101
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Recent Insights Into the Molecular Mechanism of Toll-Like Receptor Response to Dengue Virus Infection. Front Microbiol 2021; 12:744233. [PMID: 34603272 PMCID: PMC8483762 DOI: 10.3389/fmicb.2021.744233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue is the most prevalent and rapidly spreading mosquito-borne viral disease caused by dengue virus (DENV). Recently, DENV has been affecting humans within an expanding geographic range due to the warming of the earth. Innate immune responses play a significant role in antiviral defense, and Toll-like receptors (TLRs) are key regulators of innate immunity. Therefore, a detailed understanding of TLR and DENV interactions is important for devising therapeutic and preventive strategies. Several studies have indicated the ability of DENV to modulate the TLR signaling pathway and host immune response. Vaccination is considered one of the most successful medical interventions for preventing viral infections. However, only a partially protective dengue vaccine, the first licensed dengue vaccine CYD-TDV, is available in some dengue-endemic countries to protect against DENV infection. Therefore, the development of a fully protective, durable, and safe DENV vaccine is a priority for global health. Here, we demonstrate the progress made in our understanding of the host response to DENV infection, with a particular focus on TLR response and how DENV avoids the response toward establishing infection. We also discuss dengue vaccine candidates in late-stage development and the issues that must be overcome to enable their success.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
102
|
Review of Influenza Virus Vaccines: The Qualitative Nature of Immune Responses to Infection and Vaccination Is a Critical Consideration. Vaccines (Basel) 2021; 9:vaccines9090979. [PMID: 34579216 PMCID: PMC8471734 DOI: 10.3390/vaccines9090979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023] Open
Abstract
Influenza viruses have affected the world for over a century, causing multiple pandemics. Throughout the years, many prophylactic vaccines have been developed for influenza; however, these viruses are still a global issue and take many lives. In this paper, we review influenza viruses, associated immunological mechanisms, current influenza vaccine platforms, and influenza infection, in the context of immunocompromised populations. This review focuses on the qualitative nature of immune responses against influenza viruses, with an emphasis on trained immunity and an assessment of the characteristics of the host–pathogen that compromise the effectiveness of immunization. We also highlight innovative immunological concepts that are important considerations for the development of the next generation of vaccines against influenza viruses.
Collapse
|
103
|
Han X, Xu P, Ye Q. Analysis of COVID-19 vaccines: Types, thoughts, and application. J Clin Lab Anal 2021; 35:e23937. [PMID: 34396586 PMCID: PMC8418485 DOI: 10.1002/jcla.23937] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To deal with COVID-19, various countries have made many efforts, including the research and development of vaccines. The purpose of this manuscript was to summarize the development, application, and problems of COVID-19 vaccines. METHODS This article reviewed the existing literature to see the development of the COVID-19 vaccine. RESULTS We found that different types of vaccines had their own advantages and disadvantages. At the same time, the side effects of the vaccine, the dose of vaccination, the evaluation of the efficacy, and the application of the vaccine were all things worth studying. CONCLUSION The successful development of the COVID-19 vaccine concerns almost all countries and people in the world. We must do an excellent job of researching the immunogenicity and immune reactivity of the vaccines. We hope this review can help colleagues at home and abroad.
Collapse
Affiliation(s)
- Xiucui Han
- Department of Clinical LaboratoryThe Children’s HospitalZhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| | - Pengfei Xu
- Clinical LaboratoryZhejiang HospitalHangzhouChina
| | - Qing Ye
- Department of Clinical LaboratoryThe Children’s HospitalZhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| |
Collapse
|
104
|
Helou DG, Mauras A, Fasquelle F, Lanza JS, Loiseau PM, Betbeder D, Cojean S. Intranasal vaccine from whole Leishmania donovani antigens provides protection and induces specific immune response against visceral leishmaniasis. PLoS Negl Trop Dis 2021; 15:e0009627. [PMID: 34403413 PMCID: PMC8370633 DOI: 10.1371/journal.pntd.0009627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/05/2021] [Indexed: 12/27/2022] Open
Abstract
Visceral leishmaniasis is a protozoan disease associated with high fatality rate in developing countries. Although the drug pipeline is constantly improving, available treatments are costly and live-threatening side effects are not uncommon. Moreover, an approved vaccine against human leishmaniasis does not exist yet. Using whole antigens from Leishmania donovani promastigotes (LdAg), we investigated the protective potential of a novel adjuvant-free vaccine strategy. Immunization of mice with LdAg via the intradermal or the intranasal route prior to infection decreases the parasitic burden in primary affected internal organs, including the liver, spleen, and bone marrow. Interestingly, the intranasal route is more efficient than the intradermal route, leading to better parasite clearance and remarkable induction of adaptive immune cells, notably the helper and cytotoxic T cells. In vitro restimulation experiments with Leishmania antigens led to significant IFN-γ secretion by splenocytes; therefore, exemplifying specificity of the adaptive immune response. To improve mucosal delivery and the immunogenic aspects of our vaccine strategy, we used polysaccharide-based nanoparticles (NP) that carry the antigens. The NP-LdAg formulation is remarkably taken up by dendritic cells and induces their maturation in vitro, as revealed by the increased expression of CD80, CD86 and MHC II. Intranasal immunization with NP-LdAg does not improve the parasite clearance in our experimental timeline; however, it does increase the percentage of effector and memory T helper cells in the spleen, suggesting a potential induction of long-term memory. Altogether, this study provides a simple and cost-effective vaccine strategy against visceral leishmaniasis based on LdAg administration via the intranasal route, which could be applicable to other parasitic diseases. Visceral leishmaniasis is a neglected tropical disease caused by specific species of Leishmania parasites that affect internal organs including spleen, liver, and bone marrow. The infective stage called promastigote, is transmitted into the host skin via sandfly bites. Visceral leishmaniasis is usually associated with high mortality rate in poor and developing countries, lacking proper health assistance. Moreover, treatments are expensive while no approved vaccines exist to prevent infection and avoid disease outbreaks. This study suggests an affordable and adjuvant-free vaccine formulation made from the total lysate of promastigotes. Vaccine administration via the intranasal route, ensures a remarkable clearance of Leishmania parasites from the internal organs of infected experimental mice. In particular, intranasal route known to be not invasive, is efficient in inducing adequate immune response against the infective form of the parasite. Further studies are now required to improve this prophylactic vaccine and provide therefore the basis for a promising translational approach.
Collapse
MESH Headings
- Adaptive Immunity
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/administration & dosage
- Antigens, Protozoan/blood
- Antigens, Protozoan/immunology
- Bone Marrow/metabolism
- Bone Marrow/parasitology
- Female
- Immunization
- Interferon-gamma/metabolism
- Leishmania donovani/immunology
- Leishmaniasis Vaccines/administration & dosage
- Leishmaniasis Vaccines/immunology
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/prevention & control
- Liver/metabolism
- Liver/parasitology
- Mice
- Mice, Inbred BALB C
- Spleen/metabolism
- Spleen/parasitology
Collapse
Affiliation(s)
- Doumet Georges Helou
- Université Paris-Saclay, CNRS, BioCis-UMR 8076, Châtenay-Malabry, France
- * E-mail: (DGH); (SC)
| | - Aurélie Mauras
- Université Paris-Saclay, CNRS, BioCis-UMR 8076, Châtenay-Malabry, France
| | | | | | | | | | - Sandrine Cojean
- Université Paris-Saclay, CNRS, BioCis-UMR 8076, Châtenay-Malabry, France
- * E-mail: (DGH); (SC)
| |
Collapse
|
105
|
Nieto A, Mazón A, Nieto M, Calderón R, Calaforra S, Selva B, Uixera S, Palao MJ, Brandi P, Conejero L, Saz-Leal P, Fernández-Pérez C, Sancho D, Subiza JL, Casanovas M. Bacterial Mucosal Immunotherapy with MV130 Prevents Recurrent Wheezing in Children: A Randomized, Double-Blind, Placebo-controlled Clinical Trial. Am J Respir Crit Care Med 2021; 204:462-472. [PMID: 33705665 PMCID: PMC8480240 DOI: 10.1164/rccm.202003-0520oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Rationale: Recurrent wheezing in children represents a severe public health concern. Wheezing attacks (WA), mainly associated with viral infections, lack effective preventive therapies. Objectives: To evaluate the efficacy and safety of mucosal sublingual immunotherapy based on whole inactivated bacteria (MV130) in preventing WA in children. Methods: A Phase 3 randomized, double-blind, placebo-controlled, parallel-group trial including a cohort of 120 children <3 years old with ⩾3 WA during the previous year was conducted. Children with a positive skin test to common aeroallergens in the area where the clinical trial was performed were excluded from the trial. Subjects received MV130 or placebo daily for 6 months. The primary endpoint was the number of WA within 1 year after the first dose comparing MV130 and placebo. Measurements and Main Results: There was a significant lower number of WA in MV130 versus the placebo group, 3.0 (interquartile range [IQR], 2.0-4.0) versus 5.0 (IQR, 3.0-7.0) (P < 0.001). As secondary outcomes, a decrease in the duration of WA and a reduction in symptoms and medication scores in the MV130 versus placebo group were found. No adverse events were reported related to the active treatment. Conclusions: Mucosal bacterial immunotherapy with MV130 shows safety and clinical efficacy against recurrent WA in children.Clinical trial registered with www.clinicaltrials.gov (NCT01734811).
Collapse
Affiliation(s)
- Antonio Nieto
- Unidad de Neumología y Alergia Pediátrica, Instituto de Investigaciones Sanitarias, Hospital Universitario La Fe, Valencia, Spain
| | - Angel Mazón
- Unidad de Neumología y Alergia Pediátrica, Instituto de Investigaciones Sanitarias, Hospital Universitario La Fe, Valencia, Spain
| | - María Nieto
- Unidad de Neumología y Alergia Pediátrica, Instituto de Investigaciones Sanitarias, Hospital Universitario La Fe, Valencia, Spain
| | | | - Susana Calaforra
- Unidad de Neumología y Alergia Pediátrica, Instituto de Investigaciones Sanitarias, Hospital Universitario La Fe, Valencia, Spain
| | - Blanca Selva
- Unidad de Neumología y Alergia Pediátrica, Instituto de Investigaciones Sanitarias, Hospital Universitario La Fe, Valencia, Spain
| | - Sonia Uixera
- Unidad de Neumología y Alergia Pediátrica, Instituto de Investigaciones Sanitarias, Hospital Universitario La Fe, Valencia, Spain
| | | | - Paola Brandi
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | - Cristina Fernández-Pérez
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense, Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | |
Collapse
|
106
|
Magadán S, Mikelez-Alonso I, Borrego F, González-Fernández Á. Nanoparticles and trained immunity: Glimpse into the future. Adv Drug Deliv Rev 2021; 175:113821. [PMID: 34087325 DOI: 10.1016/j.addr.2021.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022]
Abstract
Emerging evidences show that innate immune cells can display changes in their functional programs after infection or vaccination, which lead to immunomodulation (increased or reduced responsiveness) upon secondary activation to the same stimuli or even to a different one. Innate cells acquire features of immunological memory, nowadays using the new term of "trained immunity" or "innate immune memory", which is different from the specific memory immune response elicited by B and T lymphocytes. The review focused on the concept of trained immunity, mostly on myeloid cells. Special attention is dedicated to the pathogen recognition along the evolution (bacteria, plants, invertebrate and vertebrate animals), and to techniques used to study epigenetic reprogramming and metabolic rewiring. Nanomaterials can be recognized by immune cells offering a very promising way to learn about trained immunity. Nanomaterials could be modified in order to immunomodulate the responses ad hoc. Many therapeutic possibilities are opened, and they should be explored.
