101
|
The p53 tumor suppressor network in cancer and the therapeutic modulation of cell death. Apoptosis 2009; 14:336-47. [PMID: 19229632 DOI: 10.1007/s10495-009-0327-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The molecular subversion of cell death is acknowledged as a principal contributor to the development and progression of cancer. The p53 tumor suppressor protein is among the most commonly altered proteins in human cancer. The p53 protein mediates critical functions within cells including the response to genotoxic stress, differentiation, senescence, and cell death. Loss of p53 function can result in enhanced rates of cell proliferation, resistance to cell death stimuli, genomic instability, and metastasis. The community of cancer scientists is now in possession of a vast repository of information regarding the frequency, specific mechanisms, and clinical context of cell death deregulation in cancer. This information has enabled the design of therapeutic agents to target proteins, including p53. The feasibility and impact of targeting cell death signaling proteins has been established in preclinical models of human cancer. The appropriate application of these targeted agents is now being established in clinical trials.
Collapse
|
102
|
Yao Z, Liu Y, Jones J, Strober S. Differences in Bcl-2 expression by T-cell subsets alter their balance after in vivo irradiation to favor CD4+Bcl-2hi NKT cells. Eur J Immunol 2009; 39:763-75. [PMID: 19197937 PMCID: PMC2758339 DOI: 10.1002/eji.200838657] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although it is well known that in vivo radiation depletes immune cells via the Bcl-2 apoptotic pathway, a more nuanced analysis of the changes in the balance of immune-cell subsets is needed to understand the impact of radiation on immune function. We show the balance of T-cell subsets changes after increasing single doses of total body irradiation (TBI) or after fractionated irradiation of the lymphoid tissues (TLI) of mice due to differences in radioresistance and Bcl-2 expression of the NKT-cell and non-NKT subsets to favor CD4(+)Bcl-2(hi) NKT cells. Reduction of the Bcl-2(lo) mature T-cell subsets was at least 100-fold greater than that of the Bcl-2(hi) subsets. CD4(+) NKT cells upregulated Bcl-2 after TBI and TLI and developed a Th2 bias after TLI, whereas non-NKT cells failed to do so. Our previous studies showed TLI protects against graft versus host disease in wild-type, but not in NKT-cell-deficient mice. The present study shows that NKT cells have a protective function even after TBI, and these cells are tenfold more abundant after an equal dose of TLI. In conclusion, differential expression of Bcl-2 contributes to the changes in T-cell subsets and immune function after irradiation.
Collapse
Affiliation(s)
- Zhenyu Yao
- Division of Immunology and Rheumatology, Departments of Medicine, Stanford University School of Medicine, Stanford, California, 94305
| | - Yinping Liu
- Division of Immunology and Rheumatology, Departments of Medicine, Stanford University School of Medicine, Stanford, California, 94305
| | - Jennifer Jones
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, 94305
| | - Samuel Strober
- Division of Immunology and Rheumatology, Departments of Medicine, Stanford University School of Medicine, Stanford, California, 94305
| |
Collapse
|
103
|
Bandyopadhyay S, Qui HZ, Adler AJ. In vitro and in vivo differentiated effector CD8 T cells display divergent histone acetylation patterns within the Ifng locus. Immunol Lett 2009; 122:214-8. [PMID: 19195486 PMCID: PMC2683175 DOI: 10.1016/j.imlet.2009.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/16/2008] [Accepted: 01/14/2009] [Indexed: 11/24/2022]
Abstract
Epigenetic remodeling of genes encoding effector cytokines that permit accessibility to the transcriptional machinery is a central event in the differentiation of naive T cells into effectors that can attack pathogens and tumors. Covalent modifications of histones that cause a loosening of nucleosomal structures occur not only in promoter regions, but also at upstream and downstream enhancer elements that integrate various cellular stimuli to modulate the rate of transcriptional initiation. This knowledge derives mostly from the analysis of in vitro differentiated effector T cells. Here, we compared acetylation of histone H3 (AcH3) at several sites within the Ifng locus in CD8 T cells that underwent effector differentiation in vitro vs. in vivo. While AcH3 was similar at the proximal promoter, it displayed a reciprocal pattern at two well-characterized upstream and downstream sites. These data suggest that certain epigenetic remodeling events may be artifactual consequences of in vitro culturing conditions, and indicate the importance of using in vivo models to study effector cytokine gene remodeling.
Collapse
Affiliation(s)
- Suman Bandyopadhyay
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Harry Z. Qui
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Adam J. Adler
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
104
|
Bandyopadhyay S, Long M, Qui HZ, Hagymasi AT, Slaiby AM, Mihalyo MA, Aguila HL, Mittler RS, Vella AT, Adler AJ. Self-antigen prevents CD8 T cell effector differentiation by CD134 and CD137 dual costimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7728-37. [PMID: 19017962 PMCID: PMC2846364 DOI: 10.4049/jimmunol.181.11.7728] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We compared how CD4 vs CD8 cells attain the capacity to express the effector cytokine IFN-gamma under both immunogenic and tolerogenic conditions. Although the Ifng gene locus was epigenetically repressed in naive Ag-inexperienced CD4 cells, it had already undergone partial remodeling toward a transcriptionally competent configuration in naive CD8 cells. After TCR stimulation, CD8 cells fully remodeled the Ifng locus and gained the capacity to express high levels of IFN-gamma more rapidly than CD4 cells. Enforced dual costimulation through OX40 and 4-1BB redirected CD8 cells encountering soluble exogenous peptide to expand and differentiate into IFN-gamma and TNF-alpha double-producing effectors rather than becoming tolerant. Despite this and the stronger tendency of CD8 compared with CD4 cells to differentiate into IFN-gamma-expressing effectors, when parenchymal self-Ag was the source of tolerizing Ag, enforced dual costimulation selectively boosted expansion but did not push effector differentiation in CD8 cells while both expansion and effector differentiation were dramatically boosted in CD4 cells. Notably, enforced dual costimulation was able to push effector differentiation in CD8 cells encountering cognate parenchymal self-Ag when CD4 cells were simultaneously engaged. Thus, the ability of enforced OX40 plus 4-1BB dual costimulation to redirect CD8 cells to undergo effector differentiation was unexpectedly influenced by the source of tolerizing Ag and help was selectively required to facilitate CD8 cell effector differentiation when the tolerizing Ag derived from self.
Collapse
Affiliation(s)
- Suman Bandyopadhyay
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Meixiao Long
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Harry Z. Qui
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Adam T. Hagymasi
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Aaron M. Slaiby
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Marianne A. Mihalyo
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Hector L. Aguila
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Robert S. Mittler
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329
| | - Anthony T. Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Adam J. Adler
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
105
|
Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. ACTA ACUST UNITED AC 2008; 205:2235-49. [PMID: 18809714 PMCID: PMC2556797 DOI: 10.1084/jem.20080132] [Citation(s) in RCA: 714] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation of myeloid-derived suppressor cells (MDSCs) associated with inhibition of dendritic cell (DC) differentiation is one of the major immunological abnormalities in cancer and leads to suppression of antitumor immune responses. The molecular mechanism of this phenomenon remains unclear. We report here that STAT3-inducible up-regulation of the myeloid-related protein S100A9 enhances MDSC production in cancer. Mice lacking this protein mounted potent antitumor immune responses and rejected implanted tumors. This effect was reversed by administration of wild-type MDSCs from tumor-bearing mice to S100A9-null mice. Overexpression of S100A9 in cultured embryonic stem cells or transgenic mice inhibited the differentiation of DCs and macrophages and induced accumulation of MDSCs. This study demonstrates that tumor-induced up-regulation of S100A9 protein is critically important for accumulation of MDSCs and reveals a novel molecular mechanism of immunological abnormalities in cancer.
Collapse
Affiliation(s)
- Pingyan Cheng
- H. Lee Moffitt Cancer Center, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Ji Q, Hao X, Meng Y, Zhang M, DeSano J, Fan D, Xu L. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer 2008; 8:266. [PMID: 18803879 PMCID: PMC2564978 DOI: 10.1186/1471-2407-8-266] [Citation(s) in RCA: 321] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 09/21/2008] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs), some of which function as oncogenes or tumor suppressor genes, are involved in carcinogenesis via regulating cell proliferation and/or cell death. MicroRNA miR-34 was recently found to be a direct target of p53, functioning downstream of the p53 pathway as a tumor suppressor. miR-34 targets Notch, HMGA2, and Bcl-2, genes involved in the self-renewal and survival of cancer stem cells. The role of miR-34 in gastric cancer has not been reported previously. In this study, we examined the effects of miR-34 restoration on p53-mutant human gastric cancer cells and potential target gene expression. METHODS Human gastric cancer cells were transfected with miR-34 mimics or infected with the lentiviral miR-34-MIF expression system, and validated by miR-34 reporter assay using Bcl-2 3'UTR reporter. Potential target gene expression was assessed by Western blot for proteins, and by quantitative real-time RT-PCR for mRNAs. The effects of miR-34 restoration were assessed by cell growth assay, cell cycle analysis, caspase-3 activation, and cytotoxicity assay, as well as by tumorsphere formation and growth. RESULTS Human gastric cancer Kato III cells with miR-34 restoration reduced the expression of target genes Bcl-2, Notch, and HMGA2. Bcl-2 3'UTR reporter assay showed that the transfected miR-34s were functional and confirmed that Bcl-2 is a direct target of miR-34. Restoration of miR-34 chemosensitized Kato III cells with a high level of Bcl-2, but not MKN-45 cells with a low level of Bcl-2. miR-34 impaired cell growth, accumulated the cells in G1 phase, increased caspase-3 activation, and, more significantly, inhibited tumorsphere formation and growth. CONCLUSION Our results demonstrate that in p53-deficient human gastric cancer cells, restoration of functional miR-34 inhibits cell growth and induces chemosensitization and apoptosis, indicating that miR-34 may restore p53 function. Restoration of miR-34 inhibits tumorsphere formation and growth, which is reported to be correlated to the self-renewal of cancer stem cells. The mechanism of miR-34-mediated suppression of self-renewal appears to be related to the direct modulation of downstream targets Bcl-2, Notch, and HMGA2, indicating that miR-34 may be involved in gastric cancer stem cell self-renewal/differentiation decision-making. Our study suggests that restoration of the tumor suppressor miR-34 may provide a novel molecular therapy for p53-mutant gastric cancer.
