151
|
Hiscock SJ, Allen AM. Diverse cell signalling pathways regulate pollen-stigma interactions: the search for consensus. THE NEW PHYTOLOGIST 2008; 179:286-317. [PMID: 19086285 DOI: 10.1111/j.1469-8137.2008.02457.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Siphonogamy, the delivery of nonmotile sperm to the egg via a pollen tube, was a key innovation that allowed flowering plants (angiosperms) to carry out sexual reproduction on land without the need for water. This process begins with a pollen grain (male gametophyte) alighting on and adhering to the stigma of a flower. If conditions are right, the pollen grain germinates to produce a pollen tube. The pollen tube invades the stigma and grows through the style towards the ovary, where it enters an ovule, penetrates the embryo sac (female gametophyte) and releases two sperm cells, one of which fertilizes the egg, while the other fuses with the two polar nuclei of the central cell to form the triploid endosperm. The events before fertilization (pollen-pistil interactions) comprise a series of complex cellular interactions involving a continuous exchange of signals between the haploid pollen and the diploid maternal tissue of the pistil (sporophyte). In recent years, significant progress has been made in elucidating the molecular identity of these signals and the cellular interactions that they regulate. Here we review our current understanding of the cellular and molecular interactions that mediate the earliest of these interactions between the pollen and the pistil that occur on or within the stigma - the 'pollen-stigma interaction'.
Collapse
Affiliation(s)
- Simon J Hiscock
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Alexandra M Allen
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| |
Collapse
|
152
|
Prado AM, Colaço R, Moreno N, Silva AC, Feijó JA. Targeting of pollen tubes to ovules is dependent on nitric oxide (NO) signaling. MOLECULAR PLANT 2008; 1:703-14. [PMID: 19825574 DOI: 10.1093/mp/ssn034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The guidance signals that drive pollen tube navigation inside the pistil and micropyle targeting are still, to a great extent, unknown. Previous studies in vitro showed that nitric oxide (NO) works as a negative chemotropic cue for pollen tube growth in lily (Lilium longiflorum). Furthermore, Arabidopsis thaliana Atnos1 mutant plants, which show defective NO production, have reduced fertility. Here, we focus in the role of NO in the process of pollen-pistil communication, using Arabidopsis in-vivo and lily semi-vivo assays. Cross-pollination between wild-type and Atnos1 plants shows that the mutation affects the pistil tissues in a way that is compatible with abnormal pollen tube guidance. Moreover, DAF-2DA staining for NO in kanadi floral mutants showed the presence of NO in an asymmetric restricted area around the micropyle. The pollen-pistil interaction transcriptome indicates a time-course-specific modulation of transcripts of AtNOS1 and two Nitrate Reductases (nr1 and nr2), which collectively are thought to trigger a putative NO signaling pathway. Semi-vivo assays with isolated ovules and lily pollen further showed that NO is necessary for micropyle targeting to occur. This evidence is supported by CPTIO treatment with subsequent formation of balloon tips in pollen tubes facing ovules. Activation of calcium influx in pollen tubes partially rescued normal pollen tube morphology, suggesting that this pathway is also dependent on Ca(2+) signaling. A role of NO in modulating Ca(2+) signaling was further substantiated by direct imaging the cytosolic free Ca(2+) concentration during NO-induced re-orientation, where two peaks of Ca(2+) occur-one during the slowdown/stop response, the second during re-orientation and growth resumption. Taken together, these results provide evidence for the participation of NO signaling events during pollen-pistil interaction. Of special relevance, NO seems to directly affect the targeting of pollen tubes to the ovule's micropyle by modulating the action of its diffusible factors.
Collapse
Affiliation(s)
- Ana Margarida Prado
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, PT-2780-156 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
153
|
Michard E, Dias P, Feijó JA. Tobacco pollen tubes as cellular models for ion dynamics: improved spatial and temporal resolution of extracellular flux and free cytosolic concentration of calcium and protons using pHluorin and YC3.1 CaMeleon. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s00497-008-0076-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
154
|
Coelho SMB, Brownlee C, Bothwell JHF. A tip-high, Ca(2+) -interdependent, reactive oxygen species gradient is associated with polarized growth in Fucus serratus zygotes. PLANTA 2008; 227:1037-46. [PMID: 18087716 DOI: 10.1007/s00425-007-0678-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 12/04/2007] [Indexed: 05/05/2023]
Abstract
We report the existence of a tip-high reactive oxygen species (ROS) gradient in growing Fucus serratus zygotes, using both 5-(and 6-) chloromethyl-2',7'-dichlorodihydrofluorescein and nitroblue tetrazolium staining to report ROS generation. Suppression of the ROS gradient inhibits polarized zygotic growth; conversely, exogenous ROS generation can redirect zygotic polarization following inhibition of endogenous ROS. Confocal imaging of fluo-4 dextran distributions suggests that the ROS gradient is interdependent on the tip-high [Ca(2+)](cyt) gradient which is known to be associated with polarized growth. Our data support a model in which localized production of ROS at the rhizoid tip stimulates formation of a localized tip-high [Ca(2+)](cyt) gradient. Such modulation of intracellular [Ca(2+)](cyt) signals by ROS is a common motif in many plant and algal systems and this study extends this mechanism to embryogenesis.
Collapse
Affiliation(s)
- Susana M B Coelho
- UMR7139, Station Biologique, Centre National de la Recherche Scientifique, Université Pierre & Marie Curie Paris VI, Place Georges Teissier, Roscoff Cedex, France
| | | | | |
Collapse
|
155
|
Characterization of an endo-1,4-β-glucanase from Lilium longiflorum that functioned in pollen germination and pollen tube growth. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11434-008-0143-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
156
|
Kroeger JH, Geitmann A, Grant M. Model for calcium dependent oscillatory growth in pollen tubes. J Theor Biol 2008; 253:363-74. [PMID: 18471831 DOI: 10.1016/j.jtbi.2008.02.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/25/2008] [Accepted: 02/27/2008] [Indexed: 01/28/2023]
Abstract
Experiments have shown that pollen tubes grow in an oscillatory mode, the mechanism of which is poorly understood. We propose a theoretical growth model of pollen tubes exhibiting such oscillatory behaviour. The pollen tube and the surrounding medium are represented by two immiscible fluids separated by an interface. The physical variables are pressure, surface tension, density and viscosity, which depend on relevant biological quantities, namely calcium concentration and thickness of the cell wall. The essential features generally believed to control oscillating growth are included in the model, namely a turgor pressure, a viscous cell wall which yields under pressure, stretch-activated calcium channels which transport calcium ions into the cytoplasm and an exocytosis rate dependent on the cytosolic calcium concentration in the apex of the cell. We find that a calcium dependent vesicle recycling mechanism is necessary to obtain an oscillating growth rate in our model. We study the variation in the frequency of the growth rate by changing the extracellular calcium concentration and the density of ion channels in the membrane. We compare the predictions of our model with experimental data on the frequency of oscillation versus growth speed, calcium concentration and density of calcium channels.
Collapse
Affiliation(s)
- Jens H Kroeger
- Ernest Rutherford Physics Building, McGill University, 3600 Rue University, Montréal, Québec H3A2T8, Canada.
| | | | | |
Collapse
|
157
|
Certal AC, Almeida RB, Carvalho LM, Wong E, Moreno N, Michard E, Carneiro J, Rodriguéz-Léon J, Wu HM, Cheung AY, Feijó JA. Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes. THE PLANT CELL 2008; 20:614-34. [PMID: 18364468 PMCID: PMC2329945 DOI: 10.1105/tpc.106.047423] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 02/13/2008] [Accepted: 02/29/2008] [Indexed: 05/18/2023]
Abstract
Polarized growth in pollen tubes results from exocytosis at the tip and is associated with conspicuous polarization of Ca(2+), H(+), K(+), and Cl(-) -fluxes. Here, we show that cell polarity in Nicotiana tabacum pollen is associated with the exclusion of a novel pollen-specific H(+)-ATPase, Nt AHA, from the growing apex. Nt AHA colocalizes with extracellular H(+) effluxes, which revert to influxes where Nt AHA is absent. Fluorescence recovery after photobleaching analysis showed that Nt AHA moves toward the apex of growing pollen tubes, suggesting that the major mechanism of insertion is not through apical exocytosis. Nt AHA mRNA is also excluded from the tip, suggesting a mechanism of polarization acting at the level of translation. Localized applications of the cation ionophore gramicidin A had no effect where Nt AHA was present but acidified the cytosol and induced reorientation of the pollen tube where Nt AHA was absent. Transgenic pollen overexpressing Nt AHA-GFP developed abnormal callose plugs accompanied by abnormal H(+) flux profiles. Furthermore, there is no net flux of H(+) in defined patches of membrane where callose plugs are to be formed. Taken together, our results suggest that proton dynamics may underlie basic mechanisms of polarity and spatial regulation in growing pollen tubes.
