151
|
Eriksson KS, Stevens DR, Haas HL. Opposite modulation of histaminergic neurons by nociceptin and morphine. Neuropharmacology 2000; 39:2492-8. [PMID: 10974333 DOI: 10.1016/s0028-3908(00)00062-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have studied the effects of nociceptin/orphanin FQ on the histaminergic neurons in the tuberomammillary (TM) nucleus and compared them with the actions of opioid agonists. Intracellular recordings of the membrane potential were made with sharp electrodes from superfused rat hypothalamic slices. Nociceptin strongly inhibited the firing of the TM neurons. In the concentration range 10-300 nM, nociceptin hyperpolarized the neurons in a dose-dependent and reversible manner. Insensitivity to tetrodotoxin indicated a postsynaptic effect which was associated with decreased input resistance. Voltage-current plots suggested the involvement of a potassium conductance which was highly sensitive to Ba(2+) and decreased by Cs(+), in keeping with the activation of an inwardly rectifying potassium channel. Morphine (20-100 microM) depolarized the TM neurons and increased their firing, and this effect was blocked by tetrodotoxin. Dynorphin A(1-13) at 100-300 nM did not affect the TM neurons. Nociceptin and morphine modulate the activity of the TM neurons, and most likely histamine release, in opposite ways. Histamine has an antinociceptive effect in the brain and may be involved in opioid-induced analgesia. Nociceptin might therefore influence pain transmission by inhibiting opioid-induced histamine release from the TM nucleus and also modulate other physiological mechanisms which have been ascribed to the histaminergic system.
Collapse
Affiliation(s)
- K S Eriksson
- Department of Physiology II, Heinrich-Heine-Universität, Moorenstrasse 5, D-40225, Düsseldorf, Germany.
| | | | | |
Collapse
|
152
|
Künzle H, Radtke-Schuller S. Basal telencephalic regions connected with the olfactory bulb in a Madagascan hedgehog tenrec. J Comp Neurol 2000; 423:706-26. [PMID: 10880998 DOI: 10.1002/1096-9861(20000807)423:4<706::aid-cne13>3.0.co;2-#] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In an attempt to gain insight into the organization and evolution of the basal forebrain, the region was analysed cytoarchitecturally, chemoarchitecturally, and hodologically in a lower placental mammal, the lesser hedgehog tenrec. Particular emphasis was laid on the subdivision of the olfactory tubercle, the nuclear complex of the diagonal band, and the cortical amygdala. The proper tubercule and the rostrolateral tubercular seam differed from each other with regard to their immunoreactivity to calbindin and calretinin, as well as their afferents from the piriform cortex. Interestingly, the tubercular seam showed similar properties to the dwarf cell compartment, located immediately adjacent to the islands of Calleja. The most prominent input to the olfactory bulb (OfB) originated from the diagonal nuclear complex. This projection was ipsilateral, whereas the bulbar afferents from the hypothalamus and the mesopontine tegmentum were bilateral. The amygdala projected only sparsely to the OfB, but received a prominent bulbar projection. An exception was the nucleus of the lateral olfactory tract, which was poorly connected with the OfB. Unlike other species with an accessory OfB, the projections from the tenrec's main OfB did not show a topographic organization upon the lateral and medial olfactory amygdala. However, there was an accessory amygdala, which could be differentiated from the lateral nuclei by its intense reaction to NADPh-diaphorase. This reaction was poor in the diagonal nuclear complex as in monkey but unlike in rat. The variability of cell populations and olfactory bulb connections shown here may help to clarify both phylogenetic relationships and the significance of individual basal telencephalic subdivisions.
Collapse
Affiliation(s)
- H Künzle
- Institute of Anatomy, University of Munich, D-80336 Munich, Germany
| | | |
Collapse
|
153
|
Atzori M, Lau D, Tansey EP, Chow A, Ozaita A, Rudy B, McBain CJ. H2 histamine receptor-phosphorylation of Kv3.2 modulates interneuron fast spiking. Nat Neurosci 2000; 3:791-8. [PMID: 10903572 DOI: 10.1038/77693] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Histamine-containing neurons of the tuberomammilary nucleus project to the hippocampal formation to innervate H1 and H2 receptors on both principal and inhibitory interneurons. Here we show that H2 receptor activation negatively modulates outward currents through Kv3.2-containing potassium channels by a mechanism involving PKA phosphorylation in inhibitory interneurons. PKA phosphorylation of Kv3.2 lowered the maximum firing frequency of inhibitory neurons, which in turn negatively modulated high-frequency population oscillations recorded in principal cell layers. All these effects were absent in a Kv3.2 knockout mouse. These data reveal a novel pathway for histamine-dependent regulation of high-frequency oscillations within the hippocampal formation.
Collapse
Affiliation(s)
- M Atzori
- Laboratory of Cellular and Molecular Neurophysiology, NICHD, NIH, Rm. 5A72, Bldg. 49, Convent Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
154
|
Vizuete ML, Merino M, Venero JL, Santiago M, Cano J, Machado A. Histamine infusion induces a selective dopaminergic neuronal death along with an inflammatory reaction in rat substantia nigra. J Neurochem 2000; 75:540-52. [PMID: 10899929 DOI: 10.1046/j.1471-4159.2000.0750540.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have evaluated the effects of a direct infusion of histamine, as mediator of inflammatory response, in substantia nigra, striatum, medial septum, and medial lemniscus. Injection of 100 and 250 nmol of histamine in substantia nigra produced a selective damage in dopaminergic neurons evidenced by the loss of tyrosine hydroxylase mRNA-expressing cells, tyrosine hydroxylase-immunolabeled-positive cell bodies, and dopamine and 3,4-dihydroxyphenylacetic acid levels. In parallel we found an acute inflammatory response manifested by a loss of glial fibrillary acidic protein-immunolabeled astrocytes and, at precisely the same area, an activation of microglia. In the striatum, only high doses (500 nmol) produced an evident terminal degeneration. The selective neurotoxicity of histamine for dopaminergic cells was demonstrated by the unaltered transcription of glutamic acid decarboxylase mRNA in substantia nigra. Moreover, intraseptal injection of 100 nmol of histamine failed to alter the pattern of choline acetyltransferase mRNA-expressing cells, and intraparenchymal injection of histamine in medial lemniscus failed to alter the pattern of serotonin-immunolabeled cells. We conclude that the substantia nigra is highly sensitive to histamine-derived neurotoxicity, where inflammatory processes mediated by histamine could be important in the pathological changes that lead to dopaminergic neuronal damage after histamine infusion.
Collapse
Affiliation(s)
- M L Vizuete
- Departamento de Bioquimica, Bromatologia, Toxicologia, y Medicina Legal, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
155
|
Vohora D, Pal SN, Pillai KK. Thioperamide, a selective histamine H3 receptor antagonist, protects against PTZ-induced seizures in mice. Life Sci 2000; 66:PL297-PL301. [PMID: 10834305 DOI: 10.1016/s0024-3205(00)00548-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of selective histamine H3-receptor antagonist thioperamide was studied on PTZ-induced seizures in mice. Thioperamide significantly protected clonic seizures induced by PTZ in a dose-dependent manner. The effect of thioperamide was completely countered by pretreatment with R (alpha)-methylhistamine (RAMH), a selective H3-receptor agonist suggesting that the observed effect of thioperamide was elicited by histamine H3-receptors. RAMH alone did not significantly modify PTZ seizures. The findings are consistent with a role for the histaminergic neuronal system in seizures and suggest that H3-receptors may play an important role in modulating clonic seizures induced by PTZ in mice.
Collapse
Affiliation(s)
- D Vohora
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | | | | |
Collapse
|
156
|
Fischer HS, Zernig G, Schatz DS, Humpel C, Saria A. MDMA ('ecstasy') enhances basal acetylcholine release in brain slices of the rat striatum. Eur J Neurosci 2000; 12:1385-90. [PMID: 10762366 DOI: 10.1046/j.1460-9568.2000.00004.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pharmacological basis of acute (+/-)-MDMA (3, 4-methylenedioxymethamphetamine) intoxication still awaits full characterization. According to present knowledge, MDMA enhances the release of serotonin and dopamine in striatal slices and interacts with different types of receptors such as 5-HT2 (5-hydroxytryptamine or serotonin), M1 and M2 muscarinic acetylcholine (ACh), and histamine H1 receptors. Currently, no information is available about the influence of (+/-)-MDMA on striatal cholinergic neurotransmission. In the present study, we used the in vitro perfusion technique to investigate the effect of (+/-)-MDMA on ACh release in rat striatal slices. Perfusions with (+/-)-MDMA (10-300 microM) resulted in a dose-dependent increase of spontaneous ACh release (EC50 approximately 30 microM). The effect was reversible and Ca++- and tetrodotoxin-sensitive. To determine the neurochemical pathways underlying this response, we perfused with (+/-)-MDMA in the presence of various inhibitors of neurotransmitter receptors. Blockade of glutamate or muscarinic ACh receptors as well as 5-HT1, 5-HT2, 5-HT3C or dopamine D2 receptors did not modulate (+/-)-MDMA-induced ACh release. However, the presence of histamine H1 receptor antagonists in the perfusion medium abolished (+/-)-MDMA-induced ACh release. The present data clearly demonstrate that (+/-)-MDMA enhances the activity of striatal cholinergic neurons and suggest an involvement of histamine H1 receptors. The effect is not mediated by glutamate and does not involve the activation of receptors of dopamine D2, 5-HT1, 5-HT2, 5-HT3C or muscarinic ACh. Considering the relatively high affinity of (+/-)-MDMA for the H1 histamine receptor (Ki 6 microM), a direct activation of this type of receptor might represent a plausible mechanism for (+/-)-MDMA-induced ACh release.
