151
|
Grove M, Demyanenko G, Echarri A, Zipfel PA, Quiroz ME, Rodriguiz RM, Playford M, Martensen SA, Robinson MR, Wetsel WC, Maness PF, Pendergast AM. ABI2-deficient mice exhibit defective cell migration, aberrant dendritic spine morphogenesis, and deficits in learning and memory. Mol Cell Biol 2004; 24:10905-22. [PMID: 15572692 PMCID: PMC533973 DOI: 10.1128/mcb.24.24.10905-10922.2004] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Abl-interactor (Abi) family of adaptor proteins has been linked to signaling pathways involving the Abl tyrosine kinases and the Rac GTPase. Abi proteins localize to sites of actin polymerization in protrusive membrane structures and regulate actin dynamics in vitro. Here we demonstrate that Abi2 modulates cell morphogenesis and migration in vivo. Homozygous deletion of murine abi2 produced abnormal phenotypes in the eye and brain, the tissues with the highest Abi2 expression. In the absence of Abi2, secondary lens fiber orientation and migration were defective in the eye, without detectable defects in proliferation, differentiation, or apoptosis. These phenotypes were consistent with the localization of Abi2 at adherens junctions in the developing lens and at nascent epithelial cell adherens junctions in vitro. Downregulation of Abi expression by RNA interference impaired adherens junction formation and correlated with downregulation of the Wave actin-nucleation promoting factor. Loss of Abi2 also resulted in cell migration defects in the neocortex and hippocampus, abnormal dendritic spine morphology and density, and severe deficits in short- and long-term memory. These findings support a role for Abi2 in the regulation of cytoskeletal dynamics at adherens junctions and dendritic spines, which is critical for intercellular connectivity, cell morphogenesis, and cognitive functions.
Collapse
Affiliation(s)
- Matthew Grove
- Duke University Medical Center, Department of Pharmacology and Cancer Biology, Box 3813, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Kakui K, Itoh H, Sagawa N, Yura S, Takemura M, Kawamura M, Fujii S. Experimental transplantation study for possible transformation of bone marrow cells in the mouse placenta. Placenta 2004; 26:678-85. [PMID: 16085047 DOI: 10.1016/j.placenta.2004.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 10/15/2004] [Accepted: 10/18/2004] [Indexed: 10/26/2022]
Abstract
The aim of the present study is to establish a mouse model of the transplantation of bone marrow cells into the placenta in mid-gestation. The mononuclear fraction of bone marrow cells was isolated by Ficoll gradient centrifugation from the femur bones of C57BL/6 green fluorescent protein (GFP) gene transgenic (Tg) mice. After intraperitoneal injection of pentobarbital sodium, the abdominal cavities of pregnant non-Tg (C57BL/6 or ICR) mice were opened at 9.5 days postcoitum (dpc). The mononuclear fraction of bone marrow cells from Tg mice (3-5 x 10(5)cells/3 microl) was directly injected into the placental portion of the pregnant uterus, at a depth of approximately 3 mm, using a 31-gauge injector. The placenta was sampled at 14.5 dpc. Confocal laser scanning microscopic analysis of the serial sections of the sampled placenta (150-250 sections/placenta) was carried out to detect GFP-positive cells and to assess immunostaining for cytokeratin, CD34, p57(Kip2) and prolactin. Most pregnant mice survived until sampling of the placenta at 14.5-18.5 dpc (88.9% for C57BL6 and 100% for ICR). The survival rate of fetuses from mice in which the placenta was transplanted with GFP-positive bone marrow cells was approximately 50%. A small population (0.154%) of injected bone marrow cells was retained in the placental tissue. Immunohistochemically, cytokeratin, CD34 and p57(Kip2) were positively stained in 0.062%, 4.5% and 2.1% of GFP-positive cells, respectively, while prolactin was not positive in any of the cells examined. GFP-positive bone marrow cells were successfully transplanted to the murine placenta. Future investigations of the specific antigens in bone marrow cells retained in the placenta may enable a better understanding of the local regulation of placental development.
Collapse
Affiliation(s)
- K Kakui
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
The kinship theory of genomic imprinting proposes that parent-specific gene expression evolves at a locus because a gene's level of expression in one individual has fitness effects on other individuals who have different probabilities of carrying the maternal and paternal alleles of the individual in which the gene is expressed. Therefore, natural selection favors different levels of expression depending on an allele's sex-of-origin in the previous generation. This review considers the strength of evidence in support of this hypothesis for imprinted genes in four "clusters," associated with the imprinted loci Igf2, Igf2r, callipyge, and Gnas. The clusters associated with Igf2 and Igf2r both contain paternally expressed transcripts that act as enhancers of prenatal growth and maternally expressed transcripts that act as inhibitors of prenatal growth. This is consistent with predictions of the kinship theory. However, the clusters also contain imprinted genes whose phenotypes as yet remain unexplained by the theory. The principal effects of imprinted genes in the callipyge and Gnas clusters appear to involve lipid and energy metabolism. The kinship theory predicts that maternally expressed transcripts will favor higher levels of nonshivering thermogenesis (NST) in brown adipose tissue (BAT) of animals that huddle for warmth as offspring. The phenotypes of reciprocal heterozygotes for Gnas knockouts provide provisional support for this hypothesis, as does some evidence from other imprinted genes (albeit more tentatively). The diverse effects of imprinted genes on the development of white adipose tissue (WAT) have so far defied a unifying hypothesis in terms of the kinship theory.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
154
|
Erlebacher A, Price KA, Glimcher LH. Maintenance of mouse trophoblast stem cell proliferation by TGF-β/activin. Dev Biol 2004; 275:158-69. [PMID: 15464579 DOI: 10.1016/j.ydbio.2004.07.032] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 07/23/2004] [Indexed: 12/29/2022]
Abstract
Mouse trophoblast stem (TS) cells can be grown indefinitely in vitro with FGF4 and embryonic fibroblast conditioned media (EFCM). Here, we report that the active protein components of EFCM include TGF-beta and the related factor activin, and that long-term continuous TS cell proliferation is possible in media supplemented with only serum, FGF4, and TGF-beta. As trophoblasts are an epithelial cell type, the promotion of TS cell proliferation represents an unusual function for TGF-beta and activin since TGF-beta in particular is well known as an inhibitor of nontransformed epithelial cell proliferation. Our data suggest that constitutive FGF signaling in TS cells selectively inhibits the ability of TGF-beta to repress c-myc expression, a central component of the TGF-beta cytostatic transcriptional response previously observed to be lost in other epithelial cell types upon oncogenic Ras transformation.
Collapse
Affiliation(s)
- Adrian Erlebacher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | |
Collapse
|
155
|
Tamamori-Adachi M, Hayashida K, Nobori K, Omizu C, Yamada K, Sakamoto N, Kamura T, Fukuda K, Ogawa S, Nakayama KI, Kitajima S. Down-regulation of p27Kip1 promotes cell proliferation of rat neonatal cardiomyocytes induced by nuclear expression of cyclin D1 and CDK4. Evidence for impaired Skp2-dependent degradation of p27 in terminal differentiation. J Biol Chem 2004; 279:50429-36. [PMID: 15371458 DOI: 10.1074/jbc.m403084200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian cardiomyocytes lose their capacity to proliferate during terminal differentiation. We have previously reported that the expression of nuclear localization signal-tagged cyclin D1 (D1NLS) and its partner cyclin-dependent kinase 4 (CDK4) induces proliferation of rat neonatal cardiomyocytes. Here we show that the D1NLS/CDK4 cells, after their entry into the cell cycle, accumulated cyclin-dependent kinase inhibitor p27 in the nuclei and decreased the cyclin-dependent kinase 2 (CDK2) activity, leading to early cell cycle arrest. Biochemical analysis demonstrated that Skp2-dependent p27 ubiquitylation was remarkably suppressed in cardiomyocytes, whereas Skp2, a component of Skp1-Cullin-F-box protein ubiquitin ligase, was more actively ubiquitylated compared with proliferating rat fibroblasts. Specific degradation of p27 by co-expressing Skp2 or p27 small interfering RNA caused an increase of CDK2 activity and overrode the limited cell cycle. These data altogether indicate that the impaired Skp2-dependent p27 degradation is causally related to the loss of proliferation in cardiomyocytes. This provides a novel insight in understanding the molecular mechanism by which mammalian cardiomyocytes cease to proliferate during terminal differentiation.
Collapse
Affiliation(s)
- Mimi Tamamori-Adachi
- Department of Biochemical Genetics, Medical Research Institute and Laboratory of Genome Structure and Regulation, School of Biomedical Science, Tokyo Medcal and Dental Universuty, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Tsonis PA, Madhavan M, Call MK, Gainer S, Rice A, Del Rio-Tsonis K. Effects of a CDK inhibitor on lens regeneration. Wound Repair Regen 2004; 12:24-9. [PMID: 14974961 DOI: 10.1111/j.1067-1927.2004.012107.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Lens regeneration in adult newts is always initiated from the dorsal iris by transdifferentiation of the pigment epithelial cells. One of the most important early events should be the ability of pigment epithelial cells to dedifferentiate and re-enter the cell cycle. As a first step in an attempt to study this event, we have decided to examine the effects of a cyclin-dependent kinase-2 inhibitor on lens regeneration. At the appropriate concentration, this inhibitor completely abolished the ability of pigment epithelial cells to form a new lens, but it did not stop them from dedifferentiating and forming a small lens vesicle. The effects of this inhibitor seem to be mediated by its opposite effects on cell proliferation and apoptosis. The inhibitor significantly reduced cell proliferation and enhanced apoptosis of pigment epithelial cells both in vitro and in vivo and of the regenerating lens in vivo.
