101
|
Lambert PJ, Shahrier AZ, Whitman AG, Dyson OF, Reber AJ, McCubrey JA, Akula SM. Targeting the PI3K and MAPK pathways to treat Kaposi's-sarcoma-associated herpes virus infection and pathogenesis. Expert Opin Ther Targets 2007; 11:589-99. [PMID: 17465719 DOI: 10.1517/14728222.11.5.589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cells require the ability to appropriately respond to signals in their extracellular environment. To initiate, inhibit and control these processes, the cell has developed a complex network of signaling cascades. The phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways regulate several responses including mitosis, apoptosis, motility, proliferation, differentiation and many others. It is not surprising, therefore, that many viruses target the PI3K and MAPK pathways as a means to manipulate cellular function. Recently, Kaposi's sarcoma-associated herpes virus (KSHV) has been added to the list. KSHV manipulates the PI3K and MAPK pathways to control such divergent processes as cell survival, cellular migration, immune responses, and to control its own reactivation and lytic replication. Manipulation of the PI3K and MAPK pathways also plays a role in malignant transformation. Here, the authors review the potential to target the PI3K and MAPK signaling pathways to inhibit KSHV infection and pathogenesis.
Collapse
Affiliation(s)
- Phelps J Lambert
- Brody School of Medicine at East Carolina University, Department of Microbiology & Immunology, Greenville, NC 27834, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Schulte G, Levy FO. Novel aspects of G-protein-coupled receptor signalling--different ways to achieve specificity. Acta Physiol (Oxf) 2007; 190:33-8. [PMID: 17428230 DOI: 10.1111/j.1365-201x.2007.01696.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Our understanding of signal transduction via G-protein-coupled receptors (GPCR) has developed dramatically during the last decades. The initial idea of linear signalling pathways transferring information from the cell membrane to the nucleus has evolved into a complicated network of signalling pathways offering the possibility of crosstalk, fine tuning and specific regulation at multiple levels. During the recent meeting on GPCRs at the Karolinska Institutet, Stockholm novel aspects of GPCR signalling were presented and discussed. Here, we will discuss several possibilities for GPCRs to achieve specificity in signal transduction, such as the phenomenon of biased agonism, receptor multimerization, the role of co-receptors, the regulation of heterotrimeric G proteins as well as multiple G(s)-dependent pathways to extracellular single-regulated protein kinases.
Collapse
Affiliation(s)
- G Schulte
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
103
|
Chesik D, Glazenburg L, De Keyser J, Wilczak N. Enhanced proliferation of astrocytes from beta(2)-adrenergic receptor knockout mice is influenced by the IGF system. J Neurochem 2007; 100:1555-64. [PMID: 17348863 DOI: 10.1111/j.1471-4159.2006.04289.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, we investigated the IGF system in neonatal astrocytes derived from mice with a targeted disruption of the beta-2 adrenergic receptor (beta(2)AR). beta(2)AR knockout astrocytes demonstrated higher proliferation rates and increased expression of the astrogliotic marker GFAP, as compared with wild-type cells. beta(2)AR deletion also regulated molecules of the IGF system. Although IGF-1 levels remained unaltered, IGF-2 and type 1 IGF receptor expression was increased in beta(2)AR knockout cells. Furthermore, conditioned medium from knockout astrocytes contained lower levels of IGF binding protein-2 and -4. Our data suggest a deficit of beta(2)AR on astrocytes, as previously reported in multiple sclerosis, may have implications on proliferative status of astrocytes, a feature that might be attributed to regulation of IGF mitogenic actions.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/chemistry
- Astrocytes/drug effects
- Astrocytes/physiology
- Cell Count
- Cell Proliferation/drug effects
- Cells, Cultured
- Cerebral Cortex/cytology
- Culture Media, Conditioned/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression Regulation/genetics
- Insulin-Like Growth Factor Binding Protein 1/metabolism
- Insulin-Like Growth Factor Binding Protein 4/metabolism
- Insulin-Like Growth Factor Binding Protein 4/pharmacology
- Mice
- Mice, Knockout
- RNA, Messenger/biosynthesis
- Receptor, IGF Type 1/metabolism
- Receptor, IGF Type 2/metabolism
- Receptors, Adrenergic, beta-2/deficiency
- Reverse Transcriptase Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- Daniel Chesik
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands.
| | | | | | | |
Collapse
|
104
|
Zhou XB, Lutz S, Steffens F, Korth M, Wieland T. Oxytocin Receptors Differentially Signal via Gq and Gi Proteins in Pregnant and Nonpregnant Rat Uterine Myocytes: Implications for Myometrial Contractility. Mol Endocrinol 2007; 21:740-52. [PMID: 17170070 DOI: 10.1210/me.2006-0220] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractOxytocin (OT) receptors are important regulators of myometrial contractility. By using the activity of large conductance Ca2+-activated K+ (BKCa) channels as readout, we analyzed OT signaling in cells from nonpregnant (NPM) and pregnant (PM) rat myometrium in detail. In nystatin-perforated whole-cell patches from NPM cells, which leave the intracellular integrity intact, OT transiently increased BKCa-mediated outward currents (Iout). This OT-evoked Iout was caused by the Ca2+ transients in response to the Gq/11-mediated activation of phospholipase C and was inhibited by activation of protein kinase A (PKA). In an open-access whole-cell patch (OAP), the OT-induced transient rise in Iout was disrupted whereas the regulation of BKCa by the cAMP/PKA cascade remained intact. OT counteracted the isoprenaline, i.e. the β-adrenoceptor/Gs-mediated effect in NPM cells measured in OAP. In contrast, OT further enhanced the β-adrenoceptor/Gs-mediated effect on BKCa activity in PM cells. All OT effects in the OAP were mediated by pertussis toxin-sensitive Gi proteins and PKA. By quantitative real-time PCR and overexpression of the recombinant protein, we demonstrate that an up-regulation of the Gβγ-stimulated adenylyl cyclase II during pregnancy is most likely responsible for this switch. By studying the OT-evoked Iout in nystatin-perforated whole-cell patches of PM cells, we further detected that the OT receptor/Giβγ-mediated coactivation of adenylyl cyclase II enhanced the β-adrenoceptor/Gs-induced suppression of the OT-evoked Ca2+ transients and thus diminishes and self-limits OT-induced contractility. The differential regulation of the PKA-mediated suppression of OT-evoked Ca2+ transients and BKCa activity likely supports uterine quiescence during pregnancy.
Collapse
Affiliation(s)
- Xiao-Bo Zhou
- Institut für Pharmakologie für Pharmazeuten, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
105
|
Xu HM, Wei W, Jia XY, Chang Y, Zhang L. Effects and mechanisms of total glucosides of paeony on adjuvant arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2007; 109:442-8. [PMID: 17000070 DOI: 10.1016/j.jep.2006.08.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 06/24/2006] [Accepted: 08/21/2006] [Indexed: 05/12/2023]
Abstract
Total glucosides of paeony (TGP) is the major active constituent of Paeonia lactiflora Pall. The present study was carried out to investigate the effects of TGP on adjuvant arthritis (AA) of rat and its possible mechanisms. AA was induced by metatarsal footpad injection with complete Freund's adjuvant in male Sprague-Dawley rats. The secondary inflammatory reaction was evaluated by hind paw swelling, polyarthritis index. Activity of interleukin-1 (IL-1) was detected by Con A-induced thymocytes proliferation of C57BL/6J mice assay. The tumor necrosis factor alpha (TNFalpha), prostaglandin E(2) (PGE(2)) and cyclic adenosine monophosphate (cAMP) levels in synoviocytes were assessed by radioimmunoassay (RIA). PGE(2) receptors, EP2 and EP4, were analyzed by Western blot analysis. The level of IL-6 was measured by ELISA. Intragastric administration of TGP (50,100 mg/kg) significantly decreased secondary inflammatory reaction in AA rats. Suppressing the activity of IL-1 and TNFalpha, decreased PGE(2) and increased cAMP levels in synoviocytes of AA rats were observed after administration of TGP. In the immunoblot analysis, TGP could up-regulate the expression of EP2 and EP4. These results showed TGP significantly inhibited the progression of AA, and the inhibitory effects might be associated with its ability to mediate the level of cAMP and inhibit the production of IL-1, TNFalpha, IL-6 and PGE(2) from activated synoviocytes.
Collapse
Affiliation(s)
- Hong-Mei Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology in Anhui Province, Hefei 230032, Anhui Province, China
| | | | | | | | | |
Collapse
|
106
|
Carie AE, Sebti SM. A chemical biology approach identifies a beta-2 adrenergic receptor agonist that causes human tumor regression by blocking the Raf-1/Mek-1/Erk1/2 pathway. Oncogene 2007; 26:3777-88. [PMID: 17260025 DOI: 10.1038/sj.onc.1210172] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A chemical biology approach identifies a beta 2 adrenergic receptor (beta2AR) agonist ARA-211 (Pirbuterol), which causes apoptosis and human tumor regression in animal models. beta2AR stimulation of cAMP formation and protein kinase A (PKA) activation leads to Raf-1 (but not B-Raf) kinase inactivation, inhibition of Mek-1 kinase and decreased phospho-extracellular signal-regulated kinase (Erk)1/2 levels. ARA-211 inhibition of the Raf/Mek/Erk1/2 pathway is mediated by PKA and not exchange protein activated by cAMP (EPAC). ARA-211 is selective and suppresses P-Erk1/2 but not P-JNK, P-p38, P-Akt or P-STAT3 levels. beta2AR stimulation results in inhibition of anchorage-dependent and -independent growth, induction of apoptosis in vitro and tumor regression in vivo. beta2AR antagonists and constitutively active Mek-1 rescue from the effects of ARA-211, demonstrating that beta2AR stimulation and Mek kinase inhibition are required for ARA-211 antitumor activity. Furthermore, suppression of growth occurs only in human tumors where ARA-211 induces cAMP formation and decreases P-Erk1/2 levels. Thus, beta2AR stimulation results in significant suppression of malignant transformation in cancers where it blocks the Raf-1/Mek-1/Erk1/2 pathway by a cAMP-dependent activation of PKA but not EPAC.
