101
|
Gu B, Xu Q, Wang H, Pan H, Zhao D. A Hierarchically Nanofibrous Self-Cleaning Textile for Efficient Personal Thermal Management in Severe Hot and Cold Environments. ACS NANO 2023; 17:18308-18317. [PMID: 37703206 DOI: 10.1021/acsnano.3c05460] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Climate change has recently caused more and more severe temperatures, inducing a growing demand for personal thermal management at outdoors. However, designing textiles that can achieve personal thermoregulation without energy consumption in severely hot and cold environments remains a huge challenge. Herein, a hierarchically nanofibrous (HNF) textile with improved thermal insulation and radiative thermal management functions is fabricated for efficient personal thermal management in severe temperatures. The textile consists of a radiative cooling layer, an intermediate thermal insulation layer, and a radiative heating layer, wherein the porous lignocellulose aerogel membrane (LCAM) as intermediate layer has low thermal conductivity (0.0366 W·m-1·K-1), ensuring less heat loss in cold weather and blocking external heat in hot weather. The introduction of polydimethylsiloxane (PDMS) increases the thermal emissivity (90.4%) of the radiative cooling layer in the atmospheric window and also endows it with a perfect self-cleaning performance. Solar absorptivity (80.1%) of the radiative heating layer is dramatically increased by adding only 0.05 wt% of carbon nanotubes (CNTs) into polyacrylonitrile. An outdoor test demonstrates that the HNF textile can achieve a temperature drop of 7.2 °C compared with white cotton in a hot environment and can be as high as 12.2 °C warmer than black cotton in a cold environment. In addition, the HNF textile possesses excellent moisture permeability, breathability, and directional perspiration performances, making it promising for personal thermal management in severely hot and cold environments.
Collapse
Affiliation(s)
- Bin Gu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qihao Xu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hongkui Wang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Haodan Pan
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Dongliang Zhao
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
- Institute of Science and Technology for Carbon Neutrality, Southeast University, Nanjing, Jiangsu 210096, China
- Engineering Research Center of Building Equipment, Energy, and Environment, Ministry of Education, Nanjing, Jiangsu 210096, China
| |
Collapse
|
102
|
Liu S, Sui C, Harbinson M, Pudlo M, Perera H, Zhang Z, Liu R, Ku Z, Islam MD, Liu Y, Wu R, Zhu Y, Genzer J, Khan SA, Hsu PC, Ryu JE. A Scalable Microstructure Photonic Coating Fabricated by Roll-to-Roll "Defects" for Daytime Subambient Passive Radiative Cooling. NANO LETTERS 2023; 23:7767-7774. [PMID: 37487140 DOI: 10.1021/acs.nanolett.3c00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The deep space's coldness (∼4 K) provides a ubiquitous and inexhaustible thermodynamic resource to suppress the cooling energy consumption. However, it is nontrivial to achieve subambient radiative cooling during daytime under strong direct sunlight, which requires rational and delicate photonic design for simultaneous high solar reflectivity (>94%) and thermal emissivity. A great challenge arises when trying to meet such strict photonic microstructure requirements while maintaining manufacturing scalability. Herein, we demonstrate a rapid, low-cost, template-free roll-to-roll method to fabricate spike microstructured photonic nanocomposite coatings with Al2O3 and TiO2 nanoparticles embedded that possess 96.0% of solar reflectivity and 97.0% of thermal emissivity. When facing direct sunlight in the spring of Chicago (average 699 W/m2 solar intensity), the coatings show a radiative cooling power of 39.1 W/m2. Combined with the coatings' superhydrophobic and contamination resistance merits, the potential 14.4% cooling energy-saving capability is numerically demonstrated across the United States.
Collapse
Affiliation(s)
- Sipan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - Chenxi Sui
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27603, United States
| | - Myers Harbinson
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - Michael Pudlo
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - Himendra Perera
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - Zhenzhen Zhang
- Revibe Technologies, Wake Forest, North Carolina 27587, United States
| | - Ruguan Liu
- Robotics Department, Amazon, Inc., Westborough, Massachusetts 01581, United States
| | - Zahyun Ku
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
| | - Md Didarul Islam
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - Ronghui Wu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27603, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - Po-Chun Hsu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27603, United States
| | - Jong Eun Ryu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| |
Collapse
|
103
|
Shi S, Lv P, Valenzuela C, Li B, Liu Y, Wang L, Feng W. Scalable Bacterial Cellulose-Based Radiative Cooling Materials with Switchable Transparency for Thermal Management and Enhanced Solar Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301957. [PMID: 37231557 DOI: 10.1002/smll.202301957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Indexed: 05/27/2023]
Abstract
Radiative cooling materials that can dynamically control solar transmittance and emit thermal radiation into cold outer space are critical for smart thermal management and sustainable energy-efficient buildings. This work reports the judicious design and scalable fabrication of biosynthetic bacterial cellulose (BC)-based radiative cooling (Bio-RC) materials with switchable solar transmittance, which are developed by entangling silica microspheres with continuously secreted cellulose nanofibers during in situ cultivation. Theresulting film shows a high solar reflection (95.3%) that can be facilely switched between an opaque state and a transparent state upon wetting. Interestingly, the Bio-RC film exhibits a high mid-infrared emissivity (93.4%) and an average sub-ambient temperature drop of ≈3.7 °C at noon. When integrating with a commercially available semi-transparent solar cell, the switchable solar transmittance of Bio-RC film enables an enhancement of solar power conversion efficiency (opaque state: 0.92%, transparent state: 0.57%, bare solar cell: 0.33%). As a proof-of-concept illustration, an energy-efficient model house with its roof built with Bio-RC-integrated semi-transparent solar cell is demonstrated. This research can shine new light on the design and emerging applications of advanced radiative cooling materials.
Collapse
Affiliation(s)
- Shukuan Shi
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Pengfei Lv
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Binxuan Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300350, P. R. China
| |
Collapse
|
104
|
Tian B, Hu M, Yang Y, Wu J. A Janus membrane doped with carbon nanotubes for wet-thermal management. NANOSCALE ADVANCES 2023; 5:4579-4588. [PMID: 37638159 PMCID: PMC10448357 DOI: 10.1039/d3na00398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
In a human skin-fibrous fabric-external environment, fibrous materials, as the "second skin" of the human body, provide comfort against the wet and heat effectively. Fibrous materials protect human health and guarantee work efficiency in various outdoor or inner scenes. Personal wet-thermal management based on fibrous materials can regulate comfort in a facile manner with low or zero energy consumption, which has become a potential development area. However, realizing synergistic management of the wet and heat effectively and conveniently is a challenge in the development and production of fibrous materials. We designed and fabricated a Janus fibrous membrane composed of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA)-modified hydrophobic cotton gauze and electrospun carbon nanotubes (CNTs)-doped cellulose acetate (CA) hydrophilic fibrous membrane. Taking advantage of asymmetric wettability along its thickness direction, the Janus fibrous membrane, acting as a "liquid diode", could transport sweat/moisture from human skin to the external environment unidirectionally, which endowed a dry surface on human skin, avoiding "stickiness", and realizing wet management. Doped CNTs had good photothermal-conversion capacity, so the Janus membrane exhibited excellent heating capacity for passive radiation, so excellent synergistic wet-thermal management was obtained. The Janus membrane could be a candidate for diverse applications of fibrous membranes. Our data provide new ideas for the design and fabrication of fibrous membranes with remarkable wet-thermal management.
Collapse
Affiliation(s)
- Boyang Tian
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Miaomiao Hu
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Yiwen Yang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| | - Jing Wu
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology Beijing 100029 China
| |
Collapse
|
105
|
Zou H, Wang C, Yu J, Huang D, Yang R, Wang R. Solar spectrum management and radiative cooling film for sustainable greenhouse production in hot climates. Sci Bull (Beijing) 2023; 68:1493-1496. [PMID: 37380514 DOI: 10.1016/j.scib.2023.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Affiliation(s)
- Hao Zou
- Institute of Refrigeration and Cryogenics, Engineering Research Center of Solar Energy (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenxi Wang
- Institute of Refrigeration and Cryogenics, Engineering Research Center of Solar Energy (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaqi Yu
- Institute of Refrigeration and Cryogenics, Engineering Research Center of Solar Energy (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ronggui Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ruzhu Wang
- Institute of Refrigeration and Cryogenics, Engineering Research Center of Solar Energy (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
106
|
Wei B, Zhu H, Wu Q, Cai G, Liu Q. Capped MIM metamaterial for ultra-broadband perfect absorbing and its application in radiative cooling. APPLIED OPTICS 2023; 62:5660-5665. [PMID: 37707182 DOI: 10.1364/ao.490095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/03/2023] [Indexed: 09/15/2023]
Abstract
Radiative cooling, which needs no external energy to lower the temperature, has drawn great interest in recent years. As a potential candidate, the design of a metamaterial cooler remains a big challenge due to the complexity of the nanostructure and the low average absorptivity. In this work, a capped metal-insulator-metal metamaterial is proposed to achieve ultra-broadband perfect absorbing. The numerical results show that its average absorptivity is 94% in the 8-13 µm wavelength band under normal incidence, bringing about the excellent selective thermal emissivity in the IR atmospheric transparent window. Together with polarization insensitivity and wide angle independency, the proposed metamaterial can realize a net cooling power as high as 120.7W/m 2 under the circumstance without sunshine. As a proof of concept, it is applied to coat the heat sink of a 3D integrated circuit chip. The result shows that the temperature of the observation point lowers 18.3 K after coating. This work offers the promising application of passive radiative cooling in thermal management for personnel, electronic devices, and many others.
