1401
|
Obembe OO, Jacobsen E, Timmers J, Gilbert H, Blake AW, Knox JP, Visser RGF, Vincken JP. Promiscuous, non-catalytic, tandem carbohydrate-binding modules modulate the cell-wall structure and development of transgenic tobacco (Nicotiana tabacum) plants. JOURNAL OF PLANT RESEARCH 2007; 120:605-17. [PMID: 17622484 PMCID: PMC2039807 DOI: 10.1007/s10265-007-0099-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 05/07/2007] [Indexed: 05/16/2023]
Abstract
We have compared heterologous expression of two types of carbohydrate binding module (CBM) in tobacco cell walls. These are the promiscuous CBM29 modules (a tandem CBM29-1-2 and its single derivative CBM29-2), derived from a non-catalytic protein1, NCP1, of the Piromyces equi cellulase/hemicellulase complex, and the less promiscuous tandem CBM2b-1-2 from the Cellulomonas fimi xylanase 11A. CBM-labelling studies revealed that CBM29-1-2 binds indiscriminately to every tissue of the wild-type tobacco stem whereas binding of CBM2b-1-2 was restricted to vascular tissue. The promiscuous CBM29-1-2 had much more pronounced effects on transgenic tobacco plants than the less promiscuous CBM2b-1-2. Reduced stem elongation and prolonged juvenility, resulting in delayed flower development, were observed in transformants expressing CBM29-1-2 whereas such growth phenotypes were not observed for CBM2b-1-2 plants. Histological examination and electron microscopy revealed layers of collapsed cortical cells in the stems of CBM29-1-2 plants whereas cellular deformation in the stem cortical cells of CBM2b-1-2 transformants was less severe. Altered cell expansion was also observed in most parts of the CBM29-1-2 stem whereas for the CBM2b-1-2 stem this was observed in the xylem cells only. The cellulose content of the transgenic plants was not altered. These results support the hypothesis that CBMs can modify cell wall structure leading to modulation of wall loosening and plant growth.
Collapse
Affiliation(s)
- Olawole O. Obembe
- Graduate School Experimental Plant Sciences, Laboratory of Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Department of Biotechnology, Bells University of Technology, P.M.B. 1015, Ota, Ogun State Nigeria
| | - Evert Jacobsen
- Graduate School Experimental Plant Sciences, Laboratory of Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Jaap Timmers
- Graduate School Experimental Plant Sciences, Laboratory of Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Harry Gilbert
- University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH UK
| | - Anthony W. Blake
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - J. Paul Knox
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Richard G. F. Visser
- Graduate School Experimental Plant Sciences, Laboratory of Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Graduate School Experimental Plant Sciences, Laboratory of Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
1402
|
Nagy T, Tunnicliffe RB, Higgins LD, Walters C, Gilbert HJ, Williamson MP. Characterization of a double dockerin from the cellulosome of the anaerobic fungus Piromyces equi. J Mol Biol 2007; 373:612-22. [PMID: 17869267 DOI: 10.1016/j.jmb.2007.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
The assembly into supramolecular complexes of proteins having complementary activities is central to cellular function. One such complex of considerable biological and industrial significance is the plant cell wall-degrading apparatus of anaerobic microorganisms, termed the cellulosome. A central feature of bacterial cellulosomes is a large non-catalytic protein, the scaffoldin, which contains multiple cohesin domains. An array of digestive enzymes is incorporated into the cellulosome through the interaction of the dockerin domains, present in the catalytic subunits, with the cohesin domains that are present in the scaffoldin. By contrast, in anaerobic fungi, such as Piromyces equi, the dockerins of cellulosomal enzymes are often present in tandem copies; however, the identity of the cognate cohesin domains in these organisms is unclear, hindering further biotechnological development of the fungal cellulosome. Here, we characterise the solution structure and function of a double-dockerin construct from the P. equi endoglucanase Cel45A. We show that the two domains are connected by a flexible linker that is short enough to keep the binding sites of the two domains on adjacent surfaces, and allows the double-dockerin construct to bind more tightly to cellulosomes than a single domain and with greater coverage. The double dockerin binds to the GH3 beta-glucosidase component of the fungal cellulosome, which is thereby identified as a potential scaffoldin.
Collapse
Affiliation(s)
- Tibor Nagy
- Institute for Cell and Molecular Biosciences, The University of Newcastle upon Tyne, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
1403
|
Ludwiczek ML, Heller M, Kantner T, McIntosh LP. A secondary xylan-binding site enhances the catalytic activity of a single-domain family 11 glycoside hydrolase. J Mol Biol 2007; 373:337-54. [PMID: 17822716 DOI: 10.1016/j.jmb.2007.07.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 07/24/2007] [Indexed: 11/20/2022]
Abstract
Bacillus circulans xylanase (BcX) is a single-domain family 11 glycoside hydrolase. Using NMR-monitored titrations, we discovered that an inactive variant of this enzyme, E78Q-BcX, bound xylooligosaccharides not only within its pronounced active site (AS) cleft, but also at a distal surface region. Chemical shift perturbation mapping and affinity electrophoresis, combined with mutational studies, identified the xylan-specific secondary binding site (SBS) as a shallow groove lined by Asn, Ser, and Thr residues and with a Trp at one end. The AS and SBS bound short xylooligosaccharides with similar dissociation constants in the millimolar range. However, the on and off-rates to the SBS were at least tenfold faster than those of kon approximately 3x10(5) M(-1) s(-1) and koff approximately 1000 s(-1) measured for xylotetraose to the AS of E78Q-BcX. Consistent with their structural differences, this suggests that a conformational change in the enzyme and/or the substrate is required for association to and dissociation from the deep AS, but not the shallow SBS. In contrast to the independent binding of small xylooligosaccharides, high-affinity binding of soluble and insoluble xylan, as well as xylododecaose, occurred cooperatively to the two sites. This was evidenced by an approximately 100-fold increase in relative Kd values for these ligands upon mutation of the SBS. The SBS also enhances the activity of BcX towards soluble and insoluble xylan through a significant reduction in the Michaelis KM values for these polymeric substrates. This study provides an unexpected example of how a single domain family 11 xylanase overcomes the lack of a carbohydrate-binding module through the use of a secondary binding site to enhance substrate specificity and affinity.
Collapse
Affiliation(s)
- Martin L Ludwiczek
- Department of Biochemistry and Molecular Biology, Department of Chemistry, The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | |
Collapse
|
1404
|
Senoura T, Asao A, Takashima Y, Isono N, Hamada S, Ito H, Matsui H. Enzymatic characterization of starch synthase III from kidney bean (Phaseolus vulgaris L.). FEBS J 2007; 274:4550-60. [PMID: 17681016 DOI: 10.1111/j.1742-4658.2007.05984.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In plants and green algae, several starch synthase isozymes are responsible for the elongation of glucan chains in the biosynthesis of amylose and amylopectin. Multiple starch synthase isozymes, which are classified into five major classes (granule-bound starch synthases, SSI, SSII, SSIII, and SSIV) according to their primary sequences, have distinct enzymatic properties. All the starch synthase isozymes consist of a transit peptide, an N-terminal noncatalytic region (N-domain), and a C-terminal catalytic region (C-domain). To elucidate the enzymatic properties of kidney bean (Phaseolus vulgaris L.) SSIII and the function of the N-domain of kidney bean SSIII, three recombinant proteins were constructed: putative mature recombinant SSIII, recombinant kidney bean SSIII N-domain, and recombinant kidney bean SSIII C-domain. Purified recombinant kidney bean SSIII displayed high specific activities for primers as compared to the other starch synthase isozymes from kidney bean. Kinetic analysis showed that the high specific activities of recombinant kidney bean SSIII are attributable to the high k(cat) values, and that the K(m) values of recombinant kidney bean SSIII C-domain for primers were much higher than those of recombinant kidney bean recombinant SSIII. Recombinant kidney bean SSIII and recombinant kidney bean SSIII C-domain had similar chain-length specificities for the extension of glucan chains, indicating that the N-domain of kidney bean SSIII does not affect the chain-length specificity. Affinity gel electrophoresis indicated that recombinant kidney bean SSIII and recombinant kidney bean SSIII N-domain have high affinities for amylose and amylopectin. The data presented in this study provide direct evidence for the function of the N-domain of kidney bean SSIII as a carbohydrate-binding module.
Collapse
Affiliation(s)
- Takeshi Senoura
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
1405
|
Serizawa T, Iida K, Matsuno H, Kurita K. Cellulose-binding Heptapeptides Identified by Phage Display Methods. CHEM LETT 2007. [DOI: 10.1246/cl.2007.988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
1406
|
Mummery RS, Mulloy B, Rider CC. The binding of human betacellulin to heparin, heparan sulfate and related polysaccharides. Glycobiology 2007; 17:1094-103. [PMID: 17673511 DOI: 10.1093/glycob/cwm082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombinant human betacellulin binds strongly to heparin, requiring of the order of 0.8 M NaCl for its elution from a heparin affinity matrix. This is in complete contrast to the prototypic member of its cytokine superfamily, epidermal growth factor, which fails to bind to the column at physiological pH and strength. We used a well-established heparin binding ELISA to demonstrate that fucoidan and a highly sulfated variant of heparan sulfate compete strongly for heparin binding. Low sulfated heparan sulfates and also chondroitin sulfates are weaker competitors. Moreover, although competitive activity is reduced by selective desulfation, residual binding to extensively desulfated heparin remains. Even carboxyl reduction followed by extensive desulfation does not completely remove activity. We further demonstrate that both hyaluronic acid and the E. coli capsular polysaccharide K5, both of which are unsulfated polysaccharides with unbranched chains of alternating N-acetylglucosamine linked beta(1-4) to glucuronic acid, are also capable of a limited degree of competition with heparin. Heparin protects betacellulin from proteolysis by LysC, but K5 polysaccharide does not. Betacellulin possesses a prominent cluster of basic residues, which is likely to constitute a binding site for sulfated polysaccharides, but the binding of nonsulfated polysaccharides may take place at a different site.
