151
|
Ng M, Ndungo E, Jangra RK, Cai Y, Postnikova E, Radoshitzky SR, Dye JM, Ramírez de Arellano E, Negredo A, Palacios G, Kuhn JH, Chandran K. Cell entry by a novel European filovirus requires host endosomal cysteine proteases and Niemann-Pick C1. Virology 2014; 468-470:637-646. [PMID: 25310500 PMCID: PMC4252868 DOI: 10.1016/j.virol.2014.08.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 07/30/2014] [Accepted: 08/20/2014] [Indexed: 11/19/2022]
Abstract
Lloviu virus (LLOV), a phylogenetically divergent filovirus, is the proposed etiologic agent of die-offs of Schreibers's long-fingered bats (Miniopterus schreibersii) in western Europe. Studies of LLOV remain limited because the infectious agent has not yet been isolated. Here, we generated a recombinant vesicular stomatitis virus expressing the LLOV spike glycoprotein (GP) and used it to show that LLOV GP resembles other filovirus GP proteins in structure and function. LLOV GP must be cleaved by endosomal cysteine proteases during entry, but is much more protease-sensitive than EBOV GP. The EBOV/MARV receptor, Niemann-Pick C1 (NPC1), is also required for LLOV entry, and its second luminal domain is recognized with high affinity by a cleaved form of LLOV GP, suggesting that receptor binding would not impose a barrier to LLOV infection of humans and non-human primates. The use of NPC1 as an intracellular entry receptor may be a universal property of filoviruses.
Collapse
Affiliation(s)
- Melinda Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Esther Ndungo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Yingyun Cai
- Integrated Research Facility at Fort Detrick, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, United States
| | - Elena Postnikova
- Integrated Research Facility at Fort Detrick, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, United States
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, United States
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, United States
| | | | - Ana Negredo
- National Center of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, United States
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
152
|
Mylne A, Brady OJ, Huang Z, Pigott DM, Golding N, Kraemer MU, Hay SI. A comprehensive database of the geographic spread of past human Ebola outbreaks. Sci Data 2014; 1:140042. [PMID: 25984346 PMCID: PMC4432636 DOI: 10.1038/sdata.2014.42] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/06/2014] [Indexed: 11/09/2022] Open
Abstract
Ebola is a zoonotic filovirus that has the potential to cause outbreaks of variable magnitude in human populations. This database collates our existing knowledge of all known human outbreaks of Ebola for the first time by extracting details of their suspected zoonotic origin and subsequent human-to-human spread from a range of published and non-published sources. In total, 22 unique Ebola outbreaks were identified, composed of 117 unique geographic transmission clusters. Details of the index case and geographic spread of secondary and imported cases were recorded as well as summaries of patient numbers and case fatality rates. A brief text summary describing suspected routes and means of spread for each outbreak was also included. While we cannot yet include the ongoing Guinea and DRC outbreaks until they are over, these data and compiled maps can be used to gain an improved understanding of the initial spread of past Ebola outbreaks and help evaluate surveillance and control guidelines for limiting the spread of future epidemics.
Collapse
Affiliation(s)
- Adrian Mylne
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Oliver J. Brady
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Zhi Huang
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - David M. Pigott
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Nick Golding
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Moritz U.G. Kraemer
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Simon I. Hay
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892-2220, USA.
| |
Collapse
|
153
|
Smith DR, Holbrook MR, Gowen BB. Animal models of viral hemorrhagic fever. Antiviral Res 2014; 112:59-79. [PMID: 25448088 DOI: 10.1016/j.antiviral.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/24/2014] [Accepted: 10/05/2014] [Indexed: 12/13/2022]
Abstract
The term "viral hemorrhagic fever" (VHF) designates a syndrome of acute febrile illness, increased vascular permeability and coagulation defects which often progresses to bleeding and shock and may be fatal in a significant percentage of cases. The causative agents are some 20 different RNA viruses in the families Arenaviridae, Bunyaviridae, Filoviridae and Flaviviridae, which are maintained in a variety of animal species and are transferred to humans through direct or indirect contact or by an arthropod vector. Except for dengue, which is transmitted among humans by mosquitoes, the geographic distribution of each type of VHF is determined by the range of its animal reservoir. Treatments are available for Argentine HF and Lassa fever, but no approved countermeasures have been developed against other types of VHF. The development of effective interventions is hindered by the sporadic nature of most infections and their occurrence in geographic regions with limited medical resources. Laboratory animal models that faithfully reproduce human disease are therefore essential for the evaluation of potential vaccines and therapeutics. The goal of this review is to highlight the current status of animal models that can be used to study the pathogenesis of VHF and test new countermeasures.
Collapse
Affiliation(s)
- Darci R Smith
- Southern Research Institute, Frederick, MD 21701, United States.
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Brian B Gowen
- Institute for Antiviral Research and Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, United States
| |
Collapse
|
154
|
Chippaux JP. Outbreaks of Ebola virus disease in Africa: the beginnings of a tragic saga. J Venom Anim Toxins Incl Trop Dis 2014; 20:44. [PMID: 25320574 PMCID: PMC4197285 DOI: 10.1186/1678-9199-20-44] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/19/2014] [Indexed: 12/14/2022] Open
Abstract
The tremendous outbreak of Ebola virus disease occurring in West Africa since the end of 2013 surprises by its remoteness from previous epidemics and dramatic extent. This review aims to describe the 27 manifestations of Ebola virus that arose after its discovery in 1976. It provides an update on research on the ecology of Ebola viruses, modes of contamination and human transmission of the disease that are mainly linked to close contact with an infected animal or a patient suffering from the disease. The recommendations to contain the epidemic and challenges to achieve it are reminded.
Collapse
Affiliation(s)
- Jean-Philippe Chippaux
- />UMR 216, Mother and Child Facing Tropical Diseases, Institut de Recherche pour le Développement (IRD), Cotonou, Bénin
- />Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| |
Collapse
|
155
|
Koehler JW, Hall AT, Rolfe PA, Honko AN, Palacios GF, Fair JN, Muyembe JJ, Mulembekani P, Schoepp RJ, Adesokan A, Minogue TD. Development and evaluation of a panel of filovirus sequence capture probes for pathogen detection by next-generation sequencing. PLoS One 2014; 9:e107007. [PMID: 25207553 PMCID: PMC4160210 DOI: 10.1371/journal.pone.0107007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/05/2014] [Indexed: 01/07/2023] Open
Abstract
A detailed understanding of the circulating pathogens in a particular geographic location aids in effectively utilizing targeted, rapid diagnostic assays, thus allowing for appropriate therapeutic and containment procedures. This is especially important in regions prevalent for highly pathogenic viruses co-circulating with other endemic pathogens such as the malaria parasite. The importance of biosurveillance is highlighted by the ongoing Ebola virus disease outbreak in West Africa. For example, a more comprehensive assessment of the regional pathogens could have identified the risk of a filovirus disease outbreak earlier and led to an improved diagnostic and response capacity in the region. In this context, being able to rapidly screen a single sample for multiple pathogens in a single tube reaction could improve both diagnostics as well as pathogen surveillance. Here, probes were designed to capture identifying filovirus sequence for the ebolaviruses Sudan, Ebola, Reston, Taï Forest, and Bundibugyo and the Marburg virus variants Musoke, Ci67, and Angola. These probes were combined into a single probe panel, and the captured filovirus sequence was successfully identified using the MiSeq next-generation sequencing platform. This panel was then used to identify the specific filovirus from nonhuman primates experimentally infected with Ebola virus as well as Bundibugyo virus in human sera samples from the Democratic Republic of the Congo, thus demonstrating the utility for pathogen detection using clinical samples. While not as sensitive and rapid as real-time PCR, this panel, along with incorporating additional sequence capture probe panels, could be used for broad pathogen screening and biosurveillance.
Collapse
Affiliation(s)
- Jeffrey W Koehler
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Adrienne T Hall
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | | | - Anna N Honko
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Gustavo F Palacios
- Center for Genomic Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Joseph N Fair
- Metabiota, San Francisco, California, United States of America
| | - Jean-Jacques Muyembe
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Prime Mulembekani
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Randal J Schoepp
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Adeyemi Adesokan
- Pathogenica, Inc., Boston, Massachusetts, United States of America
| | - Timothy D Minogue
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| |
Collapse
|
156
|
Pigott DM, Golding N, Mylne A, Huang Z, Henry AJ, Weiss DJ, Brady OJ, Kraemer MUG, Smith DL, Moyes CL, Bhatt S, Gething PW, Horby PW, Bogoch II, Brownstein JS, Mekaru SR, Tatem AJ, Khan K, Hay SI. Mapping the zoonotic niche of Ebola virus disease in Africa. eLife 2014; 3:e04395. [PMID: 25201877 PMCID: PMC4166725 DOI: 10.7554/elife.04395] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/31/2014] [Indexed: 11/17/2022] Open
Abstract
Ebola virus disease (EVD) is a complex zoonosis that is highly virulent in humans. The largest recorded outbreak of EVD is ongoing in West Africa, outside of its previously reported and predicted niche. We assembled location data on all recorded zoonotic transmission to humans and Ebola virus infection in bats and primates (1976-2014). Using species distribution models, these occurrence data were paired with environmental covariates to predict a zoonotic transmission niche covering 22 countries across Central and West Africa. Vegetation, elevation, temperature, evapotranspiration, and suspected reservoir bat distributions define this relationship. At-risk areas are inhabited by 22 million people; however, the rarity of human outbreaks emphasises the very low probability of transmission to humans. Increasing population sizes and international connectivity by air since the first detection of EVD in 1976 suggest that the dynamics of human-to-human secondary transmission in contemporary outbreaks will be very different to those of the past.
