101
|
Wang G, Wang J, Cui Y, Chen Z, Wang W, Yu Y, Zhang T, Ma L, Xiao Y, Qiao J, Xu Y, Hao XT, Hou J. Achieving High Fill Factor in Organic Photovoltaic Cells by Tuning Molecular Electrostatic Potential Fluctuation. Angew Chem Int Ed Engl 2024; 63:e202401066. [PMID: 38450828 DOI: 10.1002/anie.202401066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
In the field of organic photovoltaics (OPVs), significant progress has been made in tailoring molecular structures to enhance the open-circuit voltage and the short-circuit current density. However, there remains a crucial gap in the development of coordinated material design strategies focused on improving the fill factor (FF). Here, we introduce a molecular design strategy that incorporates electrostatic potential fluctuation to design organic photovoltaic materials. By reducing the fluctuation amplitude of IT-4F, we synthesized a new acceptor named ITOC6-4F. When using PBQx-TF as a donor, the ITOC6-4F-based cell shows a markedly low recombination rate constant of 0.66×10-14 cm3 s-1 and demonstrates an outstanding FF of 0.816, both of which are new records for binary OPV cells. Also, we find that a small fluctuation amplitude could decrease the energetic disorder of OPV cells, reducing energy loss. Finally, the ITOC6-4F-based cell creates the highest efficiency of 16.0 % among medium-gap OPV cells. Our work holds a vital implication for guiding the design of high-performance OPV materials.
Collapse
Affiliation(s)
- Guanlin Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Yu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijiao Ma
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Ye Xu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- State Key Laboratory of Photovoltaic Science and Technology, Trina Solar, Changzhou, 213000, China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
102
|
Gao M, Xu X, Tian H, Ran P, Jia Z, Su Y, Hui J, Gan X, Zhao S, Zhu H, Lv H, Yang YM. Enhancing Efficiency of Large-Area Wide-Bandgap Perovskite Solar Modules with Spontaneously Formed Self-Assembled Monolayer Interfaces. J Phys Chem Lett 2024; 15:4015-4023. [PMID: 38577843 DOI: 10.1021/acs.jpclett.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Wide-bandgap (WBG) perovskites play a crucial role in perovskite-based tandem cells. Despite recent advances using self-assembled monolayers (SAMs) to facilitate efficiency breakthroughs, achieving precise control over the deposition of such ultrathin layers remains a significant challenge for large-scale fabrication of WBG perovskite and, consequently, for the tandem modules. To address these challenges, we propose a facile method that integrates MeO-2PACz and Me-4PACz in optimal proportions (Mixed SAMs) into the perovskite precursor solution, enabling the simultaneous codeposition of WBG perovskite and SAMs. This technique promotes the spontaneous formation of charge-selective contacts while reducing defect densities by coordinating phosphonic acid groups with the unbonded Pb2+ ions at the bottom interface. The resulting WBG perovskite solar cells (PSCs) demonstrated a power conversion efficiency of 19.31% for small-area devices (0.0585 cm2) and 17.63% for large-area modules (19.34 cm2), highlighting the potential of this codeposition strategy for fabricating high-performance, large-area WBG PSCs with enhanced reproducibility. These findings offer valuable insights for advancing WBG PSCs and the scalable fabrication of modules.
Collapse
Affiliation(s)
- Mingyang Gao
- Jiangxi Intelligent Building Engineering Research Center College of Civil Engineering and Architecture, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xuehui Xu
- Jiangxi Intelligent Building Engineering Research Center College of Civil Engineering and Architecture, Nanchang Hangkong University, Nanchang 330063, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute of Zhejiang University, Jiaxing 314041, Zhejiang, China
| | - Hong Tian
- Jiangxi Intelligent Building Engineering Research Center College of Civil Engineering and Architecture, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peng Ran
- State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziyan Jia
- Jiangxi Intelligent Building Engineering Research Center College of Civil Engineering and Architecture, Nanchang Hangkong University, Nanchang 330063, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute of Zhejiang University, Jiaxing 314041, Zhejiang, China
| | - Yirong Su
- State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Juan Hui
- State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute of Zhejiang University, Jiaxing 314041, Zhejiang, China
| | - Xianjin Gan
- Jiangxi Intelligent Building Engineering Research Center College of Civil Engineering and Architecture, Nanchang Hangkong University, Nanchang 330063, China
| | - Shuo Zhao
- State Key Laboratory of Modern Optical Instrumentation Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hui Lv
- Jiangxi Intelligent Building Engineering Research Center College of Civil Engineering and Architecture, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang Michael Yang
- State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute of Zhejiang University, Jiaxing 314041, Zhejiang, China
| |
Collapse
|
103
|
Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q, Bati ASR, Wan H, Wang Z, Zeng L, Wang J, Serles P, Liu Y, Teale S, Liu Y, Saidaminov MI, Li M, Rolston N, Hoogland S, Filleter T, Kanatzidis MG, Chen B, Ning Z, Sargent EH. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 2024; 384:189-193. [PMID: 38603485 DOI: 10.1126/science.adm9474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Inverted (pin) perovskite solar cells (PSCs) afford improved operating stability in comparison to their nip counterparts but have lagged in power conversion efficiency (PCE). The energetic losses responsible for this PCE deficit in pin PSCs occur primarily at the interfaces between the perovskite and the charge-transport layers. Additive and surface treatments that use passivating ligands usually bind to a single active binding site: This dense packing of electrically resistive passivants perpendicular to the surface may limit the fill factor in pin PSCs. We identified ligands that bind two neighboring lead(II) ion (Pb2+) defect sites in a planar ligand orientation on the perovskite. We fabricated pin PSCs and report a certified quasi-steady state PCE of 26.15 and 24.74% for 0.05- and 1.04-square centimeter illuminated areas, respectively. The devices retain 95% of their initial PCE after 1200 hours of continuous 1 sun maximum power point operation at 65°C.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Cheng Liu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Jian Xu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Aidan Maxwell
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Wei Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi Yang
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Qilin Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Abdulaziz S R Bati
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Haoyue Wan
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Zaiwei Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Lewei Zeng
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Junke Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Peter Serles
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Yuan Liu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Sam Teale
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Yanjiang Liu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Makhsud I Saidaminov
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Muzhi Li
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Nicholas Rolston
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Sjoerd Hoogland
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Tobin Filleter
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | | | - Bin Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
104
|
Hu S, Thiesbrummel J, Pascual J, Stolterfoht M, Wakamiya A, Snaith HJ. Narrow Bandgap Metal Halide Perovskites for All-Perovskite Tandem Photovoltaics. Chem Rev 2024; 124:4079-4123. [PMID: 38527274 PMCID: PMC11009966 DOI: 10.1021/acs.chemrev.3c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
All-perovskite tandem solar cells are attracting considerable interest in photovoltaics research, owing to their potential to surpass the theoretical efficiency limit of single-junction cells, in a cost-effective sustainable manner. Thanks to the bandgap-bowing effect, mixed tin-lead (Sn-Pb) perovskites possess a close to ideal narrow bandgap for constructing tandem cells, matched with wide-bandgap neat lead-based counterparts. The performance of all-perovskite tandems, however, has yet to reach its efficiency potential. One of the main obstacles that need to be overcome is the─oftentimes─low quality of the mixed Sn-Pb perovskite films, largely caused by the facile oxidation of Sn(II) to Sn(IV), as well as the difficult-to-control film crystallization dynamics. Additional detrimental imperfections are introduced in the perovskite thin film, particularly at its vulnerable surfaces, including the top and bottom interfaces as well as the grain boundaries. Due to these issues, the resultant device performance is distinctly far lower than their theoretically achievable maximum efficiency. Robust modifications and improvements to the surfaces of mixed Sn-Pb perovskite films are therefore critical for the advancement of the field. This Review describes the origins of imperfections in thin films and covers efforts made so far toward reaching a better understanding of mixed Sn-Pb perovskites, in particular with respect to surface modifications that improved the efficiency and stability of the narrow bandgap solar cells. In addition, we also outline the important issues of integrating the narrow bandgap subcells for achieving reliable and efficient all-perovskite double- and multi-junction tandems. Future work should focus on the characterization and visualization of the specific surface defects, as well as tracking their evolution under different external stimuli, guiding in turn the processing for efficient and stable single-junction and tandem solar cell devices.
Collapse
Affiliation(s)
- Shuaifeng Hu
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Jarla Thiesbrummel
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
- Institute
for Physics and Astronomy, University of
Potsdam,14476 Potsdam-Golm, Germany
| | - Jorge Pascual
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Polymat, University of the
Basque Country UPV/EHU, 20018 Donostia-San
Sebastian, Spain
| | - Martin Stolterfoht
- Institute
for Physics and Astronomy, University of
Potsdam,14476 Potsdam-Golm, Germany
- Electronic
Engineering Department, The Chinese University
of Hong Kong, Hong Kong 999077, SAR China
| | - Atsushi Wakamiya
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Henry J. Snaith
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
| |
Collapse
|
105
|
Li J, Xie L, Liu G, Pu Z, Tong X, Yang S, Yang M, Liu J, Chen J, Meng Y, Wang Y, Wang T, Ge Z. Multifunctional Trifluoroborate Additive for Simultaneous Carrier Dynamics Governance and Defects Passivation to Boost Efficiency and Stability of Inverted Perovskite Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202316898. [PMID: 38340024 DOI: 10.1002/anie.202316898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
The main obstacles to promoting the commercialization of perovskite solar cells (PSCs) include their record power conversion efficiency (PCE), which still remains below the Shockley-Queisser limit, and poor long-term stability, attributable to crystallographic defects in perovskite films and open-circuit voltage (Voc) loss in devices. In this study, potassium (4-tert-butoxycarbonylpiperazin-1-yl) methyl trifluoroborate (PTFBK) was employed as a multifunctional additive to target and modulate bulk perovskite defects and carrier dynamics of PSCs. Apart from simultaneously passivating anionic and cationic defects, PTFBK could also optimize the energy-level alignment of devices and weaken the interaction between carriers and longitudinal optical phonons, resulting in a carrier lifetime of greater than 3 μs. Furthermore, it inhibited non-radiative recombination and improved the crystallization capacity in the target perovskite film. Hence, the target rigid and flexible p-i-n PSCs yielded champion PCEs of 24.99 % and 23.48 %, respectively. More importantly, due to hydrogen bonding between formamidinium and fluorine, the target devices exhibited remarkable thermal, humidity, and operational tracking at maximum power point stabilities. The reduced Young's modulus and residual stress in the perovskite layer also provided excellent bending stability for flexible target devices.