Collapse
Affiliation(s)
- H S Fischer
- Division of Neurochemistry, Department of Psychiatry, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
157
|
Abstract
1. Unlike some interfaces between the blood and the nervous system (e.g., nerve perineurium), the brain endothelium forming the blood-brain barrier can be modulated by a range of inflammatory mediators. The mechanisms underlying this modulation are reviewed, and the implications for therapy of the brain discussed. 2. Methods for measuring blood-brain barrier permeability in situ include the use of radiolabeled tracers in parenchymal vessels and measurements of transendothelial resistance and rate of loss of fluorescent dye in single pial microvessels. In vitro studies on culture models provide details of the signal transduction mechanisms involved. 3. Routes for penetration of polar solutes across the brain endothelium include the paracellular tight junctional pathway (usually very tight) and vesicular mechanisms. Inflammatory mediators have been reported to influence both pathways, but the clearest evidence is for modulation of tight junctions. 4. In addition to the brain endothelium, cell types involved in inflammatory reactions include several closely associated cells including pericytes, astrocytes, smooth muscle, microglia, mast cells, and neurons. In situ it is often difficult to identify the site of action of a vasoactive agent. In vitro models of brain endothelium are experimentally simpler but may also lack important features generated in situ by cell:cell interaction (e.g. induction, signaling). 5. Many inflammatory agents increase both endothelial permeability and vessel diameter, together contributing to significant leak across the blood-brain barrier and cerebral edema. This review concentrates on changes in endothelial permeability by focusing on studies in which changes in vessel diameter are minimized. 6. Bradykinin (Bk) increases blood-brain barrier permeability by acting on B2 receptors. The downstream events reported include elevation of [Ca2+]i, activation of phospholipase A2, release of arachidonic acid, and production of free radicals, with evidence that IL-1 beta potentiates the actions of Bk in ischemia. 7. Serotonin (5HT) has been reported to increase blood-brain barrier permeability in some but not all studies. Where barrier opening was seen, there was evidence for activation of 5-HT2 receptors and a calcium-dependent permeability increase. 8. Histamine is one of the few central nervous system neurotransmitters found to cause consistent blood-brain barrier opening. The earlier literature was unclear, but studies of pial vessels and cultured endothelium reveal increased permeability mediated by H2 receptors and elevation of [Ca2+]i and an H1 receptor-mediated reduction in permeability coupled to an elevation of cAMP. 9. Brain endothelial cells express nucleotide receptors for ATP, UTP, and ADP, with activation causing increased blood-brain barrier permeability. The effects are mediated predominantly via a P2U (P2Y2) G-protein-coupled receptor causing an elevation of [Ca2+]i; a P2Y1 receptor acting via inhibition of adenyl cyclase has been reported in some in vitro preparations. 10. Arachidonic acid is elevated in some neural pathologies and causes gross opening of the blood-brain barrier to large molecules including proteins. There is evidence that arachidonic acid acts via generation of free radicals in the course of its metabolism by cyclooxygenase and lipoxygenase pathways. 11. The mechanisms described reveal a range of interrelated pathways by which influences from the brain side or the blood side can modulate blood-brain barrier permeability. Knowledge of the mechanisms is already being exploited for deliberate opening of the blood-brain barrier for drug delivery to the brain, and the pathways capable of reducing permeability hold promise for therapeutic treatment of inflammation and cerebral edema.
Collapse
Affiliation(s)
- N J Abbott
- Division of Physiology, GKT School of Biomedical Sciences, King's College London, UK.
| |
Collapse
|
158
|
Papke RL, Meyer E, Nutter T, Uteshev VV. alpha7 receptor-selective agonists and modes of alpha7 receptor activation. Eur J Pharmacol 2000; 393:179-95. [PMID: 10771012 DOI: 10.1016/s0014-2999(00)00009-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The alpha7-selective agonists 3-(2, 4-dimethoxybenzylidene)-anabaseine (GTS-21), also known as DMXB, and 3-(4-hydroxy,2-methoxybenzylidene)anabaseine (4OH-GTS-21) produce a variety of behavioral and cytoprotective effects that may be related to the activation of either large transient currents at high concentrations or small sustained currents at lower agonist concentrations. We are using acutely dissociated hypothalamic neurons, which express a central nervous system (CNS) alpha7-type receptor, to test a model for the concentration-dependent desensitization of alpha7-mediated responses. Our results confirm that 4OH-GTS-21 is a potent activator of neuronal alpha7 nicotinic-acetylcholine receptor. The rapid application of agonist leads to a brief period of maximal receptor-activation followed by desensitization. Rise rates, decay rates, and the degree to which current was desensitized were all concentration-dependent. Following the initial peak response to a 300-microM 4OH-GTS-21 application, current is reduced to baseline values within about 100 ms. Application of 30 microM 4OH-GTS-21 produced both a transient peak current and a sustained current that decayed only slowly after the removal of agonist. In the case of a 300-microM 4OH-GTS-21 application, after agonist was removed, we saw a rebound response up to the level of the 30-microM sustained current. The data, therefore, suggest that a sufficient level of agonist occupation can be retained on the receptor to promote activation for up to several hundred milliseconds.
Collapse
Affiliation(s)
- R L Papke
- Department of Pharmacology and Therapeutics, Medical College, University of Florida, Gainesville, FL 32610-0267, USA.
| | | | | | | |
Collapse
|
159
|
Panula P, Karlstedt K, Sallmen T, Peitsaro N, Kaslin J, Michelsen KA, Anichtchik O, Kukko-Lukjanov T, Lintunen M. The histaminergic system in the brain: structural characteristics and changes in hibernation. J Chem Neuroanat 2000; 18:65-74. [PMID: 10708920 DOI: 10.1016/s0891-0618(99)00052-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histaminergic neurons in adult vertebrate brain are confined to the posterior hypothalamic area, where they are comprised of scattered groups of neurons referred to as the tuberomammillary nucleus. Histamine regulates hormonal functions, sleep, food intake, thermoregulation and locomotor activity, for example. In the zebrafish, Danio rerio, histamine was detected only in the brain, where also the histamine synthesizing enzyme L-histidine decarboxylase (HDC) was expressed. It is possible that histamine has first evolved as a neurotransmitter in the central nervous system. We established sensitive quantitative in situ hybridization methods for histamine H(1) and H(2) receptors and HDC, to study the modulation of brain histaminergic system under pathophysiological conditions. A transient increase in H(1) receptor expression was seen in the dentate gyrus and striatum after a single injection of kainic acid, a glutamate analog. H(1) antagonists are known to increase duration of convulsions, and increased brain histamine is associated with reduced convulsions in animal models of epilepsy. No HDC mRNA was detected in brain vessels by in situ hybridization, which suggests lack of histamine synthesis by brain endothelial cells. This was verified by lack of HDC mRNA in a rat brain endothelial cell line, RBE4 cells. Both H(1) and H(2) receptor mRNA was found in this cell line, and the expression of both receptors was downregulated by dexamethasone. The findings are in agreement with the concept that histamine regulates blood-brain barrier permeability through H(1) and H(2) receptor mediated mechanisms. Hibernation is characterized by a drastic reduction of central functions. The activity of most transmitter systems is maintained at a very low level. Surprisingly, histamine levels and turnover were clearly elevated in hibernating ground squirrels, and the density of histamine-containing fibers was higher than in euthermic animals. It is possible that histamine actively maintains the low activity of other transmitters during the hibernation state.
Collapse
Affiliation(s)
- P Panula
- Department of Biology, Biocity, Abo Akademi University, Tykistokatu 6A, 20520, Turku, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Lozeva V, Valjakka A, Lecklin A, Olkkonen H, Hippeläinen M, Itkonen M, Plumed C, Tuomisto L. Effects of the histamine H(1) receptor blocker, pyrilamine, on spontaneous locomotor activity of rats with long-term portacaval anastomosis. Hepatology 2000; 31:336-44. [PMID: 10655255 DOI: 10.1002/hep.510310212] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To find out whether the changes in the brain histaminergic system are involved in the pathophysiology of portal-systemic encephalopathy, we examined the effects of histamine H(1) receptor blockade on spontaneous locomotor activity, feeding, and circadian rhythmicity in rats with portacaval anastomosis (PCA). Pyrilamine, an H(1) receptor blocker (15 mg/kg/day), was delivered with osmotic minipumps. Spontaneous locomotor activity was recorded for 72 hours in the open-field with an electromagnetic detector. Food intake was monitored twice daily at the end of the light (7 PM) and the dark (7 AM) phases for 3 days. Histamine H(1) receptor density in the suprachiasmatic nucleus (SCN) was examined with receptor autoradiography, employing [(3)H]pyrilamine. PCA surgery led to decreased movement time and velocity and flattened amplitude of the circadian rhythms of locomotion and feeding. In sham-operated rats, pyrilamine significantly decreased the movement time and velocity, as well as the total food consumption and completely abolished the circadian rhythmicity of locomotion. In contrast, pyrilamine increased the movement time and velocity in PCA-operated rats, particularly in the dark phase, and improved the precision of the circadian rhythms of locomotion and feeding. Histamine H(1) receptor density was not altered by PCA surgery, whereas pyrilamine treatment led to the complete blockade of H(1) receptors in both sham- and PCA-operated rats. We suggest that histaminergic imbalance has contributed to the generation and maintenance of the decreased spontaneous locomotor activity and altered circadian rhythmicity following PCA surgery in the rat, probably via an H(1) receptor-mediated mechanism.
Collapse
Affiliation(s)
- V Lozeva
- Department of Pharmacology, University Hospital of Kuopia, Finland
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Passani MB, Bacciottini L, Mannaioni PF, Blandina P. Central histaminergic system and cognition. Neurosci Biobehav Rev 2000; 24:107-13. [PMID: 10654665 DOI: 10.1016/s0149-7634(99)00053-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The neurotransmitter histamine is contained within neurons clustered in the tuberomammillary nuclei of the hypothalamus. These cells give rise to widespread projections extending through the basal forebrain to the cerebral cortex, as well as to the thalamus and pontomesencephalic tegmentum. These morphological features suggest that the histaminergic system acts as a regulatory center for whole-brain activity. Indeed, this amine is involved in the regulation of numerous physiological functions and behaviors, including learning and memory, as indicated by extensive research reviewed in this paper. Histamine effects on cognition might be explained by the modulation of the cholinergic system. However, interactions of histamine with any transmitter system, and/or a putative intrinsic procognitive role cannot be excluded. Furthermore, although experimental evidence indicates that attention-deficit hyperactivity disorder symptoms arise from impaired dopaminergic and noradrenergic transmission, recent research suggests that histamine is also involved. The possible relevance of histamine in disorders such as age-related memory deficits, Alzheimer's disease and attention-deficit hyperactivity disorder is worth of consideration, and awaits validation with clinical trials that will prove the beneficial effects of histaminergic drugs in the treatment of these diseases.