Collapse
Affiliation(s)
- Panagiotis A Tsonis
- Laboratory of Molecular Biology, Department of Biology, University of Dayton, Dayton, Ohio 45469-2320, USA.
| | | | | | | | | | | |
Collapse
|
157
|
Ruiz S, Santos M, Segrelles C, Leis H, Jorcano JL, Berns A, Paramio JM, Vooijs M. Unique and overlapping functions of pRb and p107 in the control of proliferation and differentiation in epidermis. Development 2004; 131:2737-48. [PMID: 15148303 DOI: 10.1242/dev.01148] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The retinoblastoma gene product, pRb, plays a crucial role in cell cycle regulation, differentiation and inhibition of oncogenic transformation. pRb and its closely related family members p107 and p130 perform exclusive and overlapping functions during mouse development. The embryonic lethality of Rb-null animals restricts the phenotypic analysis of these mice to mid-gestation embryogenesis. We employed the Cre/loxP system to study the function of Rb in adult mouse stratified epithelium. RbF19/F19;K14cre mice displayed hyperplasia and hyperkeratosis in the epidermis with increased proliferation and aberrant expression of differentiation markers. In vitro, pRb is essential for the maintainance of the postmitotic state of terminally differentiated keratinocytes, preventing cell cycle re-entry. However, p107 compensates for the effects of Rb loss as the phenotypic abnormalities of RbF19/F19;K14cre keratinocytes in vivo and in vitro become more severe with the concurrent loss of p107 alleles. p107 alone appears to be dispensable for all these phenotypic changes, as the presence of a single Rb allele in a p107-null background rescues all these alterations. Luciferase reporter experiments indicate that these phenotypic alterations might be mediated by increased E2F activity. Our findings support a model in which pRb in conjunction with p107 plays a central role in regulating epidermal homeostasis.
Collapse
Affiliation(s)
- Sergio Ruiz
- Department of Cell and Molecular Biology and Gene Therapy, CIEMAT, Madrid E28040, Spain
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Ahn JW, Kim M, Lim JH, Kim GT, Pai HS. Phytocalpain controls the proliferation and differentiation fates of cells in plant organ development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:969-81. [PMID: 15165188 DOI: 10.1111/j.1365-313x.2004.02102.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Calpain, a calcium-dependent cysteine protease, plays an essential role in basic cellular processes in animal cells, including cell proliferation, apoptosis, and differentiation. NbDEK encodes the calpain homolog of N. benthamiana. In this study, virus-induced gene silencing (VIGS) of NbDEK resulted in arrested organ development and hyperplasia in all the major plant organs examined. The epidermal layers of the leaves and stems were covered with hyperproliferating cell masses, and stomata and trichome development was severely inhibited. During flower development, a single dome-like structure was grown from the flower meristem to generate a large cylinder-shaped flower lacking any floral organs. At the cellular level, cell division was sustained in tissues that were otherwise already differentiated, and cell differentiation was severely hampered. NbDEK is ubiquitously expressed in all the plant tissues examined. In the abnormal organs of the NbDEK VIGS lines, protein levels of D-type cyclins (CycD)2, CycD3, and proliferating cell nuclear antigen (PCNA) were greatly elevated, and transcription of E2F (E2 promoter binding factor), E2F-regulated genes, retinoblastoma (Rb), and KNOTTED1 (KN1)-type homeobox genes was also stimulated. These results suggest that phytocalpain is a key regulator of cell proliferation and differentiation during plant organogenesis, and that it acts partly by controlling the CycD/Rb pathway.
Collapse
Affiliation(s)
- Joon-Woo Ahn
- Laboratory of Plant Genomics, Korea Research Institute of Bioscience and Biotechnology, Oun-dong 52, Yusong-gu, Taejon 305-333, Korea
| | | | | | | | | |
Collapse
|
159
|
Liu H, Dibling B, Spike B, Dirlam A, Macleod K. New roles for the RB tumor suppressor protein. Curr Opin Genet Dev 2004; 14:55-64. [PMID: 15108806 DOI: 10.1016/j.gde.2003.11.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For a gene whose existence was first postulated in 1971, was cloned in 1986 and whose functions have been extensively characterized ever since, you might be inclined to think there was not much new to report regarding the retinoblastoma tumor suppressor gene (RB)--but you would be wrong to make such an assumption. RB is still piquing our interest with several activities defined over the past year that reveal new and exciting roles for this key tumor suppressor gene. These functions include regulation of senescence through specific gene silencing mechanisms, control of developmental processes in extra-embryonic tissues, maintaining tissue homeostasis and determining survival responses to chemotherapy.
Collapse
Affiliation(s)
- Huiping Liu
- The Ben May Institute for Cancer Research, The University of Chicago, The Knapp Medical Research Building, BSLC-R118, 924 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
160
|
Guo W, Shang F, Liu Q, Urim L, West-Mays J, Taylor A. Differential regulation of components of the ubiquitin-proteasome pathway during lens cell differentiation. Invest Ophthalmol Vis Sci 2004; 45:1194-201. [PMID: 15037588 PMCID: PMC1446108 DOI: 10.1167/iovs.03-0830] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To investigate the role for the ubiquitin-proteasome pathway in controlling lens cell proliferation and differentiation and the regulation of the ubiquitin conjugation machinery during the differentiation process. METHODS bFGF-induced lens cell proliferation and differentiation was monitored in rat lens epithelial explants by bromodeoxyuridine (BrdU) incorporation and expression of crystallins and other differentiation markers. Levels of typical substrates for the ubiquitin-proteasome pathway, p21(WAF) and p27(Kip), were monitored during the differentiation process, as were levels and activities of the enzymes involved in ubiquitin conjugation. RESULTS Explants treated with bFGF initially underwent enhanced proliferation as indicated by BrdU incorporation. Then they withdrew from the cell cycle as indicated by diminished BrdU incorporation and accumulation of p21(WAF) and p27(Kip). bFGF-induced cell proliferation was prohibited or delayed by proteasome inhibitors. Lens epithelial explants treated with bFGF for 7 days displayed characteristics of lens fibers, including expression of large quantities of crystallins. Whereas levels of E1 remained constant during the differentiation process, the levels of ubiquitin-conjugating enzyme (Ubc)-1 increased approximately twofold, and the thiol ester form of Ubc1 increased approximately threefold on 7 days of bFGF treatment. Levels of Ubc2 increased moderately on bFGF treatment, and most of the Ubc2 was found in the thiol ester form. Although levels of total Ubc3 and -7 remained unchanged, the proportions of Ubc3 and -7 in the thiol ester form were significantly higher in the bFGF-treated explants. Levels of Ubc4/5 and -9 also increased significantly on treatment with bFGF, and more than 90% of Ubc9 was found in the thiol ester form in the bFGF-treated explants. In contrast, levels of Cul1, the backbone of the SCF type of E3s, decreased 50% to 70% in bFGF-treated explants. CONCLUSIONS The data show that proteolysis through the ubiquitin-proteasome pathway is required for bFGF-induced lens cell proliferation and differentiation. Various components of the ubiquitin-proteasome pathway are differentially regulated during lens cell differentiation. The downregulation of Cul1 appears to contribute to the accumulation of p21(WAF) and p27(Kip), which play an important role in establishing a differentiated phenotype.
Collapse
Affiliation(s)
- Weimin Guo
- From the Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; the
| | - Fu Shang
- From the Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; the
| | - Qing Liu
- From the Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; the
| | - Lyudmila Urim
- Department of Ophthalmology, New England Medical Center, Boston, Massachusetts; and the
| | - Judith West-Mays
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Allen Taylor
- From the Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; the
- Corresponding author: Allen Taylor, Laboratory for Nutrition and Vision Research, JMUSDA-HNRCA at Tufts University, Boston, MA 02111;
| |
Collapse
|
161
|
Abstract
Wnt signaling is implicated in many developmental processes, including cell fate changes. Several members of the Wnt family, as well as other molecules involved in Wnt signaling, including Frizzled receptors, LDL-related protein co-receptors, members of the Dishevelled and Dickkopf families, are known to be expressed in the lens during embryonic or postembryonic development. However, the function of Wnt signaling in lens fiber differentiation remains unknown. Here, we show that GSK-3β kinase is inactivated and thatβ-catenin accumulates during the early stages of lens fiber cell differentiation. In an explant culture system, Wnt conditioned medium (CM)induced the accumulation of β-crystallin, a marker of fiber cell differentiation, without changing cell shape. In contrast, epithelial cells stimulated with Wnt after priming with FGF elongated, accumulatedβ-crystallin, aquaporin-0, p57kip2, and altered their expression of cadherins. Treatment with lithium, which stabilizes β-catenin, induced the accumulation of β-crystallin, but explants treated with lithium after FGF priming did not elongate as they did after Wnt application. These results show that Wnts promote the morphological aspects of fiber cell differentiation in a process that requires FGF signaling, but is independent ofβ-catenin. Wnt signaling may play an important role in lens epithelial-to-fiber differentiation.