Collapse
Affiliation(s)
- Qing Ji
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xinbao Hao
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Meng
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Min Zhang
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey DeSano
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Liang Xu
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
107
|
Apoptosis in normal and cancer stem cells. Crit Rev Oncol Hematol 2008; 66:42-51. [DOI: 10.1016/j.critrevonc.2007.09.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/27/2007] [Accepted: 09/21/2007] [Indexed: 01/09/2023] Open
|
108
|
Pluripotency Associated Genes Are Reactivated by Chromatin-Modifying Agents in Neurosphere Cells. Stem Cells 2008; 26:920-6. [DOI: 10.1634/stemcells.2007-0649] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
109
|
Wambi C, Sanzari J, Wan XS, Nuth M, Davis J, Ko YH, Sayers CM, Baran M, Ware JH, Kennedy AR. Dietary antioxidants protect hematopoietic cells and improve animal survival after total-body irradiation. Radiat Res 2008; 169:384-96. [PMID: 18363433 PMCID: PMC2692236 DOI: 10.1667/rr1204.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 11/28/2007] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to determine whether a dietary supplement consisting of L-selenomethionine, vitamin C, vitamin E succinate, alpha-lipoic acid and N-acetyl cysteine could improve the survival of mice after total-body irradiation. Antioxidants significantly increased the 30-day survival of mice after exposure to a potentially lethal dose of X rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 h after 1 Gy and 8 Gy. Antioxidants were effective in preventing peripheral lymphopenia only after low-dose irradiation. Antioxidant supplementation was also associated with increased bone marrow cell counts after irradiation. Supplementation with antioxidants was associated with increased Bcl2 and decreased Bax, caspase 9 and TGF-beta1 mRNA expression in the bone marrow after irradiation. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow after sublethal or potentially lethal irradiation. Taken together, oral supplementation with antioxidants appears to be an effective approach for radioprotection of hematopoietic cells and improvement of animal survival, and modulation of apoptosis is implicated as a mechanism for the radioprotection of the hematopoietic system by antioxidants.
Collapse
Affiliation(s)
- Chris Wambi
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Jenine Sanzari
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - X. Steven Wan
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Manunya Nuth
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - James Davis
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Ying-Hui Ko
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Carly M. Sayers
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Matthew Baran
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Jeffrey H. Ware
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Ann R. Kennedy
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
110
|
He Q, Trindade PT, Stumm M, Li J, Zammaretti P, Bettiol E, Dubois-Dauphin M, Herrmann F, Kalangos A, Morel D, Jaconi ME. Fate of undifferentiated mouse embryonic stem cells within the rat heart: role of myocardial infarction and immune suppression. J Cell Mol Med 2008; 13:188-201. [PMID: 18373734 PMCID: PMC3823046 DOI: 10.1111/j.1582-4934.2008.00323.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract It has recently been suggested that the infarcted rat heart microenvironment could direct pluripotent mouse embryonic stem cells to differentiate into cardiomyocytes through an in situ paracrine action. To investigate whether the heart can function as a cardiogenic niche and confer an immune privilege to embryonic stem cells, we assessed the cardiac differentiation potential of undifferentiated mouse embryonic stem cells (mESC) injected into normal, acutely or chronically infarcted rat hearts. We found that mESC survival depended on immunosuppression both in normal and infarcted hearts. However, upon Cyclosporin A treatment, both normal and infarcted rat hearts failed to induce selective cardiac differentiation of implanted mESC. Instead, teratomas developed in normal and infarcted rat hearts 1 week and 4 weeks (50% and 100%, respectively) after cell injection. Tight control of ESC commitment into a specific cardiac lineage is mandatory to avoid the risk of uncontrolled growth and tumourigenesis following transplantation of highly plastic cells into a diseased myocardium.
Collapse
Affiliation(s)
- Qing He
- Department of Rehabilitation and Geriatrics, Laboratory of Biology of Aging, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Jensen CT, Böiers C, Kharazi S, Lübking A, Rydén T, Sigvardsson M, Sitnicka E, Jacobsen SEW. Permissive roles of hematopoietin and cytokine tyrosine kinase receptors in early T-cell development. Blood 2008; 111:2083-90. [PMID: 18039955 DOI: 10.1182/blood-2007-08-108563] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although several cytokines have been demonstrated to be critical regulators of development of multiple blood cell lineages, it remains disputed to what degree they act through instructive or permissive mechanisms. Signaling through the FMS-like tyrosine kinase 3 (FLT3) receptor and the hematopoietin IL-7 receptor alpha (IL-7Ralpha) has been demonstrated to be of critical importance for sustained thymopoiesis. Signaling triggered by IL-7 and thymic stromal lymphopoietin (TSLP) is dependent on IL-7Ralpha, and both ligands have been implicated in T-cell development. However, we demonstrate that, whereas thymopoiesis is abolished in adult mice doubly deficient in IL-7 and FLT3 ligand (FLT3L), TSLP does not play a key role in IL-7-independent or FLT3L-independent T lymphopoiesis. Furthermore, whereas previous studies implicated that the role of other cytokine tyrosine kinase receptors in T lymphopoiesis might not involve permissive actions, we demonstrate that ectopic expression of BCL2 is sufficient not only to partially correct the T-cell phenotype of Flt3l(-/-) mice but also to rescue the virtually complete loss of all discernable stages of early T lymphopoiesis in Flt3l(-/-)Il7r(-/-) mice. These findings implicate a permissive role of cytokine receptors of the hematopoietin and tyrosine kinase families in early T lymphopoiesis.
Collapse
Affiliation(s)
- Christina T Jensen
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Wang YY, Deng X, Xu L, Gao F, Flagg T, May WS. Bcl2 enhances induced hematopoietic differentiation of murine embryonic stem cells. Exp Hematol 2008; 36:128-39. [PMID: 18023519 PMCID: PMC2253674 DOI: 10.1016/j.exphem.2007.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 09/10/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
Bcl2 is a potent antiapoptotic gene that can increase resistance of adult bone marrow hematopoietic progenitor cells to lethal irradiation, and thereby preserve their ability to differentiate. However, the effect of Bcl2 on murine embryonic stem (ES) cells induced to undergo hematopoietic differentiation in the absence of a toxic stress is not known. To test this, murine CCE-ES cells that can be induced to undergo hematopoietic differentiation in a two-step process that results in upregulation of Bcl2 were used. Upregulation of Bcl2 precedes formation of hematopoietic embryoid bodies (EB) and their further differentiation into hematopoietic colony-forming units, when plated as single cells in methylcellulose. ES cells stably expressing a Bcl2 siRNA plasmid to "knock-down" endogenous expression or cells expressing wild-type (WT) Bcl2 or phosphomimetic Bcl2 mutants were examined. ES cells expressing the Bcl2 siRNA or those expressing a dominant-negative, nonphosphorylatable Bcl2 display a strikingly reduced capacity to form hematopoietic EBs and colony-forming units compared to cells expressing WT or phosphomimetic Bcl2 that demonstrate an increased capacity. Bcl2's effect on induced-hematopoietic differentiation of ES cells does not result from either decreased apoptosis or a reduced number of cells. Rather, Bcl2-enhances hematopoietic differentiation of ES cells by upregulating p27, which results in retardation of the cell cycle at G1/G 0. Thus siRNA silencing of p27 reverts Bcl2's enhancement phenotype in a manner similar to that of Bcl2 "silencing" or expression of a nonphosphorylable Bcl2. In addition to Bcl2's well-described antiapoptotic and cell-cycle retardant effect on somatic cells, Bcl2 may also function to enhance induced hematopoietic cell differentiation of murine ES cells. These findings may have potential relevance for expanding hematopoietic stem/progenitor cell numbers from an ES cell source for stem cell transplantation applications.
Collapse
Affiliation(s)
- Yan-Yi Wang
- University of Florida Shands Cancer Center and Department of Medicine, University of Florida, Gainesville, FL 32610−3633, USA
| | - Xingming Deng
- University of Florida Shands Cancer Center and Department of Medicine, University of Florida, Gainesville, FL 32610−3633, USA
| | - Lijun Xu
- University of Florida Shands Cancer Center and Department of Medicine, University of Florida, Gainesville, FL 32610−3633, USA
| | - Fengqin Gao
- University of Florida Shands Cancer Center and Department of Medicine, University of Florida, Gainesville, FL 32610−3633, USA
| | - Tammy Flagg
- University of Florida Shands Cancer Center and Department of Medicine, University of Florida, Gainesville, FL 32610−3633, USA
| | - W. Stratford May
- University of Florida Shands Cancer Center and Department of Medicine, University of Florida, Gainesville, FL 32610−3633, USA
| |
Collapse
|
113
|
Pilbeam K, Basse P, Brossay L, Vujanovic N, Gerstein R, Vallejo AN, Borghesi L. The ontogeny and fate of NK cells marked by permanent DNA rearrangements. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:1432-41. [PMID: 18209038 PMCID: PMC4465768 DOI: 10.4049/jimmunol.180.3.1432] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A subset of NK cells bears incomplete V(D)J rearrangements, but neither the consequence to cell activities nor the precise developmental stages in which recombination occurs is known. These are important issues, as recombination errors cause cancers of the B and T lineages. Using transgenic recombination reporter mice to examine NK cell dynamics in vivo, we show that recombination(+) NK cells have distinct developmental patterns in the BM, including reduced homeostatic proliferation and diminished Stat5 phosphorylation. In the periphery, both recombination(+) and recombination(-) NK cells mediate robust functional responses including IFN-gamma production, cytolysis, and tumor homing, suggesting that NK cells with distinct developmental histories can be found together in the periphery. We also show that V(D)J rearrangement marks both human cytolytic (CD56(dim)) and immunoregulatory (CD56(bright)) populations, demonstrating the distribution of permanent DNA rearrangements across major NK cell subsets in man. Finally, direct quantification of rag transcripts throughout NK cell differentiation in both mouse and man establishes the specific developmental stages that are susceptible to V(D)J rearrangement. Together, these data demonstrate that multipotent progenitors rather than lineage-specified NK progenitors are targets of V(D)J recombination and that NK cells bearing the relics of earlier V(D)J rearrangements have different developmental dynamics but robust biological capabilities in vivo.