Collapse
Affiliation(s)
- A E Carie
- Drug Discovery Program, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL, USA
| | | |
Collapse
|
107
|
Stricker SA, Smythe TL. Differing mechanisms of cAMP- versus seawater-induced oocyte maturation in marine nemertean worms I. The roles of serine/threonine kinases and phosphatases. Mol Reprod Dev 2006; 73:1578-90. [PMID: 16902952 DOI: 10.1002/mrd.20597] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Unlike in most animals, oocytes of marine nemertean worms initiate maturation (=germinal vesicle breakdown, GVBD) following an increase, rather than a decrease, in intraoocytic cAMP. To analyze how serine/threonine (Ser/Thr) kinase cascades involving mitogen-activated protein kinase (MAPK), maturation-promoting factor (MPF), cAMP-dependent protein kinase (PKA), and phosphatidylinositol 3-kinase (PI3K) regulate nemertean GVBD, oocytes of Cerebratulus sp. were treated with pharmacological modulators and stimulated with cAMP-elevating drugs or seawater (SW) alone. Both cAMP elevators and SW triggered GVBD while activating MAPK, its target p90Rsk, and MPF. Similarly, neither cAMP- nor SW-induced GVBD was affected by several Ser/Thr phosphatase inhibitors, and both stimuli apparently accelerated GVBD via a MAPK-independent, PI3K-dependent mechanism. However, inhibitors of Raf-1, a kinase that activates MAPK kinase, blocked GVBD and MAPK activation during SW-, but not cAMP-induced maturation. In addition, MPF blockers more effectively reduced GVBD and MAPK activity in SW versus in cAMP-elevating treatments. Moreover, the two maturation-inducing stimuli yielded disparate patterns of PKA-related MAPK activations and phosphorylations of putative PKA substrates. Collectively, such findings suggest that in maturing oocytes of Cerebratulus sp., Ser/Thr kinase cascades differ during cAMP- versus SW-induced GVBD in several ways, including MAPK activation modes, MPF-feedback loops, and PKA-related signaling pathways. Additional differences in cAMP- versus SW-induced oocyte maturation are also described in the accompanying study that deals with the roles of tyrosine kinase signaling during GVBD.
Collapse
Affiliation(s)
- Stephen A Stricker
- Department of Biology, University of New Mexcio, Albuquerque, 87131, USA.
| | | |
Collapse
|
108
|
Liu X, Sun SQ, Hassid A, Ostrom RS. cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and Smad signaling in cardiac fibroblasts. Mol Pharmacol 2006; 70:1992-2003. [PMID: 16959941 DOI: 10.1124/mol.106.028951] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Cytokines such as transforming growth factor-beta (TGF-beta) play a fundamental role in the development of tissue fibrosis by stimulating matrix deposition and other profibrotic responses, but less is known about pathways that might inhibit fibrosis. Increased cAMP formation inhibits myofibroblast differentiation and collagen production by cardiac fibroblasts, but the mechanism of this inhibition is not known. We sought to characterize the signaling pathways by which cAMP-elevating agents alter collagen expression and myofibroblast differentiation. Treatment with 10 microM forskolin or isoproterenol increased cAMP production and cAMP response element binding protein (CREB) phosphorylation in cardiac fibroblasts and inhibited serum- or TGF-beta-stimulated collagen synthesis by 37% or more. These same cAMP-elevating agents blunted TGF-beta-stimulated expression of collagen I, collagen III, and alpha-smooth muscle actin. Forskolin or isoproterenol treatment blocked the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) induced by TGF-beta despite the fact that these cAMP-elevating agents stimulated ERK1/2 activation on their own. cAMP-elevating agents also attenuated the activation of c-Jun NH(2)-terminal kinase and reduced binding of the transcriptional coactivator CREB-binding protein 1 to transcriptional complexes containing Smad2, Smad3, and Smad4. Pharmacological inhibition of ERK completely blocked TGF-beta-stimulated collagen gene expression, but expression of an active mutant of MEK was additive with TGF-beta treatment. Thus, cAMP-elevating agents inhibit the profibrotic effects of TGF-beta in cardiac fibroblasts largely through inhibiting ERK1/2 phosphorylation but also by reducing Smad-mediated recruitment of transcriptional coactivators.
Collapse
Affiliation(s)
- Xiaoqiu Liu
- Department of Pharmacology and the Vascular Biology Center of Excellence, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
109
|
Henson ES, Gibson SB. Surviving cell death through epidermal growth factor (EGF) signal transduction pathways: Implications for cancer therapy. Cell Signal 2006; 18:2089-97. [PMID: 16815674 DOI: 10.1016/j.cellsig.2006.05.015] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 04/04/2006] [Accepted: 05/09/2006] [Indexed: 01/15/2023]
Abstract
There is a balance between cell death and survival in living organisms. The ability of cells to sense their environment and decide to survive or die is dependent largely upon growth factors. Epidermal growth factor (EGF) is a key growth factor regulating cell survival. Through its binding to cell surface receptors, EGF activates an extensive network of signal transduction pathways that include activation of the PI3K/AKT, RAS/ERK and JAK/STAT pathways. These pathways predominantly lead to activation or inhibition of transcription factors that regulate expression of both pro- and anti-apoptotic proteins effectively blocking the apoptotic pathway. In cancer, EGF signaling pathways are often dysfunctional and targeted therapies that block EGF signaling have been successful in treating cancers. In this review, we will discuss the EGF survival signaling network, how it cross-talks with the apoptotic signaling pathways and the therapeutic drugs targeting the EGF survival pathway used to treat cancers.
Collapse
Affiliation(s)
- Elizabeth S Henson
- Manitoba Institute of Cell Biology, CancerCare Manitoba, University of Manitoba, 675 McDermot Ave., Winnipeg, MB, Canada R3E 0V9
| | | |
Collapse
|
110
|
Kim SK, Novak RF. The role of intracellular signaling in insulin-mediated regulation of drug metabolizing enzyme gene and protein expression. Pharmacol Ther 2006; 113:88-120. [PMID: 17097148 PMCID: PMC1828071 DOI: 10.1016/j.pharmthera.2006.07.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/18/2006] [Indexed: 12/28/2022]
Abstract
Endogenous factors, including hormones, growth factors and cytokines, play an important role in the regulation of hepatic drug metabolizing enzyme expression in both physiological and pathophysiological conditions. Diabetes, fasting, obesity, protein-calorie malnutrition and long-term alcohol consumption produce changes in hepatic drug metabolizing enzyme gene and protein expression. This difference in expression alters the metabolism of xenobiotics, including procarcinogens, carcinogens, toxicants and therapeutic agents, potentially impacting the efficacy and safety of therapeutic agents, and/or resulting in drug-drug interactions. Although the mechanisms by which xenobiotics regulate drug metabolizing enzymes have been studied intensively, less is known regarding the cellular signaling pathways and components which regulate drug metabolizing enzyme gene and protein expression in response to hormones and cytokines. Recent findings, however, have revealed that several cellular signaling pathways are involved in hormone- and growth factor-mediated regulation of drug metabolizing enzymes. Our laboratory has reported that insulin and growth factors regulate drug metabolizing enzyme gene and protein expression, including cytochromes P450 (CYP), glutathione S-transferases (GST) and microsomal epoxide hydrolase (mEH), through receptors which are members of the large receptor tyrosine kinase (RTK) family, and by downstream effectors such as phosphatidylinositol 3-kinase, mitogen activated protein kinase (MAPK), Akt/protein kinase B (PKB), mammalian target of rapamycin (mTOR), and the p70 ribosomal protein S6 kinase (p70S6 kinase). Here, we review current knowledge of the signaling pathways implicated in regulation of drug metabolizing enzyme gene and protein expression in response to insulin and growth factors, with the goal of increasing our understanding of how disease affects these signaling pathways, components, and ultimately gene expression and translational control.
Collapse
Affiliation(s)
- Sang K. Kim
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Room 4000, Detroit, MI 48201, USA
- College of Pharmacy and Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 305-764, South Korea
| | - Raymond F. Novak
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Room 4000, Detroit, MI 48201, USA
| |
Collapse
|
111
|
Wang T, Kondo C, Yamashita K, Oguchi M, Iwata K, Noguchi T, Hayakawa T. Concentration-dependent stimulation by tissue inhibitor of metalloproteinases(TIMP)-2 of two signaling pathways in human osteosarcoma (MG-63) Cells. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
112
|
Askari MDF, Tsao MS, Cekanova M, Schuller HM. Ethanol and the tobacco-specific carcinogen, NNK, contribute to signaling in immortalized human pancreatic duct epithelial cells. Pancreas 2006; 33:53-62. [PMID: 16804413 DOI: 10.1097/01.mpa.0000226883.55828.e9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Smoking is a well-documented risk factor for pancreatic cancer. The tobacco-specific nitrosamine, NNK (4-[methylnitrosamino]-1-[3-pyridyl]-1-butanone), significantly induces pancreatic ductal adenocarcinomas in laboratory rodents. Recent observations suggest that ethanol enhances the tumorigenic effects of smoking. Ethanol consumption is associated with the development of chronic pancreatitis, also considered a predisposing factor for pancreatic ductal adenocarcinoma. Because the precise role of ethanol in pancreatic carcinogenesis is not known, this study sought to elucidate the cumulative effects of ethanol and NNK on particular signal transduction pathways that might play a role in cell proliferation in immortalized human pancreatic duct epithelial cells. METHODS The HPDE6-c7 cells are developed from pancreatic duct epithelial cells, which are the putative cells of origin of pancreatic ductal adenocarcinoma. Cell proliferation assays, Western blot, and cyclic adenosine monophosphate assays were used to demonstrate the effects of ethanol and NNK treatments on these cells. RESULTS Ethanol cotreatments enhanced the NNK-induced proliferation of these cells. This response was inhibited by the adenylyl cyclase, protein kinase A, mitogen-activated protein kinase (p42/p44), and epidermal growth factor receptor-specific tyrosine kinase inhibitors. Cotreatments of NNK and ethanol also increased cyclic adenosine monophosphate accumulation, cAMP response element-binding family of proteins and mitogen-activated protein kinase phosphorylation, and protein kinase A activation. CONCLUSIONS These findings suggest a potential role for these pathways contributing to the development of smoking- and alcohol-related pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Minoo D F Askari
- Experimental Oncology Laboratory, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
113
|
Wang Y, Maciejewski BS, Lee N, Silbert O, McKnight NL, Frangos JA, Sanchez-Esteban J. Strain-induced fetal type II epithelial cell differentiation is mediated via cAMP-PKA-dependent signaling pathway. Am J Physiol Lung Cell Mol Physiol 2006; 291:L820-7. [PMID: 16751225 DOI: 10.1152/ajplung.00068.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The signaling pathways by which mechanical forces modulate fetal lung development remain largely unknown. In the present study, we tested the hypothesis that strain-induced fetal type II cell differentiation is mediated via the cAMP signaling pathway. Freshly isolated E19 fetal type II epithelial cells were cultured on collagen-coated silastic membranes and exposed to mechanical strain for varying intervals, to simulate mechanical forces during lung development. Unstretched samples were used as controls. Mechanical strain activated heterotrimeric G-protein alpha(s) subunit, cAMP, and the transcription factor cAMP response element binding protein (CREB). Incubation of E19 cells with the PKA inhibitor H-89 significantly decreased strain-induced CREB phosphorylation. Moreover, adenylate cyclase 5 and CREB genes were also mechanically induced. In contrast, components of the PKA-independent (Epac) pathway, including Rap-1 or B-Raf, were not phosphorylated by strain. The addition of forskolin or dibutyryl cAMP to unstretched E19 monolayers markedly upregulated expression of the type II cell differentiation marker surfactant protein C, whereas the Epac agonist 8-pCPT-2'-O-Me-cAMP had no effect. Furthermore, incubation of E19 cells with the PKA inhibitor Rp-2'-O-monobutyryladenosine 3',5'-cyclic monophosphorothioate or transient transfection with plasmid DNA containing a PKA inhibitor expression vector significantly decreased strain-induced surfactant protein C mRNA expression. In conclusion, these studies indicate that the cAMP-PKA-dependent signaling pathway is activated by force in fetal type II cells and participates in strain-induced fetal type II cell differentiation.