Collapse
|
107
|
Laupèze B, Del Giudice G, Doherty MT, Van der Most R. Vaccination as a preventative measure contributing to immune fitness. NPJ Vaccines 2021; 6:93. [PMID: 34315886 PMCID: PMC8316335 DOI: 10.1038/s41541-021-00354-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
The primary goal of vaccination is the prevention of pathogen-specific infection. The indirect consequences may include maintenance of homeostasis through prevention of infection-induced complications; trained immunity that re-programs innate cells to respond more efficiently to later, unrelated threats; slowing or reversing immune senescence by altering the epigenetic clock, and leveraging the pool of memory B and T cells to improve responses to new infections. Vaccines may exploit the plasticity of the immune system to drive longer-term immune responses that promote health at a broader level than just the prevention of single, specific infections. In this perspective, we discuss the concept of “immune fitness” and how to potentially build a resilient immune system that could contribute to better health. We argue that vaccines may contribute positively to immune fitness in ways that are only beginning to be understood, and that life-course vaccination is a fundamental tool for achieving healthy aging.
Collapse
|
108
|
Subiza JL, Palomares O, Quinti I, Sánchez-Ramón S. Editorial: Trained Immunity-Based Vaccines. Front Immunol 2021; 12:716296. [PMID: 34249020 PMCID: PMC8264451 DOI: 10.3389/fimmu.2021.716296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023] Open
Affiliation(s)
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Isabella Quinti
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, San Carlos University Clinical Hospital, Madrid, Spain
| |
Collapse
|
109
|
Kusi KA, Frimpong A, Partey FD, Lamptey H, Amoah LE, Ofori MF. High infectious disease burden as a basis for the observed high frequency of asymptomatic SARS-CoV-2 infections in sub-Saharan Africa. AAS Open Res 2021; 4:2. [PMID: 34729457 PMCID: PMC8524298 DOI: 10.12688/aasopenres.13196.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2021] [Indexed: 11/03/2023] Open
Abstract
Following the coronavirus outbreaks described as severe acute respiratory syndrome (SARS) in 2003 and the Middle East respiratory syndrome (MERS) in 2012, the world has again been challenged by yet another corona virus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infections were first detected in a Chinese Province in December 2019 and then declared a pandemic by the World Health Organization in March 2020. An infection caused by SARS-CoV-2 may result in asymptomatic, uncomplicated or fatal coronavirus disease 2019 (COVID-19). Fatal disease has been linked with the uncontrolled "cytokine storm" manifesting with complications mostly in people with underlying cardiovascular and pulmonary disease conditions. The severity of COVID-19 disease and the associated mortality has been disproportionately lower in terms of number of cases and deaths in Africa and also Asia in comparison to Europe and North America. Also, persons of colour residing in Europe and North America have been identified as a highly susceptible population due to a combination of several socioeconomic factors and poor access to quality healthcare. Interestingly, this has not been the case in sub-Saharan Africa where majority of the population are even more deprived of the aforementioned factors. On the contrary, sub-Saharan Africa has recorded the lowest levels of mortality and morbidity associated with the disease, and an overwhelming proportion of infections are asymptomatic. Whilst it can be argued that these lower number of cases in Africa may be due to challenges associated with the diagnosis of the disease such as lack of trained personnel and infrastructure, the number of persons who get infected and develop symptoms is proportionally lower than those who are asymptomatic, including asymptomatic cases that are never diagnosed. This review discusses the most probable reasons for the significantly fewer cases of severe COVID-19 disease and deaths in sub-Saharan Africa.
Collapse
Affiliation(s)
- Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Augustina Frimpong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Frederica Dedo Partey
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Helena Lamptey
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Michael Fokuo Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
110
|
Sánchez-Ramón S, Fernández-Paredes L, Saz-Leal P, Diez-Rivero CM, Ochoa-Grullón J, Morado C, Macarrón P, Martínez C, Villaverde V, de la Peña AR, Conejero L, Hernández-Llano K, Cordero G, Fernández-Arquero M, Gutierrez BF, Candelas G. Sublingual Bacterial Vaccination Reduces Recurrent Infections in Patients With Autoimmune Diseases Under Immunosuppressant Treatment. Front Immunol 2021; 12:675735. [PMID: 34149711 PMCID: PMC8212043 DOI: 10.3389/fimmu.2021.675735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Introduction Conventional or biologic disease-modifying anti-rheumatic drugs (DMARDs) are the mainstay of treatment for systemic autoimmune disease (SAD). Infectious complications are a major concern in their use. Objective To evaluate the clinical benefit of sublingual mucosal polybacterial vaccines (MV130 and MV140), used to prevent recurrent respiratory and urinary tract infections, in patients with SAD and secondary recurrent infections following conventional or biologic DMARDs. Methods An observational study in SAD patients with recurrent respiratory tract infections (RRTI) and/or recurrent urinary tract infections (RUTI) was carried out. All patients underwent mucosal (sublingual) vaccination with MV130 for RRTI or with MV140 for RUTI daily for 3 months. Clinical evaluation was assessed during 12 months of follow-up after the first dose, i.e., 3 months under treatment and 9 months once discontinued, and compared with the previous year. Results Forty-one out of 55 patients completed 1-year follow-up. All patients were on either conventional or biologic DMARDs. A significant decrease in the frequency of RUTI (p<0.001), lower respiratory tract infections (LRTI) (p=0.009) and upper respiratory tract infections (URTI) (p=0.006) at 12-mo with respect to the previous year was observed. Antibiotic prescriptions and unscheduled medical visits decreased significantly (p<0.020) in all groups. Hospitalization rate also declined in patients with RRTI (p=0.019). The clinical benefit demonstrated was concomitant to a significant increase in both anti-S. pneumoniae IgA and IgG antibodies following MV130 vaccination. Conclusions Sublingual polybacterial vaccines prevent recurrent infections in patients with SAD under treatment with immunosuppressant therapies, supporting a broad non-specific anti-infectious effect in these patients.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Lidia Fernández-Paredes
- Department of Clinical Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Paula Saz-Leal
- Department of Innovation and Development, Inmunotek S.L., Alcalá de Henares, Spain
| | - Carmen M Diez-Rivero
- Department of Innovation and Development, Inmunotek S.L., Alcalá de Henares, Spain
| | - Juliana Ochoa-Grullón
- Department of Clinical Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Concepción Morado
- Department of Rheumatology, Hospital Clínico San Carlos, Madrid, Spain
| | - Pilar Macarrón
- Department of Rheumatology, Hospital Clínico San Carlos, Madrid, Spain
| | - Cristina Martínez
- Department of Rheumatology, Hospital Clínico San Carlos, Madrid, Spain
| | | | | | - Laura Conejero
- Department of Innovation and Development, Inmunotek S.L., Alcalá de Henares, Spain
| | - Keyla Hernández-Llano
- Department of Clinical Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Gustavo Cordero
- Department of Clinical Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain
| | | | | | - Gloria Candelas
- Department of Rheumatology, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
111
|
Marín-Hernández D, Nixon DF, Hupert N. Heterologous vaccine interventions: boosting immunity against future pandemics. Mol Med 2021; 27:54. [PMID: 34058986 PMCID: PMC8165337 DOI: 10.1186/s10020-021-00317-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
While vaccines traditionally have been designed and used for protection against infection or disease caused by one specific pathogen, there are known off-target effects from vaccines that can impact infection from unrelated pathogens. The best-known non-specific effects from an unrelated or heterologous vaccine are from the use of the Bacillus Calmette-Guérin (BCG) vaccine, mediated partly through trained immunity. Other vaccines have similar heterologous effects. This review covers molecular mechanisms behind the heterologous effects, and the potential use of heterologous vaccination in the current COVID-19 pandemic. We then discuss novel pandemic response strategies based on rapidly deployed, widespread heterologous vaccination to boost population-level immunity for initial, partial protection against infection and/or clinical disease, while specific vaccines are developed.
Collapse
Affiliation(s)
- Daniela Marín-Hernández
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Belfer Research Building, Room 530, 413 E. 69th street, New York, NY 10065 USA
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Belfer Research Building, Room 530, 413 E. 69th street, New York, NY 10065 USA
| | - Nathaniel Hupert
- Department of Population Health Sciences, Weill Cornell Medicine, 402 E. 67th Street, New York, NY 10065 USA
- Cornell Institute for Disease and Disaster Preparedness, Weill Cornell Medicine, 402 E. 67th Street, New York, NY 10065 USA
| |
Collapse
|
112
|
Foster M, Hill PC, Setiabudiawan TP, Koeken VACM, Alisjahbana B, van Crevel R. BCG-induced protection against Mycobacterium tuberculosis infection: Evidence, mechanisms, and implications for next-generation vaccines. Immunol Rev 2021; 301:122-144. [PMID: 33709421 PMCID: PMC8252066 DOI: 10.1111/imr.12965] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022]
Abstract
The tuberculosis (TB) vaccine Bacillus Calmette-Guérin (BCG) was introduced 100 years ago, but as it provides insufficient protection against TB disease, especially in adults, new vaccines are being developed and evaluated. The discovery that BCG protects humans from becoming infected with Mycobacterium tuberculosis (Mtb) and not just from progressing to TB disease provides justification for considering Mtb infection as an endpoint in vaccine trials. Such trials would require fewer participants than those with disease as an endpoint. In this review, we first define Mtb infection and disease phenotypes that can be used for mechanistic studies and/or endpoints for vaccine trials. Secondly, we review the evidence for BCG-induced protection against Mtb infection from observational and BCG re-vaccination studies, and discuss limitations and variation of this protection. Thirdly, we review possible underlying mechanisms for BCG efficacy against Mtb infection, including alternative T cell responses, antibody-mediated protection, and innate immune mechanisms, with a specific focus on BCG-induced trained immunity, which involves epigenetic and metabolic reprogramming of innate immune cells. Finally, we discuss the implications for further studies of BCG efficacy against Mtb infection, including for mechanistic research, and their relevance to the design and evaluation of new TB vaccines.
