151
|
Abstract
Bone morphogenetic proteins (BMPs), their antagonists, and BMP receptors are involved in controlling a large number of biological functions including cell proliferation, differentiation, cell fate decision, and apoptosis in many different types of cells and tissues during embryonic development and postnatal life. BMPs exert their biological effects via using BMP-Smad and BMP-MAPK intracellular pathways. The magnitude and specificity of BMP signaling are regulated by a large number of modulators operating on several levels (extracellular, cytoplasmic, nuclear). In developing and postnatal skin, BMPs, their receptors, and BMP antagonists show stringent spatio-temporal expressions patterns to achieve proper regulation of cell proliferation and differentiation in the epidermis and in the hair follicle. Genetic studies assert an essential role for BMP signaling in the control of cell differentiation and apoptosis in developing epidermis, as well as in the regulation of key steps of hair follicle development (initiation, cell fate decision, cell lineage differentiation). In postnatal hair follicles, BMP signaling plays an important role in controlling the initiation of the growth phase and is also involved in the regulation of apoptosis-driven hair follicle involution. However, additional efforts are required to fully understand the mechanisms and targets involved in the realization of BMP effects on distinct cell population in the skin and hair follicle. Progress in this area of research will hopefully lead to the development of new therapeutic approaches for using BMPs and BMP antagonists in the treatment of skin and hair growth disorders.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Department of Dermatology, Boston University School of Medicine, 609 Albany Steeet, Boston, MA 02118, USA.
| | | |
Collapse
|
152
|
Abstract
Smad5 belongs to the receptor-activated Smad that function as intracellular signal transducers for transforming growth factor-beta superfamily. Smad5 protein is composed of N-terminal domain responsible for DNA-binding, C-terminal domain primarily required for protein-protein interaction, and the linker region containing motif essential for ubiquitinized degradation. Recent investigation reveals Smad5 as a negative regulator of embryonic hematopoiesis in a haploinsufficiency fashion, helping to elucidate the cytogenetic mechanism, by which Smad5 acts as leukemia suppressor. To date, osteogenesis governed by Smad5-mediated signals is delicately orchestrated by its comprehensive interactions with global osteogenesis regulator Runx2, transcriptional repressor Rob and Smad-interacting protein 1. Further delineation of its roles in hematopoiesis and osteogenesis will undoubtedly provide valuable insights into leukemia therapy and tissue engineering.
Collapse
Affiliation(s)
- Bing Liu
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing, PR China
| | | |
Collapse
|
153
|
Pangas SA, Matzuk MM. Genetic models for transforming growth factor beta superfamily signaling in ovarian follicle development. Mol Cell Endocrinol 2004; 225:83-91. [PMID: 15451572 DOI: 10.1016/j.mce.2004.02.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transforming growth factor beta (TGFbeta) superfamily has wide-ranging and profound effects on many aspects of cellular growth and development. Many TGFbeta-related ligands, receptors, and intracellular signaling proteins are expressed in the ovary and are critical for normal follicle development. Our laboratory and others have analyzed the in vivo function of the TGFbeta superfamily signal transduction pathways by using gene knockout and knockin approaches. Two TGFbeta superfamily ligands, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), are expressed in developing oocytes. Based on in vivo data using knockout models, GDF9 is critical at both the primary and preovulatory stages of follicle development, and physiologically interacts with BMP15 during the latter stages of folliculogenesis. A knockin model of activin betaB expressed from the activin betaA locus, revealed that activin betaB can act as a hypomorphic protein and rescue some but not all of activin betaAs functions. Questions of functional redundancy of signaling components and multiple receptor utilization by different ligands still need to be addressed for these pathways. Answers will likely come from using existing single null mouse models to generate combinatorial ligand and receptor null mice. These new models may reveal the in vivo genetic interactions of TGFbeta superfamily ligands, receptors, binding proteins, and downstream signaling pathways.
Collapse
Affiliation(s)
- Stephanie A Pangas
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
154
|
Jones EAV, Baron MH, Fraser SE, Dickinson ME. Measuring hemodynamic changes during mammalian development. Am J Physiol Heart Circ Physiol 2004; 287:H1561-9. [PMID: 15155254 DOI: 10.1152/ajpheart.00081.2004] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pathogenesis of many congenital cardiovascular diseases involves abnormal flow within the embryonic vasculature that results either from malformations of the heart or defects in the vasculature itself. Extensive genetic and genomic analysis in mice has led to the identification of an array of mutations that result in cardiovascular defects during embryogenesis. Many of these mutations cause secondary effects within the vasculature that are thought to arise because of altered fluid dynamics. Presumably, cardiac defects disturb or reduce flow and thereby lead to the disruption of the mechanical signals necessary for proper vascular development. Unfortunately, a precise understanding of how flow disruptions lead to secondary vasculature defects has been hampered by the inadequacy of existing analytical tools. Here, we used a fast line-scanning technique for the quantitative analysis of hemodynamics during early organogenesis in mouse embryos, and we present a model system for studying cellular responses during the formation and remodeling of the mammalian cardiovascular system. Flow velocity profiles can be measured as soon as a heart begins to beat even in newly formed vessels. These studies establish a link between the pattern of blood flow within the vasculature and the stage of heart development and also enable analysis of the influence of mechanical forces during development.
Collapse
Affiliation(s)
- E A V Jones
- Biological Imaging Center, Beckman Institute, MC139-74, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
155
|
Fritz DT, Liu D, Xu J, Jiang S, Rogers MB. Conservation of Bmp2 post-transcriptional regulatory mechanisms. J Biol Chem 2004; 279:48950-8. [PMID: 15358784 DOI: 10.1074/jbc.m409620200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP) orthologs from diverse species like flies and humans are functionally interchangeable and play key roles in fundamental processes such as dorso-ventral axis formation in metazoans. Because both transcriptional and post-transcriptional mechanisms play central roles in modulating developmental protein levels, we have analyzed the 3'-untranslated region (3'UTR) of the Bmp 2 gene. This 3'UTR is unusually long and is alternatively polyadenylated. Mouse, human, and dog mRNAs are 83-87% identical within this region. A 265-nucleotide sequence, conserved between mammals, birds, frogs, and fish, is present in Bmp2 but not Bmp4. The ability of AmphiBMP2/4, a chordate ortholog to Bmp2 and Bmp4, to align with this sequence suggests that its function may have been lost in Bmp4. Activation of reporter genes by the conserved region acts by a post-transcriptional mechanism. Mouse, human, chick, and zebrafish Bmp2 synthetic RNAs decay rapidly in extracts from cells not expressing Bmp2. In contrast, these RNAs are relatively stable in extracts from Bmp2-expressing cells. Thus, Bmp2 RNA half-lives in vitro correlate with natural Bmp2 mRNA levels. The fact that non-murine RNAs interact appropriately with the mouse decay machinery suggests that the function of these cis-regulatory regions has been conserved for 450 million years since the fish and tetrapod lineages diverged. Overall, our results suggest that the Bmp2 3'UTR contains essential regulatory elements that act post-transcriptionally.
Collapse
Affiliation(s)
- David T Fritz
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey (UMDNJ)-NJ Medical School, Newark, New Jersey 07101, USA
| | | | | | | | | |
Collapse
|
156
|
del Valle-Pérez B, Martínez-Estrada OM, Vilaró S, Ventura F, Viñals F. cAMP inhibits TGFbeta1-induced in vitro angiogenesis. FEBS Lett 2004; 569:105-11. [PMID: 15225617 DOI: 10.1016/j.febslet.2004.05.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 05/05/2004] [Indexed: 11/15/2022]
Abstract
Transforming growth factor-beta (TGFbeta1) is a proangiogenic factor both, in vitro and in vivo, that is mainly involved in the later phases of angiogenesis. In an attempt to identify genes that participate in this effect, we found that TGFbeta1 down-regulates expression of adenylate cyclase VI. In addition, cAMP analogs (8-Bromo-cAMP) and forskolin (an adenylate cyclase activator) also reduced TGFbeta1-induced in vitro angiogenesis in mouse endothelial cell lines and in primary cultures of human umbilical vein endothelial cells on collagen gels. Induction of Ets-1 and plasminogen activator inhibitor-1 (PAI-1) by TGFbeta1 was blocked by these cAMP agonists and activators, in the absence of effects on endothelial cell viability. Moreover, the signal transduction pathways stimulated by TGFbeta1 were unaffected. Thus, Smad2 was normally phosphorylated and translocated to the nucleus in the presence of forskolin. In contrast, transfection studies using the PAI-1-promoter indicated that these cAMP analogues inhibit transcriptional stimulation by TGFbeta1. Electrophoretic mobility shift assay showed that Smad2/3 were bound normally to a TGFbeta1-response region in the presence of the cAMP analogs. In all, these data suggest that the cAMP pathway inhibits the transcriptional activity of Smads, that could be responsible for the block of the TGFbeta1-induced in vitro angiogenesis caused by this second messenger.