Collapse
Affiliation(s)
- Jun Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lisha Xie
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Guanhao Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenwei Pu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xinyu Tong
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Shuncheng Yang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Mengjin Yang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jian Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jiujiang Chen
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yuanyuan Meng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ying Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tao Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
106
|
Liu S, Lu Y, Yu C, Li J, Luo R, Guo R, Liang H, Jia X, Guo X, Wang YD, Zhou Q, Wang X, Yang S, Sui M, Müller-Buschbaum P, Hou Y. Triple-junction solar cells with cyanate in ultrawide-bandgap perovskites. Nature 2024; 628:306-312. [PMID: 38438067 DOI: 10.1038/s41586-024-07226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Perovskite bandgap tuning without quality loss makes perovskites unique among solar absorbers, offering promising avenues for tandem solar cells1,2. However, minimizing the voltage loss when their bandgap is increased to above 1.90 eV for triple-junction tandem use is challenging3-5. Here we present a previously unknown pseudohalide, cyanate (OCN-), with a comparable effective ionic radius (1.97 Å) to bromide (1.95 Å) as a bromide substitute. Electron microscopy and X-ray scattering confirm OCN incorporation into the perovskite lattice. This contributes to notable lattice distortion, ranging from 90.5° to 96.6°, a uniform iodide-bromide distribution and consistent microstrain. Owing to these effects, OCN-based perovskite exhibits enhanced defect formation energy and substantially decreased non-radiative recombination. We achieved an inverted perovskite (1.93 eV) single-junction device with an open-circuit voltage (VOC) of 1.422 V, a VOC × FF (fill factor) product exceeding 80% of the Shockley-Queisser limit and stable performance under maximum power point tracking, culminating in a 27.62% efficiency (27.10% certified efficiency) perovskite-perovskite-silicon triple-junction solar cell with 1 cm2 aperture area.
Collapse
Affiliation(s)
- Shunchang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore, Singapore
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, People's Republic of China
| | - Cao Yu
- Suzhou Maxwell Technologies, Suzhou, People's Republic of China
| | - Jia Li
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore, Singapore
| | - Ran Luo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore, Singapore
| | - Renjun Guo
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore, Singapore
| | - Haoming Liang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore, Singapore
| | - Xiangkun Jia
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore, Singapore
| | - Xiao Guo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore, Singapore
| | - Yu-Duan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore, Singapore
| | - Qilin Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore, Singapore
| | - Xi Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore, Singapore
| | - Shaofei Yang
- Suzhou Maxwell Technologies, Suzhou, People's Republic of China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, People's Republic of China
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, Garching, Germany
- Heinz Maier-Leibniz Zentrum (MLZ), Technical University of Munich, Garching, Germany
| | - Yi Hou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
107
|
Cheng P, An Y, Jen AKY, Lei D. New Nanophotonics Approaches for Enhancing the Efficiency and Stability of Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309459. [PMID: 37878233 DOI: 10.1002/adma.202309459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Indexed: 10/26/2023]
Abstract
Over the past decade, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has experienced a remarkable ascent, soaring from 3.8% in 2009 to a remarkable record of 26.1% in 2023. Many recent approaches for improving PSC performance employ nanophotonic technologies, from light harvesting and thermal management to the manipulation of charge carrier dynamics. Plasmonic nanoparticles and arrayed dielectric nanostructures have been applied to tailor the light absorption, scattering, and conversion, as well as the heat dissipation within PSCs to improve their PCE and operational stability. In this review, it is begin with a concise introduction to define the realm of nanophotonics by focusing on the nanoscale interactions between light and surface plasmons or dielectric photonic structures. Prevailing strategies that utilize resonance-enhanced light-matter interactions for boosting the PCE and stability of PSCs from light trapping, carrier transportation, and thermal management perspectives are then elaborated, and the resultant practical applications, such as semitransparent photovoltaics, colored PSCs, and smart perovskite windows are discussed. Finally, the state-of-the-art nanophotonic paradigms in PSCs are reviewed, and the benefits of these approaches in improving the aesthetic effects and energy-saving character of PSC-integrated buildings are highlighted.
Collapse
Affiliation(s)
- Pengfei Cheng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- The Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yidan An
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- The Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- The Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- The Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
108
|
Qi Z, Li J, Zhang X, Dou J, Guo Q, Zhao Y, Yang P, Tang Q, Duan J. Healing the Buried Interface by a Plant-Derived Green Passivator for Carbon-Based CsPbIBr 2 Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38489750 DOI: 10.1021/acsami.4c01876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Perovskite solar cells (PSCs) have attracted extensive attention in photovoltaic applications owing to their superior efficiency, and the buried interface plays a significant role in determining the efficiency and stability of PSCs. Herein, a plant-derived small molecule, ergothioneine (ET), is adopted to heal the defective buried interface of CsPbIBr2-based PSC to improve power conversion efficiency (PCE). Because of the strong interaction between Lewis base groups (-C═O and -C═S) in ET and uncoordinated Pb2+ in the perovskite film from the theoretical simulations and experimental results, the defect density of the CsPbIBr2 perovskite film is significantly reduced, and therefore, the nonradiative recombination in the corresponding device is simultaneously suppressed. Consequently, the target device achieves a high PCE of 11.13% with an open-circuit voltage (VOC) of 1.325 V for hole-free, carbon-based CsPbIBr2 PSCs and 14.56% with a VOC of 1.308 V for CsPbI2Br PSCs. Furthermore, because of the increased ion migration energy, the detrimental phase segregation in this mixed-halide perovskite is weakened, delivering excellent long-term stability for the unencapsulated device in ambient conditions over 70 days with a 96% retention rate of initial efficiency.
Collapse
Affiliation(s)
- Ziting Qi
- Key Laboratory of Advanced Technique and Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiabao Li
- Key Laboratory of Advanced Technique and Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Xinyu Zhang
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Jie Dou
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Qiyao Guo
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Yuanyuan Zhao
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Peizhi Yang
- Key Laboratory of Advanced Technique and Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Qunwei Tang
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Jialong Duan
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
109
|
Wang C, Guo Y, Liu S, Huang J, Liu X, Zhang J, Hu Z, Zhu Y, Huang L. Multifunctional dual-interface layer enables efficient and stable inverted perovskite solar cells. Phys Chem Chem Phys 2024; 26:8299-8307. [PMID: 38389432 DOI: 10.1039/d3cp05794a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Considering that the hydrophobicity of PTAA as the surface of an inverted perovskite solar cell (PSC) substrate directly influences the crystallization and top surface properties of perovskite films, dual-interface engineering is a significant strategy to obtain excellent PSCs. PFN-Br was inserted into the PTAA/perovskite interface to ensure close interfacial contact and achieve exceptional crystallization, and then the perovskite top surface was covered with 3-PyAI to further improve its interface property. The mechanism of interaction of PFN-Br and 3-PyAI with perovskites was analyzed through various characterization methods. The results showed that the introduction of a hydrophilic interface layer reduces voids and defects at the bottom of the film. Additionally, the existence of 3-PyAI reduces surface defects, optimizes energy level alignment, and decreases non-radiative recombination, which is beneficial for charge transfer. Consequently, the open circuit voltage (VOC) and fill factor (FF) of the optimized device were greatly enhanced, and the champion device showed a power conversion efficiency (PCE) of 22.07%. The unencapsulated device with PFN-Br&3-PyAI can retain 80% of its initial performance after aging in the air atmosphere (25 °C at a relative humidity (RH) of 25%) for 27 days. Moreover, the reverse bias stability of the device was improved, with the reverse breakdown voltage (VRB) reaching -2 V. This work recommends a dual-interface strategy for efficient and reliable PTAA-based PSCs.
Collapse
Affiliation(s)
- Chaofeng Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Fenghua Road 818, Ningbo 315211, China.
| | - Yi Guo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Fenghua Road 818, Ningbo 315211, China.
| | - Shuang Liu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Fenghua Road 818, Ningbo 315211, China.
| | - Jiajia Huang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Fenghua Road 818, Ningbo 315211, China.
| | - Xiaohui Liu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Fenghua Road 818, Ningbo 315211, China.
| | - Jing Zhang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Fenghua Road 818, Ningbo 315211, China.
| | - Ziyang Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Fenghua Road 818, Ningbo 315211, China.
| | - Yuejin Zhu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Fenghua Road 818, Ningbo 315211, China.
- College of Science and Technology, Ningbo University, Fenghua Road 818, Ningbo 315211, China
| | - Like Huang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Fenghua Road 818, Ningbo 315211, China.
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
110
|
Yekani R, Wang H, Bessette S, Gauvin R, Demopoulos G. Synergetic interfacial conductivity modulation dictating hysteresis evolution in perovskite solar cells under operation. Phys Chem Chem Phys 2024; 26:8366-8379. [PMID: 38404140 DOI: 10.1039/d4cp00067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In this work, the configuration of compact TiO2 coating (c-TiO2) interface as electron transport layer (ETL) in giving rise to loss and gain of fill factor (FF) and therefore modulation of hysteresis behavior in perovskite solar cells (PSCs) is investigated. For this purpose, PSCs based on planar compact TiO2 (c-TiO2) as well as a scaffold-based architecture are studied. In the latter case c-TiO2 coats a hydrothermally grown titania nanorod scaffold. The results demonstrate that when c-TiO2 is used in planar configuration, FF considerably improves with prolonged light soaking which is in sharp contrast to what is observed for scaffold-based PSCs. Moreover, higher thickness of planar c-TiO2 is shown to be beneficial for sustaining FF in forward scan. Finally, through studying the intricate interfacial dynamics utilizing electrochemical impedance spectroscopy (EIS), it was concluded that for a PSC under operation, the cumulative effect of conductivity modulation at the perovskite with transport layer interfaces, for their respective charge carriers, determines the loss and gain in performance depending on scan rate, applied bias and prolonged light soaking. This work points towards multiple factors affecting PSC output, which could work either in confluence or against one another depending on the interfacial configuration of transport layers.