Collapse
Affiliation(s)
- Rosemary S Mummery
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 OEX, UK
| | | | | |
Collapse
|
1407
|
Urbanowicz BR, Bennett AB, Del Campillo E, Catalá C, Hayashi T, Henrissat B, Höfte H, McQueen-Mason SJ, Patterson SE, Shoseyov O, Teeri TT, Rose JKC. Structural organization and a standardized nomenclature for plant endo-1,4-beta-glucanases (cellulases) of glycosyl hydrolase family 9. PLANT PHYSIOLOGY 2007; 144:1693-6. [PMID: 17687051 PMCID: PMC1949884 DOI: 10.1104/pp.107.102574] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
1408
|
Siebert HC, Born K, André S, Frank M, Kaltner H, von der Lieth CW, Heck AJR, Jiménez-Barbero J, Kopitz J, Gabius HJ. Carbohydrate chain of ganglioside GM1 as a ligand: identification of the binding strategies of three 15 mer peptides and their divergence from the binding modes of growth-regulatory galectin-1 and cholera toxin. Chemistry 2007; 12:388-402. [PMID: 16267866 DOI: 10.1002/chem.200500505] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The branched pentasaccharide chain of ganglioside GM1 is a prominent cell surface ligand, for example, for cholera toxin or tumor growth-regulatory homodimeric galectins. This activity profile via protein recognition prompted us to examine the binding properties of peptides with this specificity. Our study provides insights into the mechanism of molecular interaction of this thus far unexplored size limit of the protein part. We used three pentadecapeptides in a combined approach of mass spectrometry, NMR spectroscopy and molecular modelling to analyze the ligand binding in solution. Availability of charged and hydrophobic functionalities affected the intramolecular flexibility of the peptides differently. Backfolding led to restrictions in two cases; the flexibility was not reduced significantly by association of the ligand in its energetically privileged conformations. Major contributions to the interaction energy arise from the sialic acid moiety contacting Arg/Lys residues and the N-terminal charge. Considerable involvement of stacking between the monovalent ligand and aromatic rings could not be detected. This carbohydrate binding strategy is similar to how an adenoviral fiber knob targets sialylated glycans. Rational manipulation for an affinity enhancement can now be directed to reduce the flexibility, exploit the potential for stacking and acquire the cross-linking capacity of the natural lectins by peptide attachment to a suitable scaffold.
Collapse
Affiliation(s)
- Hans-Christian Siebert
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, Veterinärstrasse 13, 80539 München, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1409
|
Gentry MS, Dowen RH, Worby CA, Mattoo S, Ecker JR, Dixon JE. The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease. ACTA ACUST UNITED AC 2007; 178:477-88. [PMID: 17646401 PMCID: PMC2064834 DOI: 10.1083/jcb.200704094] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lafora disease (LD) is a progressive myoclonic epilepsy resulting in severe neurodegeneration followed by death. A hallmark of LD is the accumulation of insoluble polyglucosans called Lafora bodies (LBs). LD is caused by mutations in the gene encoding the phosphatase laforin, which reportedly exists solely in vertebrates. We utilized a bioinformatics screen to identify laforin orthologues in five protists. These protists evolved from a progenitor red alga and synthesize an insoluble carbohydrate whose composition closely resembles LBs. Furthermore, we show that the kingdom Plantae, which lacks laforin, possesses a protein with laforin-like properties called starch excess 4 (SEX4). Mutations in the Arabidopsis thaliana SEX4 gene results in a starch excess phenotype reminiscent of LD. We demonstrate that Homo sapiens laforin complements the sex4 phenotype and propose that laforin and SEX4 are functional equivalents. Finally, we show that laforins and SEX4 dephosphorylate a complex carbohydrate and form the only family of phosphatases with this activity. These results provide a molecular explanation for the etiology of LD.
Collapse
Affiliation(s)
- Matthew S Gentry
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
1410
|
Komatsu H, Katayama M, Sawada M, Hirata Y, Mori M, Inoue T, Fukui K, Fukada H, Kodama T. Thermodynamics of the binding of the C-terminal repeat domain of Streptococcus sobrinus glucosyltransferase-I to dextran. Biochemistry 2007; 46:8436-44. [PMID: 17580962 DOI: 10.1021/bi700282c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucosyltransferases (GTFs) secreted by mutans streptococci and some other lactic acid bacteria catalyze glucan synthesis from sucrose, and possess a C-terminal glucan-binding domain (GBD) containing homologous, directly repeating units. We prepared a series of C-terminal truncated forms of the GBD of Streptococcus sobrinus GTF-I and studied their binding to dextran by isothermal titration calorimetry. The binding of all truncates was strongly exothermic. Their titration curves were analyzed assuming that the GBD recognizes and binds to a stretch of dextran chain, not to a whole dextran molecule. Both the number of glucose units constituting the dextran stretch (n) and the accompanying enthalpy change (DeltaH degrees ) are proportional to the molecular mass of the GBD truncate, with which the Gibbs energy change calculated by the relation DeltaG degrees = -RT ln K (R, the gas constant; T, the absolute temperature; K, the binding constant of a truncate for a dextran stretch of n glucose units) also increases linearly. For the full-length GBD (508 amino acid residues), n = 33.9, K = 4.88 x 10(7) M-1, and DeltaH degrees = -289 kJ mol-1 at 25 degrees C. These results suggest that identical, independent glucose-binding subsites, each comprising 14 amino acid residues on average, are arranged consecutively from the GBD N-terminus. Thus, the GBD binds tightly to a stretch of dextran chain through the adding up of individually weak subsite/glucose interactions. Furthermore, the entropy change accompanying the GBD/dextran interaction as given by the relation DeltaS degrees = (DeltaG degrees - DeltaH degrees)/T has a very large negative value, probably because of a loss of the conformational freedom of dextran and GBD after binding.
Collapse
Affiliation(s)
- Hideyuki Komatsu
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka 820-8502, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
1411
|
Deere J, McConnell G, Lalaouni A, Maltman BA, Flitsch SL, Halling PJ. Real-Time Imaging of Protease Action on Substrates Covalently Immobilised to Polymer Supports. Adv Synth Catal 2007; 349:1321-1326. [PMID: 19779571 PMCID: PMC2749704 DOI: 10.1002/adsc.200700044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We report for the first time single bead spatially resolved activity measurements of solid-phase biocatalytic systems followed in real-time. Trypsin cleavage of Bz-Arg-OH and subtilisin cleavage of Z-Gly-Gly-Leu-OH each liberate a free amino group on aminocoumarin covalently immobilised to PEGA(1900) beads [a co-polymer of poly(ethylene glycol) with molecular mass of 1900 cross-linked with acrylamide]. This restores fluorescence which is imaged in optical sections by two-photon microscopy. For trypsin cleavage, fluorescence is restricted initially to surface regions, with more than 1 hour needed before reaction is fully underway in the bead centre, presumably reflecting slow enzyme diffusion. In contrast, for subtilisin cleavage fluorescence develops throughout the bead more quickly.
Collapse
Affiliation(s)
- Joseph Deere
- Department of Pure and Applied Chemistry, Thomas Graham Building, 295 Cathedral Street, University of Strathclyde, Glasgow, G1 1XL, U.K
| | - Gail McConnell
- Centre for Biophotonics, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR, U.K
| | - Antonia Lalaouni
- Department of Pure and Applied Chemistry, Thomas Graham Building, 295 Cathedral Street, University of Strathclyde, Glasgow, G1 1XL, U.K
| | - Beatrice A. Maltman
- School of Chemistry and MIB, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, U.K
| | - Sabine L. Flitsch
- School of Chemistry and MIB, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, U.K
| | - Peter J. Halling
- Department of Pure and Applied Chemistry, Thomas Graham Building, 295 Cathedral Street, University of Strathclyde, Glasgow, G1 1XL, U.K
| |
Collapse
|
1412
|
Xing Q, Eadula SR, Lvov YM. Cellulose Fiber−Enzyme Composites Fabricated through Layer-by-Layer Nanoassembly. Biomacromolecules 2007; 8:1987-91. [PMID: 17523656 DOI: 10.1021/bm070125x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellulose microfibers were coated with enzymes, laccase and urease, through layer-by-layer assembly by alternate adsorption with oppositely charged polycations. The formation of organized polyelectrolyte and enzyme multilayer films of 15-20 nm thickness was demonstrated by quartz crystal microbalance, zeta-potential analysis, and confocal laser scanning microscopy. These biocomposites retained enzymatic catalytic activity, which was proportional to the number of coated enzyme layers. For laccase-fiber composites, around 50% of its initial activity was retained after 2 weeks of storage at 4 degrees C. The synthesis of calcium carbonate microparticles on urease-fiber composites confirmed urease functionality and demonstrated its possible applications. This strategy could be employed to fabricate fiber-based composites with novel biological functions.
Collapse
Affiliation(s)
- Qi Xing
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, USA
| | | | | |
Collapse
|
1413
|
Teeri TT, Brumer H, Daniel G, Gatenholm P. Biomimetic engineering of cellulose-based materials. Trends Biotechnol 2007; 25:299-306. [PMID: 17512068 DOI: 10.1016/j.tibtech.2007.05.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/22/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
Biomimetics is a field of science that investigates biological structures and processes for their use as models for the development of artificial systems. Biomimetic approaches have considerable potential in the development of new high-performance materials with low environmental impact. The cell walls of different plant species represent complex and highly sophisticated composite materials that can provide inspiration on how to design and fabricate lightweight materials with unique properties. Such materials can provide environmentally compatible solutions in advanced packaging, electronic devices, vehicles and sports equipment. This review gives an overview of the structures and interactions in natural plant cell walls and describes the first attempts towards mimicking them to develop novel biomaterials.