Collapse
Affiliation(s)
- Beatriz del Valle-Pérez
- Unitat de Bioquímica i Biologia Molecular, Departament de Ciències Fiològiques II, Campus de Bellvitge, Universitat de Barcelona, C/ Feixa Llarga s/n, E-08907 L'Hospitalet de Llobregat, Spain
| | | | | | | | | |
Collapse
|
157
|
Petrova TV, Karpanen T, Norrmén C, Mellor R, Tamakoshi T, Finegold D, Ferrell R, Kerjaschki D, Mortimer P, Ylä-Herttuala S, Miura N, Alitalo K. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 2004; 10:974-81. [PMID: 15322537 DOI: 10.1038/nm1094] [Citation(s) in RCA: 417] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Accepted: 07/30/2004] [Indexed: 11/09/2022]
Abstract
Lymphatic vessels are essential for the removal of interstitial fluid and prevention of tissue edema. Lymphatic capillaries lack associated mural cells, and collecting lymphatic vessels have valves, which prevent lymph backflow. In lymphedema-distichiasis (LD), lymphatic vessel function fails because of mutations affecting the forkhead transcription factor FOXC2. We report that Foxc2(-/-) mice show abnormal lymphatic vascular patterning, increased pericyte investment of lymphatic vessels, agenesis of valves and lymphatic dysfunction. In addition, an abnormally large proportion of skin lymphatic vessels was covered with smooth muscle cells in individuals with LD and in mice heterozygous for Foxc2 and for the gene encoding lymphatic endothelial receptor, Vegfr3 (also known as Flt4). Our data show that Foxc2 is essential for the morphogenesis of lymphatic valves and the establishment of a pericyte-free lymphatic capillary network and that it cooperates with Vegfr3 in the latter process. Our results indicate that an abnormal interaction between the lymphatic endothelial cells and pericytes, as well as valve defects, underlie the pathogenesis of LD.
Collapse
Affiliation(s)
- Tatiana V Petrova
- Molecular/Cancer Biology Laboratory and Ludwig Institute for Cancer Research, Biomedicum Helsinki and Helsinki University Central Hospital, University of Helsinki, Haartmaninkatu 8, P.O.B. 63, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004; 84:767-801. [PMID: 15269336 DOI: 10.1152/physrev.00041.2003] [Citation(s) in RCA: 2624] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The focus of this review is to provide an overview of the current state of knowledge of molecular mechanisms/processes that control differentiation of vascular smooth muscle cells (SMC) during normal development and maturation of the vasculature, as well as how these mechanisms/processes are altered in vascular injury or disease. A major challenge in understanding differentiation of the vascular SMC is that this cell can exhibit a wide range of different phenotypes at different stages of development, and even in adult organisms the cell is not terminally differentiated. Indeed, the SMC is capable of major changes in its phenotype in response to changes in local environmental cues including growth factors/inhibitors, mechanical influences, cell-cell and cell-matrix interactions, and various inflammatory mediators. There has been much progress in recent years to identify mechanisms that control expression of the repertoire of genes that are specific or selective for the vascular SMC and required for its differentiated function. One of the most exciting recent discoveries was the identification of the serum response factor (SRF) coactivator gene myocardin that appears to be required for expression of many SMC differentiation marker genes, and for initial differentiation of SMC during development. However, it is critical to recognize that overall control of SMC differentiation/maturation, and regulation of its responses to changing environmental cues, is extremely complex and involves the cooperative interaction of many factors and signaling pathways that are just beginning to be understood. There is also relatively recent evidence that circulating stem cell populations can give rise to smooth muscle-like cells in association with vascular injury and atherosclerotic lesion development, although the exact role and properties of these cells remain to be clearly elucidated. The goal of this review is to summarize the current state of our knowledge in this area and to attempt to identify some of the key unresolved challenges and questions that require further study.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Arteriosclerosis/genetics
- Cell Differentiation
- Cellular Senescence
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Vascular Diseases/genetics
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
Collapse
Affiliation(s)
- Gary K Owens
- Dept. of Molecular Physiology and Biological Physics, Univ. of Virginia School of Medicine, 415 Lane Rd., Medical Research Building 5, Rm. 1220, PO Box 801394, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
159
|
Furuyama T, Kitayama K, Shimoda Y, Ogawa M, Sone K, Yoshida-Araki K, Hisatsune H, Nishikawa SI, Nakayama K, Nakayama K, Ikeda K, Motoyama N, Mori N. Abnormal Angiogenesis in Foxo1 (Fkhr)-deficient Mice. J Biol Chem 2004; 279:34741-9. [PMID: 15184386 DOI: 10.1074/jbc.m314214200] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Foxo family, Foxo1 (Fkhr), Foxo3 (Fkhrl1), and Foxo4 (Afx), are mammalian homologs of daf-16, which influences life span and energy metabolism in Caenorhabditis elegans. Mammalian FOXO proteins also play important roles in cell cycle arrest, apoptosis, stress resistance, and energy metabolism. In this study, we generated Foxo1-deficient mice to investigate the physiological role of FOXO1. The Foxo1-deficient mice died around embryonic day 11 because of defects in the branchial arches and remarkably impaired vascular development of embryos and yolk sacs. In vitro differentiation of embryonic stem cells demonstrated that endothelial cells derived from wild-type and Foxo1-deficient embryonic stem cells were able to produce comparable numbers of colonies supported by a layer of OP9 stromal cells. Although the morphology of the endothelial cell colonies was identical in both genotypes in the absence of exogenous vascular endothelial growth factor (VEGF), Foxo1-deficient endothelial cells showed a markedly different morphological response compared with wild-type endothelial cells in the presence of exogenous VEGF. These results suggest that Foxo1 is essential to the ability of endothelial cells to respond properly to a high dose of VEGF, thereby playing a critical role in normal vascular development.
Collapse
Affiliation(s)
- Tatsuo Furuyama
- Department of Molecular Genetics and Geriatric Research, National Institute for Longevity Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Shi W, van den Hurk JAJM, Alamo-Bethencourt V, Mayer W, Winkens HJ, Ropers HH, Cremers FPM, Fundele R. Choroideremia gene product affects trophoblast development and vascularization in mouse extra-embryonic tissues. Dev Biol 2004; 272:53-65. [PMID: 15242790 DOI: 10.1016/j.ydbio.2004.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 04/09/2004] [Accepted: 04/09/2004] [Indexed: 11/27/2022]
Abstract
Choroideremia (CHM) is a hereditary eye disease caused by mutations in the X-linked CHM gene. Disruption of the Chm gene in mice resulted in prenatal death of Chm-/Y males and Chm-/Chm+ females that had inherited the mutation from their mothers. Male chimeras and Chm+/Chm- females with paternal transmission of the mutation were viable and had photoreceptor degeneration reminiscent of human choroideremia. Here, we show that Chm-/Y males and Chm-/Chm+ females were retarded at e7.5 and died before e11.5 due to multiple defects of the extra-embryonic tissues. Mutant embryos exhibited deficiency of diploid trophoblasts associated with overabundance of giant cells. In yolk sac and placenta, severe defects in vasculogenesis were obvious. Chm-/Y males exhibited more pronounced phenotypes than Chm-/Chm+ females. The lethal genotypes could be rescued by tetraploid aggregation. Chm-/Chm+ females, but not Chm-/Y males, could also be rescued when their Chm+/Chm- mothers were mated with Mus spretus males. Backcross analysis suggested that the viability of interspecies hybrid Chm-/Chm+ females may be due to expression from the Chm allele on the M. spretus X-chromosome rather than a modifier effect. Our results demonstrate that Chm is essential for diploid trophoblast development and plays a role in the vascularization in placenta and yolk sac.
