all this on the basis of the available scientific evidence and in the absence of unmotivated biases.
Collapse
Affiliation(s)
- Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain.,Instituto de Investigación Biosanitaria, Granada (ibs.GRANADA), Spain
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Konstantinos Poulas
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, Panepistimiopolis, 26500 Rio-Patras, Greece
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
100
|
Bezbaruah R, Borah P, Kakoti BB, Al-Shar’I NA, Chandrasekaran B, Jaradat DMM, Al-Zeer MA, Abu-Romman S. Developmental Landscape of Potential Vaccine Candidates Based on Viral Vector for Prophylaxis of COVID-19. Front Mol Biosci 2021; 8:635337. [PMID: 33937326 PMCID: PMC8082173 DOI: 10.3389/fmolb.2021.635337] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, arose at the end of 2019 as a zoonotic virus, which is the causative agent of the novel coronavirus outbreak COVID-19. Without any clear indications of abatement, the disease has become a major healthcare threat across the globe, owing to prolonged incubation period, high prevalence, and absence of existing drugs or vaccines. Development of COVID-19 vaccine is being considered as the most efficient strategy to curtail the ongoing pandemic. Following publication of genetic sequence of SARS-CoV-2, globally extensive research and development work has been in progress to develop a vaccine against the disease. The use of genetic engineering, recombinant technologies, and other computational tools has led to the expansion of several promising vaccine candidates. The range of technology platforms being evaluated, including virus-like particles, peptides, nucleic acid (DNA and RNA), recombinant proteins, inactivated virus, live attenuated viruses, and viral vectors (replicating and non-replicating) approaches, are striking features of the vaccine development strategies. Viral vectors, the next-generation vaccine platforms, provide a convenient method for delivering vaccine antigens into the host cell to induce antigenic proteins which can be tailored to arouse an assortment of immune responses, as evident from the success of smallpox vaccine and Ervebo vaccine against Ebola virus. As per the World Health Organization, till January 22, 2021, 14 viral vector vaccine candidates are under clinical development including 10 nonreplicating and four replicating types. Moreover, another 39 candidates based on viral vector platform are under preclinical evaluation. This review will outline the current developmental landscape and discuss issues that remain critical to the success or failure of viral vector vaccine candidates against COVID-19.
Collapse
Affiliation(s)
- Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Bibhuti Bhushan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Nizar A. Al-Shar’I
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Da’san M. M. Jaradat
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Munir A. Al-Zeer
- Department of Applied Biochemistry, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany
| | - Saeid Abu-Romman
- Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|