Collapse
Affiliation(s)
- Jungmook Lyu
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | |
Collapse
|
162
|
Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider MD, Chien KR, Conway SJ, Yoder MC, Haneline LS, Franco D, Shou W. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 2004; 131:2219-31. [PMID: 15073151 PMCID: PMC2628765 DOI: 10.1242/dev.01094] [Citation(s) in RCA: 366] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
During cardiogenesis, perturbation of a key transition at mid-gestation from cardiac patterning to cardiac growth and chamber maturation often leads to diverse types of congenital heart disease, such as ventricular septal defect (VSD), myocardium noncompaction, and ventricular hypertrabeculation. This transition, which occurs at embryonic day (E) 9.0-9.5 in murine embryos and E24-28 in human embryos, is crucial for the developing heart to maintain normal cardiac growth and function in response to an increasing hemodynamic load. Although, ventricular trabeculation and compaction are key morphogenetic events associated with this transition, the molecular and cellular mechanisms are currently unclear. Initially, cardiac restricted cytokine bone morphogenetic protein 10 (BMP10) was identified as being upregulated in hypertrabeculated hearts from mutant embryos deficient in FK506 binding protein 12 (FKBP12). To determine the biological function of BMP10 during cardiac development, we generated BMP10-deficient mice. Here we describe an essential role of BMP10 in regulating cardiac growth and chamber maturation. BMP10 null mice display ectopic and elevated expression of p57(kip2) and a dramatic reduction in proliferative activity in cardiomyocytes at E9.0-E9.5. BMP10 is also required for maintaining normal expression levels of several key cardiogenic factors (e.g. NKX2.5 and MEF2C) in the developing myocardium at mid-gestation. Furthermore, BMP10-conditioned medium is able to rescue BMP10-deficient hearts in culture. Our data suggest an important pathway that involves a genetic interaction between BMP10, cell cycle regulatory proteins and several major cardiac transcription factors in orchestrating this transition in cardiogenesis at mid-gestation. This may provide an underlying mechanism for understanding the pathogenesis of both structural and functional congenital heart defects.
Collapse
Affiliation(s)
- Hanying Chen
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Chen Q, Liang D, Fromm LD, Overbeek PA. Inhibition of Lens Fiber Cell Morphogenesis by Expression of a Mutant SV40 Large T Antigen That Binds CREB-binding Protein/p300 but Not pRb. J Biol Chem 2004; 279:17667-73. [PMID: 14742445 DOI: 10.1074/jbc.m311678200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Simian virus (SV) 40 large T antigen can both induce tumors and inhibit cellular differentiation. It is not clear whether these cellular changes are synonymous, sequential, or distinct responses to the protein. T antigen is known to bind to p53, to the retinoblastoma (Rb) family of tumor suppressor proteins, and to other cellular proteins such as p300 family members. To test whether SV40 large T antigen inhibits cellular differentiation in vivo in the absence of cell cycle induction, we generated transgenic mice that express in the lens a mutant version of the early region of SV40. This mutant, which we term E107KDelta, has a deletion that eliminates synthesis of small t antigen and a point mutation (E107K) that results in loss of the ability to bind to Rb family members. At embryonic day 15.5 (E15.5), the transgenic lenses show dramatic defects in lens fiber cell differentiation. The fiber cells become post-mitotic, but do not elongate properly. The cells show a dramatic reduction in expression of their beta- and gamma-crystallins. Because CBP and p300 are co-activators for crystallin gene expression, we assayed for interactions between E107KDelta and CBP/p300. Our studies demonstrate that cellular differentiation can be inhibited by SV40 large T antigen in the absence of pRb inactivation, and that interaction of large T antigen with CBP/p300 may be enhanced by a mutation that eliminates the binding to pRb.
Collapse
Affiliation(s)
- Qin Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
164
|
Liu Q, Shang F, Guo W, Hobbs M, Valverde P, Reddy V, Taylor A. Regulation of the ubiquitin proteasome pathway in human lens epithelial cells during the cell cycle. Exp Eye Res 2004; 78:197-205. [PMID: 14729352 DOI: 10.1016/j.exer.2003.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Most proliferating cells follow a series of orderly transitions from one phase to another. These transitions are usually controlled by timed degradation of cell cycle regulators by the ubiquitin-proteasome pathway (UPP). There are no published reports regarding the timing of phases of the human lens cell cycle or regarding cell cycle-related changes in UPP components. Objectives of this study were to characterize the timing of the phases of the human lens epithelial cell cycle and to explore potential functions of critical components of the UPP in controlling lens cell cycle. Human lens epithelial cells were synchronized at G0/G1 phase by contact inhibition. Cell cycle progression upon subculturing was monitored by FACS analysis. It took approximately 40 hr for HLEC to complete one cell cycle, approximately 20 hr for G1 phase, approximately 8-10 hr for S phase and approximately 10 hr for the combination of G2 and M phases. Proteasome-dependent degradation of p21WAF and p27Kip, the dominant Cdk inhibitors, was associated with the G1/S phase transition in these cells. Proteasome inhibition experiments indicate that proteolysis is the predominant process which is responsible for the variations in these regulators during the cell cycle. Levels of specific ubiquitin conjugating enzymes, Ubc7 and Ubc10, increased 6 and 2-fold at the G2/M phase and S/G2/M phases, respectively. Levels of these E2s decreased precipitously upon completion of the M phase. In contrast, levels of ubiquitin activating enzyme (E1) and Ubc3 remained constant during the cell cycle. Cul1, a component of the SCF (an E3), remained relatively constant during cell cycle. The up-regulation of Ubc7 and Ubc10 during the G2/M and S/G2/M phases suggests that these enzymes may be involved in controlling the cell cycle progression at this phase. Taken together, the data indicate that expression of key components of the UPP in the human lens epithelial cells is regulated in a cell cycle-dependent manner. Some of the variations in levels of ubiquitin conjugating enzymes are suggestive of previously undescribed functions.
Collapse
Affiliation(s)
- Qing Liu
- JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
Price PM, Megyesi J, Safirstein RL. Cell cycle regulation: repair and regeneration in acute renal failure. Semin Nephrol 2004; 23:449-59. [PMID: 13680534 DOI: 10.1016/s0270-9295(03)00087-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Research into mechanisms of acute renal failure has begun to reveal molecular targets for possible therapeutic intervention. Much useful knowledge into the causes and prevention of this syndrome has been gained by the study of animal models. Most recently, investigation of the effects on acute renal failure of selected gene knock-outs in mice has contributed to our recognition of many previously unappreciated molecular pathways. Particularly, experiments have revealed the protective nature of 2 highly induced genes whose functions are to inhibit and control the cell cycle after acute renal failure. By use of these models we have started to understand the role of increased cell cycle activity after renal stress and the role of proteins induced by these stresses that limit this proliferation.
Collapse
Affiliation(s)
- Peter M Price
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
166
|
Stewart MC, Kadlcek RM, Robbins PD, MacLeod JN, Ballock RT. Expression and activity of the CDK inhibitor p57Kip2 in chondrocytes undergoing hypertrophic differentiation. J Bone Miner Res 2004; 19:123-32. [PMID: 14753744 DOI: 10.1359/jbmr.0301209] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED Growth plates of p57-null mice exhibit several abnormalities, including loss of collagen type X (CollX) expression. The phenotypic consequences of p57 expression were assessed in an in vitro model of hypertrophic differentiation. Adenoviral p57 expression was not sufficient for CollX expression but did augment induction of CollX by BMP-2. INTRODUCTION During hypertrophic differentiation, chondrocytes pass from an actively proliferative state to a postmitotic, hypertrophic phenotype. The induction of growth arrest is a central feature of this phenotypic transition. Mice lacking the cyclin dependent-kinase inhibitor p57Kip2 exhibit several developmental abnormalities including chondrodysplasia. Although growth plate chondrocytes in p57-null mice undergo growth arrest, they do not express collagen type X, a specific marker of the hypertrophic phenotype. This study was carried out to investigate the link between p57 expression and the induction of collagen type X in chondrocytes and to determine whether p57 overexpression is sufficient for the induction of hypertrophic differentiation. MATERIALS AND METHODS Neonatal rat epiphyseal or growth plate chondrocytes were maintained in an aggregate culture model, in defined, serum-free medium. Protein and mRNA levels were monitored by Western and Northern blot analyses, respectively. Proliferative activity was assessed by fluorescent measurement of total DNA and by 3H-thymidine incorporation rates. An adenoviral vector was used to assess the phenotypic consequences of p57 expression. RESULTS AND CONCLUSIONS During in vitro hypertrophic differentiation, levels of p57 mRNA and protein were constant despite changes in chondrocyte proliferative activity and the induction of hypertrophic-specific genes in response to bone morphogenetic protein (BMP)-2. Adenoviral p57 overexpression induced growth arrest in prehypertrophic epiphyseal chondrocytes in a dose-dependent manner but was not sufficient for the induction of collagen type X, either alone or when coexpressed with the related CDKI p21Cip1. Similar results were obtained with more mature tibial growth plate chondrocytes. p57 overexpression did augment collagen type X induction by BMP-2. These data indicate that p57-mediated growth arrest is not sufficient for expression of the hypertrophic phenotype, but rather it occurs in parallel with other aspects of the differentiation pathway. Our findings also suggest a contributing role for p57 in the regulation of collagen type X expression in differentiating chondrocytes.
Collapse
Affiliation(s)
- Matthew C Stewart
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA.
| | | | | | | | | |
Collapse
|
167
|
Davison EA, Lee CSL, Naylor MJ, Oakes SR, Sutherland RL, Hennighausen L, Ormandy CJ, Musgrove EA. The cyclin-dependent kinase inhibitor p27 (Kip1) regulates both DNA synthesis and apoptosis in mammary epithelium but is not required for its functional development during pregnancy. Mol Endocrinol 2003; 17:2436-47. [PMID: 12933906 DOI: 10.1210/me.2003-0199] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Decreased expression of the cyclin-dependent kinase (CDK) inhibitor p27(Kip1) is common in breast cancer and is associated with poor prognosis. p27 is also an important mediator of steroidal regulation of cell cycle progression. We have therefore investigated the role of p27 in mammary epithelial cell proliferation. Examination of the two major functions of p27, assembly of cyclin D1-Cdk4 complexes and inhibition of Cdk2 activity, revealed that cyclin D1-Cdk4 complex formation was not impaired in p27-/- mammary epithelial cells in primary culture. However, cyclin E-Cdk2 activity was increased approximately 3-fold, indicating that the CDK inhibitory function of p27 is important in mammary epithelial cells. Increased epithelial DNA synthesis was observed during pregnancy in p27-/- mammary gland transplants, but this was paralleled by increased apoptosis. During pregnancy and at parturition, development and differentiation of p27+/+ and p27-/- mammary tissue were indistinguishable. These results demonstrate a role for p27 in both the proliferation and survival of mammary epithelial cells. However, the absence of morphological and cellular defects in p27-/- mammary tissue during pregnancy raises the possibility that loss of p27 in breast cancer may not confer an overall growth advantage unless apoptosis is also impaired.