Collapse
Affiliation(s)
- Tuula T Teeri
- Swedish Center for Biomimetic Fiber Engineering, KTH Biotechnology, AlbaNova, SE-10691 Stockholm, Sweden.
| | | | | | | |
Collapse
|
1414
|
IR-Spectral Signatures of Aromatic–Sugar Complexes: Probing Carbohydrate–Protein Interactions. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200605116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
1415
|
Screen J, Stanca-Kaposta EC, Gamblin DP, Liu B, Macleod NA, Snoek LC, Davis BG, Simons JP. IR-Spectral Signatures of Aromatic–Sugar Complexes: Probing Carbohydrate–Protein Interactions. Angew Chem Int Ed Engl 2007; 46:3644-8. [PMID: 17385782 DOI: 10.1002/anie.200605116] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- James Screen
- Department of Chemistry, University of Oxford, OX1 3QZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
1416
|
Nayak S, Yeo WS, Mrksich M. Determination of kinetic parameters for interfacial enzymatic reactions on self-assembled monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:5578-83. [PMID: 17402753 PMCID: PMC2518328 DOI: 10.1021/la062860k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This paper reports a method to characterize the kinetic constants for the action of enzymes on immobilized substrates. This example uses cutinase, a serine esterase that hydrolyzes 4-hydroxyphenyl valerate moieties that are immobilized on a self-assembled monolayer of alkanethiolates on gold. The product of the enzyme reaction is a hydroquinone, which is redox active and therefore permits the use of cyclic voltammetry to monitor the extent of reaction in situ. A kinetic model based on the Michaelis-Menten formalism is used to analyze the dependence of initial rates of reaction on both the substrate density and the enzyme concentration. The resulting value of k(cat)/K(M) for the interfacial reaction is comparable to that for a homogeneous phase reaction with a substrate of similar structure. This strategy of using monolayers presenting substrates for the enzyme and cyclic voltammetry to measure reaction rates provides quantitative and real-time information on reaction rates and permits a level of analysis of interfacial enzyme reactions that to date has been difficult to realize.
Collapse
Affiliation(s)
- Satish Nayak
- Department of Chemistry, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL-60637
| | | | - Milan Mrksich
- Department of Chemistry, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL-60637
- * To whom correspondence should be addressed:
| |
Collapse
|
1417
|
Rabinovich ML, Vasil'chenko LG, Karapetyan KN, Shumakovich GP, Yershevich OP, Ludwig R, Haltrich D, Hadar Y, Kozlov YP, Yaropolov AI. Application of cellulose-based self-assembled tri-enzyme system in a pseudo-reagent-less biosensor for biogenic catecholamine detection. Biotechnol J 2007; 2:546-58. [PMID: 17373647 DOI: 10.1002/biot.200600221] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amorphous cellulose was used as a specific carrier for the deposition of self-assembled multienzyme complexes capable of catalyzing coupled reactions. Naturally glycosylated fungal cellobiohydrolases (CBHs) of glycosyl hydrolase families 6 and 7 were specifically deposited onto the cellulose surface through their family I cellulose-binding modules (CBM). Naturally glycosylated fungal laccase was then deposited onto the preformed glycoprotein layer pretreated by ConA, through the interaction of mannosyl moieties of fungal glycoproteins with the multivalent lectin. The formation of a cellulase-ConA-laccase composite was proven by direct and indirect determination of activity of immobilized laccase. In the absence of cellulases and ConA, no laccase deposition onto the cellulose surface was observed. Finally, basidiomycetous cellobiose dehydrogenase (CDH) was deposited onto the cellulose surface through the specific interaction of its FAD domain with cellulose. The obtained paste was applied onto the surface of a Clark-type oxygen electrode and covered with a dialysis membrane. In the presence of traces of catechol or dopamine as mediators, the obtained immobilized multienzyme composite was capable of the coupled oxidation of cellulose by dissolved oxygen, thus providing the basis for a sensitive assay of the mediator. Swollen amorphous cellulose plays three different roles in the obtained biosensor as: (i) a gelforming matrix that captures the analyte and its oxidized intermediate, (ii) a specific carrier for protein self-assembly, and (iii) a source of excess substrate for a pseudo-reagent-less assay with signal amplification. The detection limit of such a tri-enzyme biosensor is 50-100 nM dopamine.
Collapse
Affiliation(s)
- Mikhail L Rabinovich
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1418
|
Rincon MT, Cepeljnik T, Martin JC, Barak Y, Lamed R, Bayer EA, Flint HJ. A novel cell surface-anchored cellulose-binding protein encoded by the sca gene cluster of Ruminococcus flavefaciens. J Bacteriol 2007; 189:4774-83. [PMID: 17468247 PMCID: PMC1913464 DOI: 10.1128/jb.00143-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ruminococcus flavefaciens produces a cellulosomal enzyme complex, based on the structural proteins ScaA, -B, and -C, that was recently shown to attach to the bacterial cell surface via the wall-anchored protein ScaE. ScaA, -B, -C, and -E are all cohesin-bearing proteins encoded by linked genes in the sca cluster. The product of an unknown open reading frame within the sca cluster, herein designated CttA, is similar in sequence at its C terminus to the corresponding region of ScaB, which contains an X module together with a dockerin sequence. The ScaB-XDoc dyad was shown previously to interact tenaciously with the cohesin of ScaE. Likewise, avid binding was confirmed between purified recombinant fragments of the CttA-XDoc dyad and the ScaE cohesin. In addition, the N-terminal regions of CttA were shown to bind to cellulose, thus suggesting that CttA is a cell wall-anchored, cellulose-binding protein. Proteomic analysis showed that the native CttA protein ( approximately 130 kDa) corresponds to one of the three most abundant polypeptides binding tightly to insoluble cellulose in cellulose-grown R. flavefaciens 17 cultures. Interestingly, this protein was also detected among cellulose-bound proteins in the related strain R. flavefaciens 007C but not in a mutant derivative, 007S, that was previously shown to have lost the ability to grow on dewaxed cotton fibers. In R. flavefaciens, the presence of CttA on the cell surface is likely to provide an important mechanism for substrate binding, perhaps compensating for the absence of an identified cellulose-binding module in the major cellulosomal scaffolding proteins of this species.
Collapse
Affiliation(s)
- Marco T Rincon
- Microbial Ecology Group, The Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
1419
|
Nimlos MR, Matthews JF, Crowley MF, Walker RC, Chukkapalli G, Brady JW, Adney WS, Cleary JM, Zhong L, Himmel ME. Molecular modeling suggests induced fit of Family I carbohydrate-binding modules with a broken-chain cellulose surface. Protein Eng Des Sel 2007; 20:179-87. [PMID: 17430975 DOI: 10.1093/protein/gzm010] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cellobiohydrolases are the most effective single component of fungal cellulase systems; however, their molecular mode of action on cellulose is not well understood. These enzymes act to detach and hydrolyze cellodextrin chains from crystalline cellulose in a processive manner, and the carbohydrate-binding module (CBM) is thought to play an important role in this process. Understanding the interactions between the CBM and cellulose at the molecular level can assist greatly in formulating selective mutagenesis experiments to confirm the function of the CBM. Computational molecular dynamics was used to investigate the interaction of the CBM from Trichoderma reesei cellobiohydrolase I with a model of the (1,0,0) cellulose surface modified to display a broken chain. Initially, the CBM was located in different positions relative to the reducing end of this break, and during the simulations it appeared to translate freely and randomly across the cellulose surface, which is consistent with its role in processivity. Another important finding is that the reducing end of a cellulose chain appears to induce a conformational change in the CBM. Simulations show that the tyrosine residues on the hydrophobic surface of the CBM, Y5, Y31 and Y32 align with the cellulose chain adjacent to the reducing end and, importantly, that the fourth tyrosine residue in the CBM (Y13) moves from its internal position to form van der Waals interactions with the cellulose surface. As a consequence of this induced change near the surface, the CBM straddles the reducing end of the broken chain. Interestingly, all four aromatic residues are highly conserved in Family I CBM, and thus this recognition mechanism may be universal to this family.
Collapse
Affiliation(s)
- Mark R Nimlos
- National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1420
|
Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C. Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 2007. [PMID: 16865734 DOI: 10.1002/bbb.4] [Citation(s) in RCA: 437] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To improve process economics of the lignocellulose to ethanol process a reactor system for enzymatic liquefaction and saccharification at high-solids concentrations was developed. The technology is based on free fall mixing employing a horizontally placed drum with a horizontal rotating shaft mounted with paddlers for mixing. Enzymatic liquefaction and saccharification of pretreated wheat straw was tested with up to 40% (w/w) initial DM. In less than 10 h, the structure of the material was changed from intact straw particles (length 1-5 cm) into a paste/liquid that could be pumped. Tests revealed no significant effect of mixing speed in the range 3.3-11.5 rpm on the glucose conversion after 24 h and ethanol yield after subsequent fermentation for 48 h. Low-power inputs for mixing are therefore possible. Liquefaction and saccharification for 96 h using an enzyme loading of 7 FPU/g.DM and 40% DM resulted in a glucose concentration of 86 g/kg. Experiments conducted at 2%-40% (w/w) initial DM revealed that cellulose and hemicellulose conversion decreased almost linearly with increasing DM. Performing the experiments as simultaneous saccharification and fermentation also revealed a decrease in ethanol yield at increasing initial DM. Saccharomyces cerevisiae was capable of fermenting hydrolysates up to 40% DM. The highest ethanol concentration, 48 g/kg, was obtained using 35% (w/w) DM. Liquefaction of biomass with this reactor system unlocks the possibility of 10% (w/w) ethanol in the fermentation broth in future lignocellulose to ethanol plants.