Collapse
Affiliation(s)
- Ana C Certal
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, 2780-156 Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Sokolovski S, Hills A, Gay RA, Blatt MR. Functional interaction of the SNARE protein NtSyp121 in Ca2+ channel gating, Ca2+ transients and ABA signalling of stomatal guard cells. MOLECULAR PLANT 2008; 1:347-58. [PMID: 19825544 DOI: 10.1093/mp/ssm029] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There is now growing evidence that membrane vesicle trafficking proteins, especially of the superfamily of SNAREs, are critical for cellular signalling in plants. Work from this laboratory first demonstrated that a soluble, inhibitory (dominant-negative) fragment of the SNARE NtSyp121 blocked K+ and Cl- channel responses to the stress-related hormone abscisic acid (ABA), but left open a question about functional impacts on signal intermediates, especially on Ca2+-mediated signalling events. Here, we report one mode of action for the SNARE mediated directly through alterations in Ca2+ channel gating and its consequent effects on cytosolic-free [Ca2+] ([Ca2+]i) elevation. We find that expressing the same inhibitory fragment of NtSyp121 blocks ABA-evoked stomatal closure, but only partially suppresses stomatal closure in the presence of the NO donor, SNAP, which promotes [Ca2+]i elevation independently of the plasma membrane Ca2+ channels. Consistent with these observations, Ca2+ channel gating at the plasma membrane is altered by the SNARE fragment in a manner effective in reducing the potential for triggering a rise in [Ca2+]i, and we show directly that its expression in vivo leads to a pronounced suppression of evoked [Ca2+]i transients. These observations offer primary evidence for the functional coupling of the SNARE with Ca2+ channels at the plant cell plasma membrane and, because [Ca2+]i plays a key role in the control of K+ and Cl- channel currents in guard cells, they underscore an important mechanism for SNARE integration with ion channel regulation during stomatal closure.
Collapse
Affiliation(s)
- Sergei Sokolovski
- Laboratory of Plant Physiology and Biophysics, IBLS-Plant Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
159
|
Zonia L, Munnik T. Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:861-73. [PMID: 18304978 DOI: 10.1093/jxb/ern007] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pollen tubes are one of the fastest growing eukaryotic cells. Rapid anisotropic growth is supported by highly active exocytosis and endocytosis at the plasma membrane, but the subcellular localization of these sites is unknown. To understand molecular processes involved in pollen tube growth, it is crucial to identify the sites of vesicle localization and trafficking. This report presents novel strategies to identify exocytic and endocytic vesicles and to visualize vesicle trafficking dynamics, using pulse-chase labelling with styryl FM dyes and refraction-free high-resolution time-lapse differential interference contrast microscopy. These experiments reveal that the apex is the site of endocytosis and membrane retrieval, while exocytosis occurs in the zone adjacent to the apical dome. Larger vesicles are internalized along the distal pollen tube. Discretely sized vesicles that differentially incorporate FM dyes accumulate in the apical, subapical, and distal regions. Previous work established that pollen tube growth is strongly correlated with hydrodynamic flux and cell volume status. In this report, it is shown that hydrodynamic flux can selectively increase exocytosis or endocytosis. Hypotonic treatment and cell swelling stimulated exocytosis and attenuated endocytosis, while hypertonic treatment and cell shrinking stimulated endocytosis and inhibited exocytosis. Manipulation of pollen tube apical volume and membrane remodelling enabled fine-mapping of plasma membrane dynamics and defined the boundary of the growth zone, which results from the orchestrated action of endocytosis at the apex and along the distal tube and exocytosis in the subapical region. This report provides crucial spatial and temporal details of vesicle trafficking and anisotropic growth.
Collapse
Affiliation(s)
- Laura Zonia
- University of Amsterdam, Swammerdam Institute for Life Sciences, Section Plant Physiology Kruislaan 318, 1098 SM Amsterdam, Netherlands
| | | |
Collapse
|
160
|
Röckel N, Wolf S, Kost B, Rausch T, Greiner S. Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:133-43. [PMID: 17971035 DOI: 10.1111/j.1365-313x.2007.03325.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In dicots, pectins are the major structural determinant of the cell wall at the pollen tube tip. Recently, immunological studies revealed that esterified pectins are prevalent at the apex of growing pollen tubes, where the cell wall needs to be expandable. In contrast, lateral regions of the cell wall contain mostly de-esterified pectins, which can be cross-linked to rigid gels by Ca(2+) ions. In pollen tubes, several pectin methylesterases (PMEs), enzymes that de-esterify pectins, are co-expressed with different PME inhibitors (PMEIs). This raises the possibility that interactions between PMEs and PMEIs play a key role in the regulation of cell-wall stability at the pollen tube tip. Our data establish that the PME isoform AtPPME1 (At1g69940) and the PMEI isoform AtPMEI2 (At3g17220), which are both specifically expressed in Arabidopsis pollen, physically interact, and that AtPMEI2 inactivates AtPPME1 in vitro. Furthermore, transient expression in tobacco pollen tubes revealed a growth-promoting activity of AtPMEI2, and a growth-inhibiting effect of AtPPME1. Interestingly, AtPPME1:YFP accumulated to similar levels throughout the cell wall of tobacco pollen tubes, including the tip region, whereas AtPMEI2:YFP was exclusively detected at the apex. In contrast to AtPPME1, AtPMEI2 localized to Brefeldin A-induced compartments, and was found in FYVE-induced endosomal aggregates. Our data strongly suggest that the polarized accumulation of PMEI isoforms at the pollen tube apex, which depends at least in part on local PMEI endocytosis at the flanks of the tip, regulates cell-wall stability by locally inhibiting PME activity.
Collapse
Affiliation(s)
- Nina Röckel
- Heidelberg Institute for Plant Sciences, INF 360, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
161
|
Cheung AY, Wu HM. Structural and signaling networks for the polar cell growth machinery in pollen tubes. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:547-72. [PMID: 18444907 DOI: 10.1146/annurev.arplant.59.032607.092921] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pollen tubes elongate within the pistil to transport sperms to the female gametophytes for fertilization. Pollen tubes grow at their tips through a rapid and polarized cell growth process. This tip growth process is supported by an elaborate and dynamic actin cytoskeleton and a highly active membrane trafficking system that together provide the driving force and secretory activities needed for growth. A polarized cytoplasm with an abundance of vesicles and tip-focused Ca(2+) and H(+) concentration gradients are important for the polar cell growth process. Apical membrane-located Rho GTPases regulate Ca(2+) concentration and actin dynamics in the cytoplasm and are crucial for maintaining pollen tube polarity. Pollen tube growth is marked by periods of rapid and slow growth phases. Activities that regulate and support this tip growth process also show oscillatory fluctuations. How these activities correlate with the rapid, polar, and oscillatory pollen tube growth process is discussed.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
162
|
Wilsen KL, Hepler PK. Sperm Delivery in Flowering Plants: The Control of Pollen Tube Growth. Bioscience 2007. [DOI: 10.1641/b571006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
163
|
Frietsch S, Wang YF, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, Harper JF. A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci U S A 2007; 104:14531-6. [PMID: 17726111 PMCID: PMC1964830 DOI: 10.1073/pnas.0701781104] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Indexed: 11/18/2022] Open
Abstract
Ion signals are critical to regulating polarized growth in many cell types, including pollen in plants and neurons in animals. Genetic evidence presented here indicates that pollen tube growth requires cyclic nucleotide-gated channel (CNGC) 18. CNGCs are nonspecific cation channels found in plants and animals and have well established functions in excitatory signal transduction events in animals. In Arabidopsis, male sterility was observed for two cngc18 null mutations. CNGC18 is expressed primarily in pollen, as indicated from a promoter::GUS (beta-glucuronidase) reporter analysis and expression profiling. The underlying cause of sterility was identified as a defect in pollen tube growth, resulting in tubes that were kinky, short, often thin, and unable to grow into the transmitting tract. Expression of a GFP-tagged CNGC18 in mutant pollen provided complementation and evidence for asymmetric localization of CNGC18 to the plasma membrane at the growing tip, starting at the time of pollen grain germination. Heterologous expression of CNGC18 in Escherichia coli resulted in a time- and concentration-dependent accumulation of more Ca2+. Thus, CNGC18 provides a mechanism to directly transduce a cyclic nucleotide (cNMP) signal into an ion flux that can produce a localized signal capable of regulating the pollen tip-growth machinery. These results identify a CNGC that is essential to an organism's life cycle and raise the possibility that CNGCs have a widespread role in regulating cell-growth dynamics in both plant and animals.