Collapse
Affiliation(s)
- Wei Shi
- Max-Planck-Institute for Molecular Genetics, Berlin-Dahlem, Germany
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Sauer B, Vogler R, von Wenckstern H, Fujii M, Anzano MB, Glick AB, Schäfer-Korting M, Roberts AB, Kleuser B. Involvement of Smad signaling in sphingosine 1-phosphate-mediated biological responses of keratinocytes. J Biol Chem 2004; 279:38471-9. [PMID: 15247277 DOI: 10.1074/jbc.m313557200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The lysophospholipid sphingosine 1-phosphate and the cytokine-transforming growth factor beta are both released from degranulating platelets at wound sites, suggesting a broad spectrum of effects involved in wound healing. Interestingly, both of these molecules have been previously shown to induce chemotaxis but to strongly inhibit the growth of keratinocytes, while stimulating the proliferation of fibroblasts. In contrast to sphingosine 1-phosphate, the signaling cascade of the growth factor has been extensively examined. Specifically, Smad3 has been shown to be an essential mediator of transforming growth factor beta-dependent chemotaxis of keratinocytes and mediates, in part, its growth-inhibitory effect. Here we show that sphingosine 1-phosphate, independently of transforming growth factor beta secretion, induces a rapid phosphorylation of Smad3 on its C-terminal serine motif and induces its partnering with Smad4 and the translocation of the complex into the nucleus. Moreover, sphingosine 1-phosphate fails to induce chemotaxis or inhibit the growth of Smad3-deficient keratinocytes, suggesting that Smad3 plays an unexpected functional role as a new target in sphingosine 1-phosphate signaling. Both sphingosine 1-phosphate receptors and the transforming growth factor beta-type I receptor serine/threonine kinase are essential for activation of Smad3 by this lysophospholipid and the dependent biological responses, indicating a novel cross-talk between serine/threonine kinase receptors and G-protein coupled receptors.
Collapse
Affiliation(s)
- Bettina Sauer
- Institute of Pharmacy, Pharmacology and Toxicology, Free University Berlin, Königin-Luise-Strasse 2+4, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Umans L, Vermeire L, Francis A, Chang H, Huylebroeck D, Zwijsen A. Generation of a floxed allele of Smad5 for cre-mediated conditional knockout in the mouse. Genesis 2004; 37:5-11. [PMID: 14502571 DOI: 10.1002/gene.10219] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Smad5 is a member of the Smad family of intracellular mediators of BMP signals and in endothelial cells of TGF-beta signals. We and others previously showed that loss of Smad5 in the mouse results in embryonic lethality (between E9.5-E11.5) due to multiple embryonic and extraembryonic defects. To circumvent the early embryonic lethality and to allow tissue- and time-specific Smad5 inactivation, we created a conditional Smad5 allele in the mouse. Floxed Smad5 (Smad5(flE2,Neo/flE2,Neo)) mice were generated in which both exon2 and the Neo-cassette were flanked by loxP sites. Here we demonstrate that embryos with ubiquitous Cre-mediated deletion of Smad5 (Smad5(flDeltaE2/flDeltaE2)) phenocopy the conventional Smad5 knockout mice. Smad5(flE2/flE2) mice are now available and will be a valuable tool to analyze the role of Smad5 beyond its crucial early embryonic function throughout development and postnatal life.
Collapse
Affiliation(s)
- Lieve Umans
- Department of Developmental Biology (VIB 7), Flanders Interuniversity Institute for Biotechnology (VIB), and Laboratory of Molecular Biology (CELGEN), University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
163
|
May SR, Stewart NJ, Chang W, Peterson AS. A Titin mutation defines roles for circulation in endothelial morphogenesis. Dev Biol 2004; 270:31-46. [PMID: 15136139 DOI: 10.1016/j.ydbio.2004.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 12/26/2003] [Accepted: 02/10/2004] [Indexed: 11/21/2022]
Abstract
Morphogenesis of the developing vascular network requires coordinated regulation of an extensive array of endothelial cell behaviors. Precisely regulated signaling molecules such as vascular endothelial growth factor (VEGF) direct some of these endothelial behaviors. Newly forming blood vessels also become subjected to novel biomechanical forces upon initiation of cardiac contractions. We report here the identification of a recessive mouse mutation termed shrunken-head (shru) that disrupts function of the Titin gene. Titin was found to be required for the initiation of proper heart contractions as well as for maintaining the correct overall shape and orientation of individual cardiomyocytes. Cardiac dysfunction in shrunken-head mutant embryos provided an opportunity to study the effects of lack of blood circulation on the morphogenesis of endothelial cells. Without blood flow, differentiating endothelial cells display defects in their shapes and patterns of cell-cell contact. These endothelial cells, without exposure to blood circulation, have an abnormal distribution within vasculogenic vessels. Further effects of absent blood flow include abnormal spatial regulation of angiogenesis and elevated VEGF signaling. The shrunken-head mutation has provided an in vivo model to precisely define the roles of circulation on cellular and network aspects of vascular morphogenesis.
Collapse
Affiliation(s)
- Scott R May
- Department of Neurology and the Gallo Center, University of California at San Francisco, Emeryville, CA 94608, USA
| | | | | | | |
Collapse
|
164
|
Abstract
Abstract
Bone Morphogenetic Protein-2 (BMP-2) is highly overexpressed in the majority of patient-derived lung carcinomas. However, a mechanism revealing its role in cancer has not been established. Here we report that BMP-2 enhances the neovascularization of developing tumors. Recombinant BMP-2 stimulated blood vessel formation in tumors formed from A549 cells injected s.c. into thymic nude mice. Recombinant BMP-2 also enhanced angiogenesis in Matrigel plugs containing A549 cells in nude mice. The BMP-2 antagonist noggin abrogated BMP-2-induced angiogenic response. Furthermore, antisense transfection of BMP-2 cDNA resulted in a decrease in blood vessel formation in the Matrigel assays. BMP-2 induced tube formation in both human aortic endothelial cells (HAEC) and umbilical vein endothelial cells. BMP-2 also stimulated proliferation of HAEC. The ability of BMP-2 to activate endothelial cells was further demonstrated by its ability to phosphorylate Smad 1/5/8 and ERK-1/2 and to increase expression of Id1. This study reveals that BMP-2 enhanced the angiogenic response in developing tumors. Furthermore, these data suggest that BMP-2 stimulation of angiogenesis may involve the activation of endothelial cells.
Collapse
|
165
|
Abrams KL, Xu J, Nativelle-Serpentini C, Dabirshahsahebi S, Rogers MB. An evolutionary and molecular analysis of Bmp2 expression. J Biol Chem 2004; 279:15916-28. [PMID: 14757762 DOI: 10.1074/jbc.m313531200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coding regions of many metazoan genes are highly similar. For example, homologs to the key developmental factor bone morphogenetic protein (BMP) 2 have been cloned by sequence identity from arthropods, mollusks, cnidarians, and nematodes. Wide conservation of protein sequences suggests that differential gene expression explains many of the vast morphological differences between species. To test the hypothesis that the regulatory mechanisms controlling this evolutionarily ancient and critical gene are conserved, we compared sequences flanking Bmp2 genes of several species. We identified numerous conserved noncoding sequences including some retained because the fish lineage separated 450 million years ago. We tested the function of some of these sequences in the F9 cell model system of Bmp2 expression. We demonstrated that both mouse and primate Bmp2 promoters drive a reporter gene in an expression pattern resembling that of the endogenous transcript in F9 cells. A conserved Sp1 site contributes to the retinoic acid responsiveness of the Bmp2 promoter, which lacks a classical retinoic acid response element. We have also discovered a sequence downstream of the stop codon whose conservation between humans, rodents, deer, chickens, frogs, and fish is striking. A fragment containing this region influences reporter gene expression in F9 cells. The conserved region contains elements that may mediate the half-life of the Bmp2 transcript. Together, our molecular and evolutionary analysis has identified new regulatory elements controlling Bmp2 expression.
Collapse
Affiliation(s)
- Kevin L Abrams
- Department of Biology, University of South Florida, Tampa, Florida 33620, USA
| | | | | | | | | |
Collapse
|
166
|
Gafni Y, Turgeman G, Liebergal M, Pelled G, Gazit Z, Gazit D. Stem cells as vehicles for orthopedic gene therapy. Gene Ther 2004; 11:417-26. [PMID: 14724684 DOI: 10.1038/sj.gt.3302197] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Adult stem cells reside in adult tissues and serve as the source for their specialized cells. In response to specific factors and signals, adult stem cells can differentiate and give rise to functional tissue specialized cells. Adult mesenchymal stem cells (MSCs) have the potential to differentiate into various mesenchymal lineages such as muscle, bone, cartilage, fat, tendon and ligaments. Adult MSCs can be relatively easily isolated from different tissues such as bone marrow, fat and muscle. Adult MSCs are also easy to manipulate and expand in vitro. It is these properties of adult MSCs that have made them the focus of cell-mediated gene therapy for skeletal tissue regeneration. Adult MSCs engineered to express various factors not only deliver them in vivo, but also respond to these factors and differentiate into skeletal specialized cells. This allows them to actively participate in the tissue regeneration process. In this review, we examine the recent achievements and developments in stem-cell-based gene therapy approaches and their applications to bone, cartilage, tendon and ligament tissues that are the current focus of orthopedic medicine.