Collapse
Affiliation(s)
- Rana Yekani
- Materials Engineering Department, McGill University, Montreal, QC H3A 0C5, Canada.
| | - Han Wang
- Materials Engineering Department, McGill University, Montreal, QC H3A 0C5, Canada.
| | - Stephanie Bessette
- Materials Engineering Department, McGill University, Montreal, QC H3A 0C5, Canada.
| | - Raynald Gauvin
- Materials Engineering Department, McGill University, Montreal, QC H3A 0C5, Canada.
| | - George Demopoulos
- Materials Engineering Department, McGill University, Montreal, QC H3A 0C5, Canada.
| |
Collapse
|
111
|
Xia CG, Lv HJ, Liu YF, Zhang ZL. Improved Performance and Stability of Quasi-Two-Dimensional Perovskite Solar Cells by Post-treatment with Acetaminophen. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38427847 DOI: 10.1021/acsami.3c17529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Recently, perovskite solar cells (PSCs) based on quasi-two-dimensional (quasi-2D) perovskites have drawn more attention due to their excellent stability, although their efficiencies are still lower than those of 3D ones. Here we applied post-treatment of 2D perovskite GAMA5Pb5I16 (GA = guanidinium, MA = methylammonium) films with acetaminophen (AMP) to improve their performance. The efficiency of the solar cells with 2 mg/mL AMP post-treatment increased to 18.01% from 16.72% for those without post-treatment. The efficiency improvement results from the enlarged grain size, reduced trap state density, and better energy level matching after AMP post-treatment. In addition, the stability of the solar cells is improved. The solar cells with AMP post-treatment maintain 91% of the original power conversion efficiency value after aging for 30 days in the atmosphere. This work opens a new approach for the efficiency and stability enhancement of quasi-2D PSCs.
Collapse
Affiliation(s)
- Chen-Guang Xia
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Hao-Jie Lv
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yue-Feng Liu
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Zhen-Long Zhang
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Kaifeng 475004, China
| |
Collapse
|
112
|
Xing Z, Li SH, An MW, Yang S. Beyond Planar Structure: Curved π-Conjugated Molecules for High-Performing and Stable Perovskite Solar Cells. CHEMSUSCHEM 2024; 17:e202301662. [PMID: 38169145 DOI: 10.1002/cssc.202301662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Perovskite solar cell (PSC) shows a great potential to become the next-generation photovoltaic technology, which has stimulated researchers to engineer materials and to innovate device architectures for promoting device performance and stability. As the power conversion efficiency (PCE) keeps advancing, the importance of exploring multifunctional materials for the PSCs has been increasingly recognized. Considerable attention has been directed to the design and synthesis of novel organic π-conjugated molecules, particularly the emerging curved ones, which can perform various unmatched functions for PSCs. In this review, the characteristics of three representative such curved π-conjugated molecules (fullerene, corannulene and helicene) and the recent progress concerning the application of these molecules in state-of-the-art PSCs are summarized and discussed holistically. With this discussion, we hope to provide a fresh perspective on the structure-property relation of these unique materials toward high-performance and high-stability PSCs.
Collapse
Affiliation(s)
- Zhou Xing
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou, Fujian, China
| | - Shu-Hui Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 541004, Guilin, Guangxi, China
| | - Ming-Wei An
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), 350007, Fuzhou, Fujian, China
| | - Shihe Yang
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, 518055, Shenzhen, Guangdong, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, 518055, Shenzhen, Guangdong, China
| |
Collapse
|
113
|
Zhou B, Shang C, Wang C, Qu D, Qiao J, Zhang X, Zhao W, Han R, Dong S, Xue Y, Ke Y, Ye F, Yang X, Tu Y, Huang W. Strain Engineering and Halogen Compensation of Buried Interface in Polycrystalline Halide Perovskites. RESEARCH (WASHINGTON, D.C.) 2024; 7:0309. [PMID: 38390307 PMCID: PMC10882268 DOI: 10.34133/research.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/10/2024] [Indexed: 02/24/2024]
Abstract
Inverted perovskite solar cells based on weakly polarized hole-transporting layers suffer from the problem of polarity mismatch with the perovskite precursor solution, resulting in a nonideal wetting surface. In addition to the bottom-up growth of the polycrystalline halide perovskite, this will inevitably worse the effects of residual strain and heterogeneity at the buried interface on the interfacial carrier transport and localized compositional deficiency. Here, we propose a multifunctional hybrid pre-embedding strategy to improve substrate wettability and address unfavorable strain and heterogeneities. By exposing the buried interface, it was found that the residual strain of the perovskite films was markedly reduced because of the presence of organic polyelectrolyte and imidazolium salt, which not only realized the halogen compensation and the coordination of Pb2+ but also the buried interface morphology and defect recombination that were well regulated. Benefitting from the above advantages, the power conversion efficiency of the targeted inverted devices with a bandgap of 1.62 eV was 21.93% and outstanding intrinsic stability. In addition, this coembedding strategy can be extended to devices with a bandgap of 1.55 eV, and the champion device achieved a power conversion efficiency of 23.74%. In addition, the optimized perovskite solar cells retained 91% of their initial efficiency (960 h) when exposed to an ambient relative humidity of 20%, with a T80 of 680 h under heating aging at 65 °C, exhibiting elevated durability.
Collapse
Affiliation(s)
- Bin Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chuanzhen Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chenyun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Duo Qu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jingyuan Qiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xinyue Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wenying Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ruilin Han
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shuxin Dong
- Honors College, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Yuhe Xue
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - You Ke
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Fengjun Ye
- Beijing Solarverse Optoelectronic Technology Co. Ltd, Beijing 100176, China
| | - Xiaoyu Yang
- Intelligent Display Research Institute, Leyard Optoelectronic Co. Ltd, Beijing 100091, China
| | - Yongguang Tu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo 315103, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo 315103, China
- Key Laboratory of Flexible Electronics (KLoFE) and Institution of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), NanjingTech University, Nanjing, Jiangsu 211816, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| |
Collapse
|
114
|
Ariga K, Song J, Kawakami K. Layer-by-layer designer nanoarchitectonics for physical and chemical communications in functional materials. Chem Commun (Camb) 2024; 60:2152-2167. [PMID: 38291864 DOI: 10.1039/d3cc04952c] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Nanoarchitectonics, as a post-nanotechnology concept, constructs functional materials and structures using nanounits of atoms, molecules, and nanomaterials as materials. With the concept of nanoarchitectonics, asymmetric structures, and hierarchical organization, rather than mere assembly and organization of structures, can be produced, where rational physical and chemical communications will lead to the development of more advanced functional materials. Layer-by-layer assembly can be a powerful tool for this purpose, as exemplified in this feature paper. This feature article explores the possibility of constructing advanced functional systems based on recent examples of layer-by-layer assembly. We will illustrate both the development of more basic methods and more advanced nanoarchitectonics systems aiming towards practical applications. Specifically, the following sections will provide examples of (i) advancement in basics and methods, (ii) physico-chemical aspects and applications, (iii) bio-chemical aspects and applications, and (iv) bio-medical applications. It can be concluded that materials nanoarchitectonics based on layer-by-layer assembly is a useful method for assembling asymmetric structures and hierarchical organization, and is a powerful technique for developing functions through physical and chemical communication.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8561, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
115
|
Liu B, Zhou Q, Li Y, Chen Y, He D, Ma D, Han X, Li R, Yang K, Yang Y, Lu S, Ren X, Zhang Z, Ding L, Feng J, Yi J, Chen J. Polydentate Ligand Reinforced Chelating to Stabilize Buried Interface toward High-Performance Perovskite Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202317185. [PMID: 38179844 DOI: 10.1002/anie.202317185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
The instability of the buried interface poses a serious challenge for commercializing perovskite photovoltaic technology. Herein, we report a polydentate ligand reinforced chelating strategy to strengthen the stability of buried interface by managing interfacial defects and stress. The bis(2,2,2-trifluoroethyl) (methoxycarbonylmethyl)phosphonate (BTP) is employed to manipulate the buried interface. The C=O, P=O and two -CF3 functional groups in BTP synergistically passivate the defects from the surface of SnO2 and the bottom surface of the perovskite layer. Moreover, The BTP modification contributes to mitigated interfacial residual tensile stress, promoted perovskite crystallization, and reduced interfacial energy barrier. The multidentate ligand modulation strategy is appropriate for different perovskite compositions. Due to much reduced nonradiative recombination and heightened interface contact, the device with BTP yields a promising power conversion efficiency (PCE) of 24.63 %, which is one of the highest efficiencies ever reported for devices fabricated in the air environment. The unencapsulated BTP-modified devices degrade to 98.6 % and 84.2 % of their initial PCE values after over 3000 h of aging in the ambient environment and after 1728 h of thermal stress, respectively. This work provides insights into strengthening the stability of the buried interface by engineering multidentate chelating ligand molecules.
Collapse
Affiliation(s)
- Baibai Liu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Qian Zhou
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Yong Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu Chen
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Dongmei He
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Danqing Ma
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Xiao Han
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Ru Li
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Ke Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Shirong Lu
- Department of Material Science and Technology, Taizhou University, Taizhou, 318000, China
| | - Xiaodong Ren
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Zhengfu Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jing Feng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jianhong Yi
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jiangzhao Chen
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| |
Collapse
|
116
|
Xu T, Xiang W, Ru X, Wang Z, Liu Y, Li N, Xu H, Liu S. Enhancing Stability and Efficiency of Inverted Inorganic Perovskite Solar Cells with In-Situ Interfacial Cross-Linked Modifier. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312237. [PMID: 38363019 DOI: 10.1002/adma.202312237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Inverted inorganic perovskite solar cells (PSCs) is potential as the top cells in tandem configurations, owing to the ideal bandgap, good thermal and light stability of inorganic perovskites. However, challenges such as mismatch of energy levels between charge transport layer and perovskite, significant non-radiative recombination caused by surface defects, and poor water stability have led to the urgent need for further improvement in the performance of inverted inorganic PSCs. Herein, the fabrication of efficient and stable CsPbI3-x Brx PSCs through surface treatment of (3-mercaptopropyl) trimethoxysilane (MPTS), is reported. The silane groups in MPTS can in situ crosslink in the presence of moisture to build a 3-dimensional (3D) network by Si-O-Si bonds, which forms a hydrophobic layer on perovskite surface to inhibit water invasion. Additionally, -SH can strongly interact with the undercoordinated Pb2+ at the perovskite surface, effectively minimizing interfacial charge recombination. Consequently, the efficiency of the inverted inorganic PSCs improves dramatically from 19.0% to 21.0% under 100 mW cm-2 illumination with MPTS treatment. Remarkably, perovskite films with crosslinked MPTS exhibit superior stability when soaking in water. The optimized PSC maintains 91% of its initial efficiency after aging 1000 h in ambient atmosphere, and 86% in 800 h of operational stability testing.