Collapse
Affiliation(s)
- Sabine Frietsch
- *Biochemistry Department MS200, University of Nevada, Reno, NV 89557
| | - Yong-Fei Wang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116; and
| | - Chris Sladek
- *Biochemistry Department MS200, University of Nevada, Reno, NV 89557
| | - Lisbeth R. Poulsen
- Centre for Membrane Pumps in Cells and Disease (PUMPKIN), Department of Plant Biology, Copenhagen University, DK-1871 Frederiksberg C, Denmark
| | | | - Julian I. Schroeder
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116; and
| | - Jeffrey F. Harper
- *Biochemistry Department MS200, University of Nevada, Reno, NV 89557
| |
Collapse
|
164
|
Pollen competition and environmental effects on hybridization dynamics between Phlox drummondii and Phlox cuspidata. Evol Ecol 2007. [DOI: 10.1007/s10682-007-9174-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
165
|
Lovy-Wheeler A, Cárdenas L, Kunkel JG, Hepler PK. Differential organelle movement on the actin cytoskeleton in lily pollen tubes. ACTA ACUST UNITED AC 2007; 64:217-32. [PMID: 17245769 DOI: 10.1002/cm.20181] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have examined the arrangement and movement of three major compartments, the endoplasmic reticulum (ER), mitochondria, and the vacuole during oscillatory, polarized growth in lily pollen tubes. These movements are dependent on the actin cytoskeleton, because they are strongly perturbed by the anti-microfilament drug, latrunculin-B, and unaffected by the anti-microtubule agent, oryzalin. The ER, which has been labeled with mGFP5-HDEL or cytochalasin D tetramethylrhodamine, displays an oscillatory motion in the pollen tube apex. First it moves apically in the cortical region, presumably along the cortical actin fringe, and then periodically folds inward creating a platform that transects the apical domain in a plate-like structure. Finally, the ER reverses its direction and moves basipetally through the central core of the pollen tube. When subjected to cross-correlation analysis, the formation of the platform precedes maximal growth rates by an average of 3 s (35-40 degrees ). Mitochondria, labeled with Mitotracker Green, are enriched in the subapical region, and their movement closely resembles that of the ER. The vacuole, labeled with carboxy-dichlorofluorescein diacetate, consists of thin tubules arranged longitudinally in a reticulate network, which undergoes active motion. In contrast to the mitochondria and ER, the vacuole is located back from the apex, and never extends into the apical clear zone. We have not been able to decipher an oscillatory pattern in vacuole motion. Because this motion is dependent on actin and not tubulin, we think this is due to a different myosin from that which drives the ER and mitochondria.
Collapse
Affiliation(s)
- Alenka Lovy-Wheeler
- Department of Biology and Plant Biology Graduate Program, Morrill Science Center III, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
166
|
Zonia L, Munnik T. Life under pressure: hydrostatic pressure in cell growth and function. TRENDS IN PLANT SCIENCE 2007; 12:90-7. [PMID: 17293155 DOI: 10.1016/j.tplants.2007.01.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 01/02/2007] [Accepted: 01/31/2007] [Indexed: 05/08/2023]
Abstract
H(2)O is one of the most essential molecules for cellular life. Cell volume, osmolality and hydrostatic pressure are tightly controlled by multiple signaling cascades and they drive crucial cellular functions ranging from exocytosis and growth to apoptosis. Ion fluxes and cell shape restructuring induce asymmetries in osmotic potential across the plasma membrane and lead to localized hydrodynamic flow. Cells have evolved fascinating strategies to harness the potential of hydrodynamic flow to perform crucial functions. Plants exploit hydrodynamics to drive processes including gas exchange, leaf positioning, nutrient acquisition and growth. This paradigm is extended by recent work that reveals an important role for hydrodynamics in pollen tube growth.
Collapse
Affiliation(s)
- Laura Zonia
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, Netherlands.
| | | |
Collapse
|
167
|
Krichevsky A, Kozlovsky SV, Tian GW, Chen MH, Zaltsman A, Citovsky V. How pollen tubes grow. Dev Biol 2007; 303:405-20. [PMID: 17214979 DOI: 10.1016/j.ydbio.2006.12.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 11/16/2006] [Accepted: 12/02/2006] [Indexed: 10/23/2022]
Abstract
Sexual reproduction of flowering plants depends on delivery of the sperm to the egg, which occurs through a long, polarized projection of a pollen cell, called the pollen tube. The pollen tube grows exclusively at its tip, and this growth is distinguished by very fast rates and reaches extended lengths. Thus, one of the most fascinating aspects of pollen biology is the question of how enough cell wall material is produced to accommodate such rapid extension of pollen tube, and how the cell wall deposition and structure are regulated to allow for rapid changes in the direction of growth. This review discusses recent advances in our understanding of the mechanism of pollen tube growth, focusing on such basic cellular processes as control of cell shape and growth by a network of cell wall-modifying enzymes, molecular motor-mediated vesicular transport, and intracellular signaling by localized gradients of second messengers.
Collapse
Affiliation(s)
- Alexander Krichevsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| | | | | | | | | | | |
Collapse
|
168
|
|
169
|
Wu Y, Xu X, Li S, Liu T, Ma L, Shang Z. Heterotrimeric G-protein participation in Arabidopsis pollen germination through modulation of a plasmamembrane hyperpolarization-activated Ca2+-permeable channel. THE NEW PHYTOLOGIST 2007; 176:550-559. [PMID: 17953540 DOI: 10.1111/j.1469-8137.2007.02214.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The role of heterotrimeric G proteins in pollen germination and tube growth was investigated using Arabidopsis thaliana plants in which the gene (GPA) encoding the G-protein a subunit (Galpha) was null or overexpressed. Pollen germination, free cytosolic calcium concentration ([Ca(2+)](cyt)) and Ca(2+) channel activity in the plasma membrane (PM) of pollen cells were investigated. Results showed that, compared with pollen grains of the wild type (ecotype Wassilewskija, ws), in vitro germinated pollen of Galpha null mutants (gpa1-1 and gpa1-2) had lower germination percentages and shorter pollen tubes, while pollen from Galpha overexpression lines (wGalpha and cGalpha) had higher germination percentages and longer pollen tubes. Compared with ws pollen cells, [Ca(2+)](cyt) was lower in gpa1-1 and gpa1-2 and higher in wGalpha and cGalpha. In whole-cell patch clamp recordings, a hyperpolarization-activated Ca(2+)-permeable conductance was identified in the PM of pollen protoplasts. The conductance was suppressed by trivalent cations but insensitive to organic blockers; its permeability to divalent cations was Ba(2+) > Ca(2+) > Mg(2+) > Sr(2+) > Mn(2+). The activity of the Ca(2+)-permeable channel conductance was down-regulated in pollen protoplasts of gpa1-1 and gpa1-2, and up-regulated in wGalpha and cGalpha. The results suggest that Galpha may participate in pollen germination through modulation of the hyperpolarization-activated Ca(2+) channel in the PM of pollen cells.
Collapse
Affiliation(s)
- Yansheng Wu
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, China
| | - Xiaodong Xu
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, China
| | - Sujuan Li
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, China
| | - Ting Liu
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, China
| | - Ligeng Ma
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, China
| | - Zhonglin Shang
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, China
| |
Collapse
|
170
|
MS Channels in Tip‐Growing Systems. CURRENT TOPICS IN MEMBRANES 2007. [DOI: 10.1016/s1063-5823(06)58015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
171
|
Qu HY, Shang ZL, Zhang SL, Liu LM, Wu JY. Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia. THE NEW PHYTOLOGIST 2007; 174:524-536. [PMID: 17447909 DOI: 10.1111/j.1469-8137.2007.02069.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The pollen tube has been widely used to study the mechanisms underlying polarized tip growth in plants. A steep tip-to-base gradient of free cytosolic calcium ([Ca(2+)](cyt)) is essential for pollen-tube growth. Local Ca(2+) influx mediated by Ca(2+)-permeable channels plays a key role in maintaining this [Ca(2+)](cyt) gradient. Here, we developed a protocol for successful isolation of spheroplasts from pollen tubes of Pyrus pyrifolia and identified a hyperpolarization-activated cation channel using the patch-clamp technique. We showed that the cation channel conductance displayed a strong selectivity for divalent cations, with a relative permeability sequence of barium (Ba(2+)) approximately Ca(2+) > magnesium (Mg(2+)) > strontium (Sr(2+)) > manganese (Mn(2+)). This channel conductance was selective for Ca(2+) over chlorine (Cl(-)) (relative permeability P(Ca)/P(Cl) = 14 in 10 mm extracellular Ca(2+)). We also showed that the channel was inhibited by the Ca(2+) channel blockers lanthanum (La(3+)) and gadolinium (Gd(3+)). Furthermore, channel activity depended on extracellular pH and pollen viability. We propose that the Ca(2+)-permeable channel is likely to play a role in mediating Ca(2+) influx into the growing pollen tubes to maintain the [Ca(2+)](cyt) gradient.