Collapse
Affiliation(s)
- Y Gafni
- Skeletal Biotech. Lab., Hebrew University-Hadassah Medical Center, Jerusalem
| | | | | | | | | | | |
Collapse
|
167
|
Duda DG, Sunamura M, Lefter LP, Furukawa T, Yokoyama T, Yatsuoka T, Abe T, Inoue H, Motoi F, Egawa SI, Matsuno S, Horii A. Restoration of SMAD4 by gene therapy reverses the invasive phenotype in pancreatic adenocarcinoma cells. Oncogene 2003; 22:6857-64. [PMID: 14534532 DOI: 10.1038/sj.onc.1206751] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SMAD4 is a critical cofactor in signal transduction pathways activated in response to transforming growth factor-beta (TGF-beta)-related ligands, regulating cell growth and differentiation. The roles played by SMAD4 inactivation in tumours highlighted it as a tumour-suppressor gene. However, restoration of the TGF-beta antiproliferative pathway following SMAD4 gene transfer in null-tumour cell lines is controversial. Herein, we report the inhibitory effects of SMAD4 on pancreatic tumour invasion and angiogenesis. Adenoviral transfer of this gene in a panel of SMAD4 homozygous-deleted human pancreatic tumour cell lines restored SMAD4 protein expression and function. Although it did not affect proliferation significantly in vitro, SMAD4 inhibited in vivo tumour growth in immunodeficient mice. In this xenograft setting, differential suppression of tumour growth in vivo was mediated, at least in part, through downregulation of vascular endothelial growth factor and expression of gelatinases. We documented the reduced invasion and angiogenesis histologically and by intravital microscopy, and gained mechanistic insight at the messenger and protein level. Finally, we found a negative reciprocal regulation between SMAD4 and ETS-1. ETS-1 is considered a marker for tumour invasion. Upon SMAD4 deletion, we detected high expression levels of ETS-1 in pancreatic tumour cells, suggesting the shift of the pancreatic tumour toward an invasive phenotype.
Collapse
Affiliation(s)
- Dan G Duda
- Division of Gastroenterological Surgery, Graduate School of Medicine, Tohoku University, 980-8574 Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Allende ML, Yamashita T, Proia RL. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 2003; 102:3665-7. [PMID: 12869509 DOI: 10.1182/blood-2003-02-0460] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) stimulates signaling pathways via G-protein-coupled receptors and triggers diverse cellular processes, including growth, survival, and migration. In S1P1 receptor-deficient embryos, blood vessels were incompletely covered by vascular smooth muscle cells (VSMCs), indicating the S1P1 receptor regulates vascular maturation. Because S1P1 receptor expression is not restricted to a particular cell type, it was not known whether the S1P1 receptor controlled VSMC coverage of vessels in a cell-autonomous fashion by functioning directly in VSMCs or indirectly through its activity in endothelial cells (ECs). By using the Cre/loxP system, we disrupted the S1P1 gene solely in ECs. The phenotype of the conditional mutant embryos mimicked the one obtained in the embryos globally deficient in S1P1. Thus, vessel coverage by VSMCs is directed by the activity of the S1P1 receptor in ECs.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
169
|
Yang GP, Lim IJ, Phan TT, Lorenz HP, Longaker MT. From scarless fetal wounds to keloids: Molecular studies in wound healing. Wound Repair Regen 2003; 11:411-8. [PMID: 14617279 DOI: 10.1046/j.1524-475x.2003.11604.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Surgical researchers were among the first to describe the different phases of wound healing and the events in tissue repair and regeneration that were taking place during each phase. The understanding of these events has been significantly enhanced in recent years by modern techniques in molecular and cellular biology. In this article, we discuss new findings in scarless fetal repair, angiogenesis in wound healing, and keloid pathogenesis. This serves to highlight the advances that have been made and also how much remains to be understood.
Collapse
Affiliation(s)
- George P Yang
- Department of Surgery, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|
170
|
Schmerer M, Evans T. Primitive erythropoiesis is regulated by Smad-dependent signaling in postgastrulation mesoderm. Blood 2003; 102:3196-205. [PMID: 12855559 DOI: 10.1182/blood-2003-04-1094] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The bone morphogenetic proteins (BMPs) are required for the development of ventral mesoderm, which contributes to the ventral blood island and primitive (yolk sac stage) hematopoiesis. Primitive erythropoiesis is defective when BMP signaling is blocked during gastrulation of Xenopus embryos. This phenotype might be attributed to changes in mesoderm patterning leading indirectly to altered erythropoiesis. We developed an inducible system in order to block BMP signaling in a controlled fashion at later time points in development. For this purpose, an inhibitory Smad, xSmad6, was fused to the estrogen receptor ligand-binding domain. We show that ER-xSmad6 is inactive when expressed in developing embryos, but its activity is induced by estradiol. When induced early in development, ER-xSmad6 causes a dorsalized phenotype, equivalent to overexpression of native xSmad6. When ER-xSmad6 is induced after gastrulation, there is a specific defect in primitive erythropoiesis without any apparent effect on axial patterning. Our results identify an embryonic signal that is Smad-dependent, is required for maintaining expression of GATA-1, and functions within mesoderm and not the overlying ectoderm. Thus, BMP signaling is necessary both during mesoderm patterning and also following early specification events for proper regulation of the primitive erythroid lineage.
Collapse
Affiliation(s)
- Matthew Schmerer
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
171
|
Tran DC, Yeh KC, Brazeau DA, Fung HL. Inhalant nitrite exposure alters mouse hepatic angiogenic gene expression. Biochem Biophys Res Commun 2003; 310:439-45. [PMID: 14521929 DOI: 10.1016/j.bbrc.2003.09.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inhalant nitrites are drugs of abuse that have been shown to enhance tumor growth rate in mice and are epidemiologically linked to an increased risk of Kaposi's sarcoma. Because nitrites produce nitric oxide, we hypothesized that their toxicological effects might be partly mediated via regulation of angiogenic factors such as vascular endothelial growth factor (VEGF). Preliminary studies showed that isobutyl nitrite (ISBN) incubation stimulated VEGF protein expression in J774 macrophage cells. C57BL/6 mice exposed to ISBN in air exhibited significant up-regulation of VEGF protein and mRNA in the liver, but not in the lung. Liver mRNA expression of VEGF receptor 2 (VEGFR-2), VEGFR-3, Smad5, and Smad7 was also significantly altered. These results demonstrate that in vivo exposure to an inhalant nitrite results in altered tissue expression of VEGF and its receptors, suggesting that some of its toxicological effects may be mediated partly through a mechanism involving angiogenesis.
Collapse
Affiliation(s)
- Doanh C Tran
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | | | | |
Collapse
|
172
|
Jüllig M, Stott NS. Mitochondrial localization of Smad5 in a human chondrogenic cell line. Biochem Biophys Res Commun 2003; 307:108-13. [PMID: 12849988 DOI: 10.1016/s0006-291x(03)01139-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily and regulate the formation of cartilage and bone tissues as well as other key events during development. TGF-beta superfamily signaling is mediated intracellularly by Smad proteins, some of which can translocate into the cell nucleus and influence gene expression. Although much progress has been made in understanding how TGF-beta superfamily signaling regulates expression of target genes, little formal proof has been presented regarding the intracellular distribution of the Smad proteins before their entry into the nucleus. In the literature, non-nuclear Smad proteins are generally referred to as cytoplasmic. Using confocal microscopy, we here show for the first time that immunofluorescent labeling of Smad5, one of the Smad proteins associated with BMP signaling, colocalizes with the mitochondrion-specific probe MitoTracker, demonstrating a mitochondrial distribution of Smad5 in non-stimulated chondroprogenitor cells.