Collapse
Affiliation(s)
- Tianfei Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wanchun Xiang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaoning Ru
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- LONGi Central R&D Institute, LONGi Green Energy Technology Co., Ltd, Xi'an, Shaanxi, 710018, China
| | - Zezhang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yali Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Nan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haojie Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shengzhong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
117
|
Zhu P, Wang D, Zhang Y, Liang Z, Li J, Zeng J, Zhang J, Xu Y, Wu S, Liu Z, Zhou X, Hu B, He F, Zhang L, Pan X, Wang X, Park NG, Xu B. Aqueous synthesis of perovskite precursors for highly efficient perovskite solar cells. Science 2024; 383:524-531. [PMID: 38301009 DOI: 10.1126/science.adj7081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
High-purity precursor materials are vital for high-efficiency perovskite solar cells (PSCs) to reduce defect density caused by impurities in perovskite. In this study, we present aqueous synthesized perovskite microcrystals as precursor materials for PSCs. Our approach enables kilogram-scale mass production and synthesizes formamidinium lead iodide (FAPbI3) microcrystals with up to 99.996% purity, with an average value of 99.994 ± 0.0015%, from inexpensive, low-purity raw materials. The reduction in calcium ions, which made up the largest impurity in the aqueous solution, led to the greatest reduction in carrier trap states, and its deliberate introduction was shown to decrease device performance. With these purified precursors, we achieved a power conversion efficiency (PCE) of 25.6% (25.3% certified) in inverted PSCs and retained 94% of the initial PCE after 1000 hours of continuous simulated solar illumination at 50°C.
Collapse
Affiliation(s)
- Peide Zhu
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Deng Wang
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Yong Zhang
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zheng Liang
- Key Laboratory of Photovoltaic and Energy Conservation Material, Institute of Solid-State Physics, Hefei Institutes of Physical Science (HIPS), Chinese Academy of Sciences, Hefei 230031, China
| | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Jie Zeng
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Jiyao Zhang
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yintai Xu
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siying Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhixin Liu
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xianyong Zhou
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bihua Hu
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng He
- State Key Laboratory on Tunable Laser Technology, School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lin Zhang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Xu Pan
- Key Laboratory of Photovoltaic and Energy Conservation Material, Institute of Solid-State Physics, Hefei Institutes of Physical Science (HIPS), Chinese Academy of Sciences, Hefei 230031, China
| | - Xingzhu Wang
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Putai Technology Co., Ltd, Shenzhen 518110, China
| | - Nam-Gyu Park
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Institute of Energy Science & Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Baomin Xu
- Department of Materials Science and Engineering and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
118
|
Yang P, Sun C, Fu X, Cheng S, Chen J, Zhang H, Nan ZA, Yang J, Zhao XJ, Xie LQ, Meng L, Tian C, Wei Z. Efficient Tin-Based Perovskite Solar Cells Enabled by Precisely Synthesized Single-Isomer Fullerene Bisadducts with Regulated Molecular Packing. J Am Chem Soc 2024; 146:2494-2502. [PMID: 38129761 DOI: 10.1021/jacs.3c10515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Designing and synthesizing fullerene bisadducts with a higher-lying conduction band minimum is promising to further improve the device performance of tin-based perovskite solar cells (TPSCs). However, the commonly obtained fullerene bisadduct products are isomeric mixtures and require complicated separation. Moreover, the isomeric mixtures are prone to resulting in energy alignment disorders, interfacial charge loss, and limited device performance improvement. Herein, we synthesized single-isomer C60- and C70-based diethylmalonate functionalized bisadducts (C60BB and C70BB) by utilizing the steric-hindrance-assisted strategy and determined all molecular structures involved by single crystal diffraction. Meanwhile, we found that the different solvents used for processing the fullerene bisadducts can effectively regulate the molecular packing in their films. The dense and amorphous fullerene bisadduct films prepared by using anisole exhibited the highest electron mobility. Finally, C60BB- and C70BB-based TPSCs showed impressive efficiencies up to 14.51 and 14.28%, respectively. These devices also exhibited excellent long-term stability. This work highlights the importance of developing strategies to synthesize single-isomer fullerene bisadducts and regulate their molecular packing to improve TPSCs' performance.
Collapse
Affiliation(s)
- Panpan Yang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Chao Sun
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xifeng Fu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shuo Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingfu Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Hui Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zi-Ang Nan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jinxin Yang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xin-Jing Zhao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Li-Qiang Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Lingyi Meng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Chengbo Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
119
|
Khadka DB, Shirai Y, Yanagida M, Ota H, Lyalin A, Taketsugu T, Miyano K. Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding. Nat Commun 2024; 15:882. [PMID: 38287031 PMCID: PMC10824754 DOI: 10.1038/s41467-024-45228-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
Molecular passivation is a prominent approach for improving the performance and operation stability of halide perovskite solar cells (HPSCs). Herein, we reveal discernible effects of diammonium molecules with either an aryl or alkyl core onto Methylammonium-free perovskites. Piperazine dihydriodide (PZDI), characterized by an alkyl core-electron cloud-rich-NH terminal, proves effective in mitigating surface and bulk defects and modifying surface chemistry or interfacial energy band, ultimately leading to improved carrier extraction. Benefiting from superior PZDI passivation, the device achieves an impressive efficiency of 23.17% (area ~1 cm2) (low open circuit voltage deficit ~0.327 V) along with superior operational stability. We achieve a certified efficiency of ~21.47% (area ~1.024 cm2) for inverted HPSC. PZDI strengthens adhesion to the perovskite via -NH2I and Mulliken charge distribution. Device analysis corroborates that stronger bonding interaction attenuates the defect densities and suppresses ion migration. This work underscores the crucial role of bifunctional molecules with stronger surface adsorption in defect mitigation, setting the stage for the design of charge-regulated molecular passivation to enhance the performance and stability of HPSC.
Collapse
Affiliation(s)
- Dhruba B Khadka
- Photovoltaic Materials Group, Center for GREEN Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Yasuhiro Shirai
- Photovoltaic Materials Group, Center for GREEN Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Masatoshi Yanagida
- Photovoltaic Materials Group, Center for GREEN Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hitoshi Ota
- Battery Research Platform, Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, 305-0044, Japan
| | - Andrey Lyalin
- Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science, Namiki 1-1, Tsukuba, 305-0044, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan.
| | - Tetsuya Taketsugu
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kenjiro Miyano
- Photovoltaic Materials Group, Center for GREEN Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
120
|
He J, Sheng W, Yang J, Zhong Y, Cai Q, Liu Y, Guo Z, Tan L, Chen Y. Synchronous Elimination of Excess Photoinstable PbI 2 and Interfacial Band Mismatch for Efficient and Stable Perovskite Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202315233. [PMID: 37990773 DOI: 10.1002/anie.202315233] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Eliminating the undesired photoinstability of excess lead iodide (PbI2 ) in the perovskite film and reducing the energy mismatch between the perovskite layer and heterogeneous interfaces are urgent issues to be addressed in the preparation of perovskite solar cells (PVSCs) by two-step sequential deposition method. Here, the 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4 ) is employed to convert superfluous PbI2 to more robust 1D EMIMPbI3 which can withstand lattice strain, while forming an interfacial dipole layer at the SnO2 /perovskite interface to reconfigure the interfacial energy band structure and accelerate the charge extraction. Consequently, the unencapsulated PVSCs device attains a champion efficiency of 24.28 % with one of the highest open-circuit voltage (1.19 V). Moreover, the unencapsulated devices showcase significantly improved thermal stability, enhanced environmental stability and remarkable operational stability accompanied by 85 % of primitive efficiency retained over 1500 h at maximum power point tracking under continuous illumination.
Collapse
Affiliation(s)
- Jiacheng He
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Wangping Sheng
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jia Yang
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yang Zhong
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qianqian Cai
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yikun Liu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Zhao Guo
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Licheng Tan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Insititute of Optoelectronics, 60 Chongzhou Avenue, Nantong, 226010, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- Peking University Yangtze Delta Insititute of Optoelectronics, 60 Chongzhou Avenue, Nantong, 226010, China
| |
Collapse
|
121
|
Li L, Chen P, Su R, Xu H, Li Q, Zhong Q, Yan H, Yang X, Hu J, Li S, Huang T, Xiao Y, Liu B, Ji Y, Wang D, Sun H, Guo X, Lu ZH, Snaith HJ, Gong Q, Zhao L, Zhu R. Buried-Metal-Grid Electrodes for Efficient Parallel-Connected Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305238. [PMID: 37665975 DOI: 10.1002/adma.202305238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Indexed: 09/06/2023]
Abstract
The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large-area devices. Herein, buried-metal-grid tin-doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140-nm-thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq-1 . The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO-based PSCs, the BMG ITO-based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel-connected large-area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted-structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large-area PSCs.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
| | - Peng Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
| | - Rui Su
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
| | - Hongyu Xu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
| | - Qiuyang Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
| | - Qixuan Zhong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
| | - Haoming Yan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
| | - Xiaoyu Yang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
| | - Juntao Hu
- Department of Physics, Center for Optoelectronics Engineering Research, Yunnan University, Kunming, 650091, China
| | - Shunde Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
| | - Tianyu Huang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
| | - Yun Xiao
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech) Shenzhen, Guangdong, 518055, China
| | - Yongqiang Ji
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
| | - Dengke Wang
- Department of Physics, Center for Optoelectronics Engineering Research, Yunnan University, Kunming, 650091, China
| | - Huiliang Sun
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech) Shenzhen, Guangdong, 518055, China
| | - Zheng-Hong Lu
- Department of Physics, Center for Optoelectronics Engineering Research, Yunnan University, Kunming, 650091, China
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, M5G 3E4, Canada
| | - Henry J Snaith
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Lichen Zhao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
| | - Rui Zhu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
122
|
Ahn N, Choi M. Towards Long-Term Stable Perovskite Solar Cells: Degradation Mechanisms and Stabilization Techniques. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306110. [PMID: 37997198 PMCID: PMC10811515 DOI: 10.1002/advs.202306110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/22/2023] [Indexed: 11/25/2023]
Abstract
It is certain that perovskite materials must be a game-changer in the solar industry as long as their stability reaches a level comparable with the lifetime of a commercialized Si photovoltaic. However, the operational stability of perovskite solar cells and modules still remains unresolved, especially when devices operate in practical energy-harvesting modes represented by maximum power point tracking under 1 sun illumination at ambient conditions. This review article covers from fundamental aspects of perovskite instability including chemical decomposition pathways under light soaking and electrical bias, to recent advances and techniques that effectively prevent such degradation of perovskite solar cells and modules. In particular, fundamental causes for permanent degradation due to ion migration and trapped charges are overviewed and explain their interplay between ions and charges. Based on the degradation mechanism, recent advances on the strategies are discussed to slow down the degradation during operation for a practical use of perovskite-based solar devices.