Collapse
Affiliation(s)
- Hai-Yong Qu
- College of Horticulture, NanJing Agricultural University, NanJing, China
- HuaiYin Institute of Technology, HuaiAn, China
| | - Zhong-Lin Shang
- College of Life Sciences, HeBei Normal University, Shi Jia Zhuang, China
| | - Shao-Ling Zhang
- College of Horticulture, NanJing Agricultural University, NanJing, China
| | | | - Ju-You Wu
- College of Horticulture, NanJing Agricultural University, NanJing, China
| |
Collapse
|
172
|
Dodd AN, Jakobsen MK, Baker AJ, Telzerow A, Hou SW, Laplaze L, Barrot L, Poethig RS, Haseloff J, Webb AAR. Time of day modulates low-temperature Ca signals in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:962-73. [PMID: 17227550 DOI: 10.1111/j.1365-313x.2006.02933.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We tested the hypothesis that the circadian clock modulates Ca(2+)-based signalling pathways, using low-temperature (LT)-induced Ca(2+) signals. We investigated the relationship between diurnal and circadian modulation of LT-induced increases in cytosolic-free calcium ([Ca(2+)](cyt)), and regulation of [Ca(2+)](cyt)-dependent outputs of the LT-signalling network (RD29A transcript abundance and stomatal closure). We measured [Ca(2+)](cyt) non-invasively using aequorin, and targeted aequorin to the guard cell using a guard cell-specific GAL4-green fluorescent protein enhancer trap line. LT caused transient increases in whole plant and guard cell [Ca(2+)](cyt). In guard cells, the LT-induced [Ca(2+)](cyt) elevation preceded stomatal closure. In whole plants, the magnitude of LT-induced [Ca(2+)](cyt) transients, measured from the entire plant or specifically the guard cell, varied with the time of day: LT-induced [Ca(2+)](cyt) transients were significantly higher during the mid-photoperiod than at the beginning or end. Diurnal variation in LT-induced guard cell [Ca(2+)](cyt) increases was not correlated to diurnal variation in LT-induced stomatal closure. There was circadian modulation of LT-induced whole plant [Ca(2+)](cyt) increases, which were correlated to the circadian pattern of RD29A induction. In order to understand the significance of LT-induced [Ca(2+)](cyt) increases, we used a computer simulation to demonstrate that, in guard cells, LT-induced [Ca(2+)](cyt) increases measured from a population of cells are likely to represent the summation of cold-induced single-cell [Ca(2+)](cyt) oscillations.
Collapse
Affiliation(s)
- Antony N Dodd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Cole RA, Fowler JE. Polarized growth: maintaining focus on the tip. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:579-88. [PMID: 17010659 DOI: 10.1016/j.pbi.2006.09.014] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 09/19/2006] [Indexed: 05/04/2023]
Abstract
Tip growth, a spatially focused cell expansion, has been best characterized in two plant cell types: pollen tubes and root hairs. It has long been established that both cell types require three intracellular components for this process: a tip-high calcium gradient, a polarized actin cytoskeleton, and tip-directed vesicle trafficking. More recently, additional mechanistic parallels have been observed between the two cell types, including roles for ROP and Rab GTPase signaling, phosphoinositides, calcium-dependent protein kinases, and the exocyst. Uncovering pathways that control the three components is beginning to reveal a highly interconnected network, which we call the tip growth LENS (for localization enhancing network, self-sustaining), that coordinates the required cellular activities to allow regulated tip growth, and to maintain itself as the tip advances.
Collapse
Affiliation(s)
- Rex A Cole
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
174
|
Zonia L, Munnik T. Cracking the green paradigm: functional coding of phosphoinositide signals in plant stress responses. Subcell Biochem 2006; 39:207-37. [PMID: 17121277 DOI: 10.1007/0-387-27600-9_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Zonia
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, NL-1098 SM, Amsterdam, The Netherlands
| | | |
Collapse
|
175
|
Lovy-Wheeler A, Kunkel JG, Allwood EG, Hussey PJ, Hepler PK. Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily. THE PLANT CELL 2006; 18:2182-93. [PMID: 16920777 PMCID: PMC1560910 DOI: 10.1105/tpc.106.044867] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 07/14/2006] [Accepted: 07/26/2006] [Indexed: 05/11/2023]
Abstract
Lily (Lilium formosanum or Lilium longiflorum) pollen tubes, microinjected with a low concentration of the pH-sensitive dye bis-carboxyethyl carboxyfluorescein dextran, show oscillating pH changes in their apical domain relative to growth. An increase in pH in the apex precedes the fastest growth velocities, whereas a decline follows growth, suggesting a possible relationship between alkalinity and cell extension. A target for pH may be the actin cytoskeleton, because the apical cortical actin fringe resides in the same region as the alkaline band in lily pollen tubes and elongation requires actin polymerization. A pH-sensitive actin binding protein, actin-depolymerizing factor (ADF), together with actin-interacting protein (AIP) localize to the cortical actin fringe region. Modifying intracellular pH leads to reorganization of the actin cytoskeleton, especially in the apical domain. Acidification causes actin filament destabilization and inhibits growth by 80%. Upon complete growth inhibition, the actin fringe is the first actin cytoskeleton component to disappear. We propose that during normal growth, the pH increase in the alkaline band stimulates the fragmenting activity of ADF/AIP, which in turn generates more sites for actin polymerization. Increased actin polymerization supports faster growth rates and a proton influx, which inactivates ADF/AIP, decreases actin polymerization, and retards growth. As pH stabilizes and increases, the activity of ADF/AIP again increases, repeating the cycle of events.
Collapse
Affiliation(s)
- Alenka Lovy-Wheeler
- Department of Biology and Plant Biology Graduate Program, University of Massachusetts, Amherst, 01003, USA
| | | | | | | | | |
Collapse
|
176
|
Malhó R, Liu Q, Monteiro D, Rato C, Camacho L, Dinis A. Signalling pathways in pollen germination and tube growth. PROTOPLASMA 2006; 228:21-30. [PMID: 16937051 DOI: 10.1007/s00709-006-0162-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/08/2005] [Indexed: 05/11/2023]
Abstract
Signalling is an integral component in the establishment and maintenance of cellular identity. In plants, tip-growing cells represent an ideal system to investigate signal transduction mechanisms, and among these, pollen tubes (PTs) are one of the favourite models. Many signalling pathways have been identified during germination and tip growth, namely, Ca(2+), calmodulin, phosphoinositides, protein kinases, cyclic AMP, and GTPases. These constitute a large and complex web of signalling networks that intersect at various levels such as the control of vesicle targeting and fusion and the physical state of the actin cytoskeleton. Here we discuss some of the most recent advances made in PT signal transduction cascades and their implications for our future research. For reasons of space, emphasis was given to signalling mechanisms that control PT reorientation, so naturally many other relevant works have not been cited.
Collapse
Affiliation(s)
- R Malhó
- Departamento de Biologia Vegetal, Instituto de Ciência Aplicada e Tecnologia, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
177
|
David-Assael O, Berezin I, Shoshani-Knaani N, Saul H, Mizrachy-Dagri T, Chen J, Brook E, Shaul O. AtMHX is an auxin and ABA-regulated transporter whose expression pattern suggests a role in metal homeostasis in tissues with photosynthetic potential. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:661-672. [PMID: 32689275 DOI: 10.1071/fp05295] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 04/19/2006] [Indexed: 06/11/2023]
Abstract
AtMHX is a vacuolar transporter encoded by a single gene in Arabidopsis thaliana (L.) Heynh. It exchanges protons with Mg2+, Zn2+, and Fe2+ ions. Proper homeostasis of these metals is essential for photosynthesis and numerous enzymatic reactions. In particular, very little is known about mechanisms involved in Mg2+ homeostasis in plants. Expression analysis using reporter-gene constructs suggested that AtMHX functions in metal homeostasis mainly in tissues with photosynthetic potential. This balancing is conducted by expression in the vascular region, the cortex of stems, trichomes, and hydathodes. Expression in stems is developmentally regulated, suggesting that minerals are accumulated in the upper regions of young stems, and are released during silique development. Mineral content in different stem parts was consistent with this possibility. Expression was induced by auxin and ABA, but not by the metal content of the growth medium, suggesting that expression is mainly regulated by endogenous developmental programs. AtMHX exhibits two distinguished regulatory properties. Its leader intron is absolutely essential for expression, and mediates an 86-fold enhancement of expression. This enhancement is the highest reported thus far for any dicot intron. Another remarkable feature is that a repetitive genomic element of 530 bp (or part of it) functions as an enhancer.
Collapse
Affiliation(s)
- Ora David-Assael
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Irina Berezin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Noa Shoshani-Knaani
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Helen Saul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Talya Mizrachy-Dagri
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Jianxin Chen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Emil Brook
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
178
|
Abstract
Vesicle traffic is essential for cell homeostasis, growth and development in plants, as it is in other eukaryotes, and is facilitated by a superfamily of proteins known as soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs). Although SNAREs are well-conserved across phylla, genomic analysis for two model angiosperm species available to date, rice and Arabidopsis, highlights common patterns of divergence from other eukaryotes. These patterns are associated with the expansion of some gene subfamilies of SNAREs, the absence of others and the appearance of new proteins that show no significant homologies to SNAREs of mammals, yeast or Drosophila. Recent findings indicate that the functions of these plant SNAREs also extend beyond the conventional 'housekeeping' activities associated with vesicle trafficking. A number of SNAREs have been implicated in environmental responses as diverse as stomata movements and gravisensing as well as sensitivity to salt and drought. These proteins are essential for signal transduction and response and, in most cases, appear also to maintain additional roles in membrane trafficking. One common theme to this added functionality lies in control of non-SNARE proteins, notably ion channels. Other examples include interactions between the SNAREs and scaffolding or other structural components within the plant cell.
