151
|
Senkus KE, Tan L, Crowe-White KM. Systemic and Adipose Tissue Redox Status in Sprague-Dawley Rats Fed Normal- and High-Fat Diets Supplemented with Lycopene. J Med Food 2020; 24:370-376. [PMID: 32678690 DOI: 10.1089/jmf.2020.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dietary patterns high in fat influence local and systemic oxidative stress through adipose tissue (AT) accrual and increased reactive oxygen species generation. Lycopene, a carotenoid with antioxidant functionality, may mitigate excess oxidative stress, yet the lipophilic nature of this compound may limit its functionality if sequestered by AT. Thus, it is critical to elucidate whether lycopene's efficacy is limited based on adiposity. The purpose of this study was to investigate the influence of lycopene-supplemented normal- and high-fat diets on systemic and AT redox status. Male Sprague-Dawley rats (n = 18) were fed a 30% normal-fat (NFD) or 60% high-fat (HFD) purified diet supplemented with 100 mg of lycopene/day. Body weight and visceral AT mass, as well as serum and AT lycopene, lipid peroxides, and antioxidant capacity (AC), were assessed after 3, 7, and 10 weeks of supplementation. At week 10, AT mass was significantly higher (P = .028) in the HFD group, yet there were no significant differences in serum or AT lycopene concentrations or lipid peroxides between groups. Additionally, AT in the HFD group exhibited significantly greater lipophilic AC (27.6% higher, P = .031). Results suggest that excess adiposity did not negatively influence circulating lycopene, nor did it limit its antioxidant functionality.
Collapse
Affiliation(s)
- Katelyn E Senkus
- Department of Human Nutrition, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Libo Tan
- Department of Human Nutrition, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Kristi M Crowe-White
- Department of Human Nutrition, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
152
|
Metere A, Graves CE, Pietraforte D, Casella G. The Effect of Sleeve Gastrectomy on Oxidative Stress in Obesity. Biomedicines 2020; 8:biomedicines8060168. [PMID: 32575419 PMCID: PMC7344505 DOI: 10.3390/biomedicines8060168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
High concentrations of free radicals are present in the blood of obese patients. Free radicals are associated with endothelial dysfunction, diabetes, and neoplastic transformation, all conditions that are closely related to obesity. The purpose of our study was to determine whether bariatric surgery modifies the production of free radicals in obese patients. In total, 20 patients with morbid obesity, who were candidates for laparoscopic sleeve gastrectomy (SG), and 18 controls were enrolled in the study. Oxidative stress was studied in obese subjects before and after sleeve gastrectomy. The evaluation of oxidative stress was carried out on blood samples using electron paramagnetic resonance, a refined spectroscopic technique used to identify and quantify the major free radicals, such as •OH, O2•, ONOO-, and NO. Oxidative stress was higher in subjects with morbid obesity prior to surgery, compared to the controls (CP• 9.9 ± 0.3 µM vs. 5.8 ± 0.2 µM). After SG, values decreased to levels comparable to those of controls (CP• 5.4 ± 0.2 µM). Further analysis identified O2• as the main free radical responsible for the oxidative stress. Obesity is associated with an increased blood concentration of free radicals. The normalization of free radicals after sleeve gastrectomy highlights another important benefit of this bariatric surgery technique.
Collapse
Affiliation(s)
- Alessio Metere
- Surgical Sciences Department, “Sapienza” University of Rome, Viale Regina Elena 261, 00161 Roma, Italy;
- Correspondence:
| | - Claire E. Graves
- Department of Surgery, University of California, San Francisco, 1600 Divisadero St. 4th Floor, San Francisco, CA 94115, USA;
| | - Donatella Pietraforte
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy;
| | - Giovanni Casella
- Surgical Sciences Department, “Sapienza” University of Rome, Viale Regina Elena 261, 00161 Roma, Italy;
| |
Collapse
|
153
|
Prinsen JK, Kannankeril PJ, Sidorova TN, Yermalitskaya LV, Boutaud O, Zagol-Ikapitte I, Barnett JV, Murphy MB, Subati T, Stark JM, Christopher IL, Jafarian-Kerman SR, Saleh MA, Norlander AE, Loperena R, Atkinson JB, Fogo AB, Luther JM, Amarnath V, Davies SS, Kirabo A, Madhur MS, Harrison DG, Murray KT. Highly Reactive Isolevuglandins Promote Atrial Fibrillation Caused by Hypertension. JACC Basic Transl Sci 2020; 5:602-615. [PMID: 32613146 PMCID: PMC7315188 DOI: 10.1016/j.jacbts.2020.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 01/11/2023]
Abstract
Oxidative damage is implicated in atrial fibrillation (AF), but antioxidants are ineffective therapeutically. The authors tested the hypothesis that highly reactive lipid dicarbonyl metabolites, or isolevuglandins (IsoLGs), are principal drivers of AF during hypertension. In a hypertensive murine model and stretched atriomyocytes, the dicarbonyl scavenger 2-hydroxybenzylamine (2-HOBA) prevented IsoLG adducts and preamyloid oligomers (PAOs), and AF susceptibility, whereas the ineffective analog 4-hydroxybenzylamine (4-HOBA) had minimal effect. Natriuretic peptides generated cytotoxic oligomers, a process accelerated by IsoLGs, contributing to atrial PAO formation. These findings support the concept of pre-emptively scavenging reactive downstream oxidative stress mediators as a potential therapeutic approach to prevent AF.
Collapse
Key Words
- 2-HOBA, 2-hydroxylbenzylamine
- 4-HOBA, 4-hydroxylbenzylamine
- AF, atrial fibrillation
- ANP, atrial natriuretic peptide
- B-type natriuretic peptide
- BNP, B-type natriuretic peptide
- BP, blood pressure
- ECG, electrocardiogram
- G/R, green/red ratio
- IsoLG, isolevuglandin
- PAO, preamyloid oligomer
- PBS, phosphate-buffered saline
- ROS, reactive oxygen species
- ang II, angiotensin II
- atrial fibrillation
- atrial natriuretic peptide
- hypertension
- isolevuglandins
- oxidative stress
- preamyloid oligomers
Collapse
Affiliation(s)
- Joseph K. Prinsen
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Prince J. Kannankeril
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tatiana N. Sidorova
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Liudmila V. Yermalitskaya
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Olivier Boutaud
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Irene Zagol-Ikapitte
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Joey V. Barnett
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Matthew B. Murphy
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tuerdi Subati
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Joshua M. Stark
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Isis L. Christopher
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Scott R. Jafarian-Kerman
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mohamed A. Saleh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Allison E. Norlander
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Roxana Loperena
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James B. Atkinson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Agnes B. Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James M. Luther
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Venkataraman Amarnath
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sean S. Davies
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Meena S. Madhur
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David G. Harrison
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Katherine T. Murray
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
154
|
Furlong MA, Klimentidis YC. Associations of air pollution with obesity and body fat percentage, and modification by polygenic risk score for BMI in the UK Biobank. ENVIRONMENTAL RESEARCH 2020; 185:109364. [PMID: 32247148 PMCID: PMC7199644 DOI: 10.1016/j.envres.2020.109364] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 05/06/2023]
Abstract
Air pollution has consistently been associated with cardiometabolic outcomes, although associations with obesity have only been recently reported. Studies of air pollution and adiposity have mostly relied on body mass index (BMI) rather than body fat percentage (BF%), and most have not accounted for noise as a possible confounder. Additionally, it is unknown whether genetic predisposition for obesity increases susceptibility to the obesogenic effects of air pollution. To help fill these gaps, we used the UK Biobank, a large, prospective cohort study in the United Kingdom, to explore the relationship between air pollution and adiposity, and modification by a polygenic risk score for BMI. We used 2010 annual averages of air pollution estimates from land use regression (NO2, NOX, PM2.5, PM2.5absorbance, PM2.5-10, PM10), traffic intensity (TI), inverse distance to road (IDTR), along with examiner-measured BMI, waist-hip-ratio (WHR), and impedance measures of BF%, which were collected at enrollment (2006-2010, n = 473,026) and at follow-up (2012-2013, n = 19,518). We estimated associations of air pollution with BMI, WHR, and BF% at enrollment and follow-up, and with obesity, abdominal obesity, and BF%-obesity at enrollment and follow-up. We used linear and logistic regression and controlled for noise and other covariates. We also assessed interactions of air pollution with a polygenic risk score for BMI. On average, participants at enrollment were 56 years of age, 54% were female, and 32% had completed college or a higher degree. Almost all participants (~95%) were white. All air pollution measures except IDTR were positively associated with at least one continuous measure of adiposity at enrollment. However, NO2 was negatively associated with BMI but positively associated with WHR at enrollment, and IDTR was also negatively associated with BMI. At follow-up (controlling for enrollment adiposity), we observed positive associations for PM2.5-10 with BMI, PM10 with BF%, and TI with BF% and BMI. Associations were similar for binary measures of adiposity, with minor differences for some pollutants. Associations of NOX, NO2, PM2.5absorbance, PM2.5 and PM10, with BMI at enrollment, but not at follow-up, were stronger among individuals with higher BMI polygenic risk scores (interaction p <0.05). In this large, prospective cohort, air pollution was associated with several measures of adiposity at enrollment and follow-up, and associations with adiposity at enrollment were modified by a polygenic risk score for obesity.
Collapse
Affiliation(s)
- Melissa A Furlong
- University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Community, Environment, and Policy, Division of Environmental Health Sciences, United States.
| | - Yann C Klimentidis
- University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, United States
| |
Collapse
|
155
|
Li D, Zhang T, Lu J, Peng C, Lin L. Natural constituents from food sources as therapeutic agents for obesity and metabolic diseases targeting adipose tissue inflammation. Crit Rev Food Sci Nutr 2020; 61:1-19. [PMID: 32462898 DOI: 10.1080/10408398.2020.1768044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose tissue, an endocrine and paracrine organ, plays critical roles in the regulation of whole-body metabolic homeostasis. Obesity is accompanied with a chronic low-grade inflammation status in adipose tissue, which disrupts its endocrine function and results in metabolic derangements, such as type 2 diabetes. Dietary bioactive components, such as flavonoids, polyphenols and unsaturated fatty acids from fruits and vegetables, have been widely revealed to alleviate both systemic and adipose tissue inflammation, and improve metabolic disorders. Remarkably, some dietary bioactive components mitigate the inflammatory response in adipocytes, macrophages, and other immune cells, and modulate the crosstalk between adipocytes and macrophages or other immune cells, in adipose tissue. Epidemiological and preclinical studies related to these substances have indicated beneficial effects on adipose tissue inflammation. The main purpose of this review is to provide a comprehensive and up-to-date state of knowledge on dietary components targeting adipose tissue inflammation and their underlying mechanisms. These natural products have great potential to be developed as functional food or lead compounds for treating and/or preventing metabolic disorders.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Tian Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Cheng Peng
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
156
|
Effect of Deglycosylated Rutin by Acid Hydrolysis on Obesity and Hyperlipidemia in High-Fat Diet-Induced Obese Mice. Nutrients 2020; 12:nu12051539. [PMID: 32466230 PMCID: PMC7284422 DOI: 10.3390/nu12051539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
The present study evaluated the effects of acid-treated rutin on hyperlipidemia and obesity in high-fat diet (HFD)-induced obese mice. The mice consumed a HFD with or without acid-treated rutin for 7 weeks. Body weight gain considerably decreased, by approximately 33%, in the acid-treated rutin (AR) and quercetin (Q) groups compared to that in the HFD group. The adipocytes' size in epididymal fat in AR and Q groups was significantly reduced compared to that in the HFD group (p < 0.05). Treatment with AR decreased the levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol compared to the HFD group. In particular, administration of AR significantly decreased serum triglyceride (36.82 mg/dL) by 46% compared to HFD (69.30 mg/dL). The AR group also showed significantly decreased atherogenic indices and cardiac risk factors. These results suggest that deglycosylated rutin generated by acid treatment enhances the anti-obesity and hypolipidemic effects in obese mice, and provides valuable information for improving the functional properties of glycosidic flavonoids.
