101
|
Xia G, Xu Y, Zhang C, Li M, Li H, Chen C. High levels of serum hypersensitive C-reactive protein are associated with non-alcoholic fatty liver disease in non-obese people: a cross-sectional study. Eur J Med Res 2024; 29:496. [PMID: 39402650 PMCID: PMC11476594 DOI: 10.1186/s40001-024-02065-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) and obesity have become one of the most common chronic diseases, and the global prevalence is increasing year by year. Both are accompanied by hypersensitive C-reactive protein (hs-CRP). At present, there are many predictors of NAFLD. Exploring the relationship between hs-CRP and nonalcoholic fatty liver disease in non-obese people will be helpful for risk prediction and clinical screening in high-risk populations. OBJECTIVE To explore the relationship between levels of serum hs-CRP and the presence of NAFLD in non-obese people. METHODS A total of 6558 participants who underwent physical examination from March 2017 to November 2017. Multivariate logistic regression was utilized to analyze the risk factors associated with NAFLD. RESULTS This study including 4240 males and 2318 females ranging from 20 to 94 years. In 1396 patients with NAFLD, the prevalence rate was 21.3%, among which 1056 (24.9%) males and 340 (14.7%) females had NAFLD. The prevalence of NAFLD was much higher in males compared to females (χ2 = 93.748, P < 0.001). In the nonalcoholic fatty liver group, various factors including hs-CRP, age, WC, BMI, systolic blood pressure and blood pressure diastolic blood pressure were significantly higher than those in the control group. Logistic regression analysis confirmed that hs-CRP was an independent risk factor for NAFLD, even after adjusting for relevant variables. CONCLUSIONS The prevalence of NAFLD increases with the level of hs-CRP in both men and women who are non-obese. Hs-CRP levels are an important risk factor for nonalcoholic fatty liver disease in non-obese individuals.
Collapse
Affiliation(s)
- Guitao Xia
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Yuemei Xu
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Cheng Zhang
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Mengting Li
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Hongliang Li
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China.
| | - Changxi Chen
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China.
| |
Collapse
|
102
|
Sun DD, Li XQ, Liu YT, Ge MQ, Hou ZC. The Application of Duck Embryonic Fibroblasts CCL-141 as a Cell Model for Adipogenesis. Animals (Basel) 2024; 14:2973. [PMID: 39457903 PMCID: PMC11503743 DOI: 10.3390/ani14202973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The duck embryo fibroblast cell line CCL-141, which is currently the only commercialized duck cell line, has been underexplored in adipogenesis research. (1) Background: This study establishes an experimental protocol to induce adipogenesis in CCL-141 cells, addressing the importance of understanding gene functions in this process. (2) Methods: Chicken serum, fatty acids, insulin, and all-trans retinoic acid were used to treat CCL-141 cells, with adipogenesis confirmed by Oil Red O staining and gene expression quantification. CRISPR/Cas9 technology was applied to knockout PPARγ, and the resulting adipogenic phenotype was assessed. (3) Results: The treatments promoted adipogenesis, and the knockout of PPARγ validated the cell line's utility for gene function studies. (4) Conclusions: CCL-141 cells are a suitable model for investigating duck adipogenesis, contributing to the understanding of regulatory factors in this biological process.
Collapse
Affiliation(s)
- Dan-Dan Sun
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.-D.S.); (X.-Q.L.); (Y.-T.L.); (M.-Q.G.)
| | - Xiao-Qin Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.-D.S.); (X.-Q.L.); (Y.-T.L.); (M.-Q.G.)
| | - Yong-Tong Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.-D.S.); (X.-Q.L.); (Y.-T.L.); (M.-Q.G.)
| | - Meng-Qi Ge
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.-D.S.); (X.-Q.L.); (Y.-T.L.); (M.-Q.G.)
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.-D.S.); (X.-Q.L.); (Y.-T.L.); (M.-Q.G.)
| |
Collapse
|
103
|
Gao J, Ma L, Yin J, Li T, Yin Y, Chen Y. Canola Oil Ameliorates Obesity by Suppressing Lipogenesis and Reprogramming the Gut Microbiota in Mice via the AMPK Pathway. Nutrients 2024; 16:3379. [PMID: 39408346 PMCID: PMC11478415 DOI: 10.3390/nu16193379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND obesity is a worldwide problem that seriously endangers human health. Canola oil (Col) has been reported to regulate hepatic steatosis by influencing oxidative stress and lipid metabolism in Kunming mice. However, whether Col exhibits an anti-obesity effect by altering the gut microbiota remains unknown. METHODS in this study, we observed that a high-fat diet increased lipogenesis and gut microbiota disorder in C57BL/6J male mice, while the administration of Col suppressed lipogenesis and improved gut microbiota disorder. RESULTS the results show that Col markedly reduced the final body weight and subcutaneous adipose tissue of C57BL/6J male mice fed a high-fat diet (HFD) after 6 weeks of administration. However, although Col did not effectively increase the serum concentration of HDL, we found that treatment with Col notably inhibited the low-density lipoprotein (LDL), total cholesterol (TC), and triglycerides (TGs) in HFD mice. Furthermore, Col ameliorated obesity in the liver compared to mice that were only fed a high-fat diet. We also found that Col significantly inhibited the relative expression of sterol regulatory element binding protein (SREBP1/2), peroxisome proliferator-activated receptor γ (PPARγ), and insulin-induced genes (Insig1/2) that proved to be closely associated with lipogenesis in HFD mice. In addition, the concentration of acetic acid was significantly increased in Col-treatment HFD mice. Further, we noted that Col contributed to the reprogramming of the intestinal microbiota. The relative abundances of Akkermansia, Dubosiella, and Alistipes were enhanced under treatment with Col in HFD mice. The results also imply that Col markedly elevated the phosphorylation level of the AMP-activated protein kinase (AMPK) pathway in HFD mice. CONCLUSIONS the results of our study show that Col ameliorates obesity and suppresses lipogenesis in HFD mice. The underlying mechanisms are possibly associated with the reprogramming of the gut microbiota, in particular, the acetic acid-mediated increased expression of Alistipes via the AMPK signaling pathway.
Collapse
Affiliation(s)
- Jing Gao
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
- Yuelushan Laboratory, Changsha 410004, China
| | - Li Ma
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
- Yuelushan Laboratory, Changsha 410004, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China;
| | - Tiejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences, Changsha 410125, China;
| | - Yulong Yin
- Yuelushan Laboratory, Changsha 410004, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China;
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Chinese Academy of Sciences, Changsha 410125, China;
| | - Yongzhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
- Yuelushan Laboratory, Changsha 410004, China
| |
Collapse
|
104
|
Aggarwal K, Singh B, Goel A, Agrawal DK, Bansal S, Kanagala SG, Anamika F, Gupta A, Jain R. Complex dichotomous links of nonalcoholic fatty liver disease and inflammatory bowel disease: exploring risks, mechanisms, and management modalities. Intest Res 2024; 22:414-427. [PMID: 38835139 PMCID: PMC11534450 DOI: 10.5217/ir.2024.00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been shown to be linked to inflammatory bowel disease (IBD) due to established risk factors such as obesity, age, and type 2 diabetes in numerous studies. However, alternative research suggests that factors related to IBD, such as disease activity, duration, and drug-induced toxicity, can contribute to NAFLD. Recent research findings suggest IBD relapses are correlated with dysbiosis, mucosal damage, and an increase in cytokines. In contrast, remission periods are characterized by reduced metabolic risk factors. There is a dichotomy evident in the associations between NAFLD and IBD during relapses and remissions. This warrants a nuanced understanding of the diverse influences on disease manifestation and progression. It is possible to provide a holistic approach to care for patients with IBD by emphasizing the interdependence between metabolic and inflammatory disorders.
Collapse
Affiliation(s)
- Kanishk Aggarwal
- Department of Medicine, Dayanand Medical College, Ludhiana, India
| | - Bhupinder Singh
- Department of Medicine, Government Medical College Amritsar, Amritsar, India
| | - Abhishek Goel
- Department of Medicine, Cape Fear Valley Medical Center, Fayetteville, NC, USA
| | | | - Sourav Bansal
- Department of Medicine, Government Medical College Amritsar, Amritsar, India
| | | | - Fnu Anamika
- Department of Medicine, University College of Medical Sciences, New Delhi, India
| | | | - Rohit Jain
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
105
|
Liu Y, Li T, Xu J, Li S, Li B, Elgozair M. Apolipoprotein H deficiency exacerbates alcohol-induced liver injury via gut Dysbiosis and altered bile acid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159535. [PMID: 39033850 DOI: 10.1016/j.bbalip.2024.159535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/06/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND APOH plays an essential role in lipid metabolism and the transport of lipids in the circulation. Previous studies have shown that APOH deficiency causes fatty liver and gut microbiota dysbiosis in mouse models. However, the role and potential mechanisms of APOH deficiency in the pathogenesis of alcoholic liver disease remain unclear. METHODS C57BL/6 WT and ApoH-/- mice were used to construct the binge-on-chronic alcohol feeding model. Mouse liver transcriptome, targeted bile acid metabolome, and 16S gut bacterial taxa were assayed and analyzed. Open-source human liver transcriptome dataset was analyzed. RESULTS ApoH-/- mice fed with alcohol showed severe hepatic steatosis. Liver RNAseq and RT-qPCR data indicated that APOH deficiency predominantly impacts hepatic lipid metabolism by disrupting de novo lipogenesis, cholesterol processing, and bile acid metabolism. A targeted bile acid metabolomics assay indicated significant changes in bile acid composition, including increased percentages of TCA in the liver and DCA in the gut of alcohol-fed ApoH-/- mice. The concentrations of CA, NorCA, and HCA in the liver were higher in ApoH-/- mice on an ethanol diet compared to the control mice (p < 0.05). Additionally, APOH deficiency altered the composition of gut flora, which correlated with changes in the liver bile acid composition in the ethanol-feeding mouse model. Finally, open-source transcript-level data from human ALD livers highlighted a remarkable link between APOH downregulation and steatohepatitis, as well as bile acid metabolism. CONCLUSION APOH deficiency aggravates alcohol induced hepatic steatosis through the disruption of gut microbiota homeostasis and bile acid metabolism in mice.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Gastroenterology and Hepatology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China 116011; Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province, China 361001.
| | - Tingting Li
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, Fujian Province, China 361001
| | - Jun Xu
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing, China 100044
| | - Shanshan Li
- The Fourth Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China 100069
| | - Binbin Li
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA 55902
| | - Mohamad Elgozair
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA 55902
| |
Collapse
|
106
|
El-Ashmawy NE, Khedr EG, Al-Ashmawy GM, Kamel AA. Emerging role of natural lipophagy modulators in metabolic dysfunction-associated steatotic liver disease. Nutrition 2024; 126:112517. [PMID: 39146583 DOI: 10.1016/j.nut.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 08/17/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a seriously increasing liver disorder affecting nearly 32% of adults globally. Hepatic triglycerides (TG) accumulation is the hallmark of MASLD, which results from dysregulated lipid and fatty acid uptake, increased de novo lipogenesis (DNL), and decreased lipid removal. More recently, selective autophagy of lipid droplets (LDs), termed lipophagy, has emerged to be closely associated with disrupted hepatic lipid homeostasis. Recent studies have indicated that a series of natural products have shown promise as an alternative approach in attenuating MASLD via regulating lipophagy in vivo and in vitro. Therefore, lipophagy could be a new approach for natural products to be used to improve MASLD. This article aims to provide a comprehensive overview on the interrelationship between dysregulated lipid metabolism, lipophagy, and MASLD pathogenesis. In addition, the role of some natural products as lipophagy modulators and their impact on MASLD will be discussed.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt; Department of Pharmacology & Biochemistry, Faculty of Pharmacy, The British University in Egypt, El Sherouk, Cairo, Egypt
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt; Department of Biochemistry, Faculty of Pharmacy, Al Salam University in Egypt, Kafr Az Zayat, Egypt
| | - Asmaa A Kamel
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
107
|
MacLeod B, Wang C, Brown LH, Borkowski E, Nakamura MT, Wells KR, Brunt KR, Harasim-Symbor E, Chabowski A, Mutch DM. Fads2 knockout mice reveal that ALA prevention of hepatic steatosis is dependent on delta-6 desaturase activity. J Lipid Res 2024; 65:100642. [PMID: 39303984 PMCID: PMC11526206 DOI: 10.1016/j.jlr.2024.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024] Open
Abstract
The production of the omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from alpha-linolenic acid (ALA) relies on the delta-6 desaturase (D6D) enzyme encoded by the Fads2 gene. While EPA and DHA reduce hepatic triacylglycerol (TAG) storage and regulate lipogenesis, the independent impact of ALA is less understood. To address this gap in knowledge, hepatic fatty acid metabolism was investigated in male wild-type (WT) and Fads2 knockout (KO) mice fed diets (16% kcal from fat) containing either lard (no n-3 LCPUFA), flaxseed oil (ALA-rich), or menhaden oil (EPA/DHA rich) for 21 weeks. Fat content and composition, as well as markers of lipogenesis, glyceroneogenesis, and TAG synthesis, were analyzed using histology, gas chromatography, and reverse transcription quantitative PCR (RT-qPCR). Mice fed the menhaden diet had significantly lower hepatic TAG compared to both lard- and flax-fed mice, concomitant with changes in n-3 and n-6 LCPUFA in both TAG and phospholipid (PL) fractions (all P < 0.05). Flax-fed WT mice had lower liver TAG content compared to their KO counterparts. Menhaden-fed mice had significantly lower expression of key lipogenic (Scd1, Srebp-1c, Fasn, Fads1, and Fads2), glyceroneogenic (Pck1), and TAG synthesis (Agpat3) genes compared to lard, with flax-fed mice showing some intermediate effects. Gene expression effects were independent of D6D activity, since no differences were detected between WT and KO mice fed the same diet. This study demonstrates that EPA/DHA and not ALA itself is critical for the prevention of hepatic steatosis.