Collapse
Affiliation(s)
- David M Pigott
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Nick Golding
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Adrian Mylne
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Zhi Huang
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Andrew J Henry
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Daniel J Weiss
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Oliver J Brady
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Moritz UG Kraemer
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - David L Smith
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
- Sanaria Institute for Global Health and Tropical Medicine, Rockville, United States
| | - Catherine L Moyes
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Samir Bhatt
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Peter W Gething
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Peter W Horby
- Epidemic Diseases Research Group, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Isaac I Bogoch
- Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, Canada
- Divisions of Internal Medicine and Infectious Diseases, University Health Network, Toronto, Toronto, Canada
| | - John S Brownstein
- Department of Pediatrics, Harvard Medical School, Boston, United States
- Children's Hospital Informatics Program, Boston Children's Hospital, Boston, United States
| | - Sumiko R Mekaru
- Children's Hospital Informatics Program, Boston Children's Hospital, Boston, United States
| | - Andrew J Tatem
- Department of Geography and Environment, University of Southampton, Southampton, United Kingdom
- Fogarty International Center, National Institutes of Health, Bethesda, United States
- Flowminder Foundation, Stockholm, Sweden
| | - Kamran Khan
- Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Simon I Hay
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
- Fogarty International Center, National Institutes of Health, Bethseda, United States
| |
Collapse
|
157
|
Reynard O, Volchkov V, Peyrefitte C. [A first outbreak of Ebola virus in West Africa]. Med Sci (Paris) 2014; 30:671-3. [PMID: 25014459 DOI: 10.1051/medsci/20143006018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Olivier Reynard
- CIRI-Centre International de Recherche en Infectiologie, Inserm U1111 - CNRS UMR5308, Université Lyon 1, ENS de Lyon, 21, avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Viktor Volchkov
- CIRI-Centre International de Recherche en Infectiologie, Inserm U1111 - CNRS UMR5308, Université Lyon 1, ENS de Lyon, 21, avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Christophe Peyrefitte
- IRBA-Institut de recherche biomédicale des armées, unité de virologie, ERL, Lyon, France
| |
Collapse
|
158
|
Abstract
Multiple recent, independent studies have confirmed that passively administered antibodies can provide effective postexposure therapy in nonhuman primates after exposure to an otherwise lethal dose of Ebola virus or Marburg virus. In this article, we review composition and performance of the antibody cocktails tested thus far, what is known about antibody epitopes on the viral glycoprotein target and ongoing research questions in further development of such cocktails for pre-exposure or emergency postexposure use.
Collapse
Affiliation(s)
- Erica Ollmann Saphire
- Department of Immunology & Microbial Science & The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
159
|
Olival KJ, Hayman DTS. Filoviruses in bats: current knowledge and future directions. Viruses 2014; 6:1759-88. [PMID: 24747773 PMCID: PMC4014719 DOI: 10.3390/v6041759] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
Filoviruses, including Ebolavirus and Marburgvirus, pose significant threats to public health and species conservation by causing hemorrhagic fever outbreaks with high mortality rates. Since the first outbreak in 1967, their origins, natural history, and ecology remained elusive until recent studies linked them through molecular, serological, and virological studies to bats. We review the ecology, epidemiology, and natural history of these systems, drawing on examples from other bat-borne zoonoses, and highlight key areas for future research. We compare and contrast results from ecological and virological studies of bats and filoviruses with those of other systems. We also highlight how advanced methods, such as more recent serological assays, can be interlinked with flexible statistical methods and experimental studies to inform the field studies necessary to understand filovirus persistence in wildlife populations and cross-species transmission leading to outbreaks. We highlight the need for a more unified, global surveillance strategy for filoviruses in wildlife, and advocate for more integrated, multi-disciplinary approaches to understand dynamics in bat populations to ultimately mitigate or prevent potentially devastating disease outbreaks.
Collapse
Affiliation(s)
- Kevin J Olival
- EcoHealth Alliance, 460 W. 34th Street, New York, NY 10001, USA.
| | - David T S Hayman
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
160
|
Matrix and backstage: cellular substrates for viral vaccines. Viruses 2014; 6:1672-700. [PMID: 24732259 PMCID: PMC4014716 DOI: 10.3390/v6041672] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 01/04/2023] Open
Abstract
Vaccines are complex products that are manufactured in highly dynamic processes. Cellular substrates are one critical component that can have an enormous impact on reactogenicity of the final preparation, level of attenuation of a live virus, yield of infectious units or antigens, and cost per vaccine dose. Such parameters contribute to feasibility and affordability of vaccine programs both in industrialized countries and developing regions. This review summarizes the diversity of cellular substrates for propagation of viral vaccines from primary tissue explants and embryonated chicken eggs to designed continuous cell lines of human and avian origin.
Collapse
|
161
|
Clifton MC, Kirchdoerfer RN, Atkins K, Abendroth J, Raymond A, Grice R, Barnes S, Moen S, Lorimer D, Edwards TE, Myler PJ, Saphire EO. Structure of the Reston ebolavirus VP30 C-terminal domain. Acta Crystallogr F Struct Biol Commun 2014; 70:457-60. [PMID: 24699737 PMCID: PMC3976061 DOI: 10.1107/s2053230x14003811] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/18/2014] [Indexed: 11/11/2022] Open
Abstract
The ebolaviruses can cause severe hemorrhagic fever. Essential to the ebolavirus life cycle is the protein VP30, which serves as a transcriptional cofactor. Here, the crystal structure of the C-terminal, NP-binding domain of VP30 from Reston ebolavirus is presented. Reston VP30 and Ebola VP30 both form homodimers, but the dimeric interfaces are rotated relative to each other, suggesting subtle inherent differences or flexibility in the dimeric interface.
Collapse
Affiliation(s)
- Matthew C. Clifton
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Emerald Bio, Preston Court, Bedford, MA 01730, USA
| | - Robert N. Kirchdoerfer
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, IMM-21, La Jolla, CA 92037, USA
| | - Kateri Atkins
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Emerald Bio, 7869 NE Day Road West, Bainbridge Isle, WA 98110, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Emerald Bio, 7869 NE Day Road West, Bainbridge Isle, WA 98110, USA
| | - Amy Raymond
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Emerald Bio, 7869 NE Day Road West, Bainbridge Isle, WA 98110, USA
| | - Rena Grice
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Emerald Bio, 7869 NE Day Road West, Bainbridge Isle, WA 98110, USA
| | - Steve Barnes
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Emerald Bio, 7869 NE Day Road West, Bainbridge Isle, WA 98110, USA
| | - Spencer Moen
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Emerald Bio, 7869 NE Day Road West, Bainbridge Isle, WA 98110, USA
| | - Don Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Emerald Bio, 7869 NE Day Road West, Bainbridge Isle, WA 98110, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Emerald Bio, 7869 NE Day Road West, Bainbridge Isle, WA 98110, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, IMM-21, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, IMM-21, La Jolla, CA 92037, USA
| |
Collapse
|
162
|
Kaslow RA, Stanberry LR, Le Duc JW. Diagnosis, Discovery and Dissection of Viral Diseases. VIRAL INFECTIONS OF HUMANS 2014. [PMCID: PMC7122662 DOI: 10.1007/978-1-4899-7448-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard A. Kaslow
- Department of Epidemiology, University of Alabama, Birmingham School of Public Health, Birmingham, Alabama USA
| | - Lawrence R. Stanberry
- Departmant of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York USA
| | - James W. Le Duc
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas USA
| |
Collapse
|
163
|
Uddin Khan S, Atanasova KR, Krueger WS, Ramirez A, Gray GC. Epidemiology, geographical distribution, and economic consequences of swine zoonoses: a narrative review. Emerg Microbes Infect 2013; 2:e92. [PMID: 26038451 PMCID: PMC3880873 DOI: 10.1038/emi.2013.87] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 01/19/2023]
Abstract
We sought to review the epidemiology, international geographical distribution, and economic consequences of selected swine zoonoses. We performed literature searches in two stages. First, we identified the zoonotic pathogens associated with swine. Second, we identified specific swine-associated zoonotic pathogen reports for those pathogens from January 1980 to October 2012. Swine-associated emerging diseases were more prevalent in the countries of North America, South America, and Europe. Multiple factors were associated with the increase of swine zoonoses in humans including: the density of pigs, poor water sources and environmental conditions for swine husbandry, the transmissibility of the pathogen, occupational exposure to pigs, poor human sanitation, and personal hygiene. Swine zoonoses often lead to severe economic consequences related to the threat of novel pathogens to humans, drop in public demand for pork, forced culling of swine herds, and international trade sanctions. Due to the complexity of swine-associated pathogen ecology, designing effective interventions for early detection of disease, their prevention, and mitigation requires an interdisciplinary collaborative “One Health” approach from veterinarians, environmental and public health professionals, and the swine industry.
