101
|
Musseau C, Just D, Jorly J, Gévaudant F, Moing A, Chevalier C, Lemaire-Chamley M, Rothan C, Fernandez L. Identification of Two New Mechanisms That Regulate Fruit Growth by Cell Expansion in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:988. [PMID: 28659942 PMCID: PMC5467581 DOI: 10.3389/fpls.2017.00988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/24/2017] [Indexed: 05/25/2023]
Abstract
Key mechanisms controlling fruit weight and shape at the levels of meristem, ovary or very young fruit have already been identified using natural tomato diversity. We reasoned that new developmental modules prominent at later stages of fruit growth could be discovered by using new genetic and phenotypic diversity generated by saturated mutagenesis. Twelve fruit weight and tissue morphology mutants likely affected in late fruit growth were selected among thousands of fruit size and shape EMS mutants available in our tomato EMS mutant collection. Their thorough characterization at organ, tissue and cellular levels revealed two major clusters controlling fruit growth and tissue morphogenesis either through (i) the growth of all fruit tissues through isotropic cell expansion or (ii) only the growth of the pericarp through anisotropic cell expansion. These likely correspond to new cell expansion modules controlling fruit growth and tissue morphogenesis in tomato. Our study therefore opens the way for the identification of new gene regulatory networks controlling tomato fruit growth and morphology.
Collapse
|
102
|
Abstract
Polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. The consequences of polyploidization are complex and variable, and they differ greatly between systems (clonal or non-clonal) and species, but the process has often been considered to be an evolutionary 'dead end'. Here, we review the accumulating evidence that correlates polyploidization with environmental change or stress, and that has led to an increased recognition of its short-term adaptive potential. In addition, we discuss how, once polyploidy has been established, the unique retention profile of duplicated genes following whole-genome duplication might explain key longer-term evolutionary transitions and a general increase in biological complexity.
Collapse
|
103
|
Van Hoeck A, Horemans N, Nauts R, Van Hees M, Vandenhove H, Blust R. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 257:84-95. [PMID: 28224921 DOI: 10.1016/j.plantsci.2017.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 05/22/2023]
Abstract
Ecotoxicological research provides knowledge on ionising radiation-induced responses in different plant species. However, the sparse data currently available are mainly extracted from acute exposure treatments. To provide a better understanding of environmental exposure scenarios, the response to stress in plants must be followed in more natural relevant chronic conditions. We previously showed morphological and biochemical responses in Lemna minor plants continuously exposed for 7days in a dose-rate dependent manner. In this study responses on molecular (gene expression) and physiological (photosynthetic) level are evaluated in L. minor plants exposed to ionising radiation. To enable this, we examined the gene expression profiles of irradiated L. minor plants by using an RNA-seq approach. The gene expression data reveal indications that L. minor plants exposed at lower dose rates, can tolerate the exposure by triggering acclimation responses. In contrast, at the highest dose rate tested, a high number of genes related to antioxidative defense systems, DNA repair and cell cycle were differentially expressed suggesting that only high dose rates of ionising radiation drive L. minor plants into survival strategies. Notably, the photosynthetic process seems to be unaffected in L. minor plants among the tested dose rates. This study, supported by our earlier work, clearly indicates that plants shift from acclimation responses towards survival responses at increasing dose rates of ionising radiation.
Collapse
Affiliation(s)
- Arne Van Hoeck
- SCK●CEN, Boeretang, 200 2400, Mol, Belgium; Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Nele Horemans
- SCK●CEN, Boeretang, 200 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Universiteitslaan 1, 3590 Diepenbeek, Belgium.
| | | | | | | | - Ronny Blust
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
104
|
Renaudin JP, Deluche C, Cheniclet C, Chevalier C, Frangne N. Cell layer-specific patterns of cell division and cell expansion during fruit set and fruit growth in tomato pericarp. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1613-1623. [PMID: 28369617 PMCID: PMC5444452 DOI: 10.1093/jxb/erx058] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In angiosperms, the ovary wall resumes growth after pollination through a balanced combination of cell division and cell expansion. The quantitative pattern of these events remains poorly known in fleshy fruits such as tomato (Solanum spp.), in which dramatic growth of the pericarp occurs together with endoreduplication. Here, this pattern is reported at the level of each of the cell layers or groups of cell layers composing the pericarp, except for vascular bundles. Overall, cell division and cell expansion occurred at similar rates for 9 days post anthesis (DPA), with very specific patterns according to the layers. Subsequently, only cell expansion continued for up to 3-4 more weeks. New cell layers in the pericarp originated from periclinal cell divisions in the two sub-epidermal cell layers. The shortest doubling times for cell number and for cell volume were both detected early, at 4 DPA, in epicarp and mesocarp respectively, and were both found to be close to 14 h. Endoreduplication started before anthesis in pericarp and was stimulated at fruit set. It is proposed that cell division, endoreduplication, and cell expansion are triggered simultaneously in specific cell layers by the same signals issuing from pollination and fertilization, which contribute to the fastest relative fruit growth early after fruit set.
Collapse
Affiliation(s)
- Jean-Pierre Renaudin
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
| | - Cynthia Deluche
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
| | - Catherine Cheniclet
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
- UMS 3420, Bordeaux Imaging Center, CNRS, US4, INSERM, University of Bordeaux, F-33000 Bordeaux, France
| | - Christian Chevalier
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
| | - Nathalie Frangne
- UMR 1332 BFP, INRA National Institute for Agronomic Research, University of Bordeaux, F-33882 Villenave d'Ornon Cedex, France
| |
Collapse
|
105
|
|
106
|
Dong H, Dumenil J, Lu FH, Na L, Vanhaeren H, Naumann C, Klecker M, Prior R, Smith C, McKenzie N, Saalbach G, Chen L, Xia T, Gonzalez N, Seguela M, Inze D, Dissmeyer N, Li Y, Bevan MW. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Genes Dev 2017; 31:197-208. [PMID: 28167503 PMCID: PMC5322733 DOI: 10.1101/gad.292235.116] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022]
Abstract
The characteristic shapes and sizes of organs are established by cell proliferation patterns and final cell sizes, but the underlying molecular mechanisms coordinating these are poorly understood. Here we characterize a ubiquitin-activated peptidase called DA1 that limits the duration of cell proliferation during organ growth in Arabidopsis thaliana The peptidase is activated by two RING E3 ligases, Big Brother (BB) and DA2, which are subsequently cleaved by the activated peptidase and destabilized. In the case of BB, cleavage leads to destabilization by the RING E3 ligase PROTEOLYSIS 1 (PRT1) of the N-end rule pathway. DA1 peptidase activity also cleaves the deubiquitylase UBP15, which promotes cell proliferation, and the transcription factors TEOSINTE BRANCED 1/CYCLOIDEA/PCF 15 (TCP15) and TCP22, which promote cell proliferation and repress endoreduplication. We propose that DA1 peptidase activity regulates the duration of cell proliferation and the transition to endoreduplication and differentiation during organ formation in plants by coordinating the destabilization of regulatory proteins.
Collapse
Affiliation(s)
- Hui Dong
- John Innes Centre, Norwich NR4 7QA, United Kingdom
| | - Jack Dumenil
- John Innes Centre, Norwich NR4 7QA, United Kingdom
| | - Fu-Hao Lu
- John Innes Centre, Norwich NR4 7QA, United Kingdom
| | - Li Na
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre of Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hannes Vanhaeren
- VIB-UGent Centre for Plant Systems Biology, Ghent University, 9052 Gent, Belgium
| | - Christin Naumann
- Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle, Germany
| | - Maria Klecker
- Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle, Germany
| | - Rachel Prior
- John Innes Centre, Norwich NR4 7QA, United Kingdom
| | | | | | | | - Liangliang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre of Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tian Xia
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre of Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nathalie Gonzalez
- VIB-UGent Centre for Plant Systems Biology, Ghent University, 9052 Gent, Belgium
| | | | - Dirk Inze
- VIB-UGent Centre for Plant Systems Biology, Ghent University, 9052 Gent, Belgium
| | - Nico Dissmeyer
- Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle, Germany
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre of Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
107
|
Kumar N, Larkin JC. Why do plants need so many cyclin-dependent kinase inhibitors? PLANT SIGNALING & BEHAVIOR 2017; 12:e1282021. [PMID: 28165885 PMCID: PMC5351735 DOI: 10.1080/15592324.2017.1282021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cell cycle regulation is fundamental to growth and development, and Cyclin-Dependent Kinase Inhibitors (CKIs) are major negative regulators of the cell cycle. Plant genomes encode substantially more CKIs than metazoan or fungal genomes. Plant CKIs fall into 2 distinct families, KIP-RELATED PROTEINS (KRPs) and SIAMESE-RELATED proteins (SMRs). SMRs can inhibit both S-phase and M-phase CDK complexes in vitro and are transcribed throughout the cell cycle, yet SMRs do not inhibit DNA replication in vivo. This suggests that SMRs must be activated post transcriptionally after the start of S-phase, but the mechanism of this hypothesized activation is unknown. Recent work indicates that even distantly related SMRs have the same biochemical function, and that differential transcriptional regulation likely maintains their distinct roles in integrating various environmental and developmental signals with the cell cycle.