Collapse
Affiliation(s)
- Blair MacLeod
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Chenxuan Wang
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Liam H Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Emma Borkowski
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Manabu T Nakamura
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kyle Rd Wells
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, NB, Canada
| | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, NB, Canada
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
108
|
Minetti ET, Hamburg NM, Matsui R. Drivers of cardiovascular disease in metabolic dysfunction-associated steatotic liver disease: the threats of oxidative stress. Front Cardiovasc Med 2024; 11:1469492. [PMID: 39411175 PMCID: PMC11473390 DOI: 10.3389/fcvm.2024.1469492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now known as metabolic-associated steatotic liver disease (MASLD), is the most common liver disease worldwide, with a prevalence of 38%. In these patients, cardiovascular disease (CVD) is the number one cause of mortality rather than liver disease. Liver abnormalities per se due to MASLD contribute to risk factors such as dyslipidemia and obesity and increase CVD incidents. In this review we discuss hepatic pathophysiological changes the liver of MASLD leading to cardiovascular risks, including liver sinusoidal endothelial cells, insulin resistance, and oxidative stress with a focus on glutathione metabolism and function. In an era where there is an increasingly robust recognition of what causes CVD, such as the factors included by the American Heart Association in the recently developed PREVENT equation, the inclusion of liver disease may open doors to how we approach treatment for MASLD patients who are at risk of CVD.
Collapse
Affiliation(s)
| | | | - Reiko Matsui
- Whitaker Cardiovascular Institute, Section of Vascular Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
109
|
Van Dender C, Timmermans S, Paakinaho V, Vanderhaeghen T, Vandewalle J, Claes M, Garcia B, Roman B, De Waele J, Croubels S, De Bosscher K, Meuleman P, Herpain A, Palvimo JJ, Libert C. A critical role for HNF4α in polymicrobial sepsis-associated metabolic reprogramming and death. EMBO Mol Med 2024; 16:2485-2515. [PMID: 39261648 PMCID: PMC11473810 DOI: 10.1038/s44321-024-00130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
In sepsis, limited food intake and increased energy expenditure induce a starvation response, which is compromised by a quick decline in the expression of hepatic PPARα, a transcription factor essential in intracellular catabolism of free fatty acids. The mechanism upstream of this PPARα downregulation is unknown. We found that sepsis causes a progressive hepatic loss-of-function of HNF4α, which has a strong impact on the expression of several important nuclear receptors, including PPARα. HNF4α depletion in hepatocytes dramatically increases sepsis lethality, steatosis, and organ damage and prevents an adequate response to IL6, which is critical for liver regeneration and survival. An HNF4α agonist protects against sepsis at all levels, irrespectively of bacterial loads, suggesting HNF4α is crucial in tolerance to sepsis. In conclusion, hepatic HNF4α activity is decreased during sepsis, causing PPARα downregulation, metabolic problems, and a disturbed IL6-mediated acute phase response. The findings provide new insights and therapeutic options in sepsis.
Collapse
Affiliation(s)
- Céline Van Dender
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Timmermans
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Tineke Vanderhaeghen
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Maarten Claes
- Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bruno Garcia
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, 1050, Brussels, Belgium
- Department of Intensive Care, Center Hospitalier Universitaire de Lille, 59000, Lille, France
| | - Bart Roman
- Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jan De Waele
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Karolien De Bosscher
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, 1050, Brussels, Belgium
- Department of Intensive Care, St.-Pierre University Hospital, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
110
|
Pîrvu BF, Clenciu D, Beldie LA, Dica CC, Burticală MA, Ţenea-Cojan TŞ, Mitrea A, Amzolini AM, Efrem IC, Mogoş GFR, Vladu IM. The burden of cancer in metabolic dysfunction-associated steatotic liver disease. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:627-635. [PMID: 39957024 PMCID: PMC11924906 DOI: 10.47162/rjme.65.4.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/08/2025] [Indexed: 02/18/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide and has become a major public health problem. MASLD frequently progresses to cirrhosis and hepatocellular carcinoma, but recent studies also show a frequent association with extrahepatic cancers. One of the mechanisms involved in both locations is insulin resistance and hyperinsulinemia. The aim of this narrative review was to present the main etiopathogenic mechanisms involved in cancer development in patients with MASLD.
Collapse
Affiliation(s)
- Bianca Florentina Pîrvu
- Department of Diabetes, Nutrition and Metabolic Diseases, Emergency County Clinical Hospital, Craiova, Romania
| | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Luiza Andreea Beldie
- Department of Diabetes, Nutrition and Metabolic Diseases, Emergency County Clinical Hospital, Craiova, Romania
| | - Cristina Camelia Dica
- Department of Diabetes, Nutrition and Metabolic Diseases, Emergency County Clinical Hospital, Craiova, Romania
| | | | | | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Anca Maria Amzolini
- Department of Medical Semiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Ion Cristian Efrem
- Department of Medical Semiology, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, Romania
| | | | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
111
|
Chi YJ, Bai ZY, Feng GL, Lai XH, Song YF. ER-mitochondria contact sites regulate hepatic lipogenesis via Ip3r-Grp75-Vdac complex recruiting Seipin. Cell Commun Signal 2024; 22:464. [PMID: 39350150 PMCID: PMC11440722 DOI: 10.1186/s12964-024-01829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Mitochondria and endoplasmic reticulum (ER) contact sites (MERCS) constitute a functional communication platform for ER and mitochondria, and they play a crucial role in the lipid homeostasis of the liver. However, it remains unclear about the exact effects of MERCs on the neutral lipid synthesis of the liver. METHODS In this study, the role and mechanism of MERCS in palmitic acid (PA)-induced neutral lipid imbalance in the liver was explored by constructing a lipid metabolism animal model based on yellow catfish. Given that the structural integrity of MERCS cannot be disrupted by the si-mitochondrial calcium uniporter (si-mcu), the MERCS-mediated Ca2+ signaling in isolated hepatocytes was intercepted by transfecting them with si-mcu in some in vitro experiments. RESULTS The key findings were: (1) Hepatocellular MERCs sub-proteome analysis confirmed that, via activating Ip3r-Grp75-voltage-dependent anion channel (Vdac) complexes, excessive dietary PA intake enhanced hepatic MERCs. (2) Dietary PA intake caused hepatic neutral lipid deposition by MERCs recruiting Seipin, which promoted lipid droplet biogenesis. (3) Our findings provide the first proof that MERCs recruited Seipin and controlled hepatic lipid homeostasis, depending on Ip3r-Grp75-Vdac-controlled Ca2+ signaling, apart from MERCs's structural integrity. Noteworthy, our results also confirmed these mechanisms are conservative from fish to mammals. CONCLUSIONS The findings of this study provide a new insight into the regulatory role of MERCS-recruited SEIPIN in hepatic lipid synthesis via Ip3r-Grp75-Vdac complex-mediated Ca2+ signaling, highlighting the critical contribution of MERCS in hepatic lipid homeostasis.
Collapse
Affiliation(s)
- Ying-Jia Chi
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen-Yu Bai
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang-Li Feng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Hong Lai
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
112
|
Zheng H, Sechi LA, Navarese EP, Casu G, Vidili G. Metabolic dysfunction-associated steatotic liver disease and cardiovascular risk: a comprehensive review. Cardiovasc Diabetol 2024; 23:346. [PMID: 39342178 PMCID: PMC11439309 DOI: 10.1186/s12933-024-02434-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), poses a significant global health challenge due to its increasing prevalence and strong association with cardiovascular disease (CVD). This comprehensive review summarizes the current knowledge on the MASLD-CVD relationship, compares analysis of how different terminologies for fatty liver disease affect cardiovascular (CV) risk assessment using different diagnostic criteria, explores the pathophysiological mechanisms connecting MASLD to CVD, the influence of MASLD on traditional CV risk factors, the role of noninvasive imaging techniques and biomarkers in the assessment of CV risk in patients with MASLD, and the implications for clinical management and prevention strategies. By incorporating current research and clinical guidelines, this review provides a comprehensive overview of the complex interplay between MASLD and cardiovascular health.
Collapse
Affiliation(s)
- Haixiang Zheng
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Complex Structure of Microbiology and Virology, AOU Sassari, 07100, Sassari, Italy
| | - Eliano Pio Navarese
- Clinical and Experimental Cardiology, Clinical and Interventional Cardiology, University of Sassari, Sassari, Italy
| | - Gavino Casu
- Clinical and Experimental Cardiology, Clinical and Interventional Cardiology, University of Sassari, Sassari, Italy
| | - Gianpaolo Vidili
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, Azienda Ospedaliero, 07100, Sassari, Italy.
| |
Collapse
|
113
|
Xue L, Li K, Jia Y, Yao D, Guo X, Zhang S. Impact of High-Temperature Feeds on Gut Microbiota and MAFLD. J Microbiol Biotechnol 2024; 34:1789-1802. [PMID: 39113196 PMCID: PMC11473614 DOI: 10.4014/jmb.2405.05023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 10/01/2024]
Abstract
The purpose of this study is to investigate the effects of non-obese MAFLD on the gut microbiota and metabolic pathways caused by high-temperature processed meals. It was decided to divide the eighteen male Sprague-Dawley rats into three groups: the control group, the dry-fried soybeans (DFS) group, and the high-fat diet (HFD) group. Following the passage of twelve weeks, a series of physical, biochemical, histological, and microbiological examinations were carried out. There were distinct pathological abnormalities brought about by each diet. The DFS diet was found to cause the development of fatty liver and to demonstrate strong relationships between components of the gut microbiota, such as Akkermansia and Mucispirillum, and indices of liver health. Diet-induced changes in the gut microbiome have a significant impact on liver pathology in non-obese patients with metabolically altered liver disease (MAFLD), which suggests that dietary interventions that target gut microbiota could be used to manage or prevent the illness.
Collapse
Affiliation(s)
- Lijun Xue
- Digestive Department 2, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, P.R. China
| | - Kaimin Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Jinan 250013, P.R. China
| | - Dongxue Yao
- Digestive Department 2, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, P.R. China
| | - Xuexing Guo
- Digestive Department 2, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, P.R. China
| | - Shuhong Zhang
- Digestive Department 2, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, P.R. China
| |
Collapse
|
114
|
Ábel T, Benczúr B, Csobod ÉC. Sex differences in pathogenesis and treatment of dyslipidemia in patients with type 2 diabetes and steatotic liver disease. Front Med (Lausanne) 2024; 11:1458025. [PMID: 39376658 PMCID: PMC11456427 DOI: 10.3389/fmed.2024.1458025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Previously published studies have shown that women with type 2 diabetes have a higher risk of atherosclerotic cardiovascular disease than men with type 2 diabetes. The exact reason for this is not yet known. The association between metabolic dysfunction-associated steatotic liver disease and type 2 diabetes appears to be bidirectional, meaning that the onset of one may increase the risk of the onset and progression of the other. Dyslipidemia is common in both diseases. Our aim was therefore to investigate whether there is a sex difference in the pathogenesis and management of dyslipidemia in patients with type 2 diabetes and steatotic liver disease with metabolic dysfunction. While the majority of published studies to date have found no difference between men and women in statin treatment, some studies have shown reduced effectiveness in women compared to men. Statin treatment is under-prescribed for both type 2 diabetics and patients with dysfunction-associated steatotic liver disease. No sex differences were found for ezetimibe treatment. However, to the best of our knowledge, no such study was found for fibrate treatment. Conflicting results on the efficacy of newer cholesterol-lowering PCSK9 inhibitors have been reported in women and men. Results from two real-world studies suggest that up-titration of statin dose improves the efficacy of PCSK9 inhibitors in women. Bempedoic acid treatment has been shown to be effective and safe in patients with type 2 diabetes and more effective in lipid lowering in women compared to men, based on phase 3 results published to date. Further research is needed to clarify whether the sex difference in dyslipidemia management shown in some studies plays a role in the risk of ASCVD in patients with type 2 diabetes and steatotic liver disease with metabolic dysfunction.