Collapse
Affiliation(s)
- M B Passani
- Dipartimento di Farmacologia Preclinica e Clinica, Universita di Firenze, Italy
| | | | | | | |
Collapse
|
162
|
Tian L, Wen YQ, Li HZ, Zuo CC, Wang JJ. Histamine excites rat cerebellar Purkinje cells via H2 receptors in vitro. Neurosci Res 2000; 36:61-6. [PMID: 10678532 DOI: 10.1016/s0168-0102(99)00109-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent neuroanatomical studies have revealed a direct hypothalamocerebellar histaminergic pathway. However, the functional significance of the histaminergic fibers in the cerebellum is not yet clear. In this study, the effects of histamine on the firing of cerebellar Purkinje cells (PCs) were investigated in vitro. Histamine predominantly produced excitatory (106/111, 95.5%) and in a few cases inhibitory (5/111, 4.5%) responses in PCs. The histamine-induced excitation was not blocked by perfusing the slice with low Ca2+ high/Mg2+ medium (n = 8), supporting a direct postsynaptic action of histamine. The histamine H2 receptor antagonist ranitidine effectively blocked the excitatory response of PCs to histamine (n = 20), but triprolidine, an H1 receptor antagonist, could not significantly block the histamine-induced excitation, or only very slightly decreased the excitatory effect of histamine on the cells (n = 13). On the other hand, the highly selective H2 receptor agonist dimaprit mimicked the excitatory effect of histamine on PCs and this dimaprit-induced excitation was also blocked by ranitidine (n = 20), but not triprolidine (n = 8). However, the H1 receptor agonists betahistine and 2-thiazolylethylamine did not show any effect on the PCs (n = 9 and 14). These results reveal that histamine excites cerebellar PCs via H2 receptors and suggest that the hypothalamocerebellar histaminergic fibers may play an important role in functional activities of the cerebellum.
Collapse
Affiliation(s)
- L Tian
- Department of Biological Science and Technology, Nanjing University, China
| | | | | | | | | |
Collapse
|
163
|
Okamura N, Yanai K, Higuchi M, Sakai J, Iwata R, Ido T, Sasaki H, Watanabe T, Itoh M. Functional neuroimaging of cognition impaired by a classical antihistamine, d-chlorpheniramine. Br J Pharmacol 2000; 129:115-23. [PMID: 10694210 PMCID: PMC1621119 DOI: 10.1038/sj.bjp.0702994] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Antihistamine induced cognitive decline was evaluated using positron emission tomography (PET) measurement of histamine H1 receptor (H1R) occupancy and regional cerebral blood flow (rCBF). Cognitive performance in attention-demanding task deteriorated dose-dependently and the effects were statistically significant after the treatment of 2 mg of d-chlorpheniramine. There was no significant change in subjective sleepiness in the same dose. The regional blockade of H1R was observed mainly in the frontal, temporal and anterior cingulate cortices, and the intravenous administration of d-chlorpheniramine as a therapeutic dose (2 mg) blocked over 60% of H1R in the frontal cortices. The results from activation study using visual discrimination tasks demonstrated that enhanced activity in the right prefrontal and anterior cingulate cortices as well as a decreased activity in the left temporal and frontal cortices and midbrain after the treatment of d-chlorpheniramine. There were no changes in global CBF for the subjects treated with 2 mg d-chlorpheniramine (pre; 44.8+/-3.3 ml dl(-1) min(-1) vs post; 44.4+/-4.7 ml dl(-1) min(-1)). The results indicated that the attention system of human brain could be altered by therapeutic doses of H1R antagonists. These findings provide the information as to the potential risk of antihistamines in our daily activities. British Journal of Pharmacology (2000) 129, 115 - 123
Collapse
Affiliation(s)
- Nobuyuki Okamura
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, 980-8578, Japan
- Department of Geriatric Medicine, Tohoku University School of Medicine, Sendai, 980-8574, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, 980-8575, Japan
- Author for correspondence:
| | - Makoto Higuchi
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, 980-8578, Japan
- Department of Geriatric Medicine, Tohoku University School of Medicine, Sendai, 980-8574, Japan
| | - Jun Sakai
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, 980-8575, Japan
| | - Ren Iwata
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, 980-8578, Japan
| | - Tatsuo Ido
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, 980-8578, Japan
| | - Hidetada Sasaki
- Department of Geriatric Medicine, Tohoku University School of Medicine, Sendai, 980-8574, Japan
| | - Takehiko Watanabe
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, 980-8575, Japan
| | - Masatoshi Itoh
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
164
|
Spieler RE, Nelson CA, Huston JP, Mattioli R. Post-trial administration of H1 histamine receptor blocker improves appetitive reversal learning and memory in goldfish, Carassius auratus. Neurosci Lett 1999; 277:5-8. [PMID: 10643884 DOI: 10.1016/s0304-3940(99)00809-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Based on the hypothesis that neuronal histamine exerts an inhibitory influence on learning and reinforcement, goldfish were tested for post-trial effects of the H1 receptor blocker chlorpheniramine (CPA) on learning the location of a food source in one of two compartments, one black the other white, with a feeder located in each compartment. Testing was carried out over 6 days. On the training day a food pellet was placed into the feeder of one of the compartments. After consumption of the food the fish were injected i.p. with either vehicle or CPA either immediately after training or 3 h later. Twenty-four-hours later, food was placed in the same compartment and the time to begin feeding was recorded. On the next day the location of the food pellet was reversed, and testing was continued for 4 days. On the first test day the time to begin feeding was significantly longer for the vehicle injected fish as compared with those injected with CPA. The vehicle group also took longer to begin feeding than the CPA group on the first reversal test day. The results of the 3-h delay groups indicated no significant differences between vehicle and drug for any experimental session. These results suggest that post-trial blockade of the H1 histamine receptor can affect appetitive learning in goldfish either by improving long-term memory consolidation and/or by the additive reinforcing effects of CPA (known from previous studies) on behavior.
Collapse
Affiliation(s)
- R E Spieler
- Nova Southeastern University Oceanographic Center, Dania, FL, USA
| | | | | | | |
Collapse
|
165
|
Harusawa S, Imazu T, Takashima S, Araki L, Ohishi H, Kurihara T, Sakamoto Y, Yamamoto Y, Yamatodani A. Synthesis of 4(5)-[5-(Aminomethyl)tetrahydrofuran-2-yl- or 5-(Aminomethyl)-2,5-dihydrofuran-2-yl]imidazoles by Efficient Use of a PhSe Group: Application to Novel Histamine H3-Ligands1. J Org Chem 1999. [DOI: 10.1021/jo9910637] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shinya Harusawa
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan, R&D Division, AZWELL, Inc., 2-24-3, Sho, Ibaraki, Osaka 567-0806, Japan, and School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomonari Imazu
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan, R&D Division, AZWELL, Inc., 2-24-3, Sho, Ibaraki, Osaka 567-0806, Japan, and School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seiichiroh Takashima
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan, R&D Division, AZWELL, Inc., 2-24-3, Sho, Ibaraki, Osaka 567-0806, Japan, and School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lisa Araki
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan, R&D Division, AZWELL, Inc., 2-24-3, Sho, Ibaraki, Osaka 567-0806, Japan, and School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirofumi Ohishi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan, R&D Division, AZWELL, Inc., 2-24-3, Sho, Ibaraki, Osaka 567-0806, Japan, and School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takushi Kurihara
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan, R&D Division, AZWELL, Inc., 2-24-3, Sho, Ibaraki, Osaka 567-0806, Japan, and School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuhiko Sakamoto
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan, R&D Division, AZWELL, Inc., 2-24-3, Sho, Ibaraki, Osaka 567-0806, Japan, and School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yumiko Yamamoto
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan, R&D Division, AZWELL, Inc., 2-24-3, Sho, Ibaraki, Osaka 567-0806, Japan, and School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Yamatodani
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan, R&D Division, AZWELL, Inc., 2-24-3, Sho, Ibaraki, Osaka 567-0806, Japan, and School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
166
|
Frisch C, Hasenöhrl RU, Huston JP. Memory improvement by post-trial injection of lidocaine into the tuberomammillary nucleus, the source of neuronal histamine. Neurobiol Learn Mem 1999; 72:69-77. [PMID: 10438648 DOI: 10.1006/nlme.1998.3903] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain histamine is exclusively contained within and released from neurons whose cell bodies are clustered in the tuberomammillary nucleus (TM) of the posterior hypothalamus. This experiment examined the effects of a transient inactivation of the TM on inhibitory avoidance learning. Rats with chronically implanted cannulae were tested on a 1-trial step-through avoidance task. Immediately following training, the rats received unilateral intra-TM infusions (0.5 microl) of lidocaine (5 or 20 microg). Control groups included vehicle-injected rats and a group given an injection of 20 microg lidocaine 5 h after training. When tested 24 h later, rats treated with 20 microg lidocaine exhibited longer step-through latencies than vehicle-treated controls, indicative of superior learning of the task. The failure of the delayed post-trial injection of lidocaine to significantly influence step-through latencies indicates that the compound influenced learning by modulating memory storage processes rather than by acting on performance variables during retrieval of the task. Thus, inactivation of the TM by lidocaine can exert facilitatory effects on mnemonic processing, which might be related to a temporary reduction of histaminergic activity during the early phase of memory consolidation.