Collapse
Affiliation(s)
- Jens-Uwe Sutter
- Laboratory of Plant Physiology and Biophysics, IBLS - Plant Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, USA
| | | | | | | |
Collapse
|
179
|
Dowd PE, Coursol S, Skirpan AL, Kao TH, Gilroy S. Petunia phospholipase c1 is involved in pollen tube growth. THE PLANT CELL 2006; 18:1438-53. [PMID: 16648366 PMCID: PMC1475500 DOI: 10.1105/tpc.106.041582] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/17/2006] [Accepted: 04/05/2006] [Indexed: 05/08/2023]
Abstract
Although pollen tube growth is essential for plant fertilization and reproductive success, the regulators of the actin-related growth machinery and the cytosolic Ca2+ gradient thought to determine how these cells elongate remain poorly defined. Phospholipases, their substrates, and their phospholipid turnover products have been proposed as such regulators; however, the relevant phospholipase(s) have not been characterized. Therefore, we cloned cDNA for a pollen-expressed phosphatidylinositol 4,5-bisphosphate (PtdInsP2)-cleaving phospholipase C (PLC) from Petunia inflata, named Pet PLC1. Expressing a catalytically inactive form of Pet PLC1 in pollen tubes caused expansion of the apical Ca2+ gradient, disruption of the organization of the actin cytoskeleton, and delocalization of growth at the tube tip. These phenotypes were suppressed by depolymerizing actin with low concentrations of latrunculin B, suggesting that a critical site of action of Pet PLC1 is in regulating actin structure at the growing tip. A green fluorescent protein (GFP) fusion to Pet PLC1 caused enrichment in regions of the apical plasma membrane not undergoing rapid expansion, whereas a GFP fusion to the PtdInsP2 binding domain of mammalian PLC delta1 caused enrichment in apical regions depleted in PLC. Thus, Pet PLC1 appears to be involved in the machinery that restricts growth to the very apex of the elongating pollen tube, likely through its regulatory action on PtdInsP2 distribution within the cell.
Collapse
Affiliation(s)
- Peter E Dowd
- Department of Biochemistry and Molecular Biology, Pensylvania State University, University Park, Pensylvania 16802, USA
| | | | | | | | | |
Collapse
|
180
|
Coelho PC, Malhó R. Correlative Analysis of [Ca](C) and Apical Secretion during Pollen Tube Growth and Reorientation. PLANT SIGNALING & BEHAVIOR 2006; 1:152-7. [PMID: 19521495 PMCID: PMC2635010 DOI: 10.4161/psb.1.3.2999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/19/2006] [Indexed: 05/18/2023]
Abstract
The maintenance of a cytosolic free calcium gradient (Ca(2+)](c)) and vesicle secretion in the apex of pollen tubes is essential for growth. It has been postulated that high [Ca(2+)](c) levels promote and confine vesicle fusion with the apical plasma membrane and in this study we performed a correlative analysis of both events using specific fluorescent dyes and confocal scanning microscopy. [Ca(2+)](c) was imaged with Calcium Green-1 10 kDa dextran (CG-1) while secretory events were followed with FM1-43 or FM4-64 in pollen tubes undergoing normal growth and reorientation events.During straight growth (no modification in direction), we found that changes in apical [Ca(2+)](c) accompany changes in apical FM fluorescence indicating a tight coupling between [Ca(2+)](c) and apical secretion. This coupling seems however to be perturbed during periods of reorientation of the pollen tube growth axis. Analysis of apical and sub-apical fluorescent signals during the reorientation events and subsequent re-entry in straight growth indicate that the increase in secretory events (higher fusion rate) precede the increases in [Ca(2+)](c) that should be required for the transduction of the signal.Based on these findings, we discuss a model for membrane secretion and recycling which considers the apical and sub-apical region as a functional area containing all the elements required to promote and sustain growth.
Collapse
Affiliation(s)
| | - Rui Malhó
- Universidade de Lisboa, Faculdade de Ciências de Lisboa; ICAT, Lisboa, Portugal
| |
Collapse
|
181
|
Nardi MC, Feron R, Navazio L, Mariani P, Pierson E, Wolters-Arts M, Knuiman B, Mariani C, Derksen J. Expression and localization of calreticulin in tobacco anthers and pollen tubes. PLANTA 2006; 223:1263-71. [PMID: 16320066 DOI: 10.1007/s00425-005-0175-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 10/01/2005] [Indexed: 05/05/2023]
Abstract
The developmental expression pattern and localization of calreticulin were studied in Nicotiana tabacum L. anthers, pollen and pollen tubes. High transcript and protein levels were detected throughout anther development. Immunolocalization of calreticulin in the anthers showed particular dense label in tapetum and pollen at developmental stage 2, when the tapetum is highly active and the pollen tetrads are formed. Much lower transcript and protein levels were detected in dry and hydrated pollen and in pollen tubes. Immunofluorescence labeling of both chemically fixed and cryo-fixed and freeze-substituted pollen tubes showed the presence of calreticulin in Golgi apparatus and endoplasmic reticulum (ER). Calreticulin was seen throughout the stacks in the Golgi apparatus and in the areas with coated-Golgi vesicles but much less so in the ER. Calreticulin was not found in the secretory vesicles. A relatively intense label was occasionally seen adjacent to the wall of the tube. No significant label was observed in mitochondria, vacuoles, generative cells, cell wall or callose plugs. The present results are consistent with a role of calreticulin in Ca2+-dependent folding of secreted glycoproteins in tapetum, pollen and pollen tubes.
Collapse
Affiliation(s)
- Maria Chiara Nardi
- Department of Plant Cell Biology, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H. Integrating membrane transport with male gametophyte development and function through transcriptomics. PLANT PHYSIOLOGY 2006; 140:1151-68. [PMID: 16607029 PMCID: PMC1435806 DOI: 10.1104/pp.105.074708] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 12/01/2005] [Accepted: 01/13/2006] [Indexed: 05/08/2023]
Abstract
Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca2+, H+, and K+ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. Approximately 1,269 genes encoding classified transporters were collected from the Arabidopsis (Arabidopsis thaliana) genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3, and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9), while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, was developmentally regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::beta-glucuronidase analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H+ pump AHA3, Ca2+ pump ACA9, and K+ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.
Collapse
Affiliation(s)
- Kevin W Bock
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815, USA
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Bosch M, Hepler PK. Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. PLANTA 2006; 223:736-45. [PMID: 16208487 DOI: 10.1007/s00425-005-0131-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 09/08/2005] [Indexed: 05/04/2023]
Abstract
Sperm delivery in flowering plants requires extensive pollen tube growth through the female sporophytic tissues of the pistil. The apical cell wall emerges as a central player in the control of pollen tube growth, since it provides strength to withstand the internal turgor pressure, while imparting sufficient plasticity to allow cell wall extension through the incorporation of new membrane and wall material. Within this scenario, pectin methylesterases (PMEs; EC 3.1.1.11) emerge as crucial regulators in determining the mechanical properties of pectins, the major component of the apical pollen tube wall. We previously identified NtPPME1, a pollen specific PME from Nicotiana tabacum. Here we show that silencing of NtPPME1 results in a mild but significant decrease of in vivo pollen tube growth while the overall PME activity in pollen is not significantly affected. Although the precise mechanisms responsible for the observed phenotype are not known, it seems likely that the cell must maintain a closely regulated level of PME activity in order to maintain the equilibrium between strength and plasticity in the apical cell wall. A relatively minor disturbance of this equilibrium, as caused by NtPPME1 silencing, compromises pollen tube growth.
Collapse
Affiliation(s)
- Maurice Bosch
- Biology Department, University of Massachusetts, Amherst, 01003, USA.
| | | |
Collapse
|
184
|
|
185
|
Levina NN, Lew RR. The role of tip-localized mitochondria in hyphal growth. Fungal Genet Biol 2006; 43:65-74. [PMID: 16455272 DOI: 10.1016/j.fgb.2005.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 06/21/2005] [Accepted: 06/23/2005] [Indexed: 11/22/2022]
Abstract
Hyphal tip-growing organisms have a high density of tip-localized mitochondria which maintain a membrane potential based on Rhodamine 123 fluorescence, but do not produce ATP based on the absence of significant oxygen consumption. Two possible roles of these mitochondria in tip growth were examined: Calcium sequestration and biogenesis, because tip-high cytoplasmic calcium gradients are a common feature of tip-growing organisms, and the volume expansion as the tip extends would require a continuous supply of additional mitochondria. Co-localization of calcium-sensitive fluorescent dye and mitochondria-specific fluorescent dyes showed that the tip-localized mitochondria do contain calcium, and therefore, may function in calcium clearance from the cytoplasm. Short-term inhibition of DNA synthesis or mitochondrial protein synthesis did not affect either tip growth, or mitochondrial shape or distribution. Therefore, mitochondrial biogenesis may not occur from the tip-localized mitochondria in hyphal organisms.