Collapse
Affiliation(s)
- Tatjana Ábel
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Béla Benczúr
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
- János Balassa County Hospital, Ist Department of Internal medicine (Cardiology/Nephrology), Szekszárd, Hungary
| | - Éva Csajbókné Csobod
- Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
115
|
Meurs A, Ndoj K, van den Berg M, Marinković G, Tantucci M, Veenendaal T, Kuivenhoven JA, Klumperman J, Zelcer N. A suite of genome-engineered hepatic cells provides novel insights into the spatiotemporal metabolism of apolipoprotein B and apolipoprotein B-containing lipoprotein secretion. Cardiovasc Res 2024; 120:1253-1264. [PMID: 38833612 PMCID: PMC11416059 DOI: 10.1093/cvr/cvae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Apolipoprotein B (APOB)-containing very LDL (VLDL) production, secretion, and clearance by hepatocytes is a central determinant of hepatic and circulating lipid levels. Impairment of any of the aforementioned processes is associated with the development of multiple diseases. Despite the discovery of genes and processes that govern hepatic VLDL metabolism, our understanding of the different mechanistic steps involved is far from complete. An impediment to these studies is the lack of tractable hepatocyte-based systems to interrogate and follow APOB in cells, which the current study addresses. METHODS AND RESULTS To facilitate the cellular study of VLDL metabolism, we generated human hepatic HepG2 and Huh-7 cell lines in which CRISPR/Cas9-based genome engineering was used to introduce the fluorescent protein mNeonGreen into the APOB gene locus. This results in the production of APOB100-mNeon that localizes predominantly to the endoplasmic reticulum (ER) and Golgi by immunofluorescence and electron microscopy imaging. The production and secretion of APOB100-mNeon can be quantitatively followed in medium over time and results in the production of lipoproteins that are taken up via the LDL receptor pathway. Importantly, the production and secretion of APOB-mNeon is sensitive to established pharmacological and physiological treatments and to genetic modifiers known to influence VLDL production in humans. As a showcase, we used HepG2-APOBmNeon cells to interrogate ER-associated degradation of APOB. The use of a dedicated sgRNA library targeting all established membrane-associated ER-resident E3 ubiquitin ligases led to the identification of SYNV1 as the E3 responsible for the degradation of poorly lipidated APOB in HepG2 cells. CONCLUSIONS In summary, the engineered cells reported here allow the study of hepatic VLDL assembly and secretion and facilitate spatiotemporal interrogation induced by pharmacologic and genetic perturbations.
Collapse
Affiliation(s)
- Amber Meurs
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Klevis Ndoj
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Marlene van den Berg
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Goran Marinković
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Matteo Tantucci
- Center for Molecular Medicine—Cell Biology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Tineke Veenendaal
- Center for Molecular Medicine—Cell Biology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine—Cell Biology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
116
|
Xiao Y, Wang H, Han L, Lyu G, Li S. Effect of uric acid on lipid metabolism assessed via restricted cubic splines: A new insight. Heliyon 2024; 10:e37408. [PMID: 39296235 PMCID: PMC11408835 DOI: 10.1016/j.heliyon.2024.e37408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Background Hyperuricemia can promote both blood lipids and non-alcoholic fatty liver disease (NAFLD). However, the role of the entire uric acid (UA) span, especially low concentrations below hyperuricemia, on lipid metabolism remains unclear. Methods A cross-sectional study was designed. Data on the age, sex, UA, triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) of 1977 participants, who underwent physical examination, were collected. NAFLD and non-alcoholic fatty pancreas disease (NAFPD) were diagnosed using abdominal ultrasound. Restricted cubic splines (RCS) linear regression model was used to evaluate the effect of the UA span on TG, TC, HDL, and LDL, respectively. RCS logistic regression model was employed to evaluate the effect of the UA span on NAFLD and NAFPD. Results RCS linear regression model showed that TG was negatively correlated with UA at first, then exhibiting a positive correlation. Meanwhile, HDL was positively correlated with UA at first, then negatively correlated. There was a positive linear correlation between TC and UA (P for nonlinear = 0.578) and a positive nonlinear correlation between LDL and UA (P for nonlinear = 0.021). RCS logistic regression model showed that NAFLD and NAFPD were negatively correlated with UA at first and then positively correlated with UA. Conclusion our study showed that the entire UA span has a J-shaped effect on some lipids, NAFLD, and NAFPD. Besides, TG and HDL, compared with TC or LDL, may better reflect the status of NAFLD and NAFPD.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Ultrasonography, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Han Wang
- Department of Ultrasonography, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Lina Han
- Department of Ultrasonography, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Guorong Lyu
- Department of Ultrasonography, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shilin Li
- Department of Ultrasonography, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
117
|
Zhang M, Chang D, Guan Q, Dong R, Zhang R, Zhang W, Wang H, Wang J. High-density lipoprotein cholesterol trajectory and new-onset metabolic dysfunction-associated fatty liver disease incidence: a longitudinal study. Diabetol Metab Syndr 2024; 16:223. [PMID: 39261925 PMCID: PMC11389356 DOI: 10.1186/s13098-024-01457-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Although high-density lipoprotein cholesterol (HDL-C) exerts a significant influence on the development of metabolic dysfunction-associated fatty liver disease (MAFLD), the association of dynamic changes in HDL-C levels with the risk of MAFLD remains unclear. Thus, the aim of the current study was to explore the association between the changing trajectories of HDL-C and new-onset MAFLD. The findings of this study may provide a theoretical basis for future personalized intervention and prevention targeting MAFLD. METHODS A total of 1507 participants who met the inclusion criteria were recruited from a community-based physical examination population in Nanjing, China from 2017 to 2021. Group-based trajectory models were constructed to determine the heterogeneous HDL-C trajectories. The incidence of MAFLD in each group in 2022 was followed up, and the Cox proportional hazards regression model was applied to investigate the associations between different HDL-C trajectories and the risk of new-onset MAFLD. RESULTS The incidences of MAFLD in the low-stable, moderate-stable, moderate-high-stable, and high-stable groups of HDL-C trajectory were 26.5%, 13.8%, 7.2% and 2.6%, respectively. The incidence rate of MAFLD in the order of the above trajectory groups exhibited a decreasing trend (χ2 = 72.55, Ptrend<0.001). After adjusting for confounders, the risk of MAFLD onset in HDL-C low-stable group was still 5.421 times (95%CI: 1.303-22.554, P = 0.020) higher than that in the high-stable group. Subgroup analyses of the combined (moderate high-stable and high-stable groups combined), moderate-stable and low-stable groups showed that sex, age, and overweight/obesity did not affect the association between HDL-C trajectory and MAFLD risk. CONCLUSIONS Persistently low HDL-C level is a risk factor for the onset of MAFLD. Long-term monitoring of HDL-C levels and timely intervention for those experiencing persistent declines are crucial for early prevention of MAFLD.
Collapse
Grants
- 2019, WSN-049 the Six Talent Peaks Project in Jiangsu Province, China
- 2019, WSN-049 the Six Talent Peaks Project in Jiangsu Province, China
- 2019, WSN-049 the Six Talent Peaks Project in Jiangsu Province, China
- 2019, WSN-049 the Six Talent Peaks Project in Jiangsu Province, China
- 2019, WSN-049 the Six Talent Peaks Project in Jiangsu Province, China
- Nursing Science, 2018, No.87 Priority Academic Program Development of Jiangsu Higher Education Institutions
- Nursing Science, 2018, No.87 Priority Academic Program Development of Jiangsu Higher Education Institutions
- Nursing Science, 2018, No.87 Priority Academic Program Development of Jiangsu Higher Education Institutions
- Nursing Science, 2018, No.87 Priority Academic Program Development of Jiangsu Higher Education Institutions
- Nursing Science, 2018, No.87 Priority Academic Program Development of Jiangsu Higher Education Institutions
Collapse
Affiliation(s)
- Mengting Zhang
- Department of Gastroenterology, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Dongchun Chang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Qing Guan
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Rui Dong
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ru Zhang
- School of Nursing and Midwifery, Jiangsu College of Nursing, Huai'an, 223003, Jiangsu, China
| | - Wei Zhang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, 200032, China
| | - Hongliang Wang
- Department of General Practice, Ninghai Road Community Health Service Center, Gulou District, Nanjing, 210024, Jiangsu, China
| | - Jie Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
118
|
Gaigé S, Abysique A, Barbouche R, Tonetto A, Di Maio A, Robin M, Lormier AT, Troadec JD. 3,5-Dimethyl-2,4,6-trimethoxychalcone Lessens Obesity and MAFLD in Leptin-Deficient ob/ob Mice. Int J Mol Sci 2024; 25:9838. [PMID: 39337328 PMCID: PMC11432508 DOI: 10.3390/ijms25189838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Chalcones constitute an important group of natural compounds abundant in fruits and comestible plants. They are a subject of increasing interest because of their biological activities, including anti-diabetic and anti-obesity effects. The simple chalcone structural scaffold can be modified at multiple sites with different chemical moieties. Here, we generated an artificial chalcone, i.e., 3,5-dimethyl-2,4,6-trimethoxychalcone (TriMetChalc), derived from 2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC). DMC is a major compound of Cleistocalyx operculatus, a plant widely used in Asia for its anti-hyperglycemic activity. Using ob/ob mice as an obesity model, we report that, after 3 weeks of per os administration, TriMetChalc modified food intake through the specific activation of brain structures dedicated to the regulation of energy balance. TriMetChalc also decreased weight gain, glucose intolerance, and hepatic steatosis. Moreover, through extensive liver lipidomic analysis, we identified TriMetChalc-induced modifications that could contribute to improving the liver status of the animals. Hence, TriMetChalc is a chalcone derivative capable of reducing food intake and the addition of glucose intolerance and hepatic steatosis in a mouse model of obesity. In light of these results, we believe that TriMetChalc action deserves to be more deeply evaluated over longer treatment periods and/or in combination with other chalcones with protective effects on the liver.
Collapse
Affiliation(s)
- Stéphanie Gaigé
- Centre de Recherche en Psychologie et Neurosciences (CRPN), UMR CNRS UMR 7077, Aix-Marseille University, 13331 Marseille, France; (S.G.); (A.A.); (R.B.)
| | - Anne Abysique
- Centre de Recherche en Psychologie et Neurosciences (CRPN), UMR CNRS UMR 7077, Aix-Marseille University, 13331 Marseille, France; (S.G.); (A.A.); (R.B.)
| | - Rym Barbouche
- Centre de Recherche en Psychologie et Neurosciences (CRPN), UMR CNRS UMR 7077, Aix-Marseille University, 13331 Marseille, France; (S.G.); (A.A.); (R.B.)
| | - Alain Tonetto
- PRATIM, FSCM (FR1739), Centrale Marseille, CNRS, Aix-Marseille University, 13397 Marseille, France;
| | - Attilio Di Maio
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology, IRD, CNRS UMR7263, Aix-Marseille University, 13013 Marseille, France; (A.D.M.); (M.R.)
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology, IRD, NRS UMR7263, Avignon University, 84029 Avignon, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology, IRD, CNRS UMR7263, Aix-Marseille University, 13013 Marseille, France; (A.D.M.); (M.R.)
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology, IRD, NRS UMR7263, Avignon University, 84029 Avignon, France
- CAYLAB, Contract Research Organization, 13180 Istres, France
| | | | - Jean-Denis Troadec
- Centre de Recherche en Psychologie et Neurosciences (CRPN), UMR CNRS UMR 7077, Aix-Marseille University, 13331 Marseille, France; (S.G.); (A.A.); (R.B.)
| |
Collapse
|
119
|
Pu J, Han J, Yang J, Yu L, Wan H. Anaerobic Glycolysis and Ischemic Stroke: From Mechanisms and Signaling Pathways to Natural Product Therapy. ACS Chem Neurosci 2024; 15:3090-3105. [PMID: 39140296 DOI: 10.1021/acschemneuro.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Ischemic stroke is a serious condition that results in high rates of illness and death. Anaerobic glycolysis becomes the primary means of providing energy to the brain during periods of low oxygen levels, such as in the aftermath of an ischemic stroke. This process is essential for maintaining vital brain functions and has significant implications for recovery following a stroke. Energy supply by anaerobic glycolysis and acidosis caused by lactic acid accumulation are important pathological processes after ischemic stroke. Numerous natural products regulate glucose and lactate, which in turn modulate anaerobic glycolysis. This article focuses on the relationship between anaerobic glycolysis and ischemic stroke, as well as the associated signaling pathways and natural products that play a therapeutic role. These natural products, which can regulate anaerobic glycolysis, will provide new avenues and perspectives for the treatment of ischemic stroke in the future.