Collapse
Affiliation(s)
- C Frisch
- Institute of Physiological Psychology & Center for Biological and Medical Research, University of Düsseldorf, Universitätsstrasse 1, Düsseldorf, D-40225, Germany.
| | | | | |
Collapse
|
167
|
Abstract
Antihistamines, available without prescription in many countries, are generally considered to be safe medications; however, the old first-generation H1 antagonists commonly cause adverse central nervous system (CNS) effects, even when administered in usual doses. Patients may not be aware of these effects and do not necessarily develop tolerance to them. In contrast, the new, second-generation H1 antagonists are relatively free from adverse effects in the CNS, primarily because they do not cross the blood-brain barrier and block the important neurotransmitter function of histamine. Most of the H1 antagonists in current use are unlikely to cause cardiac toxicity. There is no evidence that H1 antagonists, which have been approved by regulatory agencies, have carcinogenic, tumour-promoting, or teratogenic effects in humans.
Collapse
Affiliation(s)
- F E Simons
- Section of Allergy and Clinical Immunology, Department of Paediatrics and Child Health, University of Manitoba, Manitoba, Canada
| |
Collapse
|
168
|
Lai YY, Shalita T, Hajnik T, Wu JP, Kuo JS, Chia LG, Siegel JM. Neurotoxic N-methyl-D-aspartate lesion of the ventral midbrain and mesopontine junction alters sleep-wake organization. Neuroscience 1999; 90:469-83. [PMID: 10215152 PMCID: PMC8851893 DOI: 10.1016/s0306-4522(98)00429-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The dorsal regions of the midbrain and pons have been found to participate in sleep regulation. However, the physiological role of the ventral brainstem in sleep regulation remains unclear. We used N-methyl-D-aspartate-induced lesions of the ventral midbrain and pons to address this question. Unlike dorsal mesencephalic reticular formation lesions, which produce somnolence and electroencephalogram synchronization, we found that ventral midbrain lesions produce insomnia and hyperactivity. Marked increases in waking and decreases in slow wave sleep stage 1 (S1), stage 2 (S2) and rapid eye movement sleep were found immediately after the lesion. Sleep gradually increased, but never returned to baseline levels (baseline/month 1 post-lesion: waking, 30.6 +/- 4.58%/62.3 +/- 10.1%; S1, 5.1 +/- 0.74/3.9 +/- 1.91%; S2, 46.2 +/- 4.74%/23.1 +/- 5.47%; rapid eye movement sleep, 14.1 +/- 3.15%/7.2 +/- 5.42%). These changes are comparable in magnitude to those seen after basal forebrain lesions. Neuronal degeneration was found in the ventral rostral pons and midbrain, including the substantia nigra, ventral tegmental area, retrorubral nucleus, and ventral mesencephalic and rostroventral pontine reticular formation. We conclude that nuclei within the ventral mesencephalon and rostroventral pons play an important role in sleep regulation.
Collapse
Affiliation(s)
- Y Y Lai
- Department of Psychiatry, School of Medicine UCLA, and VAMC, Sepulveda, CA 91343, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Toyota H, Ito C, Yanai K, Sato M, Watanabe T. Histamine H1 receptor binding capacities in the amygdalas of the amygdaloid kindled rat. J Neurochem 1999; 72:2177-80. [PMID: 10217300 DOI: 10.1046/j.1471-4159.1999.0722177.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The histamine H1 receptor binding capacity of the amygdalas of amygdaloid kindled rats was studied. In the kindled nonstimulated amygdala, significant decreases in K(D) and B(max) values compared with those of control amygdala were found 1 week after the last kindled seizure. One month after the last kindled seizure, the decreased K(D) value was sustained in the kindled nonstimulated amygdala. This decreased Bmax value 1 week after the last kindled seizure in nonstimulated amygdala may partly and transiently contribute to kindled seizure susceptibility. The decreased K(D) value in nonstimulated amygdala observed until 1 month after the last kindled seizure indicates the long-lasting increment of binding affinity of the pyrilamine binding site of the histamine H1 receptor in the steady state of kindled seizure susceptibility.
Collapse
Affiliation(s)
- H Toyota
- Department of Psychiatry, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | |
Collapse
|
170
|
Kanjhan R, Housley GD, Burton LD, Christie DL, Kippenberger A, Thorne PR, Luo L, Ryan AF. Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990428)407:1<11::aid-cne2>3.0.co;2-r] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
171
|
Krause M, Stark H, Schunack W. Iododestannylation: an improved synthesis of [125I]iodoproxyfan, a specific radioligand of the histamine H3 receptor. J Labelled Comp Radiopharm 1999. [DOI: 10.1002/(sici)1099-1344(199707)39:7<601::aid-jlcr2>3.0.co;2-v] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
172
|
Major changes in the brain histamine system of the ground squirrel Citellus lateralis during hibernation. J Neurosci 1999. [PMID: 10024366 DOI: 10.1523/jneurosci.19-05-01824.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hibernation in mammals such as the rodent hibernator Citellus lateralis is a physiological state in which CNS activity is endogenously maintained at a very low, but functionally responsive, level. The neurotransmitter histamine is involved in the regulation of diurnal rhythms and body temperature in nonhibernators and, therefore, could likely play an important role in maintaining the hibernating state. In this study, we show that histamine neuronal systems undergo major changes during hibernation that are consistent with such a role. Immunohistochemical mapping of histaminergic fibers in the brains of hibernating and nonhibernating golden-mantled ground squirrels (C. lateralis) showed a clear increase in fiber density during the hibernating state. The tissue levels of histamine and its first metabolite tele-methylhistamine were also elevated throughout the brain of hibernating animals, suggesting an increase in histamine turnover during hibernation, which occurs without an increase in histidine decarboxylase mRNA expression. This hibernation-related apparent augmentation of histaminergic neurotransmission was particularly evident in the hypothalamus and hippocampus, areas of importance to the control of the hibernating state, in which tele-methylhistamine levels were increased more than threefold. These changes in the histamine neuronal system differ from those reported for the metabolic pattern in other monoaminergic systems during hibernation, which generally indicate a decrease in turnover. Our results suggest that the influence of histamine neuronal systems may be important in controlling CNS activity during hibernation.
Collapse
|
173
|
Stevens DR, Kuramasu A, Haas HL. GABAB-receptor-mediated control of GABAergic inhibition in rat histaminergic neurons in vitro. Eur J Neurosci 1999; 11:1148-54. [PMID: 10103111 DOI: 10.1046/j.1460-9568.1999.00519.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The onset of slow wave sleep may require an inhibition of histaminergic neurons by GABAergic afferents from the ventrolateral preoptic area. We have utilized electrophysiological methods in an in vitro brain slice preparation to examine the role of GABAB receptor activation in GABAergic synaptic inhibition in histaminergic neurons of the tuberomammillary nucleus. Tetrodotoxin blocked evoked GABAergic IPSPs but not miniature IPSPs or IPSCs. Evoked IPSPs varied in amplitude and exhibited failures of transmission. Baclofen reduced the amplitude of evoked IPSPs in all experiments and often caused an increase in failures of transmission. Responses elicited by application of exogenous GABA were insensitive to baclofen treatment. The action of baclofen was blocked by CGP-35348 (100 microm), a GABAB receptor antagonist, which also enhanced the amplitude of evoked IPSPs. The frequency of spontaneous and miniature IPSPs and IPSCs was reduced by baclofen. However, the amplitude distribution of mIPSCs was not altered. We conclude that GABA release onto TM neurons is under presynaptic control via GABAB receptors. This presynaptic control of transmission to tuberomammillary neurons may reduce inhibition, increasing histamine release and enhancing wakefulness.
Collapse
Affiliation(s)
- D R Stevens
- Physiologisches Institut II, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | |
Collapse
|
174
|
Ito C, Shen H, Toyota H, Kubota Y, Sakurai E, Watanabe T, Sato M. Effects of the acute and chronic restraint stresses on the central histaminergic neuron system of Fischer rat. Neurosci Lett 1999; 262:143-5. [PMID: 10203252 DOI: 10.1016/s0304-3940(99)00052-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of acute and chronic restraint stresses on the brain histamine level and histamine N-methyltransferase activity in Fischer rat brain were studied. The acute restraint stress increased the histamine levels in the diencephalon and nucleus accumbens, and increased the histamine N-methyltransferase activities in the nucleus accumbens and striatum. The chronic restraint stress also increased histamine N-methyltransferase activities in the nucleus accumbens and striatum. These results indicate that the acute and chronic restraint stresses increase the brain histamine turnover, which may partly relate to the vulnerability for stress-induced anxiety and depression.
Collapse
Affiliation(s)
- C Ito
- Department of Psychiatry, Tohoku University, Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
175
|
Itoh E, Fujimiya M, Inui A. Thioperamide, a histamine H3 receptor antagonist, powerfully suppresses peptide YY-induced food intake in rats. Biol Psychiatry 1999; 45:475-81. [PMID: 10071721 DOI: 10.1016/s0006-3223(98)00044-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Whether or not peptide YY (PYY)-induced hyperphagia is modified by the histaminergic system in the brain is not yet known. METHODS We investigated the effect on feeding of intracerebroventricular (ICV) administration of a specific histamine H3 receptor antagonist prior to ICV administration of PYY in rats. RESULTS PYY (1, 3, and 10 micrograms/10 microL) strongly induced feeding behavior in a dose-dependent manner in sated rats. The 4-hour food intake induced by 3 micrograms/10 microL of PYY was equal to that induced by a 16-hour fast. The ICV administration of thioperamide (40.8, 122.4, and 408.5 micrograms/10 microL) did not suppress the 4-hour food intake induced by 16-hour fasting; however, thioperamide produced dose-dependent and strong inhibition of hyperphagia induced by a 3-microgram dose of PYY. CONCLUSIONS These results suggest that the effect of PYY on appetite is different than that induced by fasting and may involve a histaminergic mechanism.