Collapse
Affiliation(s)
- Narender Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - John C. Larkin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- CONTACT John C. Larkin Department of Biological Sciences, Louisiana State University, 202 Life Sciences, Baton Rouge, LA 70803, USA
| |
Collapse
|
108
|
Vieira P, de Almeida Engler J. Plant Cyclin-Dependent Kinase Inhibitors of the KRP Family: Potent Inhibitors of Root-Knot Nematode Feeding Sites in Plant Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:1514. [PMID: 28943880 PMCID: PMC5596062 DOI: 10.3389/fpls.2017.01514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/17/2017] [Indexed: 05/14/2023]
Abstract
Root-knot nematodes (RKN), Meloidogyne spp., are distributed worldwide and impose severe economic damage to many agronomically important crops. The plant cell cycle machinery is considered one of the pivotal components for the formation of nematode feeding sites (NFSs) or galls. These feeding sites contain five to nine hypertrophied giant cells (GC) resulting from developmental reprogramming of host root cells by this pathogen. GC undergo synchronous waves of mitotic activity uncoupled from cytokinesis giving rise to large multinucleate cells. As development of the NFS progresses, multiple rounds of DNA synthesis occur in the nuclei of GC, coupled with nuclear and cellular expansion. These cells are highly metabolically active and provide the nematode with nutrients necessary for its development and completion of its life cycle. In Arabidopsis seven cyclin dependent kinase inhibitors (CKIs) belonging to the interactors/inhibitors of the cyclin dependent kinases (ICK) family, also referred as Kip-Related Proteins (KRPs) have been identified. Interactions of KRPs with CDK/Cyclin complexes decrease CDK activity, affecting both cell cycle progression and DNA content in a concentration-dependent manner. We performed the functional analysis of all Arabidopsis KRP gene members during RKN interaction in Arabidopsis to obtain more insight into their role during gall development. We demonstrated that three members of this family (KRP2, KRP5, and KRP6) were highly expressed in galls and were important for cell cycle regulation during NFS development as shown by their different modes of action. We also pointed out that cell cycle inhibition through overexpression of all members of the KRP family can affect NFS development and consequently compromise the nematode's life cycle. In this review we summarized our recent understanding of the KRP family of genes, and their role in controlling cell cycle progression at the RKN feeding site.
Collapse
Affiliation(s)
- Paulo Vieira
- Laboratório de Nematologia, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de ÉvoraÉvora, Portugal
| | - Janice de Almeida Engler
- Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut Sophia Agrobiotech, Université Côte d’AzurNice, France
- *Correspondence: Janice de Almeida Engler,
| |
Collapse
|
109
|
Tanaka R, Amijima M, Iwata Y, Koizumi N, Mishiba KI. Effect of light and auxin transport inhibitors on endoreduplication in hypocotyl and cotyledon. PLANT CELL REPORTS 2016; 35:2539-2547. [PMID: 27637202 DOI: 10.1007/s00299-016-2054-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Enhancement of endoreduplication in dark-grown hypocotyl is a common feature in dicotyledonous polysomatic plants, and TIBA-mediated inhibition of the endoreduplication is partially due to abnormal actin organization. Many higher plant species use endoreduplication during cell differentiation. However, the mechanisms underlying this process have remained elusive. In this study, we examined endoreduplication in hypocotyls and cotyledons in response to light in some dicotyledonous plant species. Enhancement of endoreduplication was found in the dark-grown hypocotyls of all the polysomatic species analyzed across five different families, indicating that this process is a common feature in dicotyledonous plants having polysomatic tissues. Conversely, endoreduplication was enhanced in the light-grown cotyledons in four of the five species analyzed. We also analyzed the effect of a polar auxin transport inhibitor, 2,3,5-triiodobenzoic acid (TIBA) on endoreduplication in hypocotyl and cotyledon tissues of radish (Raphanus sativus L. var. longipinnatus Bailey). TIBA was found to inhibit and promote endoreduplication in hypocotyls and cotyledons, respectively, suggesting that the endoreduplication mechanism differs in these organs. To gain insight into the effect of TIBA, radish and spinach (Spinacia oleracea L.) seedlings were treated with a vesicle-trafficking inhibitor, brefeldin A, and an actin polymerization inhibitor, cytochalasin D. Both of the inhibitors partially inhibited endoreduplication of the dark-grown hypocotyl tissues, suggesting that the prominent inhibition of endoreduplication by TIBA might be attributed to its multifaceted role.
Collapse
Affiliation(s)
- Riko Tanaka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Makoto Amijima
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Kei-Ichiro Mishiba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
110
|
García-Cruz KV, García-Ponce B, Garay-Arroyo A, Sanchez MDLP, Ugartechea-Chirino Y, Desvoyes B, Pacheco-Escobedo MA, Tapia-López R, Ransom-Rodríguez I, Gutierrez C, Alvarez-Buylla ER. The MADS-box XAANTAL1 increases proliferation at the Arabidopsis root stem-cell niche and participates in transition to differentiation by regulating cell-cycle components. ANNALS OF BOTANY 2016; 118:787-796. [PMID: 27474508 PMCID: PMC5055633 DOI: 10.1093/aob/mcw126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/16/2016] [Indexed: 05/08/2023]
Abstract
Background Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. Methods We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. Key Results We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a. In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. Conclusion XAL1 seems to be an important component of the networks that modulate cell proliferation/differentiation transition and stem-cell proliferation during Arabidopsis root development; it also regulates several cell-cycle components.
Collapse
Affiliation(s)
- Karla V. García-Cruz
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - María De La Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Yamel Ugartechea-Chirino
- Centro de Investigación en Dinámica Celular, Facultad de Ciencias, Universidad Autónoma de Morelos, Av. Universidad 1001, Col Chamilpa, Cuernavaca, Morelos, 62209, México
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Mario A. Pacheco-Escobedo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Rosalinda Tapia-López
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Ivan Ransom-Rodríguez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
- *For correspondence. E-mail
| |
Collapse
|
111
|
Thomas SM, Purmal A, Pollastri M, Mensa-Wilmot K. Discovery of a Carbazole-Derived Lead Drug for Human African Trypanosomiasis. Sci Rep 2016; 6:32083. [PMID: 27561392 PMCID: PMC5000474 DOI: 10.1038/srep32083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The protozoan parasite Trypanosoma brucei causes the fatal illness human African trypanosomiasis (HAT). Standard of care medications currently used to treat HAT have severe limitations, and there is a need to find new chemical entities that are active against infections of T. brucei. Following a "drug repurposing" approach, we tested anti-trypanosomal effects of carbazole-derived compounds called "Curaxins". In vitro screening of 26 compounds revealed 22 with nanomolar potency against axenically cultured bloodstream trypanosomes. In a murine model of HAT, oral administration of compound 1 cured the disease. These studies established 1 as a lead for development of drugs against HAT. Pharmacological time-course studies revealed the primary effect of 1 to be concurrent inhibition of mitosis coupled with aberrant licensing of S-phase entry. Consequently, polyploid trypanosomes containing 8C equivalent of DNA per nucleus and three or four kinetoplasts were produced. These effects of 1 on the trypanosome are reminiscent of "mitotic slippage" or endoreplication observed in some other eukaryotes.
Collapse
Affiliation(s)
- Sarah M Thomas
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Andrei Purmal
- Cleveland BioLabs, Inc., Buffalo, New York 14203, USA
| | - Michael Pollastri
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Kojo Mensa-Wilmot
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
112
|
Weimer AK, Biedermann S, Harashima H, Roodbarkelari F, Takahashi N, Foreman J, Guan Y, Pochon G, Heese M, Van Damme D, Sugimoto K, Koncz C, Doerner P, Umeda M, Schnittger A. The plant-specific CDKB1-CYCB1 complex mediates homologous recombination repair in Arabidopsis. EMBO J 2016; 35:2068-2086. [PMID: 27497297 PMCID: PMC5048351 DOI: 10.15252/embj.201593083] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 07/14/2016] [Indexed: 01/30/2023] Open
Abstract
Upon DNA damage, cyclin‐dependent kinases (CDKs) are typically inhibited to block cell division. In many organisms, however, it has been found that CDK activity is required for DNA repair, especially for homology‐dependent repair (HR), resulting in the conundrum how mitotic arrest and repair can be reconciled. Here, we show that Arabidopsis thaliana solves this dilemma by a division of labor strategy. We identify the plant‐specific B1‐type CDKs (CDKB1s) and the class of B1‐type cyclins (CYCB1s) as major regulators of HR in plants. We find that RADIATION SENSITIVE 51 (RAD51), a core mediator of HR, is a substrate of CDKB1‐CYCB1 complexes. Conversely, mutants in CDKB1 and CYCB1 fail to recruit RAD51 to damaged DNA. CYCB1;1 is specifically activated after DNA damage and we show that this activation is directly controlled by SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a transcription factor that acts similarly to p53 in animals. Thus, while the major mitotic cell‐cycle activity is blocked after DNA damage, CDKB1‐CYCB1 complexes are specifically activated to mediate HR.