Collapse
Affiliation(s)
- Yulian Wang
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Brown Medical School, 101 Dudley St., Providence, RI 02905, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Jafri F, El-Shewy HM, Lee MH, Kelly M, Luttrell DK, Luttrell LM. Constitutive ERK1/2 activation by a chimeric neurokinin 1 receptor-beta-arrestin1 fusion protein. Probing the composition and function of the G protein-coupled receptor "signalsome". J Biol Chem 2006; 281:19346-57. [PMID: 16670094 DOI: 10.1074/jbc.m512643200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-arrestins, a small family of G protein-coupled receptor (GPCR)-binding proteins involved in receptor desensitization, have been shown to bind extracellular signal-regulated kinases 1 and 2 (ERK1/2) and function as scaffolds for GPCR-stimulated ERK1/2 activation. To better understand the mechanism of beta-arrestin-mediated ERK1/2 activation, we compared ERK1/2 activation by the wild-type neurokinin 1 (NK1) receptor with a chimeric NK1 receptor having beta-arrestin1 fused to the receptor C terminus (NK1-betaArr1). The NK1 receptor couples to both G(s) and G(q/11), resides on the plasma membrane, and mediates rapid ERK1/2 activation and nuclear translocation in response to neurokinin A. In contrast, NK1-betaArr1 is a G protein-uncoupled "constitutively desensitized" receptor that resides almost entirely in an intracellular endosomal compartment. Despite its inability to respond to neurokinin A, we found that NK1-betaArr1 expression caused robust constitutive activation of cytosolic ERK1/2 and that endogenous Raf, MEK1/2, and ERK1/2 coprecipitated in a complex with NK1-betaArr1. While agonist-dependent ERK1/2 activation by the NK1 receptor was independent of protein kinase A (PKA) or PKC activity, NK1-betaArr1-mediated ERK1/2 activation was completely inhibited when basal PKA and PKC activity were blocked. In addition, the rate of ERK1/2 dephosphorylation was slowed in NK1-betaArr1-expressing cells, suggesting that beta-arrestin-bound ERK1/2 is protected from mitogen-activated protein kinase phosphatase activity. These data suggest that beta-arrestin binding to GPCRs nucleates the formation of a stable "signalsome" that functions as a passive scaffold for the ERK1/2 cascade while confining ERK1/2 activity to an extranuclear compartment.
Collapse
Affiliation(s)
- Farahdiba Jafri
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
115
|
Abstract
Elevated levels of NO produced within the central nervous system (CNS) are associated with the pathogenesis of neuroinflammatory and neurodegenerative human diseases such as multiple sclerosis, HIV dementia, brain ischemia, trauma, Parkinson's disease, and Alzheimer's disease. Resident glial cells in the CNS (astroglia and microglia) express inducible nitric oxide synthase (iNOS) and produce high levels of NO in response to a wide variety of proinflammatory and degenerative stimuli. Although pathways resulting in the expression of iNOS may vary in two different glial cells of different species, the intracellular signaling events required for the expression of iNOS in these cells are slowly becoming clear. Various signaling cascades converge to activate several transcription factors that control the transcription of iNOS in glial cells. The present review summarizes different results and discusses current understandings about signaling mechanisms for the induction of iNOS expression in activated glial cells. A complete understanding of the regulation of iNOS expression in glial cells is expected to identify novel targets for therapeutic intervention in NO-mediated neurological disorders.
Collapse
Affiliation(s)
- Ramendra N Saha
- Department of Oral Biology, Section of Neuroscience, University of Nebraska Medical Center, Lincoln, 68583, USA
| | | |
Collapse
|
116
|
Mangoura D, Sun Y, Li C, Singh D, Gutmann DH, Flores A, Ahmed M, Vallianatos G. Phosphorylation of neurofibromin by PKC is a possible molecular switch in EGF receptor signaling in neural cells. Oncogene 2006; 25:735-45. [PMID: 16314845 DOI: 10.1038/sj.onc.1209113] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Children with neurofibromatosis (NF1) typically develop central nervous system (CNS) abnormalities, including aberrant proliferation of astrocytes and formation of benign astrocytomas. The NF1 gene encodes neurofibromin, a Ras-GAP, highly expressed in developing neural cells; the mechanism of regulation of neurofibromin as a Ras-GAP, remains however unknown. We now show that, in response to EGF, neurofibromin is in vivo phosphorylated on serine residues by PKC-alpha, in human, rat, and avian CNS cells and cell lines. EGF-induced PKC phosphorylation was prominent in the cysteine/serine-rich domain (CSRD) of neurofibromin, which lies in the N-terminus and upstream of the Ras-GAP domain (GRD), and this modification significantly increased the association of neurofibromin with actin in co-immunoprecipitations. In addition, we show that Ras activation in response to EGF was significantly lowered when C62B cells overexpressed a construct encoding both CSRD + GRD. Moreover, when PKC-alpha was downregulated, the Ras-GAP activity of CSRD + GRD was significantly diminished, whereas overexpressed GRD alone acted as a weaker GAP and in a PKC-independent manner. Most importantly, functional Ras inhibition and EGF signaling shifts were established at the single cell level in C6-derived cell lines stably overexpressing CSRD + GRD, when transient co-overexpression of Ras and PKC-depletion prior to stimulation with EGF-induced mitosis. Taken together, these data provide the first evidence of a functional, allosteric regulation of GRD by CSRD, which requires neurofibromin phosphorylation by PKC and association with the actin cytoskeleton. Our data may suggest a novel mechanism for regulating biological responses to EGF and provide a new aspect for the understanding of the aberrant proliferation seen in the CNS of children with NF1.
Collapse
Affiliation(s)
- D Mangoura
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA. and Neurosciences Division, Institute for Biomedical Research, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Michl P, Knobel B, Downward J. CUTL1 is phosphorylated by protein kinase A, modulating its effects on cell proliferation and motility. J Biol Chem 2006; 281:15138-44. [PMID: 16574653 DOI: 10.1074/jbc.m600908200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CUTL1, also known as CDP (CCAAT Displacement Protein), Cut, or Cux-1, is a homeodomain transcription factor known to play an essential role in development and cell cycle progression. Previously, we identified CUTL1 as modulator of cell motility and invasiveness. Here we report that protein kinase A (PKA), known to inhibit tumor progression in various tumor types, directly phosphorylates CUTL1 at serine 1215 in NIH3T3 fibroblasts. The PKA-induced phosphorylation results in decreased DNA binding affinity of CUTL1 and diminished CUTL1-mediated cell cycle progression and cell motility. Furthermore, the expression of several CUTL1 target genes involved in proliferation and migration, such as DNA polymerase A and DKK2, was modulated by PKA-induced phosphorylation. These data identify CUTL1 as a novel target of PKA through which this protein kinase can modulate tumor cell motility and tumor progression.
Collapse
Affiliation(s)
- Patrick Michl
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
118
|
Flamand N, Lefebvre J, Lapointe G, Picard S, Lemieux L, Bourgoin SG, Borgeat P. Inhibition of platelet-activating factor biosynthesis by adenosine and histamine in human neutrophils: involvement of cPLA2alpha and reversal by lyso-PAF. J Leukoc Biol 2006; 79:1043-51. [PMID: 16501051 DOI: 10.1189/jlb.1005614] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leukotrienes (LT) and platelet-activating factor (PAF) are important lipid mediators of inflammation. We and others reported previously that autacoids such as adenosine, histamine, prostaglandin E2, and beta-adrenergic agents inhibit LT biosynthesis in activated human polymorphonuclear leukocytes (PMN). In this study, we demonstrate that CGS-21680 (a selective agonist of the adenosine A2A receptor) and histamine also potently inhibit PAF biosynthesis in agonist [formyl Met-Leu-Phe (fMLP)]- and thapsigargin-activated human PMN. The observed inhibitions of PAF biosynthesis were reversed effectively by exogenous 1-O-alkyl-lyso-sn-glyceryl-3-phosphocholine (lyso-PAF), suggesting that these effects of CGS-21680 and histamine implicate the blockade of cytosolic phospholipase A2alpha (cPLA2alpha) activity and lyso-PAF release and that the acetyl-coenzyme A/lyso-PAF acetyl transferase is not inhibited by the autacoids. Accordingly, the cPLA2alpha inhibitor pyrrophenone completely blocked PAF formation, and lyso-PAF similarly prevented this effect of pyrrophenone. The inhibitory effects of CGS-21680 and histamine on PAF biosynthesis were prevented by the protein kinase A inhibitor H-89, supporting roles for the Gs -coupled receptors A2A and H2, respectively, and cyclic adenosine monophosphate in the inhibitory mechanism. The fMLP-induced phosphorylations of p38 and extracellular signal-regulated kinase 1/2 were not altered significantly by the CGS-21680, indicating that inhibition of these kinases is not involved in the inhibitory effect of the adenosine A2A receptor ligand on LT and PAF biosynthesis. These data further emphasize the multiple and potent inhibitory effects of adenosine and histamine on leukocyte functions, in particular, on the biosynthesis of two classes of important lipid mediators and their putative regulatory roles in immune processes in health and diseases.