Collapse
Affiliation(s)
- Elizabeth A Davison
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Parisi T, Beck AR, Rougier N, McNeil T, Lucian L, Werb Z, Amati B. Cyclins E1 and E2 are required for endoreplication in placental trophoblast giant cells. EMBO J 2003; 22:4794-803. [PMID: 12970191 PMCID: PMC212738 DOI: 10.1093/emboj/cdg482] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Accepted: 08/01/2003] [Indexed: 01/06/2023] Open
Abstract
In mammalian cells, cyclin E-CDK2 complexes are activated in the late G1 phase of the cell cycle and are believed to have an essential role in promoting S-phase entry. We have targeted the murine genes CCNE1 and CCNE2, encoding cyclins E1 and E2. Whereas single knockout mice were viable, double knockout embryos died around midgestation. Strikingly, however, these embryos showed no overt defects in cell proliferation. Instead, we observed developmental phenotypes consistent with placental dysfunction. Mutant placentas had an overall normal structure, but the nuclei of trophoblast giant cells, which normally undergo endoreplication and reach elevated ploidies, showed a marked reduction in DNA content. We derived trophoblast stem cells from double knockout E3.5 blastocysts. These cells retained the ability to differentiate into giant cells in vitro, but were unable to undergo multiple rounds of DNA synthesis, demonstrating that the lack of endoreplication was a cell-autonomous defect. Thus, during embryonic development, the needs for E-type cyclins can be overcome in mitotic cycles but not in endoreplicating cells.
Collapse
Affiliation(s)
- Tiziana Parisi
- DNAX Research Institute, 901 California Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Fukuyama M, Gendreau SB, Derry WB, Rothman JH. Essential embryonic roles of the CKI-1 cyclin-dependent kinase inhibitor in cell-cycle exit and morphogenesis in C elegans. Dev Biol 2003; 260:273-86. [PMID: 12885569 DOI: 10.1016/s0012-1606(03)00239-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Following a phase of rapid proliferation, cells in developing embryos must decide when to cease division and then whether to survive and differentiate or instead undergo programmed death. In screens for genes that regulate embryonic patterning of the endoderm in Caenorhabditis elegans, we identified overlapping chromosomal deletions that define a gene required for these decisions. These deletions result in embryonic hyperplasia in multiple somatic tissues, excessive numbers of cell corpses, and profound defects in morphogenesis and differentiation. However, cell-cycle arrest of the germline is unaffected. Cell lineage analysis of these mutants revealed that cells that normally stop dividing earlier than their close relatives instead undergo an extra round of division. These deletions define a genomic region that includes cki-1 and cki-2, adjacent genes encoding members of the Cip/Kip family of cyclin-dependent kinase inhibitors. cki-1 alone can rescue the cell proliferation, programmed cell death, and differentiation and morphogenesis defects observed in these mutants. In contrast, cki-2 is not capable of significantly rescuing these phenotypes. RNA interference of cki-1 leads to embryonic lethality with phenotypes similar to, or more severe than, the deletion mutants. cki-1 and -2 gene reporters show distinct expression patterns; while both are expressed at around the time that embryonic cells exit the cell cycle, cki-2 also shows marked expression starting early in embryogenesis, when rapid cell division occurs. Our findings demonstrate that cki-1 activity plays an essential role in embryonic cell cycle arrest, differentiation and morphogenesis, and suggest that it may be required to suppress programmed cell death or engulfment of cell corpses.
Collapse
Affiliation(s)
- Masamitsu Fukuyama
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
170
|
Orend G, Huang W, Olayioye MA, Hynes NE, Chiquet-Ehrismann R. Tenascin-C blocks cell-cycle progression of anchorage-dependent fibroblasts on fibronectin through inhibition of syndecan-4. Oncogene 2003; 22:3917-26. [PMID: 12813465 DOI: 10.1038/sj.onc.1206618] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tenascin-C is an adhesion-modulatory extracellular matrix protein that is predominantly expressed during embryonic development, wound healing and in tumor stroma. Here we report that anchorage-dependent human, rat and mouse fibroblasts adhere poorly and fail to proliferate on pure tenascin-C. This was due to a significant reduction of cyclin-dependent kinase 2 (cdk2) activity, resulting from elevated expression and association of the cdk inhibitors (CKIs) p21Cip1 and p27Kip1. To analyse the effect of tenascin-C on fibronectin-mediated adhesion, cells were plated on a mixed fibronectin/tenascin-C substratum. Compared to fibronectin alone, cell spreading and adhesion signaling were compromised, as determined by delayed phosphorylation kinetics of focal adhesion kinase (FAK). Despite the presence of growth factors, these cells remained arrested in the G1 phase of the cell cycle. In contrast to cells plated on pure tenascin-C, cdk2 activity appeared to be inhibited independently of CKIs. Interestingly, overexpression of the transmembrane proteoglycan syndecan-4 restored cell spreading, adhesion signaling and DNA replication on the fibronectin/tenascin-C substratum. A similar rescue was observed using a recombinant peptide that spans the syndecan-4-binding site in fibronectin. This indicates that tenascin-C causes cell cycle arrest and cdk2 inactivation by interfering with fibronectin-syndecan-4 interactions. We therefore propose that syndecan-4 signaling plays a central role in the control of cellular proliferation of anchorage-dependent fibroblasts.
Collapse
Affiliation(s)
- Gertraud Orend
- Friedrich Miescher Institute for Biomedical Research, Novartis Forschungsstiftung, PO Box 2543, CH-4002 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
171
|
Leibovitch MP, Kannengiesser C, Leibovitch SA. Signal-induced ubiquitination of p57(Kip2) is independent of the C-terminal consensus Cdk phosphorylation site. FEBS Lett 2003; 543:125-8. [PMID: 12753918 DOI: 10.1016/s0014-5793(03)00425-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cyclin-dependent kinase inhibitor p57(Kip2) is required for normal mouse embryonic development. p57(Kip2) consists of four structurally distinct domains in which the conserved C-terminal nuclear targeting domain contains a putative Cdk phosphorylation site (Thr(342)) that shares a great similitude in the adjacent sequences with p27(Kip1) but not with p21(Cip1). Phosphorylation on Thr(187) has been shown to promote degradation of p27(Kip1). Although there is sequence homology between the C-terminal part of p27(Kip1) and p57(Kip2), we show that the ubiquitination and degradation of p57(Kip2) are independent of Thr(342). In contrast a destabilizing element located in the N-terminal is implicated in p57(Kip2) destabilization.
Collapse
|
172
|
Jirawatnotai S, Moons DS, Stocco CO, Franks R, Hales DB, Gibori G, Kiyokawa H. The cyclin-dependent kinase inhibitors p27Kip1 and p21Cip1 cooperate to restrict proliferative life span in differentiating ovarian cells. J Biol Chem 2003; 278:17021-7. [PMID: 12609976 DOI: 10.1074/jbc.m301206200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The timing of cellular exit from the cell cycle during differentiation is specific for each cell type or lineage. Granulosa cells in the ovary establish quiescence within several hours after the ovulation-inducing luteinizing hormone surge, whereas they undergo differentiation into corpora lutea. The expression of Cdk inhibitors p21(Cip1/Waf1) and p27(Kip1) is up-regulated during this process, suggesting that these cell cycle inhibitors are involved in restricting proliferative capacity of differentiating granulosa cells. Here we demonstrate that the lack of p27(Kip1) and p21(Cip1) synergistically renders granulosa cells extended an proliferative life span. Immunohistochemical analyses demonstrated that corpora lutea of p27(Kip1), p21(Cip1) double-null mice showed large numbers of cells with bromodeoxyuridine incorporation and high proliferative cell nuclear antigen expression, which were more remarkable than those in p27(Kip1) single-deficient mice showing modest hyperproliferation. In contrast, differentiating granulosa cells in p21(Cip1)-deficient mice ceased proliferation similarly to those in wild-type mice. Interestingly, granulosa cells isolated from p27(Kip1), p21(Cip1) double-null mice exhibited markedly prolonged proliferative life span in culture, unlike cells with other genotypes. Cultured p27(Kip1), p21(Cip1) double-null granulosa cells maintained expression of steroidogenic enzymes and gonadotropin receptors through 8-10 passages and could undergo further differentiation in responses to cAMP accumulation. Thus, the cooperation of p27(Kip1) and p21(Cip1) is critical for withdrawal of granulosa cells from the cell cycle, in concert with luteal differentiation and possibly culture-induced senescence.
Collapse
Affiliation(s)
- Siwanon Jirawatnotai
- Department of Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | |
Collapse
|
173
|
|
174
|
Wu L, de Bruin A, Saavedra HI, Starovic M, Trimboli A, Yang Y, Opavska J, Wilson P, Thompson JC, Ostrowski MC, Rosol TJ, Woollett LA, Weinstein M, Cross JC, Robinson ML, Leone G. Extra-embryonic function of Rb is essential for embryonic development and viability. Nature 2003; 421:942-7. [PMID: 12607001 DOI: 10.1038/nature01417] [Citation(s) in RCA: 317] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2002] [Accepted: 01/07/2003] [Indexed: 11/09/2022]
Abstract
The retinoblastoma (Rb) gene was the first tumour suppressor identified. Inactivation of Rb in mice results in unscheduled cell proliferation, apoptosis and widespread developmental defects, leading to embryonic death by day 14.5 (refs 2-4). However, the actual cause of the embryonic lethality has not been fully investigated. Here we show that loss of Rb leads to excessive proliferation of trophoblast cells and a severe disruption of the normal labyrinth architecture in the placenta. This is accompanied by a decrease in vascularization and a reduction in placental transport function. We used two complementary techniques-tetraploid aggregation and conditional knockout strategies-to demonstrate that Rb-deficient embryos supplied with a wild-type placenta can be carried to term, but die soon after birth. Most of the neurological and erythroid abnormalities thought to be responsible for the embryonic lethality of Rb-null animals were virtually absent in rescued Rb-null pups. These findings identify and define a key function of Rb in extra-embryonic cell lineages that is required for embryonic development and viability, and provide a mechanism for the cell autonomous versus non-cell autonomous roles of Rb in development.