Collapse
Affiliation(s)
- Salah Uddin Khan
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida , Gainesville, FL 32611, USA ; Emerging Pathogens Institute, University of Florida , Gainesville, FL 32611, USA
| | - Kalina R Atanasova
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida , Gainesville, FL 32611, USA ; Emerging Pathogens Institute, University of Florida , Gainesville, FL 32611, USA
| | - Whitney S Krueger
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida , Gainesville, FL 32611, USA ; Emerging Pathogens Institute, University of Florida , Gainesville, FL 32611, USA
| | - Alejandro Ramirez
- Veterinary Diagnosis and Production Animal Medicine, Iowa State University , Iowa, IA 5011, USA
| | - Gregory C Gray
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida , Gainesville, FL 32611, USA ; Emerging Pathogens Institute, University of Florida , Gainesville, FL 32611, USA
| |
Collapse
|
164
|
Mire CE, Geisbert JB, Marzi A, Agans KN, Feldmann H, Geisbert TW. Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus. PLoS Negl Trop Dis 2013; 7:e2600. [PMID: 24367715 PMCID: PMC3868506 DOI: 10.1371/journal.pntd.0002600] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 11/06/2013] [Indexed: 11/19/2022] Open
Abstract
Ebola virus (EBOV) causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs). Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV)-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV) or Zaire ebolavirus (ZEBOV) challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d'Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV) using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV), or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29-36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine vectors employed in the prime-boost approach can provide protection against BEBOV using an abbreviated regimen, which may have utility in outbreak settings.
Collapse
Affiliation(s)
- Chad E. Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Joan B. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Krystle N. Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
165
|
de Jong C, Field H, Tagtag A, Hughes T, Dechmann D, Jayme S, Epstein J, Smith C, Santos I, Catbagan D, Lim M, Benigno C, Daszak P, Newman S. Foraging behaviour and landscape utilisation by the endangered golden-crowned flying fox (Acerodon jubatus), the Philippines. PLoS One 2013; 8:e79665. [PMID: 24278154 PMCID: PMC3836874 DOI: 10.1371/journal.pone.0079665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
Species of Old World fruit-bats (family Pteropodidae) have been identified as the natural hosts of a number of novel and highly pathogenic viruses threatening livestock and human health. We used GPS data loggers to record the nocturnal foraging movements of Acerodon jubatus, the Golden-crowned flying fox in the Philippines to better understand the landscape utilisation of this iconic species, with the dual objectives of pre-empting disease emergence and supporting conservation management. Data loggers were deployed on eight of 54 A. jubatus (two males and six females) captured near Subic Bay on the Philippine island of Luzon between 22 November and 2 December 2010. Bodyweight ranged from 730 g to 1002 g, translating to a weight burden of 3–4% of bodyweight. Six of the eight loggers yielded useful data over 2–10 days, showing variability in the nature and range of individual bat movements. The majority of foraging locations were in closed forest and most were remote from evident human activity. Forty-six discrete foraging locations and five previously unrecorded roost locations were identified. Our findings indicate that foraging is not a random event, with the majority of bats exhibiting repetitious foraging movements night-to-night, that apparently intact forest provides the primary foraging resource, and that known roost locations substantially underestimate the true number (and location) of roosts. Our initial findings support policy and decision-making across perspectives including landscape management, species conservation, and potentially disease emergence.
Collapse
Affiliation(s)
- Carol de Jong
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture, Fisheries and Forestry, Coopers Plains, Queensland, Australia
- * E-mail:
| | - Hume Field
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture, Fisheries and Forestry, Coopers Plains, Queensland, Australia
- EcoHealth Alliance, New York, New York, United States of America
| | - Anson Tagtag
- Protected Areas and Wildlife Bureau, Department of Environment and Natural Resources, Quezon City, Philippines
| | - Tom Hughes
- EcoHealth Alliance, New York, New York, United States of America
| | - Dina Dechmann
- Max Planck Institute of Ornithology, Radolfzell, Germany
| | - Sarah Jayme
- Food and Agriculture Organization of the United Nations (FAO), Makati City, Philippines
| | - Jonathan Epstein
- EcoHealth Alliance, New York, New York, United States of America
| | - Craig Smith
- Queensland Centre for Emerging Infectious Diseases, Department of Agriculture, Fisheries and Forestry, Coopers Plains, Queensland, Australia
| | - Imelda Santos
- Food and Agriculture Organization of the United Nations (FAO), Makati City, Philippines
| | | | - Mundita Lim
- Protected Areas and Wildlife Bureau, Department of Environment and Natural Resources, Quezon City, Philippines
| | - Carolyn Benigno
- Food and Agriculture Organization of the United Nations (FAO) Regional Office for Asia and the Pacific (FAO RAP), Bangkok, Thailand
| | - Peter Daszak
- EcoHealth Alliance, New York, New York, United States of America
| | - Scott Newman
- Food and Agriculture Organization of the United Nations (FAO), Hanoi, Vietnam
| |
Collapse
|
166
|
Binning JM, Wang T, Luthra P, Shabman RS, Borek DM, Liu G, Xu W, Leung DW, Basler CF, Amarasinghe GK. Development of RNA aptamers targeting Ebola virus VP35. Biochemistry 2013; 52:8406-19. [PMID: 24067086 DOI: 10.1021/bi400704d] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viral protein 35 (VP35), encoded by filoviruses, is a multifunctional dsRNA binding protein that plays important roles in viral replication, innate immune evasion, and pathogenesis. The multifunctional nature of these proteins also presents opportunities to develop countermeasures that target distinct functional regions. However, functional validation and the establishment of therapeutic approaches toward such multifunctional proteins, particularly for nonenzymatic targets, are often challenging. Our previous work on filoviral VP35 proteins defined conserved basic residues located within its C-terminal dsRNA binding interferon (IFN) inhibitory domain (IID) as important for VP35 mediated IFN antagonism and viral polymerase cofactor functions. In the current study, we used a combination of structural and functional data to determine regions of Ebola virus (EBOV) VP35 (eVP35) to target for aptamer selection using SELEX. Select aptamers, representing, two distinct classes, were further characterized based on their interaction properties to eVP35 IID. These results revealed that these aptamers bind to distinct regions of eVP35 IID with high affinity (10-50 nM) and specificity. These aptamers can compete with dsRNA for binding to eVP35 and disrupt the eVP35-nucleoprotein (NP) interaction. Consistent with the ability to antagonize the eVP35-NP interaction, select aptamers can inhibit the function of the EBOV polymerase complex reconstituted by the expression of select viral proteins. Taken together, our results support the identification of two aptamers that bind filoviral VP35 proteins with high affinity and specificity and have the capacity to potentially function as filoviral VP35 protein inhibitors.
Collapse
Affiliation(s)
- Jennifer M Binning
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Horby PW, Pfeiffer D, Oshitani H. Prospects for emerging infections in East and southeast Asia 10 years after severe acute respiratory syndrome. Emerg Infect Dis 2013; 19:853-60. [PMID: 23738977 PMCID: PMC3713834 DOI: 10.3201/eid1906.121783] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is 10 years since severe acute respiratory syndrome (SARS) emerged, and East and Southeast Asia retain a reputation as a hot spot of emerging infectious diseases. The region is certainly a hot spot of socioeconomic and environmental change, and although some changes (e.g., urbanization and agricultural intensification) may reduce the probability of emerging infectious diseases, the effect of any individual emergence event may be increased by the greater concentration and connectivity of livestock, persons, and products. The region is now better able to detect and respond to emerging infectious diseases than it was a decade ago, but the tools and methods to produce sufficiently refined assessments of the risks of disease emergence are still lacking. Given the continued scale and pace of change in East and Southeast Asia, it is vital that capabilities for predicting, identifying, and controlling biologic threats do not stagnate as the memory of SARS fades.
Collapse
Affiliation(s)
- Peter W Horby
- Oxford University Clinical Research Unit, National Hospital of Tropical Diseases, 78 Giai Phong St, Dong Da District, Hanoi, Vietnam.
| | | | | |
Collapse
|
168
|
Abstract
Lloviu virus (LLOV), a novel filovirus detected in bats, is phylogenetically distinct from viruses in the genera Ebolavirus and Marburgvirus in the family Filoviridae. While filoviruses are known to cause severe hemorrhagic fever in humans and/or nonhuman primates, LLOV is biologically uncharacterized, since infectious LLOV has never been isolated. To examine the properties of LLOV, we characterized its envelope glycoprotein (GP), which likely plays a key role in viral tropism and pathogenicity. We first found that LLOV GP principally has the same primary structure as the other filovirus GPs. Similar to the other filoviruses, virus-like particles (VLPs) produced by transient expression of LLOV GP, matrix protein, and nucleoprotein in 293T cells had densely arrayed GP spikes on a filamentous particle. Mouse antiserum to LLOV VLP was barely cross-reactive to viruses of the other genera, indicating that LLOV is serologically distinct from the other known filoviruses. For functional study of LLOV GP, we utilized a vesicular stomatitis virus (VSV) pseudotype system and found that LLOV GP requires low endosomal pH and cathepsin L, and that human C-type lectins act as attachment factors for LLOV entry into cells. Interestingly, LLOV GP-pseudotyped VSV infected particular bat cell lines more efficiently than viruses bearing other filovirus GPs. These results suggest that LLOV GP mediates cellular entry in a manner similar to that of the other filoviruses while showing preferential tropism for some bat cells.