Collapse
Affiliation(s)
- Jia Pu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jin Han
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
120
|
Cheng Y, Gong S, Li Q, Shen J, Huang H. Efficacy of photodynamic therapy using hematoporphyrin derivative nanomedicine on hepatocellular carcinoma cells. J Cancer 2024; 15:5594-5604. [PMID: 39308685 PMCID: PMC11414611 DOI: 10.7150/jca.97637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/25/2024] Open
Abstract
Objective: To demonstrate the efficacy of photodynamic therapy (PDT) using hematoporphyrin derivative (HPD) nanomedicine in combination with conventional chemotherapy based on gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) magnetic resonance imaging (MRI) for hepatocellular carcinoma (HCC) therapy. Methods: HPD nanomedicine was prepared, and the cytotoxicity of HPD nanomedicine at different concentrations on HCC cells and the half-maximal inhibitory concentration (IC50) were analyzed. Sixty HCC patients who visited our hospital from 2021 to 2023 were retrospectively analyzed. Patient data were analyzed, with 30 cases in control group (CG) receiving conventional chemotherapy for HCC, and 30 cases in observation group (OG) receiving conventional chemotherapy combined with HPD nanomedicine PDT. Gd-DTPA MRI was utilized to monitor the morphological and biological characteristics of the lesions in patients. After treatment completion, the long-term efficacy of patients and the levels of bcl-2 and bax proteins in primary HCC cells were evaluated. Results: The IC50 values of HPD on HepG2 cell proliferation and the cell inhibition rates gradually increased with increasing doses of HPD (50 μM, 25 μM, 12.5 μM, 6.25 μM, 3.13 μM, 1.56 μM, 0.78 μM). HPD exhibited great anti-proliferative effects on HepG2 cells at relatively low concentrations. The differences in expression rates of bcl-2 protein and bax protein between groups were considerable (P<0.05). There were neglectable changes in AST and ALT levels between the two groups before treatment, but they were markedly reduced after treatment versus before treatment (P<0.05), with OG showing considerably lower levels than CG after treatment (P<0.05). Additionally, patients in OG exhibited better survival rates after the course of treatment versus those in CG. Conclusion: This study demonstrates that the combination of conventional chemotherapy based on Gd-DTPA MRI with HPD nanomedicine PDT greatly improves the efficacy of treatment for HCC patients. This combined treatment strategy not only enhances therapeutic outcomes but also alleviates adverse reactions associated with conventional treatment, providing a novel approach for future research in the treatment of HCC.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Department of Radiology, The Haimen Hospital Affiliated of Nantong University, Nantong 226100, Jiangsu Province, China
| | - Shushu Gong
- Department of Radiology, The Haimen Hospital Affiliated of Nantong University, Nantong 226100, Jiangsu Province, China
| | - Qianqian Li
- Department of Oncology, The Haimen Hospital Affiliated of Nantong University, Nantong 226100, Jiangsu Province, China
| | - Juan Shen
- Department of Pharmacy, The Haimen Hospital Affiliated of Nantong University, Nantong 226100, Jiangsu Province, China
| | - Hongjuan Huang
- Department of Radiology, The Haimen Hospital Affiliated of Nantong University, Nantong 226100, Jiangsu Province, China
| |
Collapse
|
121
|
Chen X, Li CG, Zhou X, Zhu M, Jin J, Wang P. A new perspective on the regulation of glucose and cholesterol transport by mitochondria-lysosome contact sites. Front Physiol 2024; 15:1431030. [PMID: 39290619 PMCID: PMC11405319 DOI: 10.3389/fphys.2024.1431030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Mitochondria and lysosomes play a very important role in maintaining cellular homeostasis, and the dysfunction of these organelles is closely related to many diseases. Recent studies have revealed direct interactions between mitochondria and lysosomes, forming mitochondria-lysosome contact sites that regulate organelle network dynamics and mediate the transport of metabolites between them. Impaired function of these contact sites is not only linked to physiological processes such as glucose and cholesterol transport but also closely related to the pathological processes of metabolic diseases. Here, we highlight the recent progress in understanding the mitochondria-lysosome contact sites, elucidate their role in regulating metabolic homeostasis, and explore the potential implications of this pathway in metabolic disorders.
Collapse
Affiliation(s)
- Xiaolong Chen
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Minghua Zhu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jing Jin
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Ping Wang
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
122
|
Cheng L, Wu Q, Wang S. Association between cardiometabolic index and hepatic steatosis and liver fibrosis: a population-based study. Hormones (Athens) 2024; 23:477-486. [PMID: 38861108 DOI: 10.1007/s42000-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND The cardiometabolic index (CMI) is a new type of obesity index that is based on a combination of lipid levels and abdominal obesity indicators. It is closely correlated with the occurrence of diabetes mellitus, atherosclerosis, hypertension, and other diseases, thus playing an important role in the screening of metabolic diseases. This is coupled with hepatic steatosis and fibrosis which are characterized by excessive liver fat deposition. The aim of this study was to investigate the possible association between CMI and hepatic steatosis and liver fibrosis. METHODS A cross-sectional investigation was conducted using the 2017-2020 National Health and Nutrition Examination Survey (NHANES) dataset to probe the relationship between CMI and hepatic steatosis and liver fibrosis, while multiple linear regression models were used to test the linear association between CMI and controlled attenuation parameter (CAP) and liver stiffness measurement (LSM). Smooth-fit curves and threshold effects analysis were used to describe the nonlinear relationships. Subgroup analyses were performed according to gender, age, body mass index (BMI), hypertension, diabetes, cardiovascular disease, and smoking status. RESULTS A total of 3084 adults aged 18-80 years were included in this analysis, and after controlling for a variety of variables, there was a significant positive correlation between CMI and CAP [20.38 (16.27,24.49)]. When subgroups were analyzed, this positive correlation was found to be stronger in the female population than in the male (P for interaction = 0.0303). Furthermore, the association between CMI and CAP was nonlinear. Using multiple regression analysis, it was shown that the linear relationship between CMI and liver fibrosis was not significant [-0.09 (-0.47,0.29)]. CONCLUSIONS The findings suggest that elevated CMI levels are associated with hepatic steatosis, but that CMI is not linked to liver fibrosis. Larger prospective investigations are needed to confirm our findings.
Collapse
Affiliation(s)
- Lulu Cheng
- College of Acupuncture-Moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Graduate School, Wuhan Sports University, Wuhan, 430079, China.
| | - Qinggang Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Siyu Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| |
Collapse
|
123
|
Liu YN, Zhu HX, Li TY, Yang X, Li XJ, Zhang WK. Lipid nanoparticle encapsulated oleic acid induced lipotoxicity to hepatocytes via ROS overload and the DDIT3/BCL2/BAX/Caspases signaling in vitro and in vivo. Free Radic Biol Med 2024; 222:361-370. [PMID: 38945456 DOI: 10.1016/j.freeradbiomed.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND To date, Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver disease associated with clinical complications. Dietary fatty acids have been suggested to be involved in preventing or reversing the accumulation of hepatic fat. However, contradicting roles of monounsaturated fatty acids to the liver have been implicated in various human and murine models, mainly due to the insolubility nature of fatty acids. METHODS High pressure homogenization methods were used to fabricate oleic acid embedded lipid nanoparticles (OALNs). The in vitro and in vivo models were used to validate the physiological effect of this OALNs via various cellular and molecular approaches including cell viability essay, fluorescent staining, electron microscope, RNAseq, qPCR, Western blots, and IHC staining. RESULTS We successfully fabricated OALNs with enhanced stability and solubility. More importantly, lipid accumulation was successfully induced in hepatocytes via the application of OALNs in a dose-dependent manner. Overload of OALNs resulted in ROS accumulation and apoptosis of hepatocytes dose-dependently. With the help of transcriptome sequencing and traditional experimental approaches, we demonstrated that the lipotoxic effect induced by OALNs was exerted via the DDIT3/BCL2/BAX/Caspases signaling. Moreover, we also verified that OALNs induced steatosis and subsequent apoptosis in the liver of mice via the activation of DDIT3 in vivo. CONCLUSIONS In all, our results established a potential pathogenic model of NAFLD for further studies and indicated the possible involvement of DDIT3 signaling in abnormal steatosis process of the liver.
Collapse
Affiliation(s)
- Ya-Nan Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, No 182 Minzu Avenue, Wuhan, 430064, China.
| | - Hong-Xia Zhu
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China.
| | - Tao-Yu Li
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China.
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, No 182 Minzu Avenue, Wuhan, 430064, China.
| | - Xiao-Jun Li
- School of Pharmaceutical Sciences, South-Central Minzu University, No 182 Minzu Avenue, Wuhan, 430064, China.
| | - Wei Kevin Zhang
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China.
| |
Collapse
|
124
|
Zhan H, Nong X, Zhu S, Luo T, Li T, Cao M, Li Q, He Z, Hu J, Liu X. Clinical value of γ-glutamyl transpeptidase to platelet ratio and triglyceride measurement in the diagnosis of nonalcoholic fatty liver disease: A cross-sectional study. Heliyon 2024; 10:e36193. [PMID: 39224338 PMCID: PMC11367536 DOI: 10.1016/j.heliyon.2024.e36193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE In clinical practice, there are few effective biomarkers for identifying non-alcoholic fatty liver disease (NAFLD). The aim of this study is to investigate the diagnostic value of γ-glutamyl transpeptidase to platelet ratio (GPR) combined with triglyceride (TG) in NAFLD. METHODS A total of 14,415 individuals participated in the annual physical examination. Multivariate logistic regression analysis was conducted to investigate the exposure factors associated with NAFLD. Spearman's analysis was performed to assess the correlation among the exposure factors of NAFLD. Furthermore, the diagnostic efficacy of the combination of GPR and TG in NAFLD was analyzed using the receiver operating characteristic curve (ROC). RESULTS The results of the multivariate logistic regression analysis showed that BMI (OR = 1.619), Systolic Blood Pressure (SBP) (OR = 1.014), Diastolic Blood Pressure (DBP) (OR = 1.028), GPR (OR = 12.809), and TG (OR = 2.936) were all risk factors for NAFLD, while HDL-C (OR = 0.215) was a protective factor. Spearman correlation analysis revealed significant positive correlations between GPR and SBP, DBP, BMI, TG (p < 0.01), but a negative correlation between GPR and HDL-C (p < 0.01). TG was only positively correlated with GPR (p < 0.001). ROC curve analysis demonstrated that the area under the curve (AUC) of GPR combined with TG for diagnosis of NAFLD was 0.855 (95 % CI: 0.819-0.891), sensitivity was 83.45 % and specificity was 73.56 %. CONCLUSION This study indicated that high levels of GPR and TG were risk factors for NAFLD and demonstrated good clinical value in diagnosing NAFLD.
Collapse
Affiliation(s)
- Haohong Zhan
- Department of Emergency Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoli Nong
- Department of Ultrasound, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Senzhi Zhu
- Department of Emergency Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ting Luo
- Department of Emergency Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Mingjing Cao
- Department of Emergency Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qi Li
- Department of Emergency Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhuosen He
- Department of Emergency Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junyan Hu
- Department of Emergency Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xi Liu
- Department of Emergency Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
125
|
Li J, Wen W, Li J, Liu T, Sun J, Chen H. CNOT7 regulates lipid deposition in nonalcoholic fatty liver disease. Biochem Biophys Res Commun 2024; 721:150003. [PMID: 38772212 DOI: 10.1016/j.bbrc.2024.150003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND In recent years, the incidence rate of nonalcoholic fatty liver disease (NAFLD) has ascended with the increasing number of metabolic diseases such as obesity and diabetes, which will bring great medical burden to society. At present, multiple scientific experiments have found that the CCR4-NOT complex can participate in regulating obesity and energy metabolism. This study is designed to explore the role and mechanism of CCR4-NOT transcription complex subunit 7 (CNOT7), a subunit of the CCR4-NOT complex in liver lipid deposition. METHODS To establish the NAFLD cell model, palmitic acid (PA) was utilized to stimulate HepG2 cells and LO2 cells, promoting intracellular lipid deposition. CNOT7 was knockdown by siRNA and lentivirus to evaluate the effect of CNOT7 in NAFLD. RESULTS Our results demonstrated that the expression of CNOT7 was increased in the NAFLD cell model. After knocking down CNOT7, the lipid deposition declined in HepG2 or LO2 cells treated by PA reduced. We found the lipid synthesis genes and the lipid uptake and transport factors in the CNOT7 knockdown group were significantly downregulated compared to the non-knockdown group. Furthermore, knockdown of CNOT7 might promote fatty acid oxidation. CONCLUSION Knocking down CNOT7 can improve lipid deposition and CNOT7 may be a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Jiahui Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weiheng Wen
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jitong Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tiancai Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jia Sun
- Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Hong Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
126
|
Vu HT, Nguyen VD, Ikenaga H, Matsubara T. Application of PPAR Ligands and Nanoparticle Technology in Metabolic Steatohepatitis Treatment. Biomedicines 2024; 12:1876. [PMID: 39200340 PMCID: PMC11351628 DOI: 10.3390/biomedicines12081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is a major disease worldwide whose effective treatment is challenging. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and function as ligand-activated transcription factors. To date, three distinct subtypes of PPARs have been characterized: PPARα, PPARβ/δ, and PPARγ. PPARα and PPARγ are crucial regulators of lipid metabolism that modulate the transcription of genes involved in fatty acid (FA), bile acid, and cholesterol metabolism. Many PPAR agonists, including natural (FAs, eicosanoids, and phospholipids) and synthetic (fibrate, thiazolidinedione, glitazar, and elafibranor) agonists, have been developed. Furthermore, recent advancements in nanoparticles (NPs) have led to the development of new strategies for MASLD/MASH therapy. This review discusses the applications of specific cell-targeted NPs and highlights the potential of PPARα- and PPARγ-targeted NP drug delivery systems for MASLD/MASH treatment.
Collapse
Affiliation(s)
- Hung Thai Vu
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Vien Duc Nguyen
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Hiroko Ikenaga
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, Sakai 599-8570, Osaka, Japan
| |
Collapse
|
127
|
Yang Y, Wang X. Nano-drug delivery systems (NDDS) in metabolic dysfunction-associated steatotic liver disease (MASLD): current status, prospects and challenges. Front Pharmacol 2024; 15:1419384. [PMID: 39166109 PMCID: PMC11333238 DOI: 10.3389/fphar.2024.1419384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
About one-third of the global population suffers from metabolic dysfunction-associated steatotic liver disease (MASLD), but specific treatments for MASLD have long been lacking, primarily due to the unclear etiology of the disease. In addition to lifestyle modifications and weight loss surgery, pharmacotherapy is the most common treatment among MASLD patients, and these drugs typically target the pathogenic factors of MASLD. However, bioavailability, efficacy, and side effects all limit the maximum therapeutic potential of the drugs. With the development of nanomedicine, recent years have seen attempts to combine MASLD pharmacotherapy with nanomaterials, such as liposomes, polymer nanoparticles, micelles, and cocrystals, which effectively improves the water solubility and targeting of the drugs, thereby enhancing therapeutic efficacy and reducing toxic side effects, offering new perspectives and futures for the treatment of MASLD.