Collapse
Affiliation(s)
- Mitchell Foster
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Philip C. Hill
- Centre for International HealthUniversity of OtagoDunedinNew Zealand
| | - Todia Pediatama Setiabudiawan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| | - Valerie A. C. M. Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
- Department of Computational Biology for Individualised Infection MedicineCentre for Individualised Infection Medicine (CiiM) & TWINCOREJoint Ventures between The Helmholtz‐Centre for Infection Research (HZI) and The Hannover Medical School (MHH)HannoverGermany
| | - Bachti Alisjahbana
- Tuberculosis Working GroupFaculty of MedicineUniversitas PadjadjaranBandungIndonesia
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
113
|
Guryanova SV, Khaitov RM. Strategies for Using Muramyl Peptides - Modulators of Innate Immunity of Bacterial Origin - in Medicine. Front Immunol 2021; 12:607178. [PMID: 33959120 PMCID: PMC8093441 DOI: 10.3389/fimmu.2021.607178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
The spread of infectious diseases is rampant. The emergence of new infections, the irrational use of antibiotics in medicine and their widespread use in agriculture contribute to the emergence of microorganisms that are resistant to antimicrobial drugs. By 2050, mortality from antibiotic-resistant strains of bacteria is projected to increase up to 10 million people per year, which will exceed mortality from cancer. Mutations in bacteria and viruses are occurring faster than new drugs and vaccines are being introduced to the market. In search of effective protection against infections, new strategies and approaches are being developed, one of which is the use of innate immunity activators in combination with etiotropic chemotherapy drugs. Muramyl peptides, which are part of peptidoglycan of cell walls of all known bacteria, regularly formed in the body during the breakdown of microflora and considered to be natural regulators of immunity. Their interaction with intracellular receptors launches a sequence of processes that ultimately leads to the increased expression of genes of MHC molecules, pro-inflammatory mediators, cytokines and their soluble and membrane-associated receptors. As a result, all subpopulations of immunocompetent cells are activated: macrophages and dendritic cells, neutrophils, T-, B- lymphocytes and natural killer cells for an adequate response to foreign or transformed antigens, manifested both in the regulation of the inflammatory response and in providing immunological tolerance. Muramyl peptides take part in the process of hematopoiesis, stimulating production of colony-stimulating factors, which is the basis for their use in the treatment of oncological diseases. In this review we highlight clinical trials of drugs based on muramyl peptides, as well as clinical efficacy of drugs mifamurtide, lycopid, liasten and polimuramil. Such a multifactorial effect of muramyl peptides and a well-known mechanism of activity make them promising drugs in the treatment and preventing of infectious, allergic and oncological diseases, and in the composition of vaccines.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Biology and General Genetics, Medical Institute, RUDN University, Moscow, Russia
| | - Rahim M. Khaitov
- National Research Center – Institute of Immunology of Federal Medico-Biological Agency, Moscow, Russia
- Department of Immunology, Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
114
|
Teran-Navarro H, Salcines-Cuevas D, Calderon-Gonzalez R, Tobes R, Calvo-Montes J, Pérez-Del Molino Bernal IC, Yañez-Diaz S, Fresno M, Alvarez-Dominguez C. A Comparison Between Recombinant Listeria GAPDH Proteins and GAPDH Encoding mRNA Conjugated to Lipids as Cross-Reactive Vaccines for Listeria, Mycobacterium, and Streptococcus. Front Immunol 2021; 12:632304. [PMID: 33953709 PMCID: PMC8092121 DOI: 10.3389/fimmu.2021.632304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 12/29/2022] Open
Abstract
Cross-reactive vaccines recognize common molecular patterns in pathogens and are able to confer broad spectrum protection against different infections. Antigens common to pathogenic bacteria that induce broad immune responses, such as the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of the genera Listeria, Mycobacterium, or Streptococcus, whose sequences present more than 95% homology at the N-terminal GAPDH1-22 peptide, are putative candidates for universal vaccines. Here, we explore vaccine formulations based on dendritic cells (DC) loaded with two molecular forms of Listeria monocytogenes GAPDH (LM-GAPDH), such as mRNA carriers or recombinant proteins, and compare them with the same molecular forms of three other antigens used in experimental vaccines, listeriolysin O of Listeria monocytogeness, Ag85A of Mycobacterium marinum, and pneumolysin of Streptococcus pneumoniae. DC loaded with LM-GAPDH recombinant proteins proved to be the safest and most immunogenic vaccine vectors, followed by mRNA encoding LM-GAPDH conjugated to lipid carriers. In addition, macrophages lacked sufficient safety as vaccines for all LM-GAPDH molecular forms. The ability of DC loaded with LM-GAPDH recombinant proteins to induce non-specific DC activation explains their adjuvant potency and their capacity to trigger strong CD4+ and CD8+ T cell responses explains their high immunogenicity. Moreover, their capacity to confer protection in vaccinated mice against challenges with L. monocytogenes, M. marinum, or S. pneumoniae validated their efficiency as cross-reactive vaccines. Cross-protection appears to involve the induction of high percentages of GAPDH1-22 specific CD4+ and CD8+ T cells stained for intracellular IFN-γ, and significant levels of peptide-specific antibodies in vaccinated mice. We concluded that DC vaccines loaded with L. monocytogenes GAPDH recombinant proteins are cross-reactive vaccines that seem to be valuable tools in adult vaccination against Listeria, Mycobacterium, and Streptococcus taxonomic groups.
Collapse
Affiliation(s)
| | - David Salcines-Cuevas
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
- Grupo de Oncología y Nanovacunas, Santander, Spain
| | - Ricardo Calderon-Gonzalez
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
- Grupo de Oncología y Nanovacunas, Santander, Spain
| | | | - Jorge Calvo-Montes
- Microbiology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | | - Sonsoles Yañez-Diaz
- Dermatology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
- Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Manuel Fresno
- DIOMUNE S.L., Parque Científico de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Alvarez-Dominguez
- Facultad de Educación y Facultad de Ciencias de la Salud, Universidad Internacional de La Rioja, Logroño, Spain
| |
Collapse
|
115
|
van Steenwijk HP, Bast A, de Boer A. Immunomodulating Effects of Fungal Beta-Glucans: From Traditional Use to Medicine. Nutrients 2021; 13:1333. [PMID: 33920583 PMCID: PMC8072893 DOI: 10.3390/nu13041333] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
The importance of a well-functioning and balanced immune system has become more apparent in recent decades. Various elements have however not yet been uncovered as shown, for example, in the uncertainty on immune system responses to COVID-19. Fungal beta-glucans are bioactive molecules with immunomodulating properties. Insights into the effects and function of beta-glucans, which have been used in traditional Chinese medicine for centuries, advances with the help of modern immunological and biotechnological methods. However, it is still unclear into which area beta-glucans fit best: supplements or medicine? This review has highlighted the potential application of fungal beta-glucans in nutrition and medicine, reviewing their formulation, efficacy, safety profile, and immunomodulating effects. The current status of dietary fungal glucans with respect to the European scientific requirements for health claims related to the immune system and defense against pathogens has been reviewed. Comparing the evidence base of the putative health effects of fungal beta-glucan supplements with the published guidance documents by EFSA on substantiating immune stimulation and pathogen defense by food products shows that fungal beta-glucans could play a role in supporting and maintaining health and, thus, can be seen as a good health-promoting substance from food, which could mean that this effect may also be claimed if approved. In addition to these developments related to food uses of beta-glucan-containing supplements, beta-glucans could also hold a novel position in Western medicine as the concept of trained immunity is relatively new and has not been investigated to a large extent. These innovative concepts, together with the emerging success of modern immunological and biotechnological methods, suggest that fungal glucans may play a promising role in both perspectives, and that there are possibilities for traditional medicine to provide an immunological application in both medicine and nutrition.
Collapse
Affiliation(s)
- Hidde P. van Steenwijk
- Campus Venlo, Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, 5911 BV Venlo, The Netherlands;
| | - Aalt Bast
- Campus Venlo, University College Venlo, Maastricht University, 5911 BV Venlo, The Netherlands;
- Department of Pharmacology & Toxicology, Medicine and Life Sciences, Faculty of Health, Maastricht University, 5911 BV Venlo, The Netherlands
| | - Alie de Boer
- Campus Venlo, Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, 5911 BV Venlo, The Netherlands;
| |
Collapse
|
116
|
Barbosa MMF, Kanno AI, Farias LP, Madej M, Sipos G, Sbrana S, Romani L, Boraschi D, Leite LCC, Italiani P. Primary and Memory Response of Human Monocytes to Vaccines: Role of Nanoparticulate Antigens in Inducing Innate Memory. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:931. [PMID: 33917456 PMCID: PMC8067467 DOI: 10.3390/nano11040931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023]
Abstract
Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.
Collapse
Affiliation(s)
- Mayra M. Ferrari Barbosa
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Alex Issamu Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Leonardo Paiva Farias
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA 40296-710, Brazil;
| | - Mariusz Madej
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
| | - Gergö Sipos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
| | - Silverio Sbrana
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, 54100 Massa, Italy;
| | - Luigina Romani
- Dipartimento di Medicina e Chirurgia, University of Perugia, 06132 Perugia, Italy;
| | - Diana Boraschi
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Paola Italiani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
117
|
Varadé J, Magadán S, González-Fernández Á. Human immunology and immunotherapy: main achievements and challenges. Cell Mol Immunol 2021; 18:805-828. [PMID: 32879472 PMCID: PMC7463107 DOI: 10.1038/s41423-020-00530-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system is a fascinating world of cells, soluble factors, interacting cells, and tissues, all of which are interconnected. The highly complex nature of the immune system makes it difficult to view it as a whole, but researchers are now trying to put all the pieces of the puzzle together to obtain a more complete picture. The development of new specialized equipment and immunological techniques, genetic approaches, animal models, and a long list of monoclonal antibodies, among many other factors, are improving our knowledge of this sophisticated system. The different types of cell subsets, soluble factors, membrane molecules, and cell functionalities are some aspects that we are starting to understand, together with their roles in health, aging, and illness. This knowledge is filling many of the gaps, and in some cases, it has led to changes in our previous assumptions; e.g., adaptive immune cells were previously thought to be unique memory cells until trained innate immunity was observed, and several innate immune cells with features similar to those of cytokine-secreting T cells have been discovered. Moreover, we have improved our knowledge not only regarding immune-mediated illnesses and how the immune system works and interacts with other systems and components (such as the microbiome) but also in terms of ways to manipulate this system through immunotherapy. The development of different types of immunotherapies, including vaccines (prophylactic and therapeutic), and the use of pathogens, monoclonal antibodies, recombinant proteins, cytokines, and cellular immunotherapies, are changing the way in which we approach many diseases, especially cancer.
Collapse
Affiliation(s)
- Jezabel Varadé
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Susana Magadán
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - África González-Fernández
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain.
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| |
Collapse
|
118
|
Caron J, Ridgley LA, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Front Immunol 2021; 12:666983. [PMID: 33854516 PMCID: PMC8039298 DOI: 10.3389/fimmu.2021.666983] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of viruses with pandemic potential such as the SARS-CoV-2 coronavirus causing COVID-19 poses a global health challenge. There is remarkable progress in vaccine technology in response to this threat, but their design often overlooks the innate arm of immunity. Gamma Delta (γδ) T cells are a subset of T cells with unique features that gives them a key role in the innate immune response to a variety of homeostatic alterations, from cancer to microbial infections. In the context of viral infection, a growing body of evidence shows that γδ T cells are particularly equipped for early virus detection, which triggers their subsequent activation, expansion and the fast deployment of antiviral functions such as direct cytotoxic pathways, secretion of cytokines, recruitment and activation of other immune cells and mobilization of a trained immunity memory program. As such, γδ T cells represent an attractive target to stimulate for a rapid and effective resolution of viral infections. Here, we review the known aspects of γδ T cells that make them crucial component of the immune response to viruses, and the ways that their antiviral potential can be harnessed to prevent or treat viral infection.
Collapse
Affiliation(s)
- Jonathan Caron
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Laura Alice Ridgley
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
119
|
Glyceraldehyde-3-phosphate Dehydrogenase Common Peptides of Listeria monocytogenes, Mycobacterium marinum and Streptococcus pneumoniae as Universal Vaccines. Vaccines (Basel) 2021; 9:vaccines9030269. [PMID: 33802959 PMCID: PMC8002646 DOI: 10.3390/vaccines9030269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Abstract
Universal vaccines can be prepared with antigens common to different pathogens. In this regard, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a common virulence factor among pathogenic bacteria of the genera Listeria, Mycobacterium and Streptococcus. Their N-terminal 22 amino acid peptides, GAPDH-L1 (Listeria), GAPDH-M1 (Mycobacterium) and GAPDH-S1 (Streptococcus), share 95–98.55% sequence homology, biochemical and MHC binding abilities and, therefore, are good candidates for universal vaccine designs. Here, we used dendritic cells (DC) as vaccine platforms to test GAPDH epitopes that conferred protection against Listeria monocytogenes, Mycobacterium marinum or Streptococcus pneumoniae in our search of epitopes for universal vaccines. DC loaded with GAPDH-L1, GAPDH-M1 or GAPDH-S1 peptides show high immunogenicity measured by the cellular DTH responses in mice, lacked toxicity and were capable of cross-protection immunity against mice infections with each one of the pathogens. Vaccine efficiency correlated with high titers of anti-GAPDH-L1 antibodies in sera of vaccinated mice, a Th1 cytokine pattern and high frequencies of GAPDH-L1-specific CD4+ and CD8+ T cells and IFN-γ producers in the spleens. We concluded that GAPDH-L1 peptide was the best epitope for universal vaccines in the Listeria, Mycobacterium or Streptococcus taxonomic groups, whose pathogenic strains caused relevant morbidities in adults and especially in the elderly.
Collapse
|
120
|
Gonzalez-Perez M, Sanchez-Tarjuelo R, Shor B, Nistal-Villan E, Ochando J. The BCG Vaccine for COVID-19: First Verdict and Future Directions. Front Immunol 2021; 12:632478. [PMID: 33763077 PMCID: PMC7982405 DOI: 10.3389/fimmu.2021.632478] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Despite of the rapid development of the vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it will take several months to have enough doses and the proper infrastructure to vaccinate a good proportion of the world population. In this interim, the accessibility to the Bacille Calmette-Guerin (BCG) may mitigate the pandemic impact in some countries and the BCG vaccine offers significant advantages and flexibility in the way clinical vaccines are administered. BCG vaccination is a highly cost-effective intervention against tuberculosis (TB) and many low-and lower-middle-income countries would likely have the infrastructure, and health care personnel sufficiently familiar with the conventional TB vaccine to mount full-scale efforts to administer novel BCG-based vaccine for COVID-19. This suggests the potential for BCG to overcome future barriers to vaccine roll-out in the countries where health systems are fragile and where the effects of this new coronavirus could be catastrophic. Many studies have reported cross-protective effects of the BCG vaccine toward non-tuberculosis related diseases. Mechanistically, this cross-protective effect of the BCG vaccine can be explained, in part, by trained immunity, a recently discovered program of innate immune memory, which is characterized by non-permanent epigenetic reprogramming of macrophages that leads to increased inflammatory cytokine production and consequently potent immune responses. In this review, we summarize recent work highlighting the potential use of BCG for the treatment respiratory infectious diseases and ongoing SARS-CoV-2 clinical trials. In situations where no other specific prophylactic tools are available, the BCG vaccine could be used as a potential adjuvant, to decrease sickness of SARS-CoV-2 infection and/or to mitigate the effects of concurrent respiratory infections.