Collapse
Affiliation(s)
- Kristy Pilbeam
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Per Basse
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Nikola Vujanovic
- University of Pittsburgh Cancer Institute and Department of Pathology, Hillman Cancer Center, Pittsburgh, PA 15213
| | - Rachel Gerstein
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Abbe N. Vallejo
- Department of Pediatrics and Immunology, University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh Rangos Research Center, Pittsburgh, PA 15213
| | - Lisa Borghesi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
114
|
Abstract
Cells with stem cell-like attributes, such as self-renewal and pluripotency, have been isolated from hematological malignancies and from several solid tumor types. Tumor-initiating cells, also referred to as cancer stem cells, are thought to be responsible for the initiation and growth of tumors. Like their normal counterparts, putative cancer stem cells show remarkable resistance to radiation and chemotherapy. Their capacity for surviving apparently curative treatment can result in tumor relapse. Novel approaches that target tumor-initiating cells in addition to differentiated malignant cells, which constitute the bulk of the tumor, are required for improved survival of patients with metastatic tumors. Oncolytic viruses enter cells through infection and may therefore be resistant to defense mechanisms exhibited by cancer stem cells. Oncolytic adenoviruses can be engineered to attack tumor stem cells, recognized by linage-specific cell surface markers, dysfunctional stem cell-signaling pathways, or upregulated oncogenic genes. Normal stem cells may possess innate resistance to adenoviruses, as most humans have sustained numerous infections with various wild-type serotypes. This review focuses on current literature in support of cancer stem cells and discusses the possibility of using oncolytic virotherapy for killing these tumor-initiating cells.
Collapse
Affiliation(s)
- Camilla Ribacka
- Cancer Gene Therapy Group, Molecular Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
115
|
Murphy GF. Target cells in graft-versus-host disease: implications for cancer therapy. Clin Rev Allergy Immunol 2007; 33:113-23. [PMID: 18094950 DOI: 10.1007/s12016-007-0028-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 06/19/2007] [Indexed: 12/13/2022]
Abstract
Acute graft-versus-host disease (GVHD) conceptually may be divided into three evolutionary stages: allostimulation, effector cell homing to specific tissues, and cellular targeting and injury. Surprisingly, little is known regarding the targeting stage of GVHD. Recently, we have learned that epithelial target cell injury is mediated by specific subpopulations of effector T cells that may be identified based on Vbeta family expansion during allostimulation. Antibody probes specific for these Vbeta families have permitted precise identification of effector cell homing patterns. In squamous epithelium, allospecific T cells selectively home to basal cell layer subpopulations that express cytokeratin 15 (CK15) and that undergo target cell injury via apoptosis. Interestingly, these target cells coincide with basal layer subpopulations that have properties of epithelial stem cells and that normally express an apoptosis-resistant genomic profile. Accordingly, epithelial cell injury in GVHD appears to involve selective targeting of stem-cell subpopulations via conversion from an anti-apoptotic to a pro-apoptotic phenotype. Understanding of the mechanism(s) of this conversion could facilitate development of translationally relevant approaches to shielding target cells from injury in GVHD. Moreover, determination of how putative apoptosis-resistant stem cells may be rendered vulnerable to immune-mediated targeting has implications potentially relevant to more directed immunotherapeutic approaches focused at elimination of neoplastic (cancer) stem cells.
Collapse
Affiliation(s)
- George F Murphy
- Program in Dermatopathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
116
|
Qian H, Buza-Vidas N, Hyland CD, Jensen CT, Antonchuk J, Månsson R, Thoren LA, Ekblom M, Alexander WS, Jacobsen SEW. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 2007; 1:671-84. [PMID: 18371408 DOI: 10.1016/j.stem.2007.10.008] [Citation(s) in RCA: 410] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 09/16/2007] [Accepted: 10/15/2007] [Indexed: 12/12/2022]
Abstract
The role of cytokines in regulation of hematopoietic stem cells (HSCs) remains poorly understood. Herein we demonstrate that thrombopoietin (THPO) and its receptor, MPL, are critically involved in postnatal steady-state HSC maintenance, reflected in a 150-fold reduction of HSCs in adult Thpo(-/-) mice. Further, whereas THPO and MPL proved not required for fetal HSC expansion, HSC expansion posttransplantation was highly MPL and THPO dependent. The distinct role of THPO in postnatal HSC maintenance is accompanied by accelerated HSC cell-cycle kinetics in Thpo(-/-) mice and reduced expression of the cyclin-dependent kinase inhibitors p57(Kip2) and p19(INK4D) as well as multiple Hox transcription factors. Although also predicted to be an HSC viability factor, BCL2 failed to rescue the HSC deficiency of Thpo(-/-) mice. Thus, THPO regulates posttransplantation HSC expansion as well as the maintenance of adult quiescent HSCs, of critical importance to avoid postnatal HSC exhaustion.
Collapse
Affiliation(s)
- Hong Qian
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, 221 84, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Yanagi S, Kishimoto H, Kawahara K, Sasaki T, Sasaki M, Nishio M, Yajima N, Hamada K, Horie Y, Kubo H, Whitsett JA, Mak TW, Nakano T, Nakazato M, Suzuki A. Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. J Clin Invest 2007; 117:2929-40. [PMID: 17909629 PMCID: PMC1994617 DOI: 10.1172/jci31854] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 07/12/2007] [Indexed: 12/22/2022] Open
Abstract
PTEN is a tumor suppressor gene mutated in many human cancers. We generated a bronchioalveolar epithelium-specific null mutation of Pten in mice [SP-C-rtTA/(tetO)(7)-Cre/Pten(flox/flox) (SOPten(flox/flox)) mice] that was under the control of doxycycline. Ninety percent of SOPten(flox/flox) mice that received doxycycline in utero [SOPten(flox/flox)(E10-16) mice] died of hypoxia soon after birth. Surviving SOPten(flox/flox)(E10-16) mice and mice that received doxycycline postnatally [SOPten(flox/flox)(P21-27) mice] developed spontaneous lung adenocarcinomas. Urethane treatment accelerated number and size of lung tumors developing in SOPten(flox/flox) mice of both ages. Histological and biochemical examinations of the lungs of SOPten(flox/flox)(E10-16) mice revealed hyperplasia of bronchioalveolar epithelial cells and myofibroblast precursors, enlarged alveolar epithelial cells, and impaired production of surfactant proteins. Numbers of bronchioalveolar stem cells (BASCs), putative initiators of lung adenocarcinomas, were increased. Lungs of SOPten(flox/flox)(E10-16) mice showed increased expression of Spry2, which inhibits the maturation of alveolar epithelial cells. Levels of Akt, c-Myc, Bcl-2, and Shh were also elevated in SOPten(flox/flox)(E10-16) and SOPten(flox/flox)(P21-27) lungs. Furthermore, K-ras was frequently mutated in adenocarcinomas observed in SOPten(flox/flox)(P21-27) lungs. These results indicate that Pten is essential for both normal lung morphogenesis and the prevention of lung carcinogenesis, possibly because this tumor suppressor is required for BASC homeostasis.
Collapse
Affiliation(s)
- Shigehisa Yanagi
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Kishimoto
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Kohichi Kawahara
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Takehiko Sasaki
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Masato Sasaki
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Miki Nishio
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Nobuyuki Yajima
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Koichi Hamada
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yasuo Horie
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Hiroshi Kubo
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Jeffrey A. Whitsett
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tak Wah Mak
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Toru Nakano
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Masamitsu Nakazato
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Akira Suzuki
- Department of Molecular Biology, Akita University School of Medicine, Akita, Japan.
Division of Neurology, Respirology, Endocrinology and Metabolism, Third Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Department of Microbiology and
Department of Gastroenterology, Akita University School of Medicine, Akita, Japan.
Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan.
Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.
The Campbell Family Institute for Breast Cancer Research and Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Department of Pathology, Medical School, and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
118
|
Shide K, Shimoda HK, Kumano T, Karube K, Kameda T, Takenaka K, Oku S, Abe H, Katayose KS, Kubuki Y, Kusumoto K, Hasuike S, Tahara Y, Nagata K, Matsuda T, Ohshima K, Harada M, Shimoda K. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia 2007; 22:87-95. [DOI: 10.1038/sj.leu.2405043] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
119
|
Ganapati U, Tan HT, Lynch M, Dolezal M, de Vos S, Gasson JC. Modeling Notch Signaling in Normal and Neoplastic Hematopoiesis: Global Gene Expression Profiling in Response to Activated Notch Expression. Stem Cells 2007; 25:1872-80. [PMID: 17464091 DOI: 10.1634/stemcells.2006-0547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In normal hematopoiesis, proliferation is tightly linked to differentiation in ways that involve cell-cell interaction with stromal elements in the bone marrow stem cell niche. Numerous in vitro and in vivo studies strongly support a role for Notch signaling in the regulation of stem cell renewal and hematopoiesis. Not surprisingly, mutations in the Notch gene have been linked to a number of types of malignancies. To better define the function of Notch in both normal and neoplastic hematopoiesis, a tetracycline-inducible system regulating expression of a ligand-independent, constitutively active form of Notch1 was introduced into murine E14Tg2a embryonic stem cells. During coculture, OP9 stromal cells induce the embryonic stem cells to differentiate first to hemangioblasts and subsequently to hematopoietic stem cells. Our studies indicate that activation of Notch signaling in flk+ hemangioblasts dramatically reduces their survival and proliferative capacity and lowers the levels of hematopoietic stem cell markers CD34 and c-Kit and the myeloid marker CD11b. Global gene expression profiling of day 8 hematopoietic progenitors in the absence and presence of activated Notch yield candidate genes required for normal hematopoietic differentiation, as well as putative downstream targets of oncogenic forms of Notch including the noncanonical Wnts Wnt4 and 5A. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Uma Ganapati
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
120
|
McConnell KW, Muenzer JT, Chang KC, Davis CG, McDunn JE, Coopersmith CM, Hilliard CA, Hotchkiss RS, Grigsby PW, Hunt CR. Anti-apoptotic peptides protect against radiation-induced cell death. Biochem Biophys Res Commun 2007; 355:501-7. [PMID: 17307150 DOI: 10.1016/j.bbrc.2007.01.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/16/2022]
Abstract
The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15Gy radiation. In mice exposed to 5Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues.