Collapse
|
157
|
Graille M, Wild P, Sauvain JJ, Hemmendinger M, Guseva Canu I, Hopf NB. Urinary 8-isoprostane as a biomarker for oxidative stress. A systematic review and meta-analysis. Toxicol Lett 2020; 328:19-27. [PMID: 32320775 DOI: 10.1016/j.toxlet.2020.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022]
Abstract
Oxidative stress is defined as an imbalance between the production and elimination of reactive oxygen species (ROS) are associated with various inflammation-related human disease. ROS can oxidize lipids, which subsequently undergo fragmentation to produce F2-isoprostanes (F2-IsoPs). Eight-isoprostane is one of the most extensively studied F2-IsoPs and the most commonly used biomarker for the assessment of oxidative stress in human studies. This urinary biomarker is quantified using either chemical or immunological techniques. A "physiological" range for 8-isoprostanes is needed to use this biomarker as a measure of excess oxidative stress originating from occupational exposures. However, ranges reported in the literature are inconsistent. We designed a standardized protocol of a systematic review and meta-analysis to assess baseline values for 8-isoprostane concentrations in urine of healthy adults and identify determinants of their inter- and intra-individual variability. We searched PubMed from journal inception and up to April 2019, and screened articles for studies containing F2-IsoPs concentrations in urine for healthy adult participants. We grouped studies in three biomarker groups: "8-isoprostane", "Isoprostanes" "15- F2t-Isoprostane". We computed geometric mean (GM) and geometric standard deviation (GSD) as the basis for the meta-analysis. Of the initial 1849 articles retrieved, 63 studies were included and 107 subgroups within these study populations were identified. We stratified the subgroups analyzed with the chemical methods by body mass index (BMI) reported. We provide pooled GM values for urinary 8-isoprostane concentrations in healthy adults, separately for chemical and immunological analysis in this review. The interquartile range (IQR) in subgroups with a mean BMI below 25 measured using chemical methods was 0.18 to 0.40 μg/g creatinine. We show that there is a significant positive association between BMI and urinary 8-isoprostane concentrations. We recommend adjusting urinary 8-isoprostane concentrations in spot urine with creatinine, quantifying 8-isoprostane with chemical analytical methods, and reporting results as median and quartiles. This will help in comparing results across studies.
Collapse
Affiliation(s)
- M Graille
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland.
| | - P Wild
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland; Institut national de recherche et de sécurité (INRS), Vandoeuvre-lès-Nancy, France.
| | - J-J Sauvain
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland.
| | - M Hemmendinger
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland.
| | - I Guseva Canu
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland.
| | - N B Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de la Corniche 2, 1066 Epalinges-Lausanne, Switzerland; Swiss Center for Applied Human Toxicology (SCAHT), Missionsstrasse 64, 4055 Basel, Switzerland.
| |
Collapse
|
158
|
[Relationship between central obesity and oxidative stress in premenopausal versus postmenopausal women]. NUTR HOSP 2020; 37:267-274. [PMID: 32054278 DOI: 10.20960/nh.02552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Background: endocrine changes in midlife women produce an increase in central obesity and oxidative stress, thus it is possible that obese postmenopausal women exhibit a higher oxidative stress than premenopausal women. Objective: to evaluate the relationship between central obesity and oxidative stress in premenopausal compared with postmenopausal women using different indices. Methods: this is a cross-sectional study that included 237 pre- and 255 post-menopausal women (40-60 years old). As oxidative stress markers we measured plasma malondialdehyde and serum uric acid levels, erythrocyte superoxide dismutase (SOD) and glutathione peroxidase (GPx), and total plasma antioxidant status. We also measured height, weight, and waist and hip circumferences, and we calculated body mass index (BMI), waist-to-hip ratio (WHR) and waist-to-height ratio (WHtR). Results: we found over 30% of women within the obesity range, whereas 50% were placed in the overweight category in both groups. Plasma malondialdehyde and serum uric acid levels were higher in women with overweight or obesity than in women with normal weight regardless of menopausal status. We found a positive correlation between WHtR and malondialdehyde level (r = 0.298, p < 0.0001) and serum uric acid level (r = 0.263, p < 0.0001), and a negative correlation with erythrocyte GPx activity (r = -0.148, p < 0.01). If we use a WHtR > 0.6, malondialdehyde and uric acid levels increase regardless of menopausal status. The other indices measured did not show any relationship. Conclusion: our findings suggest that there is an association between central obesity, as measured with WHtR, and increased oxidative stress regardless of menopausal status.
Collapse
|
159
|
de Oliveira M, Mathias LS, Rodrigues BM, Mariani BG, Graceli JB, De Sibio MT, Castro Olimpio RM, Fontes Moretto FC, Deprá IC, Nogueira CR. The roles of triiodothyronine and irisin in improving the lipid profile and directing the browning of human adipose subcutaneous cells. Mol Cell Endocrinol 2020; 506:110744. [PMID: 32027943 DOI: 10.1016/j.mce.2020.110744] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
Triiodothyronine (T3) and irisin (I) can modulate metabolic status, increase heat production, and promote differentiation of white adipose tissue (WAT) into brown adipose tissue (BAT). Herein, human subcutaneous white adipocytes were treated with 10 nM T3 or 20 nM I for 24 h to evaluate intracellular lipid accumulation, triglyceride, and glycerol levels, oxidative stress, DNA damage, and protein levels of uncoupling protein 1 (UCP1), adiponectin, leptin, peroxisome proliferator-activated receptor gamma (PPARγ), and fibronectin type III domain-containing protein 5 (FNDC5). T3 and irisin improved UCP1 production, lipid profile, oxidative stress, and DNA damage. T3 elevated adiponectin and leptin levels with a concomitant decrease in PPARy and FNDC5 levels. However, irisin did not alter adipokine, PPARy, and FNDC5 levels. The results indicate that T3 may be used to increase leptin and adiponectin levels to improve insulin sensitivity, and irisin may be used to prevent obesity or maintain weight due to its impact on the lipid profile without altering adipokine levels.
Collapse
Affiliation(s)
- Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Lucas Solla Mathias
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Moretto Rodrigues
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bianca Gonçalves Mariani
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Maria Teresa De Sibio
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Regiane Marques Castro Olimpio
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Igor Carvalho Deprá
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Célia Regina Nogueira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
160
|
Tobore TO. Towards a comprehensive theory of obesity and a healthy diet: The causal role of oxidative stress in food addiction and obesity. Behav Brain Res 2020; 384:112560. [DOI: 10.1016/j.bbr.2020.112560] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
|
161
|
High-fat diet induces dry eye-like ocular surface damages in murine. Ocul Surf 2020; 18:267-276. [DOI: 10.1016/j.jtos.2020.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/05/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
|
162
|
Banerjee A, Das D, Paul R, Roy S, Bhattacharjee A, Prasad SK, Banerjee O, Mukherjee S, Maji BK. Altered composition of high-lipid diet may generate reactive oxygen species by disturbing the balance of antioxidant and free radicals. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0141/jbcpp-2019-0141.xml. [PMID: 32229664 DOI: 10.1515/jbcpp-2019-0141] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Background In the present era, obesity is increasing rapidly, and high dietary intake of lipid could be a noteworthy risk factor for the occasion of obesity, as well as nonalcoholic fatty liver disease, which is the independent risk factor for type 2 diabetes and cardiovascular disease. For a long time, high-lipid diet (HLD) in "fast food" is turning into part of our everyday life. So, we were interested in fulfilling the paucity of studies by means of preliminary evaluation of these three alternative doses of HLD on a rat model and elucidating the possible mechanism of these effects and divulging the most alarming dose. Methods Thirty-two rats were taken, and of these, 24 were fed with HLD in three distinctive compositions of edible coconut oil and vanaspati ghee in a ratio of 2:3, 3:2 and 1:1 (n = 8), orally through gavage at a dose of 10 mL/kg body weight for a period of 28 days, whereas the other eight were selected to comprise the control group. Results After completion of the experiment, followed by analysis of data it was revealed that hyperlipidemia with increased liver and cardiac marker enzymes, are associated with hepatocellular injury and cardiac damage. The data also supported increased proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). As oxidative stress parameter increased in both liver and heart, there is also an increased in TNF-α due to an increased expression of inducible nitric oxide (NO) synthase, which led to a high production of NO. Moreover, HLD treatment explicitly weakens reasonability of hepatocytes and cardiomyocytes conceivably through G0/G1 or S stage capture or perhaps by means of enlistment of sub-G0/G1 DNA fragmentation and a sign of apoptosis. Conclusions Based on the outcomes, it tends to be inferred that consequences of the present examination uncovered HLD in combination of 2:3 applies most encouraging systemic damage by reactive oxygen species generation and hyperlipidemia and necroapoptosis of the liver and heart. Hence, outcome of this study may help to formulate health care strategy and warns about the food habit in universal population regarding the use of hydrogenated and saturated fats (vanaspati ghee) in diet.
Collapse
Affiliation(s)
- Arnab Banerjee
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Debasmita Das
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Rajarshi Paul
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Sandipan Roy
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Ankita Bhattacharjee
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Shilpi Kumari Prasad
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Oly Banerjee
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India, Phone: +91-9433509890
| |
Collapse
|
163
|
Parameters of Oxidative Stress in Reproductive and Postmenopausal Mexican Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051492. [PMID: 32110899 PMCID: PMC7084784 DOI: 10.3390/ijerph17051492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/13/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022]
Abstract
In the reproductive phase, women experience cyclic changes in the ovaries and uterus, and hormones regulate these changes. Menopause is the permanent loss of menstruation after 12 months of amenorrhea. Menopause is also linked to a decrease in estrogen production, causing an imbalance in oxidative stress. We aimed to compare the three stages of lipid peroxidation, protein oxidative damage, and total antioxidant capacity (TAC) between reproductive-aged women (RAW) and postmenopausal women (PMW) in Mexico. We carried out a cross-sectional study with 84 women from Mexico City, including 40 RAW and 44 PMW. To determine the oxidative stress of the participants, several markers of lipid damage were measured: dienes conjugates (DC), lipohydroperoxides (LHP), and malondialdehyde (MDA); exposure to protein carbonyl is indicative of oxidative modified proteins, and TAC is indicative of the antioxidant defense system. Biomarkers of oxidative stress were significantly lower in RAW vs. PMW. DC were 1.31 ± 0.65 vs. 1.7 ± 0.51 pmol DC/mg dry weight (p = 0.0032); LHP were 4.95 ± 2.20 vs. 11.30 ± 4.24 pmol LHP/mg dry weight (p < 0.0001); malondialdehyde was 20.37 ± 8.20 vs. 26.10 ± 8.71 pmol MDA/mg dry weight (p = 0.0030); exposure of protein carbonyl was 3954 ± 884 vs. 4552 ± 1445 pmol PC/mg protein (p = 0.042); and TAC was 7244 ± 1512 vs. 8099 ± 1931 pmol Trolox equivalent/mg protein (p = 0.027). PMW display significantly higher oxidative stress markers compared to RAW; likewise, PMW show a higher TAC.