Collapse
Affiliation(s)
- Henning Jørgensen
- Forestry and Forest Products, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg, Denmark.
| | | | | | | |
Collapse
|
1421
|
Liu YN, Lai YT, Chou WI, Chang MT, Lyu PC. Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J 2007; 403:21-30. [PMID: 17117925 PMCID: PMC1828892 DOI: 10.1042/bj20061312] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 11/13/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
CBMs (carbohydrate-binding modules) function independently to assist carbohydrate-active enzymes. Family 21 CBMs contain approx. 100 amino acid residues, and some members have starchbinding functions or glycogen-binding activities. We report here the first structure of a family 21 CBM from the SBD (starch-binding domain) of Rhizopus oryzae glucoamylase (RoCBM21) determined by NMR spectroscopy. This CBM has a beta-sandwich fold with an immunoglobulin-like structure. Ligand-binding properties of RoCBM21 were analysed by chemical-shift perturbations and automated docking. Structural comparisons with previously reported SBDs revealed two types of topologies, namely type I and type II, with CBM20, CBM25, CBM26 and CBM41 showing type I topology, with CBM21 and CBM34 showing type II topology. According to the chemical-shift perturbations, RoCBM21 contains two ligand-binding sites. Residues in site II are similar to those found in the family 20 CBM from Aspergillus niger glucoamylase (AnCBM20). Site I, however, is embedded in a region with unique sequence motifs only found in some members of CBM21s. Additionally, docking of beta-cyclodextrin and malto-oligosaccharides highlights that side chains of Y83 and W47 (one-letter amino acid code) form the central part of the conserved binding platform in the SBD. The structure of RoCBM21 provides the first direct evidence of the structural features and the basis for protein-carbohydrate recognition from an SBD of CBM21.
Collapse
Key Words
- carbohydrate-active enzyme
- carbohydrate-binding module (cbm)
- glucoamylase
- rhizopus oryzae
- solution structure
- starch-binding domain (sbd)
- ancbm20, family 20 cbm from aspergillus niger glucoamlyase
- bhcbm25 and bhcbm26, families 25 and 26 cbms from bacillus halodurans maltohexaose-forming amylase
- bmrb, biological magnetic resonance data bank
- cbm, carbohydrate-binding module
- 2d, two-dimensional
- noe, nuclear overhauser effect
- pdb, protein data bank
- pp1, protein phosphatase 1
- pp1g, protein phosphatase-1 regulatory subunit
- rmsd, root mean square deviation
- rocbm21, family 21 cbm from rhizopus oryzae glucoamylase
- sbd, starch-binding domain
- tvcbm34 i and tvcbm34 ii, family 34 cbms from thermoactinomyces vulgaris from α-amylase i and α-amylase ii
- for brevity the one-letter code is used for amino acid residues (e.g. y83 is tyrosine-83)
Collapse
Affiliation(s)
- Yu-Nan Liu
- *Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan 30013
| | - Yen-Ting Lai
- *Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan 30013
| | - Wei-I Chou
- †Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd., Hsinchu, Taiwan 30013
| | - Margaret Dah-Tsyr Chang
- †Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd., Hsinchu, Taiwan 30013
| | - Ping-Chiang Lyu
- *Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan 30013
| |
Collapse
|
1422
|
Urbanowicz BR, Catalá C, Irwin D, Wilson DB, Ripoll DR, Rose JKC. A Tomato Endo-β-1,4-glucanase, SlCel9C1, Represents a Distinct Subclass with a New Family of Carbohydrate Binding Modules (CBM49). J Biol Chem 2007; 282:12066-74. [PMID: 17322304 DOI: 10.1074/jbc.m607925200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A critical structural feature of many microbial endo-beta-1,4-glucanases (EGases, or cellulases) is a carbohydrate binding module (CBM), which is required for effective crystalline cellulose degradation. However, CBMs are absent from plant EGases that have been biochemically characterized to date, and accordingly, plant EGases are not generally thought to have the capacity to degrade crystalline cellulose. We report the biochemical characterization of a tomato EGase, Solanum lycopersicum Cel8 (SlCel9C1), with a distinct C-terminal noncatalytic module that represents a previously uncharacterized family of CBMs. In vitro binding studies demonstrated that this module indeed binds to crystalline cellulose and can similarly bind as part of a recombinant chimeric fusion protein containing an EGase catalytic domain from the bacterium Thermobifida fusca. Site-directed mutagenesis studies show that tryptophans 559 and 573 play a role in crystalline cellulose binding. The SlCel9C1 CBM, which represents a new CBM family (CBM49), is a defining feature of a new structural subclass (Class C) of plant EGases, with members present throughout the plant kingdom. In addition, the SlCel9C1 catalytic domain was shown to hydrolyze artificial cellulosic polymers, cellulose oligosaccharides, and a variety of plant cell wall polysaccharides.
Collapse
Affiliation(s)
- Breeanna R Urbanowicz
- Department of Plant Biology, Cornell Theory Center, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
1423
|
Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ. Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 2007; 73:3536-46. [PMID: 17400776 PMCID: PMC1932680 DOI: 10.1128/aem.00225-07] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete DNA sequence of the aerobic cellulolytic soil bacterium Cytophaga hutchinsonii, which belongs to the phylum Bacteroidetes, is presented. The genome consists of a single, circular, 4.43-Mb chromosome containing 3,790 open reading frames, 1,986 of which have been assigned a tentative function. Two of the most striking characteristics of C. hutchinsonii are its rapid gliding motility over surfaces and its contact-dependent digestion of crystalline cellulose. The mechanism of C. hutchinsonii motility is not known, but its genome contains homologs for each of the gld genes that are required for gliding of the distantly related bacteroidete Flavobacterium johnsoniae. Cytophaga-Flavobacterium gliding appears to be novel and does not involve well-studied motility organelles such as flagella or type IV pili. Many genes thought to encode proteins involved in cellulose utilization were identified. These include candidate endo-beta-1,4-glucanases and beta-glucosidases. Surprisingly, obvious homologs of known cellobiohydrolases were not detected. Since such enzymes are needed for efficient cellulose digestion by well-studied cellulolytic bacteria, C. hutchinsonii either has novel cellobiohydrolases or has an unusual method of cellulose utilization. Genes encoding proteins with cohesin domains, which are characteristic of cellulosomes, were absent, but many proteins predicted to be involved in polysaccharide utilization had putative D5 domains, which are thought to be involved in anchoring proteins to the cell surface.
Collapse
Affiliation(s)
- Gary Xie
- Los Alamos National Laboratory, New Mexico, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1424
|
Abbott DW, Boraston AB. Specific recognition of saturated and 4,5-unsaturated hexuronate sugars by a periplasmic binding protein involved in pectin catabolism. J Mol Biol 2007; 369:759-70. [PMID: 17451747 DOI: 10.1016/j.jmb.2007.03.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/14/2007] [Accepted: 03/16/2007] [Indexed: 11/30/2022]
Abstract
The process of pectin depolymerization by pectate lyases and glycoside hydrolases produced by pectinolytic organisms, particularly the phytopathogens from the genus Erwinia, is reasonably well understood. Indeed each extracellular and intracellular catabolic stage has been identified using either genetic, bioinformatic or biochemical approaches. Nevertheless, the molecular details of many of these stages remain unknown. In particular, the mechanism and ligand binding profiles for the transport of pectin degradation products between cellular compartments remain entirely uninvestigated. Here we present the structure of TogB, a 45.7 kDa periplasmic binding protein from Yersinia enterocolitica. This protein is a component of the TogMNAB ABC transporter involved in the periplasmic transport of oligogalacturonides. In addition to the unliganded complex (at 2.2 A), we have also determined the structures of TogB in complex with digalacturonic acid (at 2.2 A), trigalacturonic acid (at 1.8 A) and 4,5-unsaturated digalacutronic acid (at 2.3 A). The molecular determinants of oligogalacturonide binding include a novel salt-bridge between the non-reducing sugar uronate group, selectivity for the unsaturated ligand, and the overall sugar configuration. Complementing this are UV difference and isothermal titration calorimetry experiments that highlight the thermodynamic basis of ligand specificity. The ligand binding profiles of the TogMNAB transporter complex nicely complement pectate lyase-mediated pectin degradation, which is a significant component of pectin depolymerization reactions.
Collapse
Affiliation(s)
- D Wade Abbott
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6
| | | |
Collapse
|
1425
|
Yu R, Wang L, Duan X, Gao P. Isolation of cellulolytic enzymes from moldy silage by new culture-independent strategy. Biotechnol Lett 2007; 29:1037-43. [PMID: 17375265 DOI: 10.1007/s10529-007-9350-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022]
Abstract
A culture-independent strategy has been developed for investigation of cellulases in moldy silage. By the qualitative differences in the adsorption of cellulases on lingo-cellulosics, a new cellobiohydrolase (CBH) with apparent molecular mass of 194 kDa was isolated and characterized. The entire extracellular proteins of silage were separated by two-dimensional gel electrophoresis, and five potential endoglucanases were identified by activity staining. These results demonstrate the feasibility of direct screening cellulases from environment without microorganism cultivation and this strategy could be expected to facilitate the research of uncultured microorganisms.