Collapse
Affiliation(s)
- Lizhao Wu
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Vernon AE, Philpott A. A single cdk inhibitor, p27Xic1, functions beyond cell cycle regulation to promote muscle differentiation in Xenopus. Development 2003; 130:71-83. [PMID: 12441292 DOI: 10.1242/dev.00180] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular basis of the antagonism between cellular proliferation and differentiation is poorly understood. We have investigated the role of the cyclin-dependent kinase inhibitor p27(Xic1) in the co-ordination of cell cycle exit and differentiation during early myogenesis in vivo using Xenopus embryos. In this report, we demonstrate that p27(Xic1) is highly expressed in the developing myotome, that ablation of p27(Xic1) protein prevents muscle differentiation and that p27(Xic1) synergizes with the transcription factor MyoD to promote muscle differentiation. Furthermore, the ability of p27(Xic1) to promote myogenesis resides in an N-terminal domain and is separable from its cell cycle regulation function. This data demonstrates that a single cyclin-dependent kinase inhibitor, p27(Xic1), controls in vivo muscle differentiation in Xenopus and that regulation of this process by p27(Xic1) requires activities beyond cell cycle inhibition.
Collapse
Affiliation(s)
- Ann E Vernon
- Department of Oncology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | | |
Collapse
|
176
|
Dewitte W, Riou-Khamlichi C, Scofield S, Healy JMS, Jacqmard A, Kilby NJ, Murray JAH. Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3. THE PLANT CELL 2003; 15:79-92. [PMID: 12509523 PMCID: PMC143452 DOI: 10.1105/tpc.004838] [Citation(s) in RCA: 273] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Accepted: 10/11/2002] [Indexed: 05/18/2023]
Abstract
CYCD3;1 expression in Arabidopsis is associated with proliferating tissues such as meristems and developing leaves but not with differentiated tissues. Constitutive overexpression of CYCD3;1 increases CYCD3;1-associated kinase activity and reduces the proportion of cells in the G1-phase of the cell cycle. Moreover, CYCD3;1 overexpression leads to striking alterations in development. Leaf architecture in overexpressing plants is altered radically, with a failure to develop distinct spongy and palisade mesophyll layers. Associated with this, we observe hyperproliferation of leaf cells; in particular, the epidermis consists of large numbers of small, incompletely differentiated polygonal cells. Endoreduplication, a marker for differentiated cells that have exited from the mitotic cell cycle, is inhibited strongly in CYCD3;1-overexpressing plants. Transcript analysis reveals an activation of putative compensatory mechanisms upon CYCD3;1 overexpression or subsequent cell cycle activation. These results demonstrate that cell cycle exit in the G1-phase is required for normal cellular differentiation processes during plant development and suggest a critical role for CYCD3 in the switch from cell proliferation to the final stages of differentiation.
Collapse
Affiliation(s)
- Walter Dewitte
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
177
|
Hemberger M, Ferguson-Smith A, Moore G. 'Imprinting and Growth Congress' 2002, London, UK. Placenta 2003; 24:119-21. [PMID: 12495670 DOI: 10.1053/plac.2002.0892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M Hemberger
- Department of Molecular Biology and Biochemistry, University of Calgary, Alberta, T2N 4N1, Canada
| | | | | |
Collapse
|
178
|
Ciemerych MA, Kenney AM, Sicinska E, Kalaszczynska I, Bronson RT, Rowitch DH, Gardner H, Sicinski P. Development of mice expressing a single D-type cyclin. Genes Dev 2002; 16:3277-89. [PMID: 12502747 PMCID: PMC187507 DOI: 10.1101/gad.1023602] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
D-cyclins (cyclins D1, D2, and D3) are components of the core cell cycle machinery. To directly test the ability of each D-cyclin to drive development of various lineages, we generated mice expressing only cyclin D1, or only cyclin D2, or only cyclin D3. We found that these "single-cyclin" embryos develop normally until late gestation. Our analyses revealed that in single-cyclin embryos, the tissue-specific expression pattern of D-cyclins was lost. Instead, mutant embryos ubiquitously expressed the remaining D-cyclin. These findings suggest that the functions of the three D-cyclins are largely exchangeable at this stage. Later in life, single-cyclin mice displayed focused abnormalities, resulting in premature mortality. "Cyclin D1-only" mice developed severe megaloblastic anemia, "cyclin D2-only" mice presented neurological abnormalities, and "cyclin D3-only" mice lacked normal cerebella. Analyses of the affected tissues revealed that these compartments failed to sufficiently up-regulate the remaining, intact D-cyclin. In particular, we found that in cerebellar granule neuron precursors, the N-myc transcription factor communicates with the cell cycle machinery via cyclins D1 and D2, but not D3, explaining the inability of D3-only mice to up-regulate cyclin D3 in this compartment. Hence, the requirement for a particular cyclin in a given tissue is likely caused by specific transcription factors, rather than by unique properties of cyclins.
Collapse
Affiliation(s)
- Maria A Ciemerych
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Thompson JG, Kind KL, Roberts CT, Robertson SA, Robinson JS. Epigenetic risks related to assisted reproductive technologies: short- and long-term consequences for the health of children conceived through assisted reproduction technology: more reason for caution? Hum Reprod 2002; 17:2783-6. [PMID: 12407028 DOI: 10.1093/humrep/17.11.2783] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Does the manipulation of gametes and embryos as practised in human IVF invoke perturbations in fetal and neonatal phenotype? There is increasing evidence that the answer is 'yes', although the degree of perturbation may be less acute than observed in other species. However, the long-term consequences are not known, and may prove to be considerable. There is now a substantial body of evidence from animal models suggesting that assisted reproductive technologies (ART) are associated with altered outcomes in fetal and neonatal development. Epigenetic modification of gene expression is an attractive hypothesis that accounts for these differences and is one of a number of causal pathways that may be activated by cellular stress invoked during manipulation. Here we widen the debate to propose that environment-induced cellular stress also acts to modify fetal and placental gene expression, potentially also contributing to phenotype skewing after ART.
Collapse
Affiliation(s)
- Jeremy G Thompson
- Department of Obstetrics and Gynaecology, University of Adelaide, SA 5005, Australia.
| | | | | | | | | |
Collapse
|
180
|
Affiliation(s)
- A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 571 Jefferson Alumni Hall, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
181
|
Kwon YH, Jovanovic A, Serfas MS, Kiyokawa H, Tyner AL. P21 functions to maintain quiescence of p27-deficient hepatocytes. J Biol Chem 2002; 277:41417-22. [PMID: 12202477 DOI: 10.1074/jbc.m203388200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocytes rarely proliferate in the healthy adult liver. We explored the roles of the cyclin kinase inhibitors p21 and p27 in maintaining hepatocyte quiescence. p27 is expressed throughout the wild-type liver, but the related protein p21 was not detected. However, p21 was detected in livers of p27-deficient mice. Increased p21 protein levels did not result from an increase in p21 mRNA expression, indicating that p21 expression is regulated post-transcriptionally. p21 protein levels increased in cultured primary hepatocytes treated with the proteasome inhibitor MG132 and cycloheximide, indicating that p21 expression is regulated at the level of protein stability in liver cells. Although increased expression of cyclin-dependent kinase (Cdk) 4, Cdk2, and proliferating cell nuclear antigen was detected in p27-deficient livers, increased hepatocyte proliferation was detected only in livers of mice deficient for both p21 and p27. In p27-deficient livers, p21 was found in complexes with Cdk2 and CdK4 and can compensate for the absence of p27. Our data indicate that cyclin kinase inhibitor activity is important for maintaining hepatocyte quiescence in the adult liver. Significant increases in p21 were detected in multiple tissues of mature p27-deficient mice compared with wild-type mice, suggesting that the ability of p21 to functionally substitute for p27 is not liver-specific.
Collapse
Affiliation(s)
- Young Hye Kwon
- Department of Molecular Genetics, University of Illinois, Chicago 60607, USA
| | | | | | | | | |
Collapse
|
182
|
Walker JL, Zhang L, Menko AS. Transition between proliferation and differentiation for lens epithelial cells is regulated by Src family kinases. Dev Dyn 2002; 224:361-72. [PMID: 12203728 DOI: 10.1002/dvdy.10115] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As in many cell types, lens cells must withdraw from the cell cycle before they initiate their differentiation. The involvement of Src family kinases (SFKs) in this key initiating event in cell differentiation was examined in lens epithelial cell cultures. SFK activity was suppressed with the specific inhibitor PP1. This induced expression of the cyclin-dependent kinase (CDK) inhibitors p27 and p57 and suppressed lens epithelial cell proliferation. Therefore, inhibition of SFK activity created conditions permissive for undifferentiated lens epithelial cells to withdraw from the cell cycle. Growth of the lens epithelial cell cultures in the presence of PP1 induced expression of filensin and CP49, lens differentiation-specific intermediate filament proteins, providing evidence that suppression of SFK activity also promoted the initiation of lens cell differentiation. The mechanism by which PP1 signaled cell cycle withdrawal and commitment to differentiation was shown to involve induction of N-cadherin cell-cell junction assembly and reorganization of the actin cytoskeleton from stress fibers to cortical filaments. This result was supported by the compaction of the epithelial monolayer in response to PP1, a morphogenetic change that we have previously shown to be dependent on N-cadherin function and a hallmark of the commencement of the lens differentiation program in culture. The results presented in this study suggest that the decision of lens epithelial cells to withdraw from the cell cycle and initiate differentiation requires inhibition of SFKs and the formation of N-cadherin cell-cell junctions.