Collapse
|
164
|
The Oxidative Stress Markers in the Erythrocytes and Heart Muscle of Obese Rats: Relate to a High-Fat Diet but Not to DJOS Bariatric Surgery. Antioxidants (Basel) 2020; 9:antiox9020183. [PMID: 32098399 PMCID: PMC7070542 DOI: 10.3390/antiox9020183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity and high-fat diet (HF) are prevalent causes of oxidative stress (OS). Duodenal-jejunal omega switch (DJOS) is a bariatric procedure used for body mass reduction, extensively tested in animal models. We studied the long-term impact of bariatric surgery and an HF diet on the oxidative stress markers in erythrocytes and heart muscles of rats. We analyzed superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) activity and malondialdehyde (MDA) concentration in DJOS or SHAM (control) operated rats fed with different dietary protocols (control diet (CD) and high-fat diet (HF)), before and after the surgery (CD/CD, HF/HF, CD/HF, and HF/CD). We observed higher erythrocytes CAT, GST and GPx activity in DJOS-operated (vs. SHAM) rats fed with an HF/HF diet. For DJOS-operated rats, erythrocytes CAT and GPx activity and MDA concentration were significantly lower in CD/CD group. We observed increased heart muscle GR activity in SHAM-operated rats (vs. DJOS bariatric surgery) fed with an HF/HF diet. Change from HF to CD diet increased heart muscle GPx activity after DJOS bariatric surgery. Heart muscle SOD activity was lower in HF/HF and CD/CD groups after DJOS bariatric surgery (vs. SHAM). DJOS surgery significantly reduced heart muscle MDA concentration in HF/HF and HF/CD groups (vs. SHAM). We conclude that the selected dietary patterns had a stronger impact on oxidative stress markers in erythrocytes and heart muscle than DJOS bariatric surgery.
Collapse
|
165
|
Jacobson MH, Liu M, Wu Y, Furth S, Warady B, Trachtman H, Trasande L. Oxidant stress and renal function among children with chronic kidney disease: a repeated measures study. Sci Rep 2020; 10:3129. [PMID: 32081951 PMCID: PMC7035390 DOI: 10.1038/s41598-020-59962-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
It is hypothesized that chronic kidney disease (CKD) induces oxidant stress which contributes to the decline in kidney function. However, few studies have incorporated longitudinal designs and no studies have investigated this association among children. Using data from the Chronic Kidney Disease in Children (CKiD) study, we examined longitudinal associations between urinary biomarkers of oxidant stress, 8-OH deoxyguanosine (8-OHdG) and F2-isoprostane, and measures of renal function and blood pressure among children with CKD. Baseline levels of 8-OHdG were positively associated with estimated glomerular filtration rate (eGFR) over time and a log-unit increase in baseline 8-OHdG predicted a 5.68 ml/min/1.73 m2 increase in eGFR (95% Confidence Interval (CI): 3.75, 7.61). This association was attenuated when longitudinal measures of 8-OHdG were analyzed in relation to longitudinal eGFR (per log-unit increase in 8-OHdG, β = 0.81, 95% CI: 0.22, 1.39). Baseline 8-OHdG concentrations were also associated with decreased proteinuria over time, as measured by urinary protein:creatinine ratio. In addition, F2-isoprostane concentrations were associated with increases in eGFR, but only when baseline levels (vs. longitudinal levels) were considered in relation to longitudinal eGFR. There were no significant associations between either 8-OHdG or F2-isoprostane and blood pressure over time. Urinary measures of oxidant stress are not associated with worsening GFR over time. Our findings suggest that excretion of these biomarkers may be influenced by changes in glomerular and tubular function in varying patterns, which would limit their value in evaluating the impact of oxidant stress on CKD progression in children.
Collapse
Affiliation(s)
- Melanie H Jacobson
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY, USA
| | - Mengling Liu
- Departments of Population Health and Environmental Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Yinxiang Wu
- Departments of Population Health and Environmental Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Susan Furth
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bradley Warady
- Division of Nephrology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Howard Trachtman
- Department of Pediatrics, Division of Nephrology, NYU Langone Medical Center, New York, NY, USA.
| | - Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY, USA
- Departments of Population Health and Environmental Medicine, NYU Langone Medical Center, New York, NY, USA
- NYU Wagner School of Public Service, New York, NY, USA
- NYU College of Global Public Health, New York, NY, USA
| |
Collapse
|
166
|
Zhang D, Nichols HB, Troester M, Cai J, Bensen JT, Sandler DP. Tea consumption and breast cancer risk in a cohort of women with family history of breast cancer. Int J Cancer 2020; 147:876-886. [PMID: 31837003 DOI: 10.1002/ijc.32824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Laboratory studies have observed chemopreventive effects of black and green tea on breast cancer development, but few epidemiologic studies have identified such effects. We investigated the association between tea consumption and breast cancer risk using data from 45,744 U.S. and Puerto Rican women participating in the Sister Study. Frequency and serving size of black and green tea consumption were measured at cohort enrollment. Breast cancer diagnoses were reported during follow-up and confirmed by medical record review. Multivariable Cox proportional hazards regression was used to estimate hazard ratios (HR) and 95% confidence intervals (CI). We further investigated potential variation according to estrogen receptor (ER) status, menopausal status and body mass index (BMI). Overall, 81.6 and 56.0% of women drank black or green tea, respectively. A total of 2,809 breast cancer cases were identified in the cohort. The multivariable model suggested an inverse association between black (≥5 vs. 0 cups/week: HR = 0.88, 95% CI 0.78, 1.00, p-trend = 0.08) and green tea (≥5 vs. 0 cups/week: HR = 0.82, 95% CI 0.70, 0.95, p-trend < 0.01) consumption and breast cancer risk. We did not observe differences by ER characteristics, menopausal status or BMI. In conclusion, our study suggests drinking at least five cups of green or black tea per week may be associated with decreased breast cancer risk.
Collapse
Affiliation(s)
- Dongyu Zhang
- Department of Oncology, Georgetown University School of Medicine, Washington, DC.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Hazel B Nichols
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Melissa Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Jianwen Cai
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Jeannette T Bensen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| |
Collapse
|
167
|
Kim HR, Choi EJ, Kie JH, Lee JH, Seoh JY. Deficiency of glutathione peroxidase-1 and catalase attenuated diet-induced obesity and associated metabolic disorders. Acta Diabetol 2020; 57:151-161. [PMID: 31372751 DOI: 10.1007/s00592-019-01388-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022]
Abstract
AIMS Oxidative stress has been considered to contribute to the development of obesity-related metabolic disorders including insulin resistance. To the contrary, deficiency of an anti-oxidizing enzyme, glutathione peroxidase (GPx)-1, was reported to enhance insulin signaling, suggesting that oxidative stress may inhibit the development of type 2 diabetes. However, the beneficial effects of the absence of GPx-1 in metabolic homeostasis, including body weight control, have not yet been clearly manifested. To clarify the relationship between oxidative stress and obesity-related metabolic disorders, we investigated another mouse deficient with both GPx-1 and catalase (Cat). METHODS C57BL/6J wild-type and GPx-1-/- × Cat-/- mice were fed with a high-fat diet (60% fat) or a normal chow diet for 16 weeks and were investigated for metabolic and histological studies. RESULTS Body weight gain was significantly reduced, and glucose metabolism as well as hepatic steatosis was obviously improved in the GPx-1-/- × Cat-/- mice. The serum levels of insulin and total cholesterol were also significantly lowered. For the underlying mechanism, inflammation was attenuated and expression of markers for fat browning was enhanced in the visceral white adipose tissues. CONCLUSIONS Oxidative stress due to deficiency of GPx-1 and Cat may improve obesity-related metabolic disorders through attenuation of inflammation and fat browning.
Collapse
Affiliation(s)
- Hyung-Ran Kim
- Department of Microbiology, Ewha Womans University Graduate School of Medicine, Magokdongro 2-25, Gangseo-Gu, Seoul, 07804, Republic of Korea
| | - Eun-Jeong Choi
- Department of Microbiology, Ewha Womans University Graduate School of Medicine, Magokdongro 2-25, Gangseo-Gu, Seoul, 07804, Republic of Korea
| | - Jeong-Hae Kie
- Department of Pathology, National Health Insurance Cooperation Ilsan Hospital, Koyang, Republic of Korea
| | - Joo-Ho Lee
- Department of Surgery, Ewha Womans University Graduate School of Medicine, Gangseo-Gu, Seoul, Republic of Korea.
- Mediplant Research Institute of Bioscience, Mapo-Gu, Seoul, Republic of Korea.
| | - Ju-Young Seoh
- Department of Microbiology, Ewha Womans University Graduate School of Medicine, Magokdongro 2-25, Gangseo-Gu, Seoul, 07804, Republic of Korea.
- Mediplant Research Institute of Bioscience, Mapo-Gu, Seoul, Republic of Korea.
| |
Collapse
|
168
|
Anusruti A, Xuan Y, Gào X, Jansen EHJM, Laetsch DC, Brenner H, Schöttker B. Factors associated with high oxidative stress in patients with type 2 diabetes: a meta-analysis of two cohort studies. BMJ Open Diabetes Res Care 2020; 8:8/1/e000933. [PMID: 32079612 PMCID: PMC7039603 DOI: 10.1136/bmjdrc-2019-000933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Our objective is to identify the potential factors associated with serum Diacron's reactive oxygen metabolites test (D-ROM) levels of patients with type 2 diabetes mellitus (T2DM) by conducting cross-sectional and longitudinal analyses in two large cohorts and further strengthening these results by performing a meta-analysis. METHODS Serum D-ROM concentrations were measured in 1045 and 1101 patients with T2DM from two independent cohort studies from Germany at baseline and repeatedly 3-4 years later. The cross-sectional and longitudinal associations of various potential determinants with D-ROM levels were assessed with a backwards selection algorithm in multivariable adjusted models. RESULTS In the meta-analysis of the cross-sectional analysis, female sex, low education, obesity, smoking, high total cholesterol, hemoglobin A1c ≥7%, no diabetes medication, a history of myocardial infarction, heart failure, a history of cancer and C reactive protein levels (CRP) >3 mg/L were statistically significantly associated with increased D-ROM levels in patients with T2DM. The meta-analysis of the longitudinal analysis revealed that old age, female sex, obesity, smoking, physical inactivity, high alcohol consumption, ≥5 years since diabetes diagnosis and CRP levels between 3 mg/L and 10 mg/L were statistically significantly associated with D-ROM levels measured 3-4 years later. CONCLUSIONS VALIDITY, LIMITATIONS AND CLINICAL APPLICABILITY This comprehensive analysis confirmed that several modifiable risk factors are being associated with oxidative stress in patients with T2DM within an observational study design. We discuss potential prevention measures against these risk factors that might help to reduce oxidative stress and to prevent some cases of premature mortality in patients with T2DM.
Collapse
Affiliation(s)
- Ankita Anusruti
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Yang Xuan
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Xīn Gào
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Heidelberg, Germany
| | - Eugène H J M Jansen
- Centre for Health Protection, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Dana Clarissa Laetsch
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
169
|
Abstract
The last few decades have witnessed a global rise in the number of older individuals. Despite this demographic shift, morbidity within this population group is high. Many factors influence healthspan; however, an obesity pandemic is emerging as a significant determinant of older people's health. It is well established that obesity adversely affects several metabolic systems. However, due to its close association with overall cardiometabolic health, the impact that obesity has on cholesterol metabolism needs to be recognised. The aim of the present review is to critically discuss the effects that obesity has on cholesterol metabolism and to reveal its significance for healthy ageing.