Collapse
Affiliation(s)
- Rentao Yu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | | | | | | |
Collapse
|
1426
|
McFeeters RL, Xiong C, O'Keefe BR, Bokesch HR, McMahon JB, Ratner DM, Castelli R, Seeberger PH, Byrd RA. The novel fold of scytovirin reveals a new twist for antiviral entry inhibitors. J Mol Biol 2007; 369:451-61. [PMID: 17434526 PMCID: PMC2696897 DOI: 10.1016/j.jmb.2007.03.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 03/06/2007] [Accepted: 03/13/2007] [Indexed: 11/20/2022]
Abstract
The solution structure of the potent 95 residue anti-HIV protein scytovirin has been determined and two carbohydrate-binding sites have been identified. This unique protein, containing five structurally important disulfide bonds, demonstrates a novel fold with no elements of extended regular secondary structure. Scytovirin contains two 39 residue sequence repeats, differing in only three amino acid residues, and each repeat has primary sequence similarity to chitin binding proteins. Both sequence repeats form similarly structured domains, with the exception of one region. The result is two carbohydrate-binding sites with substantially different affinities. The unusual fold clusters aromatic residues in both sites, suggesting a binding mechanism similar to other known hevein-like carbohydrate-binding proteins but differing in carbohydrate specificity. Scytovirin, originally isolated from the cyanobacterium Scytonema varium, holds potential as an HIV entry inhibitor for both therapeutic and prophylactic anti-HIV applications. The high-resolution structural studies reported are an important initial step in unlocking the therapeutic potential of scytovirin.
Collapse
Affiliation(s)
- Robert. L. McFeeters
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Changyun Xiong
- Molecular Targets Development Program, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Barry R. O'Keefe
- Molecular Targets Development Program, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Heidi R. Bokesch
- Molecular Targets Development Program, National Cancer Institute, Frederick, MD, 21702-1201, USA
- SAIC-Frederick, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - James B. McMahon
- Molecular Targets Development Program, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Daniel M. Ratner
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | | | - Peter H. Seeberger
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - R. Andrew Byrd
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, 21702-1201, USA
- Author to whom correspondence should be sent
| |
Collapse
|
1427
|
Turner P, Mamo G, Karlsson EN. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 2007; 6:9. [PMID: 17359551 PMCID: PMC1851020 DOI: 10.1186/1475-2859-6-9] [Citation(s) in RCA: 327] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/15/2007] [Indexed: 11/10/2022] Open
Abstract
In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts.
Collapse
Affiliation(s)
- Pernilla Turner
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Gashaw Mamo
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Eva Nordberg Karlsson
- Dept Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
1428
|
Caines MEC, Vaughan MD, Tarling CA, Hancock SM, Warren RAJ, Withers SG, Strynadka NCJ. Structural and mechanistic analyses of endo-glycoceramidase II, a membrane-associated family 5 glycosidase in the Apo and GM3 ganglioside-bound forms. J Biol Chem 2007; 282:14300-8. [PMID: 17329247 DOI: 10.1074/jbc.m611455200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
endo-Glycoceramidase, a membrane-associated family 5 glycosidase, deviates from the typical polysaccharide substrate specificity of other soluble members of the family, preferentially hydrolyzing glycosidic linkages between the oligosaccharide and ceramide moieties of gangliosides. Here we report the first x-ray crystal structures of an endo-glycoceramidase from Rhodococcus sp., in the apo form, in complex with the ganglioside G(M3) (Svennerholm ganglioside nomenclature (Svennerholm, L. (1964) J. Lipid Res. 5, 145-155)), and trapped as a glycosyl-enzyme intermediate. These snapshots provide the first molecular insight into enzyme recognition and association with gangliosides, revealing the structural adaptations necessary for glycosidase-catalyzed hydrolysis and detailing a novel ganglioside binding topology. Consistent with the chemical duality of the substrate, the active site of endo-glycoceramidase is split into a wide, polar cavity to bind the polyhydroxylated oligosaccharide moiety and a narrow, hydrophobic tunnel to bind the ceramide lipid chains. The specific interactions with the ceramide polar head group manifest a surprising aglycone specificity, an observation substantiated by our kinetic analyses. Collectively, the reported structural and kinetic data provide insight toward rational redesign of the synthetic glycosynthase mutant of endo-glycoceramidase to enable facile synthesis of nonnatural, therapeutically useful gangliosides.
Collapse
Affiliation(s)
- Matthew E C Caines
- Departments of Biochemistry and Molecular Biology, Chemistry, and Microbiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
1429
|
Tailford LE, Money VA, Smith NL, Dumon C, Davies GJ, Gilbert HJ. Mannose foraging by Bacteroides thetaiotaomicron: structure and specificity of the beta-mannosidase, BtMan2A. J Biol Chem 2007; 282:11291-9. [PMID: 17287210 DOI: 10.1074/jbc.m610964200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human colonic bacterium Bacteroides thetaiotaomicron, which plays an important role in maintaining human health, produces an extensive array of exo-acting glycoside hydrolases (GH), including 32 family GH2 glycoside hydrolases. Although it is likely that these enzymes enable the organism to utilize dietary and host glycans as major nutrient sources, the biochemical properties of these GH2 glycoside hydrolases are currently unclear. Here we report the biochemical properties and crystal structure of the GH2 B. thetaiotaomicron enzyme BtMan2A. Kinetic analysis demonstrates that BtMan2A is a beta-mannosidase in which substrate binding energy is provided principally by the glycone binding site, whereas aglycone recognition is highly plastic. The three-dimensional structure, determined to a resolution of 1.7 A, reveals a five-domain structure that is globally similar to the Escherichia coli LacZ beta-galactosidase. The catalytic center is housed mainly within a (beta/alpha)8 barrel although the N-terminal domain also contributes to the active site topology. The nature of the substrate-binding residues is quite distinct from other GH2 enzymes of known structure, instead they are similar to other clan GH-A enzymes specific for manno-configured substrates. Mutagenesis studies, informed by the crystal structure, identified a WDW motif in the N-terminal domain that makes a significant contribution to catalytic activity. The observation that this motif is invariant in GH2 mannosidases points to a generic role for these residues in this enzyme class. The identification of GH-A clan and GH2 specific residues in the active site of BtMan2A explains why this enzyme is able to harness substrate binding at the proximal glycone binding site more efficiently than mannan-hydrolyzing glycoside hydrolases in related enzyme families. The catalytic properties of BtMan2A are consistent with the flexible nutrient acquisition displayed by the colonic bacterium.
Collapse
Affiliation(s)
- Louise E Tailford
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
1430
|
Palackal N, Lyon CS, Zaidi S, Luginbühl P, Dupree P, Goubet F, Macomber JL, Short JM, Hazlewood GP, Robertson DE, Steer BA. A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Appl Microbiol Biotechnol 2007; 74:113-24. [PMID: 17103163 DOI: 10.1007/s00253-006-0645-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/16/2006] [Accepted: 08/22/2006] [Indexed: 10/23/2022]
Abstract
A unique multifunctional glycosyl hydrolase was discovered by screening an environmental DNA library prepared from a microbial consortium collected from cow rumen. The protein consists of two adjacent catalytic domains. Sequence analysis predicted that one domain conforms to glycosyl hydrolase family 5 and the other to family 26. The enzyme is active on several different beta-linked substrates and possesses mannanase, xylanase, and glucanase activities. Site-directed mutagenesis studies on the catalytic residues confirmed the presence of two functionally independent catalytic domains. Using site-specific mutations, it was shown that one catalytic site hydrolyzes beta-1,4-linked mannan substrates, while the second catalytic site hydrolyzes beta-1,4-linked xylan and beta-1,4-linked glucan substrates. Polysaccharide Analysis using Carbohydrate gel Electrophoresis (PACE) also confirmed that the enzyme has discrete domains for binding and hydrolysis of glucan- and mannan-linked polysaccharides. Such multifunctional enzymes have many potential industrial applications in plant processing, including biomass saccharification, animal feed nutritional enhancement, textile, and pulp and paper processing.
Collapse
Affiliation(s)
- Nisha Palackal
- Diversa Corporation, 4955 Directors Place, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1431
|
Abbott DW, Hrynuik S, Boraston AB. Identification and characterization of a novel periplasmic polygalacturonic acid binding protein from Yersinia enterolitica. J Mol Biol 2007; 367:1023-33. [PMID: 17292916 DOI: 10.1016/j.jmb.2007.01.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/08/2007] [Accepted: 01/09/2007] [Indexed: 11/22/2022]
Abstract
A number of bacteria in the family Enterobacteriaceae harbor the genes comprising well-developed pectinolytic pathways (e.g. Erwinia sp.) or abridged versions of this pathway (e.g. Yersinia sp.). One of the most enigmatic components present in some of these pathways is a small gene that encodes a predicted secreted protein of approximately 160 amino acid residues with unknown function. This protein shows distant amino acid sequence similarity over its entire length to galactose-specific family 32 carbohydrate-binding modules (CBMs). Here we demonstrate the ability of the Yersinia enterocolitica example, here called YeCBM32, to bind polygalacturonic acid containing components of pectin. This binding is selective for highly polymerized galacturonic acid and shows a complex mode of polysaccharide recognition. The high resolution X-ray crystal structure (1.35 A) shows YeCBM32s overall structural similarity to galactose specific CBMs and conserved binding site location but reveals a substantially different binding site topology, which likely reflects its unique polymeric and acidic ligand. The results suggest the possibility of a unique role for YeCBM32 in polygalacturonic acid transport.