Collapse
|
169
|
Abstract
SUMMARYSince Ebola virus was discovered in 1970s, the virus has persisted in Africa and sporadic fatal outbreaks in humans and non-human primates have been reported. However, the evolutionary history of Ebola virus remains unclear. In this study, 27 Ebola virus strains with complete glycoprotein genes, including five species (Zaire, Sudan, Reston, Tai Forest, Bundibugyo), were analysed. Here, we propose a hypothesis of the evolutionary history of Ebola virus which will be helpful to investigate the molecular evolution of these viruses.
Collapse
|
170
|
Levings RL. Emerging and exotic zoonotic disease preparedness and response in the United States - coordination of the animal health component. Zoonoses Public Health 2013; 59 Suppl 2:80-94. [PMID: 22958252 DOI: 10.1111/j.1863-2378.2012.01495.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the response to a zoonotic disease outbreak to be effective, animal health authorities and disease specialists must be involved. Animal health measures are commonly directed at known diseases that threaten the health of animals and impact owners. The measures have long been applied to zoonotic diseases, including tuberculosis and brucellosis, and can be applied to emerging diseases. One Health (veterinary, public, wildlife and environmental health) and all-hazards preparedness work have done much to aid interdisciplinary understanding and planning for zoonotic diseases, although further improvements are needed. Actions along the prevention, preparedness, response and recovery continuum should be considered. Prevention of outbreaks consists largely of import controls on animals and animal products and biosecurity. Preparedness includes situational awareness, research, tool acquisition, modelling, training and exercises, animal movement traceability and policy development. Response would include detection systems and specialized personnel, institutions, authorities, strategies, methods and tools, including movement control, depopulation and vaccination if available and appropriate. The specialized elements would be applied within a general (nationally standardized) system of response. Recovery steps begin with continuity of business measures during the response and are intended to restore pre-event conditions. The surveillance for novel influenza A viruses in swine and humans and the preparedness for and response to the recent influenza pandemic illustrate the cooperation possible between the animal and public health communities.
Collapse
Affiliation(s)
- Randall L Levings
- Emergency Management and Diagnostics, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA.
| |
Collapse
|
171
|
Abstract
Zoonotic transmission of Ebola virus (EBOV) to humans causes a severe haemorrhagic fever in afflicted individuals with high case-fatality rates. Neither vaccines nor therapeutics are at present available to combat EBOV infection, making the virus a potential threat to public health. To devise antiviral strategies, it is important to understand which components of the immune system could be effective against EBOV infection. The interferon (IFN) system constitutes a key innate defence against viral infections and prevents development of lethal disease in mice infected with EBOV strains not adapted to this host. Recent research revealed that expression of the host cell IFN-inducible transmembrane proteins 1-3 (IFITM1-3) and tetherin is induced by IFN and restricts EBOV infection, at least in cell culture model systems. IFITMs, tetherin and other effector molecules of the IFN system could thus pose a potent barrier against EBOV spread in humans. However, EBOV interferes with signalling events required for human cells to express these proteins. Here, we will review the strategies employed by EBOV to fight the IFN system, and we will discuss how IFITM proteins and tetherin inhibit EBOV infection.
Collapse
Affiliation(s)
- A Kühl
- Institute of Virology, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
172
|
Xie G, Yu J, Duan Z. New strategy for virus discovery: viruses identified in human feces in the last decade. SCIENCE CHINA-LIFE SCIENCES 2013; 56:688-96. [PMID: 23917840 PMCID: PMC7089042 DOI: 10.1007/s11427-013-4516-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/16/2013] [Indexed: 02/08/2023]
Abstract
Emerging and re-emerging viruses continue to surface all over the world. Some of these viruses have the potential for rapid and global spread with high morbidity and mortality, such as the SARS coronavirus outbreak. It is extremely urgent and important to identify a novel virus near-instantaneously to develop an active preventive and/or control strategy. As a culture-independent approach, viral metagenomics has been widely used to investigate highly divergent and completely new viruses in humans, animals, and even environmental samples in the past decade. A new model of Koch’s postulates, named the metagenomic Koch’s postulates, has provided guidance for the study of the pathogenicity of novel viruses. This review explains the viral metagenomics strategy for virus discovery and describes viruses discovered in human feces in the past 10 years using this approach. This review also addresses issues related to the metagenomic Koch’s postulates and the challenges for virus discovery in the future.
Collapse
Affiliation(s)
- GuangCheng Xie
- National Institute of Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | | | | |
Collapse
|
173
|
Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother 2013; 57:4831-40. [PMID: 23877686 DOI: 10.1128/aac.00865-13] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial opportunistic pathogen that can cause severe infections, including hospital-acquired pneumonia, wound infections, and sepsis. Multidrug-resistant (MDR) strains are prevalent, further complicating patient treatment. Due to the increase in MDR strains, the cationic antimicrobial peptide colistin has been used to treat A. baumannii infections. Colistin-resistant strains of A. baumannii with alterations to the lipid A component of lipopolysaccharide (LPS) have been reported; specifically, the lipid A structure was shown to be hepta-acylated with a phosphoethanolamine (pEtN) modification present on one of the terminal phosphate residues. Using a tandem mass spectrometry platform, we provide definitive evidence that the lipid A isolated from colistin-resistant A. baumannii MAC204 LPS contains a novel structure corresponding to a diphosphoryl hepta-acylated lipid A structure with both pEtN and galactosamine (GalN) modifications. To correlate our structural studies with clinically relevant samples, we characterized colistin-susceptible and -resistant isolates obtained from patients. These results demonstrated that the clinical colistin-resistant isolate had the same pEtN and GalN modifications as those seen in the laboratory-adapted A. baumannii strain MAC204. In summary, this work has shown complete structure characterization including the accurate assignment of acylation, phosphorylation, and glycosylation of lipid A from A. baumannii, which are important for resistance to colistin.
Collapse
|
174
|
Abstract
A number of advances in recent years have significantly furthered our understanding of filovirus attachment and cellular tropism. For example, several cell-surface molecules have been identified as attachment factors with the potential to facilitate the in vivo targeting of particular cell types such as macrophages and hepatic cells. Furthermore, our knowledge of internalization and subsequent events during filovirus entry has also been widened, adding new variations to the paradigms for viral entry established for HIV and influenza. In particular, host cell factors such as endosomal proteases and the intracellular receptor Niemann-Pick C1 are now known to play a vital role in activating the membrane fusion potential of filovirus glycoproteins.
Collapse
Affiliation(s)
- Stefan Pöhlmann
- grid.10423.340000000095299877Institute for Virology, Hannover Medical School, Hannover, Germany ,grid.418215.b0000000085027018German Primate Center, Göttingen, Germany
| | - Graham Simmons
- grid.266102.10000000122976811Blood Systems Research Institute, and Department of Laboratory Medicine, University of California San Francisco, San Francisco, California USA
| |
Collapse
|
175
|
Detection of novel porcine bocaviruses in fecal samples of asymptomatic pigs in Cameroon. INFECTION GENETICS AND EVOLUTION 2013; 17:277-82. [DOI: 10.1016/j.meegid.2013.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/21/2013] [Accepted: 03/01/2013] [Indexed: 12/17/2022]
|
176
|
Kessell A, Hyatt A, Lehmann D, Shan S, Crameri S, Holmes C, Marsh G, Williams C, Tachedjian M, Yu M, Bingham J, Payne J, Lowther S, Wang J, Wang LF, Smith I. Cygnet River virus, a novel orthomyxovirus from ducks, Australia. Emerg Infect Dis 2013; 18:2044-6. [PMID: 23171630 PMCID: PMC3557875 DOI: 10.3201/eid1812.120500] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel virus, designated Cygnet River virus (CyRV), was isolated in embryonated eggs from Muscovy ducks in South Australia. CyRV morphologically resembles arenaviruses; however, sequencing identified CyRV as an orthomyxovirus. The high mortality rate among ducks co-infected with salmonellae suggests that CyRV may be pathogenic, either alone or in concert with other infections.
Collapse
Affiliation(s)
- Allan Kessell
- Gribbles Pathology, Glenside, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Monoclonal antibodies combined with adenovirus-vectored interferon significantly extend the treatment window in Ebola virus-infected guinea pigs. J Virol 2013; 87:7754-7. [PMID: 23616649 DOI: 10.1128/jvi.00173-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monoclonal antibodies (MAbs) are currently a promising treatment strategy against Ebola virus infection. This study combined MAbs with an adenovirus-vectored interferon (DEF201) to evaluate the efficacy in guinea pigs and extend the treatment window obtained with MAbs alone. Initiating the combination therapy at 3 days postinfection (d.p.i.) provided 100% survival, a significant improvement over survival with either treatment alone. The administration of DEF201 within 2 d.p.i. permits later MAb use, with protective efficacy observed up to 8 d.p.i.