Collapse
Affiliation(s)
- Mia Jüllig
- Department of Surgery, Faculty of Medicine and Health Science, University of Auckland, Room 3421, 85 Park Road, Grafton, Auckland, New Zealand
| | | |
Collapse
|
173
|
Abstract
The vasculature is one of the most important and complex organs in the mammalian body. The first functional organ to form during embryonic development, the intricately branched network of endothelial and supporting periendothelial cells is essential for the transportation of oxygen and nutrients to and the removal of waste products from the tissues. Serious disruptions in the formation of the vascular network are lethal early in post-implantation development, while the maintenance of vessel integrity and the control of vessel physiology and hemodynamics have important consequences throughout embryonic and adult life. A full understanding of the signaling pathways of vascular development is important not just for understanding normal development but because of the importance of reactivation of angiogenic pathways in disease states. Clinically there is a need to develop therapies to promote new blood vessel formation in situations of severe tissue ischemia, such as coronary heart disease. In addition, there is considerable interest in developing angiogenic inhibitors to block the new vessel growth that solid tumors promote in host tissue to enhance their own growth. Already studies on the signaling pathways of normal vascular development have provided new targets for therapeutic intervention in both situations. Further understanding of the complexities of the pathways should help refine such strategies.
Collapse
Affiliation(s)
- Janet Rossant
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital and Department of Molecular and Medical Genetics, University of Toronto, 600 University Avenue, Ontario, M5G 1X5, Canada.
| | | |
Collapse
|
174
|
Abstract
Differentiated smooth muscle cells (SMCs) remain highly plastic, enabling them to alter their phenotype in response to environmental and pathologic stimuli. SMCs in vascular pathologies such as atherosclerosis exhibit phenotypes clearly different from those of the mature cells in normal blood vessels. These phenotypically modulated SMCs play an integral role in the development of vascular diseases. This review addresses recent progress in our understanding of the mechanisms that control SMC phenotype during vascular development and in vascular disease. A particular focus is on the transcriptional control programs of the differentiated state of SMCs.
Collapse
Affiliation(s)
- Ichiro Manabe
- Department of Cardiovascular Medicine and Department of Clinical Bioinformatics, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan
| | | |
Collapse
|
175
|
Abstract
Skeletal homeostasis is determined by systemic hormones and local factors. Bone morphogenetic proteins (BMP) are unique because they induce the differentiation of mesenchymal cells toward cells of the osteoblastic lineage and also enhance the differentiated function of the osteoblast. However, the activity of BMPs needs to be tempered by intracellular and extracellular antagonists. BMPs bind to specific receptors and signal by phosphorylating the cytoplasmic proteins mothers against decapentaplegic (Smad) 1 and 5, which form heterodimers with Smad 4, and after nuclear translocation regulate transcription. BMP antagonists can be categorized as pseudoreceptors that compete with signaling receptors, inhibitory Smads that block signaling, intracellular binding proteins that bind Smad 1 and 5, and factors that induce ubiquitination and proteolysis of signaling Smads. In addition, a large number of extracellular proteins that bind BMPs and prevent their binding to signaling receptors have emerged. They are the components of the Spemann organizer, noggin, chordin, and follistatin, members of the Dan/Cerberus family, and twisted gastrulation. The antagonists tend to be specific for BMPs and are regulated by BMPs, indicating the existence and need of local feedback mechanisms to temper BMP cellular activities.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | | | |
Collapse
|
176
|
Abstract
The transforming growth factor beta (TGFbeta) superfamily encompasses a number of structurally related proteins that can be divided into several subfamilies including TGFbetas, activins/inhibins and bone morphogenetic proteins (BMPs). The Smads are major intracellular mediators in transducing the signals of TGFbeta superfamily members, and are abundantly expressed in the developing epidermis and epidermal appendages. Moreover, the phenotypes of transgenic/knockout mice with altered components of the TGFbeta superfamily signaling pathway suggest that TGFbeta superfamily signaling is required for epidermal/appendage development. TGFbeta superfamily members are involved in most events during epidermal/appendage development through the TGFbeta signal transduction pathway and through cross talk with other signaling pathways. Future studies will be instrumental in defining the precise roles for TGFbeta superfamily signaling in epidermal/appendage development.
Collapse
Affiliation(s)
- Allen G Li
- Department of Dermatology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
177
|
King KE, Iyemere VP, Weissberg PL, Shanahan CM. Krüppel-like factor 4 (KLF4/GKLF) is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. J Biol Chem 2003; 278:11661-9. [PMID: 12538588 DOI: 10.1074/jbc.m211337200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) differentiation and phenotypic modulation is characterized by changes in mRNA expression for smooth muscle (SM) marker contractile proteins such as alpha-SM actin and SM22 alpha. Transforming growth factor beta1 (TGF-beta 1) is a potent VSMC differentiation factor; however, it is not known if other TGF-beta-superfamily members, in particular the bone morphogenetic proteins (BMPs), modulate VSMC phenotype. Here we demonstrate that a large subset of TGF-beta-superfamily members and their type I receptors are differentially co-expressed as VSMC phenotype changes during fetal/neonatal development and that BMP2, -4, and -6 reciprocally regulate SM-marker mRNA and protein expression in vitro. BMP2 and BMP6 decrease expression of the SM markers alpha-SM actin, SM22alpha, and calponin in rat VSMCs, whereas BMP4 increases their expression. The effects of BMP-2, -4, and -6 on SM marker gene transcription are mediated through a consensus TGF-beta-controlling element, the TCE, which is common to regulatory regions of SM-marker genes. Moreover, co-treatment experiments revealed that BMP-2, -4, and -6 each inhibit TGF-beta 1-modulated increases in SM22alpha reporter gene activity. Regardless of whether they positively or negatively regulate SM marker expression, TGF-beta 1 and BMP-2, -4, and -6 all induced binding of the Krüppel-like transcription factor, GKLF/KLF4, to the TGF-beta control element. Induction of KLF4 was confirmed by immunocytochemistry and Western blotting, which revealed that a lower molecular weight KLF4 protein is induced after treatment with TGF-beta-superfamily members. Taken together, our results demonstrate that multiple members of the TGF-beta superfamily act in concert to modulate VSMC phenotype.
Collapse
Affiliation(s)
- Kathryn E King
- University of Cambridge, Department of Medicine, Addenbrooke's Centre for Clinical Investigation Level 6, Box 110 Addenbrooke's Hospital, Hills Rd., Cambridge CB2 2QQ, United Kingdom
| | | | | | | |
Collapse
|
178
|
Zhang H, Akman HO, Smith ELP, Zhao J, Murphy-Ullrich JE, Batuman OA. Cellular response to hypoxia involves signaling via Smad proteins. Blood 2003; 101:2253-60. [PMID: 12411310 DOI: 10.1182/blood-2002-02-0629] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The transforming growth factor-beta (TGF-beta) family of cytokines regulates vascular development and inflammatory responses. We have recently shown that exposure of human umbilical vein endothelial cells (HUVECs) to hypoxia (1% O(2)) increases gene expression and bioactivation of TGF-beta2 and induces its downstream effectors, Smad proteins (Smads), to associate with DNA. In the present study, we show that hypoxia-induced TGF-beta2 gene expression is dependent on thrombospondin-1-mediated bioactivation of latent TGF-beta. Blocking TGF-beta2 but not TGF-beta1 in hypoxic endothelial cell cultures inhibited induction of the TGF-beta2 gene, indicating that an autocrine mechanism driven by bioactivation of TGF-beta2 leads to its gene expression in hypoxic HUVECs. Exposure of HUVECs to hypoxia resulted in phosphorylation and nuclear transportation of Smad2 and Smad3 proteins as well as stimulation of transcriptional activities of Smad3 and the transcription factor hypoxia-inducible factor-1alpha and culminated in up-regulation of TGF-beta2 gene expression. Autocrine regulation of TGF-beta2 production in hypoxia may involve cross-talk between Smad3 and HIF-1alpha signaling pathways, and could be an important mechanism by which endothelial cells respond to hypoxic stress.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Anatomy and Cell Biology, the Division of Hematology/Oncology, Center for Cardiovascular and Molecular Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | |
Collapse
|
179
|
Bondjers C, Kalén M, Hellström M, Scheidl SJ, Abramsson A, Renner O, Lindahl P, Cho H, Kehrl J, Betsholtz C. Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:721-9. [PMID: 12598306 PMCID: PMC1868109 DOI: 10.1016/s0002-9440(10)63868-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
All blood capillaries consist of endothelial tubes surrounded by mural cells referred to as pericytes. The origin, recruitment, and function of the pericytes is poorly understood, but the importance of these cells is underscored by the severe cardiovascular defects in mice genetically devoid of factors regulating pericyte recruitment to embryonic vessels, and by the association between pericyte loss and microangiopathy in diabetes mellitus. A general problem in the study of pericytes is the shortage of markers for these cells. To identify new markers for pericytes, we have taken advantage of the platelet-derived growth factor (PDGF)-B knockout mouse model, in which developing blood vessels in the central nervous system are almost completely devoid of pericytes. Using cDNA microarrays, we analyzed the gene expression in PDGF-B null embryos in comparison with corresponding wild-type embryos and searched for down-regulated genes. The most down-regulated gene present on our microarray was RGS5, a member of the RGS family of GTPase-activating proteins for G proteins. In situ hybridization identified RGS5 expression in brain pericytes, and in pericytes and vascular smooth muscle cells in certain other, but not all, locations. Absence of RGS5 expression in PDGF-B and PDGFR beta-null embryos correlated with pericyte loss in these mice. Residual RGS5 expression in rare pericytes suggested that RGS5 is a pericyte marker expressed independently of PDGF-B/R beta signaling. With RGS5 as a proof-of-principle, our data demonstrate the usefulness of microarray analysis of mouse models for abnormal pericyte development in the identification of new pericyte-specific markers.