Collapse
Affiliation(s)
| | - Xiaojing Wang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Wenzhou Medical University and Lishui Municipal Central Hospital, Lishui, China
| |
Collapse
|
128
|
Liu L, Zhang Y, Wang X, Meng H, He Y, Xu X, Xu H, Wei C, Yan X, Tao X, Dang K, Ma P, Guo X, Yang S, Wang J, Li Y. Xanthine oxidase promotes hepatic lipid accumulation through high fat absorption by the small intestine. JHEP Rep 2024; 6:101060. [PMID: 39183731 PMCID: PMC11343055 DOI: 10.1016/j.jhepr.2024.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 08/27/2024] Open
Abstract
Background & Aims There are no studies investigating the direct effects of elevated xanthine oxidase (XO) on lipid metabolism disorders. Here, we aimed to clarify the role of XO in lipid metabolism in a prospective cohort study and elucidate the underlying mechanisms. Methods The association between serum XO activity and metabolic associated steatotic liver disease (MASLD) was examined in Cox proportional hazard models in a population-based cohort of 3,358 participants (20-75 years) at baseline. In addition, mouse models were used to investigate the underlying mechanism for the association between overexpression of XO and the lipid metabolism disorders. Results After an average 5.8 years of follow up, we found elevated serum XO activity was associated with an increased risk of developing MASLD (hazard ratio [HR]: 2.08; 95% CI: 1.44-3.01; p-trend <0.001). Moreover, serum XO activity was significantly associated with serum triglyceride levels (r = 0.68, p <0.001). We demonstrated that hepatic XO expression increased in liver samples from patients with MASLD. Using tissue-specific Xdh knockin mice, we observed rapid lipid metabolism disorders under a high-fat diet rather than a normal chow diet. We found that XO overexpression promotes the absorption of excess dietary fat in the small intestine. Inhibition of XO also significantly reduced the absorption of fat in mice fed a high-fat diet. Conclusions Our study clarified the association between serum XO activity levels and the development of MASLD in a large population-based prospective cohort study. Furthermore, our mouse models demonstrated that XO overexpression promotes lipid accumulation through mechanisms involving excessive fat absorption by the small intestine. Impact and implications Using a prospective population-based cohort and various animal models, we have identified novel mechanisms by which xanthine oxidase regulates lipid metabolism. Our findings indicate that xanthine oxidase overexpression promotes lipid accumulation by increasing the absorption of excess dietary fat and possibly facilitating lipid transport in vivo. These results could be important for the development of therapies to treat diseases associated with lipid metabolism disorders.
Collapse
Affiliation(s)
- Lin Liu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Yuntao Zhang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xuanyang Wang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yan He
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xiaoqing Xu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Huan Xu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Chunbo Wei
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xuemin Yan
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xinmiao Tao
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Keke Dang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Pingnan Ma
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Xiaoyu Guo
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Sen Yang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Jiemei Wang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
129
|
Foster C, Gagnon CA, Ashraf AP. Altered lipid metabolism and the development of metabolic-associated fatty liver disease. Curr Opin Lipidol 2024; 35:200-207. [PMID: 38484227 DOI: 10.1097/mol.0000000000000933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW An increasing amount of research has underscored the significant role of lipoproteins in the pathogenesis of metabolic-associated fatty liver disease (MAFLD). This comprehensive review examines the intricate relationship between lipoprotein abnormalities and the development of MAFLD. RECENT FINDINGS Atherogenic dyslipidemia seen in insulin resistance states play a significant role in initiating and exacerbating hepatic lipid accumulation. There are also specific genetic factors ( PNPLA3 , TM6SF2 , MBOAT7 , HSD17B13 , GCKR- P446L) and transcription factors (SREBP-2, FXR, and LXR9) that increase susceptibility to both lipoprotein disorders and MAFLD. Most monogenic primary lipid disorders do not cause hepatic steatosis unless accompanied by metabolic stress. Hepatic steatosis occurs in the presence of secondary systemic metabolic stress in conjunction with predisposing environmental factors that lead to insulin resistance. Identifying specific aberrant lipoprotein metabolic factors promoting hepatic fat accumulation and subsequently exacerbating steatohepatitis will shed light on potential targets for therapeutic interventions. SUMMARY The clinical implications of interconnection between genetic factors and an insulin resistant environment that predisposes MAFLD is many fold. Potential therapeutic strategies in preventing or mitigating MAFLD progression include lifestyle modifications, pharmacological interventions, and emerging therapies targeting aberrant lipoprotein metabolism.
Collapse
Affiliation(s)
- Christy Foster
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham
| | - Charles A Gagnon
- University of Alabama at Birmingham Marnix E. Heersink School of Medicine, Birmingham, Alabama, USA
| | - Ambika P Ashraf
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham
| |
Collapse
|
130
|
Duan Y, Yang Y, Zhao S, Bai Y, Yao W, Gao X, Yin J. Crosstalk in extrahepatic and hepatic system in NAFLD/NASH. Liver Int 2024; 44:1856-1871. [PMID: 38717072 DOI: 10.1111/liv.15967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 07/17/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease globally. Non-alcoholic steatohepatitis (NASH) represents an extremely progressive form of NAFLD, which, without timely intervention, may progress to cirrhosis or hepatocellular carcinoma. Presently, a definitive comprehension of the pathogenesis of NAFLD/NASH eludes us, and pharmacological interventions targeting NASH specifically remain constrained. The aetiology of NAFLD encompasses a myriad of external factors including environmental influences, dietary habits and gender disparities. More significantly, inter-organ and cellular interactions within the human body play a role in the development or regression of the disease. In this review, we categorize the influences affecting NAFLD both intra- and extrahepatically, elaborating meticulously on the mechanisms governing the onset and progression of NAFLD/NASH. This exploration delves into progress in aetiology and promising therapeutic targets. As a metabolic disorder, the development of NAFLD involves complexities related to nutrient metabolism, liver-gut axis interactions and insulin resistance, among other regulatory functions of extraneous organs. It further encompasses intra-hepatic interactions among hepatic cells, Kupffer cells (KCs) and hepatic stellate cells (HSCs). A comprehensive understanding of the pathogenesis of NAFLD/NASH from a macroscopic standpoint is instrumental in the formulation of future therapies for NASH.
Collapse
Affiliation(s)
- Yiliang Duan
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Yang
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Shuqiang Zhao
- Jiangsu Institute for Food and Drug Control, NMPA Key Laboratory for Impurity Profile of Chemical Drugs, Nanjing, Jiangsu, China
| | - Yuesong Bai
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
131
|
Kim G, Yoon KS, Ha J, Kang I, Choe W. The PPIase Activity of CypB Is Essential for the Activation of Both AKT/mTOR and XBP1s Signaling Pathways during the Differentiation of 3T3-L1 Preadipocytes. Nutrients 2024; 16:2465. [PMID: 39125345 PMCID: PMC11313753 DOI: 10.3390/nu16152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, we undertook an extensive investigation to determine how CypB PPIase activity affects preadipocyte differentiation and lipid metabolism. Our findings revealed that inhibition of CypB's PPIase activity suppressed the expression of crucial proteins involved in adipocyte differentiation and induced changes in proteins regulating the cell cycle. Furthermore, we clarified the impact of CypB's PPIase activity on lipid metabolism via the AKT/mTOR signaling pathway. Additionally, we demonstrated the involvement of CypB's PPIase activity in lipid metabolism through the XBP1s pathway. These discoveries offer invaluable insights for devising innovative therapeutic strategies aimed at treating and averting obesity and its related health complications. Targeting CypB's PPIase activity may emerge as a promising avenue for addressing obesity-related conditions. Furthermore, our research opens up opportunities for creating new therapeutic strategies by enhancing our comprehension of the processes involved in cellular endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
| | - Kyung-Sik Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
132
|
Sultan S, Lesloom F. Association of cigarette smoking with cardiometabolic risk factors: A cross-sectional study. Tob Induc Dis 2024; 22:TID-22-136. [PMID: 39072281 PMCID: PMC11274995 DOI: 10.18332/tid/191246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION Despite strong and consistent epidemiological evidence linking cigarette smoking to several cardiovascular diseases (CVDs), the association between smoking intensity and CVD risk factors remains unclear. This study aimed to explore the possible effects of cigarette smoking on cardiometabolic risk in healthy individuals. METHODS This cross-sectional study was conducted between November 2022 and June 2023. Consecutive sampling was performed to include 160 healthy participants: 100 smokers with 60 males and 40 females; and 60 age- and sex-matched non-smokers with 36 males and 24 females. Blood samples were taken from each participant to assess their cardiometabolic function: lipid profile, von Willebrand factor (vWF), high-sensitivity cardiac troponin I (hs-cTnI), and fibrinogen levels; and liver function using an automated enzymatic method. In addition, blood sugar level, body mass index (BMI), and blood pressure were recorded. RESULTS Smokers had significantly higher vWF functional activity and hs-cTnI but significantly lower albumin and total bilirubin levels than non-smokers (65.87 ± 19.07 vs 56.45 ± 6.59, respectively, p<0.001; 0.0382 ± 0.0077 vs 0.0147 ± 0.0105, respectively, p<0.001; and 4.63 ± 0.32 vs 4.74 ± 0.28, respectively, p=0.026). The number of cigarettes consumed daily was associated positively and significantly with plasma levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, vWF functional activity, and hs-cTnI but were negatively associated with total bilirubin. Moreover, heavy smokers had a significantly higher BMI and waist-to-hip ratio among male smokers than non-smokers. CONCLUSIONS Cigarette smoking was associated with increased dyslipidemia, BMI, and central obesity, in addition to higher vWF functional activity. Altogether, increased hs-cTnI levels in smokers indicate a higher susceptibility to CVD.
Collapse
Affiliation(s)
- Samar Sultan
- Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fouzy Lesloom
- Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
133
|
Zhuang Z, Jia W, Wu L, Li Y, Lu Y, Xu M, Bai H, Bi Y, Wang Z, Chen S, Jiang Y, Chang G. Threonine Deficiency Increases Triglyceride Deposition in Primary Duck Hepatocytes by Reducing STAT3 Phosphorylation. Int J Mol Sci 2024; 25:8142. [PMID: 39125712 PMCID: PMC11312044 DOI: 10.3390/ijms25158142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/12/2024] Open
Abstract
Liver lipid metabolism disruption significantly contributes to excessive fat buildup in waterfowl. Research suggests that the supplementation of Threonine (Thr) in the diet can improve liver lipid metabolism disorder, while Thr deficiency can lead to such metabolic disorders in the liver. The mechanisms through which Thr regulates lipid metabolism remain unclear. STAT3 (signal transducer and activator of transcription 3), a crucial transcription factor in the JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway, participates in various biological processes, including lipid and energy metabolism. This research investigates the potential involvement of STAT3 in the increased lipid storage seen in primary duck hepatocytes as a result of a lack of Thr. Using small interfering RNA and Stattic, a specific STAT3 phosphorylation inhibitor, we explored the impact of STAT3 expression patterns on Thr-regulated lipid synthesis metabolism in hepatocytes. Through transcriptome sequencing, we uncovered pathways related to lipid synthesis and metabolism jointly regulated by Thr and STAT3. The results showed that Thr deficiency increases lipid deposition in primary duck hepatocytes (p < 0.01). The decrease in protein and phosphorylation levels of STAT3 directly caused this deposition (p < 0.01). Transcriptomic analysis revealed that Thr deficiency and STAT3 knockdown jointly altered the mRNA expression levels of pathways related to long-chain fatty acid synthesis and energy metabolism (p < 0.05). Thr deficiency, through mediating STAT3 inactivation, upregulated ELOVL7, PPARG, MMP1, MMP13, and TIMP4 mRNA levels, and downregulated PTGS2 mRNA levels (p < 0.01). In summary, these results suggest that Thr deficiency promotes lipid synthesis, reduces lipid breakdown, and leads to lipid metabolism disorders and triglyceride deposition by downregulating STAT3 activity in primary duck hepatocytes.