Collapse
Affiliation(s)
- Nicolas Flamand
- Centre de Recherche du Rhumatologie et Immunologie, Centre de Recherche du CHUQ (CHUL), Faculté de Médecine, Université Laval, Québec, Canada G1V 4G2
| | | | | | | | | | | | | |
Collapse
|
119
|
Milan J, Charalambous C, Elhag R, Chen TC, Li W, Guan S, Hofman FM, Zidovetzki R. Multiple signaling pathways are involved in endothelin-1-induced brain endothelial cell migration. Am J Physiol Cell Physiol 2006; 291:C155-64. [PMID: 16452160 DOI: 10.1152/ajpcell.00239.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have observed that the vasoactive peptide endothelin-1 is a potent inducer of migration of primary human brain-derived microvascular endothelial cells. By blocking signal transduction pathways with specific inhibitors, and using dominant negative mutant infections, we have demonstrated that multiple pathways are involved in endothelin-1-induced migration. Absolutely required for migration are protein tyrosine kinase Src, Ras, protein kinase C (PKC), phosphatidylinositol 3-kinase, ERK, and JNK; partial requirements were exhibited by cAMP-activated protein kinase and p38 kinase. Partial elucidation of the signal transduction sequences showed that the MAPKs ERK, JNK, and p38 are positioned downstream of both PKC and cAMP-activated protein kinase in the signal transduction scheme. The results show that human brain endothelial cell migration has distinct characteristics, different from cells derived from other vascular beds, or from other species, often used as model systems. Furthermore, the results indicate that endothelin-1, secreted by many tumors, is an important contributor to tumor-produced proangiogenic microenvironment. This growth factor has been associated with increased microvessel density in tumors and is responsible for endothelial cell proliferation, migration, invasion, and tubule formation. Because many signal transduction pathways investigated in this study are potential or current targets for anti-angiogenesis therapy, these results are of critical importance for designing physiological antiangiogenic protocols.
Collapse
Affiliation(s)
- Johanna Milan
- Department of Cell Biology and Neuroscience, University of California, Riverside, 92521, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Affiliation(s)
- Judy L Meinkoth
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
121
|
Fassett J, Tobolt D, Hansen LK. Type I collagen structure regulates cell morphology and EGF signaling in primary rat hepatocytes through cAMP-dependent protein kinase A. Mol Biol Cell 2005; 17:345-56. [PMID: 16251347 PMCID: PMC1345672 DOI: 10.1091/mbc.e05-09-0871] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adhesion to type 1 collagen elicits different responses dependent on whether the collagen is in fibrillar (gel) or monomeric form (film). Hepatocytes adherent to collagen film spread and proliferate, whereas those adherent to collagen gel remain rounded and growth arrested. To explore the role of potential intracellular inhibitory signals responsible for collagen gel-mediated growth arrest, cAMP-dependent protein kinase A (PKA) was examined in hepatocytes adherent to collagen film or gel. PKA activity was higher in hepatocytes on collagen gel than on film during G1 of the hepatocyte cell cycle. Inhibition of PKA using H89 increased cell spreading on collagen gel in an EGF-dependent manner, whereas activation of PKA using 8-Br-cAMP decreased cell spreading on collagen film. PKA inhibition also restored ERK activation, cyclin D1 expression and G1-S progression on collagen gel, but had no effect on cells adherent to collagen film. Analysis of EGF receptor phosphorylation revealed that adhesion to collagen gel alters tyrosine phosphorylation of the EGF receptor, leading to reduced phosphorylation of tyrosine residue 845, which was increased by inhibition of PKA. These results demonstrate that fibrillar type 1 collagen can actively disrupt cell cycle progression by inhibiting specific signals from the EGF receptor through a PKA-dependent pathway.
Collapse
Affiliation(s)
- John Fassett
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
122
|
Kiermayer S, Biondi RM, Imig J, Plotz G, Haupenthal J, Zeuzem S, Piiper A. Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells. Mol Biol Cell 2005; 16:5639-48. [PMID: 16207818 PMCID: PMC1289409 DOI: 10.1091/mbc.e05-05-0432] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Elevation of the intracellular cAMP concentration ([cAMP]i) regulates metabolism, cell proliferation, and differentiation and plays roles in memory formation and neoplastic growth. cAMP mediates its effects mainly through activation of protein kinase A (PKA) as well as Epac1 and Epac2, exchange factors activating the small GTPases Rap1 and Rap2. However, how cAMP utilizes these effectors to induce distinct biological responses is unknown. We here studied the specific roles of PKA and Epac in neuroendocrine PC12 cells. In these cells, elevation of [cAMP]i activates extracellular signal-regulated kinase (ERK) 1/2 and induces low-degree neurite outgrowth. The present study showed that specific stimulation of PKA triggered ERK1/2 activation that was considerably more transient than that observed upon simultaneous activation of both PKA and Epac. Unexpectedly, the PKA-specific cAMP analog induced cell proliferation rather than neurite outgrowth. The proliferative signaling pathway activated by the PKA-specific cAMP analog involved activation of the epidermal growth factor receptor and ERK1/2. Activation of Epac appeared to extend the duration of PKA-dependent ERK1/2 activation and converted cAMP from a proliferative into an anti-proliferative, neurite outgrowth-promoting signal. Thus, the present study showed that the outcome of cAMP signaling can depend heavily on the set of cAMP effectors activated.
Collapse
Affiliation(s)
- Simone Kiermayer
- Department of Internal Medicine, University of Saarland, D-66421 Homburg/Saar, Germany
| | | | | | | | | | | | | |
Collapse
|
123
|
Ghosh M, Gharami K, Paul S, Das S. Thyroid hormone-induced morphological differentiation and maturation of astrocytes involves activation of protein kinase A and ERK signalling pathway. Eur J Neurosci 2005; 22:1609-17. [PMID: 16197501 DOI: 10.1111/j.1460-9568.2005.04351.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thyroid hormone (TH) has a profound effect on astrocyte differentiation and maturation. Astrocytes cultured under TH-deficient conditions fail to transform from flat polygonal morphology to mature, process-bearing, stellate cells. Supplementation of physiological concentrations of TH initiate gradual transformation of the cells and the process takes approximately 48 h to complete. The signal transduction pathways associated with TH-mediated maturation of astrocytes have been investigated. TH treatment caused an initial activation of protein kinase A (PKA), with a peak activity at 2 h which fell back to basal level there after. Although there was no visible change in morphology of the cells during the observed activation of PKA, it was sufficient to drive the process of transformation to completion, suggesting the involvement of downstream regulators of PKA. PKA inhibitors as well as the MEK inhibitor PD098059 attenuated the TH-induced morphological transformation. Further studies showed that TH treatment resulted in a biphasic response on the cellular phospho-MAP kinase (p-MAPK or p-ERK) level: an initial decline in the p-ERK level followed by an induction at 18-24 h, both of which could be blocked by a PKA inhibitor. Such sustained activation of p-ERK levels by TH at this later stage coincided with initiation of morphological differentiation of the astrocytes and appeared to be critical for the transformation of astrocytes. The nitric oxide synthase (NOS) inhibitor 7-NI inhibited this induction of p-ERK activity. Moreover, the induction was accompanied by a parallel increase in phospho-CREB activity which, however, persisted at the end of the transformation of the astroglial cells.
Collapse
Affiliation(s)
- Mausam Ghosh
- Neurobiology Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700010, India
| | | | | | | |
Collapse
|
124
|
Dumaz N, Marais R. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft für Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J 2005; 272:3491-504. [PMID: 16008550 DOI: 10.1111/j.1742-4658.2005.04763.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmarks of cAMP is its ability to inhibit proliferation in many cell types, but stimulate proliferation in others. Clearly cAMP has cell type specific effects and the outcome on proliferation is largely attributed to crosstalk from cAMP to the RAS/RAF/mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathway. We review the crosstalk between these two ancient and conserved pathways, describing the molecular mechanisms underlying the interactions between these pathways and discussing their possible biological importance.
Collapse
Affiliation(s)
- Nicolas Dumaz
- Signal Transduction Team, Cancer Research UK Centre for Cell and Molecular Biology, The Institute of Cancer Research, London, UK
| | | |
Collapse
|
125
|
Chen C, Dickman MB. cAMP blocks MAPK activation and sclerotial development via Rap-1 in a PKA-independent manner in Sclerotinia sclerotiorum. Mol Microbiol 2005; 55:299-311. [PMID: 15612936 DOI: 10.1111/j.1365-2958.2004.04390.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sclerotinia sclerotiorum is a filamentous ascomycete phytopathogen able to infect an extremely wide range of cultivated plants. Our previous studies have shown that increases in cAMP levels result in the impairment of the development of the sclerotium, a highly differentiated structure important in the disease cycle of this fungus. cAMP also inhibits the activation of a S. sclerotiorum mitogen-activated protein kinase (MAPK), which we have previously shown to be required for sclerotial maturation; thus cAMP-mediated sclerotial inhibition is modulated through MAPK. However, the mechanism(s) by which cAMP inhibits MAPK remains unclear. Here we demonstrate that a protein kinase A (PKA)-independent signalling pathway probably mediates MAPK inhibition by cAMP. Expression of a dominant negative form of Ras, an upstream activator of the MAPK pathway, also inhibited sclerotial development and MAPK activation, suggesting that a conserved Ras/MAPK pathway is required for sclerotial development. Evidence from bacterial toxins that specifically inhibit the activity of small GTPases, suggested that Rap-1 or Ras is involved in cAMP action. The Rap-1 inhibitor, GGTI-298, restored MAPK activation in the presence of cAMP, further suggesting that Rap-1 is responsible for cAMP-dependent MAPK inhibition. Importantly, inhibition of Rap-1 is able to restore sclerotial development blocked by cAMP. Our results suggest a novel mechanism involving the requirement of Ras/MAPK pathway for sclerotial development that is negatively regulated by a PKA-independent cAMP signalling pathway. Cross-talk between these two pathways is mediated by Rap-1.