Collapse
Affiliation(s)
- Janice L Walker
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
183
|
Goudreau G, Petrou P, Reneker LW, Graw J, Löster J, Gruss P. Mutually regulated expression of Pax6 and Six3 and its implications for the Pax6 haploinsufficient lens phenotype. Proc Natl Acad Sci U S A 2002; 99:8719-24. [PMID: 12072567 PMCID: PMC124365 DOI: 10.1073/pnas.132195699] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Indexed: 11/18/2022] Open
Abstract
Pax6 is a key regulator of eye development in vertebrates and invertebrates, and heterozygous loss-of-function mutations of the mouse Pax6 gene result in the Small eye phenotype, in which a small lens is a constant feature. To provide an understanding of the mechanisms underlying this haploinsufficient phenotype, we evaluated in Pax6 heterozygous mice the effects of reduced Pax6 gene dosage on the activity of other transcription factors regulating eye formation. We found that Six3 expression was specifically reduced in lenses of Pax6 heterozygous mouse embryos. Interactions between orthologous genes from the Pax and Six families have been identified in Drosophila and vertebrate species, and we examined the control of Pax6 and Six3 gene expression in the developing mouse lens. Using in vitro and transgenic approaches, we found that either transcription factor binds regulatory sequences from the counterpart gene and that both genes mutually activate their expression. These studies define a functional relationship in the lens in which Six3 expression is dosage-dependent on Pax6 and where, conversely, Six3 activates Pax6. Accordingly, we show a rescue of the Pax6 haploinsufficient lens phenotype after lens-specific expression of Six3 in transgenic mice. This phenotypic rescue was accompanied by cell proliferation and activation of the platelet-derived growth factor alpha-R/cyclin D1 signaling pathway. Our findings thus provide a mechanism implicating gene regulatory interactions between Pax6 and Six3 in the tissue-specific defects found in Pax6 heterozygous mice.
Collapse
Affiliation(s)
- Guy Goudreau
- Department of Molecular Cell Biology, Max Planck Institute of Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
184
|
Frank D, Fortino W, Clark L, Musalo R, Wang W, Saxena A, Li CM, Reik W, Ludwig T, Tycko B. Placental overgrowth in mice lacking the imprinted gene Ipl. Proc Natl Acad Sci U S A 2002; 99:7490-5. [PMID: 12032310 PMCID: PMC124258 DOI: 10.1073/pnas.122039999] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Ipl (Tssc3) gene lies in an extended imprinted region of distal mouse chromosome 7, which also contains the Igf2 gene. Expression of Ipl is highest in placenta and yolk sac, where its mRNA is derived almost entirely from the maternal allele. Ipl encodes a small cytoplasmic protein with a pleckstrin-homology (PH) domain. We constructed two lines of mice with germ-line deletions of this gene (Ipl(neo) and Ipl(loxP)) and another line deleted for the similar but nonimprinted gene Tih1. All three lines were viable. There was consistent overgrowth of the Ipl-null placentas, with expansion of the spongiotrophoblast. These larger placentas did not confer a fetal growth advantage; fetal size was normal in Ipl nulls with the Ipl(neo) allele and was decreased slightly in nulls with the Ipl(loxP) allele. When bred into an Igf2 mutant background, the Ipl deletion partially rescued the placental but not fetal growth deficiency. Neither fetal nor placental growth was affected by deletion of Tih1. These results show a nonredundant function for Ipl in restraining placental growth. The data further indicate that Ipl can act, at least in part, independently of insulin-like growth factor-2 signaling. Thus, genomic imprinting regulates multiple pathways to control placental size.
Collapse
Affiliation(s)
- Dale Frank
- Institute for Cancer Genetics, Department of Pathology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Tokumoto YM, Apperly JA, Gao FB, Raff MC. Posttranscriptional regulation of p18 and p27 Cdk inhibitor proteins and the timing of oligodendrocyte differentiation. Dev Biol 2002; 245:224-34. [PMID: 11969268 DOI: 10.1006/dbio.2002.0626] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cell-intrinsic timer helps control when rodent oligodendrocyte precursor cells (OPCs) exit the cell cycle and terminally differentiate when cultured in platelet-derived growth factor (PDGF) and thyroid hormone (TH). There is evidence that the cyclin-dependent kinase inhibitor (CKI) p27/Kip1 (p27) is a component of this TH-regulated timer, as it increases as OPCs proliferate and is required for the timer to operate accurately. Here, we provide evidence that another CKI, p18/INK (p18), may also be a component of the timer: it increases as OPCs proliferate, and its overexpression in OPCs accelerates the timer, causing the cells to differentiate prematurely. We also show that the overexpression of p27 accelerates the timer and that the increases in both p27 and p18 that occur in proliferating OPCs are controlled posttranscriptionally. By contrast, we show that the overexpression of either p18 or p27 in OPCs proliferating in PDGF and the absence of TH greatly slows the cell cycle but fails to accelerate the spontaneous differentiation that normally occurs independently of TH.
Collapse
Affiliation(s)
- Yasuhito M Tokumoto
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
186
|
Philipp-Staheli J, Kim KH, Payne SR, Gurley KE, Liggitt D, Longton G, Kemp CJ. Pathway-specific tumor suppression. Reduction of p27 accelerates gastrointestinal tumorigenesis in Apc mutant mice, but not in Smad3 mutant mice. Cancer Cell 2002; 1:355-68. [PMID: 12086850 DOI: 10.1016/s1535-6108(02)00054-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Expression of the cyclin-dependent kinase inhibitor p27(Kip1) (p27) is frequently reduced in human colorectal cancer, and this correlates with poor patient prognosis. To clarify the role of p27 in gastrointestinal (GI) cancer, we measured p27 expression, as well as the effect of germline deletion of p27, in 3 different mouse models of GI neoplasia. p27 expression was frequently reduced in GI tumors arising in 1,2-dimethylhydrazine (DMH) treated mice, and in Apc mutant Min/+ mice, but not in GI tumors arising in Smad3 mutant mice. Germline deletion of p27 resulted in accelerated tumor development and increased tumor cell proliferation in both DMH treated and Min/+ mice, but not in Smad3 mutant mice. p27 deficiency also led to increased adenoma to adenocarcinoma progression. These results indicate that reduction of p27 cooperates with mutations in Apc but not in Smad3 during GI tumorigenesis. Thus, tumor suppression by p27 is contingent on the specific oncogenic pathway that drives tumor development.
Collapse
|
187
|
McArthur GA, Foley KP, Fero ML, Walkley CR, Deans AJ, Roberts JM, Eisenman RN. MAD1 and p27(KIP1) cooperate to promote terminal differentiation of granulocytes and to inhibit Myc expression and cyclin E-CDK2 activity. Mol Cell Biol 2002; 22:3014-23. [PMID: 11940659 PMCID: PMC133749 DOI: 10.1128/mcb.22.9.3014-3023.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To understand how cellular differentiation is coupled to withdrawal from the cell cycle, we have focused on two negative regulators of the cell cycle, the MYC antagonist MAD1 and the cyclin-dependent kinase inhibitor p27(KIP1). Generation of Mad1/p27(KIP1) double-null mice revealed a number of synthetic effects between the null alleles of Mad1 and p27(KIP1), including embryonic lethality, increased proliferation, and impaired differentiation of granulocyte precursors. Furthermore, with granulocyte cell lines derived from the Mad1/p27(KIP1) double-null mice, we observed constitutive Myc expression and cyclin E-CDK2 kinase activity as well as impaired differentiation following treatment with an inducer of differentiation. By contrast, similar treatment of granulocytes from Mad1 or p27(KIP1) single-null mice resulted in differentiation accompanied by downregulation of both Myc expression and cyclin E-CDK2 kinase activity. In the double-null granulocytic cells, addition of a CDK2 inhibitor in the presence of differentiation inducer was sufficient to restore differentiation and reduce Myc levels. We conclude that Mad1 and p27(KIP1) operate, at least in part, by distinct mechanisms to downregulate CDK2 activity and Myc expression in order to promote cell cycle exit during differentiation.
Collapse
Affiliation(s)
- Grant A McArthur
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | | | | | | | |
Collapse
|
188
|
Pituitary adenylate cyclase activating polypeptide anti-mitogenic signaling in cerebral cortical progenitors is regulated by p57Kip2-dependent CDK2 activity. J Neurosci 2002. [PMID: 11880488 DOI: 10.1523/jneurosci.22-05-01583.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Generation of distinct cell types and numbers in developing cerebral cortex is subject to regulation by extracellular factors that positively or negatively control precursor proliferation. Although signals stimulating proliferation are well described, factors halting cell cycle progression are less well defined. At the molecular level, production and association of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors (CKIs) regulate cycle progression. We now report that the endogenous peptide, pituitary adenylate cyclase activating polypeptide (PACAP), negatively regulates the cell cycle by inhibiting p57Kip2-dependent CDK2 activity in embryonic cortex. Protein levels of CDK2 and members of the CIP/KIP family of CKIs (p27Kip1, p57Kip2) were detected in developing rat cortex from embryonic day 13.5 through postnatal day 2. With advancing development, CDK2 protein levels decreased, whereas CKI expression increased, suggesting that stimulatory and inhibitory cycle proteins control cell cycle exit. Using a well defined, nonsynchronized, 8 hr precursor culture, PACAP decreased the fraction of cells crossing the G1/S boundary, inhibiting DNA synthesis by 35%. CDK2 kinase activity was inhibited 75% by PACAP, whereas kinase protein and its regulatory cyclin E subunit were unaffected. Moreover, decreased kinase activity was accompanied by a twofold increase in levels of p57Kip2 protein, but not p21Cip1 or p27Kip1, suggesting that p57Kip2 mediates PACAP anti-mitogenic effects. Indeed, immunoprecipitation of CDK2 complex revealed increased p57Kip2 association with the kinase and concomitant reduction in free inhibitor after PACAP exposure, suggesting that p57Kip2 interactions directly regulate CDK2 activity. These observations establish a mechanism whereby anti-mitogenic signals actively induce cell cycle withdrawal in developing cortex.