Collapse
MESH Headings
- Animals
- Becaplermin
- Biomarkers
- DNA Fingerprinting
- Embryo, Mammalian
- Female
- GTP-Binding Proteins/genetics
- Gene Expression Regulation, Developmental
- Immunohistochemistry
- In Situ Hybridization
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Oligonucleotide Array Sequence Analysis
- Pericytes/cytology
- Platelet-Derived Growth Factor/deficiency
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/physiology
- Pregnancy
- Proto-Oncogene Proteins c-sis
- RGS Proteins/analysis
- RGS Proteins/genetics
- Receptor, Platelet-Derived Growth Factor beta/deficiency
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Cecilia Bondjers
- Department of Medical Biochemistry, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
|
181
|
Abstract
During the past two decades, a significant amount of data has been accumulated revealing the intriguing functions of bone morphogenetic proteins (BMPs) in all aspects of embryonic development and organogenesis. Numerous genes encoding BMPs, BMP receptors, and their downstream signal transducers have been mutated in the mouse through targeted mutagenesis. This review focuses on what is known about the role of BMP signaling in gastrulation, mesoderm formation, left-right asymmetry, neural patterning, skeletal and limb development, organogenesis, and gametogenesis as revealed by BMP-signaling mutants.
Collapse
Affiliation(s)
- Guang-Quan Zhao
- Cecil H. & Ida Green Center for Reproductive Biology Sciences, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
182
|
Abstract
Bone morphogenetic proteins (BMP) are members of the transforming growth factor-beta superfamily regulating a large variety of biologic responses in many different cells and tissues during embryonic development and postnatal life. BMP exert their biologic effects via binding to two types of serine/threonine kinase BMP receptors, activation of which leads to phosphorylation and translocation into the nucleus of intracellular signaling molecules, including Smad1, Smad5, and Smad8 ("canonical" BMP signaling pathway). BMP effects are also mediated by activation of the mitogen-activated protein (MAP) kinase pathway ("noncanonical" BMP Signaling pathway). BMP activity is regulated by diffusible BMP antagonists that prevent BMP interactions with BMP receptors thus modulating BMP effects in tissues. During skin development, BMPs its receptors and antagonists show stringent spatiotemporal expressions patterns to achieve proper regulation of cell proliferation and differentiation in the epidermis and in the hair follicle. In normal postnatal skin, BMP are involved in the control of epidermal homeostasis, hair follicle growth, and melanogenesis. Furthermore, BMP are implicated in a variety of pathobiologic processes in skin, including wound healing, psoriasis, and carcinogenesis. Therefore, BMPs represent new important players in the molecular network regulating homeostasis in normal and diseased skin. Pharmacologic modulation of BMP signaling may be used as a new approach for managing skin and hair disorders.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
183
|
Liu B, Sun Y, Jiang F, Zhang S, Wu Y, Lan Y, Yang X, Mao N. Disruption of Smad5 gene leads to enhanced proliferation of high-proliferative potential precursors during embryonic hematopoiesis. Blood 2003; 101:124-33. [PMID: 12393578 DOI: 10.1182/blood-2002-02-0398] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SMAD proteins are downstream signal transducers of the transforming growth factor beta (TGF-beta) superfamily, which serve as pleiotropic regulators in embryonic and adult hematopoiesis. SMAD5, initially considered to mediate bone morphogenetic proteins (BMPs) signals, can also transduce the inhibitory signal of TGF-beta1 on proliferation of hematopoietic progenitors derived from human bone marrow. To define its specific role in regulation of primitive multipotential progenitors during early embryonic hematopoiesis, we examined Smad5(-/-) yolk sacs at E9.0 to 9.5 and detected an elevated number of high-proliferative potential colony-forming cells (HPP-CFCs) with enhanced replating potential. To exclude the possible influence of microenvironmental deficit on embryonic hematopoiesis in vivo, we performed in vitro embryonic stem (ES) cell differentiation assay and investigated the HPP-CFCs in particular. Smad5(-/-) embryoid bodies (EBs) contained an elevated number of blast colony-forming cells (BL-CFCs), the in vitro equivalent of hemangioblast, in contrast to reduced proliferation of primitive erythroid precursors (Ery/Ps) within the mutant EBs. More importantly, profoundly increased frequency of HPP-CFCs, featured with a gene-dosage effect, was detected within day 6 Smad5(-/-) EBs compared with the wild type. In addition, Smad5(-/-) HPP-CFCs displayed enhanced self-renewal capacity and decreased sensitivity to TGF-beta1 inhibition, suggesting a critical role of Smad5 in TGF-beta1 regulation of embryonic HPP-CFCs. Consistently, reverse transcription-polymerase chain reaction analysis detected alterations of the transcription factors including GATA-2 and AML1 as well as cytokine receptors in Smad5(-/-) HPP-CFC colonies. Together, these data define an important function of SMAD5 in negative regulation of high-proliferative potential precursors during embryonic hematopoiesis.
Collapse
Affiliation(s)
- Bing Liu
- Department of Cell Biology, Institute of Basic Medical Sciences, Beijing, Peoples' Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, Aburatani H, Miyazono K. Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-beta in human umbilical vein endothelial cells. J Cell Physiol 2002; 193:299-318. [PMID: 12384983 DOI: 10.1002/jcp.10170] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transforming growth factor-beta (TGF-beta) plays a crucial role in vascular development and homeostasis by regulating many transcriptional targets. Activin receptor-like kinase 5 (ALK-5) is a TGF-beta type I receptor expressed in various TGF-beta-responsive cells. In contrast, ALK-1 functions as a TGF-beta type I receptor in endothelial cells, and is responsible for human hereditary hemorrhagic telangiectasia (HHT) type II. ALK-5 and ALK-1 mediate TGF-beta signals through distinct Smad proteins, i.e., Smad2/Smad3 and Smad1/Smad5, respectively. To identify target genes of ALK-1 and ALK-5 in endothelial cells, we conducted oligonucleotide microarray analysis. Human umbilical vein endothelial cells (HUVEC) were infected with recombinant adenoviruses carrying a constitutively active form of ALK-1 or ALK-5. ALK-5 inhibited the proliferation, network formation, and tube formation of HUVEC and induced their apoptosis, whereas ALK-1 did not exhibit significant effects on HUVEC in vitro. mRNAs were extracted from HUVEC and used for hybridization of oligonucleotide arrays representing approximately 7,000 human genes. Northern blot and quantitative real-time polymerase chain reaction (PCR) analyses were also performed for some of these genes, confirming the validity of this microarray analysis. We found that ALK-1 specifically upregulated Smad6, Smad7, Id1, Id2, endoglin, STAT1, and interleukin 1 receptor-like 1. ALK-5, in contrast, upregulated PlGF, SM22alpha, connexin 37, betaIG-H3, and LTBP1. ALK-1 downregulated Smad1, CXCR4, Ephrin-A1, and plakoglobin, whereas ALK-5 downregulated claudin 5 and integrin beta(5). These results revealed some new targets of TGF-beta in endothelial cells, and differences in transcriptional regulation patterns between ALK-1 and ALK-5.