Collapse
Affiliation(s)
- Annika K Weimer
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, Université de Strasbourg, Strasbourg Cedex, France
| | - Sascha Biedermann
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, Université de Strasbourg, Strasbourg Cedex, France
| | | | | | - Naoki Takahashi
- Plant Growth Regulation Laboratory, Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, Japan
| | - Julia Foreman
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Yonsheng Guan
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, Université de Strasbourg, Strasbourg Cedex, France
| | - Gaëtan Pochon
- Department of Developmental Biology, Biozentrum Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Maren Heese
- Department of Developmental Biology, Biozentrum Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Daniël Van Damme
- Department of Plant Systems Biology, VIB, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Csaba Koncz
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln, Germany
| | - Peter Doerner
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Masaaki Umeda
- Plant Growth Regulation Laboratory, Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, Japan JST, CREST, Ikoma, Nara, Japan
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, Université de Strasbourg, Strasbourg Cedex, France Department of Developmental Biology, Biozentrum Klein Flottbek, University of Hamburg, Hamburg, Germany Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS, Strasbourg Cedex, France
| |
Collapse
|
113
|
Hřibová E, Holušová K, Trávníček P, Petrovská B, Ponert J, Šimková H, Kubátová B, Jersáková J, Čurn V, Suda J, Doležel J, Vrána J. The Enigma of Progressively Partial Endoreplication: New Insights Provided by Flow Cytometry and Next-Generation Sequencing. Genome Biol Evol 2016; 8:1996-2005. [PMID: 27324917 PMCID: PMC4943206 DOI: 10.1093/gbe/evw141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In many plant species, somatic cell differentiation is accompanied by endoreduplication, a process during which cells undergo one or more rounds of DNA replication cycles in the absence of mitosis, resulting in nuclei with multiples of 2C DNA amounts (4C, 8C, 16C, etc.). In some orchids, a disproportionate increase in nuclear DNA contents has been observed, where successive endoreduplication cycles result in DNA amounts 2C + P, 2C + 3P, 2C + 7P, etc., where P is the DNA content of the replicated part of the 2C nuclear genome. This unique phenomenon was termed "progressively partial endoreplication" (PPE). We investigated processes behind the PPE in Ludisia discolor using flow cytometry (FCM) and Illumina sequencing. In particular, we wanted to determine whether chromatin elimination or incomplete genome duplication was involved, and to identify types of DNA sequences that were affected. Cell cycle analysis of root tip cell nuclei pulse-labeled with EdU revealed two cell cycles, one ending above the population of nuclei with 2C + P content, and the other with a typical "horseshoe" pattern of S-phase nuclei ranging from 2C to 4C DNA contents. The process leading to nuclei with 2C + P amounts therefore involves incomplete genome replication. Subsequent Illumina sequencing of flow-sorted 2C and 2C + P nuclei showed that all types of repetitive DNA sequences were affected during PPE; a complete elimination of any specific type of repetitive DNA was not observed. We hypothesize that PPE is part of a highly controlled transition mechanism from proliferation phase to differentiation phase of plant tissue development.
Collapse
Affiliation(s)
- Eva Hřibová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Kateřina Holušová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Pavel Trávníček
- Institute of Botany, the Czech Academy of Sciences, Průhonice, Czech Republic Department of Botany, Faculty of Science, Charles University in Prague, Czech Republic Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Czech Republic
| | - Beáta Petrovská
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jan Ponert
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Czech Republic Prague Botanical Garden, Prague, Czech Republic
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Barbora Kubátová
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Czech Republic
| | - Jana Jersáková
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
| | - Vladislav Čurn
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Czech Republic
| | - Jan Suda
- Institute of Botany, the Czech Academy of Sciences, Průhonice, Czech Republic Department of Botany, Faculty of Science, Charles University in Prague, Czech Republic
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jan Vrána
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| |
Collapse
|
114
|
Abstract
Because the genome stores all genetic information required for growth and development, it is of pivotal importance to maintain DNA integrity, especially during cell division, when the genome is prone to replication errors and damage. Although over the last two decades it has become evident that the basic cell cycle toolbox of plants shares several similarities with those of fungi and mammals, plants appear to have evolved a set of distinct checkpoint regulators in response to different types of DNA stress. This might be a consequence of plants' sessile lifestyle, which exposes them to a set of unique DNA damage-inducing conditions. In this review, we highlight the types of DNA stress that plants typically experience and describe the plant-specific molecular mechanisms that control cell division in response to these stresses.
Collapse
Affiliation(s)
- Zhubing Hu
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | - Toon Cools
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | | |
Collapse
|
115
|
Harashima H, Sugimoto K. Integration of developmental and environmental signals into cell proliferation and differentiation through RETINOBLASTOMA-RELATED 1. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:95-103. [PMID: 26799131 DOI: 10.1016/j.pbi.2015.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 05/23/2023]
Abstract
Plants continuously form new organs during post-embryonic development, thus progression of the proliferative cell cycle and subsequent transition into differentiation must be tightly controlled by developmental and environmental cues. Recent studies have begun to uncover how cell proliferation and cell differentiation are coordinated at the molecular level through tight transcriptional regulation of cell cycle and/or developmental regulators. Accumulating evidence suggests that RETINOBLASTOMA-RELATED 1 (RBR1), the Arabidopsis homolog of the human tumor suppressor Retinoblastoma (Rb), functions as a molecular hub linking cell proliferation, differentiation, and environmental response. In this review we will discuss recent findings on cell cycle regulation, highlighting the emerging roles of RBR1 as a key integrator of internal differentiation cues and external stimuli into the cell cycle machinery.
Collapse
Affiliation(s)
- Hirofumi Harashima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
116
|
Wu G, Carville JS, Spalding EP. ABCB19-mediated polar auxin transport modulates Arabidopsis hypocotyl elongation and the endoreplication variant of the cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:209-18. [PMID: 26662023 PMCID: PMC4744948 DOI: 10.1111/tpj.13095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 05/20/2023]
Abstract
Elongation of the Arabidopsis hypocotyl pushes the shoot-producing meristem out of the soil by rapid expansion of cells already present in the embryo. This elongation process is shown here to be impaired by as much as 35% in mutants lacking ABCB19, an ATP-binding cassette membrane protein required for polar auxin transport, during a limited time of fast growth in dim white light beginning 2.5 days after germination. The discovery of high ectopic expression of a cyclin B1;1-based reporter of mitosis throughout abcb19 hypocotyls without an equivalent effect on mitosis prompted investigations of the endoreplication variant of the cell cycle. Flow cytometry performed on nuclei isolated from upper (growing) regions of 3-day-old hypocotyls showed ploidy levels to be lower in abcb19 mutants compared with wild type. CCS52A2 messenger RNA encoding a nuclear protein that promotes a shift from mitosis to endoreplication was lower in abcb19 hypocotyls, and fluorescence microscopy showed the CCS52A2 protein to be lower in the nuclei of abcb19 hypocotyls compared with wild type. Providing abcb19 seedlings with nanomolar auxin rescued their low CCS52A2 levels, endocycle defects, aberrant cyclin B1;1 expression, and growth rate defect. The abcb19-like growth rate of ccs52a2 mutants was not rescued by auxin, placing CCS52A2 after ABCB19-dependent polar auxin transport in a pathway responsible for a component of ploidy-related hypocotyl growth. A ccs52A2 mutation did not affect the level or pattern of cyclin B1;1 expression, indicating that CCS52A2 does not mediate the effect of auxin on cyclin B1;1.
Collapse
Affiliation(s)
- Guosheng Wu
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Jacqueline S Carville
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Edgar P Spalding
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
117
|
Chandran D, Wildermuth M. Modulation of Host Endocycle During Plant–Biotroph Interactions. DEVELOPMENTAL SIGNALING IN PLANTS 2016; 40:65-103. [DOI: 10.1016/bs.enz.2016.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
118
|
Takatsuka H, Umeda M. Epigenetic Control of Cell Division and Cell Differentiation in the Root Apex. FRONTIERS IN PLANT SCIENCE 2015; 6:1178. [PMID: 26734056 PMCID: PMC4689806 DOI: 10.3389/fpls.2015.01178] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/09/2015] [Indexed: 05/25/2023]
Abstract
Epigenetics is defined as heritable changes in gene expression and genome integrity that are accompanied by no alteration in DNA sequence. Throughout plant life cycle, many processes, including genome imprinting, stress responses, and cellular differentiation, are known to be determined by epigenetic regulation. The root apex is also considered to be under the control of epigenetic regulation for optimal growth under variable environments. Recent reports reveal that epigenetic control is especially important in the stem cell niche and the meristematic zone where both cell production and cell specification occur. DNA methylation, histone methylation, and histone acetylation are well-known epigenetic modifications, and each epigenetic modification has distinct roles in roots. Here, we review the updated findings that demonstrate the significance of epigenetic regulation in root apex of Arabidopsis.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyNara, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyNara, Japan
- Japan Science and Technology, Core Research for Evolutional Science and Technology AgencyIkoma, Japan
| |
Collapse
|
119
|
Van Hoeck A, Horemans N, Van Hees M, Nauts R, Knapen D, Vandenhove H, Blust R. Characterizing dose response relationships: Chronic gamma radiation in Lemna minor induces oxidative stress and altered polyploidy level. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 150:195-202. [PMID: 26348936 DOI: 10.1016/j.jenvrad.2015.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 05/22/2023]
Abstract
The biological effects and interactions of different radiation types in plants are still far from understood. Among different radiation types, external gamma radiation treatments have been mostly studied to assess the biological impact of radiation toxicity in organisms. Upon exposure of plants to gamma radiation, ionisation events can cause, either directly or indirectly, severe biological damage to DNA and other biomolecules. However, the biological responses and oxidative stress related mechanisms under chronic radiation conditions are poorly understood in plant systems. In the following study, it was questioned if the Lemna minor growth inhibition test is a suitable approach to also assess the radiotoxicity of this freshwater plant. Therefore, L. minor plants were continuously exposed for seven days to 12 different dose rate levels covering almost six orders of magnitude starting from 80 μGy h(-1) up to 1.5 Gy h(-1). Subsequently, growth, antioxidative defence system and genomic responses of L. minor plants were evaluated. Although L. minor plants could survive the exposure treatment at environmental relevant exposure conditions, higher dose rate levels induced dose dependent growth inhibitions starting from approximately 27 mGy h(-1). A ten-percentage growth inhibition of frond area Effective Dose Rate (EDR10) was estimated at 95 ± 7 mGy h(-1), followed by 153 ± 13 mGy h(-1) and 169 ± 12 mGy h(-1) on fresh weight and frond number, respectively. Up to a dose rate of approximately 5 mGy h(-1), antioxidative enzymes and metabolites remained unaffected in plants. A significant change in catalase enzyme activity was found at 27 mGy h(-1) which was accompanied with significant increases of other antioxidative enzyme activities and shifts in ascorbate and glutathione content at higher dose rate levels, indicating an increase in oxidative stress in plants. Recent plant research hypothesized that environmental genotoxic stress conditions can induce endoreduplication events. Here an increase in ploidy level was observed at the highest tested dose rate. In conclusion, the results revealed that in plants several mechanisms and pathways interplay to cope with radiation induced stress.