Collapse
Affiliation(s)
- Namyoung Ahn
- Chemistry DivisionLos Alamos National LaboratoryLos AlamosNM87544USA
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy SystemsSeoul National UniversitySeoul08826Republic of Korea
- Department of Mechanical EngineeringSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
123
|
Chen P, Xiao Y, Hu J, Li S, Luo D, Su R, Caprioglio P, Kaienburg P, Jia X, Chen N, Wu J, Sui Y, Tang P, Yan H, Huang T, Yu M, Li Q, Zhao L, Hou CH, You YW, Shyue JJ, Wang D, Li X, Zhao Q, Gong Q, Lu ZH, Snaith HJ, Zhu R. Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature 2024; 625:516-522. [PMID: 38233617 DOI: 10.1038/s41586-023-06892-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices1,2. A 'buffer material' between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode3-5. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber6-8. Thus far, evaporable organic molecules9,10 and atomic-layer-deposited metal oxides11,12 have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Yun Xiao
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Juntao Hu
- Department of Physics, Center for Optoelectronics Engineering Research, Yunnan University, Kunming, China
- Department of Physics, Mathematics and Computer Science, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Shunde Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Deying Luo
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Rui Su
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Pietro Caprioglio
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Pascal Kaienburg
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Xiaohan Jia
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Nan Chen
- Department of Physics, Center for Optoelectronics Engineering Research, Yunnan University, Kunming, China
| | - Jingjing Wu
- State Key Laboratory of Information Functional Materials, 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanping Sui
- State Key Laboratory of Information Functional Materials, 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Pengyi Tang
- State Key Laboratory of Information Functional Materials, 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Haoming Yan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Tianyu Huang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Maotao Yu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Qiuyang Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Lichen Zhao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Cheng-Hung Hou
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Yun-Wen You
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Dengke Wang
- Department of Physics, Center for Optoelectronics Engineering Research, Yunnan University, Kunming, China
| | - Xiaojun Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Qing Zhao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China.
| | - Zheng-Hong Lu
- Department of Physics, Center for Optoelectronics Engineering Research, Yunnan University, Kunming, China.
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Henry J Snaith
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| | - Rui Zhu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China.
| |
Collapse
|
124
|
Zang X, Xiong S, Jiang S, Li D, Wu H, Ren H, Cao A, Li B, Ma Z, Chen J, Ding L, Tang J, Sun Z, Chu J, Bao Q. Passivating Dipole Layer Bridged 3D/2D Perovskite Heterojunction for Highly Efficient and Stable p-i-n Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2309991. [PMID: 38154115 DOI: 10.1002/adma.202309991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/02/2023] [Indexed: 12/30/2023]
Abstract
Constructing 3D/2D perovskite heterojunction is a promising approach to integrate the benefits of high efficiency and superior stability in perovskite solar cells (PSCs). However, in contrast to n-i-p architectural PSCs, the p-i-n PSCs with 3D/2D heterojunction have serious limitations in achieving high-performance as they suffer from a large energetic mismatch and electron extraction energy barrier from a 3D perovskite layer to a 2D perovskite layer, and serious nonradiative recombination at the heterojunction. Here a strategy of incorporating a thin passivating dipole layer (PDL) onto 3D perovskite and then depositing 2D perovskite without dissolving the underlying layer to form an efficient 3D/PDL/2D heterojunction is developed. It is revealed that PDL regulates the energy level alignment with the appearance of interfacial dipole and strongly interacts with 3D perovskite through covalent bonds, which eliminate the energetic mismatch, reduce the surface defects, suppress the nonradiative recombination, and thus accelerate the charge extraction at such electron-selective contact. As a result, it is reported that the 3D/PDL/2D junction p-i-n PSCs present a power conversion efficiency of 24.85% with robust stability, which is comparable to the state-of-the-art efficiency of the 3D/2D junction n-i-p devices.
Collapse
Affiliation(s)
- Xiaoxiao Zang
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Shaobing Xiong
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Sheng Jiang
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Di Li
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Hongbo Wu
- Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Hao Ren
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Aiping Cao
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Bo Li
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Zaifei Ma
- Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Jinde Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianxin Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Junhao Chu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Qinye Bao
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| |
Collapse
|
125
|
Shui QJ, Shan S, Zhai YC, Aoyagi S, Izawa S, Huda M, Yu CY, Zuo L, Chen H, Lin HS, Matsuo Y. Evaporable Fullerene Indanones with Controlled Amorphous Morphology as Electron Transport Layers for Inverted Perovskite Solar Cells. J Am Chem Soc 2023; 145:27307-27315. [PMID: 38063310 DOI: 10.1021/jacs.3c07192] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Fullerenes are among the most commonly used electron-transporting materials (ETMs) in inverted perovskite solar cells (IPSCs). Although versatile functionalized fullerene derivatives have shown excellent performance in IPSCs, pristine [60]fullerene (C60) is still the most widely used in devices mainly because of its uniform morphology by thermal deposition. However, thermally evaporable fullerene derivatives have not yet been achieved. Herein, we developed a series of evaporable fullerene derivatives, referred to as fullerene indanones (FIDOs), affording IPSCs with high power conversion efficiency (PCE) and long-term storage stability. The FIDOs were designed with a unique architecture in which the fullerene moiety and a benzene ring moiety are linked via a five-membered carbon ring in benzene ring plane. This molecular arrangement affords exceptional thermal stability, allowing the FIDOs to withstand harsh thermal deposition conditions. Moreover, by manipulating the steric bulk of the functional groups, we could control the state of the organic film from crystalline to amorphous. Subsequently, we used FIDOs as an electron transport layer (ETL) in IPSCs. Thanks to the suitable energy level and dual-passivation effect of FIDOs compared with a reference ETL using C60, the device using FIDOs achieved an open-circuit voltage of 1.16 V and a fill factor of 0.77. As a result, the PCE reached 22.11%, which is superior to 20.45% of the best-performing reference device. Most importantly, the FIDO-based IPSC devices exhibited exceptional stability in comparison to the reference device due to the stability of the amorphous ETL films.
Collapse
Affiliation(s)
- Qing-Jun Shui
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shiqi Shan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yong-Chang Zhai
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shinobu Aoyagi
- Department of Information and Basic Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Seiichiro Izawa
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Miftakhul Huda
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Chu-Yang Yu
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Lijian Zuo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hao-Sheng Lin
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yutaka Matsuo
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Materials Innovation, Institutes for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
126
|
Gao H, Zhang M, Xu Z, Chen Y, Hu Y, Yi Z, Huang J, Zhu H. Low-temperature synergistic effect of MA and Cl towards high-quality α-FAPbI 3 films for humid-air-processed perovskite solar cells. Dalton Trans 2023; 53:136-147. [PMID: 37718747 DOI: 10.1039/d3dt02051g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Due to the hydrophilicity and black-phase instability of FA perovskites, ambient humidity is an unavoidable issue in the processing of perovskite solar cells (PSCs). MACl is among the most popular additives for improving perovskite films, but our experiments confirm that the direct addition of MACl into the precursor solution deteriorates the stability of the final α-FAPbI3 films in humid air, which is attributed to the unwanted pinholes induced by MACl volatilization. To solve this problem, a novel confined-space annealing strategy (CSA) is intentionally developed to control the amount of MACl at a low level. Through retarding the volatilization of MACl and blocking moisture ingress, dense and δ-phase-free FAPbI3 films with excellent crystallinity and stability are achieved at 100 °C under high humidity (RH: 60 ± 10%). We further compare the same amounts of MAI and FACl additives with MACl, discovering that only when MA and Cl work together can pure α-FAPbI3 films be obtained; therefore, a mechanism of MA-assisted nucleation and Cl-induced diffusion recrystallization is inferred. As a result, the PSCs employing optimal films yield a champion power conversion efficiency (PCE) of 17.27% and retain over 90% of the initial PCE after exposure to high humidity for 480 h. Our results offer deep insights into the thermodynamic and kinetic behaviors of MA and Cl in film growth and are beneficial for air-processed FA-based PSCs for commercial application.
Collapse
Affiliation(s)
- Hao Gao
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| | - Minghui Zhang
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| | - Zicong Xu
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| | - Yichuan Chen
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| | - Yuehui Hu
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| | - Zhijie Yi
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| | - Jiayu Huang
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| | - Hua Zhu
- School of Mechanical and Electronic Engineering, Jingdezhen Ceramic University, Jiangxi 333403, China.
| |
Collapse
|
127
|
Chen J, Xu K, Xie W, Zheng L, Tian Y, Zhang J, Chen J, Liu T, Xu H, Cheng K, Ma R, Chen C, Bao J, Wang X, Liu Y. Enhancing perovskite solar cells efficiency through cesium fluoride mediated surface lead iodide modulation. J Colloid Interface Sci 2023; 652:1726-1733. [PMID: 37672975 DOI: 10.1016/j.jcis.2023.08.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
The presence of an excessive amount of lead iodide on the surface of perovskite solar cells (PSCs) is a significant contributing factor that adversely affects the stability of these devices when exposed to continuous light. To address this issue, we developed an effective strategy involving polishing PbI2 on a perovskite surface using CsF. In this study, we investigated the effects of CsF post-treatment on perovskite films and their photovoltaic properties. The results of the time-resolved photoluminescence and ultraviolet photoelectron spectroscopy tests reveal the significant positive impact of our passivation method based on CsF, which reduces the valence band offset between the perovskite and hole transport layers while simultaneously enhancing the carrier interface transport. PSCs treated with CsF exhibited a photoelectric conversion efficiency (PCE) of 24.25% and an increased fill factor (FF) of 81.72%, which surpassed those of the original PSCs (PCE = 22.12% and FF = 77.40%). Furthermore, after aging for over 2500 h at room temperature and in 30 ± 10% humidity, the PCE of the unpacked PSCs reduced to only 42% of the initial value. Furthermore, the devices treated with CsF maintained their impressive performance, with the PCE maintaining optimal levels at 91% of the initial efficiency.
Collapse
Affiliation(s)
- Junming Chen
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, PR China; Anhui Province Quartz Sand Purification and Photovoltaic Glass Engineering Research Center, Chuzhou 233100, PR China
| | - Kun Xu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, PR China
| | - Weicheng Xie
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, PR China
| | - Lishuang Zheng
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, PR China
| | - Yulu Tian
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, PR China
| | - Jue Zhang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, PR China
| | - Jiahui Chen
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, PR China
| | - Tianyuan Liu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, PR China
| | - Hanzhong Xu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, PR China
| | - Kun Cheng
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, PR China
| | - Ruoming Ma
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, PR China
| | - Chen Chen
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu 210009, PR China
| | - Jusheng Bao
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, PR China
| | - Xuchun Wang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, PR China; Anhui Province Quartz Sand Purification and Photovoltaic Glass Engineering Research Center, Chuzhou 233100, PR China.
| | - You Liu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, PR China; Anhui Province Quartz Sand Purification and Photovoltaic Glass Engineering Research Center, Chuzhou 233100, PR China.
| |
Collapse
|
128
|
Park SM, Wei M, Lempesis N, Yu W, Hossain T, Agosta L, Carnevali V, Atapattu HR, Serles P, Eickemeyer FT, Shin H, Vafaie M, Choi D, Darabi K, Jung ED, Yang Y, Kim DB, Zakeeruddin SM, Chen B, Amassian A, Filleter T, Kanatzidis MG, Graham KR, Xiao L, Rothlisberger U, Grätzel M, Sargent EH. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 2023; 624:289-294. [PMID: 37871614 DOI: 10.1038/s41586-023-06745-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts1-3. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses4,5. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.