Collapse
Affiliation(s)
- Changbin Chen
- Department of Plant Pathology, University of Nebraska-Lincoln, Nebraska, NE 68583, USA
| | | |
Collapse
|
126
|
Sutton GM, Duos B, Patterson LM, Berthoud HR. Melanocortinergic modulation of cholecystokinin-induced suppression of feeding through extracellular signal-regulated kinase signaling in rat solitary nucleus. Endocrinology 2005; 146:3739-47. [PMID: 15961554 DOI: 10.1210/en.2005-0562] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signals from the gut and hypothalamus converge in the caudal brainstem to control ingestive behavior. We have previously shown that phosphorylation of ERK1/2 in the solitary nucleus (NTS) is necessary for food intake suppression by exogenous cholecystokinin (CCK). Here we test whether this intracellular signaling cascade is also involved in the integration of melanocortin-receptor (MCR) mediated inputs to the caudal brainstem. Using fourth ventricular-cannulated rats and Western blotting of NTS tissue, we show that the MC4R agonist melanotan II (MTII) rapidly and dose-dependently increases phosphorylation of both ERK1/2 and cAMP response element-binding protein (CREB). Sequential administration of fourth ventricular MTII and peripheral CCK at doses that alone produced submaximal stimulation of pERK1/2 produced an additive increase. Prior fourth ventricular administration of the MC4R antagonist SHU9119 completely abolished the CCK-induced increases in pERK and pCREB and, in freely feeding rats, SHU9119 significantly increased meal size and satiety ratio. Prior administration of the MAPK kinase inhibitor U0126 abolished the capacity of MTII to suppress 2-h food intake and significantly decreased MTII-induced ERK phosphorylation in the NTS. Furthermore, pretreatment with the cAMP inhibitor, cAMP receptor protein-Rp isomer, significantly attenuated stimulation of pERK induced by either CCK or MTII. The results demonstrate that activation of the ERK pathway is necessary for peripheral CCK and central MTII to suppress food intake. The cAMP-->ERK-->CREB cascade may thus constitute a molecular integrator for converging satiety signals from the gut and adiposity signals from the hypothalamus in the control of meal size and food intake.
Collapse
Affiliation(s)
- Gregory M Sutton
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USA
| | | | | | | |
Collapse
|
127
|
Pelletier S, Julien C, Popoff MR, Lamarche-Vane N, Meloche S. Cyclic AMP induces morphological changes of vascular smooth muscle cells by inhibiting a Rac-dependent signaling pathway. J Cell Physiol 2005; 204:412-22. [PMID: 15706595 DOI: 10.1002/jcp.20308] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cyclic AMP (cAMP) is a pleiotropic second messenger that regulates numerous cellular processes. In vascular smooth muscle cells (VSMCs), these include cell proliferation, migration, and contractility. Here we show that cAMP-elevating agents induce dramatic morphological changes in VSMCs, characterized by cell rounding and formation of long branching processes. The stellate morphology is associated with disassembly of actin stress fibers and lamellipodia, loss of focal adhesions, and the formation of small F-actin rings. Because of the importance of Rho family GTPases in regulating actin dynamics, we analyzed their individual roles in the cAMP phenotype. We found that pharmacological or genetic inhibition of Rac mimics cAMP effect in inducing a stellate morphology of VSMCs. Expression of activated Rac1 prevents forskolin-induced cAMP stellation, suggesting that cAMP affects cell morphology by inhibiting Rac function. Consistent with this, treatment with forskolin inhibits agonist-stimulated Rac activation in VSMCs. We further show that activated Rac1 containing the F37A effector loop substitution fails to rescue the cAMP phenotype. Our results suggest that cAMP modulates the morphology of VSMCs by inhibiting a Rac-dependent signaling pathway.
Collapse
Affiliation(s)
- Stéphane Pelletier
- Institut de Recherche en Immunovirologie et Cancérologie, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
128
|
Abstract
Progress in experimental and theoretical biology is likely to provide us with the opportunity to assemble detailed predictive models of mammalian cells. Using a functional format to describe the organization of mammalian cells, we describe current approaches for developing qualitative and quantitative models using data from a variety of experimental sources. Recent developments and applications of graph theory to biological networks are reviewed. The use of these qualitative models to identify the topology of regulatory motifs and functional modules is discussed. Cellular homeostasis and plasticity are interpreted within the framework of balance between regulatory motifs and interactions between modules. From this analysis we identify the need for detailed quantitative models on the basis of the representation of the chemistry underlying the cellular process. The use of deterministic, stochastic, and hybrid models to represent cellular processes is reviewed, and an initial integrated approach for the development of large-scale predictive models of a mammalian cell is presented.
Collapse
|
129
|
Kawano Y, Nakamura S, Fukuda J, Sugano T, Takai N, Miyakawa I. The effect of epidermal growth factor on production of vascular endothelial growth factor by amnion-derived (WISH) cells. Growth Factors 2005; 23:169-75. [PMID: 16019439 DOI: 10.1080/08977190500153813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Our objective was to clarify the physiological role of vascular endothelial growth factor (VEGF) by amnion-derived (WISH) cells. WISH cells were cultured, and the effect of epidermal growth factor (EGF), mitogen-activated protein (MAP) kinase kinase or extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitors (U0126) or phosphatidylinositol (PI) 3-kinase on the production of VEGF was examined. VEGF was assayed by ELISA. The activation of MAP kinase and akt, which is phosphorylated by PI 3-kinase, were detected by Western blot analysis using anti-phosphorylated MAP kinase antibody and anti-phosphorylated akt antibody. In the time course of VEGF production following EGF treatment, VEGF production showed a significant increase only after 16 (p < 0.01)-32h (p < 0.01). EGF increased the production of VEGF by WISH cells in a dose-dependent manner. The MAP kinase and akt activity were determined by treatment with EGF. VEGF production was significantly decreased following pretreatment with U0126 or wortmannin for two hours before treatment with EGF (p < 0.01, p < 0.01). WISH cells appeared to produce VEGF via a mechanism involving tyrosine kinase activation of EGF receptor and MAP kinase or PI 3-kinase. It is suggested that VEGF may contribute to the neovascularization and proliferation of the placenta and gestational tissue, and EGF may play an important role in regulation of VEGF production in the placenta.
Collapse
Affiliation(s)
- Yasushi Kawano
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Oita, Japan.
| | | | | | | | | | | |
Collapse
|
130
|
Kuiperij HB, van der Horst A, Raaijmakers J, Weijzen S, Medema RH, Bos JL, Burgering BMT, Zwartkruis FJT. Activation of FoxO transcription factors contributes to the antiproliferative effect of cAMP. Oncogene 2005; 24:2087-95. [PMID: 15688004 DOI: 10.1038/sj.onc.1208450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
cAMP is a potent inhibitor of cell proliferation in a variety of cell lines. Downregulation of cyclin D1 and upregulation of the cell cycle inhibitor p27Kip1 are two mechanisms by which cAMP may induce a G1-arrest. Here we show that cAMP inhibits proliferation of cells that constitutively express cyclin D1 or are deficient for Rb, demonstrating that changes in these cell cycle regulators do not account for the cAMP-induced growth effects in mouse embryo fibroblasts (MEFs). Interestingly, the antiproliferative effect of cAMP mimics the effect previously observed for FoxO transcription factors. These transcription factors are under negative control of protein kinase B (PKB). We show that in MEFs cAMP strongly induces transcriptional activation of FoxO4 through the inhibition of PKB. Accordingly, not only p27Kip1 but also the FoxO target MnSOD is upregulated by cAMP. Importantly, introduction of dominant-negative FoxO partially rescues cAMP-induced inhibition of proliferation. From these results we conclude that inhibition of PKB and subsequent activation of FoxO transcription factors mediates an antiproliferative effect of cAMP.
Collapse
Affiliation(s)
- H Bea Kuiperij
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Dougherty MK, Müller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD, Conrads TP, Veenstra TD, Lu KP, Morrison DK. Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 2005; 17:215-24. [PMID: 15664191 DOI: 10.1016/j.molcel.2004.11.055] [Citation(s) in RCA: 461] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 10/22/2004] [Accepted: 11/24/2004] [Indexed: 10/25/2022]
Abstract
The Raf-1 kinase is an important signaling molecule, functioning in the Ras pathway to transmit mitogenic, differentiative, and oncogenic signals to the downstream kinases MEK and ERK. Because of its integral role in cell signaling, Raf-1 activity must be precisely controlled. Previous studies have shown that phosphorylation is required for Raf-1 activation, and here, we identify six phosphorylation sites that contribute to the downregulation of Raf-1 after mitogen stimulation. Five of the identified sites are proline-directed targets of activated ERK, and phosphorylation of all six sites requires MEK signaling, indicating a negative feedback mechanism. Hyperphosphorylation of these six sites inhibits the Ras/Raf-1 interaction and desensitizes Raf-1 to additional stimuli. The hyperphosphorylated/desensitized Raf-1 is subsequently dephosphorylated and returned to a signaling-competent state through interactions with the protein phosphatase PP2A and the prolyl isomerase Pin1. These findings elucidate a critical Raf-1 regulatory mechanism that contributes to the sensitive, temporal modulation of Ras signaling.
Collapse
Affiliation(s)
- Michele K Dougherty
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Gerlo S, Verdood P, Hooghe-Peters EL, Kooijman R. Multiple, PKA-dependent and PKA-independent, signals are involved in cAMP-induced PRL expression in the eosinophilic cell line Eol-1. Cell Signal 2005; 17:901-9. [PMID: 15763432 DOI: 10.1016/j.cellsig.2004.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 11/10/2004] [Accepted: 11/10/2004] [Indexed: 11/21/2022]
Abstract
Besides its pivotal role in reproduction, the polypeptide hormone prolactin (PRL) has been attributed an immunomodulatory function. Extrapituitary PRL expression is regulated differently from that in the pituitary, due to the use of an alternative promoter. In leukocytes, cAMP is an important regulator of PRL expression. We report that in the human eosinophilic cell line Eol-1, cAMP-induced PRL expression is partially abrogated by two protein kinase A (PKA) inhibitors (H89, PKI) and by the p38 inhibitor SB203580. Phosphorylation of p38 was PKA-independent and could be stimulated by a methylated cAMP analogue, which specifically activates the exchange factor directly activated by cAMP (EPAC). Furthermore, cAMP induced a PKA-dependent phosphorylation of cAMP-responsive element binding protein (CREB). We postulate that cAMP induces PRL expression via two different signalling pathways: a PKA-dependent pathway leading to the phosphorylation of CREB, and a PKA-independent pathway leading to the phosphorylation of p38.