Collapse
|
170
|
Anusruti A, Jansen EHJM, Gào X, Xuan Y, Brenner H, Schöttker B. Longitudinal Associations of Body Mass Index, Waist Circumference, and Waist-to-Hip Ratio with Biomarkers of Oxidative Stress in Older Adults: Results of a Large Cohort Study. Obes Facts 2020; 13:66-76. [PMID: 31986512 PMCID: PMC7098284 DOI: 10.1159/000504711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/10/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND In the literature, obesity is discussed as a determinant of high oxidative stress (OS). Hence, prevention or reduction of obesity could prevent high OS and subsequently serve as a target for "healthy aging." METHODS Diacron's reactive oxygen metabolites test (D-ROM) and total thiol levels (TTL), a marker of antioxidant defense capacity, were measured in 1,734 participants of a population-based cohort study of older adults (age range: 57-83 years) at 2 time points 3 years apart. The longitudinal associations of body mass index, waist-to-hip ratio, and waist circumference with D-ROM and TTL were assessed with multivariable adjusted generalized linear models. Dose-response analyses were conducted with restricted cubic splines. RESULTS D-ROM was not significantly associated with any of the weight measures. On the contrary, TTL showed statistically significant, inverse linear associations with all weight measures. CONCLUSION A healthy body weight seems to be highly relevant for the antioxidative defense capacity of human beings. In contrast, D-ROM levels were independent of the study participant's weight. Clinical trials are needed to corroborate if loss of weight by obese individuals can effectively increase TTL and subsequently also life expectancy.
Collapse
Affiliation(s)
- Ankita Anusruti
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Eugène H J M Jansen
- Center for Health Protection, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Yang Xuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany,
- Network Aging Research, Heidelberg University, Heidelberg, Germany,
| |
Collapse
|
171
|
Janczura M, Dropinski J, Gielicz A, Kotula-Horowitz K, Iwaniec T, Stanisz A, Rosa R, Domagala TB. Potential roles of psychological and oxidative stress in insulin resistance: a cohort-based study. Diabetol Metab Syndr 2020; 12:58. [PMID: 32670417 PMCID: PMC7346531 DOI: 10.1186/s13098-020-00566-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The present study investigated the relationships between psychological stress indices and oxidative stress marker, also when combined with emergent insulin resistance (IR), in the non-diabetic, middle-aged subjects, exposed to frequent/chronic psychological stressors. METHODS Cross-sectional data from a cohort of non-diabetic police officers (n = 234; 19F), aged 27-56 years, were used. Plasma inflammatory (CRP, TNF-α), oxidative stress (free 8-iso-prostaglandin F2α; 8-iso-PGF2α) markers, and insulin were measured. The value of homeostasis model assessment of IR index (HOMA-IR) was assumed the threshold value of IR, i.e. 2.04. Free cortisol in urine and perceived stress (psychological stress indices) were also measured. RESULTS In the IR subjects, most biochemical variables, inflammatory markers and urine cortisol were significantly higher, as compared to the non-IR ones. Psychological stress indices were associated with plasma 8-iso-PGF2α [B = 0.139, 95% CI (0.048, 0.230), p = 0.002, and B = 0.007, 95% CI (0.0006, 0.014), p = 0.03; for perceived stress level and cortisol, respectively]. Positive associations were established between plasma 8-iso-PGF2α [B = 0.069, 95% CI (0.016-0.120), p = 0.01] and urine cortisol [B = 0.003, 95% CI (0.0003, 0.005), p = 0.02] with HOMA-IR. Metabolic syndrome, as defined by IDF criteria, was established in 110 study subjects, whereas 136 of them were hypertensive. Waist circumference [B = 0.056, 95% CI (0.039, 0.074), p < 0.0001], and systolic blood pressure [B = 0.009, 95% CI (0.00003, 0.018), p = 0.04] were positively associated with HOMA-IR, whereas the association of HDL cholesterol [B = - 0.597, 95% CI (- 1.139, - 0.055), p = 0.03] was a negative one. Cortisol [OR = 1.007, 95% CI (1.002, 1.012), p = 0.006], and 8-iso-PGF2α [OR = 1.103, 95% CI (1.010, 1.201), p = 0.02] affected the incidence of IR. After adjustment for metabolic syndrome (or its components), age, sex, and current smoking, the effects became non-significant. Out of metabolic syndrome components, waist circumference [OR 4.966, 95% CI (2.29, 10.751), p = 0.00004] and hypertriglyceridemia [OR 1.993, 95% CI (1.063, 3.736), p = 0.03] increased the chance of IR incidence. CONCLUSIONS Both psychological stress indices were associated with oxidative stress, but only cortisol with HOMA-IR. In the subjects exposed to frequent/chronic psychological stressors, cortisol and oxidative stress marker affected IR incidence, being statistically attenuated, though, following adjustment for metabolic syndrome, or its components.
Collapse
Affiliation(s)
- Miroslaw Janczura
- Faculty of Health Sciences, Jagiellonian University School of Medicine, Krakow, Poland
| | - Jerzy Dropinski
- Department of Internal Medicine, Jagiellonian University School of Medicine, Krakow, Poland
| | - Anna Gielicz
- Department of Internal Medicine, Jagiellonian University School of Medicine, Krakow, Poland
| | - Katarzyna Kotula-Horowitz
- Department of Internal Medicine, Health Care Centre of the Ministry of the Interior and Administration, Krakow, Poland
| | - Teresa Iwaniec
- Department of Internal Medicine, Jagiellonian University School of Medicine, Krakow, Poland
| | - Andrzej Stanisz
- Department of Bioinformatics and Telemedicine, Jagiellonian University School of Medicine, Krakow, Poland
| | - Rafal Rosa
- Department of Anesthesiology and Intensive Care, Health Care Centre of the Ministry of the Interior and Administration, Krakow, Poland
| | - Teresa B. Domagala
- Department of Medical Biochemistry, Jagiellonian University School of Medicine, 31-034 Krakow, Poland
| |
Collapse
|
172
|
Hiffler L, Rakotoambinina B. Selenium and RNA Virus Interactions: Potential Implications for SARS-CoV-2 Infection (COVID-19). Front Nutr 2020. [PMID: 33015130 DOI: 10.2139/ssrn.3594240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
SARS-CoV-2 is an RNA virus responsible for the COVID-19 pandemic that already claimed more than 340,000 lives worldwide as of May 23, 2020, the majority of which are elderly. Selenium (Se), a natural trace element, has a key and complex role in the immune system. It is well-documented that Se deficiency is associated with higher susceptibility to RNA viral infections and more severe disease outcome. In this article, we firstly present evidence on how Se deficiency promotes mutations, replication and virulence of RNA viruses. Next, we review how Se might be beneficial via restoration of host antioxidant capacity, reduction of apoptosis and endothelial cell damages as well as platelet aggregation. It also appears that low Se status is a common finding in conditions considered at risk of severe COVID-19, especially in the elderly. Finally, we present a rationale for Se use at different stages of COVID-19. Se has been overlooked but may have a significant place in COVID-19 spectrum management, particularly in vulnerable elderly, and might represent a game changer in the global response to COVID-19.
Collapse
|
173
|
Ferro Y, Montalcini T, Mazza E, Foti D, Angotti E, Gliozzi M, Nucera S, Paone S, Bombardelli E, Aversa I, Musolino V, Mollace V, Pujia A. Randomized Clinical Trial: Bergamot Citrus and Wild Cardoon Reduce Liver Steatosis and Body Weight in Non-diabetic Individuals Aged Over 50 Years. Front Endocrinol (Lausanne) 2020; 11:494. [PMID: 32849284 PMCID: PMC7431622 DOI: 10.3389/fendo.2020.00494] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease is the most common cause of liver-related morbidity and mortality in the world. However, no effective pharmacological treatment for this condition has been found. Purpose: This study evaluated the effect of a nutraceutical containing bioactive components from Bergamot citrus and wild cardoon as a treatment for individuals with fatty liver disease. The primary outcome measure was the change in liver fat content. Methods: A total of 102 patients with liver steatosis were enrolled in a double-blind placebo controlled clinical trial. The intervention group received a nutraceutical containing a Bergamot polyphenol fraction and Cynara Cardunculus extract, 300 mg/day for 12 weeks. The control group received a placebo daily. Liver fat content, by transient elastography, serum transaminases, lipids and glucose were measured at the baseline and the end of the study. Results: We found a greater liver fat content reduction in the participants taking the nutraceutical rather than placebo (-48.2 ± 39 vs. -26.9 ± 43 dB/m, p = 0.02); The percentage CAP score reduction was statistically significant in those with android obesity, overweight/obesity as well as in women. However, after adjustment for weight change, the percentage CAP score reduction was statistically significant only in those over 50 years (44 vs. 78% in placebo and nutraceutical, respectively, p = 0.007). Conclusions: This specific nutraceutical containing bioactive components from Bergamot and wild cardoon reduced the liver fat content during 12 weeks in individuals with liver steatosis over 50 years. If confirmed, this nutraceutical could become the cornerstone treatment of patients affected by liver steatosis. Clinical Trial Registration: www.isrctn.com, identifier ISRCTN12833814.
Collapse
Affiliation(s)
- Yvelise Ferro
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University Magna Grecia, Catanzaro, Italy
- *Correspondence: Tiziana Montalcini
| | - Elisa Mazza
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro, Italy
| | - Daniela Foti
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | - Elvira Angotti
- Department of Clinical and Experimental Medicine, University Magna Grecia, Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | - Sara Paone
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | | | - Ilaria Aversa
- Department of Clinical and Experimental Medicine, University Magna Grecia, Catanzaro, Italy
| | - Vincenzo Musolino
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Science, University Magna Grecia, Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro, Italy
| |
Collapse
|
174
|
Hiffler L, Rakotoambinina B. Selenium and RNA Virus Interactions: Potential Implications for SARS-CoV-2 Infection (COVID-19). Front Nutr 2020. [PMID: 33015130 DOI: 10.31219/osf.io/vaqz6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
SARS-CoV-2 is an RNA virus responsible for the COVID-19 pandemic that already claimed more than 340,000 lives worldwide as of May 23, 2020, the majority of which are elderly. Selenium (Se), a natural trace element, has a key and complex role in the immune system. It is well-documented that Se deficiency is associated with higher susceptibility to RNA viral infections and more severe disease outcome. In this article, we firstly present evidence on how Se deficiency promotes mutations, replication and virulence of RNA viruses. Next, we review how Se might be beneficial via restoration of host antioxidant capacity, reduction of apoptosis and endothelial cell damages as well as platelet aggregation. It also appears that low Se status is a common finding in conditions considered at risk of severe COVID-19, especially in the elderly. Finally, we present a rationale for Se use at different stages of COVID-19. Se has been overlooked but may have a significant place in COVID-19 spectrum management, particularly in vulnerable elderly, and might represent a game changer in the global response to COVID-19.