Collapse
|
107
|
Chen Y, Du Z, Zhang J, Zeng P, Liang H, Wang Y, Sun Q, Zhou G, Li H. Personal Microenvironment Management by Smart Textiles with Negative Oxygen Ions Releasing and Radiative Cooling Performance. ACS NANO 2023. [PMID: 37428964 DOI: 10.1021/acsnano.3c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
In recent years, significant strides have been made in the development of smart clothing, which combines traditional apparel with advanced technology. As our climate and environment undergo continuous changes, it has become critically important to invent and refine sophisticated textiles that enhance thermal comfort and human health. In this study, we present a "wearable forest-like textile". This textile is based on helical lignocellulose-tourmaline composite fibers, boasting mechanical strength that outperforms that of cellulose-based and natural macrofibers. This wearable microenvironment does more than generate approximately 18625 ions/cm3 of negative oxygen ions; it also effectively purifies particulate matter. Furthermore, our experiments demonstrate that the negative oxygen ion environment can slow fruit decay by neutralizing free radicals, suggesting promising implications for aging retardation. In addition, this wearable microenvironment reflects solar irradiation and selectively transmits human body thermal radiation, enabling effective radiative cooling of approximately 8.2 °C compared with conventional textiles. This sustainable and efficient wearable microenvironment provides a compelling textile choice that can enhance personal heat management and human health.
Collapse
Affiliation(s)
- Yipeng Chen
- College of Chemical and Material Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhichen Du
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiayi Zhang
- College of Chemical and Material Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Pei Zeng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Since and Technology, Wuhan 430022, China
| | - Huageng Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Since and Technology, Wuhan 430022, China
| | - Yixiang Wang
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Qingfeng Sun
- College of Chemical and Material Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Guomo Zhou
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
108
|
Jiang Y, Wang J, Zhou Y, Li J, Chen Z, Yao P, Ge H, Zhu B. Micro-structured polyethylene film as an optically selective and self-cleaning layer for enhancing durability of radiative coolers. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2213-2220. [PMID: 39634049 PMCID: PMC11501188 DOI: 10.1515/nanoph-2023-0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/25/2023] [Indexed: 12/07/2024]
Abstract
Passive daytime radiative cooling (PDRC) as a zero-energy cooling technology that reflects most of sunlight and emits infrared thermal radiation to outer space, has attracted much attention. However, most PDRC materials suffer dust accumulation problem during long-term use, seriously detrimental to their cooling performance. Here, we demonstrate a micro-structured polyethylene film fabricated through a scalable hot embossing lithography (named HELPE), enables good superhydrophobic property and therefore excellent self-cleaning performance as a universal protective layer for most PDRC materials. Specifically, the precisely designed three-dimensional periodic micron columns on polyethylene film allow for high water droplet contact angle of 151°, and the intrinsic molecular bindings of polyethylene endow low solar absorption (A = 3.3 %) and high mid-infrared transmission (T = 82.3 %) for negligible optical impacts on underlying PDRC materials. Taking polyvinylidene fluoride (PVDF) radiative cooler as an example, when covered with the HELPE film the net cooling performance maintains unchanged (7.5 °C in daytime and 4.5 °C in nighttime) compared to that without HELPE film. After 12 days continuous outdoor experiment, none of obvious dust accumulation can be observed on the radiative cooler covered with HELPE film. Our work offers a universal pathway for most PDRC materials toward practical applications with minimal maintenance need.
Collapse
Affiliation(s)
- Yi Jiang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, P.R. China
| | - Jiahao Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, P.R. China
| | - Yaya Zhou
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, P.R. China
| | - Jinlei Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, P.R. China
| | - Zipeng Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, P.R. China
| | - Pengcheng Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, P.R. China
| | - Haixiong Ge
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, P.R. China
| | - Bin Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210023, P.R. China
| |
Collapse
|
109
|
Lee M, Kim G, Jung Y, Pyun KR, Lee J, Kim BW, Ko SH. Photonic structures in radiative cooling. LIGHT, SCIENCE & APPLICATIONS 2023; 12:134. [PMID: 37264035 PMCID: PMC10235094 DOI: 10.1038/s41377-023-01119-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 06/03/2023]
Abstract
Radiative cooling is a passive cooling technology without any energy consumption, compared to conventional cooling technologies that require power sources and dump waste heat into the surroundings. For decades, many radiative cooling studies have been introduced but its applications are mostly restricted to nighttime use only. Recently, the emergence of photonic technologies to achieves daytime radiative cooling overcome the performance limitations. For example, broadband and selective emissions in mid-IR and high reflectance in the solar spectral range have already been demonstrated. This review article discusses the fundamentals of thermodynamic heat transfer that motivates radiative cooling. Several photonic structures such as multilayer, periodical, random; derived from nature, and associated design procedures were thoroughly discussed. Photonic integration with new functionality significantly enhances the efficiency of radiative cooling technologies such as colored, transparent, and switchable radiative cooling applications has been developed. The commercial applications such as reducing cooling loads in vehicles, increasing the power generation of solar cells, generating electricity, saving water, and personal thermal regulation are also summarized. Lastly, perspectives on radiative cooling and emerging issues with potential solution strategies are discussed.
Collapse
Affiliation(s)
- Minjae Lee
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Electronic Device Research Team, Hyundai Motor Group, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do, 16082, South Korea
| | - Gwansik Kim
- E-drive Materials Research Team, Hyundai Motor Group, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do, 16082, South Korea
| | - Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyung Rok Pyun
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical Robotics, and Energy Engineering, Dongguk University, 30 pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea
| | - Byung-Wook Kim
- E-drive Materials Research Team, Hyundai Motor Group, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do, 16082, South Korea.
- Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY, 10027, USA.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Advanced Machinery and Design (SNU-IAMD)/Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
110
|
Chen TH, Hong Y, Fu CT, Nandi A, Xie W, Yin J, Hsu PC. A kirigami-enabled electrochromic wearable variable-emittance device for energy-efficient adaptive personal thermoregulation. PNAS NEXUS 2023; 2:pgad165. [PMID: 37325025 PMCID: PMC10263260 DOI: 10.1093/pnasnexus/pgad165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
For centuries, people have put effort to improve the thermal performance of clothing to adapt to varying temperatures. However, most clothing we wear today only offers a single-mode insulation. The adoption of active thermal management devices, such as resistive heaters, Peltier coolers, and water recirculation, is limited by their excessive energy consumption and form factor for long-term, continuous, and personalized thermal comfort. In this paper, we developed a wearable variable-emittance (WeaVE) device, enabling the tunable radiative heat transfer coefficient to fill the missing gap between thermoregulation energy efficiency and controllability. WeaVE is an electrically driven, kirigami-enabled electrochromic thin-film device that can effectively tune the midinfrared thermal radiation heat loss of the human body. The kirigami design provides stretchability and conformal deformation under various modes and exhibits excellent mechanical stability after 1,000 cycles. The electronic control enables programmable personalized thermoregulation. With less than 5.58 mJ/cm2 energy input per switching, WeaVE provides 4.9°C expansion of the thermal comfort zone, which is equivalent to a continuous power input of 33.9 W/m2. This nonvolatile characteristic substantially decreases the required energy while maintaining the on-demand controllability, thereby providing vast opportunities for the next generation of smart personal thermal managing fabrics and wearable technologies.
Collapse
Affiliation(s)
- Ting-Hsuan Chen
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Yaoye Hong
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Ching-Tai Fu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Ankita Nandi
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wanrong Xie
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Po-Chun Hsu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
111
|
Zhang D, Zhang H, Xu Z, Zhao Y. Recent Advances in Electrospun Membranes for Radiative Cooling. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103677. [PMID: 37241303 DOI: 10.3390/ma16103677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Radiative cooling is an approach that maximizes the thermal emission through the atmospheric window in order to dissipate heat, while minimizing the absorption of incoming atmospheric radiation, to realize a net cooling effect without consuming energy. Electrospun membranes are made of ultra-thin fibers with high porosity and surface area, which makes them suitable for radiative cooling applications. Many studies have investigated the use of electrospun membranes for radiative cooling, but a comprehensive review that summarizes the research progress in this area is still lacking. In this review, we first summarize the basic principles of radiative cooling and its significance in achieving sustainable cooling. We then introduce the concept of radiative cooling of electrospun membranes and discuss the selection criteria for materials. Furthermore, we examine recent advancements in the structural design of electrospun membranes for improved cooling performance, including optimization of geometric parameters, incorporation of highly reflective nanoparticles, and designing multilayer structure. Additionally, we discuss dual-mode temperature regulation, which aims to adapt to a wider range of temperature conditions. Finally, we provide perspectives for the development of electrospun membranes for efficient radiative cooling. This review will provide a valuable resource for researchers working in the field of radiative cooling, as well as for engineers and designers interested in commercializing and developing new applications for these materials.
Collapse
Affiliation(s)
- Dongxue Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Haiyan Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhiguang Xu
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Yan Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
112
|
Yuan H, Liu R, Cheng S, Li W, Ma M, Huang K, Li J, Cheng Y, Wang K, Yang Y, Liang F, Tu C, Wang X, Qi Y, Liu Z. Scalable Fabrication of Dual-Function Fabric for Zero-Energy Thermal Environmental Management through Multiband, Synergistic, and Asymmetric Optical Modulations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209897. [PMID: 36720106 DOI: 10.1002/adma.202209897] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Indexed: 05/05/2023]
Abstract
Solar heating and radiative cooling techniques have been proposed for passive space thermal management to reduce the global energy burden. However, the currently used single-function envelope/coating materials can only achieve static temperature regulation, presenting limited energy savings and poor adaption to dynamic environments. In this study, a sandwich-structured fabric, composed of vertical graphene, graphene glass fiber fabric, and polyacrylonitrile nanofibers is developed, with heating and cooling functions integrated through multiband, synergistic, (solar spectrum and mid-infrared ranges) and asymmetric optical modulations on two sides of the fabric. The dual-function fabric demonstrates high adaption to the dynamic environment and superior performance in a zero-energy-input temperature regulation. Furthermore, it demonstrates ≈15.5 and ≈31.1 MJ m-2 y-1 higher annual energy savings compared to those of their cooling-only and heating-only counterparts, corresponding to ≈173.7 MT reduction in the global CO2 emission. The fabric exhibits high scalability for batch manufacturing with commercially abundant raw materials and facile technologies, providing a favorable guarantee of its mass production and use.