Collapse
Affiliation(s)
- D Wade Abbott
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria BC, Canada V8W 3P6
| | | | | |
Collapse
|
1432
|
Ramsay AG, Scott KP, Martin JC, Rincon MT, Flint HJ. Cell-associated alpha-amylases of butyrate-producing Firmicute bacteria from the human colon. MICROBIOLOGY-SGM 2007; 152:3281-3290. [PMID: 17074899 DOI: 10.1099/mic.0.29233-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Selected butyrate-producing bacteria from the human colon that are related to Roseburia spp. and Butyrivibrio fibrisolvens showed a good ability to utilize a variety of starches for growth when compared with the Gram-negative amylolytic anaerobe Bacteroides thetaiotaomicron. A major cell-associated amylase of high molecular mass (140-210 kDa) was detected in each strain by SDS-PAGE zymogram analysis, and genes corresponding to these enzymes were analysed for two representative strains. Amy13B from But. fibrisolvens 16/4 is a multi-domain enzyme of 144.6 kDa that includes a family 13 glycoside hydrolase domain, and duplicated family 26 carbohydrate-binding modules. Amy13A (182.4 kDa), from Roseburia inulinivorans A2-194, also includes a family 13 domain, which is preceded by two repeat units of approximately 116 aa rich in aromatic residues, an isoamylase N-terminal domain, a pullulanase-associated domain, and an additional unidentified domain. Both Amy13A and Amy13B have N-terminal signal peptides and C-terminal cell-wall sorting signals, including a modified LPXTG motif similar to that involved in interactions with the cell surface in other Gram-positive bacteria, a hydrophobic transmembrane segment, and a basic C terminus. The overexpressed family 13 domains showed an absolute requirement for Mg2+ or Ca2+ for activity, and functioned as 1,4-alpha-glucanohydrolases (alpha-amylases; EC 3.2.1.1). These major starch-degrading enzymes thus appear to be anchored to the cell wall in this important group of human gut bacteria.
Collapse
Affiliation(s)
- Alan G Ramsay
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Karen P Scott
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Jenny C Martin
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Marco T Rincon
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Harry J Flint
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
1433
|
Porter SE, Donohoe BS, Beery KE, Xu Q, Ding SY, Vinzant TB, Abbas CA, Himmel ME. Microscopic analysis of corn fiber using starch- and cellulose-specific molecular probes. Biotechnol Bioeng 2007; 98:123-31. [PMID: 17335065 DOI: 10.1002/bit.21409] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.
Collapse
Affiliation(s)
- Stephanie E Porter
- Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1434
|
Fushinobu S, Hidaka M, Miyanaga A, Imamura H. New Structural Insights on Carbohydrate-active Enzymes. J Appl Glycosci (1999) 2007. [DOI: 10.5458/jag.54.95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
1435
|
van Bueren AL, Boraston AB. The Structural Basis of α-Glucan Recognition by a Family 41 Carbohydrate-binding Module from Thermotoga maritima. J Mol Biol 2007; 365:555-60. [PMID: 17095014 DOI: 10.1016/j.jmb.2006.10.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 09/26/2006] [Accepted: 10/05/2006] [Indexed: 10/24/2022]
Abstract
Starch recognition by carbohydrate-binding modules (CBMs) is important for the activity of starch-degrading enzymes. The N-terminal family 41 CBM, TmCBM41 (from pullulanase PulA secreted by Thermotoga maritima) was shown to have alpha-glucan binding activity with specificity for alpha-1,4-glucans but was able to tolerate the alpha-1,6-linkages found roughly every three or four glucose units in pullulan. Using X-ray crystallography, the structures were solved for TmCBM41 in an uncomplexed form and in complex with maltotetraose and 6(3)-alpha-D-glucosyl-maltotriose (GM3). Ligand binding was facilitated by stacking interactions between the alpha-faces of the glucose residues and two tryptophan side-chains in the two main subsites of the carbohydrate-binding site. Overall, this mode of starch binding is quite well conserved by other starch-binding modules. The structure in complex with GM3 revealed a third binding subsite with the flexibility to accommodate an alpha-1,4- or an alpha-1,6-linked glucose.
Collapse
Affiliation(s)
- Alicia Lammerts van Bueren
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6
| | | |
Collapse
|
1436
|
Stanca-Kaposta EC, Gamblin DP, Screen J, Liu B, Snoek LC, Davis BG, Simons JP. Carbohydrate molecular recognition: a spectroscopic investigation of carbohydrate–aromatic interactions. Phys Chem Chem Phys 2007; 9:4444-51. [PMID: 17690769 DOI: 10.1039/b704792d] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The physical basis of carbohydrate molecular recognition at aromatic protein binding sites is explored by creating molecular complexes between a series of selected monosaccharides and toluene (as a truncated model for phenylalanine). They are formed at low temperatures under molecular beam conditions, and detected and characterized through mass-selected, infrared ion depletion spectroscopy-a strategy which exploits the extraordinary sensitivity of their vibrational signatures to the local hydrogen-bonded environment of their OH groups. The trial set of carbohydrates, alpha- and beta-anomers of glucose, galactose and fucose, reflects ligand fragments in naturally occurring protein-carbohydrate complexes and also allows an investigation of the effect of systematic structural changes, including the shape and extent of 'apolar' patches on the pyranose ring, removal of the OH on the exocyclic hydroxymethyl group, and removal of the aglycon. Bound complexes invariably form, establishing the general existence of intrinsic intermolecular potential minima. In most of the cases explored, comparison between recorded and computed vibrational spectra of the bound and free carbohydrates in the absence of solvent water molecules reveal that dispersion forces involving CH-pi interactions, which promote little if any distortion of the bound carbohydrate, predominate although complexes bound through specific OH-pi hydrogen-bonded interactions have also been identified. Since the complexes form at low temperatures in the absence of water, entropic contributions associated with the reorganization of surrounding water molecules, the essence of the proposed 'hydrophobic interaction', cannot contribute and other modes of binding drive the recognition of sugars by aromatic residues. Excitingly, some of the proposed structures mirror those found in naturally occurring protein-carbohydrate binding sites.
Collapse
Affiliation(s)
- E Cristina Stanca-Kaposta
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
1437
|
van Bueren AL, Higgins M, Wang D, Burke RD, Boraston AB. Identification and structural basis of binding to host lung glycogen by streptococcal virulence factors. Nat Struct Mol Biol 2006; 14:76-84. [PMID: 17187076 DOI: 10.1038/nsmb1187] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 12/04/2006] [Indexed: 11/09/2022]
Abstract
The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal alpha-glucan-metabolizing machinery as virulence factors.
Collapse
Affiliation(s)
- Alicia Lammerts van Bueren
- Biochemistry & Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, British Columbia, V8W 3P6, Canada
| | | | | | | | | |
Collapse
|
1438
|
Filonova L, Kallas AM, Greffe L, Johansson G, Teeri TT, Daniel G. Analysis of the Surfaces of Wood Tissues and Pulp Fibers Using Carbohydrate-Binding Modules Specific for Crystalline Cellulose and Mannan. Biomacromolecules 2006; 8:91-7. [PMID: 17206793 DOI: 10.1021/bm060632z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbohydrate binding modules (CBMs) are noncatalytic substrate binding domains of many enzymes involved in carbohydrate metabolism. Here we used fluorescent labeled recombinant CBMs specific for crystalline cellulose (CBM1(HjCel7A)) and mannans (CBM27(TmMan5) and CBM35(CjMan5C)) to analyze the complex surfaces of wood tissues and pulp fibers. The crystalline cellulose CBM1(HjCel7A) was found as a reliable marker of both bacterially produced and plant G-layer cellulose, and labeling of spruce pulp fibers with CBM1(HjCel7A) revealed a signal that increased with degree of fiber damage. The mannan-specific CBM27(TmMan5) and CBM35(CjMan5C) CBMs were found to be more specific reagents than a monoclonal antibody specific for (1-->4)-beta-mannan/galacto-(1-->4)-beta-mannan for mapping carbohydrates on native substrates. We have developed a quantitative fluorometric method for analysis of crystalline cellulose accumulation on fiber surfaces and shown a quantitative difference in crystalline cellulose binding sites in differently processed pulp fibers. Our results indicated that CBMs provide useful, novel tools for monitoring changes in carbohydrate content of nonuniform substrate surfaces, for example, during wood or pulping processes and possibly fiber biosynthesis.
Collapse
Affiliation(s)
- Lada Filonova
- Department of Wood Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
1439
|
Ficko-Blean E, Boraston AB. The Interaction of a Carbohydrate-binding Module from a Clostridium perfringens N-Acetyl-β-hexosaminidase with Its Carbohydrate Receptor. J Biol Chem 2006; 281:37748-57. [PMID: 16990278 DOI: 10.1074/jbc.m606126200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clostridium perfringens is a notable colonizer of the human gastrointestinal tract. This bacterium is quite remarkable for a human pathogen by the number of glycoside hydrolases found in its genome. The modularity of these enzymes is striking as is the frequent occurrence of modules having amino acid sequence identity with family 32 carbohydrate-binding modules (CBMs), often referred to as F5/8 domains. Here we report the properties of family 32 CBMs from a C. perfringens N-acetyl-beta-hexosaminidase. Macroarray, UV difference, and isothermal titration calorimetry binding studies indicate a preference for the disaccharide LacNAc (beta-d-galactosyl-1,4-beta-d-N-acetylglucosamine). The molecular details of the interaction of this CBM with galactose, LacNAc, and the type II blood group H-trisaccharide are revealed by x-ray crystallographic studies at resolutions of 1.49, 2.4, and 2.3 A, respectively.