Collapse
Affiliation(s)
- Sarah Gerlo
- Laboratory of Neuroendocrine Immunology, Department of Pharmacology, Free University of Brussels (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | |
Collapse
|
133
|
Hur KC. Protein Kinase a functions as a negative regulator of c‐jun n‐terminal kinase but not of p38 mitogen‐activated protein Kinase in PC12 cells. ACTA ACUST UNITED AC 2005. [DOI: 10.1080/17386357.2005.9647268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
134
|
Abstract
Melanoma is a form of skin cancer that has a poor prognosis and which is on the rise in Western populations. If detected early, it is easily treated by surgical excision. However, once melanoma metastasises it is notoriously resistant to existing therapies and for many patients the outlook is dismal. Thus a full description of melanoma etiology and a full understanding of the genetic lesions that underlie this disease is required to allow us to develop new and effective therapeutic strategies for its treatment. RAF proteins are a family of serine/threonine-specific protein kinases that form part of a signalling module that regulates cell proliferation, differentiation and survival. In mammals there are three isoforms, A-RAF, B-RAF and C-RAF, and recently it was shown that the B-RAF isoform is mutated in a high proportion of melanomas. In light of these exciting findings, we review what we have learned about B-RAF and its role in cutaneous melanoma.
Collapse
Affiliation(s)
- Vanessa C Gray-Schopfer
- Signal Transduction Team, Cancer Research UK Centre of Cell and Molecular Biology, The Institute of Cancer Research, London, UK
| | | | | |
Collapse
|
135
|
Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol 2004; 5:875-85. [PMID: 15520807 DOI: 10.1038/nrm1498] [Citation(s) in RCA: 908] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since their discovery over 20 years ago, the RAF proteins have been intensely studied. For most of that time, the focus of the field has been the C-RAF isoform and its role as an effector of the RAS proteins. However, a report that implicates B-RAF in human cancer has highlighted the importance of all members of this protein kinase family and recent studies have uncovered intriguing new data relating to their complex regulation and biological functions.
Collapse
Affiliation(s)
- Claudia Wellbrock
- Signal Transduction Team, Cancer Research UK Centre of Cell and Molecular Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
136
|
Marko D, Puppel N, Tjaden Z, Jakobs S, Pahlke G. The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation. Mol Nutr Food Res 2004; 48:318-25. [PMID: 15497183 DOI: 10.1002/mnfr.200400034] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aglycons of the most abundant anthocyanins in food, cyanidin (cy) and delphinidin (del), represent potent inhibitors of the epidermal growth factor receptor (EGFR). Structure-activity studies show that the presence of vicinal hydroxy substituents at the phenyl ring at the 2-position (B-ring) is crucial for target interaction. The presence of a single hydroxy group or introduction of methoxy substituents at the B-ring results in a substantial loss of inhibitory properties. However, biological activity is not exclusively limited to compounds bearing vicinal hydroxy groups. A contradictory structure-activity relationship is observed for the inhibition of cAMP-specific phosphodiesterases (PDEs). Of the anthocyanidins tested, malvidin, bearing methoxy substituents in the 3'- and 5'-positions, most effectively inhibited cAMP hydrolysis. The absence of methoxy groups and/or replacement by hydroxy substituents was found to strongly diminish PDE-inhibitory properties. We found that either effective EGFR inhibition or effective PDE inhibition is required to achieve a shut-down of the central mitogen-activated protein kinase (MAPK) pathway, a signaling cascade crucial for the regulation of cell growth. This is consistent with the finding that efficient reduction of cell growth is limited to anthocyanidins that are potent EGFR- or PDE-inhibitors including cy and del or malvidin (mv), respectively. In summary, depending on the substitution pattern at the B-ring, anthocyanidins interfere with different signaling cascades involved in the regulation of cell growth.
Collapse
Affiliation(s)
- Doris Marko
- Department of Chemistry, Division of Food Chemistry and Environmental Toxicology, University of Kaiserslautern, Kaiserslautern, Germany.
| | | | | | | | | |
Collapse
|
137
|
Tantini B, Manes A, Fiumana E, Pignatti C, Guarnieri C, Zannoli R, Branzi A, Galié N. Antiproliferative effect of sildenafil on human pulmonary artery smooth muscle cells. Basic Res Cardiol 2004; 100:131-8. [PMID: 15739122 DOI: 10.1007/s00395-004-0504-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/13/2004] [Accepted: 10/25/2004] [Indexed: 10/26/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction and by obstructive changes of the pulmonary vasculature including smooth muscle cell proliferation which leads to medial hypertrophy and subsequent luminal narrowing. Sildenafil, an orally active inhibitor of cGMP phosphodiesterase-type-5, exerts pulmonary vasodilator activity in PAH patients. We evaluated the effects of sildenafil on growth of cultured human pulmonary artery smooth muscle cells (PASMC). The results indicate that sildenafil reduced DNA synthesis stimulated by PDGF and dose dependently inhibited PASMC proliferation. These effects were paralleled by a progressive increase in cGMP content, followed by an accumulation of cAMP. The treatment with 8-bromo-cGMP or dibutyryl-cAMP mimicked all the effects of sildenafil. On the other hand, treatment of PASMC with inhibitors of cGMP-dependent protein kinase (PKG) or cAMP-dependent protein kinase (PKA) reversed the antiproliferative effect of sildenafil. In addition, sildenafil inhibited the phosphorylation of ERK, a converging point for several pathways leading to cell proliferation. This effect was partially reduced by PKG inhibition and completely abolished by PKA inhibition.We conclude that sildenafil exerts an antiproliferative effect on human PASMC that is mediated by an interaction between the cGMP-PKG and the cAMP-PKA activated pathways, leading to inhibition of PDGF-mediated activation of the ERK.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic GMP/metabolism
- Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic GMP-Dependent Protein Kinases/metabolism
- DNA Replication/drug effects
- Dose-Response Relationship, Drug
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Humans
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phosphodiesterase Inhibitors/pharmacology
- Phosphorylation
- Piperazines/pharmacology
- Platelet-Derived Growth Factor/metabolism
- Protein Kinase Inhibitors/pharmacology
- Pulmonary Artery/drug effects
- Pulmonary Artery/pathology
- Purines/pharmacology
- Signal Transduction/drug effects
- Sildenafil Citrate
- Sulfones/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Benedetta Tantini
- Department of Biochemistry, G. Moruzzi University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Choudhary S, Kumar A, Kale RK, Raisz LG, Pilbeam CC. Extracellular calcium induces COX-2 in osteoblasts via a PKA pathway. Biochem Biophys Res Commun 2004; 322:395-402. [PMID: 15325243 DOI: 10.1016/j.bbrc.2004.07.129] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Indexed: 11/18/2022]
Abstract
We have shown that extracellular calcium [Ca(+2)](e) induces cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) production via an ERK signaling pathway in osteoblasts. In this study, we examined the roles of protein kinase C (PKC) and A (PKA) signaling pathways in the [Ca(+2)](e) induction of COX-2 in primary calvarial osteoblasts from mice transgenic for -371 bp of the COX-2 promoter fused to a luciferase reporter. Neither PKC specific inhibitors nor downregulation of the PKC pathway by phorbol myristate acetate (PMA) affected the [Ca(+2)](e) stimulation of COX-2 mRNA or promoter activity. In contrast, PKA inhibitors, used at doses that inhibited forskolin-stimulated luciferase activity by 90%, reduced [Ca(+2)](e)-stimulated COX-2 mRNA expression and promoter activity by 80-90%. [Ca(+2)](e) also stimulated a 2- to 3-fold increase in cAMP production. Hence, the [Ca(+2)](e) induction of COX-2 mRNA expression and promoter activity was independent of the PKC pathway and dependent on the PKA signaling pathway.
Collapse
Affiliation(s)
- Shilpa Choudhary
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
139
|
Abstract
The importance of secreted cytokines and growth factors in the development and promotion of malignancies is often underestimated. Many different soluble, extracellular gene products participate in processes that collectively contribute to the growth and survival of a developing neoplasm. These secreted molecules can, directly or indirectly, play a central role in uncontrolled tumour cell division, angiogenic stimulation or suppression of tumour cell immune surveillance. One of the first cytokine activities ever described, macrophage migration inhibitory factor (MIF), is unique to these soluble mediators in that it participates in all of these pro-tumourigenic processes. Overexpressed in most tumour types examined, MIF has been shown to promote malignant cell transformation, inhibit tumour cell-specific immune cytolytic responses and strongly enhance neovascularization. Despite this broad array of activities, the elucidation of molecular and cellular mechanisms involved in MIF-dependent bioactions has remained elusive. This review will focus on recently characterized phenotypes and mechanistic effectors thought to be associated with MIF-dependent promotion of neoplastic processes and discuss their relative importance in carcinogenesis.
Collapse
Affiliation(s)
- Robert A Mitchell
- James Graham Brown Cancer Center, University of Louisville, Baxter II Research Building, 580 S. Preston Street, Louisville, KY 40202, USA.
| |
Collapse
|
140
|
Sulpice E, Contreres JO, Lacour J, Bryckaert M, Tobelem G. Platelet factor 4 disrupts the intracellular signalling cascade induced by vascular endothelial growth factor by both KDR dependent and independent mechanisms. ACTA ACUST UNITED AC 2004; 271:3310-8. [PMID: 15291808 DOI: 10.1111/j.1432-1033.2004.04263.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanism by which the CXC chemokine platelet factor 4 (PF-4) inhibits endothelial cell proliferation is unclear. The heparin-binding domains of PF-4 have been reported to prevent vascular endothelial growth factor 165 (VEGF(165)) and fibroblast growth factor 2 (FGF2) from interacting with their receptors. However, other studies have suggested that PF-4 acts via heparin-binding independent interactions. Here, we compared the effects of PF-4 on the signalling events involved in the proliferation induced by VEGF(165), which binds heparin, and by VEGF(121), which does not. Activation of the VEGF receptor, KDR, and phospholipase Cgamma (PLCgamma) was unaffected in conditions in which PF-4 inhibited VEGF(121)-induced DNA synthesis. In contrast, VEGF(165)-induced phosphorylation of KDR and PLCgamma was partially inhibited by PF-4. These observations are consistent with PF-4 affecting the binding of VEGF(165), but not that of VEGF(121), to KDR. PF-4 also strongly inhibited the VEGF(165)- and VEGF(121)-induced mitogen-activated protein (MAP) kinase signalling pathways comprising Raf1, MEK1/2 and ERK1/2: for VEGF(165) it interacts directly or upstream from Raf1; for VEGF(121), it acts downstream from PLCgamma. Finally, the mechanism by which PF-4 may inhibit the endothelial cell proliferation induced by both VEGF(121) and VEGF(165), involving disruption of the MAP kinase signalling pathway downstream from KDR did not seem to involve CXCR3B activation.