Collapse
Affiliation(s)
- Natalia N Levina
- Department of Biology, York University, Toronto, Ont., Canada M3J 1P3
| | | |
Collapse
|
186
|
Abstract
The cytoskeleton plays important roles in plant cell shape determination by influencing the patterns in which cell wall materials are deposited. Cortical microtubules are thought to orient the direction of cell expansion primarily via their influence on the deposition of cellulose into the wall, although the precise nature of the microtubule-cellulose relationship remains unclear. In both tip-growing and diffusely growing cell types, F-actin promotes growth and also contributes to the spatial regulation of growth. F-actin has been proposed to play a variety of roles in the regulation of secretion in expanding cells, but its functions in cell growth control are not well understood. Recent work highlighted in this review on the morphogenesis of selected cell types has yielded substantial new insights into mechanisms governing the dynamics and organization of cytoskeletal filaments in expanding plant cells and how microtubules and F-actin interact to direct patterns of cell growth. Nevertheless, many important questions remain to be answered.
Collapse
Affiliation(s)
- Laurie G Smith
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093-0116, USA.
| | | |
Collapse
|
187
|
Shabala S, Shabala L, Gradmann D, Chen Z, Newman I, Mancuso S. Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:171-84. [PMID: 16330526 DOI: 10.1093/jxb/erj022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although oscillations in membrane-transport activity are ubiquitous in plants, the ionic mechanisms of ultradian oscillations in plant cells remain largely unknown, despite much phenomenological data. The physiological role of such oscillations is also the subject of much speculation. Over the last decade, much experimental evidence showing oscillations in net ion fluxes across the plasma membrane of plant cells has been accumulated using the non-invasive MIFE technique. In this study, a recently proposed feedback-controlled oscillatory model was used. The model adequately describes the observed ion flux oscillations within the minute range of periods and predicts: (i) strong dependence of the period of oscillations on the rate constants for the H+ pump; (ii) a substantial phase shift between oscillations in net H+ and K+ fluxes; (iii) cessation of oscillations when H+ pump activity is suppressed; (iv) the existence of some 'window' of external temperatures and ionic concentrations, where non-damped oscillations are observed: outside this range, even small changes in external parameters lead to progressive damping and aperiodic behaviour; (v) frequency encoding of environmental information by oscillatory patterns; and (vi) strong dependence of oscillatory characteristics on cell size. All these predictions were successfully confirmed by direct experimental observations, when net ion fluxes were measured from root and leaf tissues of various plant species, or from single cells. Because oscillatory behaviour is inherent in feedback control systems having phase shifts, it is argued from this model that suitable conditions will allow oscillations in any cell or tissue. The possible physiological role of such oscillations is discussed in the context of plant adaptive responses to salinity, temperature, osmotic, hypoxia, and pH stresses.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia.
| | | | | | | | | | | |
Collapse
|
188
|
Lamport DTA, Kieliszewski MJ, Showalter AM. Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function. THE NEW PHYTOLOGIST 2006; 169:479-92. [PMID: 16411951 DOI: 10.1111/j.1469-8137.2005.01591.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arabinogalactan proteins (AGPs) are implicated in cell expansion by unknown mechanisms, thus AGP content and cell-expansion rate might be correlated. We used Yariv reagent to quantify release rates and distribution of AGP at the cell surface of tobacco BY-2 cells: plasma membrane (M); soluble periplasmic AGPs released by cell rupture (S); cell wall (W); and growth medium (Gsink). In contrast to earlier reports, we observed massive upregulation of AGPs in salt-stressed cells, and hence the absence of a simple, direct cause-and-effect relationship between growth rate and AGP release. There was a more subtle connection. A dynamic flux model, M-->S-->W-->Gsink, indicated that turnover was nondegradative, with little free diffusion of AGPs trapped in the pectic matrix of nonadapted cells where transmural migration of high molecular-weight AGPs occurred mainly by plug flow (apposition and extrusion). In contrast, however, an up to sixfold increased AGP release rate in the slower-growing salt-adapted cells indicated a greatly increased rate of AGP diffusion through a much more highly porous pectic network. We hypothesize that classical AGPs act as pectin plasticizers. This explains how beta-D-glycosyl Yariv reagents might inhibit expansion growth by crosslinking monomeric AGPs, and thus mimic an AGP loss-of-function mutation.
Collapse
Affiliation(s)
- Derek T A Lamport
- School of Life Sciences, John Maynard Smith Building, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | | | | |
Collapse
|
189
|
Abstract
A living cell is not an aggregate of molecules but an organized pattern, structured in space and in time. This article addresses some conceptual issues in the genesis of spatial architecture, including how molecules find their proper location in cell space, the origins of supramolecular order, the role of the genes, cell morphology, the continuity of cells, and the inheritance of order. The discussion is framed around a hierarchy of physiological processes that bridge the gap between nanometer-sized molecules and cells three to six orders of magnitude larger. Stepping stones include molecular self-organization, directional physiology, spatial markers, gradients, fields, and physical forces. The knowledge at hand leads to an unconventional interpretation of biological order. I have come to think of cells as self-organized systems composed of genetically specified elements plus heritable structures. The smallest self that can be fairly said to organize itself is the whole cell. If structure, form, and function are ever to be computed from data at a lower level, the starting point will be not the genome, but a spatially organized system of molecules. This conclusion invites us to reconsider our understanding of what genes do, what organisms are, and how living systems could have arisen on the early Earth.
Collapse
Affiliation(s)
- Franklin M Harold
- Department of Microbiology, University of Washington, Seattle 98195, USA.
| |
Collapse
|
190
|
|
191
|
Yokota E, Tominaga M, Mabuchi I, Tsuji Y, Staiger CJ, Oiwa K, Shimmen T. Plant villin, lily P-135-ABP, possesses G-actin binding activity and accelerates the polymerization and depolymerization of actin in a Ca2+-sensitive manner. PLANT & CELL PHYSIOLOGY 2005; 46:1690-703. [PMID: 16100394 DOI: 10.1093/pcp/pci185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
From germinating pollen of lily, two types of villins, P-115-ABP and P-135-ABP, have been identified biochemically. Ca(2+)-CaM-dependent actin-filament binding and bundling activities have been demonstrated for both villins previously. Here, we examined the effects of lily villins on the polymerization and depolymerization of actin. P-115-ABP and P-135-ABP present in a crude protein extract prepared from germinating pollen bound to a DNase I affinity column in a Ca(2+)-dependent manner. Purified P-135-ABP reduced the lag period that precedes actin filament polymerization from monomers in the presence of either Ca(2+) or Ca(2+)-CaM. These results indicated that P-135-ABP can form a complex with G-actin in the presence of Ca(2+) and this complex acts as a nucleus for polymerization of actin filaments. However, the nucleation activity of P-135-ABP is probably not relevant in vivo because the assembly of G-actin saturated with profilin, a situation that mimics conditions found in pollen, was not accelerated in the presence of P-135-ABP. P-135-ABP also enhanced the depolymerization of actin filaments during dilution-mediated disassembly. Growth from filament barbed ends in the presence of Ca(2+)-CaM was also prevented, consistent with filament capping activity. These results suggested that lily villin is involved not only in the arrangement of actin filaments into bundles in the basal and shank region of the pollen tube, but also in regulating and modulating actin dynamics through its capping and depolymerization (or fragmentation) activities in the apical region of the pollen tube, where there is a relatively high concentration of Ca(2+).
Collapse
Affiliation(s)
- Etsuo Yokota
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Kamigoricho, Akogun, Japan
| | | | | | | | | | | | | |
Collapse
|
192
|
Monteiro D, Castanho Coelho P, Rodrigues C, Camacho L, Quader H, Malhó R. Modulation of endocytosis in pollen tube growth by phosphoinositides and phospholipids. PROTOPLASMA 2005; 226:31-8. [PMID: 16231099 DOI: 10.1007/s00709-005-0102-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 03/30/2005] [Indexed: 05/04/2023]
Abstract
In plants, tip-growing cells represent an ideal system to investigate signal transduction mechanisms, and among those, pollen tubes are one of the favourite models. Many signalling pathways have been identified during germination and tip growth, namely, Ca2+, calmodulin, phosphoinositides, cyclic AMP, and GTPases. Not surprisingly, the apical secretory machinery, essential for tip growth, seems to be an intersection point for all these pathways. Recently, the phospholipid phosphatidic acid was also suggested to actively participate in the control of endo- and exocytosis and to interfere with the correct positioning of the actin cytoskeleton. Phosphatidic acid seems to act concertedly with the phosphoinositides phosphatidylinositol 4,5-bisphosphate and D-myo-inositol 1,4,5-trisphosphate. Here we review previous data and discuss additional evidence that these three molecules have a combined action modulating both the actin cytoskeleton and the apical secretory machinery. We further discuss how these findings can be integrated into a working model for pollen tube apical secretion that contemplates the existence of a rapid endocytosis mechanism.