Collapse
Affiliation(s)
- Hao Yuan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Ruojuan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Shuting Cheng
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, China
| | - Wenjuan Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Mingyang Ma
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Kewen Huang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Junliang Li
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Yi Cheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Kun Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Yuyao Yang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Fushun Liang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Ce Tu
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Xiaobai Wang
- Department of Materials Application Research, AVIC Manufacturing Technology Institute, Beijing, 100024, China
| | - Yue Qi
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| |
Collapse
|
113
|
Gao W, Chen Y. Emerging Materials and Strategies for Passive Daytime Radiative Cooling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206145. [PMID: 36604963 DOI: 10.1002/smll.202206145] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/04/2022] [Indexed: 05/04/2023]
Abstract
In recent decades, the growing demands for energy saving and accompanying heat mitigation concerns, together with the vital goal for carbon neutrality, have drawn human attention to the zero-energy-consumption cooling technique. Recent breakthroughs in passive daytime radiative cooling (PDRC) might be a potent approach to combat the energy crisis and environmental challenges by directly dissipating ambient heat from the Earth to the cold outer space instead of only moving the heat across the Earth's surface. Despite significant progress in cooling mechanisms, materials design, and application exploration, PDRC faces potential functionalization, durability, and commercialization challenges. Herein, emerging materials and rational strategies for PDRC devices are reviewed. First, the fundamental physics and thermodynamic concepts of PDRC are examined, followed by a discussion on several categories of PDRC devices developed to date according to their implementation mechanism and material properties. Emerging strategies for performance enhancement and specific functions of PDRC are discussed in detail. Potential applications and possible directions for designing next-generation high-efficiency PDRC are also discussed. It is hoped that this review will contribute to exciting advances in PDRC and aid its potential applications in various fields.
Collapse
Affiliation(s)
- Wei Gao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Yongping Chen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
114
|
Li K, Li M, Lin C, Liu G, Li Y, Huang B. A Janus Textile Capable of Radiative Subambient Cooling and Warming for Multi-Scenario Personal Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206149. [PMID: 36807770 DOI: 10.1002/smll.202206149] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/10/2023] [Indexed: 05/11/2023]
Abstract
Textiles with radiative cooling/warming capabilities provide a green and effective solution to personal thermal comfort in different climate scenarios. However, developing multiple-mode textiles for wearing in changing climates with large temperature variation remains a challenge. Here a Janus textile is reported, comprising a polyethersulfone (PES)-Al2 O3 cooling layer optically coupled with a Ti3 C2 Tx warming layer, which can realize sub-ambient radiative cooling, solar warming, and active Joule heating. Owing to the intrinsically high refractive index of PES and the rational design of the fiber topology, the nanocomposite PES textile features a record high solar reflectance of 0.97. Accompanied by an infrared (IR) emittance of 0.91 in the atmospheric window, sub-ambient cooling of 0.5-2.5 °C is achieved near noontime in humid summer under ≈1000 W m-2 solar irradiation in Hong Kong. The simulated skin covered with the textile is ≈10 °C cooler than that with white cotton. The Ti3 C2 Tx layer provides a high solar-thermal efficiency of ≈80% and a Joule heating flux of 66 W m-2 at 2 V and 15 °C due to its excellent spectral selectivity and electrical conductivity. The switchable multiple working modes enable effective and adaptive personal thermal management in changing environments.
Collapse
Affiliation(s)
- Keqiao Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Meng Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Chongjia Lin
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Gongze Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Baoling Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- The Hong Kong University of Science and Technology Foshan Research Institute for Smart Manufacturing, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, 518000, China
| |
Collapse
|
115
|
Woo HY, Choi Y, Chung H, Lee DW, Paik T. Colloidal inorganic nano- and microparticles for passive daytime radiative cooling. NANO CONVERGENCE 2023; 10:17. [PMID: 37071232 PMCID: PMC10113424 DOI: 10.1186/s40580-023-00365-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Compared to traditional cooling systems, radiative cooling (RC) is a promising cooling strategy in terms of reducing energy consumption enormously and avoiding severe environmental issues. Radiative cooling materials (RCMs) reduce the temperature of objects without using an external energy supply by dissipating thermal energy via infrared (IR) radiation into the cold outer space through the atmospheric window. Therefore, RC has a great potential for various applications, such as energy-saving buildings, vehicles, water harvesting, solar cells, and personal thermal management. Herein, we review the recent progress in the applications of inorganic nanoparticles (NPs) and microparticles (MPs) as RCMs and provide insights for further development of RC technology. Particle-based RCMs have tremendous potential owing to the ease of engineering their optical and physical properties, as well as processibility for facile, inexpensive, and large area deposition. The optical and physical properties of inorganic NPs and MPs can be tuned easily by changing their size, shape, composition, and crystals structures. This feature allows particle-based RCMs to fulfill requirements pertaining to passive daytime radiative cooling (PDRC), which requires high reflectivity in the solar spectrum and high emissivity within the atmospheric window. By adjusting the structures and compositions of colloidal inorganic particles, they can be utilized to design a thermal radiator with a selective emission spectrum at wavelengths of 8-13 μm, which is preferable for PDRC. In addition, colloidal particles can exhibit high reflectivity in the solar spectrum through Mie-scattering, which can be further engineered by modifying the compositions and structures of colloidal particles. Recent advances in PDRC that utilize inorganic NPs and MPs are summarized and discussed together with various materials, structural designs, and optical properties. Subsequently, we discuss the integration of functional NPs to achieve functional RCMs. We describe various approaches to the design of colored RCMs including structural colors, plasmonics, and luminescent wavelength conversion. In addition, we further describe experimental approaches to realize self-adaptive RC by incorporating phase-change materials and to fabricate multifunctional RC devices by using a combination of functional NPs and MPs.
Collapse
Affiliation(s)
- Ho Young Woo
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoonjoo Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyesun Chung
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Da Won Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Taejong Paik
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
116
|
Li J, Fu Y, Zhou J, Yao K, Ma X, Gao S, Wang Z, Dai JG, Lei D, Yu X. Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. SCIENCE ADVANCES 2023; 9:eadg1837. [PMID: 37027471 PMCID: PMC10081843 DOI: 10.1126/sciadv.adg1837] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Thermal management plays a notable role in electronics, especially for the emerging wearable and skin electronics, as the level of integration, multifunction, and miniaturization of such electronics is determined by thermal management. Here, we report a generic thermal management strategy by using an ultrathin, soft, radiative-cooling interface (USRI), which allows cooling down the temperature in skin electronics through both radiative and nonradiative heat transfer, achieving temperature reduction greater than 56°C. The light and intrinsically flexible nature of the USRI enables its use as a conformable sealing layer and hence can be readily integrated with skin electronics. Demonstrations include passive cooling down of Joule heat for flexible circuits, improving working efficiency for epidermal electronics, and stabling performance outputs for skin-interfaced wireless photoplethysmography sensors. These results offer an alternative pathway toward achieving effective thermal management in advanced skin-interfaced electronics for multifunctionally and wirelessly operated health care monitoring.
Collapse
Affiliation(s)
- Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories 999077, Hong Kong, China
| | - Yang Fu
- Department of Materials Science and Engineering, The Hong Kong Institute of Clean Energy, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories 999077, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xue Ma
- Department of Materials Science and Engineering, The Hong Kong Institute of Clean Energy, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Shouwei Gao
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jian-Guo Dai
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, The Hong Kong Institute of Clean Energy, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories 999077, Hong Kong, China
| |
Collapse
|
117
|
Yang W, Xiao P, Li S, Deng F, Ni F, Zhang C, Gu J, Yang J, Kuo SW, Geng F, Chen T. Engineering Structural Janus MXene-nanofibrils Aerogels for Season-Adaptive Radiative Thermal Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302509. [PMID: 37026662 DOI: 10.1002/smll.202302509] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Aerogels have provided a significant platform for passive radiation-enabled thermal regulation, arousing extensive interest due to their capabilities of radiative cooling or heating. However, there still remains challenge of developing functionally integrated aerogels for sustainable thermal regulation in both hot and cold environment. Here, Janus structured MXene-nanofibrils aerogel (JMNA) is rationally designed via a facile and efficient way. The achieved aerogel presents the characteristic of high porosity (≈98.2%), good mechanical strength (tensile stress of ≈2 MPa, compressive stress of ≈115 kPa), and macroscopic shaping property. Based on the asymmetric structure, the JMNA with switchable functional layers can alternatively enable passive radiative heating and cooling in winter and summer, respectively. As a proof of concept, JMNA can function as a switchable thermal-regulated roof to effectively enable the inner house model to maintain >25 °C in winter and <30 °C in hot summer. This design of Janus structured aerogels with compatible and expandable capabilities is promising to widely benefit the low-energy thermal regulation in changeable climate.
Collapse
Affiliation(s)
- Weiqing Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Peng Xiao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Shan Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Feng Deng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Feng Ni
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Chang Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Jincui Gu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Jinlin Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Shiao-Wei Kuo
- Department of Material and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Fengxia Geng
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
118
|
Li X, Ji Y, Fan Z, Du P, Xu B, Cai Z. Asymmetrical Emissivity and Wettability in Stitching Treble Weave Metafabric for Synchronous Personal Thermal-Moisture Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300297. [PMID: 37026656 DOI: 10.1002/smll.202300297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Developing textiles with passive thermal management is an effective strategy to maintain the human body healthy as well as decrease energy consumption. Personal thermal management (PTM) textiles with engineered constituent element and fabric structure have been developed, however the comfortability and robustness of these textiles remains a challenge due to the complexity of passive thermal-moisture management. Here a metafabric with asymmetrical stitching treble weave based on woven structure design and yarn functionalization is developed, in which the thermal radiation regulation and moisture-wicking can be achieved simultaneously throughout the dual-mode metafabric due to its optically regulated property, multi-branched through-porous structure and surface wetting difference. With simply flipping, the metafabric enables high solar reflectivity (87.6%) and IR emissivity (94%) in the cooling mode, and a low IR emissivity of 41.3% in the heating mode. When overheating and sweating, the cooling capacity reaches to ≈9 °C owing to the synergistic effect of radiation and evaporation. Moreover, the tensile strengths of the metafabric are 46.18 MPa (warp direction) and 37.59 MPa (weft direction), respectively. This work provides a facile strategy to fabricate multi-functional integrated metafabrics with much flexibility and thus has great potential for thermal management applications and sustainable energy.