Collapse
Affiliation(s)
- Maria Gonzalez-Perez
- Transplant Immunology Unit, Department of Immunology, National Center of Microbiology, Instituto De Salud Carlos III, Madrid, Spain
| | - Rodrigo Sanchez-Tarjuelo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Boris Shor
- Manhattan BioSolutions, New York, NY, United States
| | - Estanislao Nistal-Villan
- Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-Centro de Estudios Universitarios (CEU), Madrid, Spain
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, Madrid, Spain
| | - Jordi Ochando
- Transplant Immunology Unit, Department of Immunology, National Center of Microbiology, Instituto De Salud Carlos III, Madrid, Spain
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
121
|
Palgen JL, Feraoun Y, Dzangué-Tchoupou G, Joly C, Martinon F, Le Grand R, Beignon AS. Optimize Prime/Boost Vaccine Strategies: Trained Immunity as a New Player in the Game. Front Immunol 2021; 12:612747. [PMID: 33763063 PMCID: PMC7982481 DOI: 10.3389/fimmu.2021.612747] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Most vaccines require multiple doses to induce long-lasting protective immunity in a high frequency of vaccines, and to ensure strong both individual and herd immunity. Repetitive immunogenic stimulations not only increase the intensity and durability of adaptive immunity, but also influence its quality. Several vaccine parameters are known to influence adaptive immune responses, including notably the number of immunizations, the delay between them, and the delivery sequence of different recombinant vaccine vectors. Furthermore, the initial effector innate immune response is key to activate and modulate B and T cell responses. Optimization of homologous and heterologous prime/boost vaccination strategies requires a thorough understanding of how vaccination history affects memory B and T cell characteristics. This requires deeper knowledge of how innate cells respond to multiple vaccine encounters. Here, we review how innate cells, more particularly those of the myeloid lineage, sense and respond differently to a 1st and a 2nd vaccine dose, both in an extrinsic and intrinsic manner. On one hand, the presence of primary specific antibodies and memory T cells, whose critical properties change with time after priming, provides a distinct environment for innate cells at the time of re-vaccination. On the other hand, innate cells themselves can exert enhanced intrinsic antimicrobial functions, long after initial stimulation, which is referred to as trained immunity. We discuss the potential of trained innate cells to be game-changers in prime/boost vaccine strategies. Their increased functionality in antigen uptake, antigen presentation, migration, and as cytokine producers, could indeed improve the restimulation of primary memory B and T cells and their differentiation into potent secondary memory cells in response to the boost. A better understanding of trained immunity mechanisms will be highly valuable for harnessing the full potential of trained innate cells, to optimize immunization strategies.
Collapse
Affiliation(s)
- Jean-Louis Palgen
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France.,School of Medical Sciences, Kirby Institute for Infection and Immunity, Cellular Genomics Futures Institute, University of New South Wales, Sydney, NSW, Australia
| | - Yanis Feraoun
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Gaëlle Dzangué-Tchoupou
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Candie Joly
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Frédéric Martinon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
122
|
Singh R, Kang A, Luo X, Jeyanathan M, Gillgrass A, Afkhami S, Xing Z. COVID-19: Current knowledge in clinical features, immunological responses, and vaccine development. FASEB J 2021; 35:e21409. [PMID: 33577115 PMCID: PMC7898934 DOI: 10.1096/fj.202002662r] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has unfolded to be the most challenging global health crisis in a century. In 11 months since its first emergence, according to WHO, the causative infectious agent SARS-CoV-2 has infected more than 100 million people and claimed more than 2.15 million lives worldwide. Moreover, the world has raced to understand the virus and natural immunity and to develop vaccines. Thus, within a short 11 months a number of highly promising COVID-19 vaccines were developed at an unprecedented speed and are now being deployed via emergency use authorization for immunization. Although a considerable number of review contributions are being published, all of them attempt to capture only a specific aspect of COVID-19 or its therapeutic approaches based on ever-expanding information. Here, we provide a comprehensive overview to conceptually thread together the latest information on global epidemiology and mitigation strategies, clinical features, viral pathogenesis and immune responses, and the current state of vaccine development.
Collapse
Affiliation(s)
- Ramandeep Singh
- McMaster Immunology Research CentreM. G. DeGroote Institute for Infectious Disease Research & Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Alisha Kang
- McMaster Immunology Research CentreM. G. DeGroote Institute for Infectious Disease Research & Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Xiangqian Luo
- McMaster Immunology Research CentreM. G. DeGroote Institute for Infectious Disease Research & Department of MedicineMcMaster UniversityHamiltonONCanada
- Department of Pediatric OtolaryngologyShenzhen HospitalSouthern Medical UniversityShenzhenChina
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research CentreM. G. DeGroote Institute for Infectious Disease Research & Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Amy Gillgrass
- McMaster Immunology Research CentreM. G. DeGroote Institute for Infectious Disease Research & Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Sam Afkhami
- McMaster Immunology Research CentreM. G. DeGroote Institute for Infectious Disease Research & Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Zhou Xing
- McMaster Immunology Research CentreM. G. DeGroote Institute for Infectious Disease Research & Department of MedicineMcMaster UniversityHamiltonONCanada
| |
Collapse
|
123
|
Pawlowski C, Puranik A, Bandi H, Venkatakrishnan AJ, Agarwal V, Kennedy R, O'Horo JC, Gores GJ, Williams AW, Halamka J, Badley AD, Soundararajan V. Exploratory analysis of immunization records highlights decreased SARS-CoV-2 rates in individuals with recent non-COVID-19 vaccinations. Sci Rep 2021; 11:4741. [PMID: 33637783 PMCID: PMC7910541 DOI: 10.1038/s41598-021-83641-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
Clinical studies are ongoing to assess whether existing vaccines may afford protection against SARS-CoV-2 infection through trained immunity. In this exploratory study, we analyze immunization records from 137,037 individuals who received SARS-CoV-2 PCR tests. We find that polio, Haemophilus influenzae type-B (HIB), measles-mumps-rubella (MMR), Varicella, pneumococcal conjugate (PCV13), Geriatric Flu, and hepatitis A/hepatitis B (HepA-HepB) vaccines administered in the past 1, 2, and 5 years are associated with decreased SARS-CoV-2 infection rates, even after adjusting for geographic SARS-CoV-2 incidence and testing rates, demographics, comorbidities, and number of other vaccinations. Furthermore, age, race/ethnicity, and blood group stratified analyses reveal significantly lower SARS-CoV-2 rate among black individuals who have taken the PCV13 vaccine, with relative risk of 0.45 at the 5 year time horizon (n: 653, 95% CI (0.32, 0.64), p-value: 6.9e-05). Overall, this study identifies existing approved vaccines which can be promising candidates for pre-clinical research and Randomized Clinical Trials towards combating COVID-19.
Collapse
Affiliation(s)
- Colin Pawlowski
- Nference, Inc., One Main Street, Suite 400, East Arcade, Cambridge, MA, 02142, USA
| | - Arjun Puranik
- Nference, Inc., One Main Street, Suite 400, East Arcade, Cambridge, MA, 02142, USA
| | - Hari Bandi
- Nference, Inc., One Main Street, Suite 400, East Arcade, Cambridge, MA, 02142, USA
| | - A J Venkatakrishnan
- Nference, Inc., One Main Street, Suite 400, East Arcade, Cambridge, MA, 02142, USA
| | - Vineet Agarwal
- Nference, Inc., One Main Street, Suite 400, East Arcade, Cambridge, MA, 02142, USA
| | | | | | | | | | | | | | - Venky Soundararajan
- Nference, Inc., One Main Street, Suite 400, East Arcade, Cambridge, MA, 02142, USA.
| |
Collapse
|
124
|
Bugya Z, Prechl J, Szénási T, Nemes É, Bácsi A, Koncz G. Multiple Levels of Immunological Memory and Their Association with Vaccination. Vaccines (Basel) 2021; 9:174. [PMID: 33669597 PMCID: PMC7922266 DOI: 10.3390/vaccines9020174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022] Open
Abstract
Immunological memory is divided into many levels to counteract the provocations of diverse and ever-changing infections. Fast functions of effector memory and the superposition of both quantitatively and qualitatively plastic anticipatory memory responses together form the walls of protection against pathogens. Here we provide an overview of the role of different B and T cell subsets and their interplay, the parallel and independent functions of the B1, marginal zone B cells, T-independent- and T-dependent B cell responses, as well as functions of central and effector memory T cells, tissue-resident and follicular helper T cells in the memory responses. Age-related limitations in the immunological memory of these cell types in neonates and the elderly are also discussed. We review how certain aspects of immunological memory and the interactions of components can affect the efficacy of vaccines, in order to link our knowledge of immunological memory with the practical application of vaccination.
Collapse
Affiliation(s)
- Zsófia Bugya
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - József Prechl
- R&D Laboratory, Diagnosticum Zrt, H-1047 Budapest, Hungary;
| | - Tibor Szénási
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - Éva Nemes
- Clinical Center, Department of Pediatrics, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| |
Collapse
|
125
|
Owen AM, Fults JB, Patil NK, Hernandez A, Bohannon JK. TLR Agonists as Mediators of Trained Immunity: Mechanistic Insight and Immunotherapeutic Potential to Combat Infection. Front Immunol 2021; 11:622614. [PMID: 33679711 PMCID: PMC7930332 DOI: 10.3389/fimmu.2020.622614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Despite advances in critical care medicine, infection remains a significant problem that continues to be complicated with the challenge of antibiotic resistance. Immunocompromised patients are highly susceptible to development of severe infection which often progresses to the life-threatening condition of sepsis. Thus, immunotherapies aimed at boosting host immune defenses are highly attractive strategies to ward off infection and protect patients. Recently there has been mounting evidence that activation of the innate immune system can confer long-term functional reprogramming whereby innate leukocytes mount more robust responses upon secondary exposure to a pathogen for more efficient clearance and host protection, termed trained immunity. Toll-like receptor (TLR) agonists are a class of agents which have been shown to trigger the phenomenon of trained immunity through metabolic reprogramming and epigenetic modifications which drive profound augmentation of antimicrobial functions. Immunomodulatory TLR agonists are also highly beneficial as vaccine adjuvants. This review provides an overview on TLR signaling and our current understanding of TLR agonists which show promise as immunotherapeutic agents for combating infection. A brief discussion on our current understanding of underlying mechanisms is also provided. Although an evolving field, TLR agonists hold strong therapeutic potential as immunomodulators and merit further investigation for clinical translation.