Collapse
Affiliation(s)
- D Monteiro
- Instituto de Ciência Aplicada e Tecnologia, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
193
|
Lazzaro MD, Cardenas L, Bhatt AP, Justus CD, Phillips MS, Holdaway-Clarke TL, Hepler PK. Calcium gradients in conifer pollen tubes; dynamic properties differ from those seen in angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2619-28. [PMID: 16118258 DOI: 10.1093/jxb/eri256] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pollen tubes are an established model system for examining polarized cell growth. The focus here is on pollen tubes of the conifer Norway spruce (Picea abies, Pinaceae); examining the relationship between cytosolic free Ca2+, tip elongation, and intracellular motility. Conifer pollen tubes show important differences from their angiosperm counterparts; they grow more slowly and their organelles move in an unusual fountain pattern, as opposed to reverse fountain, in the tip. Ratiometric ion imaging of growing pollen tubes, microinjected with fura-2-dextran, reveals a tip-focused [Ca2+]i gradient extending from 450 nM at the extreme apex to 225 nM at the base of the tip clear zone. Injection of 5,5' dibromo-BAPTA does not dissipate the apical gradient, but stops cell elongation and uniquely causes rapid, transient increases of apical free Ca2+. The [Ca2+]i gradient is, however, dissipated by reversible perfusion of extracellular caffeine. When the basal cytosolic free Ca2+ concentration falls below 150 nM, again a large increase in apical [Ca2+]i occurs. An external source of calcium is not required for germination but significantly enhances elongation. However, both germination and elongation are significantly inhibited by the inclusion of calcium channels blockers, including lanthanum, gadolinium, or verapamil. Modulation of intracellular calcium also affects organelle position and motility. Extracellular perfusion of lanthanides reversibly depletes the apical [Ca2+]i gradient, altering organelle positioning in the tip. Later, during recovery from lanthanide perfusion, organelle motility switches direction to a reverse fountain. When taken together these data show a unique interplay in Picea abies pollen tubes between intracellular calcium and the motile processes controlling cellular organization.
Collapse
Affiliation(s)
- Mark D Lazzaro
- Department of Biology, College of Charleston, Charleston, SC 29424, USA.
| | | | | | | | | | | | | |
Collapse
|
194
|
Pickard BG, Fujiki M. Ca 2+ pulsation in BY-2 cells and evidence for control of mechanosensory Ca 2+-selective channels by the plasmalemmal reticulum. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:863-879. [PMID: 32689183 DOI: 10.1071/fp05045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 06/15/2005] [Indexed: 05/21/2023]
Abstract
A previously unknown cytoskeletal structure, now named the plasmalemmal reticulum (Gens et al. 2000, Protoplasma 212, 115-134), was found in cultured BY-2 tobacco cells during a search for a force-focusing mechanism that might enhance signal transduction by the cells' mechanosensory Ca2+-selective cation channels (MCaCs). This polyhedral structure, which links cell wall, plasma membrane, and internal cytoplasm, prominently contains arabinogalactan protein (AGP). To check for reticulum-promoted Ca2+ elevation, the AGP-binding reagent (β-d-glucosyl)3 Yariv phenylglycoside has been applied to BY-2 cells expressing a free cameleon Ca2+ reporter. Ca2+ elevation was substantial and prolonged. Moreover it occurred in the nucleus as well as the cytoplasm. Cells treated with non-binding mannosyl Yariv reagent could not be discriminated from untreated controls or those treated with carrier solution alone. Supply of the MCaC inhibiter Gd3+ just before treatment with Yariv reagent prevented Ca2+ rise. These data strongly support the hypothesis that the plasmalemmal reticulum controls MCaC activity. The massive inward spread of Ca2+ suggested that entry of the ion through the channels initiated a wave of release from the ER, and YCX in the ER showed Ca2+ levels consistent with this premise. Cytosolic and nuclear Ca2+ often pulsed in control cells in near synchrony and at rates ranging from zero to five cycles per ∼20-min recording. (Pulsation was over-ridden by the applied amounts of glucosyl Yariv compound.) Suggestively but very crudely, oscillation rate was assessed as possibly correlating with stage of cell cycle. Because cell Ca2+ was lowered and pulsation was eliminated by Gd3+, MCaCs appear to participate in these endogenous fluctuations. The extent to which pulsing plays regulatory roles in relatively undifferentiated types of cells should be evaluated.
Collapse
Affiliation(s)
- Barbara G Pickard
- Gladys Levis Allen Laboratory of Plant Sensory Physiology, Biology Department, Washington University, St Louis, Missouri 63130-4899, USA
| | - Masaaki Fujiki
- Gladys Levis Allen Laboratory of Plant Sensory Physiology, Biology Department, Washington University, St Louis, Missouri 63130-4899, USA
| |
Collapse
|
195
|
Lefebvre B, Arango M, Oufattole M, Crouzet J, Purnelle B, Boutry M. Identification of a Nicotiana plumbaginifolia plasma membrane H(+)-ATPase gene expressed in the pollen tube. PLANT MOLECULAR BIOLOGY 2005; 58:775-787. [PMID: 16240173 DOI: 10.1007/s11103-005-7875-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 05/25/2005] [Indexed: 05/04/2023]
Abstract
In Nicotiana plumbaginifolia, plasma membrane H(+)-ATPases (PMAs) are encoded by a gene family of nine members. Here, we report on the characterization of a new isogene, NpPMA5 (belonging to subfamily IV), and the determination of its expression pattern using the beta-glucuronidase (gusA) reporter gene. pNpPMA5-gusA was expressed in cotyledons, in vascular tissues of the stem (mainly in nodal zones), and in the flower and fruit. In the flower, high expression was found in the pollen tube after in vitro or in vivo germination. Northern blotting analysis confirmed that NpPMA5 was expressed in the pollen tube contrary to NpPMA2 (subfamily I) or NpPMA4 (subfamily II), two genes highly expressed in other tissues. The subcellular localization of PM H(+)-ATPase in the pollen tube was analyzed by immunocytodecoration. As expected, this enzyme was localized to the plasma membrane. However, neither the tip nor the base of the pollen tube was labeled, showing an asymmetrical distribution of this enzyme. This observation supports the hypothesis that the PM H(+)-ATPase is involved in creating the pH gradient that is observed along the pollen tube and is implicated in cell elongation. Compared to other plant PM H(+)-ATPases, the C-terminal region of NpPMA5 is shorter by 26 amino acid residues and is modified in the last 6 residues, due to a sequence rearrangement, which was also found in the orthologous gene of Nicotiana glutinosa, a Nicotiana species distant from N. plumbaginifolia and Petunia hybrida and Lycopersicon esculentum, other Solanacae species. This modification alters part of the PM H(+)-ATPase regulatory domain and raises the question whether this isoform is still regulated.
Collapse
Affiliation(s)
- Benoit Lefebvre
- Unité de biochimie physiologique, Institut des sciences de la vie, Université catholique de Louvain, Croix du Sud 2-20, B-1348, Louvain-la-Neuve, Belgium
| | - Miguel Arango
- Unité de biochimie physiologique, Institut des sciences de la vie, Université catholique de Louvain, Croix du Sud 2-20, B-1348, Louvain-la-Neuve, Belgium
| | - Mohammed Oufattole
- Unité de biochimie physiologique, Institut des sciences de la vie, Université catholique de Louvain, Croix du Sud 2-20, B-1348, Louvain-la-Neuve, Belgium
| | - Jérôme Crouzet
- Unité de biochimie physiologique, Institut des sciences de la vie, Université catholique de Louvain, Croix du Sud 2-20, B-1348, Louvain-la-Neuve, Belgium
| | - Bénédicte Purnelle
- Unité de biochimie physiologique, Institut des sciences de la vie, Université catholique de Louvain, Croix du Sud 2-20, B-1348, Louvain-la-Neuve, Belgium
| | - Marc Boutry
- Unité de biochimie physiologique, Institut des sciences de la vie, Université catholique de Louvain, Croix du Sud 2-20, B-1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
196
|
Michelot A, Guérin C, Huang S, Ingouff M, Richard S, Rodiuc N, Staiger CJ, Blanchoin L. The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. THE PLANT CELL 2005; 17:2296-313. [PMID: 15994911 PMCID: PMC1182490 DOI: 10.1105/tpc.105.030908] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2005] [Revised: 05/16/2005] [Accepted: 05/19/2005] [Indexed: 05/03/2023]
Abstract
The organization of actin filaments into large ordered structures is a tightly controlled feature of many cellular processes. However, the mechanisms by which actin filament polymerization is initiated from the available pool of profilin-bound actin monomers remain unknown in plants. Because the spontaneous polymerization of actin monomers bound to profilin is inhibited, the intervention of an actin promoting factor is required for efficient actin polymerization. Two such factors have been characterized from yeasts and metazoans: the Arp2/3 complex, a complex of seven highly conserved subunits including two actin-related proteins (ARP2 and ARP3), and the FORMIN family of proteins. The recent finding that Arabidopsis thaliana plants lacking a functional Arp2/3 complex exhibit rather modest morphological defects leads us to consider whether the large FORMIN family plays a central role in the regulation of actin polymerization. Here, we have characterized the mechanism of action of Arabidopsis FORMIN1 (AFH1). Overexpression of AFH1 in pollen tubes has been shown previously to induce abnormal actin cable formation. We demonstrate that AFH1 has a unique behavior when compared with nonplant formins. The activity of the formin homology domain 2 (FH2), containing the actin binding activity, is modulated by the formin homology domain 1 (FH1). Indeed, the presence of the FH1 domain switches the FH2 domain from a tight capper (Kd approximately 3.7 nM) able to nucleate actin filaments that grow only in the pointed-end direction to a leaky capper that allows barbed-end elongation and efficient nucleation of actin filaments from actin monomers bound to profilin. Another exciting feature of AFH1 is its ability to bind to the side and bundle actin filaments. We have identified an actin nucleator that is able to organize actin filaments directly into unbranched actin filament bundles. We suggest that AFH1 plays a central role in the initiation and organization of actin cables from the pool of actin monomers bound to profilin.