Collapse
|
175
|
Xu T, Wang B, Cao L, Qiu W, Zhang Z, Chen A, Chen W. Associations of Gain in Weight-Related Anthropometric Indices with a Marker of Lipid Peroxidation: A Cohort Study Among Urban Adults in China. Diabetes Metab Syndr Obes 2020; 13:2877-2887. [PMID: 32884314 PMCID: PMC7443444 DOI: 10.2147/dmso.s259194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Obesity is reported to be associated with oxidative stress which can cause lipid peroxidation. However, the effects of gain in various weight-related anthropometric indices on lipid peroxidation remain unclear. We aimed to examine the cross-sectional and longitudinal associations between altered weight-related anthropometric indices and a marker of lipid peroxidation among urban adults in China. METHODS A total of 3762 participants from the Wuhan-Zhuhai cohort were included in the present study, with a follow-up of 3 years. Six weight-related anthropometric indicators were measured and calculated, including waist circumference (WC), body mass index (BMI), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), a body shape index (ABSI), and body adiposity index (BAI). Individual urinary 8-iso-prostaglandin-F2α (8-iso-PGF2α) was determined via enzyme-linked immunosorbent assay to evaluate lipid peroxidation. We used generalized linear models to analyze the cross-sectional and longitudinal associations of weight-related anthropometric indices with a marker of lipid peroxidation and stratified analyses to estimate effect modification. RESULTS We found significant relationships between WHR, WHtR, ABSI, and urinary 8-iso-PGF2α at baseline. Each 1% increase in WHR, WHtR, and ABSI was significantly associated with a 0.007, 0.004, and 0.104 increase in log-transformed 8-iso-PGF2α concentration, respectively (P<0.05). In longitudinal analysis, positive dose-response relationships were observed between gains in BMI, BAI, and increased 8-iso-PGF2α after adjusting for potential confounders (P trend<0.05). We also found that gender and smoking status modified the association of BMI gain and 8-iso-PGF2α increment, and such an association was more obvious in female and non-smokers. CONCLUSION Our research implied that gain in anthropometric indices may result in a higher level of lipid peroxidation.
Collapse
Affiliation(s)
- Tao Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
| | - Limin Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
| | - Weihong Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
| | - Zhuang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
| | - Ailian Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
- Correspondence: Weihong Chen Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of ChinaTel +86 27 83691677 Email
| |
Collapse
|
176
|
Oxidative Stress, Frailty and Cardiovascular Diseases: Current Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1216:65-77. [PMID: 31894548 DOI: 10.1007/978-3-030-33330-0_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this chapter is to review the results of recent studies analyzing the role of oxidative stress and systemic inflammation as potential contributors to frailty and CVD, and to explain a possible pathogenic relationship between the latter two conditions. Available evidence suggests that frail patients have elevated levels of oxidative stress biomarkers and proinflammatory cytokines, as well as with reduced concentrations of endogenous antioxidants. This implies that oxidative stress and systemic inflammation might play a role in the pathogenesis of frailty, but an underlying mechanism of this relationship is still mostly hypothetical. Oxidative stress and systemic inflammation are also involved in the pathogenesis of CVD. Cardiovascular conditions are established risk factor for frailty and in turn, presence of frailty constitutes an unfavorable prognostic factor in cardiac patients. Finally, some cardiovascular risk factors, such as lack of physical activity, smoking, obesity and inappropriate diet, are also involved in the etiology of oxidative stress, chronic inflammation and frailty. This complex interplay between intrinsic and extrinsic elements should be considered during holistic management of older persons with frailty and/or cardiovascular conditions.
Collapse
|
177
|
Zhao Q, Li L, Zhu Y, Hou D, Li Y, Guo X, Wang Y, Olatunji OJ, Wan P, Gong K. Kukoamine B Ameliorate Insulin Resistance, Oxidative Stress, Inflammation and Other Metabolic Abnormalities in High-Fat/High-Fructose-Fed Rats. Diabetes Metab Syndr Obes 2020; 13:1843-1853. [PMID: 32547146 PMCID: PMC7266517 DOI: 10.2147/dmso.s247844] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Obesity is characterized by excessive body fat, insulin resistance and dyslipidemia, which increases the chances of developing chronic diseases like type 2 diabetes, cardiovascular diseases, hypertension, nonalcoholic fatty liver diseases, some types of cancers and neurodegenerative diseases. Kukoamine B (Kuk B) is a spermine alkaloid obtained from Lycium chinense, and it has been shown to possess antidiabetic, antioxidant and anti-inflammatory properties. In this study, we evaluated the therapeutic effect of Kuk B on high-fat diet/high-fructose (HFDFr)-induced insulin resistance and obesity in experimental rats. MATERIALS AND METHODS Rats were fed with either normal rat diet or HFDFr for 10 consecutive weeks. The groups that were fed with HFDFr received Kuk B (25 and 50 mg/kg) from the beginning of the 6th week to the 10th week. After treatment, the effect of Kuk B on body weight, food, water intake, insulin, blood glucose, serum biochemical parameters, hepatic oxidative stress (malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and proinflammatory cytokine (interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor alpha (TNF-α)) levels was determined. Histopathological analysis of the liver tissues was also performed. RESULTS HFDFr-fed rats showed a significant increase in body weight, fasting blood glucose, insulin, lipid accumulation and liver function enzymes. In addition, HFDFr diet increased hepatic MDA, TNF-α, IL-1β and IL-6 and decreased hepatic SOD, CAT and GSH-Px activities. On the other hand, Kuk B significantly attenuated body weight, insulin resistance, lipid accumulation, oxidative stress and inflammation. CONCLUSION These results indicated that Kuk B showed protective effect against HFDFr-induced metabolic disorders by downregulating lipid accumulation, oxidative stress and inflammatory factors.
Collapse
Affiliation(s)
- Quan Zhao
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
| | - Linhai Li
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
| | - Yu Zhu
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
| | - Dezhi Hou
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
| | - Yuejin Li
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
| | - Xiaodong Guo
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
| | - Yongzhi Wang
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
| | | | - Ping Wan
- Department of Digestive Internal Medicine, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
- Ping Wan Department of Digestive Internal Medicine, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China Email
| | - Kunmei Gong
- Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China
- Correspondence: Kunmei Gong Department of General Surgery, First People’s Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, Yunnan650032, People’s Republic of China Email
| |
Collapse
|
178
|
Di Spirito F, Sbordone L, Pilone V, D’Ambrosio F. Obesity and Periodontal Disease: A Narrative Review on Current Evidence and Putative Molecular Links. Open Dent J 2019. [DOI: 10.2174/1874210601913010526] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background:
Obesity represents one of the main health problems worldwide and is considered a risk factor for several diseases, including periodontitis, which is a microbially-associated inflammatory disease affecting the tooth-supporting structures.
Objective:
The aim of this review was to report the current direct and indirect evidence concerning the possible association between obesity and periodontitis and their putative molecular links.
Methods:
A literature search was conducted between January 1999 and September 2019, in PubMed/MEDLINE and Science Direct databases, using pertinent keyword combined by Boolean operators. Through a multi-step screening process (literature search; articles title and abstract evaluation and full-text reading), studies fitting inclusion/exclusion criteria were considered for the review.
Results:
35 studies were included in the present review (17 observational studies; 7 systematic reviews; 11 systematic reviews with meta-analysis), focusing on the direct and indirect evidence of the possible association between obesity and periodontitis and their potential etiopathogenic molecular links
Conclusion:
Although the majority of the studies reported a positive association between obesity and periodontitis, the heterogeneity of the classification criteria and of the clinical parameters employed in the studies for both obesity and periodontitis evaluation, complicated the comparison of the results, thus considered inconclusive. Although several putative molecular pathogenic links between obesity and periodontitis have been highlighted, further studies, with longer follow-ups and with homogeneous clinical criteria, are needed to better understand the putative relation between obesity and periodontal disease.
Collapse
|
179
|
Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid Redox Signal 2019; 31:1371-1410. [PMID: 31588777 PMCID: PMC6859696 DOI: 10.1089/ars.2018.7678] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle. Recent evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major source of contraction- and insulin-stimulated oxidants production, but they may paradoxically also contribute to muscle insulin resistance and atrophy. Recent Advances: Pharmacological and molecular biological tools, including redox-sensitive probes and transgenic mouse models, have generated novel insights into compartmentalized redox signaling and suggested that NOX2 contributes to redox control of skeletal muscle metabolism. Critical Issues: Major outstanding questions in skeletal muscle include where NOX2 activation occurs under different conditions in health and disease, how NOX2 activation is regulated, how superoxide/hydrogen peroxide generated by NOX2 reaches the cytosol, what the signaling mediators are downstream of NOX2, and the role of NOX2 for different physiological and pathophysiological processes. Future Directions: Future research should utilize and expand the current redox-signaling toolbox to clarify the NOX2-dependent mechanisms in skeletal muscle and determine whether the proposed functions of NOX2 in cells and animal models are conserved into humans.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
180
|
Fu W, Zou L, Yin X, Wu J, Zhang S, Mao J, Cao S, Li W, Gan Y, Yan S, Gong Y, Lu Z. Association between neck circumference and cardiometabolic disease in Chinese adults: a community-based cross-sectional study. BMJ Open 2019; 9:e026253. [PMID: 31826885 PMCID: PMC6924785 DOI: 10.1136/bmjopen-2018-026253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Several studies have indicated that neck circumference (NC) was associated with cardiometabolic disease in some Western countries. However, there are limited data regarding this association among Chinese adults. DESIGN A community-based cross-sectional study. SETTING A multistage-stratified random cluster survey was conducted in Xixiang Street, Bao'an District of Shenzhen in southeast China. PARTICIPANTS This study included 4000 participants (1605 men and 2395 women) with a mean age of 56.0±9.8 years. MAIN OUTCOME MEASURES Categorical data were reported as percentage and continuous data were reported as mean±SD. Receiver operating characteristic analysis and logistic regression analysis were used to evaluate the association of NC with cardiometabolic disease. RESULTS The mean NC values were 35.50±4.23 cm for men and 32.32±3.59 cm for women. After adjusting for body mass index and waist circumference, NC was significantly associated with the risk of hypertension (OR: 1.42 in women), decreased high-density lipoprotein (HDL) levels (OR: 1.27 in men; OR: 1.12 in women), high triglyceride (TG) levels (OR: 1.54 in women) and diabetes (OR: 1.41 in men; OR: 1.37 in women). Among men, the optimal NC cut-off values were 38.10 cm for identifying hypertension, 32.32 cm for decreased HDL levels, 36.6 cm for high TG levels and 36.6 cm for diabetes. Among women, the optimal NC cut-off values were 32.35 cm for identifying hypertension, 33.40 cm for decreased HDL levels, 32.90 cm for high TG levels and 33.40 cm for diabetes. CONCLUSIONS NC was significantly associated with cardiometabolic disease in Chinese population. Although further studies are needed to confirm the optimal cut-off values, evaluating NC may be useful for predicting cardiometabolic disease risk during clinical assessments.