Collapse
Affiliation(s)
- E Itoh
- Pharmaceutical Research Department, Ube Research Lab, Japan
| | | | | |
Collapse
|
176
|
Goodchild RE, Court JA, Hobson I, Piggott MA, Perry RH, Ince P, Jaros E, Perry EK. Distribution of histamine H3-receptor binding in the normal human basal ganglia: comparison with Huntington's and Parkinson's disease cases. Eur J Neurosci 1999; 11:449-56. [PMID: 10051746 DOI: 10.1046/j.1460-9568.1999.00453.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is now widely recognized that histamine acts as a neurotransmitter in the mammalian central nervous system. Three selective histamine receptors have been described, all of which are present in the basal ganglia. This study is a detailed, quantitative, autoradiographical examination of the densities of histamine H3-receptors in coronal sections of human basal ganglia, using the selective ligand [3H]-(R)-alpha-methylhistamine. [3H]-(R)-alpha-methylhistamine binding was highest within the external and internal segments of the globus pallidus together with the substantia nigra. High levels were also found in the striatum, where density was significantly higher (P < 0.05) at a pre-, as opposed to post-, anterior commissure coronal level. Within the striatum, binding was noticeably higher in both the nucleus accumbens and acetylcholinesterase-deficient striosomes, while being undetectable in the subthalamic nucleus and very low in both the ventroanterior and ventrolateral thalamic nuclei. An intermediate level of binding, often with a laminar distribution, was seen in the insular cortex. [3H]-(R)-alpha-methylhistamine binding was also examined in both Parkinson's disease and Huntington's disease. No difference from control receptor density was found in any area examined in Parkinson's disease, while values were significantly lower in caudate (P < 0.001), putamen (P < 0.001), external (P < 0.001) and internal (P < 0.05) globus pallidus, although not the insular cortex, in Huntington's disease cases. These data suggest that H3-receptors are present upon striatonigral projection neurons of the direct and indirect movement pathways thus providing histaminergic control over the activity of both these circuits.
Collapse
Affiliation(s)
- R E Goodchild
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
Immunohistochemistry is used to demonstrate histamine-immunoreactivity in the CNS of spiders. We found histamine-immunoreactivity in the photoreceptors of different spiders. Therefore, we suggest that histamine is a neurotransmitter of photoreceptors in all arthropods, since it is also known to occur in the photoreceptors of the other main arthropod taxa (Merostomata, Crustacea, and Insecta). We also describe a system of only six omnisegmental histamine-immunoreactive neurons within the central nervous system. These histamine-immunoreactive neurons can be divided into two subgroups: a dorsal system with two cells per hemisphere and a ventral system with only one cell per hemisphere. All six cells have extended arborizations in both the motor and the sensory areas of all neuromeres in the suboesophageal ganglionic mass. In contrast to araneomorph spiders, two additional sets of histamine-immunoreactive neurons were detected in mygalomorph spiders. The first set consists of seventeen cells with their cell bodies located in the cheliceral ganglion and projecting to central areas of the protocerebrum. The second set contains many if not all sensory projections from the tarsal organs on all eight legs and the pedipalps to the Blumenthal neuropil.
Collapse
Affiliation(s)
- A Schmid
- Biozentrum, Institut für Zoologie, Universität Wien, Austria
| | | |
Collapse
|
178
|
Jansen FP, Mochizuki T, Yamamoto Y, Timmerman H, Yamatodani A. In vivo modulation of rat hypothalamic histamine release by the histamine H3 receptor ligands, immepip and clobenpropit. Effects of intrahypothalamic and peripheral application. Eur J Pharmacol 1998; 362:149-55. [PMID: 9874165 DOI: 10.1016/s0014-2999(98)00739-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated the effect of the new potent and selective histamine H3 receptor agonist, immepip, and the histamine H3 receptor antagonist, clobenpropit, on in vivo neuronal histamine release from the anterior hypothalamic area of urethane-anesthetized rats, using microdialysis. Intrahypothalamic perfusion with immepip at concentrations of 1 and 10 nM reduced histamine release to 75% and 35% of its basal level, respectively. Peripheral injection of immepip (5 mg/kg) caused a sustained decrease in histamine release of 50%. Clobenpropit potently increased histamine release after intrahypothalamic perfusion. The maximal increase in histamine release was 2-fold, observed at a concentration of 10 nM clobenpropit. Peripheral injection of clobenpropit (5-15 mg/kg) increased histamine release to about 150% of the basal value. A more marked increase in histamine release was found after injection of the histamine H3 receptor antagonist, thioperamide (5 mg/kg). In conclusion, intrahypothalamic perfusion of the histamine H3 receptor agonist, immepip and the histamine H3 receptor antagonist, clobenpropit, potently and oppositely modulated in vivo histamine release from the anterior hypothalamic area. The decreased histamine release after peripheral injection of immepip indicates that this novel agonist readily crosses the blood-brain barrier, making it a potential candidate for in vivo histamine H3 receptor studies. The differential increase in histamine release after peripheral injection of clobenpropit and thioperamide is discussed.
Collapse
Affiliation(s)
- F P Jansen
- Leiden/Amsterdam Center for Drug Research, Department of Pharmacochemistry, Faculty of Chemistry, Vrije Universiteit, Amsterdam, Netherlands.
| | | | | | | | | |
Collapse
|
179
|
Eriksson KS, Peitsaro N, Karlstedt K, Kaslin J, Panula P. Development of the histaminergic neurons and expression of histidine decarboxylase mRNA in the zebrafish brain in the absence of all peripheral histaminergic systems. Eur J Neurosci 1998; 10:3799-812. [PMID: 9875358 DOI: 10.1046/j.1460-9568.1998.00394.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The histamine-storing neural system in adult and developing zebrafish (Danio rerio) was studied with immunocytochemical and chromatographical methods. Furthermore, the gene for histidine decarboxylase was partially cloned and its expression mapped with in situ hybridization. The histamine-storing neurons were only seen in the caudal hypothalamus, around the posterior recess of the diencephalic ventricle. Almost all parts of the brain, except the cerebellum, contained at least some histamine-immunoreactive fibres. The ascending projections had the rostral part of the dorsal telencephalon as a major target. Descending projections terminated in the torus semicircularis, central grey and inferior olive. A prominent innervation of the optic tectum, which has not been reported in other fish, was seen. The in situ hybridization gave a strong signal in cells with the same anatomical position as the histamine-immunoreactive neurons. The first histamine-immunoreactive neurons appeared in the ventral hypothalamus at about 85 h post-fertilization, and at 90 h, immunoreactive fibres terminated in the dorsal telencephalon. The embryonic histamine production described in mammals was lacking in this species. Both immunocytochemical and chromatographical studies indicated that histamine is absent in all other parts of the zebrafish body, and no specific hybridization was seen in any other part of the fish than the hypothalamus. The zebrafish could therefore be a very useful model for pharmacological in vivo studies of the histaminergic system of the brain, since the powerful peripheral actions of histamine should be lacking in this species.
Collapse
Affiliation(s)
- K S Eriksson
- Department of Biology, Abo Akademi University, Finland.
| | | | | | | | | |
Collapse
|
180
|
Takeshita Y, Watanabe T, Sakata T, Munakata M, Ishibashi H, Akaike N. Histamine modulates high-voltage-activated calcium channels in neurons dissociated from the rat tuberomammillary nucleus. Neuroscience 1998; 87:797-805. [PMID: 9759967 DOI: 10.1016/s0306-4522(98)00152-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of histamine on high-voltage-activated Ca2+ channels in the histaminergic neurons acutely dissociated from the rat tuberomammillary nucleus were investigated in the nystatin-perforated patch recording mode under voltage-clamp conditions. Histamine suppressed the high-voltage-activated Ca2+ channel currents in neurons which were positive for histidine decarboxylase with immunocytochemistry. The half-maximum inhibitory concentration and maximum inhibition were 2.6 x 10(-7) M and 16.6+/-1.90%, respectively. An H3 receptor agonist, R(-)-alpha-methylhistamine, mimicked the response to histamine, and thioperamide, an H3 receptor antagonist, inhibited the response to histamine. On the other hand, neither 2-methylhistamine, an H1 receptor agonist, nor dimaprit, an H2 receptor agonist, had a significant effect on the Ca2+ channel currents. Pretreatment with pertussis toxin blocked the inhibitory effect of histamine on Ca2+ channels, suggesting the involvement of Gi/Go proteins in the action of histamine. Omega-conotoxin-GVIA, omega-agatoxin-IVA, nicardipine, and omega-conotoxin-MVIIC blocked the high-voltage-activated Ca2+ channel currents by 15.6, 4.3, 27.1, and 31.2% of the total current, respectively, suggesting the existence of N-, P-, L-, and Q-type Ca2+ channels. A current that was insensitive to these blockers was also found. This residual current, "R-type", was completely suppressed by the addition of 200 microM Cd2+. Histamine significantly inhibited both the N- and P-type current components among these five types of Ca2+ channel currents. We concluded that histamine suppresses the N- and P-type Ca2+ channels in histaminergic neurons through an H3 receptor which is linked to a pertussis toxin-sensitive G-protein.
Collapse
Affiliation(s)
- Y Takeshita
- Department of Internal Medicine I, Faculty of Medicine, Oita Medical University, Japan
| | | | | | | | | | | |
Collapse
|
181
|
Iwase M, Kanamaru M, Kanamaru A, Homma I. Central histaminergic neurons regulate rabbit tracheal tension through the cervical sympathetic nerve. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 74:23-32. [PMID: 9858121 DOI: 10.1016/s0165-1838(98)00121-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We previously showed that stimulation of the posterior hypothalamus decreases tracheal tension and involves central histaminergic neurons. In the present study, we reveal that central histaminergic neurons project to the rostral ventrolateral medulla and affect cervical sympathetic nervous activity in rabbits. Administration of histamine into the fourth ventricle increased cervical sympathetic nervous activity and decreased tracheal tension. These effects were inhibited by administration of a histamine H receptor antagonist, pyrilamine, into the fourth ventricle. Unilateral injection of DL-homocysteic acid into the tuberomammillary nucleus increased cervical sympathetic nervous activity, an effect was antagonized by bilateral injection of pyrilamine into the rostral ventrolateral medulla. The pulse correlogram between the stimulation pulse applied to the tuberomammillary nucleus and the cervical sympathetic nerve activity showed a mode at 150 to 200 ms, which was reduced by pyrilamine administration into the fourth ventricle. Fibers anterogradely labeled by Phaseolus vulgaris leucoagglutinin (PHA-L) injected into the tuberomammillary nucleus were distributed in the A1, A2, C1, and C2 areas which are determined by tyrosine hydroxylase-immunohistochemistry. PHA-L positive neurons were in close contact with tyrosine hydroxylase-immunoreactive neurons in these four areas. Cell bodies in the tuberomammillary nucleus retrogradely labeled with fluorogold from the rostral ventrolateral medulla were immunoreactive with histamine. These results suggest that an excitatory efferent pathway projects from the tuberomammillary nucleus to the cervical sympathetic nerve and that the histaminergic neurons of this pathway influence tracheal tension through the rostral ventrolateral medulla.