Collapse
Affiliation(s)
- Arne Van Hoeck
- SCK•CEN, Boeretang 200, 2400 Mol, Belgium; Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Nele Horemans
- SCK•CEN, Boeretang 200, 2400 Mol, Belgium; Centre for Environmental Research, University of Hasselt, Universiteitslaan 1, 3590 Diepenbeek, Belgium
| | | | | | - Dries Knapen
- Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | | | - Ronny Blust
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
120
|
del Pozo JC, Ramirez-Parra E. Whole genome duplications in plants: an overview from Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6991-7003. [PMID: 26417017 DOI: 10.1093/jxb/erv432] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polyploidy is a common event in plants that involves the acquisition of more than two complete sets of chromosomes. Allopolyploidy originates from interspecies hybrids while autopolyploidy originates from intraspecies whole genome duplication (WGD) events. In spite of inconveniences derived from chromosomic rearrangement during polyploidization, natural plant polyploids species often exhibit improved growth vigour and adaptation to adverse environments, conferring evolutionary advantages. These advantages have also been incorporated into crop breeding programmes. Many tetraploid crops show increased stress tolerance, although the molecular mechanisms underlying these different adaptation abilities are poorly known. Understanding the physiological, cellular, and molecular mechanisms coupled to WGD, in both allo- and autopolyploidy, is a major challenge. Over the last few years, several studies, many of them in Arabidopsis, are shedding light on the basis of genetic, genomic, and epigenomic changes linked to WGD. In this review we summarize and discuss the latest advances made in Arabidopsis polyploidy, but also in other agronomic plant species.
Collapse
Affiliation(s)
- Juan Carlos del Pozo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Elena Ramirez-Parra
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
121
|
Yant L, Bomblies K. Genome management and mismanagement--cell-level opportunities and challenges of whole-genome duplication. Genes Dev 2015; 29:2405-19. [PMID: 26637526 PMCID: PMC4691946 DOI: 10.1101/gad.271072.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Whole-genome duplication (WGD) doubles the DNA content in the nucleus and leads to polyploidy. In whole-organism polyploids, WGD has been implicated in adaptability and the evolution of increased genome complexity, but polyploidy can also arise in somatic cells of otherwise diploid plants and animals, where it plays important roles in development and likely environmental responses. As with whole organisms, WGD can also promote adaptability and diversity in proliferating cell lineages, although whether WGD is beneficial is clearly context-dependent. WGD is also sometimes associated with aging and disease and may be a facilitator of dangerous genetic and karyotypic diversity in tumorigenesis. Scaling changes can affect cell physiology, but problems associated with WGD in large part seem to arise from problems with chromosome segregation in polyploid cells. Here we discuss both the adaptive potential and problems associated with WGD, focusing primarily on cellular effects. We see value in recognizing polyploidy as a key player in generating diversity in development and cell lineage evolution, with intriguing parallels across kingdoms.
Collapse
Affiliation(s)
- Levi Yant
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | | |
Collapse
|
122
|
Swanson CI, Meserve JH, McCarter PC, Thieme A, Mathew T, Elston TC, Duronio RJ. Expression of an S phase-stabilized version of the CDK inhibitor Dacapo can alter endoreplication. Development 2015; 142:4288-98. [PMID: 26493402 DOI: 10.1242/dev.115006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/12/2015] [Indexed: 01/01/2023]
Abstract
In developing organisms, divergence from the canonical cell division cycle is often necessary to ensure the proper growth, differentiation, and physiological function of a variety of tissues. An important example is endoreplication, in which endocycling cells alternate between G and S phase without intervening mitosis or cytokinesis, resulting in polyploidy. Although significantly different from the canonical cell cycle, endocycles use regulatory pathways that also function in diploid cells, particularly those involved in S phase entry and progression. A key S phase regulator is the Cyclin E-Cdk2 kinase, which must alternate between periods of high (S phase) and low (G phase) activity in order for endocycling cells to achieve repeated rounds of S phase and polyploidy. The mechanisms that drive these oscillations of Cyclin E-Cdk2 activity are not fully understood. Here, we show that the Drosophila Cyclin E-Cdk2 inhibitor Dacapo (Dap) is targeted for destruction during S phase via a PIP degron, contributing to oscillations of Dap protein accumulation during both mitotic cycles and endocycles. Expression of a PIP degron mutant Dap attenuates endocycle progression but does not obviously affect proliferating diploid cells. A mathematical model of the endocycle predicts that the rate of destruction of Dap during S phase modulates the endocycle by regulating the length of G phase. We propose from this model and our in vivo data that endo S phase-coupled destruction of Dap reduces the threshold of Cyclin E-Cdk2 activity necessary to trigger the subsequent G-S transition, thereby influencing endocycle oscillation frequency and the extent of polyploidy.
Collapse
Affiliation(s)
- Christina I Swanson
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joy H Meserve
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Patrick C McCarter
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alexis Thieme
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tony Mathew
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy C Elston
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
123
|
Neiman M, Beaton MJ, Hessen DO, Jeyasingh PD, Weider LJ. Endopolyploidy as a potential driver of animal ecology and evolution. Biol Rev Camb Philos Soc 2015; 92:234-247. [PMID: 26467853 DOI: 10.1111/brv.12226] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/20/2023]
Abstract
Endopolyploidy - the existence of higher-ploidy cells within organisms that are otherwise of a lower ploidy level (generally diploid) - was discovered decades ago, but remains poorly studied relative to other genomic phenomena, especially in animals. Our synthetic review suggests that endopolyploidy is more common in animals than often recognized and probably influences a number of fitness-related and ecologically important traits. In particular, we argue that endopolyploidy is likely to play a central role in key traits such as gene expression, body and cell size, and growth rate, and in a variety of cell types, including those responsible for tissue regeneration, nutrient storage, and inducible anti-predator defences. We also summarize evidence for intraspecific genetic variation in endopolyploid levels and make the case that the existence of this variation suggests that endopolyploid levels are likely to be heritable and thus a potential target for natural selection. We then discuss why, in light of evident benefits of endopolyploidy, animals remain primarily diploid. We conclude by highlighting key areas for future research such as comprehensive evaluation of the heritability of endopolyploidy and the adaptive scope of endopolyploid-related traits, the extent to which endopolyploid induction incurs costs, and characterization of the relationships between environmental variability and endopolyploid levels.
Collapse
Affiliation(s)
- Maurine Neiman
- Department of Biology, University of Iowa, 143 Biology Building, Iowa City, IA 52242, U.S.A
| | - Margaret J Beaton
- Biology Department, Mount Allison University, Sackville, NB E4L 1G7, Canada
| | - Dag O Hessen
- Department of Biosciences, University of Oslo, Box 1066, Blindern, 0316 Oslo, Norway
| | - Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, U.S.A
| | - Lawrence J Weider
- Department of Biology, Program in Ecology and Evolutionary Biology, University of Oklahoma, 730 Van Vleet Oval, Room 304, Norman, OK 73019, U.S.A
| |
Collapse
|
124
|
Borland AM, Wullschleger SD, Weston DJ, Hartwell J, Tuskan GA, Yang X, Cushman JC. Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy. PLANT, CELL & ENVIRONMENT 2015; 38:1833-49. [PMID: 25366937 DOI: 10.1111/pce.12479] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/16/2014] [Accepted: 10/27/2014] [Indexed: 05/20/2023]
Abstract
Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate.