Collapse
Affiliation(s)
- Xiaoyan Li
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yating Ji
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zhuizhui Fan
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Peibo Du
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Bi Xu
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zaisheng Cai
- National Engineering Research Center for Dyeing and Finishing of Textiles, Key Lab of Science & Technology of Eco-Textile, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| |
Collapse
|
119
|
Liu X, Li Y, Pan Y, Zhou Z, Zhai Z, Liu C, Shen C. A Shish-Kebab Superstructure Film for Personal Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17188-17194. [PMID: 36946512 DOI: 10.1021/acsami.3c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to global warming and the energy crisis, incorporating passive radiative cooling into personal thermal management has attracted extensive attention. However, developing a wearable textile that reflects incoming sunlight and allows mid-infrared radiation transmission is still a tough challenge. Herein, a shish-kebab superstructure film was produced via a flow-induced crystallization strategy for personal radiative cooling. The resulting film endowed a high infrared transmittance (87%) and improved sunlight reflectivity (83%). A device was developed to simulate the human body skin, and the temperatures of the shish-kebab film were 2.5 and 2.6 °C lower than that of traditional textile in outdoor and indoor tests, respectively. In order to make the shish-kebab film more wearable, a series of modifications were then carried out. This study demonstrates the substantial potential to personal thermal management textiles.
Collapse
Affiliation(s)
- Xianhu Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Yingnuo Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Yamin Pan
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenyu Zhou
- Zhongkexin Engineering Consulting (Beijjing) Co., Ltd., Beijing 100039, China
| | - Zhanyu Zhai
- College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Chuntai Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Changyu Shen
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China
| |
Collapse
|
120
|
Fei L, Zhang ZY, Tan Y, Ye T, Dong D, Yin Y, Li T, Wang C. Efficient and Robust Molecular Solar Thermal Fabric for Personal Thermal Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209768. [PMID: 36738144 DOI: 10.1002/adma.202209768] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Molecular solar thermal (MOST) materials, which can efficiently capture solar energy and release it as heat on demand, are promising candidates for future personal thermal management (PTM) applications, preferably in the form of fabrics. However, developing MOST fabrics with high energy-storage capacity and stable working performance remains a significant challenge because of the low energy density of the molecular materials and their leakage from the fabric. Here, an efficient and robust MOST fabric for PTM using azopyrazole-containing microcapsules with a deep-UV-filter shell is reported. The MOST fabric, which can co-harvest solar and thermal energy, achieves efficient photocharging and photo-discharging (>90% photoconversion), a high energy density of 2.5 kJ m-2 , and long-term storage sustainability at month scale. Moreover, it can undergo multiple cycles of washing, rubbing, and recharging without significant loss of energy-storage capacity. This MOST microcapsule strategy is easily used for the scalable production of a MOST fabric for solar thermal moxibustion. This achievement offers a promising route for the application of wearable MOST materials with high energy-storage performance and robustness in PTM.
Collapse
Affiliation(s)
- Liang Fei
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yongsong Tan
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Ting Ye
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Dongfang Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yunjie Yin
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| |
Collapse
|
121
|
Wang Z, Zhou Z, Li CL, Liu XH, Zhang Y, Pei MM, Zhou Z, Cui DX, Hu D, Chen F, Cao WT. A Single Electronic Tattoo for Multisensory Integration. SMALL METHODS 2023; 7:e2201566. [PMID: 36811239 DOI: 10.1002/smtd.202201566] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Wearable electronics are garnering growing interest in various emerging fields including intelligent sensors, artificial limbs, and human-machine interfaces. A remaining challenge is to develop multisensory devices that can conformally adhere to the skin even during dynamic-moving environments. Here, a single electronic tattoo (E-tattoo) based on a mixed-dimensional matrix network, which integrates two-dimensional MXene nanosheets and one-dimensional cellulose nanofibers/Ag nanowires, is presented for multisensory integration. The multidimensional configurations endow the E-tattoo with excellent multifunctional sensing capabilities including temperature, humidity, in-plane strain, proximity, and material identification. In addition, benefiting from the satisfactory rheology of hybrid inks, the E-tattoos are able to be fabricated through multiple facile strategies including direct writing, stamping, screen printing, and three-dimensional printing on various hard/soft substrates. Especially, the E-tattoo with excellent triboelectric properties also can serve as a power source for activating small electronic devices. It is believed that these skin-conformal E-tattoo systems can provide a promising platform for next-generation wearable and epidermal electronics.
Collapse
Affiliation(s)
- Zheng Wang
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Zhi Zhou
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
| | - Chen-Long Li
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Xiao-Hao Liu
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
| | - Yue Zhang
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Man-Man Pei
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Zheng Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Da-Xiang Cui
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, P. R. China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Feng Chen
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, P. R. China
| | - Wen-Tao Cao
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P.R. China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, P. R. China
| |
Collapse
|
122
|
Huang T, Chen Q, Huang J, Lu Y, Xu H, Zhao M, Xu Y, Song W. Scalable Colored Subambient Radiative Coolers Based on a Polymer-Tamm Photonic Structure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16277-16287. [PMID: 36930799 DOI: 10.1021/acsami.2c23270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Daytime radiative coolers cool objects below the air temperature without any electricity input, while most of them are limited by a silvery or whitish appearance. Colored daytime radiative coolers (CDRCs) with diverse colors, scalable manufacture, and subambient cooling have not been achieved. We introduce a polymer-Tamm photonic structure to enable a high infrared emittance and an engineered absorbed solar irradiance, governed by the quality factor (Q-factor). We theoretically determine the theoretical thresholds for subambient cooling through yellow, magenta, and cyan CDRCs. We experimentally fabricate and observe a temperature drop of 2.6-8.8 °C on average during the daytime and 4.0-4.4 °C during the nighttime. Furthermore, we demonstrate a scalable-manufactured magenta CDRC with a width of 60 cm and a length of 500 cm by a roll-to-roll deposition technique. This work provides guidelines for large-scale CDRCs and offers unprecedented opportunities for potential applications with energy-saving, aesthetic, and visual comfort demands.
Collapse
Affiliation(s)
- Tianzhe Huang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Qixiang Chen
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jinhua Huang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Yuehui Lu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Hua Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Meng Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Yao Xu
- Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, People's Republic of China
| | - Weijie Song
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| |
Collapse
|
123
|
Park S, Pal SK, Otoufat T, Kim G. Radiative-Cooling Composites with Enhanced Infrared Emissivity by Structural Infrared Scattering through Indium Tin Oxide Nanoparticles in a Polymer Matrix. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16026-16033. [PMID: 36920422 DOI: 10.1021/acsami.3c00143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Radiative cooling has attracted tremendous interest as it can tackle global warming by saving energy consumption in heating, ventilation, and air conditioning (HVAC) in buildings. Polymer materials play an important role in radiative cooling owing to their high infrared emissivity. Along this line, numerous studies on optically optimized geometries were carried out to enhance the selective wavelength absorption for high infrared emissivity; however, the polymer material itself relatively was not investigated and optimized enough. Herein, we investigate the infrared radiation (IR) absorption coefficient of various polymer types, and introduce a new concept of radiative-cooling composites. By dispersing the IR scattering medium in a polymer matrix, IR can be effectively scattered and attenuated by the polymer matrix. Indium tin oxide was utilized as the IR scattering medium in a cellulose acetate polymer matrix in this report. The window film was made with this composite and showed an effective cooling performance by outdoor thermal evaluation. This composite opens a new venue to endow materials with enhanced radiative-cooling property regardless of the polymer types.
Collapse
Affiliation(s)
- Sanghun Park
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| | - Sudip Kumar Pal
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| | - Tohid Otoufat
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| | - Gunwoo Kim
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea
| |
Collapse
|
124
|
Gao F, Tong Z, Xiao W, Liu Q, Lu J, Hou Y, He Q, Gao X, Cheng D, Zhan X, Ma Y, Zhang Q. Structural Engineering of Hierarchical Aerogels Hybrid Networks for Efficient Thermal Comfort Management and Versatile Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301164. [PMID: 36919943 DOI: 10.1002/smll.202301164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
In recent years, growing concerns regarding energy efficiency and heat mitigation, along with the critical goal of carbon neutrality, have drawn human attention to the zero-energy-consumption cooling technique. Passive daytime radiative cooling (PDRC) can be an invaluable tool for combating climate change by dispersing ambient heat directly into outer space instead of just transferring it across the surface. Although significant progress has been made in cooling mechanisms, materials design, and application exploration, PDRC faces challenges regarding functionality, durability, and commercialization. Herein, a silica nanofiber aerogels (SNAs) functionalized poly(vinylidene fluoride-co-hexafluoropropene) (P(VDF-HFP)) membrane (SFP membrane), inspired by constructional engineering is constructed. As-prepared membranes with flexible network structure combined hierarchical structure design and practicability principal. As the host material for thermal comfort management (TCM) and versatile protection, the SFP membrane features a large surface area, porous structure, and a robust skeleton that can render excellent mechanical properties. Importantly, the SFP membrane can keep exceptional solar reflectivity (0.95) and strong mid-infrared emittance (0.98) drop the temperature to 12.5 °C below ambient and 96 W m-2 cooling power under typical solar intensities over 910 W m-2 . This work provides a promising avenue for high performance aerogel membranes that can be created for use in a wide variety of applications.