Collapse
|
189
|
Carey RG, Li B, DiCicco-Bloom E. Pituitary adenylate cyclase activating polypeptide anti-mitogenic signaling in cerebral cortical progenitors is regulated by p57Kip2-dependent CDK2 activity. J Neurosci 2002; 22:1583-91. [PMID: 11880488 PMCID: PMC6758902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Generation of distinct cell types and numbers in developing cerebral cortex is subject to regulation by extracellular factors that positively or negatively control precursor proliferation. Although signals stimulating proliferation are well described, factors halting cell cycle progression are less well defined. At the molecular level, production and association of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors (CKIs) regulate cycle progression. We now report that the endogenous peptide, pituitary adenylate cyclase activating polypeptide (PACAP), negatively regulates the cell cycle by inhibiting p57Kip2-dependent CDK2 activity in embryonic cortex. Protein levels of CDK2 and members of the CIP/KIP family of CKIs (p27Kip1, p57Kip2) were detected in developing rat cortex from embryonic day 13.5 through postnatal day 2. With advancing development, CDK2 protein levels decreased, whereas CKI expression increased, suggesting that stimulatory and inhibitory cycle proteins control cell cycle exit. Using a well defined, nonsynchronized, 8 hr precursor culture, PACAP decreased the fraction of cells crossing the G1/S boundary, inhibiting DNA synthesis by 35%. CDK2 kinase activity was inhibited 75% by PACAP, whereas kinase protein and its regulatory cyclin E subunit were unaffected. Moreover, decreased kinase activity was accompanied by a twofold increase in levels of p57Kip2 protein, but not p21Cip1 or p27Kip1, suggesting that p57Kip2 mediates PACAP anti-mitogenic effects. Indeed, immunoprecipitation of CDK2 complex revealed increased p57Kip2 association with the kinase and concomitant reduction in free inhibitor after PACAP exposure, suggesting that p57Kip2 interactions directly regulate CDK2 activity. These observations establish a mechanism whereby anti-mitogenic signals actively induce cell cycle withdrawal in developing cortex.
Collapse
Affiliation(s)
- Rebecca G Carey
- Department of Neuroscience and Cell Biology, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
190
|
Liu TH, Li L, Vaessin H. Transcription of the Drosophila CKI gene dacapo is regulated by a modular array of cis-regulatory sequences. Mech Dev 2002; 112:25-36. [PMID: 11850176 DOI: 10.1016/s0925-4773(01)00626-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Organogenesis requires coordination between developmental programs and cell cycle progression. The Cip/Kip families of cyclin-dependent kinase inhibitor (CKI) are main effectors linking these two programs. In many instances, expression of Cip/Kip CKIs are increased abruptly in cells entering their last mitotic cycle, suggesting that CKI expression is developmentally regulated. Expression of Dacapo (Dap), a Drosophila Cip/Kip CKI, is transiently up-regulated immediately before cells enter G1 arrest. Here we report that dap transcription is controlled by modular arrays of tissues specific cis-regulatory elements. Furthermore, we identified pan-neural Prospero as a regulator of dap transcription in the developing nervous system, providing an example how tissue-specific developmental programs can be linked to cell cycle progression.
Collapse
Affiliation(s)
- Te-Hui Liu
- Department of Molecular Genetics, Neurobiotechnology Center, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
191
|
Cunningham JJ, Levine EM, Zindy F, Goloubeva O, Roussel MF, Smeyne RJ. The cyclin-dependent kinase inhibitors p19(Ink4d) and p27(Kip1) are coexpressed in select retinal cells and act cooperatively to control cell cycle exit. Mol Cell Neurosci 2002; 19:359-74. [PMID: 11906209 DOI: 10.1006/mcne.2001.1090] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclin-dependent kinase inhibitors (cdki's), including p19(Ink4d) and p27(Kip1), mediate exit from the cell cycle. To determine the function of these cdki's in regulating neurogenesis, we examined retina from wild-type, Ink4d-null, and Ink4d/Kip1-double null animals. Ink4d was expressed in progenitors and select neurons in the mature retina. Ink4d-null retina showed an extended period of proliferation, followed by apoptosis. Colabeling for p19(Ink4d) and p27(Kip1) revealed that a subpopulation of cells expressed both inhibitors. Deletion of Ink4d and Kip1 resulted in continued proliferation that was synergistic. This hyperproliferation led to an increase in number of horizontal cells and differentiated neurons reentering the cell cycle. Deletion of Ink4d and Kip1 also exacerbated the retinal dysplasia observed in Kip1-null mice, which was shown to be partly dependent on p53. These data indicate that select retinal cells express both p19(Ink4d) and p27(Kip1) and that they act cooperatively to ensure cell cycle exit.
Collapse
Affiliation(s)
- Justine J Cunningham
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
192
|
Jasinski S, Riou-Khamlichi C, Roche O, Perennes C, Bergounioux C, Glab N. The CDK inhibitor NtKIS1a is involved in plant development,endoreduplication and restores normal development of cyclin D3;1-overexpressing plants. J Cell Sci 2002; 115:973-82. [PMID: 11870216 DOI: 10.1242/jcs.115.5.973] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant development requires stringent controls between cell proliferation and cell differentiation. Proliferation is positively regulated by cyclin dependent kinases (CDKs). Acting in opposition to CDKs are CDK inhibitors(CKIs). The first tobacco CKI (NtKIS1a) identified was shown to inhibit in vitro the kinase activity of CDK/cyclin complexes and to interact with CDK and D-cyclins. However, these features, which are common to other plant and animal CKIs already characterised, did not provide information about the function of NtKIS1a in plants. Thus, to gain insight into the role of NtKIS1a and especially its involvement in cell proliferation during plant development, we generated transgenic Arabidopsis thaliana plants that overexpress NtKIS1a. These plants showed reduced growth with smaller organs that contained larger cells. Moreover, these plants displayed modifications in plant morphology. These results demonstrated that plant organ size and shape,as well as organ cell number and cell size, might be controlled by modulation of the single NtKIS1a gene activity. Since in mammals, D-cyclins control cell cycle progression in a CDK-dependent manner but also play a CDK independent role by sequestering the CKIs p27Kip1 and p21Cip1, we tested the significance of cyclin D-CKI interaction within a living plant. With this aim, NtKIS1a and AtCycD3;1 were overexpressed simultaneously in plants by two different methods. Our results demonstrated that overexpression of the CKI NtKIS1a restores essentially normal development in plants overexpressing AtCycD3;1, providing the first evidence of cyclin D-CKI co-operation within the context of a living plant.
Collapse
Affiliation(s)
- Sophie Jasinski
- Laboratoire Cycle Cellulaire, Institut de Biotechnologie des Plantes, CNRS UMR8618, Université Paris-Sud, 91405 Orsay Cedex, France.
| | | | | | | | | | | |
Collapse
|
193
|
Chen Q, Ash JD, Branton P, Fromm L, Overbeek PA. Inhibition of crystallin expression and induction of apoptosis by lens-specific E1A expression in transgenic mice. Oncogene 2002; 21:1028-37. [PMID: 11850820 DOI: 10.1038/sj.onc.1205050] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Revised: 09/19/2001] [Accepted: 10/09/2001] [Indexed: 11/09/2022]
Abstract
Previous studies have shown that the adenovirus E1A oncoprotein can bind to and inactivate the retinoblastoma tumor suppressor protein (pRb) and the transcriptional coactivators CBP/p300. In this study, wild-type E1A12S or two deletion mutants (delN, which binds pRb but not CBP/p300; delCR2, which binds to CBP/p300 but not pRb) were linked to the lens-specific alphaA-crystallin promoter, and used to generate transgenic mice. Lens fiber cells expressing E1A12S or delCR2, both of which bind to CBP/p300, failed to upregulate beta-crystallin and gamma-crystallin expression. In contrast, lens fiber cells expressing delN showed significant expression of beta- and gamma-crystallins. Lens fiber cells expressing delN showed cell cycle entry, marked apoptosis, and evidence for p53 activation, while cells expressing either 12S or delCR2 showed limited apoptosis and no evidence for upregulation of the p53-inducible gene p21. Our results suggest that the transcriptional coactivators CBP and/or p300 are required for the dramatic increases in crystallin expression that accompany terminal differentiation in the lens, and also for activation of p53 in response to inactivation of pRb in the lens.