Collapse
Affiliation(s)
- Allison M Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jessica B Fults
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
126
|
Ochoa-Grullón J, Benavente Cuesta C, González Fernández A, Cordero Torres G, Pérez López C, Peña Cortijo A, Conejero Hall L, Mateo Morales M, Rodríguez de la Peña A, Díez-Rivero CM, Rodríguez de Frías E, Guevara-Hoyer K, Fernández-Arquero M, Sánchez-Ramón S. Trained Immunity-Based Vaccine in B Cell Hematological Malignancies With Recurrent Infections: A New Therapeutic Approach. Front Immunol 2021; 11:611566. [PMID: 33679698 PMCID: PMC7928395 DOI: 10.3389/fimmu.2020.611566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Infectious complications are a major cause of morbidity and mortality in B-cell hematological malignancies (HM). Prophylaxis for recurrent infections in HM patients with antibody deficiency consists of first-line antibiotics and when unsuccessful, gammaglobulin replacement therapy (IgRT). Recent knowledge of trained immunity-based vaccines (TIbV), such as the sublingual polybacterial formulation MV130, has shown a promising strategy in the management of patients with recurrent infections. We sought to determine the clinical benefit of MV130 in a cohort of HM patients with recurrent respiratory tract infections (RRTIs) who underwent immunization with MV130 for 3 months. Clinical information included the frequency of infections, antibiotic use, number of visits to the GP and hospitalizations previous and after MV130 immunotherapy. Improvement on infection rate was classified as: clear (>60% reduction of infection), partial (26%-60%) and low (≤25%) improvement. Fifteen HM patients (aged 42 to 80 years; nine females) were included in the study. All patients reduced their infection rate. Analysis of paired data revealed that the median (range, min - max) of respiratory infectious rate significantly decreased from 4.0 (8.0-3.0) to 2.0 (4.0-0.0) (p<0.001) at 12 months of MV130. A clear clinical improvement was observed in 53% (n = 8) of patients, partial improvement in 40% (n = 6) and low improvement in 7% (n = 1). These data correlated with a decrease on antibiotic consumption from 3.0 (8.0-1.0) to 1.0 (2.0-0.0) (p = 0.002) during 12 months after initiation of treatment with MV130. The number of infectious-related GP or emergency room visits declined from 4.0 (8.0-2.0) to 2.0 (3.0-0.0) (p<0.001), in parallel with a reduction in hospital admissions due to infections (p = 0.032). Regarding safety, no adverse events were observed. On the other hand, immunological assessment of serum IgA and IgG levels demonstrated an increase in specific antibodies to MV130-contained bacteria following MV130 immunotherapy. In conclusion, MV130 may add clinical benefit reducing the rate of infections and enhancing humoral immune responses in these vulnerable patients.
Collapse
Affiliation(s)
- Juliana Ochoa-Grullón
- Department of Clinical Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | | | | | - Gustavo Cordero Torres
- Department of Clinical Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | | | | | | | | | | | | | - Edgard Rodríguez de Frías
- Department of Clinical Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Kissy Guevara-Hoyer
- Department of Clinical Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Miguel Fernández-Arquero
- Department of Clinical Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, IML and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
127
|
Camilli G, Bohm M, Piffer AC, Lavenir R, Williams DL, Neven B, Grateau G, Georgin-Lavialle S, Quintin J. β-Glucan-induced reprogramming of human macrophages inhibits NLRP3 inflammasome activation in cryopyrinopathies. J Clin Invest 2021; 130:4561-4573. [PMID: 32716363 DOI: 10.1172/jci134778] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Exposure of mononuclear phagocytes to β-glucan, a naturally occurring polysaccharide, contributes to the induction of innate immune memory, which is associated with long-term epigenetic, metabolic, and functional reprogramming. Although previous studies have shown that innate immune memory induced by β-glucan confers protection against secondary infections, its impact on autoinflammatory diseases, associated with inflammasome activation and IL-1β secretion, remains poorly understood. In particular, whether β-glucan-induced long-term reprogramming affects inflammasome activation in human macrophages in the context of these diseases has not been explored. We found that NLRP3 inflammasome-mediated caspase-1 activation and subsequent IL-1β production were reduced in β-glucan-reprogrammed macrophages. β-Glucan acted upstream of the NLRP3 inflammasome by preventing potassium (K+) efflux, mitochondrial ROS (mtROS) generation, and, ultimately, apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization and speck formation. Importantly, β-glucan-induced memory in macrophages resulted in a remarkable attenuation of IL-1β secretion and caspase-1 activation in patients with an NLRP3-associated autoinflammatory disease, cryopyrin-associated periodic syndromes (CAPS). Our findings demonstrate that β-glucan-induced innate immune memory represses IL-1β-mediated inflammation and support its potential clinical use in NLRP3-driven diseases.
Collapse
Affiliation(s)
- Giorgio Camilli
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| | - Mathieu Bohm
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| | - Alícia Corbellini Piffer
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France.,Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rachel Lavenir
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| | - David L Williams
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Benedicte Neven
- Pediatric Hematology-Immunology and Rheumatology Department, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Gilles Grateau
- Service de Médecine Interne et Centre de Références des Maladies Auto-inflammatoires et des Amyloses Inflammatoires, Hôpital Tenon, Sorbonne Université, Paris, France
| | - Sophie Georgin-Lavialle
- Service de Médecine Interne et Centre de Références des Maladies Auto-inflammatoires et des Amyloses Inflammatoires, Hôpital Tenon, Sorbonne Université, Paris, France
| | - Jessica Quintin
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| |
Collapse
|
128
|
Early-life EV-A71 infection augments allergen-induced airway inflammation in asthma through trained macrophage immunity. Cell Mol Immunol 2021; 18:472-483. [PMID: 33441966 PMCID: PMC8027667 DOI: 10.1038/s41423-020-00621-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Virus-induced asthma is prevalent among children, but its underlying mechanisms are unclear. Accumulated evidence indicates that early-life respiratory virus infection increases susceptibility to allergic asthma. Nonetheless, the relationship between systemic virus infections, such as enterovirus infection, and the ensuing effects on allergic asthma development is unknown. Early-life enterovirus infection was correlated with higher risks of allergic diseases in children. Adult mice exhibited exacerbated mite allergen-induced airway inflammation following recovery from EV-A71 infection in the neonatal period. Bone marrow-derived macrophages (BMDMs) from recovered EV-A71-infected mice showed sustained innate immune memory (trained immunity) that could drive naïve T helper cells toward Th2 and Th17 cell differentiation when in contact with mites. Adoptive transfer of EV-A71-trained BMDMs induced augmented allergic inflammation in naïve recipient mice, which was inhibited by 2-deoxy-D-glucose (2-DG) pretreatment, suggesting that trained macrophages following enterovirus infection are crucial in the progression of allergic asthma later in life.
Collapse
|
129
|
Martin-Cruz L, Sevilla-Ortega C, Benito-Villalvilla C, Diez‐Rivero CM, Sanchez-Ramón S, Subiza JL, Palomares O. A Combination of Polybacterial MV140 and Candida albicans V132 as a Potential Novel Trained Immunity-Based Vaccine for Genitourinary Tract Infections. Front Immunol 2021; 11:612269. [PMID: 33552074 PMCID: PMC7858650 DOI: 10.3389/fimmu.2020.612269] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Recurrent urinary tract infections (RUTIs) and recurrent vulvovaginal candidiasis (RVVCs) represent major healthcare problems with high socio-economic impact worldwide. Antibiotic and antifungal prophylaxis remain the gold standard treatments for RUTIs and RVVCs, contributing to the massive rise of antimicrobial resistance, microbiota alterations and co-infections. Therefore, the development of novel vaccine strategies for these infections are sorely needed. The sublingual heat-inactivated polyvalent bacterial vaccine MV140 shows clinical efficacy for the prevention of RUTIs and promotes Th1/Th17 and IL-10 immune responses. V132 is a sublingual preparation of heat-inactivated Candida albicans developed against RVVCs. A vaccine formulation combining both MV140 and V132 might well represent a suitable approach for concomitant genitourinary tract infections (GUTIs), but detailed mechanistic preclinical studies are still needed. Herein, we showed that the combination of MV140 and V132 imprints human dendritic cells (DCs) with the capacity to polarize potent IFN-γ- and IL-17A-producing T cells and FOXP3+ regulatory T (Treg) cells. MV140/V132 activates mitogen-activated protein kinases (MAPK)-, nuclear factor-κB (NF-κB)- and mammalian target of rapamycin (mTOR)-mediated signaling pathways in human DCs. MV140/V132 also promotes metabolic and epigenetic reprogramming in human DCs, which are key molecular mechanisms involved in the induction of innate trained immunity. Splenocytes from mice sublingually immunized with MV140/V132 display enhanced proliferative responses of CD4+ T cells not only upon in vitro stimulation with the related antigens contained in the vaccine formulation but also upon stimulation with phytohaemagglutinin. Additionally, in vivo sublingual immunization with MV140/V132 induces the generation of IgG and IgA antibodies against all the components contained in the vaccine formulation. We uncover immunological mechanisms underlying the potential mode of action of a combination of MV140 and V132 as a novel promising trained immunity-based vaccine (TIbV) for GUTIs.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/immunology
- Antigens, Fungal/administration & dosage
- Antigens, Fungal/immunology
- Bacterial Infections/immunology
- Bacterial Infections/metabolism
- Bacterial Infections/microbiology
- Bacterial Infections/prevention & control
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/immunology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Candidiasis, Vulvovaginal/immunology
- Candidiasis, Vulvovaginal/metabolism
- Candidiasis, Vulvovaginal/microbiology
- Candidiasis, Vulvovaginal/therapy
- Cells, Cultured
- Coculture Techniques
- Cytokines/metabolism
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Female
- Fungal Vaccines/administration & dosage
- Fungal Vaccines/immunology
- Humans
- Lymphocyte Activation/drug effects
- Mice, Inbred BALB C
- Phenotype
- Urinary Tract Infections/immunology
- Urinary Tract Infections/metabolism
- Urinary Tract Infections/microbiology
- Urinary Tract Infections/prevention & control
- Vaccination
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/immunology
- Mice
Collapse
Affiliation(s)
- Leticia Martin-Cruz
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Carmen Sevilla-Ortega
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | | | - Silvia Sanchez-Ramón
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, ENT and Ophthalmology, School of Medicine, Complutense University, Madrid, Spain
| | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| |
Collapse
|
130
|
Swartzwelter BJ, Verde A, Rehak L, Madej M, Puntes VF, De Luca AC, Boraschi D, Italiani P. Interaction between Macrophages and Nanoparticles: In Vitro 3D Cultures for the Realistic Assessment of Inflammatory Activation and Modulation of Innate Memory. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:207. [PMID: 33467414 PMCID: PMC7830034 DOI: 10.3390/nano11010207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Understanding the modes of interaction between human monocytes/macrophages and engineered nanoparticles is the basis for assessing particle safety, in terms of activation of innate/inflammatory reactions, and their possible exploitation for medical applications. In vitro assessment of nanoparticle-macrophage interaction allows for examining the response of primary human cells, but the conventional 2D cultures do not reproduce the three-dimensional spacing of a tissue and the interaction of macrophages with the extracellular tissue matrix, conditions that shape macrophage recognition capacity and reactivity. Here, we have compared traditional 2D cultures with cultures on a 3D collagen matrix for evaluating the capacity gold nanoparticles to induce monocyte activation and subsequent innate memory in human blood monocytes in comparison to bacterial LPS. Results show that monocytes react to stimuli almost in the same way in 2D and 3D cultures in terms of production of TNFα and IL-6, but that notable differences are found when IL-8 and IL-1Ra are examined, in particular in the recall/memory response of primed cells to a second stimulation, with the 3D cultures showing cell activation and memory effects of nanoparticles better. In addition, the response variations in monocytes/macrophages from different donors point towards a personalized assessment of the nanoparticle effects on macrophage activation.
Collapse
Affiliation(s)
- Benjamin J. Swartzwelter
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Alessandro Verde
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Laura Rehak
- Athena Biomedical Innovations, 00100 Roma, Italy;
| | - Mariusz Madej
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Victor. F. Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona, Spain;
| | - Anna Chiara De Luca
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
131
|
Covián C, Ríos M, Berríos-Rojas RV, Bueno SM, Kalergis AM. Induction of Trained Immunity by Recombinant Vaccines. Front Immunol 2021; 11:611946. [PMID: 33584692 PMCID: PMC7873984 DOI: 10.3389/fimmu.2020.611946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/24/2020] [Indexed: 01/24/2023] Open
Abstract
Vaccines represent an important strategy to protect humans against a wide variety of pathogens and have even led to eradicating some diseases. Although every vaccine is developed to induce specific protection for a particular pathogen, some vaccine formulations can also promote trained immunity, which is a non-specific memory-like feature developed by the innate immune system. It is thought that trained immunity can protect against a wide variety of pathogens other than those contained in the vaccine formulation. The non-specific memory of the trained immunity-based vaccines (TIbV) seems beneficial for the immunized individual, as it may represent a powerful strategy that contributes to the control of pathogen outbreaks, reducing morbidity and mortality. A wide variety of respiratory viruses, including respiratory syncytial virus (hRSV) and metapneumovirus (hMPV), cause serious illness in children under 5 years old and the elderly. To address this public health problem, we have developed recombinant BCG vaccines that have shown to be safe and immunogenic against hRSV or hMPV. Besides the induction of specific adaptive immunity against the viral antigens, these vaccines could generate trained immunity against other respiratory pathogens. Here, we discuss some of the features of trained immunity induced by BCG and put forward the notion that recombinant BCGs expressing hRSV or hMPV antigens have the capacity to simultaneously induce specific adaptive immunity and non-specific trained immunity. These recombinant BCG vaccines could be considered as TIbV capable of inducing simultaneously the development of specific protection against hRSV or hMPV, as well as non-specific trained-immunity-based protection against other pathogenic viruses.