Collapse
Affiliation(s)
- Kevin W McConnell
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Schwulst SJ, Davis CG, Coopersmith CM, Hotchkiss RS. Adoptive transfer of dying cells causes bystander-induced apoptosis. Biochem Biophys Res Commun 2007; 353:780-5. [PMID: 17194455 PMCID: PMC2705902 DOI: 10.1016/j.bbrc.2006.12.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 12/09/2006] [Indexed: 10/23/2022]
Abstract
The anti-apoptotic Bcl-2 protein has the remarkable ability to prevent cell death from several noxious stimuli. Intriguingly, Bcl-2 overexpression in one cell type has been reported to protect against cell death in neighboring non-Bcl-2 overexpressing cell types. The mechanism of this "trans" protection has been speculated to be secondary to the release of a cytoprotective factor by Bcl-2 overexpressing cells. We employed a series of adoptive transfer experiments in which lymphocytes that overexpress Bcl-2 were administered to either wild type mice or mice lacking mature T and B cells (Rag-1-/-) to detect the presence or absence of the putative protective factor. We were unable to demonstrate "trans" protection. However, adoptive transfer of apoptotic or necrotic cells exacerbated the degree of apoptotic death in neighboring non-Bcl-2 overexpressing cells (p < or= 0.05). Therefore, this data suggests that dying cells emit signals triggering cell death in neighboring non-Bcl-2 overexpressing cells, i.e., a "trans" destructive effect.
Collapse
Affiliation(s)
- Steven J. Schwulst
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110
| | - Christopher G. Davis
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Craig M. Coopersmith
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110
| | - Richard S. Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
122
|
Abstract
Most human cancers derive from a single cell targeted by genetic and epigenetic alterations that initiate malignant transformation. Progressively, these early cancer cells give rise to different generations of daughter cells that accumulate additional mutations, acting in concert to drive the full neoplastic phenotype. As we have currently deciphered many of the gene pathways disrupted in cancer, our knowledge about the nature of the normal cells susceptible to transformation upon mutation has remained more elusive. Adult stem cells are those that show long-term replicative potential, together with the capacities of self-renewal and multi-lineage differentiation. These stem cell properties are tightly regulated in normal development, yet their alteration may be a critical issue for tumorigenesis. This concept has arisen from the striking degree of similarity noted between somatic stem cells and cancer cells, including the fundamental abilities to self-renew and differentiate. Given these shared attributes, it has been proposed that cancers are caused by transforming mutations occurring in tissue-specific stem cells. This hypothesis has been functionally supported by the observation that among all cancer cells within a particular tumor, only a minute cell fraction has the exclusive potential to regenerate the entire tumor cell population; these cells with stem-like properties have been termed cancer stem cells. Cancer stem cells can originate from mutation in normal somatic stem cells that deregulate their physiological programs. Alternatively, mutations may target more committed progenitor cells or even mature cells, which become reprogrammed to acquire stem-like functions. In any case, mutated genes should promote expansion of stem/progenitor cells, thus increasing their predisposition to cancer development by expanding self-renewal and pluripotency over their normal tendency towards relative quiescency and proper differentiation.
Collapse
Affiliation(s)
- José A Martínez-Climent
- Division of Oncology, Center for Applied Medical Research University of Navarra, Pamplona, Spain.
| | | | | |
Collapse
|
123
|
Lee DY, Lee MW, Lee HJ, Noh YH, Park SC, Lee MY, Kim KY, Lee WB, Kim SS. ERK1/2 activation attenuates TRAIL-induced apoptosis through the regulation of mitochondria-dependent pathway. Toxicol In Vitro 2006; 20:816-23. [PMID: 16563693 DOI: 10.1016/j.tiv.2006.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 11/25/2005] [Accepted: 01/05/2006] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) functions as an extracellular signal, which triggers apoptosis in tumor cells. In order to characterize the molecular events involved in TRAIL cytotoxic signaling, we attempted to determine the role of extracellular signal-regulated kinase 1/2 (ERK1/2), as well as its downstream targets in TRAIL-treated HeLa cells. Here we demonstrate that TRAIL exposure resulted in the activation of ERK1/2, and the elevation of anti-apoptotic Bcl-2 protein levels. ERK1/2 inhibition with PD98059 promoted cell death via the down-regulation of Bcl-2 protein levels, together with increasing mitochondrial damage, including the collapse of mitochondrial membrane potential, the release of cytochrome c from mitochondria to cytoplasm and caspase activity. These results suggest that the ERK1/2 activation is a kind of survival mechanism to struggle against TRAIL-induced stress condition in early stage, via activating cellular defense mechanisms like as the up-regulation of the Bcl-2/Bax ratio, as well as several mitochondrial events.
Collapse
Affiliation(s)
- Do Yeon Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, 221 Huksuk-dong, Dongjak-ku, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Woelfel M, Bixby J, Brehm MA, Chan FKM. Transgenic Expression of the Viral FLIP MC159 Causeslpr/gld-Like Lymphoproliferation and Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2006; 177:3814-20. [PMID: 16951343 DOI: 10.4049/jimmunol.177.6.3814] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Death receptor-induced programmed cell death (PCD) is crucial for the maintenance of immune homeostasis. However, interference of downstream death receptor signaling by genetic ablation or transgenic (Tg) expression of different apoptosis inhibitors often impairs lymphocyte activation. The viral FLICE (caspase-8)-like inhibitor proteins (v-FLIPs) are potent inhibitors of death receptor-induced apoptosis and programmed necrosis. We generated Tg mice expressing the v-FLIP MC159 from Molluscum contagiosum virus under the control of the H2Kb class I MHC promoter to examine the role of death receptor-induced PCD in the control of immune functions and homeostasis. We found that expression of MC159 led to lymphoproliferation and autoimmunity as exemplified by T and B lymphocyte expansion, accumulation of TCRalphabeta+ CD3+ B220+ CD4- CD8- lymphocytes in secondary lymphoid organs, elevated serum Ig levels, and increased anti-dsDNA Ab titers. These phenotypes were caused by defective death receptor-induced apoptosis, but not by defective passive cell death in the absence of mitogenic stimulation. Lymphocyte activation was normal, as demonstrated by normal thymidine incorporation and CSFE dilution of T cells stimulated with anti-CD3 and anti-CD28 Abs. In addition, effector CD8+ T cell responses to acute and memory lymphocytic choriomeningitis virus infections were unaffected in the Tg mice. These phenotypes are reminiscent of the lpr and gld mice, and show that the v-FLIP MC159 is a bona fide PCD inhibitor that does not interfere with other essential lymphocyte functions. Thus, the MC159-Tg mice provide a model to study the effects of PCD in immune responses without hampering other important lymphocyte functions.
Collapse
Affiliation(s)
- Melissa Woelfel
- Department of Pathology, Immunology and Virology Program, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
125
|
Akala OO, Clarke MF. Hematopoietic stem cell self-renewal. Curr Opin Genet Dev 2006; 16:496-501. [PMID: 16919448 DOI: 10.1016/j.gde.2006.08.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 08/04/2006] [Indexed: 01/03/2023]
Abstract
Recent studies have begun to elucidate the mechanisms controlling hematopoietic stem cell (HSC) self-renewal. Self-renewal requires the integration of survival signals and proliferation controls with the maintenance of an undifferentiated state. This demands a complex crosstalk between extrinsic signals from the microenvironment and the cell-intrinsic regulators of self-renewal. The Polycomb protein Bmi1 is absolutely required for the maintenance of both adult HSCs and neural stem cells. Evidence from studies in murine and human embryonic stem cells indicates that Polycomb group proteins play a dynamic role in concert with master transcriptional regulators in actively maintaining an undifferentiated state, suggesting that this mechanism applies to multiple types of stem cell. Recently, various new players that regulate HSC maintenance (e.g. Mcl1, Tel/Etv6, Gfi1, Pten and Stat5) have been identified. In order to better understand HSC self-renewal, we need to understand how these pathways are coordinated.
Collapse
Affiliation(s)
- Omobolaji O Akala
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, 1050 Arastradero Road, Palo Alto, CA 94304-1334, USA
| | | |
Collapse
|
126
|
Fukuchi Y, Shibata F, Ito M, Goto-Koshino Y, Sotomaru Y, Ito M, Kitamura T, Nakajima H. Comprehensive analysis of myeloid lineage conversion using mice expressing an inducible form of C/EBP alpha. EMBO J 2006; 25:3398-410. [PMID: 16858416 PMCID: PMC1523173 DOI: 10.1038/sj.emboj.7601199] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 05/29/2006] [Indexed: 11/09/2022] Open
Abstract
CCAAT/enhancer-binding protein (C/EBP) alpha is a critical regulator for early myeloid differentiation. Although C/EBPalpha has been shown to convert B cells into myeloid lineage, precise roles of C/EBPalpha in various hematopoietic progenitors and stem cells still remain obscure. To examine the consequence of C/EBPalpha activation in various progenitors and to address the underlying mechanism of lineage conversion in detail, we established transgenic mice expressing a conditional form of C/EBPalpha. Using these mice, we show that megakaryocyte/erythroid progenitors (MEPs) and common lymphoid progenitors (CLPs) could be redirected to functional macrophages in vitro by a short-term activation of C/EBPalpha, and the conversion occurred clonally through biphenotypic intermediate cells. Moreover, in vivo activation of C/EBPalpha in mice led to the increase of mature granulocytes and myeloid progenitors with a concomitant decrease of hematopoietic stem cells and nonmyeloid progenitors. Our study reveals that C/EBPalpha can activate the latent myeloid differentiation program of MEP and CLP and shows that its global activation affects multilineage homeostasis in vivo.