Collapse
Affiliation(s)
- Zhong Zhuang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Wenqian Jia
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Lei Wu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Yongpeng Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Yijia Lu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Minghong Xu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China;
| | - Yulin Bi
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Zhixiu Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Shihao Chen
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Yong Jiang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| | - Guobin Chang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (W.J.); (L.W.); (Y.L.); (Y.L.); (M.X.); (Y.B.); (Z.W.); (S.C.); (G.C.)
| |
Collapse
|
134
|
Lin JH, Lin CH, Kuo YW, Liao CA, Chen JF, Tsai SY, Li CM, Hsu YC, Huang YY, Hsia KC, Yeh YT, Ho HH. Probiotic Lactobacillus fermentum TSF331, Lactobacillus reuteri TSR332, and Lactobacillus plantarum TSP05 improved liver function and uric acid management-A pilot study. PLoS One 2024; 19:e0307181. [PMID: 39046973 PMCID: PMC11268587 DOI: 10.1371/journal.pone.0307181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is predominantly associated with metabolic disturbances representing aberrant liver function and increased uric acid (UA) levels. Growing evidences have suggested a close relationship between metabolic disturbances and the gut microbiota. A placebo-controlled, double-blinded, randomized clinical trial was therefore conducted to explore the impacts of daily supplements with various combinations of the probiotics, Lactobacillus fermentum TSF331, Lactobacillus reuteri TSR332, and Lactobacillus plantarum TSP05 with a focus on liver function and serum UA levels. Test subjects with abnormal levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and UA were recruited and randomly allocated into six groups. Eighty-two participants successfully completed the 60-day intervention without any dropouts or occurrence of adverse events. The serum AST, ALT, and UA levels were significantly reduced in all treatment groups (P < 0.05). The fecal microbiota analysis revealed the intervention led to an increase in the population of commensal bacteria and a decrease in pathobiont bacteria, especially Bilophila wadsworthia. The in vitro study indicated the probiotic treatments reduced lipid accumulation and inflammatory factor expressions in HepG2 cells, and also promoted UA excretion in Caco-2 cells. The supplementation of multi-strain probiotics (TSF331, TSR332, and TSP05) together can improve liver function and UA management and may have good potential in treating asymptomatic MAFLD. Trial registration. The trial was registered in the US Library of Medicine (clinicaltrials.gov) with the number NCT06183801 on December 28, 2023.
Collapse
Affiliation(s)
- Jia-Hung Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Chi-Huei Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yi-Wei Kuo
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Chorng-An Liao
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan
| | - Jui-Fen Chen
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shin-Yu Tsai
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Ching-Min Li
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yu-Chieh Hsu
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yen-Yu Huang
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Ko-Chiang Hsia
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung City, Taiwan
| | - Hsieh-Hsun Ho
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City, Taiwan
| |
Collapse
|
135
|
Marigorta UM, Millet O, Lu SC, Mato JM. Dysfunctional VLDL metabolism in MASLD. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:16. [PMID: 39049993 PMCID: PMC11263124 DOI: 10.1038/s44324-024-00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024]
Abstract
Lipidomics has unveiled the intricate human lipidome, emphasizing the extensive diversity within lipid classes in mammalian tissues critical for cellular functions. This diversity poses a challenge in maintaining a delicate balance between adaptability to recurring physiological changes and overall stability. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), linked to factors such as obesity and diabetes, stems from a compromise in the structural and functional stability of the liver within the complexities of lipid metabolism. This compromise inaccurately senses an increase in energy status, such as during fasting-feeding cycles or an upsurge in lipogenesis. Serum lipidomic studies have delineated three distinct metabolic phenotypes, or "metabotypes" in MASLD. MASLD-A is characterized by lower very low-density lipoprotein (VLDL) secretion and triglyceride (TG) levels, associated with a reduced risk of cardiovascular disease (CVD). In contrast, MASLD-C exhibits increased VLDL secretion and TG levels, correlating with elevated CVD risk. An intermediate subtype, with a blend of features, is designated as the MASLD-B metabotype. In this perspective, we examine into recent findings that show the multifaceted regulation of VLDL secretion by S-adenosylmethionine, the primary cellular methyl donor. Furthermore, we explore the differential CVD and hepatic cancer risk across MASLD metabotypes and discuss the context and potential paths forward to gear the findings from genetic studies towards a better understanding of the observed heterogeneity in MASLD.
Collapse
Affiliation(s)
- Urko M. Marigorta
- Integrative Genomics Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, 48160 Derio, Spain
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - José M. Mato
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, 48160 Derio, Spain
| |
Collapse
|
136
|
Iqbal S, Islam MZ, Ashraf S, Kim W, AL-Sharabi AA, Ozcan M, Hanashalshahaby E, Zhang C, Uhlén M, Boren J, Turkez H, Mardinoglu A. Discovery of Cell-Permeable Allosteric Inhibitors of Liver Pyruvate Kinase: Design and Synthesis of Sulfone-Based Urolithins. Int J Mol Sci 2024; 25:7986. [PMID: 39063228 PMCID: PMC11277446 DOI: 10.3390/ijms25147986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) presents a significant global health challenge, characterized by the accumulation of liver fat and impacting a considerable portion of the worldwide population. Despite its widespread occurrence, effective treatments for MAFLD are limited. The liver-specific isoform of pyruvate kinase (PKL) has been identified as a promising target for developing MAFLD therapies. Urolithin C, an allosteric inhibitor of PKL, has shown potential in preliminary studies. Expanding upon this groundwork, our study delved into delineating the structure-activity relationship of urolithin C via the synthesis of sulfone-based urolithin analogs. Our results highlight that incorporating a sulfone moiety leads to substantial PKL inhibition, with additional catechol moieties further enhancing this effect. Despite modest improvements in liver cell lines, there was a significant increase in inhibition observed in HepG2 cell lysates. Specifically, compounds 15d, 9d, 15e, 18a, 12d, and 15a displayed promising IC50 values ranging from 4.3 µM to 18.7 µM. Notably, compound 15e not only demonstrated a decrease in PKL activity and triacylglycerol (TAG) content but also showed efficient cellular uptake. These findings position compound 15e as a promising candidate for pharmacological MAFLD treatment, warranting further research and studies.
Collapse
Affiliation(s)
- Shazia Iqbal
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
| | - Md. Zahidul Islam
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
| | - Sajda Ashraf
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Amal A. AL-Sharabi
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Türkiye
| | - Mehmet Ozcan
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bulent Ecevit University, 67100 Zonguldak, Türkiye;
| | - Essam Hanashalshahaby
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Türkiye; (S.I.); (S.A.); (A.A.A.-S.); (E.H.)
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Mathias Uhlén
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden;
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Türkiye;
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (W.K.); (C.Z.); (M.U.)
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
137
|
Wang J, Li H, Wang X, Shi R, Hu J, Zeng X, Luo H, Yang P, Luo H, Cao Y, Cai X, Chen S, Wang D. Association between triglyceride to high-density lipoprotein cholesterol ratio and nonalcoholic fatty liver disease and liver fibrosis in American adults: an observational study from the National Health and Nutrition Examination Survey 2017-2020. Front Endocrinol (Lausanne) 2024; 15:1362396. [PMID: 39081791 PMCID: PMC11286417 DOI: 10.3389/fendo.2024.1362396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Objective This study investigated the link between triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio and nonalcoholic fatty liver disease (NAFLD) and liver fibrosis in American adults. Methods Information for 6495 participants from the National Health and Nutrition Examination Survey (NHANES) 2017-2020.03 was used for this cross-sectional study. The link between TG/HDL-C ratios and NAFLD and liver fibrosis was assessed by multiple linear regression before evaluating nonlinear correlations based on smoothed curve fitting models. Stratification analysis was then applied to confirm whether the dependent and independent variables displayed a stable association across populations. Results TG/HDL-C ratios were positively correlated with NAFLD, with higher ratios being linked to increased prevalence of NAFLD. After adjusting for potential confounders, the odds ratios (OR) for NAFLD patients in the fourth TG/HDL-C quartile were 3.61 (95% confidence interval [CI], 2.94-4.38) (P for trend < 0.001) in comparison with those in the first quartile after adjusting for clinical variables. However, no statistical significance was noted for the ratio for liver fibrosis after adjusting for potential confounders (P for trend = 0.07). A nonlinear correlation between TG/HDL-C ratios and NAFLD was observed based on smoothed curve fitting models. However, a nonlinear relationship between the ratios and liver fibrosis was not established. In subgroup analyses, there was an interaction between smoking status and TG/HDL-C ratio in relation to the prevalence of liver fibrosis (P for interaction < 0.001). Conclusions Among American adults, the TG/HDL-C ratio was noted to be nonlinearly positively associated with the prevalence of NAFLD; however, this relationship was not present in liver fibrosis.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Han Li
- Department of Cardiology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Xiaoyi Wang
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Ruizi Shi
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Junchao Hu
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xintao Zeng
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Hua Luo
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Pei Yang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Huiwen Luo
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuan Cao
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xianfu Cai
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Sirui Chen
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Decai Wang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
138
|
Li Z, Cao W, Zhang Y, Lai S, Ye Y, Bao J, Fu A. Puerarin ameliorates non-alcoholic fatty liver disease by inhibiting lipid metabolism through FMO5. Front Pharmacol 2024; 15:1423634. [PMID: 39055493 PMCID: PMC11269101 DOI: 10.3389/fphar.2024.1423634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Pueraria lobata is traditionally used in China for treatment of non-alcoholic fatty liver disease (NAFLD). Puerarin, a functional drug extracted from Pueraria lobata, features a pharmacological activity. The present study aims to investigate the effect of puerarin intervention on NAFLD. Methods: We established an NAFLD mouse model using a high-fat diet with 60% fat and evaluated the impact of puerarin intervention. Results and discussion: Our results demonstrate that puerarin intervention significantly ameliorates lipid accumulation and protects the liver from high-fat-induced damage while reducing oxidative stress levels in the liver. Furthermore, puerarin intervention significantly downregulates the transcription levels of acetyl-CoA carboxylase (ACC1) in the liver. It also upregulates the transcription levels of carnitine palmitoyltransferase 1 (CPT1), peroxisome proliferator-activated receptor alpha (PPARα), and peroxisome proliferators-activated receptor γ coactivator alpha (PGC1α), which are related to oxidation. Furthermore, we demonstrated that flavin-containing monooxygenase (FMO5) was involved in the protective effect of puerarin against NFALD. In conclusion, the present study demonstrated the beneficial effect of puerarin on NAFLD and showed that puerarin could prevent liver injury and lipid accumulation caused by NAFLD via activating FMO5. These findings provide a new theoretical basis for applying puerarin as a therapeutic agent for NAFLD.
Collapse
Affiliation(s)
- Zhaoyi Li
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenjing Cao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuxuan Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shanglei Lai
- Department of Medical Research Center, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Yingyan Ye
- Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, China
| | - Jianfeng Bao
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ai Fu
- Institute of Hepatology and Epidemiology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
139
|
Joo K, Kang YW, Moon SY, Baek YH, Son M. Association between nonalcoholic fatty liver disease scores and chronic periodontitis: A retrospective cohort study. J Periodontol 2024. [PMID: 38971999 DOI: 10.1002/jper.24-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Although several studies have demonstrated a bidirectional relationship between nonalcoholic fatty liver disease (NAFLD) and chronic periodontitis, few studies have reported that NAFLD causes chronic periodontitis, especially in the Asian population. METHODS This study was conducted on 129,087 individuals, and the NAFLD score was assessed using the Fatty Liver Index (FLI), Hepatic Steatosis Index (HSI), and Framingham Steatosis Index (FSI). The incidence of chronic periodontitis was defined as a diagnostic code with dental procedures. Multi-variable adjusted Cox proportional hazard regression analysis was performed with hazard ratio (HR) and 95% confidence intervals (CIs). RESULTS Nine thousand one hundred and twenty-eight chronic periodontitis cases (7.1%) were identified during a mean 7.4 years follow-up period. Each NAFLD score was related to chronic periodontitis. In the FLI score, HR and 95% CIs for the incidence of chronic periodontitis compared with a low FLI group were as follows: indeterminate FLI: 1.19 (1.12-1.26), high FLI: 1.32 (1.18-1.47). In the HSI and FSI scores, HR and 95% CIs for the incidence of chronic periodontitis were 1.13 (1.05-1.22) and 1.23 (1.05-1.31), respectively. CONCLUSIONS All NAFLD scores were associated with chronic periodontitis in the Korean population. As chronic periodontitis can aggravate the liver status, patients with NAFLD may need regular dental visits.
Collapse
Affiliation(s)
- Kwangmin Joo
- Department of Internal Medicine, Dong-A University Hospital, Busan, Republic of Korea
| | - Yeo Wool Kang
- Division of Gastroenterology, Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Sang Yi Moon
- Division of Gastroenterology, Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
- Department of Data Sciences Convergence, Dong-A University Interdisciplinary Program, Busan, Republic of Korea
| | - Yang Hyun Baek
- Division of Gastroenterology, Department of Internal Medicine, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Minkook Son
- Department of Data Sciences Convergence, Dong-A University Interdisciplinary Program, Busan, Republic of Korea
- Department of Physiology, Dong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
140
|
Albitar O, D'Souza CM, Adeghate EA. Effects of Lipoproteins on Metabolic Health. Nutrients 2024; 16:2156. [PMID: 38999903 PMCID: PMC11243180 DOI: 10.3390/nu16132156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Lipids are primarily transported in the bloodstream by lipoproteins, which are macromolecules of lipids and conjugated proteins also known as apolipoproteins. The processes of lipoprotein assembly, secretion, transportation, modification, and clearance are crucial components of maintaining a healthy lipid metabolism. Disruption in any of these steps results in pathophysiological abnormalities such as dyslipidemia, obesity, insulin resistance, inflammation, atherosclerosis, peripheral artery disease, and cardiovascular diseases. By studying these genetic mutations, researchers can gain valuable insights into the underlying mechanisms that govern the relationship between protein structure and its physiological role. These lipoproteins, including HDL, LDL, lipoprotein(a), and VLDL, mainly serve the purpose of transporting lipids between tissues and organs. However, studies have provided evidence that apo(a) also possesses protective properties against pathogens. In the future, the field of study will be significantly influenced by the integration of recombinant DNA technology and human site-specific mutagenesis for treating hereditary disorders. Several medications are available for the treatment of dyslipoproteinemia. These include statins, fibrates, ezetimibe, niacin, PCSK9 inhibitors, evinacumab, DPP 4 inhibitors, glucagon-like peptide-1 receptor agonists GLP1RAs, GLP-1, and GIP dual receptor agonists, in addition to SGLT2 inhibitors. This current review article exhibits, for the first time, a comprehensive reflection of the available body of publications concerning the impact of lipoproteins on metabolic well-being across various pathological states.