Collapse
Affiliation(s)
- M Iwase
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
182
|
Yanai K, Son LZ, Endou M, Sakurai E, Nakagawasai O, Tadano T, Kisara K, Inoue I, Watanabe T, Watanabe T. Behavioural characterization and amounts of brain monoamines and their metabolites in mice lacking histamine H1 receptors. Neuroscience 1998; 87:479-87. [PMID: 9740406 DOI: 10.1016/s0306-4522(98)00167-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Behavioural assessments were made of mutant mice lacking histamine H1 receptors to reveal the function of H1 receptors in the behaviour of mice. Exploratory behaviour of mice in a new environment was examined to discover whether the absence of H1 receptors in mice affects actions relating to their emotions. The H1 receptor-deficient mice showed a significant decrease in ambulation in an open field and on an activity wheel. Cognitive functions and anxiety were examined using passive avoidance response test and the elevated plus-maze test, respectively. The passive avoidance test did not show any change in latency. The elevated plus-maze test revealed that the transfer latency of the mutant mice was significantly prolonged, indicating that H1 receptors are partly associated with the control of anxiety. Aggressive behaviour was examined by a resident-intruder aggression test. When confronted with an intruder, the mutant mice attacked the intruder significantly slower and less frequently than did wild-type mice after a six-month isolation period. A formalin test and a forced swimming test were used to evaluate the nociceptive response and depressive or despairing state, respectively, of both groups. The mutant mice showed a significant decrease of nociceptive response in the late phase without affecting the early phase. There was no significant difference in the forced swimming test between the two groups. The brain content of monoamines and their metabolites was measured in the H1 receptor null and wild-type mice. The turnover rate of 5-hydroxytryptamine defined by the ratio of 5-hydroxyindoleacetic acid and 5-hydroxytryptamine was significantly increased in the cerebral cortex and hippocampus of H1 receptor null mice. These results support the previous pharmacological findings that histamine modulates various neurophysiological functions such as locomotor activity, emotion, memory and learning, nociception and aggressive behaviour through H1 receptors.
Collapse
Affiliation(s)
- K Yanai
- Department of Pharmacology I, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Rempel-Clower NL, Barbas H. Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J Comp Neurol 1998; 398:393-419. [PMID: 9714151 DOI: 10.1002/(sici)1096-9861(19980831)398:3<393::aid-cne7>3.0.co;2-v] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prefrontal cortices have been implicated in autonomic function, but their role in this activity is not well understood. Orbital and medial prefrontal cortices receive input from cortical and subcortical structures associated with emotions. Thus, the prefrontal cortex may be an essential link for autonomic responses driven by emotions. Classic studies have demonstrated the existence of projections between prefrontal cortex and the hypothalamus, a central autonomic structure, but the topographic organization of these connections in the monkey has not been clearly established. We investigated the organization of bidirectional connections between these areas in the rhesus monkey by using tracer injections in orbital, medial, and lateral prefrontal areas. All prefrontal areas investigated received projections from the hypothalamus, originating mainly in the posterior hypothalamus. Differences in the topography of hypothalamic projection neurons were related to both the location and type of the target cortical area. Injections in lateral eulaminate prefrontal areas primarily labeled neurons in the posterior hypothalamus that were equally distributed in the lateral and medial hypothalamus. In contrast, injections in orbitofrontal and medial limbic cortices labeled neurons in the anterior and tuberal regions of the hypothalamus and in the posterior region. Projection neurons targeting orbital limbic cortices were more prevalent in the lateral part of the hypothalamus, whereas those targeting medial limbic cortices were more prevalent in the medial hypothalamus. In comparison to the ascending projections, descending projections from prefrontal cortex to the hypothalamus were highly specific, originating mostly from orbital and medial prefrontal cortices. The ascending and descending connections overlapped in the hypothalamus in areas that have autonomic functions. These results suggest that specific orbitofrontal and medial prefrontal areas exert a direct influence on the hypothalamus and may be important for the autonomic responses evoked by complex emotional situations.
Collapse
Affiliation(s)
- N L Rempel-Clower
- Department of Health Sciences, Boston University, Massachusetts 02215, USA.
| | | |
Collapse
|
184
|
Toyota H, Ito C, Ohsawa M, Sakurai E, Sato M, Watanabe T. Decreased central histamine in the amygdaloid kindling rats. Brain Res 1998; 802:241-6. [PMID: 9748604 DOI: 10.1016/s0006-8993(98)00637-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study was conducted to elucidate the role of central histamine (HA) in seizure susceptibility. We stimulated the left amygdala of rats to produce amygdaloid kindling. We sacrificed rats 1 h, 1 week and 1 month after the last kindled seizure, and measured the histamine contents and the histidine decarboxylase (HDC) activities of various brain regions. One hour after the last kindled seizure, we found significant decreases in HA levels in the bilateral amygdala, hippocampus and diencephalon in the kindled group. The HDC activities of the bilateral amygdala and diencephalon were lower in the kindled group than in the control group. One week after the last kindled seizure, we also found a significant decrease in the HA level in the bilateral amygdala. No significant change was found in HA content or HDC activity 1 month after the last kindled seizure. These results suggest that kindling suppresses HA synthesis and that the reduced HA content is maintained until 1 week after the last kindled seizure. The reduced HA may play a role in the acquired kindled seizure susceptibility.
Collapse
Affiliation(s)
- H Toyota
- Department of Psychiatry, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
185
|
Meyer JL, Hall AC, Harrington ME. Histamine phase shifts the hamster circadian pacemaker via an NMDA dependent mechanism. J Biol Rhythms 1998; 13:288-95. [PMID: 9711504 DOI: 10.1177/074873098129000129] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The SCN acts as the central pacemaker for circadian rhythms in mammals. Histamine has been shown to affect circadian rhythms both in vivo and in vitro. We investigated the mechanism by which histamine phase shifts circadian rhythms in vitro. Hypothalamic slices containing the SCN were prepared from golden hamsters, and spontaneous firing rates of individual cells were recorded on the second day in vitro. Application of histamine (1 microM-10 mM) at the extrapolated time of 2 h after lights off (ZT 14) on day 1 in vitro delayed the time of peak firing in a dose-dependent manner. Pre-exposure to the N-methyl-D-aspartate (NMDA) receptor antagonist (+/-)-2-amino-5-phosphonopentanoic acid (AP-5; 100 microM-1 mM) 5 min before histamine (1 microM) was applied to the slice blocked the phase-delaying effects of histamine. Application of the H1 blocker mepryamine (100 nM) or the H2 blocker cimetidine (10 microM) followed by histamine had no effect on the phase delay induced by histamine. In whole cell recordings from acutely dissociated neurons of hamster SCN, histamine (50 microM) was shown to potentiate NMDA-evoked currents by 52 +/- 12%. These experiments demonstrate that histamine phase shifts of the circadian clock are dependent on NMDA receptor activation and that histamine can directly potentiate NMDA currents in SCN neurons. Histamine may alter circadian clock function by acting directly on NMDA receptors, possibly via binding to the polyamine site.
Collapse
Affiliation(s)
- J L Meyer
- Department of Psychology, Smith College, Northampton, MA 01063, USA
| | | | | |
Collapse
|
186
|
Hashimoto Y, Hashimoto Y, Hirota K, Matsuki A. Inhibited hypothalamic histamine metabolism during isoflurane and sevoflurane anesthesia in rats. Acta Anaesthesiol Scand 1998; 42:858-63. [PMID: 9698965 DOI: 10.1111/j.1399-6576.1998.tb05334.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Histamine is most densely distributed in the hypothalamus and has an important effect on consciousness or wakefulness. It has been little considered whether general anesthetics could exert their effects on hypothalamic histamine metabolism. The present study was conducted to investigate the effects of isoflurane and sevoflurane anesthesia on hypothalamic histamine metabolism. METHODS Sixty male Wistar rats were divided equally into isoflurane and sevoflurane anesthesia groups. Each group was divided into three equal sub-groups: the control, anesthesia and recovery groups. The rats of the anesthesia and recovery groups were exposed to either 2% isoflurane or 3% sevoflurane for 30 min. The recovery group was kept in air for 30 min after anesthesia. The rats were decapitated to dissect out hypothalamus which was divided into the fore and rear portion. The contents of histamine and 1-methylhistamine, which is a main histamine metabolite, were determined by high-performance liquid chromatography. The obtained data were analyzed by one-way analysis of variance followed by Bonferoni's test. RESULTS Histamine contents of the anterior and posterior hypothalamus in both isoflurane and sevoflurane groups increased significantly during the anesthesia and 1-methylhistamine contents of the anterior and posterior hypothalamus in sevoflurane group increased remarkably after anesthesia. The increases of histamine contents supposedly reflected inhibited histamine metabolism and the increases of 1-methylhistamine would be caused by acceleration of histamine degradation. CONCLUSIONS Histamine metabolism was inhibited during both isoflurane and sevoflurane anesthesia and accelerated only in the posterior hypothalamus during the emergence from these anesthetics.