Collapse
|
178
|
Immunopathogenesis of severe acute respiratory disease in Zaire ebolavirus-infected pigs. PLoS One 2013; 8:e61904. [PMID: 23626748 PMCID: PMC3633953 DOI: 10.1371/journal.pone.0061904] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/14/2013] [Indexed: 11/19/2022] Open
Abstract
Ebola viruses (EBOV) are filamentous single-stranded RNA viruses of the family Filoviridae. Zaire ebolavirus (ZEBOV) causes severe haemorrhagic fever in humans, great apes and non-human primates (NHPs) with high fatality rates. In contrast, Reston ebolavirus (REBOV), the only species found outside Africa, is lethal to some NHPs but has never been linked to clinical disease in humans despite documented exposure. REBOV was isolated from pigs in the Philippines and subsequent experiments confirmed the susceptibility of pigs to both REBOV and ZEBOV with predilection for the lungs. However, only ZEBOV caused severe lung pathology in 5-6 weeks old pigs leading to respiratory distress. To further elucidate the mechanisms for lung pathology, microarray analysis of changes in gene expression was performed on lung tissue from ZEBOV-infected pigs. Furthermore, systemic effects were monitored by looking at changes in peripheral blood leukocyte subsets and systemic cytokine responses. Following oro-nasal challenge, ZEBOV replicated mainly in the respiratory tract, causing severe inflammation of the lungs and consequently rapid and difficult breathing. Neutrophils and macrophages infiltrated the lungs but only the latter were positive for ZEBOV antigen. Genes for proinflammatory cytokines, chemokines and acute phase proteins, known to attract immune cells to sites of infection, were upregulated in the lungs, causing the heavy influx of cells into this site. Systemic effects included a decline in the proportion of monocyte/dendritic and B cells and a mild proinflammatory cytokine response. Serum IgM was detected on day 5 and 6 post infection. In conclusion, a dysregulation/over-activation of the pulmonary proinflammatory response may play a crucial role in the pathogenesis of ZEBOV infection in 5-6 weeks old pigs by attracting inflammatory cells to the lungs.
Collapse
|
179
|
Abstract
Filoviruses cause severe hemorrhagic fever in humans with high case-fatality rates. The cellular factors exploited by filoviruses for their spread constitute potential targets for intervention, but are incompletely defined. The viral glycoprotein (GP) mediates filovirus entry into host cells. Recent studies revealed important insights into the host cell molecules engaged by GP for cellular entry. The binding of GP to cellular lectins was found to concentrate virions onto susceptible cells and might contribute to the early and sustained infection of macrophages and dendritic cells, important viral targets. Tyrosine kinase receptors were shown to promote macropinocytic uptake of filoviruses into a subset of susceptible cells without binding to GP, while interactions between GP and human T cell Ig mucin 1 (TIM-1) might contribute to filovirus infection of mucosal epithelial cells. Moreover, GP engagement of the cholesterol transporter Niemann-Pick C1 was demonstrated to be essential for GP-mediated fusion of the viral envelope with a host cell membrane. Finally, mutagenic and structural analyses defined GP domains which interact with these host cell factors. Here, we will review the recent progress in elucidating the molecular interactions underlying filovirus entry and discuss their implications for our understanding of the viral cell tropism.
Collapse
|
180
|
Sullivan NJ, Fausther-Bovendo H, Nabel GJ. Ebola vaccine. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
181
|
Emerging virus diseases: can we ever expect the unexpected? Emerg Microbes Infect 2012; 1:e46. [PMID: 26038413 PMCID: PMC3630908 DOI: 10.1038/emi.2012.47] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/09/2012] [Accepted: 11/10/2012] [Indexed: 12/15/2022]
Abstract
Emerging virus diseases are a major threat to human and veterinary public health. With new examples occurring approximately one each year, the majority are viruses originating from an animal host. Of the many factors responsible, changes to local ecosystems that perturb the balance between pathogen and principal host species is one of the major drivers, together with increasing urbanization of mankind and changes in human behavior. Many emerging viruses have RNA genomes and as such are capable of rapid mutation and selection of new variants in the face of environmental changes in host numbers and available target species. This review summarizes recent work on aspects of virus emergence and the current understanding of the molecular and immunological basis whereby viruses may cross between species and become established in new ecological niches. Emergence is hard to predict, although mathematical modeling and spatial epidemiology have done much to improve the prediction of where emergence may occur. However, much needs to be done to ensure adequate surveillance is maintained of animal species known to present the greatest risk thus increasing general alertness among physicians, veterinarians and those responsible for formulating public health policy.
Collapse
|
182
|
Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences. J Virol 2012; 87:2608-16. [PMID: 23255795 DOI: 10.1128/jvi.03118-12] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses in the Ebolavirus and Marburgvirus genera (family Filoviridae) have been associated with large outbreaks of hemorrhagic fever in human and nonhuman primates. The first documented cases occurred in primates over 45 years ago, but the amount of virus genetic diversity detected within bat populations, which have recently been identified as potential reservoir hosts, suggests that the filoviruses are much older. Here, detailed Bayesian coalescent phylogenetic analyses are performed on 97 whole-genome sequences, 55 of which are newly reported, to comprehensively examine molecular evolutionary rates and estimate dates of common ancestry for viruses within the family Filoviridae. Molecular evolutionary rates for viruses belonging to different species range from 0.46 × 10(-4) nucleotide substitutions/site/year for Sudan ebolavirus to 8.21 × 10(-4) nucleotide substitutions/site/year for Reston ebolavirus. Most recent common ancestry can be traced back only within the last 50 years for Reston ebolavirus and Zaire ebolavirus species and suggests that viruses within these species may have undergone recent genetic bottlenecks. Viruses within Marburg marburgvirus and Sudan ebolavirus species can be traced back further and share most recent common ancestors approximately 700 and 850 years before the present, respectively. Examination of the whole family suggests that members of the Filoviridae, including the recently described Lloviu virus, shared a most recent common ancestor approximately 10,000 years ago. These data will be valuable for understanding the evolution of filoviruses in the context of natural history as new reservoir hosts are identified and, further, for determining mechanisms of emergence, pathogenicity, and the ongoing threat to public health.
Collapse
|
183
|
Rowland RRR, Lunney J, Dekkers J. Control of porcine reproductive and respiratory syndrome (PRRS) through genetic improvements in disease resistance and tolerance. Front Genet 2012; 3:260. [PMID: 23403935 PMCID: PMC3565991 DOI: 10.3389/fgene.2012.00260] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 11/05/2012] [Indexed: 01/03/2023] Open
Abstract
Infections caused by porcine reproductive and respiratory syndrome virus (PRRSV) have a severe economic impact on pig production in North America, Europe, and Asia. The emergence and eventual predominance of PRRS in the 1990s are the likely result of changes in the pork industry initiated in the late 1970s, which allowed the virus to occupy a unique niche within a modern commercial production system. PRRSV infection is responsible for severe clinical disease, but can maintain a life-long subclinical infection, as well as participate in several polymicrobial syndromes. Current vaccines lessen clinical signs, but are of limited use for disease control and elimination. The relatively poor protective immunity following vaccination is a function of the virus's capacity to generate a large degree of genetic diversity, combined with several strategies to evade innate and adaptive immune responses. In 2007, the PRRS Host Genetics consortium (PHGC) was established to explore the role of host genetics as an avenue for PRRS control. The PHGC model for PRRS incorporates the experimental infection of large numbers of growing pigs and has created the opportunity to study experimental PRRSV infection at the population level. The results show that pigs can be placed into distinct phenotypic groups, including pigs that show resistance (i.e., low virus load) or pigs that exhibit “tolerance” to infection. Tolerance was illustrated by pigs that gain weight normally in the face of a relatively high virus load. Genome-wide association analysis has identified a region on chromosome 4 (SSC4) correlated with resistance; i.e., lower cumulative virus load within the first 42 days of infection. The genomic region is near a family of genes involved in innate immunity. The region is also associated with higher weight gain in challenged pigs, suggesting that pigs with the resistance alleles don't seem to simultaneously experience reduction in growth, i.e., that resistance and tolerance are not antagonistically related. These results create the opportunity to develop breeding programs that will produce pigs with increased resistance to PRRS and simultaneously high growth rate. The identification of genomic markers involved in actual tolerance will likely prove more difficult, primarily because tolerance is difficult to quantify and because tolerance mechanism are still poorly understood. Another avenue of study includes the identification of genomic markers related to improved response following vaccination.
Collapse
Affiliation(s)
- Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| | | | | |
Collapse
|
184
|
Mackenzie JS, Jeggo M, Daszak P, Richt JA. Men, primates, and germs: an ongoing affair. Curr Top Microbiol Immunol 2012; 365:337-53. [PMID: 23239237 PMCID: PMC7121697 DOI: 10.1007/82_2012_304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humans and nonhuman primates are phylogenetically (i.e., genetically) related and share pathogens that can jump from one species to another. The specific strategies of three groups of pathogens for crossing the species barrier among primates will be discussed. In Africa, gorillas and chimpanzees have succumbed for years to simultaneous epizootics (i.e.. "multi-emergence") of Ebola virus in places where they are in contact with Chiropters, which could be animal reservoirs of these viruses. Human epidemics often follow these major outbreaks. Simian immunodeficiency viruses (SIVs) have an ancient history of coevolution and many interspecific exchanges with their natural hosts. Chimpanzee and gorilla SIVs have crossed the species barrier at different times and places, leading to the emergence of HIV-1 and HIV-2. Other retroviruses, such as the Simian T-Lymphotropic Viruses and Foamiviruses, have also a unique ancient or recent history of crossing the species barrier. The identification of gorilla Plasmodium parasites that are genetically close to P. falciparum suggests that gorillas were the source of the deadly human P. falciparum. Nonhuman plasmodium species that can infect humans represent an underestimated risk.