Collapse
Affiliation(s)
- Eric Sulpice
- Institut des Vaisseaux et du Sang, Paris, France.
| | | | | | | | | |
Collapse
|
141
|
Chu KM, Chow KBS, Wong YH, Wise H. Prostacyclin receptor-mediated activation of extracellular signal-regulated kinases 1 and 2. Cell Signal 2004; 16:477-86. [PMID: 14709336 DOI: 10.1016/j.cellsig.2003.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The prostacyclin mimetic cicaprost increased phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in Chinese hamster ovary cells transiently expressing human (hIP-CHO) or mouse prostacyclin (mIP-CHO) receptors, but not in human neuroblastoma SK-N-SH cells or rat/mouse neuroblastoma-glioma NG108-15 cells which endogenously express IP receptors. Cicaprost stimulated ERK1/2 activity in hIP-CHO and mIP-CHO cells with EC50 values of 60 and 83 nM, respectively, and this response was significantly inhibited by protein kinase C inhibitors and agents which elevate cyclic AMP. A poor correlation was discovered between the level of ERK1/2 activity and the ability of agents to increase or decrease cyclic AMP production. The potent inhibitory effect of 3-isobutyl-1-methyl xanthine on cicaprost-stimulated phospho-ERK1/2 may be due to inhibition of phosphoinositide 3-kinase. Therefore, IP receptor-mediated activation of ERK1/2 in CHO cells occurs through a Gq/11/protein kinase C-dependent and a phosphoinoside 3-kinase-dependent process which is insensitive to IP receptor-generated cyclic AMP.
Collapse
Affiliation(s)
- Kit Man Chu
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong S.A.R, China
| | | | | | | |
Collapse
|
142
|
Luttrell DK, Luttrell LM. Signaling in time and space: G protein-coupled receptors and mitogen-activated protein kinases. Assay Drug Dev Technol 2004; 1:327-38. [PMID: 15090198 DOI: 10.1089/15406580360545143] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Because of their central role in the cellular response to growth factors, assays of MAP kinase activity are commonly used in pharmaceutical screening efforts aimed at detecting chemical modifiers of growth regulatory pathways. As our understanding of the complexity of signal transduction networks expands, however, it is becoming apparent that previously unappreciated temporal and contextual factors have profound effects on MAP kinase function. This is exemplified by recent studies of the regulation of the ERK1/2 MAP kinase cascade by GPCRs. Depending on receptor and cell type, GPCR stimulation of ERK1/2 can reflect a heterogenous array of signaling events. Activation of second messenger-dependent protein kinases and cross talk between GPCRs and receptor or nonreceptor tyrosine kinases can all induce ERK1/2 activation. Furthermore, a growing body of data indicates that the mechanism of ERK1/2 activation is a major determinant of ERK1/2 function. Activation of a nuclear pool of ERK1/2 as a consequence of cross talk between GPCRs and growth factor receptor tyrosine kinases may provide a mitogenic stimulus. In contrast, activation of ERK1/2 in localized pools on the membrane or confined to endosomal vesicles through the utilization of focal adhesions or beta-arrestins as "scaffolds" may spatially constrain ERK1/2 activity and favor the phosphorylation of nonnuclear ERK substrates. Findings such as these suggest that screening strategies that use single readouts of MAP kinase activity or function are likely to miss important signaling events, and point to the need for a multidimensional approach to MAP kinase-based screening efforts.
Collapse
Affiliation(s)
- Deirdre K Luttrell
- Department of High Throughput Biology, GlaxoSmithKline, Research Triangle Park, North Carolina, USA.
| | | |
Collapse
|
143
|
Constantinescu A, Wu M, Asher O, Diamond I. cAMP-dependent protein kinase type I regulates ethanol-induced cAMP response element-mediated gene expression via activation of CREB-binding protein and inhibition of MAPK. J Biol Chem 2004; 279:43321-9. [PMID: 15299023 DOI: 10.1074/jbc.m406994200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that the two types of cAMP-dependent protein kinase (PKA) in NG108-15 cells differentially mediate forskolin- and ethanol-induced cAMP response element (CRE)-binding protein (CREB) phosphorylation and CRE-mediated gene transcription. Activated type II PKA is translocated into the nucleus where it phosphorylates CREB. By contrast, activated type I PKA does not translocate to the nucleus but is required for CRE-mediated gene transcription by inducing the activation of other transcription cofactors such as CREB-binding protein (CBP). We show here that CBP is required for forskolin- and ethanol-induced CRE-mediated gene expression. Forskolin- and ethanol-induced CBP phosphorylation, demonstrable at 10 min, persists up to 24 h. CBP phosphorylation requires type I PKA but not type II PKA. In NG108-15 cells, ethanol and forskolin activation of type I PKA also inhibits several components of the MAPK pathway including B-Raf kinase, ERK1/2, and p90RSK phosphorylation. As a result, unphosphorylated p90RSK no longer binds to nor inhibits CBP. Moreover, MEK inhibition by PD98059 induces a significant increase of CRE-mediated gene activation. Taken together, our findings suggest that inhibition of the MAPK pathway enhances cAMP-dependent gene activation during exposure of NG108-15 cells to ethanol. This mechanism appears to involve type I PKA-dependent phosphorylation of CBP and inhibition of MEK-dependent phosphorylation of p90RSK. Under these conditions p90RSK is no longer bound to CBP, thereby promoting CBP-dependent CREB-mediated gene expression.
Collapse
Affiliation(s)
- Anastasia Constantinescu
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA 94608, USA.
| | | | | | | |
Collapse
|
144
|
Harrisingh MC, Perez-Nadales E, Parkinson DB, Malcolm DS, Mudge AW, Lloyd AC. The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO J 2004; 23:3061-71. [PMID: 15241478 PMCID: PMC514926 DOI: 10.1038/sj.emboj.7600309] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 06/14/2004] [Indexed: 12/15/2022] Open
Abstract
Schwann cells are a regenerative cell type. Following nerve injury, a differentiated myelinating Schwann cell can dedifferentiate and regain the potential to proliferate. These cells then redifferentiate during the repair process. This behaviour is important for successful axonal repair, but the signalling pathways mediating the switch between the two differentiation states remain unclear. Sustained activation of the Ras/Raf/ERK cascade in primary cells results in a cell cycle arrest and has been implicated in the differentiation of certain cell types, in many cases acting to promote differentiation. We therefore investigated its effects on the differentiation state of Schwann cells. Surprisingly, we found that Ras/Raf/ERK signalling drives the dedifferentiation of Schwann cells even in the presence of normal axonal signalling. Furthermore, nerve wounding in vivo results in sustained ERK signalling in associated Schwann cells. Elevated Ras signalling is thought to be important in the development of Schwann cell-derived tumours in neurofibromatosis type 1 patients. Our results suggest that the effects of Ras signalling on the differentiation state of Schwann cells may be important in the pathogenesis of these tumours.
Collapse
Affiliation(s)
- Marie C Harrisingh
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, London, UK
| | - Elena Perez-Nadales
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, London, UK
| | | | - Denise S Malcolm
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, London, UK
| | - Anne W Mudge
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, London, UK
| | - Alison C Lloyd
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, London, UK
| |
Collapse
|
145
|
Cheng J, Thompson MA, Walker HJ, Gray CE, Diaz Encarnacion MM, Warner GM, Grande JP. Differential regulation of mesangial cell mitogenesis by cAMP phosphodiesterase isozymes 3 and 4. Am J Physiol Renal Physiol 2004; 287:F940-53. [PMID: 15280158 DOI: 10.1152/ajprenal.00079.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mesangial cell (MC) mitogenesis is regulated through "negative cross talk" between cAMP-PKA and ERK signaling. Although it is widely accepted that cAMP inhibits mitogenesis through PKA-mediated phosphorylation of Raf-1, recent studies have indicated that cAMP-mediated inhibition of mitogenesis may occur independently of Raf-1 phosphorylation or without inhibiting ERK activity. We previously showed that MCs possess functionally compartmentalized intracellular pools of cAMP that are differentially regulated by cAMP phosphodiesterases (PDE); an intracellular pool directed by PDE3 but not by PDE4 suppresses mitogenesis. We therefore sought to determine whether there was a differential effect of PDE3 vs. PDE4 inhibitors on the Ras-Raf-MEK-ERK pathway in cultured MC. Although PDE3 and PDE4 inhibitors activated PKA and modestly elevated cAMP levels to a similar extent, only PDE3 inhibitors suppressed MC mitogenesis (-57%) and suppressed Raf-1 kinase and ERK activity (-33 and -68%, respectively). Both PDE3 and PDE4 inhibitors suppressed B-Raf kinase activity. PDE3 inhibitors increased phosphorylation of Raf-1 on serine 43 and serine 259 and decreased phosphorylation on serine 338; PDE4 inhibitors were without effect. Overexpression of a constitutively active MEK-1 construct reversed the antiproliferative effect of PDE3 inhibitors. PDE3 inhibitors also reduced cyclin A levels (-27%), cyclin D and cyclin E kinase activity (-30 and -50%, respectively), and induced expression of the cell cycle inhibitor p21 (+90%). We conclude that the antiproliferative effects of PDE3 inhibitors are mechanistically related to inhibition of the Ras-Raf-MEK-ERK pathway. Additional cell cycle targets of PDE3 inhibitors include cyclin A, cyclin D, cyclin E, and p21.