Collapse
MESH Headings
- Analysis of Variance
- Anesthesia Recovery Period
- Anesthesia, Inhalation
- Anesthetics, Inhalation/administration & dosage
- Animals
- Blood Pressure/drug effects
- Carbon Dioxide/blood
- Chromatography, High Pressure Liquid
- Consciousness/drug effects
- Histamine/analysis
- Histamine/metabolism
- Hypothalamus/chemistry
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Hypothalamus, Anterior/chemistry
- Hypothalamus, Anterior/drug effects
- Hypothalamus, Anterior/metabolism
- Hypothalamus, Posterior/chemistry
- Hypothalamus, Posterior/drug effects
- Hypothalamus, Posterior/metabolism
- Isoflurane/administration & dosage
- Male
- Methyl Ethers/administration & dosage
- Methylhistamines/analysis
- Methylhistamines/metabolism
- Oxygen/blood
- Rats
- Rats, Wistar
- Sevoflurane
- Wakefulness/drug effects
Collapse
Affiliation(s)
- Y Hashimoto
- Department of Anesthesiology, University of Hirosaki School of Medicine, Japan
| | | | | | | |
Collapse
|
187
|
Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 1998. [PMID: 9614245 DOI: 10.1523/jneurosci.18-12-04705.1998] [Citation(s) in RCA: 435] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tuberomammillary nucleus (TMN) is the major source of histaminergic innervation of the mammalian brain and is thought to play a major role in regulating wake-sleep states. We recently found that sleep-active neurons in the ventrolateral preoptic nucleus (VLPO) provide a major input to the TMN, but the specificity of this projection and the neurotransmitters involved remain unknown. In this study, we examined the relationship of VLPO efferents to the TMN using both retrograde and anterograde tracing, combined with immunocytochemistry. We found that the descending projection from the VLPO selectively targets the cell bodies and proximal dendrites of the histaminergic TMN. In addition, VLPO axons could be traced into the brainstem, where they provided terminals in the the serotoninergic dorsal and median raphe nuclei, and the core of the noradrenergic locus coeruleus. Approximately 80% of the VLPO neurons that were retrogradely labeled by tracer injections including the TMN were immunoreactive either for galanin or for glutamic acid decarboxylase (GAD), the synthetic enzyme for GABA. Virtually all of the galaninergic neurons in the VLPO were also GAD positive. Our results indicate that the VLPO may provide inhibitory GABAergic and galaninergic inputs to the cell bodies and proximal dendrites of the TMN and other components of the ascending monoaminergic arousal system. Because these cell groups are simultaneously inhibited during sleep, the VLPO sleep-active neurons may play a key role in silencing the ascending monoaminergic arousal system during sleep.
Collapse
|
188
|
Dartsch C, Persson L. Recombinant expression of rat histidine decarboxylase: generation of antibodies useful for western blot analysis. Int J Biochem Cell Biol 1998; 30:773-82. [PMID: 9722982 DOI: 10.1016/s1357-2725(98)00047-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Histidine decarboxylase catalyses the formation of histamine, an important biological messenger. In spite of the essential biological functions exerted by histamine the knowledge about the mechanisms involved in the regulation of histidine decarboxylase is rather limited. This is most likely due to the limited supply of suitable tools, including highly specific antibodies. In the present study we describe the production and characterisation of specific antisera against rat histidine decarboxylase using recombinant protein synthesised in a bacterial expression system. The antisera were shown to effectively immunoprecipitate histidine decarboxylase activity in extracts of fetal rat liver as well as to detect the histidine decarboxylase protein by Western blot analysis of COS-7 cells expressing recombinant rat histidine decarboxylase. The results demonstrate the successful production of highly specific antisera to histidine decarboxylase which may become valuable tools in future studies of the structure and function of this enzyme.
Collapse
Affiliation(s)
- C Dartsch
- Department of Physiology and Neuroscience, University of Lund, Sweden
| | | |
Collapse
|
189
|
Manahan-Vaughan D, Reymann KG, Brown RE. In vivo electrophysiological investigations into the role of histamine in the dentate gyrus of the rat. Neuroscience 1998; 84:783-90. [PMID: 9579783 DOI: 10.1016/s0306-4522(97)00540-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drugs acting at the three known classes of histamine receptors were injected intracerebroventricularly into the rat. The effects of these drugs upon synaptic potentials recorded from the dentate gyrus of the freely-moving rat were determined. Population spikes and field excitatory postsynaptic potentials were recorded from the granule cell layer of the dentate gyrus following stimulation of the perforant path. Drugs, dissolved in 0.9% NaCl were applied into the lateral cerebral ventricle in a volume of 5 microl over a period of 6 min. The histamine H1 receptor antagonist mepyramine (0.4 or 0.8 microg) had no significant effect on population spikes or field excitatory postsynaptic potentials. In contrast the H2 receptor antagonist cimetidine (3.25, 6.5 or 13 microg) showed a biphasic effect. At the lower doses (3.25 or 6.5 microg) a small (15%) depression of the field excitatory postsynaptic potentials and population spikes was observed beginning about 1 h following the infusion. At the highest dose tested (13 microg) a marked increase of the population spike was observed beginning immediately following the infusion and lasting for 90 min. Application of the H3 receptor agonist R-alpha-methylhistamine (0.2 microg) depressed the field excitatory postsynaptic potentials (15% at 4 h post-injection) and even more strongly the population spike (50%). Surprisingly, at higher doses (0.4 and 0.8 microg) no effect was seen. The H3 receptor antagonist thioperamide (0.41 and 0.82 microg) did not cause an increase in synaptic potentials but rather at the highest dose a small depression occurred at later time points (2-4 h following the infusion). At the lower dose (0.41 microg) thioperamide blocked the effect of R-alpha-methylhistamine (0.2 microg). These results show that the histaminergic system modulates information flow through the dentate gyrus in a complex manner involving both histamine H2 and H1 receptors.
Collapse
Affiliation(s)
- D Manahan-Vaughan
- Department of Neurophysiology, Institute for Neurobiology, Magdeburg, Germany
| | | | | |
Collapse
|
190
|
Kanamaru M, Iwase M, Homma I. Autoregulation of histamine release in medulla oblongata via H3-receptors in rabbits. Neurosci Res 1998; 31:53-60. [PMID: 9704978 DOI: 10.1016/s0168-0102(98)00023-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The release of histamine (HA) from the rostral ventrolateral medulla (RVL), the raphe nuclei (nR), and the solitary nucleus (nTS) was investigated in anesthetized rabbits using microdialysis and high-performance liquid chromatography. HA release upon electrical stimulation of the posterior hypothalamus (PH), where histaminergic cell bodies are located, was increased to 168% of the baseline level in the RVL (n = 6), 139% of the baseline level in the nR (n = 5), and 166% of the baseline level in the nTS (n = 4). Upon perfusion of thioperamide, an H3-receptor antagonist, via a microdialysis probe, HA release from the RVL, nR and nTS increased. The increase in HA release from the RVL, nR and nTS following thioperamide perfusion was suppressed by co-perfusion of thioperamide and an H3-receptor agonist, imetit. We found that HA is released from the RVL, nR and nTS, that the HA release from all three areas is increased upon stimulation of the PH, and that the HA release is locally influenced in opposite directions by thioperamide and imetit. These results suggest that HA release in the medulla oblongata is controlled by the PH and that H3-receptors participate in the autoregulation of HA release by providing negative feedback locally. Autoregulation of HA release via H3-receptors may be important for maintaining tonic output to the sympathetic nervous system.
Collapse
Affiliation(s)
- M Kanamaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
191
|
Weiler HT, Hasenöhrl RU, van Landeghem AA, van Landeghem M, Brankack J, Huston JP, Haas HL. Differential modulation of hippocampal signal transfer by tuberomammillary nucleus stimulation in freely moving rats dependent on behavioral state. Synapse 1998; 28:294-301. [PMID: 9517838 DOI: 10.1002/(sici)1098-2396(199804)28:4<294::aid-syn5>3.0.co;2-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tuberomammillary histamine neurons (TM) in the posterior hypothalamus project to extensive parts of the brain, including the hippocampal formation. The purpose of the present experiments was to investigate whether activation of the TM modulates signal transfer from the perforant pathway (PP) or ventral hippocampal commissure (VHC) to the dentate gyrus (DG) in freely moving rats. Paired pulses of electrical stimulation were delivered to PP or VHC, and evoked field potentials (fEPSPs and pop spikes) were recorded in the DG. Before activating PP or VHC, the TM was triggered by electrical stimulation. Experimentation was performed during four behavioral conditions: exploration, grooming, awake immobility, and slow-wave sleep. Electrical activation of the TM was found to modify dentate fEPSPs evoked by PP or VHC stimulation without generating a field potential by itself. Train stimulation of the TM (100 Hz, 500 ms) preceding paired pulses on the hippocampus by 50 ms decreased dentate fEPSPs in dependence of the ongoing behavior and the pathway stimulated. During exploration but not consummatory behavior, the PP signal was reduced when preceded by TM stimulation; during consummatory behavior but not exploration, the VHC signal was reduced. In contrast to other hippocampal afferents which increase pop spikes but leave fEPSPs unchanged, TM stimulation decreased dentate fEPSPs without affecting pop-spike activity. Thus, the TM-histaminergic system seems to modulate signal processing in the dentate gyrus in a specific way, exerting an inhibitory action on the entorhinal input only during learning-related exploratory behavior.
Collapse
Affiliation(s)
- H T Weiler
- Institute of Neurophysiology, Heinrich-Heine-University of Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
192
|
Sakai N, Sakurai E, Sakurai E, Yanai K, Mirua Y, Watanabe T. Depletion of brain histamine induced by alpha-fluoromethylhistidine enhances radial maze performance in rats with modulation of brain amino acid levels. Life Sci 1998; 62:989-94. [PMID: 9515556 DOI: 10.1016/s0024-3205(98)00019-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We examined the effects of repeated administration of (S)-alpha-fluoromethylhistidine (FMH), a specific inhibitor of histidine decarboxylase (HDC), on radial maze performance and brain contents of histamine and amino acids in rats. By daily subcutaneous (s.c.) administration of FMH (100 mg/kg), rats showed significant enhancement of a radial maze performance without changes in locomotion. Six days after FMH treatment, the histamine levels both in the cerebral cortex and diencephalon decreased significantly. However, the glutamate and glycine levels significantly increased in the cerebral cortex and hippocampus. These results suggest that FMH enhances the acquisition phase of radial maze study with the increases in glutamate and glycine levels in the cerebral cortex and hippocampus of rats.