Collapse
Affiliation(s)
- So Min Park
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Mingyang Wei
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nikolaos Lempesis
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Wenjin Yu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, P. R. China
| | - Tareq Hossain
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Lorenzo Agosta
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Virginia Carnevali
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Peter Serles
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Felix T Eickemeyer
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Heejong Shin
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Maral Vafaie
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Deokjae Choi
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Kasra Darabi
- Department of Materials Science and Engineering, and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, USA
| | - Eui Dae Jung
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yi Yang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Da Bin Kim
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bin Chen
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Aram Amassian
- Department of Materials Science and Engineering, and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, USA
| | - Tobin Filleter
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | - Kenneth R Graham
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Lixin Xiao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, P. R. China
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
129
|
Zhao X, Zhang Z, Zhu Y, Meng F, Li M, Wang C, Gao W, Feng Y, Li R, He D, Chen J, Chen C. Rationally Tailoring Chiral Molecules to Minimize Interfacial Energy Loss Enables Efficient and Stable Perovskite Solar Cells Using Vacuum Flash Technology. NANO LETTERS 2023. [PMID: 38029280 DOI: 10.1021/acs.nanolett.3c03655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Facing the defects and energy barrier at the interface of perovskite solar cells, we propose a chiral molecule engineering strategy to simultaneously heal interfacial defects and regulate interfacial energy band alignment. S-ibuprofen (S-IBU), R-ibuprofen (R-IBU), and racemic ibuprofen (rac-IBU) are used to post-treat perovskite films. rac-IBU molecules possess the strongest anchoring on the surface of perovskites among all chiral molecules, translating into the best defect passivation effect. The hydrophobic isobutyl group and benzene ring could increase the film moisture resistance ability. Due to reduced interfacial defects and interfacial energy barrier, rac-IBU enables efficient devices with a maximum efficiency exceeding 24% based on vacuum flash technology without antisolvents. The encapsulated rac-IBU-modified device could maintain 90% of its initial performance after 1040 h of continuous maximum power point tracking. This work provides a feasible route to minimize interfacial nonradiative recombination losses by controlling spatial conformation via rational chiral molecule engineering.
Collapse
Affiliation(s)
- Xuefan Zhao
- School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Zuolin Zhang
- School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Yunfei Zhu
- School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Fanbin Meng
- School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Mengjia Li
- School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Chenglin Wang
- School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Wenhuan Gao
- School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Yinsu Feng
- School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Ru Li
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Dongmei He
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Jiangzhao Chen
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Cong Chen
- School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
- Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
130
|
Liu Y, Tang C, Sun A, Zhuang R, Zheng Y, Tian C, Wu X, Li Z, Ouyang B, Du J, Li Z, Hua Y, Chen CC. In situ dipole formation to achieve high open-circuit voltage in inverted perovskite solar cells via fluorinated pseudohalide engineering. MATERIALS HORIZONS 2023; 10:5763-5774. [PMID: 37811708 DOI: 10.1039/d3mh01313h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Many studies have shown that the severe photoluminescence quantum yield (PLQY) loss at the interface between the perovskite and electron transport layer (ETL) is the main cause of voltage loss in inverted perovskite solar cells (p-i-n PSCs). However, currently there are no effective in situ passivation techniques to minimize this nonradiative recombination. Here, the fluorinated pseudohalide ionic liquid (FPH-IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMTFSI) is introduced into the perovskite precursor formulation. EMIMTFSI can change the dielectric environment and energy-level arrangement of the perovskite by accumulating on the top surface and spontaneously forming dipoles. As a result, the excitonic binding energy (Eb) and nonradiative recombination loss are significantly reduced. At the same time, TFSI- reduces the formation energy of vacancy defects and stabilizes the perovskite phase by forming N-H⋯F hydrogen bonds between FA+ and the C-F bond in EMIMTFSI. Finally, the EMIMTFSI-modified p-i-n PSCs achieve an excellent efficiency of 24.81% with an impressive open-circuit voltage of 1.191 V for a 1.57 eV low-bandgap perovskite. In addition, the modified devices can maintain more than 95% PCE after continuous thermal aging at 85 °C for 500 h or illumination at the maximum power point for 800 h. This work provides a new idea for minimizing the non-radiative recombination losses in p-i-n PSCs.
Collapse
Affiliation(s)
- Yuan Liu
- School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Chen Tang
- School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Anxin Sun
- School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Rongshan Zhuang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology School of Materials and Energy Yunnan University, Kunming 650091, P. R. China
| | - Yiting Zheng
- School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Congcong Tian
- School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xueyun Wu
- School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Zihao Li
- School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Beilin Ouyang
- School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jiajun Du
- School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Ziyi Li
- School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yong Hua
- Yunnan Key Laboratory for Micro/Nano Materials & Technology School of Materials and Energy Yunnan University, Kunming 650091, P. R. China
| | - Chun-Chao Chen
- School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
131
|
Liu C, Yang Y, Chen H, Xu J, Liu A, Bati ASR, Zhu H, Grater L, Hadke SS, Huang C, Sangwan VK, Cai T, Shin D, Chen LX, Hersam MC, Mirkin CA, Chen B, Kanatzidis MG, Sargent EH. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 2023; 382:810-815. [PMID: 37972154 DOI: 10.1126/science.adk1633] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023]
Abstract
Compared with the n-i-p structure, inverted (p-i-n) perovskite solar cells (PSCs) promise increased operating stability, but these photovoltaic cells often exhibit lower power conversion efficiencies (PCEs) because of nonradiative recombination losses, particularly at the perovskite/C60 interface. We passivated surface defects and enabled reflection of minority carriers from the interface into the bulk using two types of functional molecules. We used sulfur-modified methylthio molecules to passivate surface defects and suppress recombination through strong coordination and hydrogen bonding, along with diammonium molecules to repel minority carriers and reduce contact-induced interface recombination achieved through field-effect passivation. This approach led to a fivefold longer carrier lifetime and one-third the photoluminescence quantum yield loss and enabled a certified quasi-steady-state PCE of 25.1% for inverted PSCs with stable operation at 65°C for >2000 hours in ambient air. We also fabricated monolithic all-perovskite tandem solar cells with 28.1% PCE.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Yi Yang
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Hao Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Jian Xu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Ao Liu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Abdulaziz S R Bati
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Huihui Zhu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Luke Grater
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Shreyash Sudhakar Hadke
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Chuying Huang
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Tong Cai
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Donghoon Shin
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Mark C Hersam
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Bin Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | | | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
132
|
Wang GE, Xiao GB, Li CP, Fu ZH, Cao J, Xu G. Directional Defect Management in Perovskites by In Situ Decom-position of Organic Metal Chalcogenides for Efficient Solar Cells. Angew Chem Int Ed Engl 2023:e202313833. [PMID: 37942505 DOI: 10.1002/anie.202313833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Directional defects management in polycrystalline perovskite film with inorganic passivator is highly demanded while yet realized for fabricating efficient and stable perovskite solar cells (PSCs). Here, we develop a directional passivation strategy employing a two-dimensional (2D) material, Cu-(4-mercaptophenol) (Cu-HBT), as a passivator precursor. Cu-HBT combines the merits of the targeted modification from organic passivator and excellent stability offered by inorganic passivator. Featuring with dense organic functional motifs on its surfaces, Cu-HBT has the capability to "find" and fasten to the Pb defect sites in perovskites through coordination interactions during a spin-coating process. During subsequent annealing treatment, the organic functional motifs cleave from Cu-HBT and convert in situ into p-type semiconductors, Cu2 S and PbS. The resultant Cu2 S and PbS not only serve as stable inorganic passivators on the perovskite surface, significantly enhancing cell stability, but also facilitate efficient charge extraction and transport, resulting in an impressive efficiency of up to 23.5 %. This work contributes a new defect management strategy by directionally yielding the stable inorganic passivators for highly efficient and stable PSCs.
Collapse
Affiliation(s)
- Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002, China
| | - Guo-Bin Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000, China
| | - Cong-Ping Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000, China
| | - Zhi-Hua Fu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002, China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000, China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
133
|
Shi J, Zhao C, Yuan J. Achieving High Fill Factor in Efficient P-i-N Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302383. [PMID: 37501318 DOI: 10.1002/smll.202302383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Lead halide perovskite solar cells (PSCs) have made unprecedented progress, exhibiting great potential for commercialization. Among them, inverted p-i-n PSCs provide outstanding compatibility with flexible substrates, more importantly, with silicon (Si) bottom devices for higher efficiency perovskite-Si tandem solar cells. However, even with recently obtained efficiency over 25%, the investigation of inverted p-i-n PSCs is still behind the n-i-p counterpart so far. Recent progress has demonstrated that the fill factor (FF) in inverted PSCs currently still underperforms relative to open-circuit voltage and short-circuit current density, which requires an in-depth understanding of the mechanism and further research. In this review article, the recent advancements in high FF inverted PSCs by adopting the approaches of interfacial optimization, precursor engineering as well as fabrication techniques to minimize undesirable recombination are summarized. Insufficient carrier extraction and transport efficiency are found to be the main factors that hinder the current FF of inverted PSCs. In addition, insights into the main factors limiting FF and strategies for minimizing series resistance in inverted PSCs are presented. The continuous efforts dedicated to the FF of high-performance inverted devices may pave the way toward commercial applications of PSCs in the near future.
Collapse
Affiliation(s)
- Junwei Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Chenyu Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
134
|
Li Z, Cao Y, Feng J, Lou J, Liu Y, Liu SF. Stable and High-Efficiency Perovskite Solar Cells Using Effective Additive Ytterbium Fluoride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303017. [PMID: 37480182 DOI: 10.1002/smll.202303017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/18/2023] [Indexed: 07/23/2023]
Abstract
With better light utilization, larger tolerance factor, and higher power conversion efficiency (PCE), the HC(NH2 )2 + (FA)-based perovskite is proven superior to the popular CH3 NH3 + (MA)- and Cs-based halide perovskites in solar cell applications. Unfortunately, limited by intrinsic defects within the FA-based perovskite films, the perovskite films can be easily transformed into a yellow δ-phase at room temperature in the fabrication process, a troublesome challenge for its further development. Here, ytterbium fluoride (YbF3 ) is introduced into the perovskite precursor for three objectives. First of all, the partial substitution of Yb3+ for Pb2+ in the perovskite lattice increases the tolerance factor of the perovskite lattice and facilitates the formation of the α phase. Second, YbF3 and DMSO in the solvent form a Lewis acid complex YbF3 ·DMSO, which can passivate the perovskite film, reduce defects, and improve device stability. Consequently, the YbF3 modified Perovskite solar cell exhibits a champion conversion efficiency of 24.53% and still maintains 90% of its initial efficiency after 60 days of air exposure under 30% relative humidity.