Collapse
MESH Headings
- Activin Receptors, Type I/classification
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/physiology
- Activin Receptors, Type II
- Cells, Cultured
- Down-Regulation
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Gene Expression Profiling
- Humans
- Models, Biological
- Mutation
- Oligonucleotide Array Sequence Analysis
- Protein Serine-Threonine Kinases
- RNA, Messenger/analysis
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/classification
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/physiology
- Transcription, Genetic
- Transforming Growth Factor beta/physiology
- Umbilical Veins/cytology
- Up-Regulation
Collapse
Affiliation(s)
- Tatsuru Ota
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Members of the TGF-beta superfamily, which includes TGF-betas, growth differentiation factors, bone morphogenetic proteins, activins, inhibins, and glial cell line-derived neurotrophic factor, are synthesized as prepropeptide precursors and then processed and secreted as homodimers or heterodimers. Most ligands of the family signal through transmembrane serine/threonine kinase receptors and SMAD proteins to regulate cellular functions. Many studies have reported the characterization of knockout and knock-in transgenic mice as well as humans or other mammals with naturally occurring genetic mutations in superfamily members or their regulatory proteins. These investigations have revealed that TGF-beta superfamily ligands, receptors, SMADs, and upstream and downstream regulators function in diverse developmental and physiological pathways. This review attempts to collate and integrate the extensive body of in vivo mammalian studies produced over the last decade.
Collapse
Affiliation(s)
- Hua Chang
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
186
|
Firulli AB, Thattaliyath BD. Transcription factors in cardiogenesis: the combinations that unlock the mysteries of the heart. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 214:1-62. [PMID: 11893163 DOI: 10.1016/s0074-7696(02)14002-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Heart formation is one of the first signs of organogenesis within the developing embryo and this process is conserved from flies to man. Completing the genetic roadmap of the molecular mechanisms that control the cell specification and differentiation of cells that form the developing heart has been an exciting and fast-moving area of research in the fields of molecular and developmental biology. At the core of these studies is an interest in the transcription factors that are responsible for initiation of a pluripotent cell to become programmed to the cardiac lineage and the subsequent transcription factors that implement the instructions set up by the cells commitment decision. To gain a better understanding of these pathways, cardiac-expressed transcription factors have been identified, cloned, overexpressed, and mutated to try to determine function. Although results vary depending on the gene in question, it is clear that there is a striking evolutionary conservation of the cardiogenic program among species. As we move up the evolutionary ladder toward man, we encounter cases of functional redundancy and combinatorial interactions that reflect the complex networks of gene expression that orchestrate heart development. This review focuses on what is known about the transcription factors implicated in heart formation and the role they play in this intricate genetic program.
Collapse
Affiliation(s)
- Anthony B Firulli
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio 78229, USA
| | | |
Collapse
|
187
|
Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis 2002; 45:173-202. [PMID: 12525995 DOI: 10.1053/pcad.2002.130041] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clinical pulmonary hypertension is characterized by a sustained elevation in pulmonary arterial pressure. Pulmonary vascular remodeling involves structural changes in the normal architecture of the walls of pulmonary arteries. The process of vascular remodeling can occur as a primary response to injury, or stimulus such as hypoxia, within the resistance vessels of the lung. Alternatively, the changes seen in more proximal vessels may arise secondary to a sustained increase in intravascular pressure. To withstand the chronic increase in intraluminal pressure, the vessel wall becomes thickened and stronger. This "armouring" of the vessel wall with extra-smooth muscle and extracellular matrix leads to a decrease in lumen diameter and reduced capacity for vasodilatation. This maladaptive response results in increased pulmonary vascular resistance and consequently, sustained pulmonary hypertension. The process of pulmonary vascular remodeling involves all layers of the vessel wall and is complicated by the finding that cellular heterogeneity exists within the traditional compartments of the vascular wall: intima, media, and adventitia. In addition, the developmental stage of the organism greatly modifies the response of the pulmonary circulation to injury. This review focuses on the latest advances in our knowledge of these processes as they relate to specific forms of pulmonary hypertension and particularly in the light of recent genetic studies that have identified specific pathways involved in the pathogenesis of severe pulmonary hypertension.
Collapse
Affiliation(s)
- T K Jeffery
- Respiratory Medicine Unit, Department of Medicine, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | |
Collapse
|
188
|
Maternally Supplied Smad5 Is Required for Ventral Specification in Zebrafish Embryos Prior to Zygotic Bmp Signaling. Dev Biol 2002. [DOI: 10.1006/dbio.2002.0805] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
189
|
|
190
|
|
191
|
Abstract
Cytokines of the transforming growth factor-beta (TGF-beta) superfamily transduce their signals by activating receptor-regulated Smads (R-Smads). Distinct R-Smads or combinations of R-Smads are activated by TGF-beta, activin, or bone morphogenetic proteins (BMPs). R-Smads activated by BMPs induce expression of Id proteins, which act as inhibitors of differentiation and stimulators of cell growth by inhibiting the function of basic helix-loop-helix transcription factors. In endothelial cells, TGF-beta binds to two distinct type I receptor serine-threonine kinases, ALK-5 and ALK-1; the latter activates the same R-Smads that are activated by BMP and induces synthesis of Id (inhibitor of differentiation or inhibitor of DNA binding) proteins. Growing evidence suggests that Id proteins may play crucial roles in angiogenesis, neurogenesis, and osteogenesis and act as key molecules in regulating biological responses induced by BMPs and TGF-beta.
Collapse
Affiliation(s)
- Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
192
|
Abstract
Growth factors of the TGF-beta superfamily such as BMPs and Nodals are important signaling factors during all stages of animal development. Smad proteins, the cytoplasmic mediators of most TGF-beta signals in vertebrates, play central roles not only for transmission but also in controlling inductive TGF-beta signals by feedback regulation. Here, we describe cloning, expression pattern, transcriptional regulation, and functional properties of two novel zebrafish Smad proteins: the TGF-beta agonist Smad3b, and the anti-Smad Smad7. We show that zebrafish Smad3b, in contrast to the related zebrafish Smad2, can induce mesoderm independently of TGF-beta signaling. Although mammalian Smad3 was shown to inhibit expression of the organizer-specific genes goosecoid, zebrafish smad3b activates organizer genes such as goosecoid. Furthermore, we show that Smad3 and BMP signals activate smad7. Because Smad7 blocks distinct TGF-beta signals in early zebrafish development, our data provide hints for new roles of smad3 genes in the regulation and modulation of TGF-beta signals. In summary, our analyses point out differences of Smad3b and Smad2 functions in zebrafish and provide the first link of smad3 and smad7 function in context of vertebrate development.
Collapse
Affiliation(s)
- Hans-Martin Pogoda
- Department of Developmental Biology, Biology I, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
193
|
Abstract
Understanding the mechanisms by which the germline is induced and maintained should lead to a broader understanding of the means by which pluripotency is acquired and maintained. In this review, two major aspects of male germ cell development are discussed: underlying mechanisms for induction and maintenance of primordial germ cells and the basic signaling pathways that determine spermatogonial cell fate.
Collapse
Affiliation(s)
- Guang Quan Zhao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | | |
Collapse
|
194
|
Ten Dijke P, Goumans MJ, Itoh F, Itoh S. Regulation of cell proliferation by Smad proteins. J Cell Physiol 2002; 191:1-16. [PMID: 11920677 DOI: 10.1002/jcp.10066] [Citation(s) in RCA: 323] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transforming growth factor-beta (TGF-beta) family members which include TGF-betas, activins, and bone morphogenetic proteins (BMPs) regulate a broad spectrum of biological responses on a large variety of cell types. TGF-beta family members initiate their cellular responses by binding to distinct receptors with intrinsic serine/threonine kinase activity and activation of specific downstream intracellular effectors termed Smad proteins. Smads relay the signal from the cell membrane to the nucleus, where they affect the transcription of target genes. Smad activation, subcellular distribution, and stability have been found to be intricately regulated and a broad array of transcription factors have been identified as Smad partners. Important activities of TGF-beta are its potent anti-mitogenic and pro-apoptotic effects that, at least in part, are mediated via Smad proteins. Escape from TGF-beta/Smad-induced growth inhibition and apoptosis is frequently observed in tumors. Certain Smads have been found to be mutated in specific types of cancer and gene ablation of particular Smads in mice has revealed increased rate of tumorigenesis. In late stage tumors, TGF-beta has been shown to function as a tumor promoter. TGF-beta can stimulate the de-differentiation of epithelial cells to malignant invasive and metastatic fibroblastic cells. Interestingly, TGF-beta may mediate these effects directly on tumor cells via subverted Smad-dependent and/or Smad-independent pathways.