Collapse
Affiliation(s)
- Feng Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zheming Tong
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weiqiang Xiao
- Research department of technology center, Zhejiang China Tobacco Industry Co., Ltd, Hangzhou, 310027, China
| | - Quan Liu
- Special polymer research institute, Quzhou Research Institute Zhejiang University, Quzhou, 324000, China
| | - Jianguo Lu
- State Key Laboratory of Silicon Materials, Key Laboratory for Biomedical Engineering of Ministry of Education, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Hou
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China
- Special polymer research institute, Quzhou Research Institute Zhejiang University, Quzhou, 324000, China
| | - Qinggang He
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiang Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dangguo Cheng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China
- Special polymer research institute, Quzhou Research Institute Zhejiang University, Quzhou, 324000, China
| | - Xiaoli Zhan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China
- Special polymer research institute, Quzhou Research Institute Zhejiang University, Quzhou, 324000, China
| | - Yaoguang Ma
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Qinghua Zhang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, 310027, China
- Special polymer research institute, Quzhou Research Institute Zhejiang University, Quzhou, 324000, China
| |
Collapse
|
125
|
Yang M, Ye Z, Ren Y, Farhat M, Chen PY. Recent Advances in Nanomaterials Used for Wearable Electronics. MICROMACHINES 2023; 14:603. [PMID: 36985010 PMCID: PMC10053072 DOI: 10.3390/mi14030603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
In recent decades, thriving Internet of Things (IoT) technology has had a profound impact on people's lifestyles through extensive information interaction between humans and intelligent devices. One promising application of IoT is the continuous, real-time monitoring and analysis of body or environmental information by devices worn on or implanted inside the body. This research area, commonly referred to as wearable electronics or wearables, represents a new and rapidly expanding interdisciplinary field. Wearable electronics are devices with specific electronic functions that must be flexible and stretchable. Various novel materials have been proposed in recent years to meet the technical challenges posed by this field, which exhibit significant potential for use in different wearable applications. This article reviews recent progress in the development of emerging nanomaterial-based wearable electronics, with a specific focus on their flexible substrates, conductors, and transducers. Additionally, we discuss the current state-of-the-art applications of nanomaterial-based wearable electronics and provide an outlook on future research directions in this field.
Collapse
Affiliation(s)
- Minye Yang
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Zhilu Ye
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yichong Ren
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Mohamed Farhat
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
126
|
Cai Y, Zhang Z, Yang Z, Fang Z, Chen S, Zhang X, Li W, Zhang Y, Zhang H, Sun Z, Zhang Y, Li Y, Liu L, Zhang W, Xue X. Performance of a superamphiphobic self-cleaning passive subambient daytime radiative cooling coating on grain and oil storage structures. Heliyon 2023; 9:e14599. [PMID: 37089341 PMCID: PMC10114159 DOI: 10.1016/j.heliyon.2023.e14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
The thermal performance of a novel exterior coating material for commonly used grain and food-grain oil structures was investigated. Grain structures included a concrete squat silo and a concrete warehouse while the edible oil structure was a concrete sided tank. The exterior coating provided excellent moisture runoff and solar reflectance properties and is best described as a superamphiphobic self-cleaning passive subambient daytime radiative cooling (SSC-PSDRC) coating. The coating exhibited a remarkable subambient daytime cooling effect in various structures in different climatic regions. Compared with the roof surface temperatures of a cool white-coated concrete grain silo and a gray carbon iron-based edible oil storage tank, those of the PSDRC coated top surfaces could be reduced by 37 °C and 33 °C, respectively. The roof surface temperature of a warehouse painted with a cool-white coating-with a solar reflectance of 0.9 and an emissivity of 0.85-and that of a warehouse with the roof installed with aluminised polymer waterproof membranes were 19 °C and 18 °C higher than that of the PSDRC warehouse, respectively. Consequently, the interior temperature of the wheat pile in the PSDRC grain silo was 10 °C lower than that in the control squat silo. With the inner loop flow temperature control system operating, the interior air temperatures of the PSDRC west-facing separate space were 6 °C and 3 °C higher than those of the cool-white coated and control west-facing separate spaces, respectively. Even after the application of PSDRC coating for only a few days, the interior air temperature of the PSDRC oil storage tank was reduced by 38 °C, and the interior temperature of the oil storage tank was reduced by 4 °C. Furthermore, in practical applications, the coating showed impressive superamphiphobic self-cleaning capabilities and super aging resistance. The wide applications of the coating would have far-reaching, global implications for maintaining grain and edible oil products, particularly in the sub-tropical climates.
Collapse
Affiliation(s)
- Yuanzhu Cai
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Zihan Zhang
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
- Department of Information and Art Design, Henan Forestry Vocational College, Luoyang, 471002, China
| | - Zhuo Yang
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Zhi Fang
- Zhangjiagang Grain Purchase and Sales Corporation, Zhangjiagang, 215600, China
| | - Shuping Chen
- School of Computer Science and Technology, Xinjiang Normal University, Urumqi, 830054, China
| | - Xiaolong Zhang
- Xinjiang Uygur Autonomous Region Grain Reserve Management Co., Ltd., Urumqi, 830015, China
| | - Wen Li
- School of Computer Science and Technology, Xinjiang Normal University, Urumqi, 830054, China
| | - Yinghua Zhang
- Xinjiang Uygur Autonomous Region Grain Reserve Management Co., Ltd., Urumqi, 830015, China
| | - Hongqiang Zhang
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Zhipeng Sun
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Yangang Zhang
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Yanwen Li
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Lianhua Liu
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Weidong Zhang
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
- Corresponding author.
| | - Xiao Xue
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
- Corresponding author.
| |
Collapse
|
127
|
Yang X, Geng J, Tan X, Liu M, Yao S, Tu Y, Li S, Qiao Y, Qi G, Xu R, Nie S. A flexible PDMS@ZrO2 film for highly efficient passive radiative cooling. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
128
|
Zhu Y, Haghniaz R, Hartel MC, Guan S, Bahari J, Li Z, Baidya A, Cao K, Gao X, Li J, Wu Z, Cheng X, Li B, Emaminejad S, Weiss PS, Khademhosseini A. A Breathable, Passive-Cooling, Non-Inflammatory, and Biodegradable Aerogel Electronic Skin for Wearable Physical-Electrophysiological-Chemical Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209300. [PMID: 36576895 PMCID: PMC10006339 DOI: 10.1002/adma.202209300] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Real-time monitoring of human health can be significantly improved by designing novel electronic skin (E-skin) platforms that mimic the characteristics and sensitivity of human skin. A high-quality E-skin platform that can simultaneously monitor multiple physiological and metabolic biomarkers without introducing skin discomfort or irritation is an unmet medical need. Conventional E-skins are either monofunctional or made from elastomeric films that do not include key synergistic features of natural skin, such as multi-sensing, breathability, and thermal management capabilities in a single patch. Herein, a biocompatible and biodegradable E-skin patch based on flexible gelatin methacryloyl aerogel (FGA) for non-invasive and continuous monitoring of multiple biomarkers of interest is engineered and demonstrated. Taking advantage of cryogenic temperature treatment and slow polymerization, FGA is fabricated with a highly interconnected porous structure that displays good flexibility, passive-cooling capabilities, and ultra-lightweight properties that make it comfortable to wear for long periods of time. It also provides numerous permeable capillary channels for thermal-moisture transfer, ensuring its excellent breathability. Therefore, the engineered FGA-based E-skin can simultaneously monitor body temperature, hydration, and biopotentials via electrophysiological sensors and detect glucose, lactate, and alcohol levels via electrochemical sensors. This work offers a previously unexplored materials strategy for next-generation E-skin platforms with superior practicality.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shenghan Guan
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Mork Family Department of Chemical Engineering & Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90007, USA
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Zijie Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Mork Family Department of Chemical Engineering & Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90007, USA
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ke Cao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Zhuohong Wu
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xuanbing Cheng
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Manufacturing Systems Engineering and Management, California State University Northridge, Northridge, CA, 91330, USA
| | - Sam Emaminejad
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
129
|
Srirodpai O, Wootthikanokkhan J, Nawalertpanya S. Thermochromic and temperature regulation properties of phase change materials derived from polymer composites loaded with
VO
2
particles. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Onruthai Srirodpai
- Materials Technology Program School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi (KMUTT) Bangkok Thailand
| | - Jatuphorn Wootthikanokkhan
- Materials Technology Program School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi (KMUTT) Bangkok Thailand
| | - Saiwan Nawalertpanya
- Department of Chemical Engineering Faculty of Engineering King Mongkut's University of Technology Thonburi (KMUTT) Bangkok Thailand
| |
Collapse
|
130
|
Cai X, Gao L, Wang J, Li D. MOF-Integrated Hierarchical Composite Fiber for Efficient Daytime Radiative Cooling and Antibacterial Protective Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8537-8545. [PMID: 36726324 DOI: 10.1021/acsami.2c21832] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Incorporating passive radiative cooling into textiles is an effective way to improve individual personalized thermophysiological comfort for the human body. Based on radiative cooling textile design, rational functionalization further facilitates practical applications, especially for medical protective products with customized requirements. Herein, we present a hierarchical polyurethane/metal-organic framework (MOF) composite nanofiber membrane with an integrated radiative cooling effect and photocatalytic antibacterial property. Fabricated by a scalable electrospinning method, the hierarchical nanofiber membrane shows high solar reflectance of 97% and improved thermal emissivity of 93% attributed to the abundant chemical bonds in ZIF-8 nanoparticles, rendering a temperature drop of ∼7.2 °C under direct sunlight and ∼5.5 °C at night. In addition, the photocatalytic activity of ZIF-8 ensures a 96% bacterial mortality rate for preventing bacterial infection. In practical application, our composite fabric can prevent superheating by 4.4 °C compared with the traditional protective suit under direct sunlight. Along with its anti-infection ability, the composite fabric is desirable for medical protective textiles. The innovative integration of passive radiative cooling design and functional MOFs breaks through the traditional cooling mode and provides huge substantial advantages for smart textiles and personal cooling applications.
Collapse
Affiliation(s)
- Xuan Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Liang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
131
|
Lei L, Shi S, Wang D, Meng S, Dai JG, Fu S, Hu J. Recent Advances in Thermoregulatory Clothing: Materials, Mechanisms, and Perspectives. ACS NANO 2023; 17:1803-1830. [PMID: 36727670 DOI: 10.1021/acsnano.2c10279] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Personal thermal management (PTM) is a promising approach for maintaining the thermal comfort zone of the human body while minimizing the energy consumption of indoor buildings. Recent studies have reported the development of numerous advanced textiles that enable PTM systems to regulate body temperature and are comfortable to wear. Herein, recent advancements in thermoregulatory clothing for PTM are discussed. These advances in thermoregulatory clothing have focused on enhancing the control of heat dissipation between the skin and the localized environment. We primarily summarize research on advanced clothing that controls the heat dissipation pathways of the human body, such as radiation- and conductance-controlled clothing. Furthermore, adaptive clothing such as dual-mode textiles, which can regulate the microclimate of the human body, as well as responsive textiles that address both thermal performance (warming and/or cooling) and wearability are discussed. Finally, we include a discussion on significant challenges and perspectives in this field, including large-scale production, smart textiles, bioinspired clothing, and AI-assisted clothing. This comprehensive review aims to further the development of sustainably manufactured advanced clothing with superior thermal performance and outstanding wearability for PTM in practical applications.