Collapse
Affiliation(s)
- Anne M Borland
- School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA
| | - Stan D Wullschleger
- Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA
| | - David J Weston
- Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA
| | - James Hartwell
- Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Gerald A Tuskan
- Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA
| | - Xiaohan Yang
- Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, 89557-0330, USA
| |
Collapse
|
125
|
Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective. Int J Mol Sci 2015; 16:19671-97. [PMID: 26295391 PMCID: PMC4581319 DOI: 10.3390/ijms160819671] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/11/2015] [Accepted: 08/11/2015] [Indexed: 12/30/2022] Open
Abstract
Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth.
Collapse
|
126
|
Narukawa H, Yokoyama R, Komaki S, Sugimoto K, Nishitani K. Stimulation of Cell Elongation by Tetraploidy in Hypocotyls of Dark-Grown Arabidopsis Seedlings. PLoS One 2015; 10:e0134547. [PMID: 26244498 PMCID: PMC4526521 DOI: 10.1371/journal.pone.0134547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/12/2015] [Indexed: 01/14/2023] Open
Abstract
Plant size is largely determined by the size of individual cells. A number of studies showed a link between ploidy and cell size in land plants, but this link remains controversial. In this study, post-germination growth, which occurs entirely by cell elongation, was examined in diploid and autotetraploid hypocotyls of Arabidopsis thaliana (L.) Heynh. Final hypocotyl length was longer in tetraploid plants than in diploid plants, particularly when seedlings were grown in the dark. The longer hypocotyl in the tetraploid seedlings developed as a result of enhanced cell elongation rather than by an increase in cell number. DNA microarray analysis showed that genes involved in the transport of cuticle precursors were downregulated in a defined region of the tetraploid hypocotyl when compared to the diploid hypocotyl. Cuticle permeability, as assessed by toluidine-blue staining, and cuticular structure, as visualized by electron microscopy, were altered in tetraploid plants. Taken together, these data indicate that promotion of cell elongation is responsible for ploidy-dependent size determination in the Arabidopsis hypocotyl, and that this process is directly or indirectly related to cuticular function.
Collapse
Affiliation(s)
- Hideki Narukawa
- Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ryusuke Yokoyama
- Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shinichiro Komaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kazuhiko Nishitani
- Laboratory of Plant Cell Wall Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
127
|
Chen P, Umeda M. DNA double-strand breaks induce the expression of flavin-containing monooxygenase and reduce root meristem size in Arabidopsis thaliana. Genes Cells 2015; 20:636-46. [PMID: 26033196 DOI: 10.1111/gtc.12255] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/06/2015] [Indexed: 01/06/2023]
Abstract
Plants use various mechanisms to cope with environmental stresses, which often threaten genome integrity. In Arabidopsis, DNA double-strand breaks (DSBs) reduce root meristem size in a SOG1-dependent manner. SOG1 is a key transcription factor controlling the response to DNA damage. However, the underlying mechanism remains largely unknown. In this study, we found that treatment with the DSB inducer zeocin increased the accumulation of H2O2 in root tips. Chromatin immunoprecipitation analysis showed that SOG1 directly binds to the promoter of FMO1, which encodes a flavin-containing monooxygenase and is associated with the production of reactive oxygen species (ROS), H2O2 in particular. Indeed, zeocin induced the expression of FMO1 in a SOG1-dependent manner, and neither the sog1 nor the fmo1 knockout mutant exhibited higher H2O2 accumulation in root tips. Consequently, both sog1 and fmo1 could tolerate exposure to zeocin, in terms of root growth and the maintenance of the meristem size. However, transgenic plants over-expressing FMO1 also accumulated H2O2 in response to zeocin exposure, suggesting that other ROS-synthesis genes are also involved in the regulation of ROS production. We conclude that SOG1-mediated regulation of ROS homeostasis plays a key role in the reduction of root meristem size under DNA stress conditions.
Collapse
Affiliation(s)
- Poyu Chen
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
- JST, CREST, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
128
|
Gillooly JF, Hein A, Damiani R. Nuclear DNA Content Varies with Cell Size across Human Cell Types. Cold Spring Harb Perspect Biol 2015; 7:a019091. [PMID: 26134319 DOI: 10.1101/cshperspect.a019091] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Variation in the size of cells, and the DNA they contain, is a basic feature of multicellular organisms that affects countless aspects of their structure and function. Within humans, cell size is known to vary by several orders of magnitude, and differences in nuclear DNA content among cells have been frequently observed. Using published data, here we describe how the quantity of nuclear DNA across 19 different human cell types increases with cell volume. This observed increase is similar to intraspecific relationships between DNA content and cell volume in other species, and interspecific relationships between diploid genome size and cell volume. Thus, we speculate that the quantity of nuclear DNA content in somatic cells of humans is perhaps best viewed as a distribution of values that reflects cell size distributions, rather than as a single, immutable quantity.
Collapse
Affiliation(s)
- James F Gillooly
- Department of Biology, University of Florida, Gainesville, Florida 32611
| | - Andrew Hein
- Department of Biology, University of Florida, Gainesville, Florida 32611
| | - Rachel Damiani
- Department of Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
129
|
Kobayashi K, Suzuki T, Iwata E, Nakamichi N, Suzuki T, Chen P, Ohtani M, Ishida T, Hosoya H, Müller S, Leviczky T, Pettkó-Szandtner A, Darula Z, Iwamoto A, Nomoto M, Tada Y, Higashiyama T, Demura T, Doonan JH, Hauser MT, Sugimoto K, Umeda M, Magyar Z, Bögre L, Ito M. Transcriptional repression by MYB3R proteins regulates plant organ growth. EMBO J 2015; 34:1992-2007. [PMID: 26069325 DOI: 10.15252/embj.201490899] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/12/2015] [Indexed: 11/09/2022] Open
Abstract
In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post-mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M-specific genes repressed in post-mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor-type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome-wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M-specific genes and to E2F target genes. MYB3R3 associates with the repressor-type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post-mitotic quiescent state determining organ size.
Collapse
Affiliation(s)
- Kosuke Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Toshiya Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan JST, CREST, Chikusa, Nagoya, Japan
| | - Eriko Iwata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Norihito Nakamichi
- WPI Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, Japan Graduate School of Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Takamasa Suzuki
- Graduate School of Sciences, Nagoya University, Chikusa, Nagoya, Japan JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Chikusa, Nagoya, Japan
| | - Poyu Chen
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Hanako Hosoya
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Sabine Müller
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Tünde Leviczky
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | | | - Zsuzsanna Darula
- Laboratory of Proteomic Research, Biological Research Centre, Szeged, Hungary
| | - Akitoshi Iwamoto
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Mika Nomoto
- Graduate School of Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Yasuomi Tada
- Center for Gene Research, Division of Biological Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Tetsuya Higashiyama
- WPI Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, Japan Graduate School of Sciences, Nagoya University, Chikusa, Nagoya, Japan JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Chikusa, Nagoya, Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - John H Doonan
- The National Plant Phenomics Centre, Aberystwyth University, Aberystwyth, UK
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan JST, CREST, Ikoma, Nara, Japan
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary Royal Holloway, School of Biological Sciences, University of London, Egham, Surrey, UK
| | - László Bögre
- Royal Holloway, School of Biological Sciences, University of London, Egham, Surrey, UK
| | - Masaki Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan JST, CREST, Chikusa, Nagoya, Japan
| |
Collapse
|
130
|
Harney E, Plaistow SJ, Paterson S. Transcriptional changes during Daphnia pulex development indicate that the maturation decision resembles a rate more than a threshold. J Evol Biol 2015; 28:944-58. [PMID: 25786891 DOI: 10.1111/jeb.12624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 01/05/2023]
Abstract
Maturation is a critical developmental process, and the age and size at which it occurs have important fitness consequences. Although maturation is remarkably variable, certain mechanisms, including a minimum size or state threshold, are proposed to underlie the process across a broad diversity of taxa. Recent evidence suggests that thresholds may themselves be developmentally plastic, and in the crustacean Daphnia pulex it is unclear whether maturation follows a threshold or is a gradual process more akin to a rate. Changes in gene expression across four instars before and during maturation were compared in a cDNA microarray experiment. Developmental stage was treated statistically both as a discontinuous and as a continuous variable, to determine whether genes showed gradual or discrete changes in expression. The continuous analysis identified a greater number of genes with significant differential expression (45) than the discontinuous analysis (11). The majority of genes, including those coding for histones, factors relating to transcription and cell cycle processes, and a putative developmental hormone showed continuous increases or decreases in expression from the first to the fourth instars that were studied, suggestive of a prolonged and gradual maturation process. Three genes coding for a fused vitellogenin/superoxide dismutase showed increases in expression following the second instar and coincided with the posited maturation threshold, but even their expression increased in a continuous fashion.
Collapse
Affiliation(s)
- E Harney
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
131
|
Polyn S, Willems A, De Veylder L. Cell cycle entry, maintenance, and exit during plant development. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:1-7. [PMID: 25449720 DOI: 10.1016/j.pbi.2014.09.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/22/2014] [Accepted: 09/30/2014] [Indexed: 05/24/2023]
Abstract
Growth and development of plants are driven by the continuous production of new cells at the meristems; hence, it is of pivotal importance for plants to precisely regulate the timing and extent of cell proliferation. Although over the past decades the molecular components underlying cell cycle progression have been the subject of intensive research, knowledge remains scarce on how the various elements connect with developmental pathways. Recently, advances have been made that link cell cycle entry with nutrient availability, cell division maintenance with stem cell organization, and cell cycle exit with reactive oxygen species and developmental programs.