Collapse
Affiliation(s)
- Elizabeth Ficko-Blean
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | |
Collapse
|
1440
|
St John FJ, Rice JD, Preston JF. Characterization of XynC from Bacillus subtilis subsp. subtilis strain 168 and analysis of its role in depolymerization of glucuronoxylan. J Bacteriol 2006; 188:8617-26. [PMID: 17028274 PMCID: PMC1698249 DOI: 10.1128/jb.01283-06] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 09/28/2006] [Indexed: 11/20/2022] Open
Abstract
Secretion of xylanase activities by Bacillus subtilis 168 supports the development of this well-defined genetic system for conversion of methylglucuronoxylan (MeGAXn [where n represents the number of xylose residues]) in the hemicellulose component of lignocellulosics to biobased products. In addition to the characterized glycosyl hydrolase family 11 (GH 11) endoxylanase designated XynA, B. subtilis 168 secretes a second endoxylanase as the translated product of the ynfF gene. This sequence shows remarkable homology to the GH 5 endoxylanase secreted by strains of Erwinia chrysanthemi. To determine its properties and potential role in the depolymerization of MeGAXn, the ynfF gene was cloned and overexpressed to provide an endoxylanase, designated XynC, which was characterized with respect to substrate preference, kinetic properties, and product formation. With different sources of MeGAXn as the substrate, the specific activity increased with increasing methylglucuronosyl substitutions on the beta-1,4-xylan chain. With MeGAXn from sweetgum as a preferred substrate, XynC exhibited a Vmax of 59.9 units/mg XynC, a Km of 1.63 mg MeGAXn/ml, and a k(cat) of 2,635/minute at pH 6.0 and 37 degrees C. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and 1H nuclear magnetic resonance data revealed that each hydrolysis product has a single glucuronosyl substitution penultimate to the reducing terminal xylose. This detailed analysis of XynC from B. subtilis 168 defines the unique depolymerization process catalyzed by the GH 5 endoxylanases. Based upon product analysis, B. subtilis 168 secretes both XynA and XynC. Expression of xynA was subject to MeGAXn induction; xynC expression was constitutive with growth on different substrates. Translation and secretion of both GH 11 and GH 5 endoxylanases by the fully sequenced and genetically malleable B. subtilis 168 recommends this bacterium for the introduction of genes required for the complete utilization of products of the enzyme-catalyzed depolymerization of MeGAXn. B. subtilis may serve as a model platform for development of gram-positive biocatalysts for conversion of lignocellulosic materials to renewable fuels and chemicals.
Collapse
Affiliation(s)
- Franz J St John
- Department of Microbiology and Cell Science, University of Florida, Box 110700, Bldg. 981, Museum Rd., Gainesville, FL 32611, USA
| | | | | |
Collapse
|
1441
|
van den Burg HA, Harrison SJ, Joosten MHAJ, Vervoort J, de Wit PJGM. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1420-30. [PMID: 17153926 DOI: 10.1094/mpmi-19-1420] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Resistance against the leaf mold fungus Cladosporium fulvum is mediated by the tomato Cf proteins which belong to the class of receptor-like proteins and indirectly recognize extracellular avirulence proteins (Avrs) of the fungus. Apart from triggering disease resistance, Avrs are believed to play a role in pathogenicity or virulence of C. fulvum. Here, we report on the avirulence protein Avr4, which is a chitin-binding lectin containing an invertebrate chitin-binding domain (CBM14). This domain is found in many eukaryotes, but has not yet been described in fungal or plant genomes. We found that interaction of Avr4 with chitin is specific, because it does not interact with other cell wall polysaccharides. Avr4 binds to chitin oligomers with a minimal length of three N-acetyl glucosamine residues. In vitro, Avr4 protects chitin against hydrolysis by plant chitinases. Avr4 also binds to chitin in cell walls of the fungi Trichoderma viride and Fusarium solani f. sp. phaseoli and protects these fungi against normally deleterious concentrations of plant chitinases. In situ fluorescence studies showed that Avr4 also binds to cell walls of C. fulvum during infection of tomato, where it most likely protects the fungus against tomato chitinases, suggesting that Avr4 is a counter-defensive virulence factor.
Collapse
Affiliation(s)
- Harrold A van den Burg
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, NL-6703 HA Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
1442
|
Horn SJ, Sikorski P, Cederkvist JB, Vaaje-Kolstad G, Sørlie M, Synstad B, Vriend G, Vårum KM, Eijsink VGH. Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc Natl Acad Sci U S A 2006; 103:18089-94. [PMID: 17116887 PMCID: PMC1838711 DOI: 10.1073/pnas.0608909103] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Indexed: 11/18/2022] Open
Abstract
Many enzymes that hydrolyze insoluble crystalline polysaccharides such as cellulose and chitin guide detached single-polymer chains through long and deep active-site clefts, leading to processive (stepwise) degradation of the polysaccharide. We have studied the links between enzyme efficiency and processivity by analyzing the effects of mutating aromatic residues in the substrate-binding groove of a processive chitobiohydrolase, chitinase B from Serratia marcescens. Mutation of two tryptophan residues (Trp-97 and Trp-220) close to the catalytic center (subsites +1 and +2) led to reduced processivity and a reduced ability to degrade crystalline chitin, suggesting that these two properties are linked. Most remarkably, the loss of processivity in the W97A mutant was accompanied by a 29-fold increase in the degradation rate for single-polymer chains as present in the soluble chitin-derivative chitosan. The properties of the W220A mutant showed a similar trend, although mutational effects were less dramatic. Processivity is thought to contribute to the degradation of crystalline polysaccharides because detached single-polymer chains are kept from reassociating with the solid material. The present results show that this processivity comes at a large cost in terms of enzyme speed. Thus, in some cases, it might be better to focus strategies for enzymatic depolymerization of polysaccharide biomass on improving substrate accessibility for nonprocessive enzymes rather than on improving the properties of processive enzymes.
Collapse
Affiliation(s)
- Svein J. Horn
- *Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432 Ås, Norway
| | | | - Jannicke B. Cederkvist
- *Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432 Ås, Norway
| | - Gustav Vaaje-Kolstad
- *Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432 Ås, Norway
| | - Morten Sørlie
- *Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432 Ås, Norway
| | - Bjørnar Synstad
- *Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432 Ås, Norway
| | - Gert Vriend
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University, 6525 ED, Nijmegen, The Netherlands
| | - Kjell M. Vårum
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway; and
| | - Vincent G. H. Eijsink
- *Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
1443
|
Ding SY, Xu Q, Ali MK, Baker JO, Bayer EA, Barak Y, Lamed R, Sugiyama J, Rumbles G, Himmel ME. Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. Biotechniques 2006; 41:435-6, 438, 440 passim. [PMID: 17068959 DOI: 10.2144/000112244] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The innate binding specificity of different carbohydrate-binding modules (CBMs) offers a versatile approach for mapping the chemistry and structure of surfaces that contain complex carbohydrates. We have employed the distinct recognition properties of a double His-tagged recombinant CBM tagged with semiconductor quantum dots for direct imaging of crystalline cellulose at the molecular level of resolution, using transmission and scanning transmission electron microscopy. In addition, three different types of CBMs from families 3, 6, and 20 that exhibit different carbohydrate specificities were each fused with either green fluorescent protein (GFP) or red fluorescent protein (RFP) and employed for double-labeling fluorescence microscopy studies of primary cell walls and various mixtures of complex carbohydrate target molecules. CBM probes can be used for characterizing both native complex carbohydrates and engineered biomaterials.
Collapse
Affiliation(s)
- Shi-You Ding
- National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1444
|
Poon DKY, Withers SG, McIntosh LP. Direct demonstration of the flexibility of the glycosylated proline-threonine linker in the Cellulomonas fimi Xylanase Cex through NMR spectroscopic analysis. J Biol Chem 2006; 282:2091-100. [PMID: 17121820 DOI: 10.1074/jbc.m609670200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The modular xylanase Cex (or CfXyn10A) from Cellulomonas fimi consists of an N-terminal catalytic domain and a C-terminal cellulose-binding domain, joined by a glycosylated proline-threonine (PT) linker. To characterize the conformation and dynamics of the Cex linker and the consequences of its modification, we have used NMR spectroscopy to study full-length Cex in its nonglycosylated ( approximately 47 kDa) and glycosylated ( approximately 51 kDa) forms. The PT linker lacks any predominant structure in either form as indicated by random coil amide chemical shifts. Furthermore, heteronuclear (1)H-(15)N nuclear Overhauser effect relaxation measurements demonstrate that the linker is flexible on the ns-to-ps time scale and that glycosylation partially dampens this flexibility. The catalytic and cellulose-binding domains also exhibit identical amide chemical shifts whether in isolation or in the context of either unmodified or glycosylated full-length Cex. Therefore, there are no noncovalent interactions between the two domains of Cex or between either domain and the linker. This conclusion is supported by the distinct (15)N relaxation properties of the two domains, as well as their differential alignment within a magnetic field by Pf1 phage particles. These data demonstrate that the PT linker is a flexible tether, joining the structurally independent catalytic and cellulose-binding domains of Cex in an ensemble of conformations; however, more extended forms may predominate because of restrictions imparted by the alternating proline residues. This supports the postulate that the binding-domain anchors Cex to the surface of cellulose, whereas the linker provides flexibility for the catalytic domain to hydrolyze nearby hemicellulose (xylan) chains.