Collapse
Affiliation(s)
- Zhigang Li
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, west chang'an street, Xi'an, Shaanxi, 710119, P. R. China
| | - Yang Cao
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, west chang'an street, Xi'an, Shaanxi, 710119, P. R. China
| | - Jiangshan Feng
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, west chang'an street, Xi'an, Shaanxi, 710119, P. R. China
| | - Junjie Lou
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Yucheng Liu
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, west chang'an street, Xi'an, Shaanxi, 710119, P. R. China
| | - Shengzhong Frank Liu
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, Shaanxi Normal University, west chang'an street, Xi'an, Shaanxi, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
135
|
Xu L, Ji H, Qiu W, Wang X, Liu Y, Li Y, Li J, Zhang X, Zhang D, Wang J, Tao Y, Li M, Chen R. Enhanced Resonance for Facilitated Modulation of Large-Area Perovskite Films with Stable Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301752. [PMID: 37815114 DOI: 10.1002/adma.202301752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Upscaling efficient and stable perovskite films is a challenging task in the industrialization of perovskite solar cells partly due to the lack of high-performance hole transport materials (HTMs), which can simultaneously promote hole transport and regulate the quality of perovskite films especially in inverted solar cells. Here, a novel HTM based on N-C = O resonance structure is designed for facilitating the modulation of the crystallization and bottom-surface defects of perovskite films. Benefiting from the resonance interconversion (N-C = O and N+ = C-O- ) in donor-resonance-donor (D-r-D) architecture and interactions with uncoordinated Pb2+ in perovskite, the resulting D-r-D HTM with two donor units exhibits not only excellent hole extraction and transport capacities, but also efficient crystallization modulation of perovskite for high-quality photovoltaic films in large area. The D-r-D HTM-based large-area (1.02 cm2 ) devices exhibit high power conversion efficiencies (PCEs) up to 21.0%. Moreover, the large-area devices have excellent photo-thermal stability, showing only a 2.6% reduction in PCE under continuous AM 1.5G light illumination at elevated temperature (≈65 °C) for over 1320 h without encapsulation.
Collapse
Affiliation(s)
- Ligang Xu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Geyu Road, Wuhan, Hubei, 430074, China
| | - Haodong Ji
- School of Environment and Energy, Peking University Shenzhen Graduate School, 1120 Lianhua Road, Shenzhen, 518055, China
| | - Wei Qiu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xin Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yan Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yuanhao Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, 1120 Lianhua Road, Shenzhen, 518055, China
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun east road, Beijing, 100190, China
| | - Xin Zhang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Daiquan Zhang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jiexue Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, 4 Baishou Road, Chengdu, 611130, China
| | - Ye Tao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Meicheng Li
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, 2 Beinong Road, Beijing, 102206, China
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
136
|
Li Z, Sun X, Zheng X, Li B, Gao D, Zhang S, Wu X, Li S, Gong J, Luther JM, Li Z, Zhu Z. Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 2023; 382:284-289. [PMID: 37856581 DOI: 10.1126/science.ade9637] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
P-i-n geometry perovskite solar cells (PSCs) offer simplified fabrication, greater amenability to charge extraction layers, and low-temperature processing over n-i-p counterparts. Self-assembled monolayers (SAMs) can enhance the performance of p-i-n PSCs but ultrathin SAMs can be thermally unstable. We report a thermally robust hole-selective layer comprised of nickel oxide (NiOx) nanoparticle film with a surface-anchored (4-(3,11-dimethoxy-7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid (MeO-4PADBC) SAM that can improve and stabilize the NiOx/perovskite interface. The energetic alignment and favorable contact and binding between NiOx/MeO-4PADBC and perovskite reduced the voltage deficit of PSCs with various perovskite compositions and led to strong interface toughening effects under thermal stress. The resulting 1.53-electron-volt devices achieved 25.6% certified power conversion efficiency and maintained >90% of their initial efficiency after continuously operating at 65 degrees Celsius for 1200 hours under 1-sun illumination.
Collapse
Affiliation(s)
- Zhen Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Xianglang Sun
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xiaopeng Zheng
- National Renewable Energy Laboratory, Golden, CO 80401, USA
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Science, Beijing, 100049, P.R. China
| | - Bo Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Danpeng Gao
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Shoufeng Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Xin Wu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Shuai Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Jianqiu Gong
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | | | - Zhong'an Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| |
Collapse
|
137
|
He J, Hu G, Jiang Y, Zeng S, Niu G, Feng G, Liu Z, Yang K, Shao C, Zhao Y, Wang F, Li Y, Wang J. Dual-Interface Engineering in Perovskite Solar Cells with 2D Carbides. Angew Chem Int Ed Engl 2023; 62:e202311865. [PMID: 37615050 DOI: 10.1002/anie.202311865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
Passivating the interfaces between the perovskite and charge transport layers is crucial for enhancing the power conversion efficiency (PCE) and stability in perovskite solar cells (PSCs). Here we report a dual-interface engineering approach to improving the performance of FA0.85 MA0.15 Pb(I0.95 Br0.05 )3 -based PSCs by incorporating Ti3 C2 Clx Nano-MXene and o-TB-GDY nanographdiyne (NanoGDY) into the electron transport layer (ETL)/perovskite and perovskite/ hole transport layer (HTL) interfaces, respectively. The dual-interface passivation simultaneously suppresses non-radiative recombination and promotes carrier extraction by forming the Pb-Cl chemical bond and strong coordination of π-electron conjugation with undercoordinated Pb defects. The resulting perovskite film has an ultralong carrier lifetime exceeding 10 μs and an enlarged crystal size exceeding 2.5 μm. A maximum PCE of 24.86 % is realized, with an open-circuit voltage of 1.20 V. Unencapsulated cells retain 92 % of their initial efficiency after 1464 hours in ambient air and 80 % after 1002 hours of thermal stability test at 85 °C.
Collapse
Affiliation(s)
- Jiandong He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guilin Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Zeng
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guosheng Niu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guitao Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhe Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaiyi Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Shao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fuyi Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongjun Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jizheng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
138
|
Duan S, Sun Q, Liu G, Deng J, Meng X, Shen B, Hu D, Kang B, Silva SRP. Synergistic Surface Defect Passivation of Ionic Liquids for Efficient and Stable MAPbI 3-Based Inverted Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46483-46492. [PMID: 37748040 DOI: 10.1021/acsami.3c08827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Organic-inorganic hybrid perovskite solar cells are fabricated using polycrystalline perovskite thin films, which possess high densities of point and surface defects. The surface defects of perovskite thin films are the key factors that affect the device performance. Therefore, the reduction of harmful defects is the primary task for improving device performance. Therefore, in this study, high-quality perovskite thin films are prepared using an ionic liquid, dithiocarbamate diethylamine (DADA), to passivate the interface. The electron-rich sulfur atom in the DADA molecule chelates with the uncoordinated lead ion in the perovskite films, and the diethylammonium cation forms a hydrogen bond with the free iodine ion, which further improves the passivation. The synergistic passivation and improved morphology of the perovskite thin films substantially reduce the number of charged defects on the film surface and prolong the carrier lifetime. In addition, the DADA surface treatment increases the work function of the perovskite film, which is beneficial for carrier transport. Under standard solar-lighting conditions, the power conversion efficiency (PCE) of the device increases from 19.13 to 21.36%, and the fill factor is as high as 83.17%. Owing to both the hydrophobicity of DADA molecules and the passivation of ion defects, the PCE of the device remains above 80%, even for the device stored for 500 h in air at a relative humidity of 65%, and the device stability is substantially improved.
Collapse
Affiliation(s)
- Shaocong Duan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Qing Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Gang Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Jianguo Deng
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xiangxin Meng
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Bo Shen
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Die Hu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Bonan Kang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - S Ravi P Silva
- Nanoelectronics Centre, Advanced Technology Institute, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| |
Collapse
|
139
|
Xiao Y, Zhang H, Zhao Y, Liu P, Kondamareddy KK, Wang C. Carrier Modulation via Tunnel Oxide Passivating at Buried Perovskite Interface for Stable Carbon-Based Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2640. [PMID: 37836281 PMCID: PMC10574625 DOI: 10.3390/nano13192640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Carbon-based perovskite solar cells (C-PSCs) have the impressive characteristics of good stability and potential commercialization. The insulating layers play crucial roles in charge modulation at the buried perovskite interface in mesoporous C-PSCs. In this work, the effects of three different tunnel oxide layers on the performance of air-processed C-PSCs are scrutinized to unveil the passivating quality. Devices with ZrO2-passivated TiO2 electron contacts exhibit higher power conversion efficiencies (PCEs) than their Al2O3 and SiO2 counterparts. The porous feature and robust chemical properties of ZrO2 ensure the high quality of the perovskite absorber, thus ensuring the high repeatability of our devices. An efficiency level of 14.96% puts our device among the state-of-the-art hole-conductor-free C-PSCs, and our unencapsulated device maintains 88.9% of its initial performance after 11,520 h (480 days) of ambient storage. These results demonstrate that the function of tunnel oxides at the perovskite/electron contact interface is important to manipulate the charge transfer dynamics that critically affect the performance and stability of C-PSCs.