Collapse
Affiliation(s)
- Camila Covián
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Ríos
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roslye V. Berríos-Rojas
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
132
|
Ferluga J, Yasmin H, Bhakta S, Kishore U. Vaccination Strategies Against Mycobacterium tuberculosis: BCG and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:217-240. [PMID: 34661897 DOI: 10.1007/978-3-030-67452-6_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tuberculosis (TB) is a highly contagious disease caused by Mycobacterium tuberculosis (Mtb) and is the major cause of morbidity and mortality across the globe. The clinical outcome of TB infection and susceptibility varies among individuals and even among different populations, contributed by host genetic factors such as polymorphism in the human leukocyte antigen (HLA) alleles as well as in cytokine genes, nutritional differences between populations, immunometabolism, and other environmental factors. Till now, BCG is the only vaccine available to prevent TB but the protection rendered by BCG against pulmonary TB is not uniform. To deliver a vaccine which can give consistent protection against TB is a great challenge with rising burden of drug-resistant TB. Thus, expectations are quite high with new generation vaccines that will improve the efficiency of BCG without showing any discordance for all forms of TB, effective for individual of all ages in all parts of the world. In order to enhance or improve the efficacy of BCG, different strategies are being implemented by considering the immunogenicity of various Mtb virulence factors as well as of the recombinant strains, co-administration with adjuvants and use of appropriate vehicle for delivery. This chapter discusses several such pre-clinical attempts to boost BCG with subunit vaccines tested in murine models and also highlights various recombinant TB vaccines undergoing clinical trials. Promising candidates include new generation of live recombinant BCG (rBCG) vaccines, VPM1002, which are deleted in one or two virulence genes. They encode for the mycobacteria-infected macrophage-inhibitor proteins of host macrophage apoptosis and autophagy, key events in killing and eradication of Mtb. These vaccines are rBCG- ΔureC::hly HMR, and rBCG-ΔureC::hly ΔnuoG. The former vaccine has passed phase IIb in clinical trials involving South African infants and adults. Thus, with an aim of elimination of TB by 2050, all these cumulative efforts to develop a better TB vaccine possibly is new hope for positive outcomes.
Collapse
Affiliation(s)
- Janez Ferluga
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
133
|
Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 2021; 203:4755-4776. [PMID: 34370077 PMCID: PMC8349711 DOI: 10.1007/s00203-021-02505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Bacteria are rich in a wide variety of secondary metabolites, such as pigments, alkaloids, antibiotics, and others. These bioactive microbial products serve a great application in human and animal health. Their molecular diversity allows these natural products to possess several therapeutic attributes and biological functions. That's why the current natural drug industry focuses on uncovering all the possible ailments and diseases that could be combated by bacterial extracts and their secondary metabolites. In this paper, we review the major utilizations of bacterial natural products for the treatment of cancer, inflammatory diseases, allergies, autoimmune diseases, infections and other diseases that threaten public health. We also elaborate on the identified biological activities of bacterial secondary metabolites including antibacterial, antifungal, antiviral and antioxidant activities all of which are essential nowadays with the emergence of drug-resistant microbial pathogens. Throughout this review, we discuss the possible mechanisms of actions in which bacterial-derived biologically active molecular entities could possess healing properties to inspire the development of new therapeutic agents in academia and industry.
Collapse
|
134
|
Patil V, Renu S, Feliciano-Ruiz N, Han Y, Ramesh A, Schrock J, Dhakal S, HogenEsch H, Renukaradhya GJ. Intranasal Delivery of Inactivated Influenza Virus and Poly(I:C) Adsorbed Corn-Based Nanoparticle Vaccine Elicited Robust Antigen-Specific Cell-Mediated Immune Responses in Maternal Antibody Positive Nursery Pigs. Front Immunol 2020; 11:596964. [PMID: 33391267 PMCID: PMC7772411 DOI: 10.3389/fimmu.2020.596964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
We designed the killed swine influenza A virus (SwIAV) H1N2 antigen (KAg) with polyriboinosinic:polyribocytidylic acid [(Poly(I:C)] adsorbed corn-derived Nano-11 particle based nanovaccine called Nano-11-KAg+Poly(I:C), and evaluated its immune correlates in maternally derived antibody (MDA)-positive pigs against a heterologous H1N1 SwIAV infection. Immunologically, in tracheobronchial lymph nodes (TBLN) detected enhanced H1N2-specific cytotoxic T-lymphocytes (CTLs) in Nano-11-KAg+Poly(I:C) vaccinates, and in commercial vaccinates detected CTLs with mainly IL-17A+ and early effector phenotypes specific to both H1N2 and H1N1 SwAIV. In commercial vaccinates, activated H1N2- and H1N1-specific IFNγ+&TNFα+, IL-17A+ and central memory T-helper/Memory cells, and in Nano-11-KAg+Poly(I:C) vaccinates H1N2-specific central memory, IFNγ+ and IFNγ+&TNFα+, and H1N1-specific IL-17A+ T-helper/Memory cells were observed. Systemically, Nano-11-KAg+Poly(I:C) vaccine augmented H1N2-specific IFNγ+ CTLs and H1N1-specific IFNγ+ T-helper/Memory cells, and commercial vaccine boosted H1N2- specific early effector CTLs and H1N1-specific IFNγ+&TNFα+ CTLs, as well as H1N2- and H1N1-specific T-helper/Memory cells with central memory, IFNγ+&TNFα+, and IL-17A+ phenotypes. Remarkably, commercial vaccine induced an increase in H1N1-specific T-helper cells in TBLN and naive T-helper cells in both TBLN and peripheral blood mononuclear cells (PBMCs), while H1N1- and H1N2-specific only T-helper cells were augmented in Nano-11-KAg+Poly(I:C) vaccinates in both TBLN and PBMCs. Furthermore, the Nano-11-KAg+Poly(I:C) vaccine stimulated robust cross-reactive IgG and secretory IgA (SIgA) responses in lungs, while the commercial vaccine elicited high levels of serum and lung IgG and serum hemagglutination inhibition (HI) titers. In conclusion, despite vast genetic difference (77% in HA gene identity) between the vaccine H1N2 and H1N1 challenge viruses in Nano-11-KAg+Poly(I:C) vaccinates, compared to over 95% identity between H1N1 of commercial vaccine and challenge viruses, the virus load and macroscopic lesions in the lungs of both types of vaccinates were comparable, but the Nano-11-KAg+Poly(I:C) vaccine cleared the virus from the nasal passage better. These data suggested the important role played by Nano-11 and Poly(I:C) in the induction of polyfunctional, cross-protective cell-mediated immunity against SwIAV in MDA-positive pigs.
Collapse
Affiliation(s)
- Veerupaxagouda Patil
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Ninoshkaly Feliciano-Ruiz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Yi Han
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Anikethana Ramesh
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Jennifer Schrock
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
135
|
Immune Regulation by Dendritic Cell Extracellular Vesicles in Cancer Immunotherapy and Vaccines. Cancers (Basel) 2020; 12:cancers12123558. [PMID: 33260499 PMCID: PMC7761478 DOI: 10.3390/cancers12123558] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in intercellular communication as vehicles for the transport of membrane and cytosolic proteins, lipids, and nucleic acids including different RNAs. Dendritic cells (DCs)-derived EVs (DEVs), albeit variably, express major histocompatibility complex (MHC)-peptide complexes and co-stimulatory molecules on their surface that enable the interaction with other immune cells such as CD8+ T cells, and other ligands that stimulate natural killer (NK) cells, thereby instructing tumor rejection, and counteracting immune-suppressive tumor microenvironment. Malignant cells oppose this effect by secreting EVs bearing a variety of molecules that block DCs function. For instance, tumor-derived EVs (TDEVs) can impair myeloid cell differentiation resulting in myeloid-derived suppressor cells (MDSCs) generation. Hence, the unique composition of EVs makes them suitable candidates for the development of new cancer treatment approaches including prophylactic vaccine targeting oncogenic pathogens, cancer vaccines, and cancer immunotherapeutics. We offer a perspective from both cell sides, DCs, and tumor cells, on how EVs regulate the antitumor immune response, and how this translates into promising therapeutic options by reviewing the latest advancement in DEV-based cancer therapeutics.
Collapse
|
136
|
Bulut O, Kilic G, Domínguez-Andrés J, Netea MG. Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. Int Immunol 2020; 32:741-753. [PMID: 32766848 PMCID: PMC7680842 DOI: 10.1093/intimm/dxaa052] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
People with advanced age have a higher susceptibility to infections and exhibit increased mortality and morbidity as the ability of the immune system to combat infections decreases with age. While innate immune cells display functional defects such as decreased phagocytosis, chemotaxis and cytokine production, adaptive immune cells exhibit reduced receptor diversity, defective antibody production and a sharp decline in naive cell populations. Successful responses to vaccination in the elderly are critical to prevent common infections such as influenza and pneumonia, but vaccine efficacy decreases in older individuals compared with young adults. Trained immunity is a newly emerging concept that showed that innate immune cells possess non-specific immunological memory established through epigenetic and metabolic reprogramming upon encountering certain pathogenic stimuli. Clinical studies suggest that trained immunity can be utilized to enhance immune responses against infections and improve the efficiency of vaccinations in adults; however, how trained immunity responses are shaped with advanced age is still an open question. In this review, we provide an overview of the age-related changes in the immune system with a focus on innate immunity, discuss current vaccination strategies for the elderly, present the concept of trained immunity and propose it as a novel approach to enhance responses against infections and vaccinations in the elderly population.
Collapse
Affiliation(s)
- Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
137
|
Vázquez A, Fernández-Sevilla LM, Jiménez E, Pérez-Cabrera D, Yañez R, Subiza JL, Varas A, Valencia J, Vicente A. Involvement of Mesenchymal Stem Cells in Oral Mucosal Bacterial Immunotherapy. Front Immunol 2020; 11:567391. [PMID: 33329530 PMCID: PMC7711618 DOI: 10.3389/fimmu.2020.567391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Recent clinical observations indicate that bacterial vaccines induce cross-protection against infections produced by different microorganisms. MV130, a polyvalent bacterial sublingual preparation designed to prevent recurrent respiratory infectious diseases, reduces the infection rate in patients with recurrent respiratory tract infections. On the other hand, mesenchymal stem cells (MSCs) are key cell components that contribute to the maintenance of tissue homeostasis and exert both immunostimulatory and immunosuppressive functions. Herein, we study the effects of MV130 in human MSC functionality as a potential mechanism that contributes to its clinical benefits. We provide evidence that during MV130 sublingual immunization of mice, resident oral mucosa MSCs can take up MV130 components and their numbers remain unchanged after vaccination, in contrast to granulocytes that are recruited from extramucosal tissues. MSCs treated in vitro with MV130 show an increased viability without affecting their differentiation potential. In the short-term, MSC treatment with MV130 induces higher leukocyte recruitment and T cell expansion. In contrast, once T-cell activation is initiated, MV130 stimulation induces an up-regulated expression of immunosuppressor factors in MSCs. Accordingly, MV130-primed MSCs reduce T lymphocyte proliferation, induce the differentiation of dendritic cells with immunosuppressive features and favor M2-like macrophage polarization, thus counterbalancing the immune response. In addition, MSCs trained with MV130 undergo functional changes, enhancing their immunomodulatory response to a secondary stimulus. Finally, we show that MSCs are able to uptake, process and retain a reservoir of the TLR ligands derived from MV130 digestion which can be subsequently transferred to dendritic cells, an additional feature that also may be associated to trained immunity.