Collapse
Affiliation(s)
- Yumi Fukuchi
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Fumi Shibata
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Miyuki Ito
- Center of Excellence, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yuko Goto-Koshino
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | - Mamoru Ito
- Central Institute for Experimental Animals, Kanagawa, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hideaki Nakajima
- Center of Excellence, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Center of Excellence, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan. Tel.: +81 3 5449 5759; Fax: +81 3 5449 5453; E-mail:
| |
Collapse
|
127
|
Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 2006; 44:240-251. [PMID: 16799977 DOI: 10.1002/hep.21227] [Citation(s) in RCA: 493] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in stem cell biology enable us to identify cancer stem cells in solid tumors as well as putative stem cells in normal solid organs. In this study, we applied side population (SP) cell analysis and sorting to established hepatocellular carcinoma (HCC) cell lines to detect subpopulations that function as cancer stem cells and to elucidate their roles in tumorigenesis. Among four cell lines analyzed, SP cells were detected in Huh7 (0.25%) and PLC/PRF/5 cells (0.80%), but not in HepG2 and Huh6 cells. SP cells demonstrated high proliferative potential and anti-apoptotic properties compared with those of non-SP cells. Immunocytochemistry examination showed that SP fractions contain a large number of cells presenting characteristics of both hepatocyte and cholangiocyte lineages. Non-obese diabetic/severe combined immunodeficiency (NOD/SCID) xenograft transplant experiments showed that only 1 x 10(3) SP cells were sufficient for tumor formation, whereas an injection of 1 x 10(6) non-SP cells did not initiate tumors. Re-analysis of SP cell-derived tumors showed that SP cells generated both SP and non-SP cells and tumor-initiating potential was maintained only in SP cells in serial transplantation. Microarray analysis discriminated a differential gene expression profile between SP and non-SP cells, and several so-called "stemness genes" were upregulated in SP cells in HCC cells. In conclusion, we propose that a minority population, detected as SP cells in HCC cells, possess extreme tumorigenic potential and provide heterogeneity to the cancer stem cell system characterized by distinct hierarchy.
Collapse
Affiliation(s)
- Tetsuhiro Chiba
- Department of Regenerative Medicine, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Fedorov LM, Schmittwolf C, Amann K, Thomas WH, Müller AM, Schubert H, Domen J, Kneitz B. Renal failure causes early death of bcl-2 deficient mice. Mech Ageing Dev 2006; 127:600-9. [PMID: 16620920 DOI: 10.1016/j.mad.2006.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 02/20/2006] [Accepted: 02/23/2006] [Indexed: 11/21/2022]
Abstract
BCL-2 functions as a death repressor molecule in an evolutionary conserved cell death pathway. Inactivation of bcl-2 in mice results in pleiotropic effects including postnatal growth retardation, massive apoptosis in lymphoid tissues, polycystic kidney disease (PKD) and shortened lifespan. To evaluate the influence of the affected bcl-2 deficient kidneys on the postnatal development and lifespan of bcl-2 knockout mice we used "the rescue of (n-1) affected tissues" strategy. According to this strategy bcl-2 heterozygous animals were crossed with H2K-hbcl-2 transgenic mice expressing human BCL-2 in most tissues and organs excluding the kidney. Overexpression of hBCL-2 in bcl-2-/- mice rescues growth retardation, normalizes and protects the hematolymphoid system from gamma-radiation. However, the hbcl-2 transgene is not expressed in kidneys and the rescued mice have PKD and a shortened lifespan. Thus, our results indicated that PKD is the main reason of early mortality in bcl-2 deficient mice. Moreover, we have created mouse model, similar to the kidney specific knockout of bcl-2. Such models can be useful to study the influence of bcl-2 or other gene deficiency in individual organs (or tissues) on development and ageing of whole organism.
Collapse
Affiliation(s)
- Lev M Fedorov
- Theodor-Boveri-Institut für Biowissenschaften, Biozentrum, Bayerische Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Verma YK, Gangenahalli GU, Singh VK, Gupta P, Chandra R, Sharma RK, Raj HG. Cell death regulation by B-cell lymphoma protein. Apoptosis 2006; 11:459-71. [PMID: 16547596 DOI: 10.1007/s10495-006-5702-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bcl-2 (B Cell Lymphoma) protein is an anti-apoptotic member of Bcl-2 family, which is comprised of pro- and anti-apoptotic members. It regulates cellular proliferation and death by inter- and intra-family interactions. It has a potential to suppress apoptotic cell death under variety of stress conditions by modulating mitochondrial transmembrane potential. However, prevalence of constitutively activated Bcl-2 cellular activity is not always required in cells; a mechanism likely exists in cells, which controls its activity. When expression of Bcl-2 is unregulated, it generates lymphoma like, follicular B-cell lymphoma. This article reviews the structural and functional regulation of Bcl-2 activity at transcriptional, translational, domain, structural and post-translational level, which also accounts for the effects of its deletion and site-directed mutants in the regulation of cellular proliferation and differentiation in vitro and in vivo. This concisely reviewed information on Bcl-2 helps us to update our understanding of cell death and its modulation by Bcl-2 and its mutant's interaction, which has gained therapeutic benefits in cell growth and proliferation, particularly for sensitive human hematopoietic stem cells.
Collapse
Affiliation(s)
- Y K Verma
- Stem Cell Gene Therapy Research Group, Lucknow Road, Timar Pur, Delhi, 110054, India
| | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
The cellular basis of bone marrow (BM) tissue development and regeneration is mediated through hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Local interplays between hematopoietic cells and BM stromal cells (BMSCs) determine the reconstitution of hematopoiesis after myelosuppression. Here we review the BM local signals in control of BM regeneration after insults. Hematopoietic growth factors (HGFs) and cytokines produced by BMSCs are primary factors in regulation of BM hematopoiesis. Morphogens which are critical to early embryo development in multiple species have been added to the family of HSCs regulators, including families of Wnt proteins, Notch ligands, BMPs, and Hedgehogs. Global gene expression analysis of HSCs and BMSCs has begun to reveal signature groups of genes for both cell types. More importantly, analysis of global gene expression coupled with biochemical and biological studies of local signals during BM regeneration have strongly suggested that HGFs and cytokines may not be the primary local regulators for BM recovery, rather chemokines (SDF-1, FGF-4) and angiogenic growth factors (VEGF-A, Ang-1) play instructive roles in BM reconstitution after myelosuppression. A new direction of management of BM toxicity is emerging from the identification of BM regenerative regulators.
Collapse
Affiliation(s)
- Wei Han
- Stem Cell Research Center, School of Pharmacy, Shanghai Jiao-Tong University, Shanghai 200030, China.
| | | | | |
Collapse
|
131
|
Wu WS, Heinrichs S, Xu D, Garrison SP, Zambetti GP, Adams JM, Look AT. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 2006; 123:641-53. [PMID: 16286009 DOI: 10.1016/j.cell.2005.09.029] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Revised: 06/16/2005] [Accepted: 09/30/2005] [Indexed: 11/17/2022]
Abstract
In response to DNA damage, the p53 tumor suppressor can elicit either apoptosis or cell-cycle arrest and repair, but how this critical decision is made in specific cell types remains largely undefined. We investigated the mechanism by which the transcriptional repressor Slug specifically rescues hematopoietic progenitor cells from lethal doses of gamma radiation. We show that Slug is transcriptionally induced by p53 upon irradiation and then protects the damaged cell from apoptosis by directly repressing p53-mediated transcription of puma, a key BH3-only antagonist of the antiapoptotic Bcl-2 proteins. We established the physiologic significance of Slug-mediated repression of puma by demonstrating that mice deficient in both genes survive doses of total-body irradiation that lethally deplete hematopoietic progenitor populations in mice lacking only slug. Thus, Slug functions downstream of p53 in developing blood cells as a critical switch that prevents their apoptosis by antagonizing the trans-activation of puma by p53.
Collapse
Affiliation(s)
- Wen-Shu Wu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Mahmud N, Rose D, Pang W, Walker R, Patil V, Weich N, Hoffman R. Characterization of primitive marrow CD34+ cells that persist after a sublethal dose of total body irradiation. Exp Hematol 2006; 33:1388-401. [PMID: 16263423 DOI: 10.1016/j.exphem.2005.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/06/2005] [Accepted: 07/11/2005] [Indexed: 01/23/2023]
Abstract
Knowledge of the molecular events that occur during hematopoietic stem/progenitor cell (HSPC) development is vital to our understanding of blood cell production. To study the functional groups of genes characteristic of HSPCs we isolated a subpopulation of CD34+ bone marrow (BM) cells from nonhuman primates that persisted in vivo after a sublethal dose of total body irradiation (TBI). CD34+ cells isolated during the phase of maximal hematopoietic suppression show a transcriptional profile characteristic of metabolically inactive cells, with strong coordinate downregulation of a large number of genes required for protein production and processing. Consistent with this profile, these CD34+ cells were not able to generate hematopoietic colonies. Transcriptional profiling of these CD34+ cells in conjunction with a pathway analysis method reveals several classes of functionally related genes that are upregulated in comparison to the CD34+ cells obtained prior to TBI. These families included genes known to be associated with self-renewal and maintenance of HSPCs (including bone morphogenetic proteins), resistance to apoptosis (Bcl-2) as well as genes characteristic of a variety of nonhematopoietic tissues (gamma-aminobutyric acid/glycine receptor, complement receptor C1qRp). In contrast, during the period of hematopoietic recovery, the CD34+ cells expressed higher level of genes encoding factors regulating maturation and differentiation of HSPCs. Our data indicate that the primitive BM CD34+ cell population that persists after radiation possesses a transcriptional profile suggestive of pluripotency.