Collapse
Affiliation(s)
- Yuqing Xiao
- School of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Artificial Micro & Nano Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Huijie Zhang
- Key Laboratory of Artificial Micro & Nano Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yue Zhao
- Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Laboratory of Modern Optical Technologies of Education Ministry of China, School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Pei Liu
- Key Laboratory of Artificial Micro & Nano Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Kiran Kumar Kondamareddy
- Department of Physics, School of Pure Sciences, College of Engineering Science and Technology, FIJI National University, Lautoka Campus, Suva 744101, Fiji
| | - Changlei Wang
- Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Laboratory of Modern Optical Technologies of Education Ministry of China, School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
140
|
Huang L, Lou YH, Wang ZK. Buried Interface Passivation: A Key Strategy to Breakthrough the Efficiency of Perovskite Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302585. [PMID: 37196420 DOI: 10.1002/smll.202302585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Owing to the merits of low cost and high power conversion efficiency (PCE), perovskite solar cells (PSCs) have become the best candidate to replace the commonly used silicon solar cells. However, PSCs have been slow to enter the market for a number of reasons, including poor stability, high toxicity, and rigorous preparation process. Passivation strategies including surface passivation and bulk passivation have been successfully applied to improve the device performance of PSCs. The passivation of the defects at the buried interface, which is regarded as a key strategy to breakthrough the device efficiency and stability of PSCs in the future, is ongoing with challenge. Herein, in detail the recent passivation of the buried interface is introduced from three aspects: perovskite layer, buried interlayer, and transport layer. The passivation effect of the buried interface is clearly demonstrated through three categories of salts, organics, and 2D materials. In addition, the transport layer is classified into electron transport layer (ETL) and hole transport layer (HTL). These classifications can help to have a clear understanding of substances which generate passivating effect and guide the continuous promotion of the follow-up buried interface passivating work.
Collapse
Affiliation(s)
- Lei Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yan-Hui Lou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, 215006, China
| | - Zhao-Kui Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
141
|
Guo Y, Huang L, Wang C, Liu S, Huang J, Liu X, Zhang J, Hu Z, Zhu Y. Advances on the Application of Wide Band-Gap Insulating Materials in Perovskite Solar Cells. SMALL METHODS 2023; 7:e2300377. [PMID: 37254269 DOI: 10.1002/smtd.202300377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Indexed: 06/01/2023]
Abstract
In recent years, the development of perovskite solar cells (PSCs) is advancing rapidly with their recorded photoelectric conversion efficiency reaching 25.8%. However, for the commercialization of PSCs, it is also necessary to solve their stability issue. In order to improve the device performance, various additives and interface modification strategies have been proposed. While, in many cases, they can guarantee a significant increase in efficiency, but not ensure improved stability. Therefore, materials that improve the device efficiency and stability simultaneously are urgently needed. Some wide band-gap insulating materials with stable physical and chemical properties are promising alternative materials. In this review, the application of wide band-gap insulating materials in PSCs, including their preparation methods, working roles, and mechanisms are described, which will promote the commercial application of PSCs.
Collapse
Affiliation(s)
- Yi Guo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Like Huang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
| | - Chaofeng Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Shuang Liu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Jiajia Huang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Xiaohui Liu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Jing Zhang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Ziyang Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Yuejin Zhu
- School of Information Engineering, College of Science and Technology, Ningbo University, Ningbo, 315300, China
| |
Collapse
|
142
|
Li S, Wang X, Li H, Fang J, Wang D, Xie G, Lin D, He S, Qiu L. Low-Temperature Chemical Bath Deposition of Conformal and Compact NiO X for Scalable and Efficient Perovskite Solar Modules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301110. [PMID: 37086142 DOI: 10.1002/smll.202301110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/10/2023] [Indexed: 05/03/2023]
Abstract
A scalable and low-cost deposition of high-quality charge transport layers and photoactive perovskite layers are the grand challenges for large-area and efficient perovskite solar modules and tandem cells. An inverted structure with an inorganic hole transport layer is expected for long-term stability. Among various hole transport materials, nickel oxide has been investigated for highly efficient and stable perovskite solar cells. However, the reported deposition methods are either difficult for large-scale conformal deposition or require a high vacuum process. Chemical bath deposition is supposed to realize a uniform, conformal, and scalable coating by a solution process. However, the conventional chemical bath deposition requires a high annealing temperature of over 400 °C. In this work, an amino-alcohol ligand-based controllable release and deposition of NiOX using chemical bath deposition with a low calcining temperature of 270 °C is developed. The uniform and conformal in-situ growth precursive films can be adjusted by tuning the ligand structure. The inverted structured perovskite solar cells and large-area solar modules reached a champion PCE of 22.03% and 19.03%, respectively. This study paves an efficient, low-temperature, and scalable chemical bath deposition route for large-area NiOX thin films for the scalable fabrication of highly efficient perovskite solar modules.
Collapse
Affiliation(s)
- Sibo Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xin Wang
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Huan Li
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jun Fang
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Daozeng Wang
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Guanshui Xie
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Dongxu Lin
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Sisi He
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Flexible Printed Electronics Technology Center, School of Science, Harbin Institute of Technology Shenzhen, Nanshan District, Shenzhen, 518055, P. R. China
| | - Longbin Qiu
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
143
|
Zhuang Q, Li H, Zhang C, Gong C, Yang H, Chen J, Zang Z. Synergistic Modification of 2D Perovskite with Alternating Cations in the Interlayer Space and Multisite Ligand toward High-Performance Inverted Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303275. [PMID: 37163232 DOI: 10.1002/adma.202303275] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/03/2023] [Indexed: 05/11/2023]
Abstract
The preparation of high-quality perovskite films is key to realize efficient and stable inverted perovskite solar cells. The trap-assisted nonradiative recombination at grain boundary (GB) and surface poses a serious challenge for fabricating high-quality perovskite films. Here, a synergistic modulation strategy of two-dimensional (2D) perovskite with alternating cations in the interlayer space (ACI) and multisite ligand 2-mercapto-1,3,4-thiadiazole (MTD) for fabricating high-quality methylammonium-free perovskite films is reported. The formation of ACI 2D perovskite promotes the nucleation of three-dimensional (3D) perovskites, suppresses the generation of yellow phase, and promotes the formation of black phase, leading to increased grain size and crystallinity. Due to the synergistic effect of ACI 2D perovskite and MTD, the defects at GBs and surface are healed simultaneously. The significantly inhibited nonradiative recombination enables realization of high-efficiency inverted devices with a fascinating power conversion efficiency (PCE) of 24.58%, which is one of the highest PCEs reported for inverted devices. The synergistically modified unsealed device demonstrates an excellent long-term ambient stability, retaining 90.5% of its initial PCE after 3000 h under a relative humidity of 30-40%. This work provides deep insights into minimizing nonradiative recombination losses through the rational synergistic engineering of GB and surface toward efficient and stable inverted devices.
Collapse
Affiliation(s)
- Qixin Zhuang
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Haiyun Li
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Cong Zhang
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Cheng Gong
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Hua Yang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Jiangzhao Chen
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| |
Collapse
|
144
|
Fei C, Li N, Wang M, Wang X, Gu H, Chen B, Zhang Z, Ni Z, Jiao H, Xu W, Shi Z, Yan Y, Huang J. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 2023; 380:823-829. [PMID: 37228201 DOI: 10.1126/science.ade9463] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
The defective bottom interfaces of perovskites and hole-transport layers (HTLs) limit the performance of p-i-n structure perovskite solar cells. We report that the addition of lead chelation molecules into HTLs can strongly interact with lead(II) ion (Pb2+), resulting in a reduced amorphous region in perovskites near HTLs and a passivated perovskite bottom surface. The minimodule with an aperture area of 26.9 square centimeters has a power conversion efficiency (PCE) of 21.8% (stabilized at 21.1%) that is certified by the National Renewable Energy Laboratory (NREL), which corresponds to a minimal small-cell efficiency of 24.6% (stabilized 24.1%) throughout the module area. Small-area cells and large-area minimodules with lead chelation molecules in HTLs had a light soaking stability of 3010 and 2130 hours, respectively, at an efficiency loss of 10% from the initial value under 1-sun illumination and open-circuit voltage conditions.
Collapse
Affiliation(s)
- Chengbin Fei
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nengxu Li
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mengru Wang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaoming Wang
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| | - Hangyu Gu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bo Chen
- Perotech, Inc., Chapel Hill, NC 27516, USA
| | - Zhao Zhang
- Perotech, Inc., Chapel Hill, NC 27516, USA
| | - Zhenyi Ni
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haoyang Jiao
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenzhan Xu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhifang Shi
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanfa Yan
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| | - Jinsong Huang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
145
|
Wang R, Li M, Ma Z, He Z, Dong Y, Zhang Y, Xu Z, Su G, Tan Z. Hexachlorotriphosphazene-assisted buried interface passivation for stable and efficient wide-bandgap perovskite solar cells. Chem Commun (Camb) 2023; 59:6255-6258. [PMID: 37139609 DOI: 10.1039/d3cc01100c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Large open-circuit voltage (Voc) loss is the main issue limiting the efficiency improvement in wide bandgap perovskite solar cells (PerSCs). Herein, a facile buried interface treatment by hexachlorotriphosphazene is developed to suppress the Voc loss. The PerSCs include a [Cs0.22FA0.78Pb(I0.85Br0.15)3]0.97(MAPbCl3)0.03 (1.67 eV) absorber and deliver an efficiency of 21.47% and a Voc of 1.21 V (Voc loss of 0.46 V). More importantly, the unencapsulated PerSCs maintain 90% of the initial efficiency after aging 500 h in N2.
Collapse
Affiliation(s)
- Ruyue Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Minghua Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zongwen Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhangwei He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yiman Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuling Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhiyang Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Gangfeng Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
146
|
Li H, Xie G, Wang X, Li S, Lin D, Fang J, Wang D, Huang W, Qiu L. Buried Interface Dielectric Layer Engineering for Highly Efficient and Stable Inverted Perovskite Solar Cells and Modules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300586. [PMID: 37098640 DOI: 10.1002/advs.202300586] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Stability and scalability are essential and urgent requirements for the commercialization of perovskite solar cells (PSCs), which are retarded by the non-ideal interface leading to non-radiative recombination and degradation. Extensive efforts are devoted to reducing the defects at the perovskite surface. However, the effects of the buried interface on the degradation and non-radiative recombination need to be further investigated. Herein, an omnibearing strategy to modify buried and top surfaces of perovskite film to reduce interfacial defects, by incorporating aluminum oxide (Al2 O3 ) as a dielectric layer and growth scaffolds (buried surface) and phenethylammonium bromide as a passivation layer (buried and top surfaces), is demonstrated. Consequently, the open-circuit voltage is extensively boosted from 1.02 to 1.14 V with the incorporation of Al2 O3 filling the voids between grains, resulting in dense morphology of buried interface and reduced recombination centers. Finally, the impressive efficiencies of 23.1% (0.1 cm2 ) and 22.4% (1 cm2 ) are achieved with superior stability, which remain 96% (0.1 cm2 ) and 89% (1 cm2 ) of its initial performance after 1200 (0.1 cm2 ) and 2500 h (1 cm2 ) illumination, respectively. The dual modification provides a universal method to reduce interfacial defects, revealing a promising prospect in developing high-performance PSCs and modules.
Collapse
Affiliation(s)
- Huan Li
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guanshui Xie
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Wang
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sibo Li
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dongxu Lin
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Fang
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Daozeng Wang
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weixin Huang
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Longbin Qiu
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|