Collapse
Affiliation(s)
- Alphée Michelot
- Laboratoire de Physiologie Cellulaire Végétale, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Joseph Fourier, Unité Mixte de Recherche 5168, F38054, Grenoble, France
| | - Christophe Guérin
- Laboratoire de Physiologie Cellulaire Végétale, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Joseph Fourier, Unité Mixte de Recherche 5168, F38054, Grenoble, France
| | - Shanjin Huang
- Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907-2064
| | - Mathieu Ingouff
- Laboratoire de Physiologie Cellulaire Végétale, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Joseph Fourier, Unité Mixte de Recherche 5168, F38054, Grenoble, France
| | - Stéphane Richard
- Salk Institute, Structural Biology Laboratory, La Jolla, California 92037
| | - Natalia Rodiuc
- Laboratoire de Physiologie Cellulaire Végétale, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Joseph Fourier, Unité Mixte de Recherche 5168, F38054, Grenoble, France
| | - Christopher J. Staiger
- Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907-2064
| | - Laurent Blanchoin
- Laboratoire de Physiologie Cellulaire Végétale, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Joseph Fourier, Unité Mixte de Recherche 5168, F38054, Grenoble, France
| |
Collapse
|
197
|
Bosch M, Cheung AY, Hepler PK. Pectin methylesterase, a regulator of pollen tube growth. PLANT PHYSIOLOGY 2005; 138:1334-46. [PMID: 15951488 PMCID: PMC1176407 DOI: 10.1104/pp.105.059865] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/15/2005] [Accepted: 03/15/2005] [Indexed: 05/02/2023]
Abstract
The apical wall of growing pollen tubes must be strong enough to withstand the internal turgor pressure, but plastic enough to allow the incorporation of new membrane and cell wall material to support polarized tip growth. These essential rheological properties appear to be controlled by pectins, which constitute the principal component of the apical cell wall. Pectins are secreted as methylesters and subsequently deesterified by the enzyme pectin methylesterase (PME) in a process that exposes acidic residues. These carboxyls can be cross-linked by calcium, which structurally rigidifies the cell wall. Here, we examine the role of PME in cell elongation and the regulation of its secretion and enzymatic activity. Application of an exogenous PME induces thickening of the apical cell wall and inhibits pollen tube growth. Screening a Nicotiana tabacum pollen cDNA library yielded a pollen-specific PME, NtPPME1, containing a pre-region and a pro-region. Expression studies with green fluorescent protein fusion proteins show that the pro-region participates in the correct targeting of the mature PME. Results from in vitro growth analysis and immunolocalization studies using antipectin antibodies (JIM5 and JIM7) provide support for the idea that the pro-region acts as an intracellular inhibitor of PME activity, thereby preventing premature deesterification of pectins. In addition to providing experimental data that help resolve the significance and function of the pro-region, our results give insight into the mechanism by which PME and its pro-region regulate the cell wall dynamics of growing pollen tubes.
Collapse
Affiliation(s)
- Maurice Bosch
- Biology Department , University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
198
|
Monteiro D, Liu Q, Lisboa S, Scherer GEF, Quader H, Malhó R. Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:1665-74. [PMID: 15837704 DOI: 10.1093/jxb/eri163] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The maintenance of a calcium gradient and vesicle secretion in the apex of pollen tubes is essential for growth. It is shown here that phosphatidylinositol-4,5-bisphosphate (PIP2) and D-myo-inositol-1,4,5-trisphosphate (IP3), together with phosphatidic acid (PA), play a vital role in the regulation of these processes. Changes in the intracellular concentration of both PIP2 and IP3 (induced by photolysis of caged-probes), modified growth and caused reorientation of the growth axis. However, measurements of cytosolic free calcium ([Ca2+]c) and apical secretion revealed significant differences between the photo-release of PIP2 or IP3. When released in the first 50 mum of the pollen tube, PIP2 led to transient growth perturbation, [Ca2+]c increases, and inhibition of apical secretion. By contrast, a concentration of IP3 which caused a [Ca2+]c transient of similar magnitude, stimulated apical secretion and caused severe growth perturbation. Furthermore, the [Ca2+]c transient induced by IP3 was spatially different causing a pronounced elevation in the sub-apical region. These observations suggest different targets for the two phosphoinositides. One of the targets is suggested to be PA, a product of PIP2 hydrolysis via phospholipase C (PLC) or phospholipase D (PLD) activity. It was found that antagonists of PA accumulation (e.g. butan-1-ol) and inhibitors of PLC and PLD reversibly halted polarity. Reduction of PA levels caused the dissipation of the [Ca2+]c gradient and inhibited apical plasma membrane recycling. It was also found to cause abolition of the apical zonation. These data suggest that phosphoinositides and phospholipids regulate tip growth through a multiple pathway system involving regulation of [Ca2+]c levels, endo/exocytosis, and vesicular trafficking.
Collapse
Affiliation(s)
- David Monteiro
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, ICAT, 1749-016 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
199
|
Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK. Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. PLANTA 2005; 221:95-104. [PMID: 15747143 DOI: 10.1007/s00425-004-1423-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 10/12/2004] [Indexed: 05/21/2023]
Abstract
The actin cytoskeleton plays a crucial role in the growth and polarity of the pollen tube. Due to inconsistencies in the conventional preservation methods, we lack a unified view of the organization of actin microfilaments, especially in the apical domain, where tip growth occurs. In an attempt to improve fixation methods, we have developed a rapid freeze-whole mount procedure, in which growing pollen tubes (primarily lily) are frozen in liquid propane at -180 degrees C, substituted at -80 degrees C in acetone containing glutaraldehyde, rehydrated, quenched with sodium borohydride, and probed with antibodies. Confocal microscopy reveals a distinct organization of actin in the apical domain that consists of a dense cortical fringe or collar of microfilaments starting about 1-5 microm behind the extreme apex and extending basally for an additional 5-10 microm. In the shank of the pollen tube, basal to the fringe, actin forms abundant longitudinal filaments that are evenly dispersed throughout the cytoplasm. We have also developed an improved ambient-temperature chemical fixation procedure, modified from a protocol based on simultaneous fixation and phalloidin staining. We removed EGTA, elevated the pH to 9, and augmented the fixative with ethylene glycol bis[sulfosuccinimidylsuccinate] (sulfo-EGS). Notably, this protocol preserves the actin cytoskeleton in a pattern similar to that produced by cryofixation. These procedures provide a reproducible way to preserve the actin cytoskeleton; employing them, we find that a cortical fringe in the apex and finely dispersed longitudinal filaments in the shank are consistent features of the actin cytoskeleton.
Collapse
Affiliation(s)
- Alenka Lovy-Wheeler
- Department of Biology and Plant Biology Graduate Program, Morrill Science Center III, University of Massachusetts, 611 North Pleasant St., Amherst, MA 01003-9297, USA
| | | | | | | |
Collapse
|
200
|
Tegg RS, Melian L, Wilson CR, Shabala S. Plant Cell Growth and Ion Flux Responses to the Streptomycete Phytotoxin Thaxtomin A: Calcium and Hydrogen Flux Patterns Revealed by the Non-invasive MIFE Technique. ACTA ACUST UNITED AC 2005; 46:638-48. [PMID: 15753107 DOI: 10.1093/pcp/pci069] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thaxtomin A, a key phytotoxin produced by plant pathogenic Streptomyces sp., is implicit in common scab disease expression in potato. Primary targets and modes of action of thaxtomin A toxicity in plant cells are not well understood. In this work, early signalling events associated with thaxtomin A toxicity were studied using the ion-selective microelectrode ion flux estimation (MIFE) technique. Thaxtomin A-induced changes in net ion fluxes were measured across the plasma membrane (PM) of root and pollen tube tissue in Arabidopsis thaliana and tomato. Within a minute after toxin application, a rapid and short-lived Ca2+ influx was observed. Well ahead of the marked inhibition of root growth, a significant shift towards net H+ efflux across the PM occurred in all tissues. Similar to root tissues, thaxtomin A significantly modified ion flux profiles from growing pollen tubes. Thaxtomin A was more effective in young, physiologically active tissues (root elongation zone or pollen tube apex), suggesting a higher density of thaxtomin A-binding sites in these regions. Overall, our data provide the first evidence that thaxtomin A triggers an early signalling cascade, which may be crucial in plant-pathogen interactions. It also suggests a possible interaction between thaxtomin A and PM auxin receptors, as revealed from experiments on the auxin-sensitive ucu2-2/gi2 A. thaliana mutant.
Collapse
Affiliation(s)
- Robert Steven Tegg
- Tasmanian Institute of Agricultural Research, New Town Research Laboratories, 13 St John's Avenue, New Town, Tasmania 7008, Australia
| | | | | | | |
Collapse
|