Collapse
Affiliation(s)
- Wenning Fu
- Department of Social Medicine and Health Management of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaoxu Yin
- Department of Social Medicine and Health Management of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Wu
- Deparment of Chronic disease management, Bao'an Central Hospital of Shenzhen, Shenzhen, China
| | - Shengchao Zhang
- Deparment of Chronic disease management, Bao'an Central Hospital of Shenzhen, Shenzhen, China
| | - Jing Mao
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyi Cao
- Department of Social Medicine and Health Management of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Li
- Department of Social Medicine and Health Management of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Gan
- Department of Social Medicine and Health Management of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiao Yan
- Public Health, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yanhong Gong
- Department of Social Medicine and Health Management of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuxun Lu
- Department of Social Medicine and Health Management of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
181
|
Hu L, Che L, Wu C, Curtasu MV, Wu F, Fang Z, Lin Y, Xu S, Feng B, Li J, Zhuo Y, Theil PK, Wu D. Metabolomic Profiling Reveals the Difference on Reproductive Performance between High and Low Lactational Weight Loss Sows. Metabolites 2019; 9:E295. [PMID: 31817081 PMCID: PMC6950487 DOI: 10.3390/metabo9120295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 01/16/2023] Open
Abstract
Sows suffering excess weight loss during lactation may delay weaning to estrus interval (WEI) and have a detrimental effect on subsequent reproductive performance, however, the underlying mechanism is not completely clear. Therefore, the goal of this study was to investigate physiological profiles manifested in plasma originating from high (HWL) and low lactational weight loss (LWL) sows. The plasma biochemical parameters, hormones, antioxidant parameters, and milk compositions were assessed. Furthermore, plasma metabolites were analyzed using ultrahigh-performance liquid chromatography/time-of-flight mass spectrometry in positive and negative ion modes. Results showed that HWL sows had a lower feed intake and higher lactational weight loss and prolonged WEI, but had similar litter performance and milk composition compared to LWL sows. These changes were associated with lower plasma insulin-like growth factor 1 and higher fibroblast growth factor 21 levels in the HWL sows. Moreover, HWL led to a severe oxidative stress and metabolic damage, as accompanied by excessive protein breakdown and lipids mobilization at weaning. Metabolomic analysis revealed differences in 46 compounds between HWL and LWL sows, and the identified compounds were enriched in metabolic pathways related to amino acids metabolism, fatty acids oxidation metabolism, bile acids biosynthesis, and nucleoside metabolism. These results provide the evidence for physiological mechanism in sows with excessive lactational weight loss that delayed the WEI. Metabolomic data provides essential information and gives rise to potential targets for the development of nutritional intervention strategies.
Collapse
Affiliation(s)
- Liang Hu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China; (L.H.); (L.C.); (C.W.); (F.W.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.)
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China; (L.H.); (L.C.); (C.W.); (F.W.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.)
| | - Chen Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China; (L.H.); (L.C.); (C.W.); (F.W.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.)
| | - Mihai Victor Curtasu
- Department of Animal Science, Faculty of Science and Technology, Aarhus University, DK-8830 Tjele, Denmark; (M.V.C.); (P.K.T.)
| | - Fali Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China; (L.H.); (L.C.); (C.W.); (F.W.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.)
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China; (L.H.); (L.C.); (C.W.); (F.W.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.)
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China; (L.H.); (L.C.); (C.W.); (F.W.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.)
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China; (L.H.); (L.C.); (C.W.); (F.W.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.)
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China; (L.H.); (L.C.); (C.W.); (F.W.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.)
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China; (L.H.); (L.C.); (C.W.); (F.W.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.)
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China; (L.H.); (L.C.); (C.W.); (F.W.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.)
| | - Peter Kappel Theil
- Department of Animal Science, Faculty of Science and Technology, Aarhus University, DK-8830 Tjele, Denmark; (M.V.C.); (P.K.T.)
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China; (L.H.); (L.C.); (C.W.); (F.W.); (Z.F.); (Y.L.); (S.X.); (B.F.); (J.L.); (Y.Z.)
| |
Collapse
|
182
|
Prendergast C, Wray S. Human myometrial artery function and endothelial cell calcium signalling are reduced by obesity: Can this contribute to poor labour outcomes? Acta Physiol (Oxf) 2019; 227:e13341. [PMID: 31299139 DOI: 10.1111/apha.13341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/17/2019] [Accepted: 07/07/2019] [Indexed: 12/15/2022]
Abstract
AIMS Determining how obesity affects function in human myometrial arteries, to help understand why childbirth has poor outcomes in obese women. METHODS Myometrial arteries were studied from 84 biopsies. Contraction (vasopressin and U-46619) and relaxation (carbachol, bradykinin, SNAP) was assessed using wire myography. eNOS activity was assessed using L-NAME. Cholesterol was reduced using methyl-β-cyclodextrin to determine whether it altered responses. Differences in endothelial cell intracellular Ca2+ signalling were assessed using confocal microscopy. RESULTS The effects of BMI on relaxation were agonist specific and very marked; all vessels, irrespective of BMI, relaxed to bradykinin but 0% of vessels (0/13) from obese women relaxed to carbachol, compared to 59% (10/17) from normal weight women. Cholesterol-lowering drugs did not restore carbachol responses (n = 6). All vessels, irrespective of BMI, relaxed when NO was directly released by SNAP (n = 19). Inhibition of eNOS with L-NAME had a significant effect in normal but not overweight/obese vessels. Compared to bradykinin, a lower proportion of endothelial cells responded to carbachol and the amplitude of the calcium response was significantly less, in all vessels. Furthermore, a significantly lower proportion of endothelial cells responded to carbachol in the overweight/obese group compared to control. In contrast to relaxation, the effect of contractile agonists was unchanged with increasing BMI. CONCLUSIONS The ability of human myometrial arteries to relax is significantly impaired with obesity, and our data suggest this is due to a deficit in endothelial calcium signalling. This inability to recover following compression during contractions, might contribute to poor labours in obese women.
Collapse
Affiliation(s)
- Clodagh Prendergast
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool Liverpool UK
| | - Susan Wray
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool Liverpool UK
| |
Collapse
|
183
|
O'Brien JW, Choi PM, Li J, Thai PK, Jiang G, Tscharke BJ, Mueller JF, Thomas KV. Evaluating the stability of three oxidative stress biomarkers under sewer conditions and potential impact for use in wastewater-based epidemiology. WATER RESEARCH 2019; 166:115068. [PMID: 31542546 DOI: 10.1016/j.watres.2019.115068] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Wastewater contains a wealth of information about the population who contribute to it including biological and chemical markers of human activity and exposures. F2-isoprostanes have been proposed as oxidative stress biomarkers that can be measured in wastewater to provide a measure of oxidative stress at the population level. While an association between tobacco use and their level in wastewater has been demonstrated, an in-sewer stability assessment has not been conducted to support their use as oxidative stress biomarkers for wastewater-based epidemiology studies. In this study we investigated the stability of 8-iso-prostaglandin F2α (PGF2α), its metabolite dinor-11β-Prostaglandin F2α (dnPGF2α) and Prostaglandin E2 (PGE2) (representative of other classes of prostaglandins) in laboratory-scale sewer reactors simulating real sewers. PGF2α, dnPGF2α and PGE2 were all found to be sufficiently stable under typical sewer conditions therefore satisfying the stability requirement of wastewater-based epidemiology population health biomarkers.
Collapse
Affiliation(s)
- Jake W O'Brien
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| | - Phil M Choi
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Jiaying Li
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD, 4072, Australia
| | - Phong K Thai
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Guangming Jiang
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD, 4072, Australia; School of Civil, Mining & Environmental Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, NSW, 2522, Australia
| | - Benjamin J Tscharke
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Jochen F Mueller
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Kevin V Thomas
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
184
|
Pellegrino D, La Russa D, Marrone A. Oxidative Imbalance and Kidney Damage: New Study Perspectives from Animal Models to Hospitalized Patients. Antioxidants (Basel) 2019; 8:E594. [PMID: 31795160 PMCID: PMC6943704 DOI: 10.3390/antiox8120594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem worldwide and affects both elderly and young subjects. Its main consequences include the loss of renal function, leading to end-stage renal disease, an increased risk of cardiovascular disease, a significant increase in morbidity and mortality, and a decrease in health-related quality of life. This review arose in significant part from work in the authors' laboratory, complemented by literature data, and was based on a translational approach: we studied the role of many CKD risk factors, such as hypertension, obesity, and oxidative stress/inflammation. The aim was to identify new molecular mechanisms of kidney damage to prevent it through successful behavior modifications. For this purpose, in our studies, both human and animal models were used. In the animal models, we analyzed the mechanisms of renal damage induced by hypertension (spontaneously hypertensive rats) and obesity (cafeteria diet-fed rats), showing that redox disequilibrium in plasma and tissue is extremely important in renal alteration in terms of both oxidative damage (lipid peroxidation, altered expression antioxidant enzymes) and apoptotic pathway (intrinsic/extrinsic) activation. In hemodialysis patients, we explored the correlation between the global oxidative balance and both inflammatory markers and cardiovascular risk, showing a strong correlation between the oxidative index and the blood levels of C-reactive protein and previous cardiovascular events. This multilevel approach allowed us to individually and synergistically analyze some aspects of the complex pathogenic mechanisms of CKD in order to clarify the role of the new amplified risk factors for CKD and to prepare an effective personalized prevention plan by acting on both modifiable and nonmodifiable risk factors.
Collapse
Affiliation(s)
- Daniela Pellegrino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
- Analysis and Research on Oxidative Stress Laboratory (LARSO), University of Calabria, 87036 Rende, Italy;
| | - Daniele La Russa
- Analysis and Research on Oxidative Stress Laboratory (LARSO), University of Calabria, 87036 Rende, Italy;
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Alessandro Marrone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
- Analysis and Research on Oxidative Stress Laboratory (LARSO), University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
185
|
Arauna D, Furrianca M, Espinosa-Parrilla Y, Fuentes E, Alarcón M, Palomo I. Natural Bioactive Compounds As Protectors Of Mitochondrial Dysfunction In Cardiovascular Diseases And Aging. Molecules 2019; 24:molecules24234259. [PMID: 31766727 PMCID: PMC6930637 DOI: 10.3390/molecules24234259] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/04/2023] Open
Abstract
Diet, particularly the Mediterranean diet, has been considered as a protective factor against the development of cardiovascular diseases, the main cause of death in the world. Aging is one of the major risk factors for cardiovascular diseases, which have an oxidative pathophysiological component, being the mitochondria one of the key organelles in the regulation of oxidative stress. Certain natural bioactive compounds have the ability to regulate oxidative phosphorylation, the production of reactive oxygen species and the expression of mitochondrial proteins; but their efficacy within the mitochondrial physiopathology of cardiovascular diseases has not been clarified yet. The following review has the purpose of evaluating several natural compounds with evidence of mitochondrial effect in cardiovascular disease models, ascertaining the main cellular mechanisms and their potential use as functional foods for prevention of cardiovascular disease and healthy aging.
Collapse
Affiliation(s)
- Diego Arauna
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
| | - María Furrianca
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Departamento de enfermería, Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Yolanda Espinosa-Parrilla
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Laboratory of Molecular Medicine —LMM, Center for Education, Healthcare and Investigation—CADI, Universidad de Magallanes, Punta Arenas 6200000, Chile
- School of Medicine, Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Correspondence: (E.F.); (I.P.)
| | - Marcelo Alarcón
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Correspondence: (E.F.); (I.P.)
| |
Collapse
|
186
|
Cardiovascular risks impact human brain N-acetylaspartate in regionally specific patterns. Proc Natl Acad Sci U S A 2019; 116:25243-25249. [PMID: 31754041 DOI: 10.1073/pnas.1907730116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular risk factors such as dyslipidemia and hypertension increase the risk for white matter pathology and cognitive decline. We hypothesize that white matter levels of N-acetylaspartate (NAA), a chemical involved in the metabolic pathway for myelin lipid synthesis, could serve as a biomarker that tracks the influence of cardiovascular risk factors on white matter prior to emergence of clinical changes. To test this, we measured levels of NAA across white matter and gray matter in the brain using echo planar spectroscopic imaging (EPSI) in 163 individuals and examined the relationship of regional NAA levels and cardiovascular risk factors as indexed by the Framingham Cardiovascular Risk Score (FCVRS). NAA was strongly and negatively correlated with FCVRS across the brain, but, after accounting for age and sex, the association was found primarily in white matter regions, with additional effects found in the thalamus, hippocampus, and cingulate gyrus. FCVRS was also negatively correlated with creatine levels, again primarily in white matter. The results suggest that cardiovascular risks are related to neurochemistry with a predominantly white matter pattern and some subcortical and cortical gray matter involvement. NAA mapping of the brain may provide early surveillance for the potential subclinical impact of cardiovascular and metabolic risk factors on the brain.