Collapse
Affiliation(s)
- Stefanie Polyn
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Alex Willems
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium.
| |
Collapse
|
132
|
Czerednik A, Busscher M, Angenent GC, de Maagd RA. The cell size distribution of tomato fruit can be changed by overexpression of CDKA1. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:259-268. [PMID: 25283700 DOI: 10.1111/pbi.12268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 08/20/2014] [Indexed: 06/03/2023]
Abstract
Tomato is one of the most cultivated vegetables in the world and an important ingredient of the human diet. Tomato breeders and growers face a continuous challenge of combining high quantity (production volume) with high quality (appearance, taste and perception for the consumers, processing quality for the processing industry). To improve the quality of tomato, it is important to understand the regulation of fruit development and of fruit cellular structure, which is in part determined by the sizes and numbers of cells within a tissue. The role of the cell cycle therein is poorly understood. Plant cyclin-dependent kinases (CDKs) are homologues of yeast cdc2, an important cell cycle regulator conserved throughout all eukaryotes. CDKA1 is constitutively expressed during the cell cycle and has dual functions in S- and M-phase progression. We have produced transgenic tomato plants with increased expression of CDKA1 under the control of the fruit-specific TPRP promoter, which despite a reduced number of seeds and diminished amount of jelly, developed fruits with weight and shape comparable to that of wild-type fruits. However, the phenotypic changes with regard to the pericarp thickness and placenta area were remarkable. Fruits of tomato plants with the highest expression of CDKA1 had larger septa and columella (placenta), compared with wild-type fruits. Our data demonstrate the possibility of manipulating the ratio between cell division and expansion by changing the expression of a key cell cycle regulator and probably its activity with substantial effects on structural traits of the harvested fruit.
Collapse
Affiliation(s)
- Anna Czerednik
- Department of Molecular Plant Physiology, Radboud University Nijmegen, Nijmegen, the Netherlands
| | | | | | | |
Collapse
|
133
|
Azzi L, Deluche C, Gévaudant F, Frangne N, Delmas F, Hernould M, Chevalier C. Fruit growth-related genes in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1075-86. [PMID: 25573859 DOI: 10.1093/jxb/eru527] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Tomato (Solanum lycopersicum Mill.) represents a model species for all fleshy fruits due to its biological cycle and the availability of numerous genetic and molecular resources. Its importance in human nutrition has made it one of the most valuable worldwide commodities. Tomato fruit size results from the combination of cell number and cell size, which are determined by both cell division and expansion. As fruit growth is mainly driven by cell expansion, cells from the (fleshy) pericarp tissue become highly polyploid according to the endoreduplication process, reaching a DNA content rarely encountered in other plant species (between 2C and 512C). Both cell division and cell expansion are under the control of complex interactions between hormone signalling and carbon partitioning, which establish crucial determinants of the quality of ripe fruit, such as the final size, weight, and shape, and organoleptic and nutritional traits. This review describes the genes known to contribute to fruit growth in tomato.
Collapse
Affiliation(s)
- Lamia Azzi
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Cynthia Deluche
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Frédéric Gévaudant
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Nathalie Frangne
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Frédéric Delmas
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Michel Hernould
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Christian Chevalier
- INRA, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882, Villenave d'Ornon cedex, France
| |
Collapse
|
134
|
Albert EV, Kavai-ool UN, Ezhova TA. Pleiotropic effect of the fas5 mutation on the shoot development of Arabidopsis thaliana. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
135
|
Hur YS, Um JH, Kim S, Kim K, Park HJ, Lim JS, Kim WY, Jun SE, Yoon EK, Lim J, Ohme-Takagi M, Kim D, Park J, Kim GT, Cheon CI. Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication. THE NEW PHYTOLOGIST 2015; 205:316-28. [PMID: 25187356 DOI: 10.1111/nph.12998] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/21/2014] [Indexed: 05/07/2023]
Abstract
Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper class I (HD-Zip I) gene, is highly expressed in leaves and stems, and induced by abiotic stresses, but its role in development remains obscure. To understand its function during plant development, we studied the effects of loss and gain of function. Expression of ATHB12 fused to the EAR-motif repression domain (SRDX) - P35 S ::ATHB12SRDX (A12SRDX) and PATHB 12 ::ATHB12SRDX - slowed both leaf and root growth, while the growth of ATHB12-overexpressing seedlings (A12OX) was accelerated. Microscopic examination revealed changes in the size and number of leaf cells. Ploidy was reduced in A12SRDX plants, accompanied by decreased cell expansion and increased cell numbers. By contrast, cell size was increased in A12OX plants, along with increased ploidy and elevated expression of cell cycle switch 52s (CCS52s), which are positive regulators of endoreduplication, indicating that ATHB12 promotes leaf cell expansion and endoreduplication. Overexpression of ATHB12 led to decreased phosphorylation of Arabidopsis thaliana ribosomal protein S6 (AtRPS6), a regulator of cell growth. In addition, induction of ATHB12 in the presence of cycloheximide increased the expression of several genes related to cell expansion, such as EXPANSIN A10 (EXPA10) and DWARF4 (DWF4). Our findings strongly suggest that ATHB12 acts as a positive regulator of endoreduplication and cell growth during leaf development.
Collapse
Affiliation(s)
- Yoon-Sun Hur
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. The molecular biology of meiosis in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:297-327. [PMID: 25494464 DOI: 10.1146/annurev-arplant-050213-035923] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is the cell division that reshuffles genetic information between generations. Recently, much progress has been made in understanding this process; in particular, the identification and functional analysis of more than 80 plant genes involved in meiosis have dramatically deepened our knowledge of this peculiar cell division. In this review, we provide an overview of advancements in the understanding of all aspects of plant meiosis, including recombination, chromosome synapsis, cell cycle control, chromosome distribution, and the challenge of polyploidy.
Collapse
Affiliation(s)
- Raphaël Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; , , , ,
| | | | | | | | | |
Collapse
|
137
|
Schmidt R, Schippers JHM. ROS-mediated redox signaling during cell differentiation in plants. Biochim Biophys Acta Gen Subj 2014; 1850:1497-508. [PMID: 25542301 DOI: 10.1016/j.bbagen.2014.12.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) have emerged in recent years as important regulators of cell division and differentiation. SCOPE OF REVIEW The cellular redox state has a major impact on cell fate and multicellular organism development. However, the exact molecular mechanisms through which ROS manifest their regulation over cellular development are only starting to be understood in plants. ROS levels are constantly monitored and any change in the redox pool is rapidly sensed and responded upon. Different types of ROS cause specific oxidative modifications, providing the basic characteristics of a signaling molecule. Here we provide an overview of ROS sensors and signaling cascades that regulate transcriptional responses in plants to guide cellular differentiation and organ development. MAJOR CONCLUSIONS Although several redox sensors and cascades have been identified, they represent only a first glimpse on the impact that redox signaling has on plant development and growth. GENERAL SIGNIFICANCE We provide an initial evaluation of ROS signaling cascades involved in cell differentiation in plants and identify potential avenues for future studies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Romy Schmidt
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
138
|
del Pozo JC, Ramirez-Parra E. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. PLANT, CELL & ENVIRONMENT 2014; 37:2722-37. [PMID: 24716850 DOI: 10.1111/pce.12344] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/29/2014] [Indexed: 05/21/2023]
Abstract
Whole genome duplication (autopolyploidy) is common in many plant species and often leads to better adaptation to adverse environmental conditions. However, little is known about the physiological and molecular mechanisms underlying these adaptations. Drought is one of the major environmental conditions limiting plant growth and development. Here, we report that, in Arabidopsis thaliana, tetraploidy promotes alterations in cell proliferation and organ size in a tissue-dependent manner. Furthermore, it potentiates plant tolerance to salt and drought stresses and decreases transpiration rate, likely through controlling stomata density and closure, abscisic acid (ABA) signalling and reactive oxygen species (ROS) homeostasis. Our transcriptomic analyses revealed that tetraploidy mainly regulates the expression of genes involved in redox homeostasis and ABA and stress response. Taken together, our data have shed light on the molecular basis associated with stress tolerance in autopolyploid plants.
Collapse
Affiliation(s)
- Juan C del Pozo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, 28223, Spain
| | | |
Collapse
|
139
|
Yin K, Ueda M, Takagi H, Kajihara T, Sugamata Aki S, Nobusawa T, Umeda-Hara C, Umeda M. A dual-color marker system for in vivo visualization of cell cycle progression in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:541-52. [PMID: 25158977 DOI: 10.1111/tpj.12652] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 05/08/2023]
Abstract
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M-specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S-phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy-terminal region is responsible for proteasome-mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S-specific promoter of a histone 3.1-type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M-specific CYCB1-GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time-lapse imaging of cell cycle progression. The resultant dual-color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development.