Collapse
Affiliation(s)
- Leqi Lei
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong SAR, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong SAR, China
| | - Dong Wang
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong SAR, China
- Key Laboratory of Eco-Textile, College of Textiles and Clothing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu214122, China
| | - Shuo Meng
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong SAR, China
| | - Jian-Guo Dai
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Shaohai Fu
- Key Laboratory of Eco-Textile, College of Textiles and Clothing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu214122, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong SAR, China
| |
Collapse
|
132
|
Qin J, Lin Z, Liang J, Liao D, Luo J, Huo Y, Gao L. Arrested Phase Separation Enables Optimal Light Management toward High-Performance Passive Radiative Cooling Film. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Jinfeng Qin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zequn Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianlun Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Daihui Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiye Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Liang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, China
| |
Collapse
|
133
|
Yang M, Zhong H, Li T, Wu B, Wang Z, Sun D. Phase Change Material Enhanced Radiative Cooler for Temperature-Adaptive Thermal Regulation. ACS NANO 2023; 17:1693-1700. [PMID: 36633491 DOI: 10.1021/acsnano.2c11916] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Passive radiative cooling (PRC), as an electricity-free and environmentally friendly cooling strategy, is highly desirable in improving the global energy landscape. Despite numerous efforts, most designs for PRC are so devoted to improving the cooling performance in the daytime that they neglect the triggered overcooling at night. Herein, we approached an effective design for temperature-adaptive thermal management through integrating PRC and temperature control of room-temperature phase change material. Compared with conventional radiative coolers, the developed phase change material-enhanced radiative cooler (PCMRC) can adjust its performance according to the temperature of day and night. The PCMRC achieved an average subambient temperature drop of ∼6.3 °C under direct sunlight and an average temperature rise of ∼2.1 °C above ambient temperature at night, as well as a reduced temperature difference between day and night. The temperature-adaptive PCMRC shows great promise for passive radiative cooling regulation, which can further extend the applications of passive radiative cooling.
Collapse
Affiliation(s)
- Meng Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hongmei Zhong
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Tao Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bangyao Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Dazhi Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
134
|
Liu H, Zhou F, Shi X, Sun K, Kou Y, Das P, Li Y, Zhang X, Mateti S, Chen Y, Wu ZS, Shi Q. A Thermoregulatory Flexible Phase Change Nonwoven for All-Season High-Efficiency Wearable Thermal Management. NANO-MICRO LETTERS 2023; 15:29. [PMID: 36598606 PMCID: PMC9813330 DOI: 10.1007/s40820-022-00991-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Phase change materials have a key role for wearable thermal management, but suffer from poor water vapor permeability, low enthalpy value and weak shape stability caused by liquid phase leakage and intrinsic rigidity of solid-liquid phase change materials. Herein, we report for the first time a versatile strategy for designed assembly of high-enthalpy flexible phase change nonwovens (GB-PCN) by wet-spinning hybrid graphene-boron nitride (GB) fiber and subsequent impregnating paraffins (e.g., eicosane, octadecane). As a result, our GB-PCN exhibited an unprecedented enthalpy value of 206.0 J g-1, excellent thermal reliability and anti-leakage capacity, superb thermal cycling ability of 97.6% after 1000 cycles, and ultrahigh water vapor permeability (close to the cotton), outperforming the reported PCM films and fibers to date. Notably, the wearable thermal management systems based on GB-PCN for both clothing and face mask were demonstrated, which can maintain the human body at a comfortable temperature range for a significantly long time. Therefore, our results demonstrate huge potential of GB-PCN for human-wearable passive thermal management in real scenarios.
Collapse
Affiliation(s)
- Hanqing Liu
- Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Feng Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Xiaoyu Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Keyan Sun
- Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Yan Kou
- Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Yangeng Li
- Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Xinyu Zhang
- Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Srikanth Mateti
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Ying Chen
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia.
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| | - Quan Shi
- Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| |
Collapse
|
135
|
Liang J, Wu J, Guo J, Li H, Zhou X, Liang S, Qiu CW, Tao G. Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl Sci Rev 2023; 10:nwac208. [PMID: 36684522 PMCID: PMC9843130 DOI: 10.1093/nsr/nwac208] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023] Open
Abstract
Photonic structures at the wavelength scale offer innovative energy solutions for a wide range of applications, from high-efficiency photovoltaics to passive cooling, thus reshaping the global energy landscape. Radiative cooling based on structural and material design presents new opportunities for sustainable carbon neutrality as a zero-energy, ecologically friendly cooling strategy. In this review, in addition to introducing the fundamentals of the basic theory of radiative cooling technology, typical radiative cooling materials alongside their cooling effects over recent years are summarized and the current research status of radiative cooling materials is outlined and discussed. Furthermore, technical challenges and potential advancements for radiative cooling are forecast with an outline of future application scenarios and development trends. In the future, radiative cooling is expected to make a significant contribution to global energy saving and emission reduction.
Collapse
Affiliation(s)
- Jun Liang
- Wuhan National Laboratory for Optoelectronics and Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiawei Wu
- Wuhan National Laboratory for Optoelectronics and Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Guo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Huagen Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Xianjun Zhou
- Wuhan National Laboratory for Optoelectronics and Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sheng Liang
- Key Laboratory of Education Ministry on Luminescence and Optical Information Technology, National Physical Experiment Teaching Demonstration Center, Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Guangming Tao
- Wuhan National Laboratory for Optoelectronics and Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
136
|
Gong X, Yin X, Wang F, Liu X, Yu J, Zhang S, Ding B. Electrospun Nanofibrous Membranes: A Versatile Medium for Waterproof and Breathable Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205067. [PMID: 36403221 DOI: 10.1002/smll.202205067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Waterproof and breathable membranes that prevent liquid water penetration, while allowing air and moisture transmission, have attracted significant attention for various applications. Electrospun nanofiber materials with adjustable pore structures, easily tunable wettability, and good pore connectivity, have shown significant potential for constructing waterproof and breathable membranes. Herein, a systematic overview of the recent progress in the design, fabrication, and application of waterproof and breathable nanofibrous membranes is provided. The various strategies for fabricating the membranes mainly including one-step electrospinning and post-treatment of nanofibers are given as a starting point for the discussion. The different design concepts and structural characteristics of each type of waterproof and breathable membrane are comprehensively analyzed. Then, some representative applications of the membranes are highlighted, involving personal protection, desalination, medical dressing, and electronics. Finally, the challenges and future perspectives associated with waterproof and breathable nanofibrous membranes are presented.
Collapse
Affiliation(s)
- Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Fei Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xiaoyan Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| |
Collapse
|
137
|
He C, Zhao P, Zhang H, Chen K, Liu B, Lu Z, Li Y, La P, Liu G, Gao X. Efficient Warming Textile Enhanced by a High-Entropy Spectrally Selective Nanofilm with High Solar Absorption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204817. [PMID: 36446628 PMCID: PMC9875644 DOI: 10.1002/advs.202204817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Solar and radiative warming are smart approaches to maintaining the human body at a metabolically comfortable temperature in both indoor and outdoor scenarios. Nevertheless, existing warming textiles are ineffective in frigid climates because the solar absorption of selective absorbing coating is significantly reduced when coated on rough textile surface. Herein, for the first time, high-entropy nitrides based spectrally selective film (SSF) is introduced on common cotton through a one-step magnetron sputtering method. The well-designed refractive index gradient enables destructive interference effects, offering a roughness-insensitive high solar absorptance (92.8%) and low thermal emittance (39.2%). Impressively, the solar absorptance is 9.1% higher than the reported best-performing selective nanofilm-based textile. As a result, such a textile achieves a record-high photothermal conversion efficiency (82.2% under 0.6 suns, at 0 °C). This textile yields a 3.5 °C drop in the set-point of indoor air-conditioner temperature. Besides, in a winter morning with an air temperature of 7.5 °C, it warms up the human skin by as large as 12 °C under weak sunlight (350 W m-2 ). More importantly, such a superior radiative warming performance is achieved by engineering the widely used cotton without compromising its breathability and durability, showing great potential for practical applications.
Collapse
Affiliation(s)
- Cheng‐Yu He
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsSchool of Materials Science and EngineeringLanzhou University of TechnologyLanzhou730050China
| | - Peng Zhao
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Hong Zhang
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Kai Chen
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Bao‐Hua Liu
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Zhong‐Wei Lu
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Yang Li
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Pei‐Qing La
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsSchool of Materials Science and EngineeringLanzhou University of TechnologyLanzhou730050China
| | - Gang Liu
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiang‐Hu Gao
- Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
138
|
Park C, Park C, Park S, Lee J, Choi JH, Kim YS, Yoo Y. Passive Daytime Radiative Cooling by Thermoplastic Polyurethane Wrapping Films with Controlled Hierarchical Porous Structures. CHEMSUSCHEM 2022; 15:e202201842. [PMID: 36269116 DOI: 10.1002/cssc.202201842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Current research has focused on effective solutions to mitigate global warming and the accelerating greenhouse gas emissions. Compared to most cooling methods requiring energy and resources, passive daytime radiative cooling (PDRC) technology offers excellent energy savings as it requires no energy consumption. However, existing PDRC materials encounter unprecedented problems such as complex structures, low flexibility, and performance degradation after stretching. Thus, this study reports a porous structured thermoplastic polyurethane (TPU) film with bimodal pores to produce high-efficiency PDRC with efficient solar scattering using a simple process. The TPU film exhibited an adequately high solar reflectivity of 0.93 and an emissivity of 0.90 in the atmospheric window to achieve an ambient cooling of 5.6 °C at midday under a solar intensity of 800 W m-2 . Thus, the highly elastic and flexible TPU film was extremely suitable for application on objects with complex shapes. The radiative cooling performance of 3D-printed models covered with these TPU films demonstrated their superior indoor cooling efficiency compared to commercial white paint (8.76 °C). Thus, the proposed design of high-efficiency PDRC materials is applicable in various urban infrastructural objects such as buildings and vehicles.