Collapse
|
187
|
El Haouari M. Platelet Oxidative Stress and its Relationship with Cardiovascular Diseases in Type 2 Diabetes Mellitus Patients. Curr Med Chem 2019; 26:4145-4165. [PMID: 28982316 DOI: 10.2174/0929867324666171005114456] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 01/01/2023]
Abstract
Enhanced platelet activation and thrombosis are linked to various cardiovascular diseases (CVD). Among other mechanisms, oxidative stress seems to play a pivotal role in platelet hyperactivity. Indeed, upon stimulation by physiological agonists, human platelets generate and release several types of reactive oxygen species (ROS) such as O2 -, H2O2 or OH-, further amplifying the platelet activation response via various signalling pathways, including, formation of isoprostanes, Ca2+ mobilization and NO inactivation. Furthermore, excessive platelet ROS generation, incorporation of free radicals from environment and/or depletion of antioxidants induce pro-oxidant, pro-inflammatory and platelet hyperaggregability effects, leading to the incidence of cardiovascular events. Here, we review the current knowledge regarding the effect of oxidative stress on platelet signaling pathways and its implication in CVD such as type 2 diabetes mellitus. We also summarize the role of natural antioxidants included in vegetables, fruits and medicinal herbs in reducing platelet function via an oxidative stress-mediated mechanism.
Collapse
Affiliation(s)
- Mohammed El Haouari
- Centre Regional des Metiers de l'Education et de la Formation de Taza (CRMEF - Taza), B.P: 1178 - Taza Gare, Morocco
| |
Collapse
|
188
|
Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiol Rev 2019; 99:1701-1763. [PMID: 31339053 DOI: 10.1152/physrev.00034.2018] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Obesity is increasingly prevalent and is associated with substantial cardiovascular risk. Adipose tissue distribution and morphology play a key role in determining the degree of adverse effects, and a key factor in the disease process appears to be the inflammatory cell population in adipose tissue. Healthy adipose tissue secretes a number of vasoactive adipokines and anti-inflammatory cytokines, and changes to this secretory profile will contribute to pathogenesis in obesity. In this review, we discuss the links between adipokine dysregulation and the development of hypertension and diabetes and explore the potential for manipulating adipose tissue morphology and its immune cell population to improve cardiovascular health in obesity.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Ben J Clark
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Sarah B Withers
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Etto C Eringa
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
189
|
Selvaraju V, Ayine P, Fadamiro M, Babu JR, Brown M, Geetha T. Urinary Biomarkers of Inflammation and Oxidative Stress Are Elevated in Obese Children and Correlate with a Marker of Endothelial Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9604740. [PMID: 31737180 PMCID: PMC6817929 DOI: 10.1155/2019/9604740] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023]
Abstract
Obesity is a state of chronic low-level inflammation closely associated with oxidative stress. Childhood obesity is associated with endothelial dysfunction, inflammation, and oxidative stress markers individually. This study was aimed at determining the association between the biomarkers of inflammation, oxidative stress, and endothelial dysfunction in urine samples of healthy, overweight, and obese children. Eighty-eight elementary school children aged between 6 and 10 years participated in this study. Anthropometric measurements were measured using WHO recommendations. The biomarkers of low-grade inflammation such as C-reactive protein (CRP), interleukin-6 (IL-6), and α-1-acid glycoprotein (AGP); oxidative stress markers such as 8-isoprostane and 8-hydroxy-2'-deoxyguanosine (8-OHdG); and endothelin-1 (ET-1) were analyzed in urine samples. The area under the curve (AUC) by the receiver operating characteristics (ROC) was analyzed to identify the best urinary biomarker in childhood obesity. Linear regression and Pearson correlation were analyzed to determine the association between the parameters. The obese participants have significantly increased levels of CRP, AGP, IL-6, and 8-isoprostane compared to normal-weight participants. The overweight participants had significantly increased levels of ET-1 and 8-OHdG but not the obese group compared to the NW group. The AUC for urinary CRP (AUC: 0.847, 95% CI: 0.765-0.930; p < 0.0001) and 8-isoprostane (AUC: 0.857, 95% CI: 0.783-0.932; p < 0.0001) showed a greater area under ROC curves compared to other inflammatory and oxidative markers. The urinary CRP and 8-isoprostane significantly correlated with the obesity measures (body mass index, waist circumference, and waist-to- height ratio) and ET-1, inflammatory, and oxidative markers. The increased urinary inflammatory markers and 8-isoprostane can serve as a noninvasive benchmark for early detection of the risk of developing cardiovascular disease.
Collapse
Affiliation(s)
| | - Priscilla Ayine
- Department of Nutrition, Dietetics & Hospitality Management, Auburn University, AL, USA
| | - Moni Fadamiro
- Department of Nutrition, Dietetics & Hospitality Management, Auburn University, AL, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics & Hospitality Management, Auburn University, AL, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, USA
| | | | - Thangiah Geetha
- Department of Nutrition, Dietetics & Hospitality Management, Auburn University, AL, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, USA
| |
Collapse
|
190
|
Kashino I, Serafini M, Kurotani K, Akter S, Mizoue T, Ishihara J, Kotemori A, Sawada N, Inoue M, Iwasaki M, Noda M, Tsugane S. Relationship between dietary non-enzymatic antioxidant capacity and type 2 diabetes risk in the Japan Public Health Center-based Prospective Study. Nutrition 2019; 66:62-69. [DOI: 10.1016/j.nut.2019.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/02/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
|
191
|
Akoumianakis I, Sanna F, Margaritis M, Badi I, Akawi N, Herdman L, Coutinho P, Fagan H, Antonopoulos AS, Oikonomou EK, Thomas S, Chiu AP, Chuaiphichai S, Kotanidis CP, Christodoulides C, Petrou M, Krasopoulos G, Sayeed R, Lv L, Hale A, Naeimi Kararoudi M, McNeill E, Douglas G, George S, Tousoulis D, Channon KM, Antoniades C. Adipose tissue-derived WNT5A regulates vascular redox signaling in obesity via USP17/RAC1-mediated activation of NADPH oxidases. Sci Transl Med 2019; 11:eaav5055. [PMID: 31534019 PMCID: PMC7212031 DOI: 10.1126/scitranslmed.aav5055] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 08/09/2019] [Indexed: 12/19/2022]
Abstract
Obesity is associated with changes in the secretome of adipose tissue (AT), which affects the vasculature through endocrine and paracrine mechanisms. Wingless-related integration site 5A (WNT5A) and secreted frizzled-related protein 5 (SFRP5), adipokines that regulate noncanonical Wnt signaling, are dysregulated in obesity. We hypothesized that WNT5A released from AT exerts endocrine and paracrine effects on the arterial wall through noncanonical RAC1-mediated Wnt signaling. In a cohort of 1004 humans with atherosclerosis, obesity was associated with increased WNT5A bioavailability in the circulation and the AT, higher expression of WNT5A receptors Frizzled 2 and Frizzled 5 in the human arterial wall, and increased vascular oxidative stress due to activation of NADPH oxidases. Plasma concentration of WNT5A was elevated in patients with coronary artery disease compared to matched controls and was independently associated with calcified coronary plaque progression. We further demonstrated that WNT5A induces arterial oxidative stress and redox-sensitive migration of vascular smooth muscle cells via Frizzled 2-mediated activation of a previously uncharacterized pathway involving the deubiquitinating enzyme ubiquitin-specific protease 17 (USP17) and the GTPase RAC1. Our study identifies WNT5A and its downstream vascular signaling as a link between obesity and vascular disease pathogenesis, with translational implications in humans.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Fabio Sanna
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Marios Margaritis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Ileana Badi
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Nadia Akawi
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Laura Herdman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Patricia Coutinho
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Harry Fagan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Alexios S Antonopoulos
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Evangelos K Oikonomou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Sheena Thomas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Amy P Chiu
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Surawee Chuaiphichai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Christos P Kotanidis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Mario Petrou
- Department of Cardiothoracic Surgery, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - George Krasopoulos
- Department of Cardiothoracic Surgery, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Rana Sayeed
- Department of Cardiothoracic Surgery, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Lei Lv
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Ashley Hale
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Meisam Naeimi Kararoudi
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Eileen McNeill
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Gillian Douglas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Sarah George
- Bristol Medical School, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Dimitris Tousoulis
- Cardiology Department, Athens University Medical School, Athens 115 27, Greece
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
192
|
Mozaffari H, Daneshzad E, Larijani B, Surkan PJ, Azadbakht L. Association of dietary total antioxidant capacity to anthropometry in healthy women: A cross-sectional study. Nutrition 2019; 69:110577. [PMID: 31610483 DOI: 10.1016/j.nut.2019.110577] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Reactive oxygen species level is a fundamental component in the pathogenesis of obesity that might be reduced by dietary antioxidants. Measurement of dietary total antioxidant capacity (DTAC) is regarded as a new holistic dietary index. Given the limited research on DTAC, the aim of this study was to examine the association of DTAC with obesity-related features in women. METHODS The present cross-sectional study included 627 female participants. Data on dietary intake were assessed using a validated food frequency questionnaire. DTAC was estimated through total reactive antioxidant potential (TRAP), Trolox equivalent antioxidant capacity (TEAC), and ferric reducing ability of plasma (FRAP). Anthropometric parameters (body mass index and waist circumference), were investigated using standard methods. RESULTS After adjustment for possible covariates, both TRAP and TEAC were significantly positively associated with obesity (TRAP: OR, 1.65; 95% confidence interval [CI], 1.04-2.63; Ptrend, 0.03; TEAC: OR, 1.63; 95% CI, 1.01-2.63; Ptrend, 0.04). However, there was no association between FRAP and obesity (OR, 1.11; 95% CI, 0.64-1.93; Ptrend, 0.68). Moreover, no relationship was found between different DTAC indices and waist circumference (TRAP: OR, 1.13; 95% CI, 0.70-1.80; Ptrend, 0.60; TEAC: OR, 1.04; 95% CI, 0.64-1.69; Ptrend, 0.87; FRAP: OR, 0.86; 95% CI, 0.49-1.51; Ptrend, 0.62). CONCLUSION Women with higher DTAC scores had higher risk for obesity. No association was found between DTAC and waist circumference.