Collapse
Affiliation(s)
- Ke Yin
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Djabrayan NV, Cruz J, de Miguel C, Franch-Marro X, Casanova J. Specification of Differentiated Adult Progenitors via Inhibition of Endocycle Entry in the Drosophila Trachea. Cell Rep 2014; 9:859-65. [DOI: 10.1016/j.celrep.2014.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/16/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022] Open
|
141
|
Cell cycle regulation of DNA polymerase beta in rotenone-based Parkinson's disease models. PLoS One 2014; 9:e109697. [PMID: 25303312 PMCID: PMC4193828 DOI: 10.1371/journal.pone.0109697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 09/07/2014] [Indexed: 11/19/2022] Open
Abstract
In Parkinson's disease (PD), neuronal cells undergo mitotic catastrophe and endoreduplication prior to cell death; however, the regulatory mechanisms remain to be defined. In this study, we investigated cell cycle regulation of DNA polymerase β (poly β) in rotenone-based dopaminergic cellular and animal models. Incubation with a low concentration (0.25 µM) of rotenone for 1.5 to 7 days resulted in a flattened cell body and decreased DNA replication during S phase, whereas a high concentration (2 µM) of rotenone exposure resulted in enlarged, multi-nucleated cells and converted the mitotic cycle into endoreduplication. Consistently, DNA poly β, which is mainly involved in DNA repair synthesis, was upregulated to a high level following exposure to 2 µM rotenone. The abrogation of DNA poly β by siRNA transfection or dideoxycytidine (DDC) treatment attenuated the rotenone-induced endoreduplication. The cell cycle was reactivated in cyclin D-expressing dopaminergic neurons from the substantia nigra (SN) of rats following stereotactic (ST) infusion of rotenone. Increased DNA poly β expression was observed in the substantia nigra pars compacta (SNc) and the substantia nigra pars reticulate (SNr) of rotenone-treated rats. Collectively, in the in vitro model of rotenone-induced mitotic catastrophe, the overexpression of DNA poly β promotes endoreduplication; in the in vivo model, the upregulation of DNA poly β and cell cycle reentry were also observed in the adult rat substantia nigra. Therefore, the cell cycle regulation of DNA poly β may be involved in the pathological processes of PD, which results in the induction of endoreduplication.
Collapse
|
142
|
Kumpf R, Thorstensen T, Rahman MA, Heyman J, Nenseth HZ, Lammens T, Herrmann U, Swarup R, Veiseth SV, Emberland G, Bennett MJ, De Veylder L, Aalen RB. The ASH1-RELATED3 SET-domain protein controls cell division competence of the meristem and the quiescent center of the Arabidopsis primary root. PLANT PHYSIOLOGY 2014; 166:632-643. [PMID: 25034019 PMCID: PMC4213094 DOI: 10.1104/pp.114.244798] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/07/2014] [Indexed: 11/06/2022]
Abstract
The stem cell niche of the Arabidopsis (Arabidopsis thaliana) primary root apical meristem is composed of the quiescent (or organizing) center surrounded by stem (initial) cells for the different tissues. Initial cells generate a population of transit-amplifying cells that undergo a limited number of cell divisions before elongating and differentiating. It is unclear whether these divisions occur stochastically or in an orderly manner. Using the thymidine analog 5-ethynyl-2'-deoxyuridine to monitor DNA replication of cells of Arabidopsis root meristems, we identified a pattern of two, four, and eight neighboring cells with synchronized replication along the cortical, epidermal, and endodermal cell files, suggested to be daughters, granddaughters, and great-granddaughters of the direct progeny of each stem cell. Markers of mitosis and cytokinesis were not present in the region closest to the transition zone where the cells start to elongate, suggesting that great-granddaughter cells switch synchronously from the mitotic cell cycle to endoreduplication. Mutations in the stem cell niche-expressed ASH1-RELATED3 (ASHR3) gene, encoding a SET-domain protein conferring histone H3 lysine-36 methylation, disrupted this pattern of coordinated DNA replication and cell division and increased the cell division rate in the quiescent center. E2Fa/E2Fb transcription factors controlling the G1-to-S-phase transition regulate ASHR3 expression and bind to the ASHR3 promoter, substantiating a role for ASHR3 in cell division control. The reduced length of the root apical meristem and primary root of the mutant ashr3-1 indicate that synchronization of replication and cell divisions is required for normal root growth and development.
Collapse
Affiliation(s)
- Robert Kumpf
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway (R.K., T.T., M.A.R., H.Z.N., U.H., S.V.V., G.E., R.B.A.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.H., T.L., L.D.V.); andCentre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom (R.S., M.J.B.)
| | - Tage Thorstensen
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway (R.K., T.T., M.A.R., H.Z.N., U.H., S.V.V., G.E., R.B.A.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.H., T.L., L.D.V.); andCentre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom (R.S., M.J.B.)
| | - Mohummad Aminur Rahman
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway (R.K., T.T., M.A.R., H.Z.N., U.H., S.V.V., G.E., R.B.A.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.H., T.L., L.D.V.); andCentre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom (R.S., M.J.B.)
| | - Jefri Heyman
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway (R.K., T.T., M.A.R., H.Z.N., U.H., S.V.V., G.E., R.B.A.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.H., T.L., L.D.V.); andCentre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom (R.S., M.J.B.)
| | - H Zeynep Nenseth
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway (R.K., T.T., M.A.R., H.Z.N., U.H., S.V.V., G.E., R.B.A.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.H., T.L., L.D.V.); andCentre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom (R.S., M.J.B.)
| | - Tim Lammens
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway (R.K., T.T., M.A.R., H.Z.N., U.H., S.V.V., G.E., R.B.A.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.H., T.L., L.D.V.); andCentre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom (R.S., M.J.B.)
| | - Ullrich Herrmann
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway (R.K., T.T., M.A.R., H.Z.N., U.H., S.V.V., G.E., R.B.A.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.H., T.L., L.D.V.); andCentre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom (R.S., M.J.B.)
| | - Ranjan Swarup
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway (R.K., T.T., M.A.R., H.Z.N., U.H., S.V.V., G.E., R.B.A.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.H., T.L., L.D.V.); andCentre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom (R.S., M.J.B.)
| | - Silje Veie Veiseth
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway (R.K., T.T., M.A.R., H.Z.N., U.H., S.V.V., G.E., R.B.A.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.H., T.L., L.D.V.); andCentre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom (R.S., M.J.B.)
| | - Gitika Emberland
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway (R.K., T.T., M.A.R., H.Z.N., U.H., S.V.V., G.E., R.B.A.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.H., T.L., L.D.V.); andCentre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom (R.S., M.J.B.)
| | - Malcolm J Bennett
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway (R.K., T.T., M.A.R., H.Z.N., U.H., S.V.V., G.E., R.B.A.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.H., T.L., L.D.V.); andCentre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom (R.S., M.J.B.)
| | - Lieven De Veylder
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway (R.K., T.T., M.A.R., H.Z.N., U.H., S.V.V., G.E., R.B.A.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.H., T.L., L.D.V.); andCentre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom (R.S., M.J.B.)
| | - Reidunn B Aalen
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway (R.K., T.T., M.A.R., H.Z.N., U.H., S.V.V., G.E., R.B.A.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie and Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.H., T.L., L.D.V.); andCentre for Plant Integrative Biology, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom (R.S., M.J.B.)
| |
Collapse
|
143
|
Tulin F, Cross FR. A microbial avenue to cell cycle control in the plant superkingdom. THE PLANT CELL 2014; 26:4019-38. [PMID: 25336509 PMCID: PMC4247570 DOI: 10.1105/tpc.114.129312] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/11/2014] [Accepted: 09/25/2014] [Indexed: 05/22/2023]
Abstract
Research in yeast and animals has resulted in a well-supported consensus model for eukaryotic cell cycle control. The fit of this model to early diverging eukaryotes, such as the plant kingdom, remains unclear. Using the green alga Chlamydomonas reinhardtii, we developed an efficient pipeline, incorporating robotics, semiautomated image analysis, and deep sequencing, to molecularly identify >50 genes, mostly conserved in higher plants, specifically required for cell division but not cell growth. Mutated genes include the cyclin-dependent kinases CDKA (resembling yeast and animal Cdk1) and the plant-specific CDKB. The Chlamydomonas cell cycle consists of a long G1 during which cells can grow >10-fold, followed by multiple rapid cycles of DNA replication and segregation. CDKA and CDKB execute nonoverlapping functions: CDKA promotes transition between G1 and entry into the division cycle, while CDKB is essential specifically for spindle formation and nuclear division, but not for DNA replication, once CDKA-dependent initiation has occurred. The anaphase-promoting complex is required for similar steps in the Chlamydomonas cell cycle as in Opisthokonts; however, the spindle assembly checkpoint, which targets the APC in Opisthokonts, appears severely attenuated in Chlamydomonas, based on analysis of mutants affecting microtubule function. This approach allows unbiased integration of the consensus cell cycle control model with innovations specific to the plant lineage.
Collapse
Affiliation(s)
- Frej Tulin
- The Rockefeller University, New York, New York 10065
| | | |
Collapse
|
144
|
Abstract
SIGNIFICANCE We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. RECENT ADVANCES Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. CRITICAL ISSUES The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. FUTURE DIRECTIONS The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context.