Collapse
Affiliation(s)
- Nadim Mahmud
- University of Illinois College of Medicine, Chicago, IL 60607, USA.
| | | | | | | | | | | | | |
Collapse
|
133
|
Lee MW, Bach JH, Lee HJ, Lee DY, Joo WS, Kim YS, Park SC, Kim KY, Lee WB, Kim SS. The activation of ERK1/2 via a tyrosine kinase pathway attenuates trail-induced apoptosis in HeLa cells. Cancer Invest 2006; 23:586-92. [PMID: 16305985 DOI: 10.1080/07357900500283036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) serves as an extracellular signal that triggers apoptosis in tumor cells. To characterize the molecular events involved in TRAIL-induced apoptotic signaling, we investigated the role of extracellular signal-regulated kinase 1/2 (ERK1/2) in HeLa cell death. Here we show that TRAIL-activated ERK1/2 through a tyrosine kinase-dependent pathway, subsequently elevated anti-apoptotic Bcl-2 protein levels. ERK1/2 inhibition with PD98059 promoted apoptotic cell death through the downregulation of ERK1/2 activity and Bcl-2 protein levels. Moreover, tyrosine kinase inhibition with Genistein in TRAIL-induced apoptosis effectively attenuated ERK1/2 activity and enhanced apoptotic cell death. Taken together, our results indicate that ERK1/2 activation via tyrosine kinase pathway plays a protective role as the cellular defense mechanism through the upregulation of Bcl-2 protein levels in TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Myoung Woo Lee
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 2006; 107:358-366. [PMID: 16150936 PMCID: PMC1895367 DOI: 10.1182/blood-2005-04-1418] [Citation(s) in RCA: 276] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 08/23/2005] [Indexed: 02/06/2023] Open
Abstract
Exposure to ionizing radiation (IR) and certain chemotherapeutic agents not only causes acute bone marrow (BM) suppression but also leads to long-term residual hematopoietic injury. This latter effect has been attributed to damage to hematopoietic stem cell (HSC) self-renewal. Using a mouse model, we investigated whether IR induces senescence in HSCs, as induction of HSC senescence can lead to the defect in HSC self-renewal. It was found that exposure of C57BL/6 mice to a sublethal dose (6.5 Gy) of total body irradiation (TBI) resulted in a sustained quantitative and qualitative reduction of LKS+ HSCs. In addition, LKS+ HSCs from irradiated mice exhibited an increased expression of the 2 commonly used biomarkers of cellular senescence, p16(Ink4a) and SA-beta-gal. In contrast, no such changes were observed in irradiated LKS- hematopoietic progenitor cells. These results provide the first direct evidence demonstrating that IR exposure can selectively induce HSC senescence. Of interest, the induction of HSC senescence was associated with a prolonged elevation of p21(Cip1/Waf1), p19(Arf), and p16(Ink4a) mRNA expression, while the expression of p27(Kip1) and p18(Ink4c) mRNA was not increased following TBI. This suggests that p21(Cip1/Waf1), p19(Arf), and p16(Ink4a) may play an important role in IR-induced senescence in HSCs.
Collapse
Affiliation(s)
- Yong Wang
- Department of Pathology & Laboratory Medicine, MUSC, 165 Ashley Ave, Suite 309, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
135
|
Abstract
Adult stem cells (ASCs) are the engines that drive the renewal of adult mammalian tissues. They divide continuously, throughout life, to produce new progeny cells that undergo a robust development program of differentiation and maturation to replace older expired tissue cells. The same cell turnover program may function to provide limited repair and regeneration of adult tissues in some cases. The regenerative potential of ASCs drives the current intense interest in adapting them for applications in cell replacement therapy. However, research to explore this potential has been blunted by an unyielding biological problem. ASCs have proven highly refractory to expansion of their numbers and long-term propagation in culture. A review of reported strategies to overcome this problem reveals that many studies focus on traditional cell culture factors that may not apply to ASCs and overlook a special property of ASCs that may be universally critical for successful expansion, asymmetric cell kinetics (ACK). This property is reflected by the different kinetics fate of the two sister cells resulting from an ASC division: one cell remains an ASC and keeps the potential to divide for the entire life span of the tissue, while the other cell's progeny eventually differentiates and undergoes terminal division arrest. This unique property of ASCs may prove to be the obligatory factor that must be breached by any method that will succeed in accomplishing routine expansion of ASCs of diverse tissue origin.
Collapse
Affiliation(s)
- Jean-François Paré
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | |
Collapse
|
136
|
Priestley GV, Scott LM, Ulyanova T, Papayannopoulou T. Lack of alpha4 integrin expression in stem cells restricts competitive function and self-renewal activity. Blood 2005; 107:2959-67. [PMID: 16357327 PMCID: PMC1895392 DOI: 10.1182/blood-2005-07-2670] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alpha4 integrin or VLA4 (CD49d/CD29) is a multitask molecule with wide expression within and outside the hematopoietic system. Because targeted ablation of alpha4 integrin leads to embryonic lethality, to study its effects on adult hematopoiesis, we used animals with conditional excision of alpha4 integrin (alpha4Delta/Delta) in hematopoietic cells. In such animals, we previously documented weakened bone marrow retention of progenitor cells during homeostasis and impaired homing and short-term engraftment after transplantation. In the present study we show that long-term repopulating cells lacking alpha4 integrins display a competitive disadvantage in hematopoietic reconstitution compared to normal competitors. Although initial dominance of alpha4+ competitors is due to their better homing and proliferative expansion early after transplantation, a progressive decline in contribution of alpha4Delta/Delta hematopoiesis is compatible with neither normal homing nor normal function of alpha4Delta/Delta hematopoietic stem cells (HSCs) in post-homing hematopoiesis. In the absence of alpha4+ competitor cells, alpha4Delta/Delta HSCs can establish long-term hematopoiesis in primary recipients, however, some resurgence of host hematopoiesis is evident, and it becomes dominant in secondary transplants, so that no survivors with exclusively alpha4Delta/Delta cells are seen in tertiary transplants. Collectively, our data provide compelling evidence that under regenerative stress alpha4 integrin assumes a greater importance than for maintenance of steady-state hematopoiesis.
Collapse
Affiliation(s)
- Gregory V Priestley
- University of Washington, Department of Medicine/Division of Hematology, Box 357710, Seattle, WA 98195-7710.
| | | | | | | |
Collapse
|
137
|
Kee BL. Id3 induces growth arrest and caspase-2-dependent apoptosis in B lymphocyte progenitors. THE JOURNAL OF IMMUNOLOGY 2005; 175:4518-27. [PMID: 16177095 DOI: 10.4049/jimmunol.175.7.4518] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The E-protein transcription factors E2A, HEB, and E2-2 play an essential role in the differentiation, proliferation, and survival of B lymphocyte progenitors (BLPs). In this study, we show that the E-protein antagonist Id3 induces apoptosis of both primary and transformed BLPs through a caspase-2-dependent mechanism that does not require p53 and is not inhibited by bcl-2. Id3 expressing B lineage cells show reduced expression of known E-protein target genes as well as multiple genes involved in cell proliferation. We hypothesize that Id3 induces activation of caspase-2 as a consequence of severe or "catastrophic" growth arrest. In support of this hypothesis, we show that chemical-induced growth arrest is sufficient to activate caspase-2 and induce apoptosis in BLPs. Our data suggest that E-proteins function in the control of differentiation and proliferation and that diminished E-protein activity results in apoptosis as a consequence of growth arrest.
Collapse
Affiliation(s)
- Barbara L Kee
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
138
|
Surdez D, Kunz B, Wagers AJ, Weissman IL, Terskikh AV. Simple and Efficient Isolation of Hematopoietic Stem Cells from H2K-zFP Transgenic Mice. Stem Cells 2005; 23:1617-25. [PMID: 16091556 DOI: 10.1634/stemcells.2004-0374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have generated a transgenic mouse line that allows for simple and highly efficient enrichment for mouse hematopoietic stem cells (HSCs). The transgene expresses a green fluorescent protein variant (zFP) under the control of H2Kb promoter/enhancer element. Despite the broad zFP expression, transgenic HSCs express exceptionally high levels of zFP, allowing prospective isolation of a population highly enriched in HSCs by sorting the 0.2% of the brightest green cells from the enriched bone marrow of H2K-zFP mice. Up to 90% of zFP(bright) cells are also c-kit(high), Sca-1(high), Lin(neg), Flk-2(neg), which is a bona fide phenotype for long-term HSCs. Double-sorted zFP(bright) HSCs were capable of long-term multilineage reconstitution at a limiting dilution dose of approximately 12 cells, which is comparable to that of highly purified HSCs obtained by conventional multicolor flow cytometry. Thus, the H2K-zFP transgenic mice provide a straightforward and easy setup for the simple and highly efficient enrichment for genetically labeled HSCs without using fluorescence-conjugated monoclonal antibodies. This approach will greatly facilitate gene transfer, including short interfering RNA for gene knockdown, into HSCs and, consequently, into all other hematopoietic lineages.
Collapse
Affiliation(s)
- Didier Surdez
- Department of Life Science, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
139
|
Johnston J, Chan R, Calderon-Segura M, McFarlane S, Browder LW. The roles of Bcl-xL in modulating apoptosis during development of Xenopus laevis. BMC DEVELOPMENTAL BIOLOGY 2005; 5:20. [PMID: 16185362 PMCID: PMC1262703 DOI: 10.1186/1471-213x-5-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 09/26/2005] [Indexed: 01/14/2023]
Abstract
Background Apoptosis is a common and essential aspect of development. It is particularly prevalent in the central nervous system and during remodelling processes such as formation of the digits and in amphibian metamorphosis. Apoptosis, which is dependent upon a balance between pro- and anti-apoptotic factors, also enables the embryo to rid itself of cells damaged by gamma irradiation. In this study, the roles of the anti-apoptotic factor Bcl-xL in protecting cells from apoptosis were examined in Xenopus laevis embryos using transgenesis to overexpress the XR11 gene, which encodes Bcl-xL. The effects on developmental, thyroid hormone-induced and γ-radiation-induced apoptosis in embryos were examined in these transgenic animals. Results Apoptosis was abrogated in XR11 transgenic embryos. However, the transgene did not prevent the apoptotic response of tadpoles to thyroid hormone during metamorphosis. Post-metamorphic XR11 frogs were reared to sexual maturity, thus allowing us to produce second-generation embryos and enabling us to distinguish between the maternal and zygotic contributions of Bcl-xL to the γ-radiation apoptotic response. Wild-type embryos irradiated before the mid-blastula transition (MBT) underwent normal cell division until reaching the MBT, after which they underwent massive, catastrophic apoptosis. Over-expression of Bcl-xL derived from XR11 females, but not males, provided partial protection from apoptosis. Maternal expression of XR11 was also sufficient to abrogate apoptosis triggered by post-MBT γ-radiation. Tolerance to post-MBT γ-radiation from zygotically-derived XR11 was acquired gradually after the MBT in spite of abundant XR11 protein synthesis. Conclusion Our data suggest that Bcl-xL is an effective counterbalance to proapoptotic factors during embryonic development but has no apparent effect on the thyroid hormone-induced apoptosis that occurs during metamorphosis. Furthermore, post-MBT apoptosis triggered by irradiation before the MBT could only be restrained by maternal expression of Bcl-xL. Although maternal expression of XR11 was sufficient to abrogate apoptosis triggered by post-MBT γ-radiation, radiation tolerance from zygotically-derived XR11 was acquired gradually, indicating that synthesis of XR11 protein is not sufficient to prevent apoptosis. Thus, repression of radiation-induced apoptosis by overexpression of Bcl-xL during embryonic development depends upon the timing of its expression and post-translational events that enable the protein to become effective.