Collapse
Affiliation(s)
- Alberto Vázquez
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Lidia M Fernández-Sevilla
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - Eva Jiménez
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - David Pérez-Cabrera
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Rosa Yañez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | | | - Alberto Varas
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - Jaris Valencia
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - Angeles Vicente
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
138
|
Defour M, Hooiveld GJEJ, van Weeghel M, Kersten S. Probing metabolic memory in the hepatic response to fasting. Physiol Genomics 2020; 52:602-617. [PMID: 33074794 DOI: 10.1152/physiolgenomics.00117.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tissues may respond differently to a particular stimulus if they have been previously exposed to that same stimulus. Here, we tested the hypothesis that a strong metabolic stimulus such as fasting may influence the hepatic response to a subsequent fast and thus elicit a memory effect. Overnight fasting in mice significantly increased plasma free fatty acids, glycerol, β-hydroxybutyrate, and liver triglycerides, and decreased plasma glucose, plasma triglycerides, and liver glycogen levels. In addition, fasting dramatically changed the liver transcriptome, upregulating genes involved in gluconeogenesis and in uptake, oxidation, storage, and mobilization of fatty acids, and downregulating genes involved in fatty acid synthesis, fatty acid elongation/desaturation, and cholesterol synthesis. Fasting also markedly impacted the liver metabolome, causing a decrease in the levels of numerous amino acids, glycolytic-intermediates, TCA cycle intermediates, and nucleotides. However, these fasting-induced changes were unaffected by two previous overnight fasts. Also, no significant effect was observed of prior fasting on glucose tolerance. Finally, analysis of the effect of fasting on the transcriptome in hepatocyte humanized mouse livers indicated modest similarity in gene regulation in mouse and human liver cells. In general, genes involved in metabolic pathways were upregulated or downregulated to a lesser extent in human liver cells than in mouse liver cells. In conclusion, we found that previous exposure to fasting in mice did not influence the hepatic response to a subsequent fast, arguing against the concept of metabolic memory in the liver. Our data provide a useful resource for the study of liver metabolism during fasting.
Collapse
Affiliation(s)
- Merel Defour
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
139
|
Reche PA. Potential Cross-Reactive Immunity to SARS-CoV-2 From Common Human Pathogens and Vaccines. Front Immunol 2020; 11:586984. [PMID: 33178220 PMCID: PMC7596387 DOI: 10.3389/fimmu.2020.586984] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
The recently emerged SARS-CoV-2 causing the ongoing COVID-19 pandemic is particularly virulent in the elderly while children are largely spared. Here, we explored the potential role of cross-reactive immunity acquired from pediatric vaccinations and exposure to common human pathogens in the protection and pathology of COVID-19. To that end, we sought for peptide matches to SARS-CoV-2 (identity ≥ 80%, in at least eight residues) in the proteomes of 25 human pathogens and in vaccine antigens, and subsequently predicted their T and B cell reactivity to identify potential cross-reactive epitopes. We found that viruses subject to pediatric vaccinations do not contain cross-reactive epitopes with SARS-CoV-2, precluding that they can provide any general protection against COVID-19. Likewise, common viruses including rhinovirus, respiratory syncytial virus, influenza virus, and several herpesviruses are also poor or null sources of cross-reactive immunity to SARS-CoV-2, discarding that immunological memory against these viruses can have any general protective or pathological role in COVID-19. In contrast, we found combination vaccines for treating diphtheria, tetanus, and pertussis infectious diseases (DTP vaccine) to be significant sources of potential cross-reactive immunity to SARS-CoV-2. DTP cross-reactive epitopes with SARS-CoV-2 include numerous CD8 and CD4 T cell epitopes with broad population protection coverage and potentially neutralizing B cell epitopes in SARS-CoV-2 Spike protein. Worldwide, children receive several DTP vaccinations, including three-four doses the first year of life and one at 4-6 years of age. Moreover, a low antigenic Tdap dose is also given at ages 9-14. Thereby, children may well be protected from SARS-CoV-2 through cross-reactive immunity elicited by DTP vaccinations, supporting testing in the general population to prevent COVID-19.
Collapse
Affiliation(s)
- Pedro A. Reche
- Department of Immunology & O2, Faculty of Medicine, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
140
|
Paris S, Chapat L, Pasin M, Lambiel M, Sharrock TE, Shukla R, Sigoillot-Claude C, Bonnet JM, Poulet H, Freyburger L, De Luca K. β-Glucan-Induced Trained Immunity in Dogs. Front Immunol 2020; 11:566893. [PMID: 33162983 PMCID: PMC7581789 DOI: 10.3389/fimmu.2020.566893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Several observations in the world of comparative immunology in plants, insects, fish and eventually mammals lead to the discovery of trained immunity in the early 2010's. The first demonstrations provided evidence that innate immune cells were capable of developing memory after a first encounter with some pathogens. Trained immunity in mammals was initially described in monocytes with the Bacille Calmette-Guerin vaccine (BCG) or prototypical agonists like β-glucans. This phenomenon relies on epigenetic and metabolic modifications leading to an enhanced secretion of inflammatory cytokines when the host encounters homologous or heterologous pathogens. The objective of our research was to investigate the trained immunity, well-described in mouse and human, in other species of veterinary importance. For this purpose, we adapted an in vitro model of trained innate immunity in dogs. Blood enriched monocytes were stimulated with β-glucans and we confirmed that it induced an increased production of pro-inflammatory and anti-microbial compounds in response to bacterial stimuli. These results constitute the first demonstration of trained immunity in dogs and confirm its signatures in other mammalian species, with an implication of cellular mechanisms similar to those described in mice and humans regarding cellular epigenetics and metabolic regulations.
Collapse
Affiliation(s)
- Simon Paris
- Boehringer Ingelheim Animal Health, R&D, Lyon, France.,Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l'Étoile, France.,Département Biologie, Faculté des Sciences et Techniques, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Marion Pasin
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | - Manon Lambiel
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | | | | | | | - Jeanne-Marie Bonnet
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l'Étoile, France
| | - Hervé Poulet
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | - Ludovic Freyburger
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l'Étoile, France
| | | |
Collapse
|
141
|
Paris S, Chapat L, Martin-Cagnon N, Durand PY, Piney L, Cariou C, Bergamo P, Bonnet JM, Poulet H, Freyburger L, De Luca K. β-Glucan as Trained Immunity-Based Adjuvants for Rabies Vaccines in Dogs. Front Immunol 2020; 11:564497. [PMID: 33162977 PMCID: PMC7580252 DOI: 10.3389/fimmu.2020.564497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
The mechanisms of trained immunity have been extensively described in vitro and the beneficial effects are starting to be deciphered in in vivo settings. Prototypical compounds inducing trained immunity, such as β-glucans, act through epigenetic reprogramming and metabolic changes of innate immune cells. The recent advances in this field have opened new areas for the development of Trained immunity-based adjuvants (TIbAs). In this study, we assessed in dogs the potential immune training effects of β-glucans as well as their capacity to enhance the adaptive immune response of an inactivated rabies vaccine (Rabisin®). Injection of β-glucan from Euglena gracilis was performed 1 month before vaccination with Rabisin® supplemented or not with the same β-glucan used as adjuvant. Trained innate immunity parameters were assessed during the first month of the trial. The second phase of the study was focused on the ability of β-glucan to enhance adaptive immune responses measured by multiple immunological parameters. B and T-cell specific responses were monitored to evaluate the immunogenicity of the rabies vaccine adjuvanted with β-glucan or not. Our preliminary results support that adjuvantation of Rabisin® vaccine with β-glucan elicit a higher B-lymphocyte immune response, the prevailing factor of protection against rabies. β-glucan also tend to stimulate the T cell response as shown by the cytokine secretion profile of PBMCs re-stimulated ex vivo. Our data are providing new insights on the impact of trained immunity on the adaptive immune response to vaccines in dogs. The administration of β-glucan, 1 month before or simultaneously to Rabisin® vaccination give promising results for the generation of new TIbA candidates and their potential to provide increased immunogenicity of specific vaccines.
Collapse
Affiliation(s)
- Simon Paris
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l’Etoile, France
- Département Biologie, Faculté des Sciences et Techniques, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | | | | | | | - Carine Cariou
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | | | - Jeanne-Marie Bonnet
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l’Etoile, France
| | - Hervé Poulet
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | - Ludovic Freyburger
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l’Etoile, France
| | | |
Collapse
|
142
|
Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol 2020; 20:615-632. [PMID: 32887954 PMCID: PMC7472682 DOI: 10.1038/s41577-020-00434-6] [Citation(s) in RCA: 673] [Impact Index Per Article: 134.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the most formidable challenge to humanity in a century. It is widely believed that prepandemic normalcy will never return until a safe and effective vaccine strategy becomes available and a global vaccination programme is implemented successfully. Here, we discuss the immunological principles that need to be taken into consideration in the development of COVID-19 vaccine strategies. On the basis of these principles, we examine the current COVID-19 vaccine candidates, their strengths and potential shortfalls, and make inferences about their chances of success. Finally, we discuss the scientific and practical challenges that will be faced in the process of developing a successful vaccine and the ways in which COVID-19 vaccine strategies may evolve over the next few years.
Collapse
MESH Headings
- Antibodies, Viral/biosynthesis
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Clinical Trials as Topic
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Genetic Vectors/chemistry
- Genetic Vectors/immunology
- Humans
- Immunity, Herd/drug effects
- Immunity, Innate/drug effects
- Immunization Schedule
- Immunogenicity, Vaccine
- Pandemics/prevention & control
- Patient Safety
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- SARS-CoV-2
- Severe Acute Respiratory Syndrome/epidemiology
- Severe Acute Respiratory Syndrome/immunology
- Severe Acute Respiratory Syndrome/prevention & control
- Severe Acute Respiratory Syndrome/virology
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
- Vaccines, Virus-Like Particle
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Fiona Smaill
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Matthew S Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Brian D Lichty
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| | - Zhou Xing
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
143
|
Sokolowska M, Lukasik ZM, Agache I, Akdis CA, Akdis D, Akdis M, Barcik W, Brough HA, Eiwegger T, Eljaszewicz A, Eyerich S, Feleszko W, Gomez‐Casado C, Hoffmann‐Sommergruber K, Janda J, Jiménez‐Saiz R, Jutel M, Knol EF, Kortekaas Krohn I, Kothari A, Makowska J, Moniuszko M, Morita H, O'Mahony L, Nadeau K, Ozdemir C, Pali‐Schöll I, Palomares O, Papaleo F, Prunicki M, Schmidt‐Weber CB, Sediva A, Schwarze J, Shamji MH, Tramper‐Stranders GA, Veen W, Untersmayr E. Immunology of COVID-19: Mechanisms, clinical outcome, diagnostics, and perspectives-A report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020; 75:2445-2476. [PMID: 32584441 PMCID: PMC7361752 DOI: 10.1111/all.14462] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
With the worldwide spread of the novel severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) resulting in declaration of a pandemic by the World Health Organization (WHO) on March 11, 2020, the SARS‐CoV‐2‐induced coronavirus disease‐19 (COVID‐19) has become one of the main challenges of our times. The high infection rate and the severe disease course led to major safety and social restriction measures worldwide. There is an urgent need of unbiased expert knowledge guiding the development of efficient treatment and prevention strategies. This report summarizes current immunological data on mechanisms associated with the SARS‐CoV‐2 infection and COVID‐19 development and progression to the most severe forms. We characterize the differences between adequate innate and adaptive immune response in mild disease and the deep immune dysfunction in the severe multiorgan disease. The similarities of the human immune response to SARS‐CoV‐2 and the SARS‐CoV and MERS‐CoV are underlined. We also summarize known and potential SARS‐CoV‐2 receptors on epithelial barriers, immune cells, endothelium and clinically involved organs such as lung, gut, kidney, cardiovascular, and neuronal system. Finally, we discuss the known and potential mechanisms underlying the involvement of comorbidities, gender, and age in development of COVID‐19. Consequently, we highlight the knowledge gaps and urgent research requirements to provide a quick roadmap for ongoing and needed COVID‐19 studies.