Collapse
Affiliation(s)
- John S. Mackenzie
- Faculty of Health Sciences, Curtin University, Perth, Perth, West Australia Australia
| | - Martyn Jeggo
- Livestock Industries, CSIRO Australian Animal Health Laborator, East Geelong, Victoria Australia
| | | | - Juergen A. Richt
- Diagnostic Medicine/Pathobiology Departm, Kansas State University College of Veterinary Medicine, Manhattan, Kansas USA
| |
Collapse
|
185
|
Weingartl HM, Embury-Hyatt C, Nfon C, Leung A, Smith G, Kobinger G. Transmission of Ebola virus from pigs to non-human primates. Sci Rep 2012; 2:811. [PMID: 23155478 PMCID: PMC3498927 DOI: 10.1038/srep00811] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/28/2012] [Indexed: 11/09/2022] Open
Abstract
Ebola viruses (EBOV) cause often fatal hemorrhagic fever in several species of simian primates including human. While fruit bats are considered natural reservoir, involvement of other species in EBOV transmission is unclear. In 2009, Reston-EBOV was the first EBOV detected in swine with indicated transmission to humans. In-contact transmission of Zaire-EBOV (ZEBOV) between pigs was demonstrated experimentally. Here we show ZEBOV transmission from pigs to cynomolgus macaques without direct contact. Interestingly, transmission between macaques in similar housing conditions was never observed. Piglets inoculated oro-nasally with ZEBOV were transferred to the room housing macaques in an open inaccessible cage system. All macaques became infected. Infectious virus was detected in oro-nasal swabs of piglets, and in blood, swabs, and tissues of macaques. This is the first report of experimental interspecies virus transmission, with the macaques also used as a human surrogate. Our finding may influence prevention and control measures during EBOV outbreaks.
Collapse
Affiliation(s)
- Hana M. Weingartl
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington St. Winnipeg, Manitoba, R3E 3M4, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington St. Winnipeg, Manitoba, R3E 3M4, Canada
| | - Charles Nfon
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington St. Winnipeg, Manitoba, R3E 3M4, Canada
| | - Anders Leung
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington St., Winnipeg, Manitoba, R3E 3R2, Canada
| | - Greg Smith
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington St. Winnipeg, Manitoba, R3E 3M4, Canada
| | - Gary Kobinger
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington St., Winnipeg, Manitoba, R3E 3R2, Canada
| |
Collapse
|
186
|
Yuan J, Zhang Y, Li J, Zhang Y, Wang LF, Shi Z. Serological evidence of ebolavirus infection in bats, China. Virol J 2012; 9:236. [PMID: 23062147 PMCID: PMC3492202 DOI: 10.1186/1743-422x-9-236] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 10/02/2012] [Indexed: 11/20/2022] Open
Abstract
Background The genus Ebolavirus of the family Filoviridae currently consists of five species. All species, with the exception of Reston ebolavirus, have been found in Africa and caused severe human diseases. Bats have been implicated as reservoirs for ebolavirus. Reston ebolavirus, discovered in the Philippines, is the only ebolavirus species identified in Asia to date. Whether this virus is prevalent in China is unknown. Findings In this study, we developed an enzyme linked immunosorbent assay (ELISA) for ebolavirus using the recombinant nucleocapsid protein and performed sero-surveillance for the virus among Chinese bat populations. Our results revealed the presence of antibodies to ebolavirus in 32 of 843 bat sera samples and 10 of 16 were further confirmed by western blot analysis. Conclusion To our knowledge, this is the first report of any filovirus infection in China.
Collapse
Affiliation(s)
- Junfa Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology-Chinese Academy of Sciences, Wuhan, Hubei 430071, P R China
| | | | | | | | | | | |
Collapse
|
187
|
Taniguchi S, Sayama Y, Nagata N, Ikegami T, Miranda ME, Watanabe S, Iizuka I, Fukushi S, Mizutani T, Ishii Y, Saijo M, Akashi H, Yoshikawa Y, Kyuwa S, Morikawa S. Analysis of the humoral immune responses among cynomolgus macaque naturally infected with Reston virus during the 1996 outbreak in the Philippines. BMC Vet Res 2012; 8:189. [PMID: 23057674 PMCID: PMC3528628 DOI: 10.1186/1746-6148-8-189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/04/2012] [Indexed: 11/22/2022] Open
Abstract
Background Ebolaviruses induce lethal viral hemorrhagic fevers (VHFs) in humans and non-human primates, with the exceptions of Reston virus (RESTV), which is not pathogenic for humans. In human VHF cases, extensive analyses of the humoral immune responses in survivors and non-survivors have shown that the IgG responses to nucleoprotein (NP) and other viral proteins are associated with asymptomatic and survival outcomes, and that the neutralizing antibody responses targeting ebolaviruses glycoprotein (GP1,2) are the major indicator of protective immunity. On the other hand, the immune responses in non-human primates, especially naturally infected ones, have not yet been elucidated in detail, and the significance of the antibody responses against NP and GP1,2 in RESTV-infected cynomolgus macaques is still unclear. In this study, we analyzed the humoral immune responses of cynomolgus macaque by using serum specimens obtained from the RESTV epizootic in 1996 in the Philippines to expand our knowledge on the immune responses in naturally RESTV-infected non-human primates. Results The antibody responses were analyzed using IgG-ELISA, an indirect immunofluorescent antibody assay (IFA), and a pseudotyped VSV-based neutralizing (NT) assay. Antigen-capture (Ag)-ELISA was also performed to detect viral antigens in the serum specimens. We found that the anti-GP1,2 responses, but not the anti-NP responses, closely were correlated with the neutralization responses, as well as the clearance of viremia in the sera of the RESTV-infected cynomolgus macaques. Additionally, by analyzing the cytokine/chemokine concentrations of these serum specimens, we found high concentrations of proinflammatory cytokines/chemokines, such as IFNγ, IL8, IL-12, and MIP1α, in the convalescent phase sera. Conclusions These results imply that both the antibody response to GP1,2 and the proinflammatory innate responses play significant roles in the recovery from RESTV infection in cynomolgus macaques.
Collapse
Affiliation(s)
- Satoshi Taniguchi
- Special Pathogens Laboratory, Department of Virology 1, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Fenimore PW, Muhammad MA, Fischer WM, Foley BT, Bakken RR, Thurmond JR, Yusim K, Yoon H, Parker M, Hart MK, Dye JM, Korber B, Kuiken C. Designing and testing broadly-protective filoviral vaccines optimized for cytotoxic T-lymphocyte epitope coverage. PLoS One 2012; 7:e44769. [PMID: 23056184 PMCID: PMC3463593 DOI: 10.1371/journal.pone.0044769] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/07/2012] [Indexed: 11/22/2022] Open
Abstract
We report the rational design and in vivo testing of mosaic proteins for a polyvalent pan-filoviral vaccine using a computational strategy designed for the Human Immunodeficiency Virus type 1 (HIV-1) but also appropriate for Hepatitis C virus (HCV) and potentially other diverse viruses. Mosaics are sets of artificial recombinant proteins that are based on natural proteins. The recombinants are computationally selected using a genetic algorithm to optimize the coverage of potential cytotoxic T lymphocyte (CTL) epitopes. Because evolutionary history differs markedly between HIV-1 and filoviruses, we devised an adapted computational technique that is effective for sparsely sampled taxa; our first significant result is that the mosaic technique is effective in creating high-quality mosaic filovirus proteins. The resulting coverage of potential epitopes across filovirus species is superior to coverage by any natural variants, including current vaccine strains with demonstrated cross-reactivity. The mosaic cocktails are also robust: mosaics substantially outperformed natural strains when computationally tested against poorly sampled species and more variable genes. Furthermore, in a computational comparison of cross-reactive potential a design constructed prior to the Bundibugyo outbreak performed nearly as well against all species as an updated design that included Bundibugyo. These points suggest that the mosaic designs would be more resilient than natural-variant vaccines against future Ebola outbreaks dominated by novel viral variants. We demonstrate in vivo immunogenicity and protection against a heterologous challenge in a mouse model. This design work delineates the likely requirements and limitations on broadly-protective filoviral CTL vaccines.
Collapse
Affiliation(s)
- Paul W Fenimore
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Abstract
Breaking the human-to-human transmission cycle remains the cornerstone of infection control during filoviral (Ebola and Marburg) hemorrhagic fever outbreaks. This requires effective identification and isolation of cases, timely contact tracing and monitoring, proper usage of barrier personal protection gear by health workers, and safely conducted burials. Solely implementing these measures is insufficient for infection control; control efforts must be culturally sensitive and conducted in a transparent manner to promote the necessary trust between the community and infection control team in order to succeed. This article provides a review of the literature on infection control during filoviral hemorrhagic fever outbreaks focusing on outbreaks in a developing setting and lessons learned from previous outbreaks. The primary search database used to review the literature was PUBMED, the National Library of Medicine website.