Collapse
Affiliation(s)
- Obaida Albitar
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Crystal M D'Souza
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ernest A Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
141
|
Long J, Xu Y, Zhang X, Wu B, Wang C. Role of FXR in the development of NAFLD and intervention strategies of small molecules. Arch Biochem Biophys 2024; 757:110024. [PMID: 38703803 DOI: 10.1016/j.abb.2024.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) remains a prevailing etiological agent behind hepatocyte diseases like chronic liver disease. The spectrum of processes involved in NAFLD stages includes hepatic steatosis, non-alcoholic fatty liver, and non-alcoholic steatohepatitis (NASH). Without intervention, the progression of NASH can further deteriorate into cirrhosis and ultimately, hepatocellular carcinoma. The cardinal features that characterize NAFLD are insulin resistance, lipogenesis, oxidative stress and inflammation, extracellular matrix deposition and fibrosis. Due to its complex pathogenesis, existing pharmaceutical agents fail to take a curative or ameliorative effect on NAFLD. Consequently, it is imperative to identify novel therapeutic targets and strategies for NAFLD, ideally to improve the aforementioned key features in patients. As an enterohepatic regulator of bile acid homeostasis, lipid metabolism, and inflammation, FarnesoidX receptor (FXR) is an important pharmacological target for the treatment of NAFLD. Manipulating FXR to regulate lipid metabolic signaling pathways is a potential mechanism to mitigate NAFLD. Therefore, elucidating the modulatory character of FXR in regulating lipid metabolism in NAFLD has the potential to yield groundbreaking perspectives for drug design. This review details recent advances in the regulation of lipid depletion in hepatocytes and investigates the pivotal function of FXR in the progress of NAFLD.
Collapse
Affiliation(s)
- Jiachan Long
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuanhang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xuerong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bingxing Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
142
|
Dimala CA, Nso N, Wasserlauf J, Njei B. Electrocardiographic abnormalities in patients with metabolic dysfunction-associated steatotic liver disease: A systematic review and meta-analysis. Curr Probl Cardiol 2024; 49:102580. [PMID: 38653446 DOI: 10.1016/j.cpcardiol.2024.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION This study review aimed to consolidate current knowledge on the electrocardiographic abnormalities observed in patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), formerly known as Non-Alcoholic Fatty Liver Disease (NAFLD). METHODS This was a systematic review of studies on the association between MASLD and electrocardiographic abnormalities, published between January 1, 1946, and October 31, 2023. Data from eligible studies were extracted, analyzed, synthesized, and summarized. RESULTS We evaluated a total of 27 studies with 8,607,500 participants overall and 1,005,101 participants with MASLD. There was a statistically significant association between MASLD and prevalent atrial fibrillation (pooled OR: 1.34 95 % CI: 1.20-1.49, p < 0.001, n = 12), shorter QRS duration (pooled SMD: -0.073, 95 % CI: -0.144 - -0.001, n = 2, p = 0.048, n = 2), QTc prolongation (p < 0.001, n = 2), LVH (pooled OR: 1.48, 95 % CI: 1.25-1.75, p < 0.001, n = 3), low voltage (p < 0.001, n = 1), ST changes (OR: 1.41, 95 % CI: 1.04-1.91, p = 0.027, n = 1), T wave inversion (p < 0.001, n = 1), axis deviation (OR: 3.21, 95 % CI: 1.99-5.17, p < 0.001, n = 1), conduction defect (OR: 2.79, 95 % CI: 1.83-4.26, p < 0.001, n = 1) and bundle branch block (OR: 2.90, 95 % CI: 1.82-4.61, p < 0.001, n = 1), any persistent heart block (p < 0.001, n = 1), fragmented QRS (p < 0.001, n = 1), and p wave dispersion (p < 0.001, n = 1) CONCLUSION: MASLD is associated with multiple ECG abnormalities which are potential markers of early cardiac involvement, highlighting the multisystemic nature of MASLD. These specific ECG abnormalities could be used in screening and management algorithms to improve cardiac risk stratification in MASLD patients. PROSPERO REGISTRATION CRD42023477501.
Collapse
Affiliation(s)
- Christian Akem Dimala
- Division of Cardiovascular Medicine, University of Texas Medical Branch, 301 University Blvd., 5.106 John Sealy Annex, Galveston, TX 77555-0553, United States.
| | - Nso Nso
- Division of Cardiology, University of Chicago (Northshore), Evanston, IL, United States
| | - Jeremiah Wasserlauf
- Cardiovascular Institute, North Shore University Health System, Evanston, IL, United States
| | - Basile Njei
- Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
143
|
Bilgin AG, Ekici B, Ozuynuk-Ertugrul AS, Erkan AF, Coban N. The minor allele of ANGPTL8 rs2278426 has a protective effect against CAD in T2DM patients. Gene 2024; 914:148418. [PMID: 38552749 DOI: 10.1016/j.gene.2024.148418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Coronary artery disease (CAD) is the leading cause of death worldwide despite advanced treatment and diagnosis strategies. Angiopoietin-like protein 8 (ANGPTL8) mainly functions in the lipid mechanism, which is a dysregulated mechanism during CAD pathogenesis. In this study, we aimed to determine the associations between an ANGPTL8 polymorphism rs2278426 and the severity, presence, and risk factors of CAD. METHODS A total of 1367 unrelated Turkish individuals who underwent coronary angiography were recruited for the study and grouped as CAD (n = 736, ≥50 stenosis) and non-CAD (n = 549, ≤30 stenosis). Also, subjects were further divided into groups regarding type 2 diabetes mellitus (T2DM) status. Subjects were genotyped for rs2278426 (C/T) by quantitative real-time PCR. Secondary structure analyses of protein interactions were revealed using I-TASSER and PyMOL. RESULTS Among CAD patients, T allele carriage frequency was lower in the T2DM group (p = 0.046). Moreover, in male non-CAD group, T allele carriage was more prevalent among T2DM patients than non-T2DM (p = 0.033). In logistic regression analysis adjusted for obesity, T allele carrier males had an increased risk for T2DM in non-CAD group (OR = 2.244, 95 % CI: 1.057-4.761, p = 0.035). Also, in T2DM group, stenosis (p = 0.002) and SYNTAX score (p = 0.040) were lower in T allele carrier males than in non-carriers. Analyzes of secondary structure showed that ANGPTL8 could not directly form complexes with ANGPTL3 or ANGPTL4. CONCLUSION In conclusion, T allele carriage of ANGPTL8 rs2278426 has a protective effect on CAD in T2DM patients. Further research should be conducted to explore the association between ANGPTL8 polymorphism (rs2778426) and CAD.
Collapse
Affiliation(s)
- Aslihan Gizem Bilgin
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Berkay Ekici
- Department of Cardiology, Ufuk University Faculty of Medicine, Ankara, Turkey
| | - Aybike Sena Ozuynuk-Ertugrul
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Aycan Fahri Erkan
- Department of Cardiology, Ufuk University Faculty of Medicine, Ankara, Turkey
| | - Neslihan Coban
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey.
| |
Collapse
|
144
|
Cao W, Chen Z, Lin C, Lin X, Chen Y, Zhang J. Honokiol Mitigates Metabolic-Associated Fatty Liver Disease by Regulating Nrf2 and RIPK3 Signaling Pathways. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:551-559. [PMID: 39128113 PMCID: PMC11363389 DOI: 10.5152/tjg.2024.23470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/13/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND/AIMS Metabolic-associated fatty liver disease (MAFLD) is a common cause of chronic liver disease worldwide. However, there is currently no recognized effective drugs for treating it. MATERIALS AND METHODS In this study, we investigated the efficacy of Honokiol (HNK) in vitro for mitigating MAFLD. Then, 0.4 mM palmitic acid (PA) and LO2 cells were used to establish the MAFLD model. The protective effect of HNK on MAFLD was confirmed by Oil Red O staining and cell counting kit (CCK-8) assay in LO2 cell line. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were carried out to analyze the regulatory role of HNK on Nrf2 and RIPK3 signaling pathways. The effect of HNK and its downstream signaling pathways on oxidative stress were verified by the detection of reactive oxygen species (ROS), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD). The concentration of IL-1β, IL-6L, and TNF-α was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS The middle concentration of HNK (50 μmol/L) was selected as the best option for inhibiting lipidosis and oxidative stress in MAFLD models. Honokiol mitigates MAFLD via activation of nuclear factor E2-related factor 2 (Nrf2) signaling pathways in vitro. Honokiol suppressed MAFLD via activating the Nrf2 signaling pathway to play an antioxidant and anti-inflammatory role. Also, HNK regulates Nrf2 and RIPK3 signaling pathways to mitigate MAFLD. CONCLUSION Our results showed that HNK may suppress the oxidative stress and inflammation in MAFLD via activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Wen Cao
- Department of Gastroenterology, Fuzhou Second General Hospital, Fuzhou, Fujian Province, China
| | - Zengdian Chen
- Department of Gastroenterology, Fuzhou Second General Hospital, Fuzhou, Fujian Province, China
| | - Chenhui Lin
- Department of Gastroenterology, Fuzhou Second General Hospital, Fuzhou, Fujian Province, China
| | - Xiaojin Lin
- Department of Gastroenterology, Fuzhou Second General Hospital, Fuzhou, Fujian Province, China
| | - Yang Chen
- Department of Gastroenterology, Fuzhou Second General Hospital, Fuzhou, Fujian Province, China
| | - Jingjuan Zhang
- Department of Gastroenterology, Fuzhou Second General Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
145
|
Vallianou NG, Kounatidis D, Psallida S, Vythoulkas-Biotis N, Adamou A, Zachariadou T, Kargioti S, Karampela I, Dalamaga M. NAFLD/MASLD and the Gut-Liver Axis: From Pathogenesis to Treatment Options. Metabolites 2024; 14:366. [PMID: 39057689 PMCID: PMC11278747 DOI: 10.3390/metabo14070366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) poses an emerging threat topublic health. Nonalcoholic steatohepatitis (NASH) is reported to be the most rapidly rising cause of hepatocellular carcinoma in the western world. Recently, a new term has been proposed: metabolic dysfunction-associated steatotic liver disease (MASLD). The introduction of this new terminology has sparked a debate about the interchangeability of these terms. The pathogenesis of NAFLD/MASLD is thought to be multifactorial, involving both genetic and environmental factors. Among these factors, alterations in gut microbiota and gut dysbiosis have recently garnered significant attention. In this context, this review will further discuss the gut-liver axis, which refers to the bidirectional interaction between the human gut microbiota and the liver. Additionally, the therapeutic potential of probiotics, particularly next-generation probiotics and genetically engineered bacteria, will be explored. Moreover, the role of prebiotics, synbiotics, postbiotics, and phages as well as fecal microbiota transplantation will be analyzed. Particularly for lean patients with NAFLD/MASLD, who have limited treatment options, approaches that modify the diversity and composition of the gut microbiota may hold promise. However, due to ongoing safety concerns with approaches that modulate gut microbiota, further large-scale studies are necessary to better assess their efficacy and safety in treating NAFLD/MASLD.
Collapse
Affiliation(s)
- Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Dimitris Kounatidis
- Department of Internal Medicine, Hippokration General Hospital, 114 Vassilissis Sofias Str., 11527 Athens, Greece;
| | - Sotiria Psallida
- Department of Microbiology, “KAT” General Hospital of Attica, 14561 Athens, Greece;
| | - Nikolaos Vythoulkas-Biotis
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Andreas Adamou
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Tatiana Zachariadou
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Sofia Kargioti
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Irene Karampela
- Second Department of Critical Care, Attikon University Hospital, 1 Rimini Str., 12462 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| |
Collapse
|
146
|
Dhanyalayam D, Thangavel H, Sidrat T, Oswal N, Lizardo K, Mauro M, Zhao X, Xue HH, Desai JV, Nagajyothi JF. The Influence of Body Fat Dynamics on Pulmonary Immune Responses in Murine Tuberculosis: Unraveling Sex-Specific Insights. Int J Mol Sci 2024; 25:6823. [PMID: 38999932 PMCID: PMC11241512 DOI: 10.3390/ijms25136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The World Health Organization (WHO) highlights a greater susceptibility of males to tuberculosis (TB), a vulnerability attributed to sex-specific variations in body fat and dietary factors. Our study delves into the unexplored terrain of how alterations in body fat influence Mycobacterium tuberculosis (Mtb) burden, lung pathology, immune responses, and gene expression, with a focus on sex-specific dynamics. Utilizing a low-dose Mtb-HN878 clinical strain infection model, we employ transgenic FAT-ATTAC mice with modulable body fat to explore the impact of fat loss (via fat ablation) and fat gain (via a medium-fat diet, MFD). Firstly, our investigation unveils that Mtb infection triggers severe pulmonary pathology in males, marked by shifts in metabolic signaling involving heightened lipid hydrolysis and proinflammatory signaling driven by IL-6 and localized pro-inflammatory CD8+ cells. This stands in stark contrast to females on a control regular diet (RD). Secondly, our findings indicate that both fat loss and fat gain in males lead to significantly elevated (1.6-fold (p ≤ 0.01) and 1.7-fold (p ≤ 0.001), respectively) Mtb burden in the lungs compared to females during Mtb infection (where fat loss and gain did not alter Mtb load in the lungs). This upsurge is associated with impaired lung lipid metabolism and intensified mitochondrial oxidative phosphorylation-regulated activity in lung CD8+ cells during Mtb infection. Additionally, our research brings to light that females exhibit a more robust systemic IFNγ (p ≤ 0.001) response than males during Mtb infection. This heightened response may either prevent active disease or contribute to latency in females during Mtb infection. In summary, our comprehensive analysis of the interplay between body fat changes and sex bias in Mtb infection reveals that alterations in body fat critically impact pulmonary pathology in males. Specifically, these changes significantly reduce the levels of pulmonary CD8+ T-cells and increase the Mtb burden in the lungs compared to females. The reduction in CD8+ cells in males is linked to an increase in mitochondrial oxidative phosphorylation and a decrease in TNFα, which are essential for CD8+ cell activation.