Collapse
Affiliation(s)
- Jillian Johnston
- Genes and Development Research Group, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Robert Chan
- Genes and Development Research Group, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Maria Calderon-Segura
- Genes and Development Research Group, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
- Universidad Nacional Autónoma de México, Centro de Ciencias de la, Atmósfera, Laboratorio de Citogenética Ambiental, Circuito Exterior S/N, Col. Coyoacán, Ciudad Universitaria, C.P.0451, México, Distrito Federal
| | - Sarah McFarlane
- Genes and Development Research Group, Department of Cell Biology & Anatomy, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Leon W Browder
- Genes and Development Research Group, Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| |
Collapse
|
140
|
Dominici M, Tadjali M, Kepes S, Allay ER, Boyd K, Ney PA, Horwitz E, Persons DA. Transgenic mice with pancellular enhanced green fluorescent protein expression in primitive hematopoietic cells and all blood cell progeny. Genesis 2005; 42:17-22. [PMID: 15828004 DOI: 10.1002/gene.20121] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Transgenic mice homogeneously expressing enhanced green fluorescence protein (EGFP) in primitive hematopoietic cells and all blood cell progeny, including erythrocytes and platelets, have not been reported. Given previous data indicating H2Kb promoter activity in murine hematopoietic stem cells (HSCs), bone marrow (BM), and lymphocytes, an H2Kb enhancer/promoter EGFP construct was used to generate transgenic mice. These mice demonstrated pancellular EGFP expression in both primitive BM Sca-1+Lin-Kit+ cells and side population (SP) cells. Additionally, all peripheral blood leukocytes subsets, erythrocytes, and platelets uniformly expressed EGFP strongly. Competitive BM transplantation assays established that transgenic H2Kb-EGFP HSCs had activity equivalent to wildtype HSCs in their ability to reconstitute hematopoiesis in lethally irradiated mice. In addition, immunohistochemistry revealed EGFP transgene expression in all tissues examined. This transgenic strain should be a useful reagent for both murine hematopoiesis studies and functional studies of specific cell types from particular tissues.
Collapse
Affiliation(s)
- Massimo Dominici
- Division of Experimental Hematology, Department of Hematology and Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Shizuru JA, Negrin RS, Weissman IL. Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 2005; 56:509-38. [PMID: 15660525 DOI: 10.1146/annurev.med.54.101601.152334] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A vast literature exists on the biology of blood formation and regeneration under experimental and clinical conditions. The field of hematopoiesis was recently advanced by the capacity to purify to homogeneity primitive hematopoietic stem and progenitor cells. Isolation of cells at defined maturational stages has enhanced the understanding of the fundamental nature of stem cells, including how cell fate decisions are made, and this understanding is relevant to the development of other normal as well as malignant tissues. This review updates the basic biology of hematopoietic stem cells (HSC) and progenitors, the evolving use of purified HSC as grafts for clinical hematopoietic cell transplantation (HCT) including immune tolerance induction, and the application of HSC biology to other stem cell fields.
Collapse
Affiliation(s)
- Judith A Shizuru
- Division of Blood and Marrow Transplantation, Stanford University Medical Center, California 94305, USA.
| | | | | |
Collapse
|
142
|
Jazirehi AR, Bonavida B. Cellular and molecular signal transduction pathways modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin's lymphoma: implications in chemosensitization and therapeutic intervention. Oncogene 2005; 24:2121-43. [PMID: 15789036 DOI: 10.1038/sj.onc.1208349] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The clinical application of rituximab (chimeric mouse anti-human CD20 mAb, Rituxan, IDEC-C2B8), alone and/or combined with chemotherapy, has significantly ameliorated the treatment outcome of patients with relapsed and refractory low-grade or follicular non-Hodgkin's lymphoma (NHL). The exact in vivo mechanisms of action of rituximab are not fully understood, although antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and apoptosis have been suggested. We have proposed that modifications of the cellular signaling pathways by rituximab may be crucial for its clinical response. The B-cell restricted cell surface phosphoprotein CD20 is involved in many cellular signaling events including proliferation, activation, differentiation, and apoptosis upon crosslinking. Monomeric rituximab chemosensitizes drug-resistant NHL cells via selective downregulation of antiapoptotic factors through the type II mitochondrial apoptotic pathway. Several signaling pathways are affected by rituximab which are implicated in the underlying molecular mechanisms of chemosensitization. ARL (acquired immunodeficiency syndrome (AIDS)-related lymphoma) and non-ARL cell lines have been examined as in vitro model systems. In ARL, rituximab diminishes the activity of the p38MAPK signaling pathway resulting in inhibition of the interleukin (IL)-10/IL-10R autocrine/paracrine cytokine autoregulatory loop leading to the inhibition of constitutive STAT-3 activity and subsequent downregulation of Bcl-2 expression leading to chemosensitization. Rituximab upregulates Raf-1 kinase inhibitor protein (RKIP) expression in non-ARL cells. Through physical association with Raf-1 and nuclear factor kappaB (NF-kappa B)-inducing kinase (NIK), RKIP negatively regulates two major survival pathways, namely, the extracellular signal-regulated kinase1/2 (ERK1/2) and the NF-kappa B pathways, respectively. Downmodulation of the ERK1/2 and NF-kappa B pathways inhibits the transcriptional activity of AP-1 and NF-kappa B transcription factors, respectively, both of which lead to the downregulation of Bcl-(xL) (Bcl-2 related gene (long alternatively spliced variant of Bcl-x gene)) transcription and expression and sensitization to drug-induced apoptosis. Bcl-(xL)-overexpressing cells corroborated the pivotal role of Bcl-(xL) in chemosensitization. The specificity of rituximab-mediated signaling and functional effects were corroborated by the use of specific pharmacological inhibitors. Many patients do not respond and/or relapse and the mechanisms of unresponsiveness are unknown. Rituximab-resistant B-NHL clones were generated to investigate the acquired resistance to rituximab-mediated signaling, and chemosensitization. Resistant clones display different phenotypic, genetic and functional properties compared to wild-type cells. This review summarizes the data highlighting a novel role of rituximab as a signal-inducing antibody and as a chemosensitizing agent through negative regulation of major survival pathways. Studies presented herein also reveal several intracellular targets modified by rituximab, which can be exploited for therapeutic and prognostic purposes in the treatment of patients with rituximab- and drug-refractory NHL.
Collapse
Affiliation(s)
- Ali R Jazirehi
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1747, USA
| | | |
Collapse
|
143
|
Karsunky H, Merad M, Mende I, Manz MG, Engleman EG, Weissman IL. Developmental origin of interferon-α–producing dendritic cells from hematopoietic precursors. Exp Hematol 2005; 33:173-81. [PMID: 15676211 DOI: 10.1016/j.exphem.2004.10.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 10/07/2004] [Accepted: 10/11/2004] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The aim of this study was to determine the lineage origin of interferon-alpha-producing cells (IPCs), also called plasmacytoid dendritic cells, in mice by evaluating the ability of common lymphoid (CLP) and myeloid (CMP) progenitors to give rise to IPCs. MATERIALS AND METHODS Sublethally irradiated C57Bl/6 mice were intravenously transplanted with rigorously purified lymphoid and myeloid progenitors from a congenic mouse strain. At various time points posttransplantation mice were analyzed for donor-derived cells by flow cytometry. The developmental potential of all progenitor populations was also tested in in vitro cultures. In addition, in vitro and in vivo derived IPCs were functionally assessed for their interferon-alpha production after virus challenge. RESULTS Transplantation of 1 x 10(4) common myeloid progenitors, 1 x 10(4) common lymphoid progenitors or 2.5 x 10(4) granulocyte/macrophage progenitors all led to the generation of IPCs within 2 to 3 weeks. In general, IPC reconstitution in spleen and liver by CMPs was more efficient than by CLP. Adding Flt3L alone to in vitro cultures was sufficient to support the development of IPCs from myeloid progenitors whereas CLPs required additional survival factors provided either by stroma cells or by introduction of transgenic Bcl-2. Both myeloid- and lymphoid-derived IPC were indistinguishable by function, gene expression, and morphology. CONCLUSION Surprisingly, our results clearly show that murine IPCs differentiate from both lineages but are mainly of myeloid origin. These results extend to IPCs the observation made originally in classical dendritic cells that cellular expression of so called lineage markers does not correlate with lineal origin.