Collapse
|
144
|
Csaba G. Possible contribution of trained immunity in faulty hormonal imprinting and DOHaD: Review and hypothesis. Acta Microbiol Immunol Hung 2020; 67:143-147. [PMID: 32997645 DOI: 10.1556/030.2020.01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/18/2020] [Indexed: 11/19/2022]
Abstract
The faulty hormonal imprinting theory (published in 1980) and the DOHaD (Developmental Origin of Health and Disease theory (published in 1986) are twin-concepts: both justify the manifestation after long time (in adults) diseases which had been provoked in differentiating cells (e.g. during gestation). This was demonstrated using animal experiments as well, as comparative statistical methods (in human cases). However, there is no explanation for the tools of memorization (even after decades) of the early adversity and the tools of execution (manifestation) in adult age. It seems likely that immune memory is involved to the memorization of early adversity, up to the manifestation of the result (non-communicable diseases). Nevertheless, the relatively short timespan of adaptive immune memory makes this system insuitable for this function, however the newly recognized trained memory of the innate immune system seems to be theoretically suitable for the storage of the records and handling the sequalae, which is the epigenetic reprogramming in the time of provocation, without changes in base sequences (mutation). The flawed (damaged) program is manifested later, in adult age. Evidences are incomplete, so further animal experiments and human observations are needed for justifying the theory.
Collapse
Affiliation(s)
- György Csaba
- Department of Genetics, Cell-and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
145
|
Connell AR, Connell J, Leahy TR, Hassan J. Mumps Outbreaks in Vaccinated Populations-Is It Time to Re-assess the Clinical Efficacy of Vaccines? Front Immunol 2020; 11:2089. [PMID: 33072071 PMCID: PMC7531022 DOI: 10.3389/fimmu.2020.02089] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/31/2020] [Indexed: 01/05/2023] Open
Abstract
History illustrates the remarkable public health impact of mass vaccination, by dramatically improving life expectancy and reducing the burden of infectious diseases and co-morbidities worldwide. It has been perceived that if an individual adhered to the MMR vaccine schedule that immunity to mumps virus (MuV) would be lifelong. Recent mumps outbreaks in individuals who had received two doses of the Measles Mumps Rubella (MMR) vaccine has challenged the efficacy of the MMR vaccine. However, clinical symptoms, complications, viral shedding and transmission associated with mumps infection has been shown to be reduced in vaccinated individuals, demonstrating a benefit of this vaccine. Therefore, the question of what constitutes a good mumps vaccine and how its impact is assessed in this modern era remains to be addressed. Epidemiology of the individuals most affected by the outbreaks (predominantly young adults) and variance in the circulating MuV genotype have been well-described alluding to a collection of influences such as vaccine hesitancy, heterogeneous vaccine uptake, primary, and/or secondary vaccine failures. This review aims to discuss in detail the interplay of factors thought to be contributing to the current mumps outbreaks seen in highly vaccinated populations. In addition, how mumps diagnoses has progressed and impacted the understanding of mumps infection since a mumps vaccine was first developed, the limitations of current laboratory tests in confirming protection in vaccinated individuals and how vaccine effectiveness is quantified are also considered. By highlighting knowledge gaps within this area, this state-of-the-art review proposes a change of perspective regarding the impact of a vaccine in a highly vaccinated population from a clinical, diagnostic and public perspective, highlighting a need for a paradigm shift on what is considered vaccine immunity.
Collapse
Affiliation(s)
- Anna R. Connell
- National Children's Research Centre, Children's Health Ireland, Dublin, Ireland
| | - Jeff Connell
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
| | - T. Ronan Leahy
- Children's Health Ireland, Dublin, Ireland
- Department of Pediatrics, University of Dublin, Trinity College, Dublin, Ireland
| | - Jaythoon Hassan
- National Children's Research Centre, Children's Health Ireland, Dublin, Ireland
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
| |
Collapse
|
146
|
Peignier A, Parker D. Trained immunity and host-pathogen interactions. Cell Microbiol 2020; 22:e13261. [PMID: 32902895 DOI: 10.1111/cmi.13261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a leading cause of death worldwide with over 8 million fatalities accounted for in 2016. Solicitation of host immune defenses by vaccination is the treatment of choice to prevent these infections. It has long been thought that vaccine immunity was solely mediated by the adaptive immune system. However, over the past decade, numerous studies have shown that innate immune cells can also retain memory of these encounters. This process, called innate immune memory, is mediated by metabolic and epigenetic changes that make cells either hyperresponsive (trained immunity) or hyporesponsive (tolerance) to subsequent challenges. In this review, we discuss the concepts of trained immunity and tolerance in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Adeline Peignier
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
147
|
Lessons from Bacillus Calmette-Guérin: Harnessing Trained Immunity for Vaccine Development. Cells 2020; 9:cells9092109. [PMID: 32948003 PMCID: PMC7564904 DOI: 10.3390/cells9092109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Vaccine design traditionally focuses on inducing adaptive immune responses against a sole target pathogen. Considering that many microbes evade innate immune mechanisms to initiate infection, and in light of the discovery of epigenetically mediated innate immune training, the paradigm of vaccine design has the potential to change. The Bacillus Calmette-Guérin (BCG) vaccine induces some level of protection against Mycobacterium tuberculosis (Mtb) while stimulating trained immunity that correlates with lower mortality and increased protection against unrelated pathogens. This review will explore BCG-induced trained immunity, including the required pathways to establish this phenotype. Additionally, potential methods to improve or expand BCG trained immunity effects through alternative vaccine delivery and formulation methods will be discussed. Finally, advances in new anti-Mtb vaccines, other antimicrobial uses for BCG, and “innate memory-based vaccines” will be examined.
Collapse
|
148
|
Leite Pereira A, Jouhault Q, Marcos Lopez E, Cosma A, Lambotte O, Le Grand R, Lehmann MH, Tchitchek N. Modulation of Cell Surface Receptor Expression by Modified Vaccinia Virus Ankara in Leukocytes of Healthy and HIV-Infected Individuals. Front Immunol 2020; 11:2096. [PMID: 33013882 PMCID: PMC7506042 DOI: 10.3389/fimmu.2020.02096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022] Open
Abstract
Viral vectors are increasingly used as delivery means to induce a specific immunity in humans and animals. However, they also impact the immune system, and it depends on the given context whether this is beneficial or not. The attenuated vaccinia virus strain modified vaccinia virus Ankara (MVA) has been used as a viral vector in clinical studies intended to treat and prevent cancer and infectious diseases. The adjuvant property of MVA is thought to be due to its capability to stimulate innate immunity. Here, we confirmed that MVA induces interleukin-8 (IL-8), and this chemokine was upregulated significantly more in monocytes and HLA-DRbright dendritic cells (DCs) of HIV-infected patients on combined antiretroviral therapy (ART) than in cells of healthy persons. The effect of MVA on cell surface receptors is mostly unknown. Using mass cytometry profiling, we investigated the expression of 17 cell surface receptors in leukocytes after ex vivo infection of human whole-blood samples with MVA. We found that MVA downregulates most of the characteristic cell surface markers in particular types of leukocytes. In contrast, C-X-C motif chemokine receptor 4 (CXCR4) was significantly upregulated in each leukocyte type of healthy persons. Additionally, we detected a relative higher cell surface expression of the HIV-1 co-receptors C-C motif chemokine receptor 5 (CCR5) and CXCR4 in leukocytes of HIV-ART patients than in healthy persons. Importantly, we showed that MVA infection significantly downregulated CCR5 in CD4+ T cells, CD8+ T cells, B cells, and three different DC populations. CD86, a costimulatory molecule for T cells, was significantly upregulated in HLA-DRbright DCs after MVA infection of whole blood from HIV-ART patients. However, MVA was unable to downregulate cell surface expression of CD11b and CD32 in monocytes and neutrophils of HIV-ART patients to the same extent as in monocytes and neutrophils of healthy persons. In summary, MVA modulates the expression of many different kinds of cell surface receptors in leukocytes, which can vary in cells originating from persons previously infected with other pathogens.
Collapse
Affiliation(s)
- Adrien Leite Pereira
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Quentin Jouhault
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Ernesto Marcos Lopez
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Antonio Cosma
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France.,INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France.,APHP, Service de Médecine Interne et Immunologie Clinique, Hôpitaux Universitaires Paris Saclay, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Michael H Lehmann
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicolas Tchitchek
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| |
Collapse
|
149
|
Kleen TO, Galdon AA, MacDonald AS, Dalgleish AG. Mitigating Coronavirus Induced Dysfunctional Immunity for At-Risk Populations in COVID-19: Trained Immunity, BCG and "New Old Friends". Front Immunol 2020; 11:2059. [PMID: 33013871 PMCID: PMC7498663 DOI: 10.3389/fimmu.2020.02059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/29/2020] [Indexed: 01/08/2023] Open
Abstract
The novel, highly contagious coronavirus SARS-CoV-2 spreads rapidly throughout the world, leading to a deadly pandemic of a predominantly respiratory illness called COVID-19. Safe and effective anti-SARS-CoV-2 vaccines are urgently needed. However, emerging immunological observations show hallmarks of significant immunopathological characteristics and dysfunctional immune responses in patients with COVID-19. Combined with existing knowledge about immune responses to other closely related and highly pathogenic coronaviruses, this could forebode significant challenges for vaccine development, including the risk of vaccine failure. Animal data from earlier coronavirus vaccine efforts indicate that elderly people, most at risk from severe COVID-19 disease, could be especially at risk from immunopathologic responses to novel coronavirus vaccines. Bacterial "new old friends" such as Bacille Calmette-Guérin (BCG) or Mycobacterium obuense have the ability to elevate basal systemic levels of type 1 cytokines and immune cells, correlating with increased protection against diverse and unrelated infectious agents, called "trained immunity." Here we describe dysfunctional immune responses induced by coronaviruses, representing potentially difficult to overcome obstacles to safe, effective vaccine development for COVID-19, and outline how trained immunity could help protect high risk populations through immunomodulation with BCG and other "new old friends."
Collapse
Affiliation(s)
| | - Alicia A. Galdon
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Angus G. Dalgleish
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| |
Collapse
|
150
|
Trovato M, Sartorius R, D’Apice L, Manco R, De Berardinis P. Viral Emerging Diseases: Challenges in Developing Vaccination Strategies. Front Immunol 2020; 11:2130. [PMID: 33013898 PMCID: PMC7494754 DOI: 10.3389/fimmu.2020.02130] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
In the last decades, a number of infectious viruses have emerged from wildlife or re-emerged, generating serious threats to the global health and to the economy worldwide. Ebola and Marburg hemorrhagic fevers, Lassa fever, Dengue fever, Yellow fever, West Nile fever, Zika, and Chikungunya vector-borne diseases, Swine flu, Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the recent Coronavirus disease 2019 (COVID-19) are examples of zoonoses that have spread throughout the globe with such a significant impact on public health that the scientific community has been called for a rapid intervention in preventing and treating emerging infections. Vaccination is probably the most effective tool in helping the immune system to activate protective responses against pathogens, reducing morbidity and mortality, as proven by historical records. Under health emergency conditions, new and alternative approaches in vaccine design and development are imperative for a rapid and massive vaccination coverage, to manage a disease outbreak and curtail the epidemic spread. This review gives an update on the current vaccination strategies for some of the emerging/re-emerging viruses, and discusses challenges and hurdles to overcome for developing efficacious vaccines against future pathogens.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Enhancement/immunology
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Communicable Diseases, Emerging/prevention & control
- Communicable Diseases, Emerging/virology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Coronavirus Infections/virology
- Cross Reactions/immunology
- Humans
- Immunization, Passive
- Pandemics/prevention & control
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/therapy
- Pneumonia, Viral/virology
- SARS-CoV-2
- Vaccination
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccines, Inactivated/immunology
- Vaccines, Subunit/immunology
- Viral Vaccines/immunology
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Maria Trovato
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | | | | | | | | |
Collapse
|