Collapse
Affiliation(s)
- Dhanya Dhanyalayam
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hariprasad Thangavel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tabinda Sidrat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Neelam Oswal
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kezia Lizardo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Michael Mauro
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Jigar V Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Jyothi F Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
147
|
Núñez-Sánchez MÁ, Martínez-Sánchez MA, Martínez-Montoro JI, Balaguer-Román A, Murcia-García E, Fernández-Ruiz VE, Ferrer-Gómez M, Martínez-Cáceres CM, Sledzinski T, Frutos MD, Hernández-Morante JJ, Fernández-García JC, Queipo-Ortuño MI, Ruiz-Alcaraz AJ, Mika A, Ramos-Molina B. Lipidomic Analysis Reveals Alterations in Hepatic FA Profile Associated With MASLD Stage in Patients With Obesity. J Clin Endocrinol Metab 2024; 109:1781-1792. [PMID: 38217869 DOI: 10.1210/clinem/dgae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/15/2024]
Abstract
CONTEXT Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the intracellular lipid accumulation in hepatocytes. Excess caloric intake and high-fat diets are considered to significantly contribute to MASLD development. OBJECTIVE To evaluate the hepatic and serum fatty acid (FA) composition in patients with different stages of MASLD, and their relationship with FA dietary intake and MASLD-related risk factors. METHODS This was a case-control study in patients with obesity undergoing bariatric surgery at a university hospital between January 2020 and December 2021. Participants were distributed in 3 groups: no MASLD (n = 26), steatotic liver disease (n = 33), and metabolic dysfunction-associated steatohepatitis (n = 32). Hepatic and serum FA levels were determined by gas chromatography-mass spectrometry. Nutritional status was evaluated using validated food frequency questionnaires. The hepatic expression of genes involved in FA metabolism was analyzed by reverse transcription quantitative polymerase chain reaction. RESULTS The hepatic, but not serum, FA profiles were significantly altered in patients with MASLD compared with those without MASLD. No differences were observed in FA intake between the groups. Levels of C16:0, C18:1, and the C18:1/C18:0 ratio were higher, while C18:0 levels and C18:0/C16:0 ratio were lower in patients with MASLD, being significantly different between the 3 groups. Hepatic FA levels and ratios correlated with histopathological diagnosis and other MASLD-related parameters. The expression of genes involved in the FA metabolism was upregulated in patients with MASLD. CONCLUSION Alterations in hepatic FA levels in MASLD patients were due to enhancement of de novo lipogenesis in the liver.
Collapse
Affiliation(s)
- María Ángeles Núñez-Sánchez
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | | | - José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Biomedical Research Institute of Malaga (IBIMA), Faculty of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Andrés Balaguer-Román
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - Elena Murcia-García
- Eating Disorders Research Unit, Faculty of Nursing, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| | - Virginia Esperanza Fernández-Ruiz
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - Mercedes Ferrer-Gómez
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | | | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - María Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - Juan José Hernández-Morante
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
- Eating Disorders Research Unit, Faculty of Nursing, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| | - José Carlos Fernández-García
- Department of Endocrinology and Nutrition, Regional University Hospital of Malaga, Biomedical Research Institute of Malaga (IBIMA), Faculty of Medicine, University of Malaga, 29010 Malaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Isabel Queipo-Ortuño
- Intercenter Medical Oncology Clinical Management Unit, Regional and Virgen de la Victoria University Hospitals, Málaga Biomedical Research Institute (IBIMA)-CIMES-UMA, 29010 Málaga, Spain
- Department of Surgical Specialties, Biochemical and Immunology. Faculty of Medicine, University of Málaga, 29071 Malaga, Spain
| | - Antonio José Ruiz-Alcaraz
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, 80-211 Gdansk, Poland
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| |
Collapse
|
148
|
Zhuge H, Pan Y, Lai S, Chang K, Ding Q, Cao W, Song Q, Li S, Dou X, Ding B. Penthorum chinense Pursh extract ameliorates alcohol-related fatty liver disease in mice via the SIRT1/AMPK signaling axis. Heliyon 2024; 10:e31195. [PMID: 38832279 PMCID: PMC11145240 DOI: 10.1016/j.heliyon.2024.e31195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
Penthorum chinense Pursh (P. chinense), a functional food, has been applied to protect the liver against alcohol-related fatty liver disease (ALD) for a long history in China. This study was designed to evaluate the ameliorative activity of the polyphenolic fraction in P. chinense (PGF) depending on the relief of ALD. The ALD mouse model was established by exposing the mice to a Lieber-DeCarli alcohol liquid diet. We found that PGF administration significantly ameliorated alcohol-induced liver injury, steatosis, oxidative stress, and inflammation in mice. Furthermore, alcohol-increased levels of the critical hepatic lipid synthesis proteins sterol regulatory element binding transcription factor (SREBP-1) and diacylglycerol o-acyltransferase 2 (DGAT2) were attenuated by PGF. Similarly, PGF inhibited the expression of the lipid transport protein very low-density lipoprotein receptor (VLDLR). Interestingly, PGF restored alcohol-inhibited expression of carnitine palmitoyltransferase 1 (CPT1) and peroxisome proliferator-activated receptor alpha (PPARα), essential fatty acid β-oxidation proteins. Mechanistic studies revealed that PGF protects against alcohol-induced hepatocyte injury and lipid deposition via the SIRT1/AMPK signaling pathway. In sum, this research clearly demonstrated the protective effects of PGF against ALD, which was mediated by activating SIRT1/AMPK pathways in hepatocytes. We provide a new theoretical basis for using P. chinense as a functional food in ALD.
Collapse
Affiliation(s)
- Hui Zhuge
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Pan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shanglei Lai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kaixin Chang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qinchao Ding
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wenjing Cao
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qing Song
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Songtao Li
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaobing Dou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bin Ding
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
149
|
Jiang FY, Yue SR, Tan YY, Tang N, Xu YS, Zhang BJ, Mao YJ, Xue ZS, Lu AP, Liu BC, Wang RR. Gynostemma pentaphyllum Extract Alleviates NASH in Mice: Exploration of Inflammation and Gut Microbiota. Nutrients 2024; 16:1782. [PMID: 38892715 PMCID: PMC11174846 DOI: 10.3390/nu16111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
NASH (non-alcoholic steatohepatitis) is a severe liver disease characterized by hepatic chronic inflammation that can be associated with the gut microbiota. In this study, we explored the therapeutic effect of Gynostemma pentaphyllum extract (GPE), a Chinese herbal extract, on methionine- and choline-deficient (MCD) diet-induced NASH mice. Based on the peak area, the top ten compounds in GPE were hydroxylinolenic acid, rutin, hydroxylinoleic acid, vanillic acid, methyl vanillate, quercetin, pheophorbide A, protocatechuic acid, aurantiamide acetate, and iso-rhamnetin. We found that four weeks of GPE treatment alleviated hepatic confluent zone inflammation, hepatocyte lipid accumulation, and lipid peroxidation in the mouse model. According to the 16S rRNA gene V3-V4 region sequencing of the colonic contents, the gut microbiota structure of the mice was significantly changed after GPE supplementation. Especially, GPE enriched the abundance of potentially beneficial bacteria such as Akkerrmansia and decreased the abundance of opportunistic pathogens such as Klebsiella. Moreover, RNA sequencing revealed that the GPE group showed an anti-inflammatory liver characterized by the repression of the NF-kappa B signaling pathway compared with the MCD group. Ingenuity Pathway Analysis (IPA) also showed that GPE downregulated the pathogen-induced cytokine storm pathway, which was associated with inflammation. A high dose of GPE (HGPE) significantly downregulated the expression levels of the tumor necrosis factor-α (TNF-α), myeloid differentiation factor 88 (Myd88), cluster of differentiation 14 (CD14), and Toll-like receptor 4 (TLR4) genes, as verified by real-time quantitative PCR (RT-qPCR). Our results suggested that the therapeutic potential of GPE for NASH mice may be related to improvements in the intestinal microenvironment and a reduction in liver inflammation.
Collapse
Affiliation(s)
- Feng-Yan Jiang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (F.-Y.J.); (S.-R.Y.); (Y.-Y.T.); (N.T.); (Y.-S.X.); (B.-J.Z.)
| | - Si-Ran Yue
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (F.-Y.J.); (S.-R.Y.); (Y.-Y.T.); (N.T.); (Y.-S.X.); (B.-J.Z.)
| | - Yi-Yun Tan
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (F.-Y.J.); (S.-R.Y.); (Y.-Y.T.); (N.T.); (Y.-S.X.); (B.-J.Z.)
| | - Nan Tang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (F.-Y.J.); (S.-R.Y.); (Y.-Y.T.); (N.T.); (Y.-S.X.); (B.-J.Z.)
| | - Yue-Song Xu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (F.-Y.J.); (S.-R.Y.); (Y.-Y.T.); (N.T.); (Y.-S.X.); (B.-J.Z.)
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Bao-Jun Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (F.-Y.J.); (S.-R.Y.); (Y.-Y.T.); (N.T.); (Y.-S.X.); (B.-J.Z.)
| | - Yue-Jian Mao
- China Mengniu Dairy Company Limited, Hohhot 010000, China; (Y.-J.M.); (Z.-S.X.)
| | - Zheng-Sheng Xue
- China Mengniu Dairy Company Limited, Hohhot 010000, China; (Y.-J.M.); (Z.-S.X.)
| | - Ai-Ping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China;
| | - Bao-Cheng Liu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (F.-Y.J.); (S.-R.Y.); (Y.-Y.T.); (N.T.); (Y.-S.X.); (B.-J.Z.)
| | - Rui-Rui Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (F.-Y.J.); (S.-R.Y.); (Y.-Y.T.); (N.T.); (Y.-S.X.); (B.-J.Z.)
| |
Collapse
|
150
|
Johnson SM, Bao H, McMahon CE, Chen Y, Burr SD, Anderson AM, Madeyski-Bengtson K, Lindén D, Han X, Liu J. PNPLA3 is a triglyceride lipase that mobilizes polyunsaturated fatty acids to facilitate hepatic secretion of large-sized very low-density lipoprotein. Nat Commun 2024; 15:4847. [PMID: 38844467 PMCID: PMC11156938 DOI: 10.1038/s41467-024-49224-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The I148M variant of PNPLA3 is closely associated with hepatic steatosis. Recent evidence indicates that the I148M mutant functions as an inhibitor of PNPLA2/ATGL-mediated lipolysis, leaving the role of wild-type PNPLA3 undefined. Despite showing a triglyceride hydrolase activity in vitro, PNPLA3 has yet to be established as a lipase in vivo. Here, we show that PNPLA3 preferentially hydrolyzes polyunsaturated triglycerides, mobilizing polyunsaturated fatty acids for phospholipid desaturation and enhancing hepatic secretion of triglyceride-rich lipoproteins. Under lipogenic conditions, mice with liver-specific knockout or acute knockdown of PNPLA3 exhibit aggravated liver steatosis and reduced plasma VLDL-triglyceride levels. Similarly, I148M-knockin mice show decreased hepatic triglyceride secretion during lipogenic stimulation. Our results highlight a specific context whereby the wild-type PNPLA3 facilitates the balance between hepatic triglyceride storage and secretion, and suggest the potential contribution of a loss-of-function by the I148M variant to the development of fatty liver disease in humans.
Collapse
Affiliation(s)
- Scott M Johnson
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
- Department of Cell Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes; University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Cailin E McMahon
- Molecular Biology and Genetics Department; Cornell College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
| | - Stephanie D Burr
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA
| | - Aaron M Anderson
- Department of Developmental Biology; Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Katja Madeyski-Bengtson
- Translational Genomics, Discovery Sciences; BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM); BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology; Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies and Department of Medicine, Division of Diabetes; University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA.
- Division of Endocrinology, Diabetes, Metabolism and Nutrition; Mayo Clinic in Rochester, Rochester, MN, 55905, USA.
| |
Collapse
|