Collapse
Affiliation(s)
- Holger Karsunky
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif, USA.
| | | | | | | | | | | |
Collapse
|
144
|
Schmittwolf C, Kirchhof N, Jauch A, Dürr M, Harder F, Zenke M, Müller AM. In vivo haematopoietic activity is induced in neurosphere cells by chromatin-modifying agents. EMBO J 2005; 24:554-66. [PMID: 15660132 PMCID: PMC548653 DOI: 10.1038/sj.emboj.7600546] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 12/14/2004] [Indexed: 11/08/2022] Open
Abstract
Modifications of DNA and chromatin are fundamental for the establishment and maintenance of cell type-specific gene expression patterns that constitute cellular identities. To test whether the developmental potential of fetal brain-derived cells that form floating sphere colonies (neurospheres) can be modified by destabilizing their epigenotype, neurosphere cells were treated with chemical compounds that alter the acetylation and methylation patterns of chromatin and DNA. Intravenous infusion of bulk or clonally derived neurosphere cells treated with a combination of trichostatin A (TSA) plus 5-aza-2'-deoxycytidine (AzaC) (TSA/AzaC neurosphere cells) yielded long-term, multilineage and transplantable neurosphere-derived haematopoietic repopulation. Untreated neurosphere cells exhibited no haematopoietic repopulation activity. The neurosphere-derived haematopoietic cells showed a diploid karyotype, indicating that they are unlikely to be products of cell fusion events, a conclusion strengthened by multicolour fluorescence in situ hybridization. Our results indicate that altering the epigenotype of neurosphere cells followed by transplantation enables the generation of neurosphere-derived haematopoietic cells.
Collapse
Affiliation(s)
- Carolin Schmittwolf
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Würzburg, Würzburg, Germany
| | - Nicole Kirchhof
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Würzburg, Würzburg, Germany
| | - Anna Jauch
- Institut für Humanmedizin, Universität Heidelberg, Heidelberg, Germany
| | - Michael Dürr
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Würzburg, Würzburg, Germany
| | - Friedrich Harder
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Würzburg, Würzburg, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Cell Biology, Aachen, Germany
| | - Albrecht M Müller
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Würzburg, Würzburg, Germany
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Würzburg, Versbacherstr. 5, 97078 Würzburg, Germany. Tel.: +49 931 201 45848; Fax: +49 931 201 45147; E-mail:
| |
Collapse
|
145
|
Bouton LA, Ramirez CD, Bailey DP, Yeatman CF, Yue J, Wright HV, Domen J, Rosato RR, Grant S, Fischer-Stenger K, Ryan JJ. Costimulation with interleukin-4 and interleukin-10 induces mast cell apoptosis and cell-cycle arrest: the role of p53 and the mitochondrion. Exp Hematol 2004; 32:1137-45. [PMID: 15588938 DOI: 10.1016/j.exphem.2004.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 09/02/2004] [Accepted: 09/10/2004] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to determine the mechanism by which interleukin (IL)-4 + IL-10 costimulation regulates mast cell numbers to maintain immune homeostasis. MATERIALS AND METHODS We employed mouse bone marrow-derived mast cells (BMMC) to measure the effects of IL-4 + IL-10 on survival and cell-cycle progression. p53-Deficient, bax-deficient, and bcl-2 transgenic BMMC were compared to wild-type cells to determine the role of these proteins in apoptosis. The molecular regulation of apoptosis and cell-cycle progression was investigated using flow cytometric analysis, RNase protection, and Western blotting. RESULTS IL-4 + IL-10 induced BMMC apoptosis and arrest. Apoptosis was p53-dependent. Cell death was accompanied by loss of mitochondrial membrane potential, the importance of which was demonstrated by resistance to IL-4 + IL-10-mediated cell death when Bax was deleted or Bcl-2 was overexpressed. Those cells not killed by apoptosis demonstrated a p53-independent G1 cell-cycle arrest. Apoptosis and arrest may be explained by reduced IL-3 receptor signaling. CONCLUSION Costimulation with IL-4 + IL-10 partly controls mast cell homeostasis through a delayed apoptosis and arrest program that is induced by a blockade of IL-3 receptor signaling. The delay in these negative effects would allow the protective effects of mast cell activation to occur for several days.
Collapse
Affiliation(s)
- L Andrew Bouton
- Department of Biology, Virginia Commonwealth University, Richmond, Va. 23284-2012, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Coffield VM, Helms WS, Jiang Q, Su L. Galpha13 mediates a signal that is essential for proliferation and survival of thymocyte progenitors. ACTA ACUST UNITED AC 2004; 200:1315-24. [PMID: 15534370 PMCID: PMC2211919 DOI: 10.1084/jem.20040944] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G protein signaling via the Galpha12 family (Galpha12 and Galpha13) has not been well studied in T cells. To investigate whether Galpha12 and Galpha13 are involved in thymopoiesis, we expressed the regulator of G protein signaling domain of p115RhoGEF to inhibit Galpha12 and Galpha13 during thymopoiesis. Fetal thymus organ cultures seeded with p115DeltaDH-expressing progenitor cells showed impaired thymopoiesis with a block at the CD4-CD8-CD44-CD25+ (DN3) stage. Using Galpha13 or Galpha12 minigenes, we demonstrated that Galpha13, but not Galpha12, is required for thymopoiesis. T progenitor cells expressing p115DeltaDH showed reduced proliferation and increased cell death. T cell receptor stimulation of the fetal thymus organ cultures did not rescue the block. Overexpression of the antiapoptotic gene Bcl2 rescued the defect in DN3 cells and partially rescued T cell development. Therefore, Galpha13-mediated signaling is necessary in early thymocyte proliferation and survival.
Collapse
Affiliation(s)
- V McNeil Coffield
- Lineberger Comprehensive Cancer Center, Dept. of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
147
|
Passegué E, Wagner EF, Weissman IL. JunB Deficiency Leads to a Myeloproliferative Disorder Arising from Hematopoietic Stem Cells. Cell 2004; 119:431-43. [PMID: 15507213 DOI: 10.1016/j.cell.2004.10.010] [Citation(s) in RCA: 328] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 08/26/2004] [Accepted: 09/07/2004] [Indexed: 01/13/2023]
Abstract
The AP-1 transcription factor JunB is a transcriptional regulator of myelopoiesis. Inactivation of JunB in postnatal mice results in a myeloproliferative disorder (MPD) resembling early human chronic myelogenous leukemia (CML). Here, we show that JunB regulates the numbers of hematopoietic stem cells (HSC). JunB overexpression decreases the frequency of long-term HSC (LT-HSC), while JunB inactivation specifically expands the numbers of LT-HSC and granulocyte/macrophage progenitors (GMP) resulting in chronic MPD. Further, we demonstrate that junB inactivation must take place in LT-HSC, and not at later stages of myelopoiesis, to induce MPD and that only junB-deficient LT-HSC are capable of transplanting the MPD to recipient mice. These results demonstrate a stem cell-specific role for JunB in normal and leukemic hematopoiesis and provide experimental evidence that leukemic stem cells (LSC) can reside at the LT-HSC stage of development in a mouse model of MPD.
Collapse
Affiliation(s)
- Emmanuelle Passegué
- Institute of Cancer and Stem Cell Biology and Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
148
|
Harder F, Kirchhof N, Petrovic S, Wiese S, Müller AM. Erythroid-like cells from neural stem cells injected into blastocysts. Exp Hematol 2004; 32:673-82. [PMID: 15246164 DOI: 10.1016/j.exphem.2004.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Revised: 04/17/2004] [Accepted: 04/26/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE In contrast to embryonic stem (ES) cells, which are able to give rise to all cell types of the body, somatic stem cells have been thought to be more limited in their differentiation potential in that they are committed to generate only cells of their tissue of origin. Unexpectedly, some recent data suggest that somatic stem cells isolated from one tissue can also generate cells of heterologous tissues and organs, implying that somatic stem cells have a greater potential for differentiation. METHODS To explore further the developmental potential of murine neural stem cells (NSCs) we injected cultured NSCs as neurospheres into preimplantation blastocysts and determined the seeding by donor cells in tissues of developing chimeric fetal and adult animals. RESULTS We frequently detected progeny of injected NSCs both in embryos and in adult animals. In embryos we observed transient seeding of donor cells to hematopoietic tissues and generation of NSC-derived cells that express globin genes and an erythroid-specific cell-surface marker. In adults progeny of NSCs were mostly detected in neural tissues. The observed low level of chimerism of wild-type NSCs was increased if we injected stem cells expressing a bcl-2 transgene, without changing the seeding pattern. CONCLUSION These results suggest that cultured NSCs, following their injection into blastocysts, generate at mid-gestation erythroid-like cells but later, in adult chimeric mice, engraftment mainly persisted in neural tissues.
Collapse
Affiliation(s)
- Friedrich Harder
- Institute of Medical Radiation and Cell Research (MSZ), University of Würzburg, Germany
| | | | | | | | | |
Collapse
|
149
|
Williams LE, Johnson JL, Hauck ML, Ruslander DM, Price GS, Thrall DE. Chemotherapy Followed by Half-Body Radiation Therapy for Canine Lymphoma. J Vet Intern Med 2004. [DOI: 10.1111/j.1939-1676.2004.tb02609.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
150
|
Hernandez MC, Knox SJ. Radiobiology of radioimmunotherapy: targeting CD20 B-cell antigen in non-Hodgkin's lymphoma. Int J Radiat Oncol Biol Phys 2004; 59:1274-87. [PMID: 15275710 DOI: 10.1016/j.ijrobp.2004.02.065] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Revised: 02/12/2004] [Accepted: 02/16/2004] [Indexed: 02/07/2023]
Abstract
The radiobiology of radioimmunotherapy is an important determinant of both the toxicity and the efficacy associated with the treatment of B-cell non-Hodgkin's lymphoma with radiolabeled anti-CD20 monoclonal antibodies. The properties of the target, CD20, and the mechanisms of action of both the monoclonal antibodies and the associated exponentially decreasing low-dose-rate radiotherapy are described. The radiation dose and dose-rate effects are discussed and related to both the tumor responses and normal organ toxicity. Finally, the use of either unlabeled or radiolabeled anti-CD20 monoclonal antibodies as a component of combined modality therapy (including the sequential or concurrent use of sensitizers) and future directions of the field are discussed.
Collapse
Affiliation(s)
- M Carmen Hernandez
- Department of Radiation Oncology, Stanford University Medical Center, 269 Campus Drive West, Stanford, CA 94305, USA
| | | |
Collapse
|