Collapse
Affiliation(s)
- Choyeon Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 (Republic of, Korea
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134 (Republic of, Korea
| | - Chanil Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 (Republic of, Korea
| | - Sungmin Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 (Republic of, Korea
| | - Jaeho Lee
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, California, 92617, United States
| | - Jae-Hak Choi
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134 (Republic of, Korea
| | - Yong Seok Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 (Republic of, Korea
| | - Youngjae Yoo
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong, 17546 (Republic of, Korea
| |
Collapse
|
139
|
Ren S, Han M, Fang J. Personal Cooling Garments: A Review. Polymers (Basel) 2022; 14:5522. [PMID: 36559889 PMCID: PMC9785808 DOI: 10.3390/polym14245522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Thermal comfort is of critical importance to people during hot weather or harsh working conditions to reduce heat stress. Therefore, personal cooling garments (PCGs) is a promising technology that provides a sustainable solution to provide direct thermal regulation on the human body, while at the same time, effectively reduces energy consumption on whole-building cooling. This paper summarizes the current status of PCGs, and depending on the requirement of electric power supply, we divide the PCGs into two categories with systematic instruction on the cooling materials, working principles, and state-of-the-art research progress. Additionally, the application fields of different cooling strategies are presented. Current problems hindering the improvement of PCGs, and further development recommendations are highlighted, in the hope of fostering and widening the prospect of PCGs.
Collapse
Affiliation(s)
| | | | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215006, China
| |
Collapse
|
140
|
Liu H, Yu J, Zhang S, Ding B. Air-Conditioned Masks Using Nanofibrous Networks for Daytime Radiative Cooling. NANO LETTERS 2022; 22:9485-9492. [PMID: 36469697 DOI: 10.1021/acs.nanolett.2c03585] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Face masks, as effective measures for passive air pollution control, are of fundamental importance, especially with the outbreak of emerging infectious diseases. Most existing masks are dense or thick, resulting in a lack of thermal/humidity comfort level; despite being worn tightly, they show limited PM0.3/pathogen removal. Here, we use a facile strategy to create air-conditioned masks using heterogeneous nanofibrous networks, based on an electrospinning/netting technique. Manipulation of the phase separation and self-assembly of charged jet/droplets by control of humidity-induced double diffusion and Taylor cone instability allows for the generation of air-conditioned masks consisting of radiative cooling wrinkled nanofibers and 2D nanostructured networks. Our masks show desirable microenvironment with high-efficiency PM0.3 removal (>99.988%), low air resistance (0.07% of atmospheric pressure), and remarkable radiative cooling capacity (∼2.8 °C temperature and ∼10% humidity drop), making high-performance filtration and temperature/humidity management "always online". This work should make possible the development of high-performance, energy-saving, and scalable fiber textiles for various applications.
Collapse
Affiliation(s)
- Hui Liu
- Innovation Center for Textile Science and Technology, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| |
Collapse
|
141
|
Du M, Huang M, Yu X, Ren X, Sun Q. Structure Design of Polymer-Based Films for Passive Daytime Radiative Cooling. MICROMACHINES 2022; 13:2137. [PMID: 36557436 PMCID: PMC9782091 DOI: 10.3390/mi13122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Passive daytime radiative cooling (PDRC), a cooling method that needs no additional energy, has become increasingly popular in recent years. The combination of disordered media and polymeric photonics will hopefully lead to the large-scale fabrication of high-performance PDRC devices. This work aims to study two typical PDRC structures, the randomly distributed silica particle (RDSP) structure and the porous structure, and systematically investigates the effects of structural parameters (diameter D, volume fraction fv, and thickness t) on the radiative properties of the common plastic materials. Through the assistance of the metal-reflective layer, the daytime cooling power Pnet of the RDSP structures is slightly higher than that of the porous structures. Without the metal-reflective layer, the porous PC films can still achieve good PDRC performance with Pnet of 86 W/m2. Furthermore, the effective thermal conductivity of different structures was evaluated. The single-layer porous structure with optimally designed architecture can achieve both good optical and insulating performance, and it is the structure with the most potential in PDRC applications. The results can provide guidelines for designing high-performance radiative cooling films.
Collapse
Affiliation(s)
- Mu Du
- Institute for Advanced Technology, Shandong University, Jinan 250061, China
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Maoquan Huang
- Institute for Advanced Technology, Shandong University, Jinan 250061, China
- Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China
| | - Xiyu Yu
- Institute for Advanced Technology, Shandong University, Jinan 250061, China
| | - Xingjie Ren
- Institute for Advanced Technology, Shandong University, Jinan 250061, China
| | - Qie Sun
- Institute for Advanced Technology, Shandong University, Jinan 250061, China
- Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China
| |
Collapse
|
142
|
Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic Fibers/Fabrics for Wearables and Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203808. [PMID: 36253094 PMCID: PMC9762321 DOI: 10.1002/advs.202203808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Wearables and bioelectronics rely on breathable interface devices with bioaffinity, biocompatibility, and smart functionality for interactions between beings and things and the surrounding environment. Elastic fibers/fabrics with mechanical adaptivity to various deformations and complex substrates, are promising to act as fillers, carriers, substrates, dressings, and scaffolds in the construction of biointerfaces for the human body, skins, organs, and plants, realizing functions such as energy exchange, sensing, perception, augmented virtuality, health monitoring, disease diagnosis, and intervention therapy. This review summarizes and highlights the latest breakthroughs of elastic fibers/fabrics for wearables and bioelectronics, aiming to offer insights into elasticity mechanisms, production methods, and electrical components integration strategies with fibers/fabrics, presenting a profile of elastic fibers/fabrics for energy management, sensors, e-skins, thermal management, personal protection, wound healing, biosensing, and drug delivery. The trans-disciplinary application of elastic fibers/fabrics from wearables to biomedicine provides important inspiration for technology transplantation and function integration to adapt different application systems. As a discussion platform, here the main challenges and possible solutions in the field are proposed, hopefully can provide guidance for promoting the development of elastic e-textiles in consideration of the trade-off between mechanical/electrical performance, industrial-scale production, diverse environmental adaptivity, and multiscenario on-spot applications.
Collapse
Affiliation(s)
- Yufan Zhang
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Jiahui Zhou
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Yue Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Desuo Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ken Tye Yong
- School of Biomedical EngineeringThe University of SydneySydneyNew South Wales2006Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| |
Collapse
|
143
|
Yao P, Chen Z, Liu T, Liao X, Yang Z, Li J, Jiang Y, Xu N, Li W, Zhu B, Zhu J. Spider-Silk-Inspired Nanocomposite Polymers for Durable Daytime Radiative Cooling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2208236. [PMID: 36255146 DOI: 10.1002/adma.202208236] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Passive daytime radiative cooling (PDRC) materials, that strongly reflect sunlight and emit thermal radiation to outer space, demonstrate great potential in energy-saving for sustainable development. Particularly, polymer-based PDRC materials, with advantages of easy-processing, low cost, and outstanding cooling performance, have attracted intense attention. However, just like other polymer devices (for example polymer solar cells) working under sunlight, the issue of durability related to mechanical and UV properties needs to be addressed for large-scale practical applications. Here, a spider-silk-inspired design of nanocomposite polymers with potassium titanate (K2 Ti6 O13 ) nanofiber dopants is proposed for enhancing the durability without compromising their cooling performance. The formed tough interface of nanofiber/polymer effectively disperses stress, enhancing the mechanical properties of the polymer matrix; while the K2 Ti6 O13 can absorb high-energy UV photons and transform them into less harmful heat, thereby improving the UV stabilities. Taking poly(ethylene oxide) radiative cooler as an example for demonstration, its Young's modulus and UV resistance increase by 7 and 12 times, respectively. Consequently, the solar reflectance of nanocomposite poly(ethylene oxide) is maintained as constant in a continuous aging test for 720 h under outdoor sunlight. The work provides a general strategy to simultaneously enhance both the mechanical stability and the UV durability of polymer-based PDRC materials toward large-scale applications.
Collapse
Affiliation(s)
- Pengcheng Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Zipeng Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Tianji Liu
- GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Xiangbiao Liao
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhengwei Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jinlei Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi Jiang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Ning Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei Li
- GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, P. R. China
| | - Bin Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
144
|
Wang Z, Li J, Qiao Y, Liu X, Zheng Y, Li Z, Shen J, Zhang Y, Zhu S, Jiang H, Liang Y, Cui Z, Chu PK, Wu S. Rapid Ferroelectric-Photoexcited Bacteria-Killing of Bi 4Ti 3O 12/Ti 3C 2T x Nanofiber Membranes. ADVANCED FIBER MATERIALS 2022; 5:484-496. [PMID: 36466134 PMCID: PMC9707173 DOI: 10.1007/s42765-022-00234-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 05/20/2023]
Abstract
In this study, an antibacterial nanofiber membrane [polyvinylidene fluoride/Bi4Ti3O12/Ti3C2T x (PVDF/BTO/Ti3C2T x )] is fabricated using an electrostatic spinning process, in which the self-assembled BTO/Ti3C2T x heterojunction is incorporated into the PVDF matrix. Benefiting from the internal electric field induced by the spontaneously ferroelectric polarization of BTO, the photoexcited electrons and holes are driven to move in the opposite direction inside BTO, and the electrons are transferred to Ti3C2T x across the Schottky interface. Thus, directed charge separation and transfer are realized through the cooperation of the two components. The recombination of electron-hole pairs is maximumly inhibited, which notably improves the yield of reactive oxygen species by enhancing photocatalytic activity. Furthermore, the nanofiber membrane with an optimal doping ratio exhibits outstanding visible light absorption and photothermal conversion performance. Ultimately, photothermal effect and ferroelectric polarization enhanced photocatalysis endow the nanofiber membrane with the ability to kill 99.61% ± 0.28% Staphylococcus aureus and 99.71% ± 0.16% Escherichia coli under 20 min of light irradiation. This study brings new insights into the design of intelligent antibacterial textiles through a ferroelectric polarization strategy. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-022-00234-8.