Collapse
Affiliation(s)
- N Sakai
- Department of Pharmacology I, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
193
|
Sarker MH, Easton AS, Fraser PA. Regulation of cerebral microvascular permeability by histamine in the anaesthetized rat. J Physiol 1998; 507 ( Pt 3):909-18. [PMID: 9508849 PMCID: PMC2230814 DOI: 10.1111/j.1469-7793.1998.909bs.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The permeability response of slightly leaky pial venular capillaries to histamine was investigated using the single microvessel occlusion technique. 2. Histamine dose-response curves showed that concentrations between 5 nm and 5 microM increased permeability, while concentrations from 50 microM to 5 mM reduced it. 3. The H2 receptor antagonist cimetidine (2 microM) blocked the effects of lower concentrations of histamine, while the H1 receptor antagonist mepyramine (3 nM) blocked those of higher concentrations of histamine. 4. The effects of lower doses of histamine were mimicked by the H2 receptor agonist dimaprit, and the effects of higher doses of histamine were mimicked by the H1 receptor agonist alpha-2-(2-aminoethyl)pyridine (AEP). 5. Low concentrations of histamine, which normally increase the permeability of Lucifer Yellow (PLY), reduced it when co-applied with the phosphodiesterase 4 (PDE4) inhibitor rolipram. Rolipram also potentiated the response to AEP, but had no effect on that to dimaprit. 6. The effects of dimaprit were blocked by reducing extracellular Ca2+ from 2.5 mM to nominally Ca2+ free, or by applying the calcium entry blocker SKF 96365.
Collapse
Affiliation(s)
- M H Sarker
- Vascular Biology Research Centre, Physiology Group, Biomedical Sciences Division, King's College London, Campden Hill Road, London W8 7AH, UK
| | | | | |
Collapse
|
194
|
Yanovsky Y, Haas HL. Histamine increases the bursting activity of pyramidal cells in the CA3 region of mouse hippocampus. Neurosci Lett 1998; 240:110-2. [PMID: 9486484 DOI: 10.1016/s0304-3940(97)00925-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An excitatory action of histamine was investigated by intracellular recording in the CA3 region of hippocampal slices. Bath application of histamine or impromidine, a H2 receptor agonist, had the following effects: (1) a depolarisation in 60% and no changes in membrane potential in 40% of the CA3 pyramids; (2) single cell firing and burst activity were evoked or more than doubled when spontaneously present; (3) the bursts were prolonged and often followed by afterdischarges instead of the normal afterhyperpolarisations (AHPs); (4) synaptic stimulation evoked large bursts instead of excitatory synaptic potentials (EPSPs) and primary burst responses became prolonged. CA3 bursts may play a decisive role in memory trace formation, their facilitation and potentiation is in keeping with a positive role of the histaminergic system in attention and learning.
Collapse
Affiliation(s)
- Y Yanovsky
- Department of Physiology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | |
Collapse
|
195
|
Recent Advances in Histamine H3 Receptor Agents. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1998. [DOI: 10.1016/s0065-7743(08)61069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
196
|
H3 receptor modulation of the release of neurotransmitters in vivo. PHARMACOCHEMISTRY LIBRARY 1998. [DOI: 10.1016/s0165-7208(98)80023-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
197
|
Ito C, Onodera K, Yamatodani A, Yanai K, Sakurai E, Sato M, Watanabe T. The effect of haloperidol on the histaminergic neuron system in the rat brain. TOHOKU J EXP MED 1997; 183:285-92. [PMID: 9549828 DOI: 10.1620/tjem.183.285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, the effect of haloperidol on histamine (HA) levels, histidine decarboxylase (HDC) activities and the bindings of [3H]-(R)-alpha-methylhistamine ([3H]-(R)-alpha-MeHA) to histamine H3 receptors were investigated in the rat brain. Administration of 10 mg/kg of haloperidol decreased HA levels in the rat striatum and diencephalon, but increased HDC activities in rat striatum and diencephalon, although that of 5 mg/kg did not change them. Meanwhile, haloperidol inhibited the bindings of [3H]-(R)-alpha-MeHA to H3 receptor sites in the rat striatal membrane with a Ki value of 10.5 +/- 0.45 microM. These findings suggest that only a high dose of haloperidol increases HA synthesis and release as a histamine H3 receptor antagonist in the rat brain.
Collapse
Affiliation(s)
- C Ito
- Department of Psychiatry, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
198
|
Diewald L, Heimrich B, Büsselberg D, Watanabe T, Haas HL. Histaminergic system in co-cultures of hippocampus and posterior hypothalamus: a morphological and electrophysiological study in the rat. Eur J Neurosci 1997; 9:2406-13. [PMID: 9464934 DOI: 10.1111/j.1460-9568.1997.tb01657.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neurons of the tuberomammillary nucleus in the posterior hypothalamus diffusely project to most parts of the central nervous system, where their main transmitter, histamine, modulates the excitability of the target neurons. The development of a histaminergic hypothalamo-hippocampal pathway and its function were studied in organotypic co-cultures. Immunocytochemistry for histidine decarboxylase, the specific synthesizing enzyme, stained clusters of neurons in the hypothalamic tuberomammillary area. Immunolabelled varicose processes innervated the co-cultured hippocampus and established a few synaptic contacts on dendrites. Cultured tuberomammillary neurons displayed their typical membrane properties and were spontaneously active. In hippocampal pyramidal cells of the CA3 region the long-lasting afterhyperpolarization was reduced by histamine or impromidine and increased by the H2 antagonist cimetidine, but not by the H1 antagonist mepyramine. The membrane potential was depolarized in presence of an H2 agonist and hyperpolarized by an H2 antagonist. In single hippocampal cultures histamine antagonists did not affect afterhyperpolarization and membrane potential. Histaminergic neurons retain their main morphological and physiological characteristics in slice cultures and establish a functional connection with co-cultured target cells.
Collapse
Affiliation(s)
- L Diewald
- Department of Physiology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
199
|
Selbach O, Brown RE, Haas HL. Long-term increase of hippocampal excitability by histamine and cyclic AMP. Neuropharmacology 1997; 36:1539-48. [PMID: 9517424 DOI: 10.1016/s0028-3908(97)00144-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The action of histamine (HA) on rat hippocampal CA1 pyramidal cells in vitro was investigated in slices perfused with solution containing 0.2 mM Ca2+/4.0 mM Mg2+. Extracellular recordings of the spontaneous discharges occurring under these conditions revealed that HA caused a long-lasting increase in cell firing. The HA-effects were dose-dependent, in that low concentrations of HA (0.1-0.5 microM) exhibited an initial transient depression of cell firing and practically no long-lasting action, whereas higher concentrations of HA (1-10 microM) exerted strong, non-declining increases. The H1-receptor antagonist mepyramine (1 microM) blocked the initial depression of firing and attenuated the long-lasting HA-mediated excitation. Pure H1-receptor activation, tested with the H1-receptor agonist 2-(3-fluorphenyl)histamine (1-10 microM) depressed cell firing, similar to the low dose effects of HA. HA-induced excitations were prevented by the H2-receptor antagonist cimetidine (10-50 microM), and mimicked by the very potent H2-receptor agonist impromidine (1 or 3 microM) which was, however, less effective compared to equal concentrations of HA. H3-receptor activation by R-alpha-methylhistamine had no significant effect on cell firing. Thus, histamine H1 and H2 receptors seem to cooperate in producing this long-lasting augmentation of excitability. 8-Bromo-cyclic AMP monophosphate (8-Br-cAMP, 50-100 microM) mimicked the long-term excitation, whereas the adenylyl-cyclase inhibitor 9-tetrahydro-2-furyladenine (THFA, 100-500 microM) or the PKA-inhibitor Rp-adenosine-3'5'-cyclic monophosphate (Rp-cAMPS, 10 microM) blocked it, indicating that the HA-mediated increase of excitability in the hippocampus is dependent on the adenylate cyclase/PKA-signal transduction cascade. DL-2-Amino-5-phosphonopentanoic acid (APV, 50 microM) significantly attenuated the magnitude of the HA-induced enhancement, indicating an NMDA receptor-dependent component. Other biogenic amines, acting through receptors positively coupled to adenylyl cyclase, elicited similar responses as HA, indicating common mechanisms by which these substances modulate excitability in CA1 pyramidal cells.
Collapse
Affiliation(s)
- O Selbach
- Department of Physiology II, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | |
Collapse
|
200
|
Abstract
In the present study, infrared differential interference contrast videomicroscopy was used to examine the effect of histamine on N-methyl-D-aspartate-induced swelling in neostriatal neurons in a brain slice preparation. Histamine caused a concentration-dependent increase in swelling evoked by N-methyl-D-aspartate. By itself, histamine did not cause swelling. Electrical stimulation also caused N-methyl-D-aspartate-dependent swelling which was enhanced by histamine. In addition, histamine was found to enhance N-methyl-D aspartate-induced swelling from postnatal day 7 to 28 but not at postnatal day 3. Finally, this histamine-induced enhancement was prevented by treatment with either the H2 receptor antagonist cimetidine or with the potassium channel blocker tetraethylammonium chloride. Overall, these findings suggest that histamine modulates N-methyl-D-aspartate receptor function in the neostriatum through a H2 receptor-mediated regulation of potassium channels.
Collapse
Affiliation(s)
- C S Colwell
- Mental Retardation Research Center, University of California-Los Angeles, 90024-1759, USA.
| | | |
Collapse
|