Collapse
Affiliation(s)
- David K Y Poon
- Department of Biochemistry and Molecular Biology, The Protein Engineering Network of Centres of Excellence, and The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
1445
|
Miyanaga A, Koseki T, Miwa Y, Mese Y, Nakamura S, Kuno A, Hirabayashi J, Matsuzawa H, Wakagi T, Shoun H, Fushinobu S. The family 42 carbohydrate-binding module of family 54 alpha-L-arabinofuranosidase specifically binds the arabinofuranose side chain of hemicellulose. Biochem J 2006; 399:503-11. [PMID: 16846393 PMCID: PMC1615903 DOI: 10.1042/bj20060567] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alpha-L-arabinofuranosidase catalyses the hydrolysis of the alpha-1,2-, alpha-1,3-, and alpha-1,5-L-arabinofuranosidic bonds in L-arabinose-containing hemicelluloses such as arabinoxylan. AkAbf54 (the glycoside hydrolase family 54 alpha-L-arabinofuranosidase from Aspergillus kawachii) consists of two domains, a catalytic and an arabinose-binding domain. The latter has been named AkCBM42 [family 42 CBM (carbohydrate-binding module) of AkAbf54] because homologous domains are classified into CBM family 42. In the complex between AkAbf54 and arabinofuranosyl-alpha-1,2-xylobiose, the arabinose moiety occupies the binding pocket of AkCBM42, whereas the xylobiose moiety is exposed to the solvent. AkCBM42 was found to facilitate the hydrolysis of insoluble arabinoxylan, because mutants at the arabinose binding site exhibited markedly decreased activity. The results of binding assays and affinity gel electrophoresis showed that AkCBM42 interacts with arabinose-substituted, but not with unsubstituted, hemicelluloses. Isothermal titration calorimetry and frontal affinity chromatography analyses showed that the association constant of AkCBM42 with the arabinose moiety is approximately 10(3) M(-1). These results indicate that AkCBM42 binds the non-reducing-end arabinofuranosidic moiety of hemicellulose. To our knowledge, this is the first example of a CBM that can specifically recognize the side-chain monosaccharides of branched hemicelluloses.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- *Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Koseki
- †National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima 739-0046, Japan
| | - Yozo Miwa
- ‡Department of Biosphere Science, Hiroshima University, 1-4-4, Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Yuichiro Mese
- ‡Department of Biosphere Science, Hiroshima University, 1-4-4, Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Sachiko Nakamura
- §Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, AIST Central-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8566, Japan
| | - Atsushi Kuno
- §Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, AIST Central-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8566, Japan
| | - Jun Hirabayashi
- §Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, AIST Central-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroshi Matsuzawa
- ∥Department of Clinical Pharmacy, Aomori University, 2-3-1 Kohbata, Aomori 030-0943, Japan
| | - Takayoshi Wakagi
- *Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hirofumi Shoun
- *Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinya Fushinobu
- *Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
1446
|
Yoshida K, Imaizumi N, Kaneko S, Kawagoe Y, Tagiri A, Tanaka H, Nishitani K, Komae K. Carbohydrate-binding module of a rice endo-beta-1,4-glycanase, OsCel9A, expressed in auxin-induced lateral root primordia, is post-translationally truncated. PLANT & CELL PHYSIOLOGY 2006; 47:1555-71. [PMID: 17056619 DOI: 10.1093/pcp/pcl021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report the cloning of a glycoside hydrolase family (GHF) 9 gene of rice (Oryza sativa L. cv. Sasanishiki), OsCel9A, corresponding to the auxin-induced 51 kDa endo-1,4-beta-glucanase (EGase). This enzyme reveals a broad substrate specificity with respect to sugar backbones (glucose and xylose) in beta-1,4-glycans of type II cell wall. OsCel9A encodes a 640 amino acid polypeptide and is an ortholog of TomCel8, a tomato EGase containing a carbohydrate-binding module (CBM) 2 sequence at its C-terminus. The expression of four rice EGase genes including OsCel9A showed different patterns of organ specificity and responses to auxin. OsCel9A was preferentially expressed during the initiation of lateral roots or subcultured root calli, but was hardly expressed during auxin-induced coleoptile elongation or in seed calli, in contrast to OsCel9D, a KORRIGAN (KOR) homolog. In situ localization of OsCel9A transcripts demonstrated that its expression was specifically up-regulated in lateral root primordia (LRP). Northern blotting analysis showed the presence of a single product of OsCel9A. In contrast, both mass spectrometric analyses of peptide fragments from purified 51 kDa EGase proteins and immunogel blot analysis of EGase proteins in root extracts using two antibodies against internal peptide sequences of OsCel9A revealed that the entire CBM2 region was post-translationally truncated from the 67 kDa nascent protein to generate 51 kDa EGase isoforms. Analyses of auxin concentration and time course dependence of accumulation of two EGase isoforms suggested that the translation and post-translational CBM2 truncation of the OsCel9A gene may participate in lateral root development.
Collapse
Affiliation(s)
- Kouki Yoshida
- Hydraulic and Bio Engineering Research Section, Technology Center, Taisei Co., 344-1 Nase-cho, Totuka-ku, Yokohama, 245-0051 Japan.
| | | | | | | | | | | | | | | |
Collapse
|
1447
|
Shimonaka A, Murashima K, Koga J, Baba Y, Nishimura T, Kubota H, Kono T. Amino acid regions of family 45 endoglucanases involved in cotton defibrillation and in resistance to anionic surfactants and oxidizing agents. Biosci Biotechnol Biochem 2006; 70:2460-6. [PMID: 17031034 DOI: 10.1271/bbb.60200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the detergent industry, fungal endoglucanases are used to release microfibrils from the surfaces of dyed cellulosic fabrics to enhance color brightness. Family 45 endoglucanase (glycoside hydrolase family 45, GH45) EGL3 from Humicola grisea is more resistant to anionic surfactants and oxidizing agents than family 45 endoglucanase RCE1 from Rhizopus oryzae, while in the present study, a catalytic domain of RCE1 had higher defibrillation activity on dyed cotton fabrics than did that of EGL3. To identify the amino acid regions involved in these properties, we compared the characteristics of RCE1, EGL3, and three chimeric endoglucanases, in which each of the three regions of the catalytic domain of EGL3 was replaced by the corresponding region of the catalytic domain of RCE1. Amino acids in the N-terminal region were involved in resistance to anionic surfactants and oxidizing agents. Furthermore, amino acids in the region adjacent to the N-terminal region were involved in releasing microfibrils and in binding to dyed cotton fabrics, indicating that the binding of the amino acids in this region might be important in the release of microfibrils from dyed cotton fabrics.
Collapse
|
1448
|
Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ. Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci U S A 2006; 103:14664-71. [PMID: 16984999 PMCID: PMC1595409 DOI: 10.1073/pnas.0605979103] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expansins are small extracellular proteins that promote turgor-driven extension of plant cell walls. EXPB1 (also called Zea m 1) is a member of the beta-expansin subfamily known in the allergen literature as group-1 grass pollen allergens. EXPB1 induces extension and stress relaxation of grass cell walls. To help elucidate expansin's mechanism of wall loosening, we determined the structure of EXPB1 by x-ray crystallography to 2.75-A resolution. EXPB1 consists of two domains closely packed and aligned so as to form a long, shallow groove with potential to bind a glycan backbone of approximately 10 sugar residues. The structure of EXPB1 domain 1 resembles that of family-45 glycoside hydrolase (GH45), with conservation of most of the residues in the catalytic site. However, EXPB1 lacks a second aspartate that serves as the catalytic base required for hydrolytic activity in GH45 enzymes. Domain 2 of EXPB1 is an Ig-like beta-sandwich, with aromatic and polar residues that form a potential surface for polysaccharide binding in line with the glycan binding cleft of domain 1. EXPB1 binds to maize cell walls, most strongly to xylans, causing swelling of the cell wall. Tests for hydrolytic activity by EXPB1 with various wall polysaccharides proved negative. Moreover, GH45 enzymes and a GH45-related protein called "swollenin" lacked wall extension activity comparable to that of expansins. We propose a model of expansin action in which EXPB1 facilitates the local movement and stress relaxation of arabinoxylan-cellulose networks within the wall by noncovalent rearrangement of its target.
Collapse
Affiliation(s)
| | | | - David M. Dudzinski
- Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | | | | |
Collapse
|
1449
|
Boraston AB, Wang D, Burke RD. Blood group antigen recognition by a Streptococcus pneumoniae virulence factor. J Biol Chem 2006; 281:35263-71. [PMID: 16987809 DOI: 10.1074/jbc.m607620200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Streptococcus pneumoniae fucose utilization operon includes a gene encoding a virulence factor that belongs to family 98 in the glycoside hydrolase classification. This protein contains a C-terminal triplet of fucose binding modules that have significant amino acid sequence identity with the Anguilla anguilla fucolectin. Functional studies of these fucose binding modules reveal binding to fucosylated oligosaccharides and suggest the importance of multivalent binding. The high resolution crystal structures of ligand bound forms of one fucose binding module uncovers the molecular basis of fucose, ABH blood group antigen, and Lewisy antigen binding. These studies are extended by fluorescence microscopy to show specific binding to mouse lung tissue. These modules define a new family of carbohydrate binding modules now classified as family 47.
Collapse
Affiliation(s)
- Alisdair B Boraston
- Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.
| | | | | |
Collapse
|
1450
|
Levasseur A, Saloheimo M, Navarro D, Andberg M, Monot F, Nakari-Setälä T, Asther M, Record E. Production of a chimeric enzyme tool associating the Trichoderma reesei swollenin with the Aspergillus niger feruloyl esterase A for release of ferulic acid. Appl Microbiol Biotechnol 2006; 73:872-80. [PMID: 16957894 DOI: 10.1007/s00253-006-0546-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/30/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
The main goals of this work were to produce the fusion protein of the Trichoderma reesei swollenin I (SWOI) and Aspergillus niger feruloyl esterase A (FAEA) and to study the effect of the physical association of the fusion partners on the efficiency of the enzyme. The fusion protein was produced up to 25 mg l(-1) in the T. reesei strains Rut-C30 and CL847. In parallel, FAEA alone was produced for use as a control protein in application tests. Recombinant FAEA and SWOI-FAEA were purified to homogeneity and characterized. The biochemical and kinetic characteristics of the two recombinant proteins were found to be similar to those of native FAEA, except for the temperature stability and specific activity of the SWOI-FAEA. Finally, the SWOI-FAEA protein was tested for release of ferulic acid from wheat bran. A period of 24 h of enzymatic hydrolysis with the SWOI-FAEA improved the efficiency of ferulic acid release by 50% compared with the results obtained using the free FAEA and SWOI. Ferulic acid is used as an antioxidant and flavor precursor in the food and pharmaceutical industries. This is the first report of a potential application of the SWOI protein fused with an enzyme of industrial interest.
Collapse
Affiliation(s)
- Anthony Levasseur
- UMR 1163 INRA/Universités de Provence et de la Méditerranée de Biotechnologie des Champignons Filamenteux, IFR-IBAIM, 163 avenue de Luminy, Case Postale 925, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|