Collapse
Affiliation(s)
- Zhiying Wang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Jianfang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Yuqian Qiao
- School of Materials Science and Engineering, Peking University, Beijing, 100871 China
| | - Xiangmei Liu
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401 China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871 China
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Zhaoyang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Shengli Zhu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Hui Jiang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Yanqin Liang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Zhenduo Cui
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077 China
| | - Shuilin Wu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
- School of Materials Science and Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
145
|
Guo M, Peng Y, Chen Z, Sheng N, Sun F. Smart Humidly Adaptive Yarns and Textiles from Twisted and Coiled Viscose Fiber Artificial Muscles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8312. [PMID: 36499808 PMCID: PMC9739715 DOI: 10.3390/ma15238312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The self-adaptive nature of smart textiles to the ambient environment has made them an indispensable part of emerging wearable technologies. However, current advances generally suffer from complex material preparation, uncomfortable fitting feeling, possible toxicity, and high cost in fabrication, which hinder the real-world application of smart materials in textiles. Herein, humidity-response torsional and tensile yarn actuators from twisted and coiled structures are developed using commercially available, cost-effective, and biodegradable viscose fibers based on yarn-spinning and weaving technologies. The twisted yarn shows a reversible torsional stroke of 1400° cm-1 in 5 s when stimulated by water fog with a spraying speed of 0.05 g s-1; the coiled yarn exhibits a peak tensile stroke of 900% upon enhancing the relative humidity. Further, textile manufacturing allows for the scalable fabrication to create fabric artificial muscles with high-dimensional actuation deformations and human-touch comfort, which can boost the potential applications of the humidly adaptive yarns in smart textile and advanced textile materials.
Collapse
Affiliation(s)
- Mingrui Guo
- MOE Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China
| | - Yangyang Peng
- MOE Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, Jiangnan University, Wuxi 214122, China
| | - Zihan Chen
- College of Fashion Design, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Nan Sheng
- MOE Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, Jiangnan University, Wuxi 214122, China
| | - Fengxin Sun
- MOE Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
146
|
Wang HD, Xue CH, Ji ZY, Huang MC, Jiang ZH, Liu BY, Deng FQ, An QF, Guo XJ. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51307-51317. [PMID: 36320188 DOI: 10.1021/acsami.2c14789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Passive daytime radiative cooling (PDRC) technology provides an eco-friendly cooling strategy by reflecting sunlight reaching the surface and radiating heat underneath to the outer space through the atmospheric transparency window. However, PDRC materials face challenges in cooling performance degradation caused by outdoor contamination and requirements of easy fabrication approaches for scale-up and high cooling efficiency. Herein, a polymer composite coating of polystyrene, polydimethylsiloxane and poly(ethyl cyanoacrylate) (PS/PDMS/PECA) with superhydrophobicity and radiative cooling performance was fabricated and demonstrated to have sustained radiative cooling capability, utilizing the superhydrophobic self-cleaning property to maintain the optical properties of the coating surface. The prepared coating is hierarchically porous which exhibits an average solar reflectance of 96% with an average emissivity of 95% and superhydrophobicity with a contact angle of 160°. The coating realized a subambient radiative cooling of 12.9 °C in sealed air and 7.5 °C in open air. The self-cleaning property of the PS/PDMS/PECA coating helped sustain the cooling capacity for long-term outdoor applications. Moreover, the coating exhibited chemical resistance, UV resistance, and mechanical durability, which has promising applications in wider fields.
Collapse
Affiliation(s)
- Hui-Di Wang
- College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an710021, People's Republic of China
| | - Chao-Hua Xue
- College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an710021, People's Republic of China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an710021, People's Republic of China
| | - Zhan-You Ji
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an710021, People's Republic of China
| | - Meng-Chen Huang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an710021, People's Republic of China
| | - Zi-Hao Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an710021, People's Republic of China
| | - Bing-Ying Liu
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an710021, People's Republic of China
| | - Fu-Quan Deng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an710021, People's Republic of China
| | - Qiu-Feng An
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an710021, People's Republic of China
| | - Xiao-Jing Guo
- College of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an710021, People's Republic of China
| |
Collapse
|
147
|
Lu Y, Yang R, Dai Y, Yuan D, Yu X, Liu C, Feng L, Shen R, Wang C, Dai S, Ge Q, Lin S. Infrared Radiation of Graphene Electrothermal Film Triggered Alpha and Theta Brainwaves. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yanghua Lu
- College of Information Science and Electronic Engineering Zhejiang University Hangzhou 310027 P. R. China
- Hangzhou Gelanfeng Technology Co. Ltd. Hangzhou 310051 P. R. China
- Hangzhou Liangchun Technology Co. Ltd. Hangzhou 311500 P. R. China
| | - Renyu Yang
- College of Information Science and Electronic Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Yue Dai
- Hangzhou Gelanfeng Technology Co. Ltd. Hangzhou 310051 P. R. China
| | - Deyi Yuan
- College of Information Science and Electronic Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Xutao Yu
- College of Information Science and Electronic Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Chang Liu
- College of Information Science and Electronic Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Lixuan Feng
- College of Information Science and Electronic Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Runjiang Shen
- College of Information Science and Electronic Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Can Wang
- College of Information Science and Electronic Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Shenyi Dai
- Hangzhou Neuro Technology Co. Ltd. Hangzhou 310051 P. R. China
| | - Qi Ge
- Chongqing 2D Materials Institute Chongqing 400015 P. R. China
| | - Shisheng Lin
- College of Information Science and Electronic Engineering Zhejiang University Hangzhou 310027 P. R. China
- Hangzhou Gelanfeng Technology Co. Ltd. Hangzhou 310051 P. R. China
- Hangzhou Liangchun Technology Co. Ltd. Hangzhou 311500 P. R. China
- Chongqing 2D Materials Institute Chongqing 400015 P. R. China
- State Key Laboratory of Modern Optical Instrumentation Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
148
|
Xu L, Huang L, Yu J, Si Y, Ding B. Ultralight and Superelastic Gd 2O 3/Bi 2O 3 Nanofibrous Aerogels with Nacre-Mimetic Brick-Mortar Structure for Superior X-ray Shielding. NANO LETTERS 2022; 22:8711-8718. [PMID: 36315062 DOI: 10.1021/acs.nanolett.2c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The widespread use of X-rays has prompted a surge in demand for effective and wearable shielding materials. However, the Pb-containing materials currently used to shield X-rays are commonly bulky, hard, and biotoxic, severely limiting their applications in wearable scenarios. Inspired by the nacre, we report on ultralight, superelastic, and nontoxic X-ray shielding nanofibrous aerogels with microarch-engineered brick/mortar structure by combining polyurethane/Bi2O3 nanofibers (brick) and Gd2O3 nanosheets (mortar). The synergistic attenuation effect toward X-rays from the reflection of microarches and absorption of Bi/Gd elements significantly enhances the shielding efficiency of aerogels, and microarches/robust nanofibrous networks endow the materials with superelasticity. The resultant materials exhibit integrated properties of superior X-ray shielding efficiency (91-100%), ultralow density (52 mg cm-3), large stretchability of 800% reversible elongation, and high water vapor permeability (8.8 kg m-2 day-1). The fabrication of such novel aerogels paves the way for developing next-generation effective and wearable X-ray shielding materials.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Liqian Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
149
|
Van Tran V, Wi E, Shin SY, Lee D, Kim YA, Ma BC, Chang M. Microgels based on 0D-3D carbon materials: Synthetic techniques, properties, applications, and challenges. CHEMOSPHERE 2022; 307:135981. [PMID: 35964721 DOI: 10.1016/j.chemosphere.2022.135981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Microgels are three-dimensional (3D) colloidal hydrogel particles with outstanding features such as biocompatibility, good mechanical properties, tunable sizes from submicrometer to tens of nanometers, and large surface areas. Because of these unique qualities, microgels have been widely used in various applications. Carbon-based materials (CMs) with various dimensions (0-3D) have recently been investigated as promising candidates for the design and fabrication of microgels because of their large surface area, excellent conductivity, unique chemical stability, and low cost. Here, we provide a critical review of the specific characteristics of CMs that are being incorporated into microgels, as well as the state-of-the art applications of CM-microgels in pollutant adsorption and photodegradation, H2 evoluation, CO2 capture, soil conditioners, water retention, drug delivery, cell encapsulation, and tissue engineering. Advanced preparation techniques for CM-microgel systems are also summarized and discussed. Finally, challenges related to the low colloidal stability of CM-microgels and development strategies are examined. This review shows that CM-microgels have the potential to be widely used in various practical applications.
Collapse
Affiliation(s)
- Vinh Van Tran
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam, 13120, South Korea
| | - Eunsol Wi
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea
| | - Seo Young Shin
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea
| | - Daeho Lee
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam, 13120, South Korea
| | - Yoong Ahm Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea; Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Byung Chol Ma
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea.
| | - Mincheol Chang
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea; Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
150
|
Peng Y, Zhou J, Yang Y, Lai JC, Ye Y, Cui Y. An Integrated 3D Hydrophilicity/Hydrophobicity Design for Artificial Sweating Skin (i-TRANS) Mimicking Human Body Perspiration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204168. [PMID: 35975584 DOI: 10.1002/adma.202204168] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles. Perspiration, as one of the most imperative thermoregulation functions of human skin, is gaining increasing attention, but how to realize ideal artificial skin for perspiration simulation remains challenging. Here, an integrated 3D hydrophilicity/hydrophobicity design is proposed for artificial sweating skin (i-TRANS). Based on normal fibrous wicking materials, the selective surface modification with gradient of poly(dimethylsiloxane) (PDMS) creates hydrophilicity/hydrophobicity contrast in both lateral and vertical directions. With the additional help of bottom hydrophilic Nylon 6 nanofibers, the constructed i-TRANS is able to transport "sweat" directionally without trapping undesired excess water and attain uniform "secretion" of sweat droplets on the top surface, decently mimicking human skin perspiration situation. This fairly comparable simulation not only presents new insights for replicating skin properties, but also provides proper in vitro testing platforms for perspiration-relevant research, greatly avoiding unwanted interference from the "skin" layer. In addition, the facile, fast, and cost-effective fabrication approach and versatile usage of i-TRANS can further facilitate its application.
Collapse
Affiliation(s)
- Yucan Peng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jiawei Zhou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yufei Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yusheng Ye
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| |
Collapse
|