Collapse
Affiliation(s)
- Jingfei Cheng
- Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
146
|
Yamaguchi T, Wallace DP, Magenheimer BS, Hempson SJ, Grantham JJ, Calvet JP. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem 2004; 279:40419-30. [PMID: 15263001 DOI: 10.1074/jbc.m405079200] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
cAMP can be either mitogenic or anti-mitogenic, depending on the cell type. We demonstrated previously that cAMP inhibited the proliferation of normal renal epithelial cells and stimulated the proliferation of cells derived from the cysts of polycystic kidney disease (PKD) patients. The protein products of the genes causing PKD, polycystin-1 and polycystin-2, are thought to regulate intracellular calcium levels, suggesting that abnormal polycystin function may affect calcium signaling and thus cause a switch to the cAMP growth-stimulated phenotype. To test this hypothesis, we disrupted intracellular calcium mobilization by treating immortalized mouse M-1 collecting duct cells and primary cultures of human kidney epithelial cells with calcium channel blockers and by lowering extracellular calcium with EGTA. Calcium restriction for 3-5 h converted both cell types from a normal cAMP growth-inhibited phenotype to an abnormal cAMP growth-stimulated phenotype, characteristic of PKD. In M-1 cells, we showed that calcium restriction was associated with an elevation in B-Raf protein levels and cAMP-stimulated, Ras-dependent activation of B-Raf and ERK. Moreover, the activity of Akt, a negative regulator of B-Raf, was decreased by calcium restriction. Inhibition of Akt or phosphatidylinositol 3-kinase also allowed cAMP-dependent activation of B-Raf and ERK in normal calcium. These results suggest that calcium restriction causes an inhibition of the phosphatidylinositol 3-kinase/Akt pathway, which relieves the inhibition of B-Raf to allow the cAMP growth-stimulated phenotypic switch. Finally, M-1 cells stably overexpressing an inducible polycystin-1 C-terminal cytosolic tail construct were shown to exhibit a cAMP growth-stimulated phenotype involving B-Raf and ERK activation, which was reversed by the calcium ionophore A23187. We conclude that disruption of calcium mobilization in cells that are normally growth-inhibited by cAMP can derepress the B-Raf/ERK pathway, thus converting these cells to a phenotype that is growth-stimulated by cAMP.
Collapse
Affiliation(s)
- Tamio Yamaguchi
- Department of Biochemistry, the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
147
|
Motamed K, Blake DJ, Angello JC, Allen BL, Rapraeger AC, Hauschka SD, Sage EH. Fibroblast growth factor receptor-1 mediates the inhibition of endothelial cell proliferation and the promotion of skeletal myoblast differentiation by SPARC: a role for protein kinase A. J Cell Biochem 2004; 90:408-23. [PMID: 14505356 DOI: 10.1002/jcb.10645] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The role of the matricellular protein SPARC (secreted protein, acidic and rich in cysteine) in modulation of vascular cell proliferation is believed to be mediated, in part, by its ability to regulate the activity of certain growth factors through direct binding. In this study, we demonstrate that SPARC does not bind to basic fibroblast growth factor (bFGF/FGF-2) or interfere with complex formation between FGF-2 and its high-affinity FGF receptor-1 (FGFR1), yet both native SPARC and a peptide derived from the C-terminal high-affinity Ca(2+)-binding region of protein significantly inhibit ligand-induced autophosphorylation of FGFR1 (>80%), activation of mitogen-activated protein kinases (MAPKs) (>75%), and DNA synthesis in human microvascular endothelial cells (HMVEC) stimulated by FGF-2 (>80%). We also report that in the presence of FGF-2, a factor which otherwise stimulates myoblast proliferation and the repression of terminal differentiation, both native SPARC and the Ca(2+)-binding SPARC peptide significantly promote (>60%) the differentiation of the MM14 murine myoblast cell line that expresses FGFR1 almost exclusively. Moreover, using heparan sulfate proteoglycan (HSPG)-deficient myeloid cells and porcine aortic endothelial cells (PAECs) expressing chimeric FGFR1, we show that antagonism of FGFR1-mediated DNA synthesis and MAPK activation by SPARC does not require the presence of cell-surface, low-affinity FGF-2 receptors, but can be mediated by an intracellular mechanism that is independent of an interaction with the extracellular ligand-binding domain of FGFR1. We also report that the inhibitory effect of SPARC on DNA synthesis and MAPK activation in endothelial cells is mediated in part (>50%) by activation of protein kinase A (PKA), a known regulator of Raf-MAPK pathway. SPARC thus modulates the mitogenic effect of FGF-2 downstream from FGFR1 by selective regulation of the MAPK signaling cascade.
Collapse
Affiliation(s)
- Kouros Motamed
- Department of Vascular Biology, The Hope Heart Institute, Seattle, Washington 98104-2046, USA.
| | | | | | | | | | | | | |
Collapse
|
148
|
Taniguchi F, Harada T, Deura I, Iwabe T, Tsukihara S, Terakawa N. Hepatocyte growth factor promotes cell proliferation and inhibits progesterone secretion via PKA and MAPK pathways in a human granulosa cell line. Mol Reprod Dev 2004; 68:335-44. [PMID: 15112327 DOI: 10.1002/mrd.20076] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepatocyte growth factor (HGF) is a mesenchymal-derived paracrine factor that acts through a c-met receptor. The activated c-met receptor recruits various signal proteins. We used a steroidogenic human granulosa-like tumor cell line (KGN cells) to analyze the biological function of HGF in human ovary cells. First, we designed a method to analyze local production and action of HGF in the human ovary. Although c-met mRNA is expressed in KGN cells, granulosa lutein, theca, and ovarian stroma cells, we observed HGF mRNA only in theca and stroma cells. Adding HGF to the medium enhanced mitogenic activity in KGN cells. We next examined the activation of intracellular signal transduction molecules induced by HGF in KGN cells. Here, we showed that HGF activated the distinct phosphorylation of Raf-1, MEK1/2, and ERK1/2, but did not induce phosphorylation of Akt. HGF enhanced the phosphorylation of Elk-1 and c-Jun as nuclear transcription factors. U0126, a MEK1/2 inhibitor, completely abrogated the phosphorylation of ERK1/2 and the cell proliferation in response to HGF. In contrast, H-89, a protein kinase A inhibitor, further enhanced the HGF-induced phosphorylation of ERK1/2 and cell proliferation. In addition, we revealed that HGF suppressed progesterone synthesis in KGN cells. Adding HGF suppressed the forskolin-induced steroidogenic acute regulatory protein (StAR) expression, which is a key regulator in progesterone synthesis. Crosstalk signals between PKA and the mitogen-activated protein kinase (MAPK) pathway were mutually inhibitory. These results demonstrated for the first time that theca cell-derived HGF may be capable of stimulating the proliferation of granulosa cells and suppressing progesterone synthesis via an activating MAPK pathway.
Collapse
Affiliation(s)
- Fuminori Taniguchi
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, Yonago, Japan.
| | | | | | | | | | | |
Collapse
|
149
|
Pillinger MH, Rosenthal PB, Tolani SN, Apsel B, Dinsell V, Greenberg J, Chan ESL, Gomez PF, Abramson SB. Cyclooxygenase-2-derived E prostaglandins down-regulate matrix metalloproteinase-1 expression in fibroblast-like synoviocytes via inhibition of extracellular signal-regulated kinase activation. THE JOURNAL OF IMMUNOLOGY 2004; 171:6080-9. [PMID: 14634122 DOI: 10.4049/jimmunol.171.11.6080] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We examined the regulation of matrix metalloproteinase (MMP) production by mitogen-activated protein kinases and cyclooxygenases (COXs) in fibroblast-like synoviocytes (FLSCs). IL-1beta and TNF-alpha stimulated FLSC extracellular signal-regulated kinase (ERK) activation as well as MMP-1 and -13 release. Pharmacologic inhibitors of ERK inhibited MMP-1, but not MMP-13 expression. Whereas millimolar salicylates inhibited both ERK and MMP-1, nonsalicylate COX and selective COX-2 inhibitors enhanced stimulated MMP-1 release. Addition of exogenous PGE(1) or PGE(2) inhibited MMP-1, reversed the effects of COX inhibitors, and inhibited ERK activation, suggesting that COX-2 activity tonically inhibits MMP-1 production via ERK inhibition by E PGs. Exposure of FLSCs to nonselective COX and selective COX-2 inhibitors in the absence of stimulation resulted in up-regulation of MMP-1 expression in an ERK-dependent manner. Moreover, COX inhibition sufficient to reduce PGE levels increased ERK activity. Our data indicate that: 1) ERK activation mediates MMP-1 but not MMP-13 release from FLSCs, 2) COX-2-derived E PGs inhibit MMP-1 release from FLSCs via inhibition of ERK, and 3) COX inhibitors, by attenuating PGE inhibition of ERK, enhance the release of MMP-1 by FLSC.
Collapse
Affiliation(s)
- Michael H Pillinger
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Liu W, Shen X, Yang Y, Yin X, Xie J, Yan J, Jiang J, Liu W, Wang H, Sun M, Zheng Y, Gu J. Trihydrophobin 1 Is a New Negative Regulator of A-Raf Kinase. J Biol Chem 2004; 279:10167-75. [PMID: 14684750 DOI: 10.1074/jbc.m307994200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous work indicated that instead of binding to B-Raf or C-Raf, trihydrophobin 1 (TH1) specifically binds to A-Raf kinase both in vitro and in vivo. In this work, we investigated its function further. Using confocal microscopy, we found that TH1 colocalizes with A-Raf, which confirms our former results. The region of TH1 responsible for the interaction with A-Raf is mapped to amino acids 1-372. Coimmunoprecipitation experiments demonstrate that TH1 is associated with A-Raf in both quiescent and serum-stimulated cells. Wild type A-Raf binds increasingly to TH1 when it is activated by serum and/or upstream oncogenic Ras/Src compared with that of "kinase-dead" A-Raf. The latter can still bind to TH1 under the same experimental condition. The binding pattern of A-Raf implies that this interaction is mediated in part by the A-Raf kinase activity. As indicated by Raf protein kinase assays, TH1 inhibits A-Raf kinase, whereas neither B-Raf nor C-Raf kinase activity is influenced. Furthermore, we observed that TH1 inhibited cell cycle progression in TH1 stably transfected 7721 cells compared with mock cells, and flow cell cytometry analysis suggested that the TH1 stably transfected 7721 cells were G(0)/G(1) phase-arrested. Taken together, our data provide a clue to understanding the cellular function of TH1 on Raf isoform-specific regulation.
Collapse
Affiliation(s)
- Weicheng Liu
- State Key laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|