Collapse
Affiliation(s)
- Michael J Considine
- 1 School of Plant Biology and Institute of Agriculture, University of Western Australia , Crawley, Australia
| | | |
Collapse
|
145
|
Hudik E, Yoshioka Y, Domenichini S, Bourge M, Soubigout-Taconnat L, Mazubert C, Yi D, Bujaldon S, Hayashi H, De Veylder L, Bergounioux C, Benhamed M, Raynaud C. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant. PLANT PHYSIOLOGY 2014; 166:152-67. [PMID: 25037213 PMCID: PMC4149703 DOI: 10.1104/pp.114.242628] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.
Collapse
Affiliation(s)
- Elodie Hudik
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Yasushi Yoshioka
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Séverine Domenichini
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Mickaël Bourge
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Ludivine Soubigout-Taconnat
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Christelle Mazubert
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Dalong Yi
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Sandrine Bujaldon
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Hiroyuki Hayashi
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Lieven De Veylder
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Moussa Benhamed
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Cécile Raynaud
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| |
Collapse
|
146
|
Otero S, Desvoyes B, Gutierrez C. Histone H3 dynamics in plant cell cycle and development. Cytogenet Genome Res 2014; 143:114-24. [PMID: 25060842 DOI: 10.1159/000365264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chromatin is a macromolecular complex where DNA associates with histone proteins and a variety of non-histone proteins. Among the 4 histone types present in nucleosomes, histone H3 is encoded by a large number of genes in most eukaryotic species and is the histone that contains the largest variety of potential post-translational modifications in the N-terminal amino acid residues. In addition to centromeric histone H3, 2 major types of histone H3 exist, namely the canonical H3.1 and the variant H3.3. In this article, we review the most recent observations on the distinctive features of plant H3 proteins in terms of their expression and dynamics during the cell cycle and at various developmental stages. We also include a discussion on the histone H3 chaperones that actively participate in H3 deposition, in particular CAF-1, HIRA and ASF1, and on the putative plant homologs of human ATRX and DEK chaperones. Accumulating evidence confirms that the balanced deposition of H3.1 and H3.3 is of primary relevance for cell differentiation during plant organogenesis.
Collapse
Affiliation(s)
- Sofía Otero
- Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | | |
Collapse
|
147
|
Schubert V. RNA polymerase II forms transcription networks in rye and Arabidopsis nuclei and its amount increases with endopolyploidy. Cytogenet Genome Res 2014; 143:69-77. [PMID: 25060696 DOI: 10.1159/000365233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA polymerase II (RNAPII) is responsible for the transcription of most eukaryotic genes. In mammalian nuclei, RNAPII is mainly localized in relatively few distinct transcription factories. In this study--applying super-resolution microscopy--it is shown that in plants, inactive (non-phosphorylated) and active (phosphorylated) RNAPII modifications compose distinct 'transcription networks' within the euchromatin. These reticulate structures sometimes attach to each other, but they are absent from heterochromatin and nucleoli. The global RNAPII distribution within nuclei is not influenced by interphase chromatin organization such as Rabl (rye) versus non-Rabl (Arabidopsis thaliana) orientation. Replication of sister chromatids without cell division causes endopolyploidy, a phenomenon widespread in plants and animals. Endopolyploidy raises the number of gene copies per nucleus. Here, it is shown that the amounts of active and inactive RNAPII enzymes in differentiated 2-32C leaf nuclei of A. thaliana proportionally increase with rising endopolyploidy. Thus, increasing the transcriptional activity of cells and tissues seems to be an important function of endopolyploidy.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
148
|
Blondel C, Melesan M, San Miguel A, Veyrenc S, Meresse P, Pezet M, Reynaud S, Raveton M. Cell cycle disruption and apoptosis as mechanisms of toxicity of organochlorines in Zea mays roots. JOURNAL OF HAZARDOUS MATERIALS 2014; 276:312-322. [PMID: 24892778 DOI: 10.1016/j.jhazmat.2014.05.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Organochlorine pesticides (OCPs) are widespread environmental pollutants; two of them are highly persistent: lindane (γHCH) and chlordecone (CLD). Maize plants cope with high levels of OCP-environmental pollution, however little is known about cellular mechanisms involved in plant response to such OCP-exposures. This research was aimed at understanding the physiological pathways involved in the plant response to OCPs in function of a gradient of exposure. Here we provide the evidences that OCPs might disrupt root cell cycle leading to a rise in the level of polyploidy possibly through mechanisms of endoreduplication. In addition, low-to-high doses of γHCH were able to induce an accumulation of H2O2 without modifying NO contents, while CLD modulated neither H2O2 nor NO production. [Ca(2+)]cytosolic, the caspase-3-like activity as well as TUNEL-positive nuclei and IP-positive cells increased after exposure to low-to-high doses of OCPs. These data strongly suggest a cascade mechanism of the OCP-induced toxic effect, notably with an increase in [Ca(2+)]cytosolic and caspase-3-like activity, suggesting the activation of programmed cell death pathway.
Collapse
Affiliation(s)
- Claire Blondel
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Marc Melesan
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Angélique San Miguel
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Sylvie Veyrenc
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Patrick Meresse
- Université de Grenoble - Alpes, France; Centre Universitaire de Biologie Expérimentale, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France
| | - Mylène Pezet
- Centre de Recherche Inserm/UJF U823, Institut Albert Bonniot, BP 170, 38042 Grenoble Cedex 09, France
| | - Stephane Reynaud
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France
| | - Muriel Raveton
- Laboratoire d'Ecologie Alpine, UMR CNRS n°5553, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 09, France; Université de Grenoble - Alpes, France.
| |
Collapse
|
149
|
Barrera Zambrano VA, Lawson T, Olmos E, Fernández-García N, Borland AM. Leaf anatomical traits which accommodate the facultative engagement of crassulacean acid metabolism in tropical trees of the genus Clusia. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3513-3523. [PMID: 24510939 DOI: 10.1093/jxb/eru022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Succulence and leaf thickness are important anatomical traits in CAM plants, resulting from the presence of large vacuoles to store organic acids accumulated overnight. A higher degree of succulence can result in a reduction in intercellular air space which constrains internal conductance to CO2. Thus, succulence presents a trade-off between the optimal anatomy for CAM and the internal structure ideal for direct C3 photosynthesis. This study examined how plasticity for the reversible engagement of CAM in the genus Clusia could be accommodated by leaf anatomical traits that could facilitate high nocturnal PEPC activity without compromising the direct day-time uptake of CO2 via Rubisco. Nine species of Clusia ranging from constitutive C3 through C3/CAM intermediates to constitutive CAM were compared in terms of leaf gas exchange, succulence, specific leaf area, and a range of leaf anatomical traits (% intercellular air space (IAS), length of mesophyll surface exposed to IAS per unit area, cell size, stomatal density/size). Relative abundances of PEPC and Rubisco proteins in different leaf tissues of a C3 and a CAM-performing species of Clusia were determined using immunogold labelling. The results indicate that the relatively well-aerated spongy mesophyll of Clusia helps to optimize direct C3-mediated CO2 fixation, whilst enlarged palisade cells accommodate the potential for C4 carboxylation and nocturnal storage of organic acids. The findings provide insight on the optimal leaf anatomy that could accommodate the bioengineering of inducible CAM into C3 crops as a means of improving water use efficiency without incurring detrimental consequences for direct C3-mediated photosynthesis.
Collapse
Affiliation(s)
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Enrique Olmos
- CEBAS-CSIC Campus Universitario de Espinardo, Department of Abiotic Stress and Plant Pathology, 30100 Murcia, Spain
| | - Nieves Fernández-García
- CEBAS-CSIC Campus Universitario de Espinardo, Department of Abiotic Stress and Plant Pathology, 30100 Murcia, Spain
| | - Anne M Borland
- School of Biology, Newcastle University, Newcastle upon Tyne NE17RU, UK Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6407, USA
| |
Collapse
|
150
|
Aubry S, Kneřová J, Hibberd JM. Endoreduplication is not involved in bundle-sheath formation in the C4 species Cleome gynandra. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3557-66. [PMID: 24220652 PMCID: PMC4085951 DOI: 10.1093/jxb/ert350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
There is currently significant interest in engineering the two-celled C4 photosynthesis pathway into crops such as rice in order to increase yield. This will require alterations to the biochemistry of photosynthesis in both mesophyll (M) and bundle-sheath (BS) cells, but also alterations to leaf anatomy. For example, the BS of C4 species is enlarged compared with that in C3 species. Because cell and nucleus size are often correlated, this study investigated whether nuclear endoreduplication is associated with increased differentiation and expansion of BS cells. Nuclei in the BS of C4 Cleome gynandra were tagged with green fluorescent protein. Confocal laser-scanning microscopy and flow cytometry of isolated nuclei were used to quantify size and DNA content in BS cells. The results showed a significant endoreduplication in BS cells of C. gynandra but not in additional C4 lineages from both the monocotyledonous and dicotyledenous plants. Furthermore, in the C3 species Arabidopsis thaliana, BS cells undergo endoreduplication. Due to this significant endoreduplication in the small BS cells of C3 A. thaliana, it was concluded that endoreduplication of BS nuclei in C4 plants is not linked to expansion and differentiation of BS cells, and therefore that alternative strategies to increase this compartment need to be sought in order to engineer C4 traits into C3 crops such as rice.
Collapse
Affiliation(s)
- Sylvain Aubry
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Jana Kneřová
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|