Collapse
Affiliation(s)
- Qin Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
194
|
Corroyer S, Schittny JC, Djonov V, Burri PH, Clement A. Impairment of rat postnatal lung alveolar development by glucocorticoids: involvement of the p21CIP1 and p27KIP1 cyclin-dependent kinase inhibitors. Pediatr Res 2002; 51:169-76. [PMID: 11809910 DOI: 10.1203/00006450-200202000-00008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It has been shown that glucocorticoids accelerate lung development by limiting alveolar formation resulting from a premature maturation of the alveolar septa. Based on these data, the aim of the present work was to analyze the influence of dexamethasone on cell cycle control mechanisms during postnatal lung development. Cell proliferation is regulated by a network of signaling pathways that converge to the key regulator of cell cycle machinery: the cyclin-dependent kinase (CDK) system. The activity of the various cyclin/CDK complexes can be modulated by the levels of the cyclins and their CDKs, and by expression of specific CDK inhibitors (CKIs). In the present study, newborn rats were given a 4-d treatment with dexamethasone (0.1-0.01 microg/g body weight dexamethasone sodium phosphate daily on d 1-4), or saline. Morphologically, the treatment caused a significant thinning of the septa and an acceleration of lung maturation on d 4. Study of cyclin/CDK system at d 1-36 documented a transient down-regulation of cyclin/CDK complex activities at d 4 in the dexamethasone-treated animals. Analysis of the mechanisms involved suggested a role for the CKIs p21CIP1 and p27KIP1. Indeed, we observed an increase in p21CIP1 and p27KIP1 protein levels on d 4 in the dexamethasone-treated animals. By contrast, no variations in either cyclin and CDK expression, or cyclin/CDK complex formation could be documented. We conclude that glucocorticoids may accelerate lung maturation by influencing cell cycle control mechanisms, mainly through impairment of G1 cyclin/CDK complex activation.
Collapse
Affiliation(s)
- Sophie Corroyer
- Departement de Pneumologie Pédiatrigue-INSERMU515, Hopital Trousseau, Université de Paris, Paris, France
| | | | | | | | | |
Collapse
|
195
|
Hung FC, Zhao S, Chen Q, Overbeek PA. Retinal ablation and altered lens differentiation induced by ocular overexpression of BMP7. Vision Res 2002; 42:427-38. [PMID: 11853758 DOI: 10.1016/s0042-6989(01)00242-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The alphaA-crystallin promoter was used to target expression of bone morphogenetic protein 7 (BMP7) to lens fiber cells in transgenic mice. Surprisingly, lens-specific expression of BMP7 induced widespread apoptosis and rapid ablation of the neural retina in multiple families. Subsequent to retinal ablation, the lens bow region shifted posteriorly until lens epithelial cells completely enveloped the lens. Lens-specific expression of FGF3 was found to rescue the loss of fiber cell differentiation. Our results show that elevated BMP7 levels can induce rapid retinal degeneration accompanied by disruption of the endogenous ocular system for fiber cell induction.
Collapse
Affiliation(s)
- Fang Cheng Hung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
196
|
Georgiades P, Ferguson-Smith AC, Burton GJ. Comparative developmental anatomy of the murine and human definitive placentae. Placenta 2002; 23:3-19. [PMID: 11869088 DOI: 10.1053/plac.2001.0738] [Citation(s) in RCA: 445] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The placenta of eutherian mammals is a remarkable biological structure. It is composed of both zygote-derived and maternal cells, and mediates the complex interactions between the mother and the fetus that are necessary for fetal growth and survival. While the genetic basis of human placental development and function is largely unknown, its understanding is of immense clinical importance because placentopathies of unknown genetic aetiology are thought to be the cause of many types of pregnancy complications including unexplained miscarriage and intrauterine growth retardation. The mouse is the best-studied mammalian experimental genetic model system and research is not restricted by the inherent ethical and practical limitations associated with the human. As a result, knowledge about the genetic control of mouse placental development has expanded greatly in recent years. In order for this to be of benefit to medical practice, extrapolations from murine to human placentation have to be made. However, comprehensive comparisons of the placentae of these two species are rare. This review therefore compares the developmental anatomy of the placenta between humans and mice with emphasis on structures and cell types that might be analogous between the two species. This could be of particular benefit to mouse developmental geneticists who study placental development and have an interest in the possible clinical implications of their work.
Collapse
Affiliation(s)
- P Georgiades
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| | | | | |
Collapse
|
197
|
Abstract
The sensory organs--the eye, ear, and nose- are formed, in part, from ectodermal thickenings: placodes. Their development is distinct from that of other regions of the developing body and they are essential for the development of other structures. For example, the olfactory placode which gives rise to the nose is essential for the functional development of the reproductive organs and hence fertility. Recently much progress has been made in the understanding of placode development, at both a molecular and embryological level. This is important as abnormal development of placodes occurs in a number of human syndromes. Furthermore, knowledge of placode development will give insight into therapeutic strategies to prevent degenerative change such as deafness. This review highlights the current knowledge of placode development and the future challenges in unravelling the cascades of signalling interactions that control development of these unique structures.
Collapse
|
198
|
Tanaka S, Oda M, Toyoshima Y, Wakayama T, Tanaka M, Yoshida N, Hattori N, Ohgane J, Yanagimachi R, Shiota K. Placentomegaly in cloned mouse concepti caused by expansion of the spongiotrophoblast layer. Biol Reprod 2001; 65:1813-21. [PMID: 11717146 DOI: 10.1095/biolreprod65.6.1813] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hypertrophic placenta, or placentomegaly, has been reported in cloned cattle and mouse concepti, although their placentation processes are quite different from each other. It is therefore tempting to assume that common mechanisms underlie the impact of somatic cell cloning on development of the trophoblast cell lineage that gives rise to the greater part of fetal placenta. To characterize the nature of placentomegaly in cloned mouse concepti, we histologically examined term cloned mouse placentas and assessed expression of a number of genes. A prominent morphological abnormality commonly found among all cloned mouse placentas examined was expansion of the spongiotrophoblast layer, with an increased number of glycogen cells and enlarged spongiotrophoblast cells. Enlargement of trophoblast giant cells and disorganization of the labyrinth layer were also seen. Despite the morphological abnormalities, in situ hybridization analysis of spatiotemporally regulated placenta-specific genes did not reveal any drastic disturbances. Although repression of some imprinted genes was found in Northern hybridization analysis, it was concluded that this was mostly due to the reduced proportion of the labyrinth layer in the entire placenta, not to impaired transcriptional activity. Interestingly, however, cloned mouse fetuses appeared to be smaller than those of litter size-matched controls, suggesting that cloned mouse fetuses were under a latent negative effect on their growth, probably because the placentas are not fully functional. Thus, a major cause of placentomegaly is expansion of the spongiotrophoblast layer, which consequently disturbs the architecture of the layers in the placenta and partially damages its function.
Collapse
Affiliation(s)
- S Tanaka
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Paramio JM, Segrelles C, Ruiz S, Martin-Caballero J, Page A, Martinez J, Serrano M, Jorcano JL. The ink4a/arf tumor suppressors cooperate with p21cip1/waf in the processes of mouse epidermal differentiation, senescence, and carcinogenesis. J Biol Chem 2001; 276:44203-11. [PMID: 11551927 DOI: 10.1074/jbc.m105650200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, cell cycle withdrawal is a prerequisite for terminal differentiation. Accordingly, in most tissues, including epidermis, the expression of the cyclin-dependent kinase inhibitors increases during differentiation. However, the actual role of cyclin-dependent kinase inhibitors is unclear. Different aspects of epidermal growth and differentiation in ink4a(Delta2,3)-null, p21-null, and ink4a(Delta2,3)/p21-doubly deficient mice were studied. Altered differentiation and decreased age-related senescence were found in the epidermis of ink4a(Delta2,3)/p21-null mice and, to a lesser extent, in ink4a(Delta2,3)- and p21-null mice. ink4a(Delta2,3)/p21-null primary keratinocytes underwent cell cycle arrest upon calcium or transforming growth factor-beta treatment, but failed to differentiate. This differentiation deficiency was not observed in p21- or ink4a(Delta2,3)-deficient keratinocytes. Upon infection with a v-Ha-ras-coding retrovirus, wild-type keratinocytes displayed features indicative of premature cell senescence. In p21- or ink4a(Delta2,3)-deficient keratinocytes, only a partial response was observed. ink4a(Delta2,3)/p21-deficient keratinocytes did not display senescent features, but showed increased tumorigenic potential upon injection into nude mice. These results indicate that ink4a/arf and cip1/waf genes cooperate to allow normal keratinocyte differentiation and that the absence of both favors malignant transformation.
Collapse
Affiliation(s)
- J M Paramio
- Cell, Molecular Biology, and Gene Therapy Project, CIEMAT, Avenida Complutense 22, E-28040 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Nguyên V, Candal Suárez EM, Sharif A, Joly JS, Bourrat F. Expression of Ol-KIP, a cyclin-dependent kinase inhibitor, in embryonic and adult medaka (Oryzias latipes) central nervous system. Dev Dyn 2001; 222:439-49. [PMID: 11747078 DOI: 10.1002/dvdy.1203] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
From an expression screen in a fish model, the medaka, we have isolated Ol-KIP (Oryzias latipes-kinase inhibitor protein), a new member of the KIP subfamily of cyclin-dependent kinase (Cdk) inhibitors. We have analysed its expression in the developing and adult brain by in situ hybridization and by double labeling with Ol-KIP mRNA and proliferating cell nuclear antigen (PCNA) antibodies. Ol-KIP presents a complex expression pattern in several areas of the embryonic central nervous system, most often in close vicinity to proliferative neuroepithelia. We studied in great detail its expression in the optic tectum: Ol-KIP is expressed in a ring-shaped domain lying exactly between the proliferative and the postmitotic zones of this structure and is, therefore, potentially involved in cell cycle exit. In the adult CNS, Ol-KIP expression persists in numerous nuclei, both close and distant from proliferative ventricular areas. So, Ol-KIP expression is in part compatible with a sustained "stop signal" role for proliferation, but its expression in postmitotic zones suggests that KIP proteins may have late neuronal function(s), in addition to inhibiting Cdks. This first detailed study of the expression profile of a KIP gene in a nonmammalian vertebrate, thus, opens perspectives for analysing the role of these regulators in brain development and function.
Collapse
Affiliation(s)
- V Nguyên
- Jeune Equipe INRA "Morphogenèse du Système Nerveux des Chordés," UPR 2197 DEPSN, CNRS, Institut Fessard, Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|