Collapse
Affiliation(s)
- Hadis Mozaffari
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Daneshzad
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pamela J Surkan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
193
|
Chen G, Ni Y, Nagata N, Zhuge F, Xu L, Nagashimada M, Yamamoto S, Ushida Y, Fuke N, Suganuma H, Kaneko S, Ota T. Lycopene Alleviates Obesity‐Induced Inflammation and Insulin Resistance by Regulating M1/M2 Status of Macrophages. Mol Nutr Food Res 2019; 63:e1900602. [DOI: 10.1002/mnfr.201900602] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Guanliang Chen
- Department of Cell Metabolism and NutritionAdvanced Preventive Medical Sciences Research CenterKanazawa University Kanazawa 920–8640 Japan
| | - Yinhua Ni
- Department of Cell Metabolism and NutritionAdvanced Preventive Medical Sciences Research CenterKanazawa University Kanazawa 920–8640 Japan
| | - Naoto Nagata
- Department of Cell Metabolism and NutritionAdvanced Preventive Medical Sciences Research CenterKanazawa University Kanazawa 920–8640 Japan
| | - Fen Zhuge
- Department of Cell Metabolism and NutritionAdvanced Preventive Medical Sciences Research CenterKanazawa University Kanazawa 920–8640 Japan
| | - Liang Xu
- Department of Cell Metabolism and NutritionAdvanced Preventive Medical Sciences Research CenterKanazawa University Kanazawa 920–8640 Japan
| | - Mayumi Nagashimada
- Department of Cell Metabolism and NutritionAdvanced Preventive Medical Sciences Research CenterKanazawa University Kanazawa 920–8640 Japan
| | - Sayo Yamamoto
- Innovation Division KAGOME CO., LTD. Nasushiobara 329–2762 Japan
| | - Yusuke Ushida
- Innovation Division KAGOME CO., LTD. Nasushiobara 329–2762 Japan
| | - Nobuo Fuke
- Innovation Division KAGOME CO., LTD. Nasushiobara 329–2762 Japan
| | | | - Shuichi Kaneko
- Department of Cell Metabolism and NutritionAdvanced Preventive Medical Sciences Research CenterKanazawa University Kanazawa 920–8640 Japan
| | - Tsuguhito Ota
- Department of Cell Metabolism and NutritionAdvanced Preventive Medical Sciences Research CenterKanazawa University Kanazawa 920–8640 Japan
- Division of Metabolism and Biosystemic Science, Department of MedicineAsahikawa Medical University Asahikawa 078–8510 Japan
| |
Collapse
|
194
|
Crosstalk Between Adipokines and Paraoxonase 1: A New Potential Axis Linking Oxidative Stress and Inflammation. Antioxidants (Basel) 2019; 8:antiox8080287. [PMID: 31390816 PMCID: PMC6719214 DOI: 10.3390/antiox8080287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
Paraoxonase 1 (PON1) is a high-density lipoprotein (HDL)-associated protein that endows its carrier with (lipo-)lactonase-dependent antioxidative features. Low levels of PON1 activity have been observed in association with obesity, a major risk factor for cardiovascular disease (CVD). Considering the well-recognized atheroprotective role of PON1, exogenous/endogenous factors that might modulate its levels/activity are raising great interest. Since adipokines represent a molecular link between obesity and CVD, we here explored the possible impact of these substances on PON1 activity/expression. The levels of interleukin (IL)-6, IL-8, tumor necrosis factor alpha, monocyte chemoattractant protein-1, hepatocyte growth factor, resistin, leptin, and adiponectin were measured along with arylesterase, paraoxonase, and lactonase activities of PON1 in 107 postmenopausal women. Moreover, the direct effect of resistin on PON1 expression was evaluated in vitro. Multivariate analysis revealed that only resistin was significantly and inversely correlated with PON1-lactonase activities (r = −0.346, p < 0.001) regardless of confounding factors such as age or HDL-cholesterol. It is worth noting that no statistical link was found between adipokine and arylesterase or paraoxonase, the two promiscuous activities of PON1. Notably, resistin down-regulated PON1 expression occurred in hepatocellular carcinoma cultures. Our study suggests that resistin might be a negative modulator of PON1 expression and anti-oxidative activity.
Collapse
|
195
|
Zhang L, Wang X, Cueto R, Effi C, Zhang Y, Tan H, Qin X, Ji Y, Yang X, Wang H. Biochemical basis and metabolic interplay of redox regulation. Redox Biol 2019; 26:101284. [PMID: 31400697 PMCID: PMC6831867 DOI: 10.1016/j.redox.2019.101284] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulated evidence strongly indicates that oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidants in favor of oxidants, plays an important role in disease pathogenesis. However, ROS can act as signaling molecules and fulfill essential physiological functions at basal levels. Each ROS would be different in the extent to stimulate and contribute to different pathophysiological effects. Importantly, multiple ROS generators can be activated either concomitantly or sequentially by relevant signaling molecules for redox biological functions. Here, we summarized the current knowledge related to chemical and biochemical features of primary ROS species and corresponding antioxidants. Metabolic pathways of five major ROS generators and five ROS clearance systems were described, including their ROS products, specific ROS enriched tissue, cell and organelle, and relevant functional implications. We provided an overview of ROS generation and induction at different levels of metabolism. We classified 11 ROS species into three types based on their reactivity and target selectivity and presented ROS homeostasis and functional implications in pathological and physiological status. This article intensively reviewed and refined biochemical basis, metabolic signaling and regulation, functional insights, and provided guidance for the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Lixiao Zhang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Xianwei Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Ramón Cueto
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Comfort Effi
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Yuling Zhang
- Cardiovascular Medicine Department, Sun Yat-sen Memorial Hospital, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, China
| | - Xuebin Qin
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
196
|
Carillon J, Saby M, Barial S, Sansone A, Scanferlato R, Gayrard N, Lajoix AD, Jover B, Chatgilialoglu C, Ferreri C. Melon juice concentrate supplementation in an animal model of obesity: Involvement of relaxin and fatty acid pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
197
|
Emelyanova L, Boukatina A, Myers C, Oyarzo J, Lustgarten J, Shi Y, Jahangir A. High calories but not fat content of lard-based diet contribute to impaired mitochondrial oxidative phosphorylation in C57BL/6J mice heart. PLoS One 2019; 14:e0217045. [PMID: 31265457 PMCID: PMC6605645 DOI: 10.1371/journal.pone.0217045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/05/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose High calorie intake leads to obesity, a global socio-economic and health problem, reaching epidemic proportion in children and adolescents. Saturated and monounsaturated fatty acids from animal (lard) fat are major components of the western-pattern diet and its regular consumption leads to obesity, a risk factor for cardiovascular disease. However, no clear evidence exists whether consumption of diet rich in saturated (SFAs) and monounsaturated (MUFAs) fatty acids has detrimental effects on cardiac structure and energetics primarily due to excessive calories. We, therefore, sought to determine the impact of high calories versus fat content in diet on cardiac structure and mitochondrial energetics. Methods Six-week-old C57BL/6J mice were fed with high calorie, high lard fat-based diet (60% fat, HFD), high-calorie and low lard fat-based diet (10% fat, LFD), and lower-calorie and fat diet (standard chow, 12% fat, SCD) for 10 weeks. Results The HFD- and LFD-fed mice had higher body weight, ventricular mass and thickness of posterior and septal wall with increased cardiomyocytes diameter compared to the SCD-fed mice. These changes were associated with a reduction in the mitochondrial oxidative phosphorylation (OXPHOS) complexes I and III activity compared to the SCD-fed mice without significant differences between the HFD- and LFD-fed animals. The HFD-fed animals had higher level of malondialdehyde (MDA) than LFD and SCD-fed mice. Conclusions We assume that changes in cardiac morphology and selective reduction of the OXPHOS complexes activity observed in the HFD- and LFD-fed mice might be related to excessive calories with additional effect of fat content on oxidative stress.
Collapse
Affiliation(s)
- Larisa Emelyanova
- Center for Integrative Research on Cardiovascular Aging, Aurora St. Luke's Medical Center, Aurora Health Care, Milwaukee, Wisconsin, United States of America
| | - Anna Boukatina
- Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Cheryl Myers
- Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Janice Oyarzo
- Mayo Clinic, Scottsdale, Arizona, United States of America
| | | | - Yang Shi
- Center for Integrative Research on Cardiovascular Aging, Aurora St. Luke's Medical Center, Aurora Health Care, Milwaukee, Wisconsin, United States of America
| | - Arshad Jahangir
- Aurora Cardiovascular Services, Aurora Health Care, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
198
|
Tanrıkulu-Küçük S, Başaran-Küçükgergin C, Seyithanoğlu M, Doğru-Abbasoğlu S, Koçak H, Beyhan-Özdaş Ş, Öner-İyidoğan Y. Effect of dietary curcumin and capsaicin on testicular and hepatic oxidant–antioxidant status in rats fed a high-fat diet. Appl Physiol Nutr Metab 2019; 44:774-782. [DOI: 10.1139/apnm-2018-0622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study investigated the effects of curcumin and capsaicin on testicular and hepatic oxidant–antioxidant status in rats fed a high-fat diet (HFD). Male Sprague–Dawley rats were divided into 5 groups (8 rats per group). The control group was fed a normal control diet (standard laboratory chow), the HFD group was fed HFD (60% of total calories from fat), the HFD+CUR group received HFD supplemented with curcumin (1.5 g curcumin/kg HFD), the HFD+CAP group was given HFD supplemented with capsaicin (0.15 g capsaicin/kg HFD), and the HFD+CUR+CAP group received HFD supplemented with curcumin and capsaicin for 16 weeks. Hepatic and testicular thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS), glutathione (GSH) levels, glutathione transferase activity, and Cu-Zn superoxide dismutase, glutathione peroxidase, and catalase protein expression and enzyme activities were measured. Protein expression was determined by Western blotting. GSH levels and antioxidant enzyme activities were measured with colorimetric methods. HFD slightly increased hepatic and testicular oxidative stress parameters. GSH levels did not change between groups. TBARS and ROS levels were significantly reduced in the HFD+CUR+CAP group compared with the HFD group. Liver and testis antioxidant enzyme activities and expression increased significantly with combined capsaicin and curcumin treatment. Curcumin and capsaicin treatment attenuated testicular and hepatic oxidative stress and enhanced the antioxidant defense system. The combination of capsaicin and curcumin with HFD seems to have some remarkable and beneficial effects on testicular oxidative damage in the fatty liver rat model.
Collapse
Affiliation(s)
- Sevda Tanrıkulu-Küçük
- Department of Biochemistry, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| | | | - Muhammed Seyithanoğlu
- Department of Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçü Imam University, Kahramanmaraş, Turkey
| | - Semra Doğru-Abbasoğlu
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hikmet Koçak
- Department of Biochemistry, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| | - Şule Beyhan-Özdaş
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Bilim University, Esentepe, Istanbul, Turkey
| | - Yıldız Öner-İyidoğan
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
199
|
Reckelhoff JF, Romero DG, Yanes Cardozo LL. Sex, Oxidative Stress, and Hypertension: Insights From Animal Models. Physiology (Bethesda) 2019; 34:178-188. [PMID: 30968750 DOI: 10.1152/physiol.00035.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the mechanisms responsible for blood pressure (BP) regulation is thought to be oxidative stress. In this review, we highlight preclinical studies that strongly support a role for oxidative stress in development and maintenance of hypertension in male animals, based on depressor responses to antioxidants, particularly tempol and apocynin. In females, oxidative stress seems to be important in the initial development of hypertension. However, whether maintenance of hypertension in females is mediated by oxidative stress is not clear. In clinical studies, pharmacological intervention to reduce BP with antioxidants has conflicting results, mostly negative. This review will discuss the uncertainties regarding blood pressure control and oxidative stress and potential reasons for these outcomes.
Collapse
Affiliation(s)
- Jane F Reckelhoff
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center , Jackson, Mississippi.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center , Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center , Jackson, Mississippi
| | - Damian G Romero
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center , Jackson, Mississippi.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center , Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center , Jackson, Mississippi
| | - Licy L Yanes Cardozo
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center , Jackson, Mississippi.,Medicine, Endocrinology Division, University of Mississippi Medical Center , Jackson, Mississippi.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center , Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
200
|
Mu G, Zhou Y, Ma J, Guo Y, Xiao L, Zhou M, Cao L, Li W, Wang B, Yuan J, Chen W. Combined effect of central obesity and urinary PAH metabolites on lung function: A cross-sectional study in urban adults. Respir Med 2019; 152:67-73. [DOI: 10.1016/j.rmed.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/08/2019] [Accepted: 05/05/2019] [Indexed: 01/06/2023]
|