Collapse
Affiliation(s)
- Vanessa N Raabea
- Departments of Internal Medicine and Pediatrics, University of California San Diego, 200 West Arbor Drive, San Diego, CA, USA
| | | |
Collapse
|
190
|
Kuhn JH, Bao Y, Bavari S, Becker S, Bradfute S, Brister JR, Bukreyev AA, Chandran K, Davey RA, Dolnik O, Dye JM, Enterlein S, Hensley LE, Honko AN, Jahrling PB, Johnson KM, Kobinger G, Leroy EM, Lever MS, Mühlberger E, Netesov SV, Olinger GG, Palacios G, Patterson JL, Paweska JT, Pitt L, Radoshitzky SR, Saphire EO, Smither SJ, Swanepoel R, Towner JS, van der Groen G, Volchkov VE, Wahl-Jensen V, Warren TK, Weidmann M, Nichol ST. Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Arch Virol 2012; 158:301-11. [PMID: 23001720 PMCID: PMC3535543 DOI: 10.1007/s00705-012-1454-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/19/2012] [Indexed: 10/29/2022]
|
191
|
Friedrich BM, Trefry JC, Biggins JE, Hensley LE, Honko AN, Smith DR, Olinger GG. Potential vaccines and post-exposure treatments for filovirus infections. Viruses 2012; 4:1619-50. [PMID: 23170176 PMCID: PMC3499823 DOI: 10.3390/v4091619] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 01/07/2023] Open
Abstract
Viruses of the family Filoviridae represent significant health risks as emerging infectious diseases as well as potentially engineered biothreats. While many research efforts have been published offering possibilities toward the mitigation of filoviral infection, there remain no sanctioned therapeutic or vaccine strategies. Current progress in the development of filovirus therapeutics and vaccines is outlined herein with respect to their current level of testing, evaluation, and proximity toward human implementation, specifically with regard to human clinical trials, nonhuman primate studies, small animal studies, and in vitro development. Contemporary methods of supportive care and previous treatment approaches for human patients are also discussed.
Collapse
Affiliation(s)
- Brian M. Friedrich
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - John C. Trefry
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - Julia E. Biggins
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - Lisa E. Hensley
- United States Food and Drug Administration (FDA), Medical Science Countermeasures Initiative (McMi), 10903 New Hampshire Avenue, Silver Spring, MD 20901, USA; (L.E.H.)
| | - Anna N. Honko
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - Darci R. Smith
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
| | - Gene G. Olinger
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702, USA; (B.M.F.); (J.C.T.); (J.E.B.); (A.N.H.); (D.R.S.)
- Author to whom correspondence should be addressed; (G.G.O.); Tel.: +1-301-619-8581; +1-301-619-2290
| |
Collapse
|
192
|
Pan Y, Zhang W, Cui L, Hua X, Wang M, Zeng Q. Reston virus in domestic pigs in China. Arch Virol 2012; 159:1129-32. [PMID: 22996641 DOI: 10.1007/s00705-012-1477-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/29/2012] [Indexed: 11/26/2022]
Abstract
Historically, Reston virus (RESTV) has been found to be associated with outbreaks of disease only in nonhuman primates. Its spread to domestic pigs was reported for the first time in 2008. In this study, we report the discovery, molecular detection, and phylogenetic analysis of Reston virus (RESTV) in domestic pigs in China. A total of 137 spleen specimens from pigs that died after showing typical clinical signs of porcine reproductive and respiratory syndrome (PRRS), and for which infection with porcine reproductive and respiratory syndrome virus (PRRSV) was confirmed by RT-PCR, were collected from three farms in Shanghai from February to September 2011. Of these samples, 2.92 % (4/137) were found to be positive for RESTV. All of the positive piglets were under the age of 8 weeks and were co-infected with PRRSV. Sequences were found that shared 96.1 %-98.9 % sequence similarity with those of two RESTV variants that had been discovered previously in domestic pigs and cynomolgus macaques from the Philippines. We therefore conclude that RESTV was present in domestic pigs in Shanghai, China.
Collapse
Affiliation(s)
- Yangyang Pan
- The College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
193
|
Bale S, Julien JP, Bornholdt ZA, Kimberlin CR, Halfmann P, Zandonatti MA, Kunert J, Kroon GJA, Kawaoka Y, MacRae IJ, Wilson IA, Saphire EO. Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism. PLoS Pathog 2012; 8:e1002916. [PMID: 23028316 PMCID: PMC3441732 DOI: 10.1371/journal.ppat.1002916] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/06/2012] [Indexed: 12/24/2022] Open
Abstract
Filoviruses, including Marburg virus (MARV) and Ebola virus (EBOV), cause fatal hemorrhagic fever in humans and non-human primates. All filoviruses encode a unique multi-functional protein termed VP35. The C-terminal double-stranded (ds)RNA-binding domain (RBD) of VP35 has been implicated in interferon antagonism and immune evasion. Crystal structures of the VP35 RBD from two ebolaviruses have previously demonstrated that the viral protein caps the ends of dsRNA. However, it is not yet understood how the expanses of dsRNA backbone, between the ends, are masked from immune surveillance during filovirus infection. Here, we report the crystal structure of MARV VP35 RBD bound to dsRNA. In the crystal structure, molecules of dsRNA stack end-to-end to form a pseudo-continuous oligonucleotide. This oligonucleotide is continuously and completely coated along its sugar-phosphate backbone by the MARV VP35 RBD. Analysis of dsRNA binding by dot-blot and isothermal titration calorimetry reveals that multiple copies of MARV VP35 RBD can indeed bind the dsRNA sugar-phosphate backbone in a cooperative manner in solution. Further, MARV VP35 RBD can also cap the ends of the dsRNA in solution, although this arrangement was not captured in crystals. Together, these studies suggest that MARV VP35 can both coat the backbone and cap the ends, and that for MARV, coating of the dsRNA backbone may be an essential mechanism by which dsRNA is masked from backbone-sensing immune surveillance molecules.
Collapse
Affiliation(s)
- Shridhar Bale
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jean-Philippe Julien
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Zachary A. Bornholdt
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Christopher R. Kimberlin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michelle A. Zandonatti
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - John Kunert
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Gerard J. A. Kroon
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ian J. MacRae
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ian A. Wilson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
194
|
Abstract
The 6th International Conference on Emerging Zoonoses, held at Cancun, Mexico, 24-27 February 2011, offered 84 participants from 18 countries, a snapshot of current research in numerous zoonoses caused by viruses, bacteria or prions. Co-chaired by Professors Heinz Feldmann and Jürgen Richt, the conference explored 10 topics: (i) The ecology of emerging zoonotic diseases; (ii) The role of wildlife in emerging zoonoses; (iii) Cross-species transmission of zoonotic pathogens; (iv) Emerging and neglected influenza viruses; (v) Haemorrhagic fever viruses; (vi) Emerging bacterial diseases; (vii) Outbreak responses to zoonotic diseases; (viii) Food-borne zoonotic diseases; (ix) Prion diseases; and (x) Modelling and prediction of emergence of zoonoses. Human medicine, veterinary medicine and environmental challenges are viewed as a unity, which must be considered under the umbrella of 'One Health'. Several presentations attempted to integrate the insights gained from field data with mathematical models in the search for effective control measures of specific zoonoses. The overriding objective of the research presentations was to create, improve and use the tools essential to address the risk of contagions in a globalized society. In seeking to fulfil this objective, a three-step approach has often been applied: (i) use cultured cells, model and natural animal hosts and human clinical models to study infection; (ii) combine traditional histopathological and biochemical approaches with functional genomics, proteomics and computational biology; and (iii) obtain signatures of virulence and insights into mechanisms of host defense response, immune evasion and pathogenesis. This meeting review summarizes 39 of the conference presentations and mentions briefly the 16 articles in this Special Supplement, most of which were presented at the conference in earlier versions. The full affiliations of all presenters and many colleagues have been included to facilitate further inquiries from readers.
Collapse
Affiliation(s)
- R E Kahn
- Diagnostic Medicine/Pathobiology Department, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
195
|
Groseth A, Marzi A, Hoenen T, Herwig A, Gardner D, Becker S, Ebihara H, Feldmann H. The Ebola virus glycoprotein contributes to but is not sufficient for virulence in vivo. PLoS Pathog 2012; 8:e1002847. [PMID: 22876185 PMCID: PMC3410889 DOI: 10.1371/journal.ppat.1002847] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 06/22/2012] [Indexed: 12/28/2022] Open
Abstract
Among the Ebola viruses most species cause severe hemorrhagic fever in humans; however, Reston ebolavirus (REBOV) has not been associated with human disease despite numerous documented infections. While the molecular basis for this difference remains unclear, in vitro evidence has suggested a role for the glycoprotein (GP) as a major filovirus pathogenicity factor, but direct evidence for such a role in the context of virus infection has been notably lacking. In order to assess the role of GP in EBOV virulence, we have developed a novel reverse genetics system for REBOV, which we report here. Together with a previously published full-length clone for Zaire ebolavirus (ZEBOV), this provides a unique possibility to directly investigate the role of an entire filovirus protein in pathogenesis. To this end we have generated recombinant ZEBOV (rZEBOV) and REBOV (rREBOV), as well as chimeric viruses in which the glycoproteins from these two virus species have been exchanged (rZEBOV-RGP and rREBOV-ZGP). All of these viruses could be rescued and the chimeras replicated with kinetics similar to their parent virus in tissue culture, indicating that the exchange of GP in these chimeric viruses is well tolerated. However, in a mouse model of infection rZEBOV-RGP demonstrated markedly decreased lethality and prolonged time to death when compared to rZEBOV, confirming that GP does indeed contribute to the full expression of virulence by ZEBOV. In contrast, rREBOV-ZGP did not show any signs of virulence, and was in fact slightly attenuated compared to rREBOV, demonstrating that GP alone is not sufficient to confer a lethal phenotype or exacerbate disease in this model. Thus, while these findings provide direct evidence that GP contributes to filovirus virulence in vivo, they also clearly indicate that other factors are needed for the acquisition of full virulence.
Collapse
Affiliation(s)
- Allison Groseth
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Institut für Virologie, Philipps Universität Marburg, Marburg, Germany
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Thomas Hoenen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Institut für Virologie, Philipps Universität Marburg, Marburg, Germany
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Astrid Herwig
- Institut für Virologie, Philipps Universität Marburg, Marburg, Germany
| | - Don Gardner
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Stephan Becker
- Institut für Virologie, Philipps Universität Marburg, Marburg, Germany
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
196
|
Nidom CA, Nakayama E, Nidom RV, Alamudi MY, Daulay S, Dharmayanti INLP, Dachlan YP, Amin M, Igarashi M, Miyamoto H, Yoshida R, Takada A. Serological evidence of Ebola virus infection in Indonesian orangutans. PLoS One 2012; 7:e40740. [PMID: 22815803 PMCID: PMC3399888 DOI: 10.1371/journal.pone.0040740] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/12/2012] [Indexed: 11/18/2022] Open
Abstract
Ebola virus (EBOV) and Marburg virus (MARV) belong to the family Filoviridae and cause severe hemorrhagic fever in humans and nonhuman primates. Despite the discovery of EBOV (Reston virus) in nonhuman primates and domestic pigs in the Philippines and the serological evidence for its infection of humans and fruit bats, information on the reservoirs and potential amplifying hosts for filoviruses in Asia is lacking. In this study, serum samples collected from 353 healthy Bornean orangutans (Pongo pygmaeus) in Kalimantan Island, Indonesia, during the period from December 2005 to December 2006 were screened for filovirus-specific IgG antibodies using a highly sensitive enzyme-linked immunosorbent assay (ELISA) with recombinant viral surface glycoprotein (GP) antigens derived from multiple species of filoviruses (5 EBOV and 1 MARV species). Here we show that 18.4% (65/353) and 1.7% (6/353) of the samples were seropositive for EBOV and MARV, respectively, with little cross-reactivity among EBOV and MARV antigens. In these positive samples, IgG antibodies to viral internal proteins were also detected by immunoblotting. Interestingly, while the specificity for Reston virus, which has been recognized as an Asian filovirus, was the highest in only 1.4% (5/353) of the serum samples, the majority of EBOV-positive sera showed specificity to Zaire, Sudan, Cote d'Ivoire, or Bundibugyo viruses, all of which have been found so far only in Africa. These results suggest the existence of multiple species of filoviruses or unknown filovirus-related viruses in Indonesia, some of which are serologically similar to African EBOVs, and transmission of the viruses from yet unidentified reservoir hosts into the orangutan populations. Our findings point to the need for risk assessment and continued surveillance of filovirus infection of human and nonhuman primates, as well as wild and domestic animals, in Asia.
Collapse
Affiliation(s)
- Chairul A. Nidom
- Avian Influenza-zoonosis Research Center, Airlangga University, Surabaya, Indonesia
- Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
- Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Eri Nakayama
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Reviany V. Nidom
- Avian Influenza-zoonosis Research Center, Airlangga University, Surabaya, Indonesia
- Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Mohamad Y. Alamudi
- Avian Influenza-zoonosis Research Center, Airlangga University, Surabaya, Indonesia
- Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Syafril Daulay
- Center for Diagnostic Standard of Agriculture Quarantine, Ministry of Agriculture, Jakarta, Indonesia
| | | | - Yoes P. Dachlan
- Tropical Disease Hospital, Airlangga University, Surabaya, Indonesia
| | - Mohamad Amin
- Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Manabu Igarashi
- Division of Bioinformatics, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Hiroko Miyamoto
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Reiko Yoshida
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Ayato Takada
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| |
Collapse
|
197
|
Yadav PD, Raut CG, Shete AM, Mishra AC, Towner JS, Nichol ST, Mourya DT. Detection of Nipah virus RNA in fruit bat (Pteropus giganteus) from India. Am J Trop Med Hyg 2012; 87:576-8. [PMID: 22802440 DOI: 10.4269/ajtmh.2012.11-0416] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The study deals with the survey of different bat populations (Pteropus giganteus, Cynopterus sphinx, and Megaderma lyra) in India for highly pathogenic Nipah virus (NiV), Reston Ebola virus, and Marburg virus. Bats (n = 140) from two states in India (Maharashtra and West Bengal) were tested for IgG (serum samples) against these viruses and for virus RNAs. Only NiV RNA was detected in a liver homogenate of P. giganteus captured in Myanaguri, West Bengal. Partial sequence analysis of nucleocapsid, glycoprotein, fusion, and phosphoprotein genes showed similarity with the NiV sequences from earlier outbreaks in India. A serum sample of this bat was also positive by enzyme-linked immunosorbent assay for NiV-specific IgG. This is the first report on confirmation of Nipah viral RNA in Pteropus bat from India and suggests the possible role of this species in transmission of NiV in India.
Collapse
Affiliation(s)
- Pragya D Yadav
- Microbial Containment Complex, National Institute of Virology, Pune, India
| | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
INTRODUCTION Ebolaviruses cause severe viral hemorrhagic fever in humans and non-human primates (NHPs), with case fatality rates of up to 90%. Currently, neither a specific treatment nor a vaccine licensed for use in humans is available. However, a number of vaccine candidates have been developed in the last decade that are highly protective in NHPs, the gold standard animal model for ebola hemorrhagic fever. AREAS COVERED This review analyzes a number of scenarios for the use of ebolavirus vaccines, discusses the requirements for ebolavirus vaccines in these scenarios and describes current ebolavirus vaccines. Among these vaccines are recombinant adenoviruses, recombinant vesicular stomatitis viruses (VSVs), recombinant human parainfluenza viruses and virus-like particles. Interestingly, one of these vaccine platforms, based on recombinant VSVs, has also demonstrated post-exposure protection in NHPs. EXPERT OPINION The most pressing remaining challenge is now to move these vaccine candidates forward into human trials and toward licensure. In order to achieve this, it will be necessary to establish the mechanisms and correlates of protection for these vaccines, and to continue to demonstrate their safety, particularly in potentially immunocompromised populations. However, already now there is sufficient evidence that, from a scientific perspective, a vaccine protective against ebolaviruses is possible.
Collapse
Affiliation(s)
- Thomas Hoenen
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Division of Intramural Research, Rocky Mountain Laboratories, Disease Modelling and Transmission Unit - Laboratory of Virology , 2A120A, 903 S 4th St, Hamilton, MT, USA.
| | | | | |
Collapse
|
199
|
Abstract
Ebola hemorrhagic fever (EHF) and Marburg hemorrhagic fever (MHF) are rare viral
diseases, endemic to central Africa. The overall burden of EHF and MHF is small
in comparison to the more common protozoan, helminth, and bacterial diseases
typically referred to as neglected tropical diseases (NTDs). However, EHF and
MHF outbreaks typically occur in resource-limited settings, and many aspects of
these outbreaks are a direct consequence of impoverished conditions. We will
discuss aspects of EHF and MHF disease, in comparison to the
“classic” NTDs, and examine potential ways forward in the prevention
and control of EHF and MHF in sub-Saharan Africa, as well as examine the
potential for application of novel vaccines or antiviral drugs for prevention or
control of EHF and MHF among populations at highest risk for disease.
Collapse
Affiliation(s)
- Adam MacNeil
- Viral Special Pathogens Branch, the Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | |
Collapse
|
200
|
Muyembe-Tamfum JJ, Mulangu S, Masumu J, Kayembe JM, Kemp A, Paweska JT. Ebola virus outbreaks in Africa: past and present. ACTA ACUST UNITED AC 2012; 79:451. [PMID: 23327370 DOI: 10.4102/ojvr.v79i2.451] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 06/12/2012] [Indexed: 02/02/2023]
Abstract
Ebola haemorrhagic fever (EHF) is a zoonosis affecting both human and non-human primates (NHP). Outbreaks in Africa occur mainly in the Congo and Nile basins. The first outbreaks of EHF occurred nearly simultaneously in 1976 in the Democratic Republic of the Congo (DRC, former Zaire) and Sudan with very high case fatality rates of 88% and 53%, respectively. The two outbreaks were caused by two distinct species of Ebola virus named Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV). The source of transmission remains unknown. After a long period of silence (1980-1993), EHF outbreaks in Africa caused by the two species erupted with increased frequency and new species were discovered, namely Côte d'Ivoire ebolavirus (CIEBOV) in 1994 in the Ivory Coast and Bundibugyo ebolavirus (BEBOV) in 2007 in Uganda. The re-emergence of EHF outbreaks in Gabon and Republic of the Congo were concomitant with an increase in mortality amongst gorillas and chimpanzees infected with ZEBOV. The human outbreaks were related to multiple, unrelated index cases who had contact with dead gorillas or chimpanzees. However, in areas where NHP were rare or absent, as in Kikwit (DRC) in 1995, Mweka (DRC) in 2007, Gulu (Uganda) in 2000 and Yambio (Sudan) in 2004, the hunting and eating of fruit bats may have resulted in the primary transmission of Ebola virus to humans. Human-to-human transmission is associated with direct contact with body fluids or tissues from an infected subject or contaminated objects. Despite several, often heroic field studies, the epidemiology and ecology of Ebola virus, including identification of its natural reservoir hosts, remains a formidable challenge for public health and scientific communities.
Collapse
|