Collapse
Affiliation(s)
- Peter Ten Dijke
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
195
|
Piek E, Roberts AB. Suppressor and oncogenic roles of transforming growth factor-beta and its signaling pathways in tumorigenesis. Adv Cancer Res 2002; 83:1-54. [PMID: 11665716 DOI: 10.1016/s0065-230x(01)83001-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transforming growth factor-beta (TGF-beta) has been implicated in oncogenesis since the time of its discovery almost 20 years ago. The complex, multifunctional activities of TGF-beta endow it with both tumor suppressor and tumor promoting activities, depending on the stage of carcinogenesis and the responsivity of the tumor cell. Dysregulation or alteration of TGF-beta signaling in tumorigenesis can occur at many different levels, including activation of the ligand, mutation or transcriptional suppression of the receptors, or alteration of downstream signal transduction pathways resulting from mutation or changes in expression patterns of signaling intermediates or from changes in expression of other proteins which modulate signaling. New insights into signaling from the TGF-beta receptors, including the identification of Smad signaling pathways and their interaction with mitogen-activated protein (MAP) kinase pathways, are providing an understanding of the changes involved in the change from tumor suppressor to tumor promoting activities of TGF-beta. It is now appreciated that loss of sensitivity to inhibition of growth by TGF-beta by most tumor cells is not synonymous with complete loss of TGF-beta signaling but rather suggests that tumor cells gain advantage by selective inactivation of the tumor suppressor activities of TGF-beta with retention of its tumor promoting activities, especially those dependent on cross talk with MAP kinase pathways and AP-1.
Collapse
Affiliation(s)
- E Piek
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-8395, USA
| | | |
Collapse
|
196
|
Miyanaga Y, Torregroza I, Evans T. A maternal Smad protein regulates early embryonic apoptosis in Xenopus laevis. Mol Cell Biol 2002; 22:1317-28. [PMID: 11839799 PMCID: PMC134692 DOI: 10.1128/mcb.22.5.1317-1328.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified cDNAs encoding the Xenopus Smad proteins most closely related to mammalian Smad8, and we present a functional analysis of this activity (also referred to recently as xSmad11). Misexpression experiments indicate that xSmad8(11) regulates pathways distinct from those regulated by the closely related xSmad1. Embryos that develop from eggs depleted of xSmad8(11) mRNA fail to gastrulate; instead, at the time of gastrulation, they initiate a widespread program of apoptosis, via a CPP32/caspase 3 pathway. Embryos that avoid this fate display gastrulation defects. Activation of apoptosis is rescued by expression of xSmad8(11) but not xSmad1. Our results demonstrate an embryonic requirement for Smad8(11) activity and show that a maternally derived Smad signaling pathway is required for gastrulation and for mediating a cell survival program during early embryogenesis. We suggest that xSmad8(11) functions as part of a maternally derived mechanism shown previously by others to monitor Xenopus early embryonic cell cycles.
Collapse
Affiliation(s)
- Yuko Miyanaga
- Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
197
|
Fuchs O, Simakova O, Klener P, Cmejlova J, Zivny J, Zavadil J, Stopka T. Inhibition of Smad5 in human hematopoietic progenitors blocks erythroid differentiation induced by BMP4. Blood Cells Mol Dis 2002; 28:221-33. [PMID: 12064918 DOI: 10.1006/bcmd.2002.0487] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patients with secondary myelodysplasias and acute myeloid leukemias (MDS/AML) frequently exhibit interstitial deletions of the chromosome-5q resulting in hemizygous loss of the transcription transactivator Smad5. Smad5 is a member of the signal transducer family conveying the pleiotropic TGF-gb/BMP cytokine signals with roles in development, cell growth control, and tumor progression. Here we present a study of the Smad5 expression and its functional role in leukemia cell lines as well as in primary CD34+ progenitors of MDS/AML patients and healthy individuals. Consistent Smad5 gene expression in these cell types and the gradual increase in its mRNA and protein levels in a model of induced erythroid differentiation of murine erythroleukemia (MEL) cells suggest a role of the gene in hematopoiesis. We show that bone morphogenetic protein 4 (BMP4) directs Smad5 activation in human hematopoietic cells, as monitored at the levels of protein phosphorylation, nuclear translocation, and specific transcription response. In vitro induction of normal human CD34+ cells by BMP4 results in significantly increased proliferation of erythroid progenitors (BFU-E) and formation of glycophorin-A+ cells, whereas perturbation of Smad5 expression by antisense oligonucleotides causes significantly decreased rates of BMP4-induced erythroid differentiation. We have not detected any effects of Smad5 inhibition on BMP4-stimulated progenitors of the granulocyteNmacrophage lineage. We propose that the BMP4/Smad5 signal transduction pathway activates hematopoietic differentiation programs that may be impaired in anemia manifestations in MDS and AML patients with Smad5 haploinsufficiency.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
Transforming growth factor (TGF) beta1 is a potent growth inhibitor, with tumor-suppressing activity. Cancers are often refractile to this growth inhibition either because of genetic loss of TGF-beta signaling components or, more commonly, because of downstream perturbation of the signaling pathway, such as by Ras activation. Carcinomas often secrete excess TGF-beta1 and respond to it by enhanced invasion and metastasis. Therapeutic approaches should aim to inhibit the TGF-beta-induced invasive phenotype, but also to retain its growth-inhibitory and apoptosis-inducing effects.
Collapse
Affiliation(s)
- R J Akhurst
- Mt Zion Cancer Research Institute, University of California at San Francisco, San Francisco, CA 94143-0875, USA.
| | | |
Collapse
|
199
|
Abstract
Organs are specialized tissues used for enhanced physiology and environmental adaptation. The cells of the embryo are genetically programmed to establish organ form and function through conserved developmental modules. The zebrafish is a powerful model system that is poised to contribute to our basic understanding of vertebrate organogenesis. This review develops the theme of modules and illustrates how zebrafish have been particularly useful for understanding heart and blood formation.
Collapse
Affiliation(s)
- Christine Thisse
- Institut de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université Louis Pasteur, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C. U. de Strasbourg, France
| | | |
Collapse
|
200
|
Vargesson N, Laufer E. Smad7 misexpression during embryonic angiogenesis causes vascular dilation and malformations independently of vascular smooth muscle cell function. Dev Biol 2001; 240:499-516. [PMID: 11784079 DOI: 10.1006/dbio.2001.0481] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Numerous in vitro and in vivo studies implicate transforming growth factor-beta (TGFbeta) superfamily signaling in vascular development and maintenance. Mice and humans with mutations in TGFbeta superfamily signaling pathway genes exhibit a range of vascular defects that include dilated, fragile and hemorrhagic vessels, defective angiogenic remodeling, severe vascular malformations including arterio-venous malformations, and disrupted vascular smooth muscle cell recruitment and maintenance. Despite a wealth of data, the functions of TGFbeta superfamily signals during angiogenesis are poorly defined, since early embryonic lethality and difficulty distinguishing between primary and secondary defects frequently confound phenotypic interpretation. To perturb TGFbeta superfamily signaling during angiogenesis, we have misexpressed Smad7, an intracellular antagonist of TGFbeta superfamily signaling, in the developing chick limb and head. We find that the great vessels are strikingly dilated and frequently develop intra and intervascular shunts. Neither noggin nor dominant negative BMP receptor misexpression causes similar vascular phenotypes. However, simultaneous misexpression of constitutively active BMP receptors with Smad7 suppresses the Smad7-induced phenotype, suggesting that a BMP-like intracellular pathway is the target of Smad7 action. Despite the gross morphological defects, further analyses find no evidence of hemorrhage and vessel structure is normal. Furthermore, enlarged vessels and vascular malformations form in either the presence or absence of vascular smooth muscle, and vascular smooth muscle cell recruitment is unperturbed. Our data define the TGFbeta superfamily pathway as an integral regulator of vessel caliber that is also essential for appropriate vessel connectivity. They demonstrate that dilation need not result in vessel rupture or hemorrhage, and dissociate vessel maintenance from the presence of a vascular smooth muscle cell coat. Furthermore they uncouple vascular smooth muscle cell recruitment and differentiation from TGFbeta superfamily signaling.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Blood Vessels/abnormalities
- Blood Vessels/embryology
- Brain/blood supply
- Brain/embryology
- Cell Differentiation
- Chick Embryo
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Endothelium, Vascular/embryology
- Extremities/blood supply
- Extremities/embryology
- Gene Expression
- Genetic Vectors
- Humans
- Mice
- Microscopy, Electron
- Models, Biological
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/physiology
- Neovascularization, Physiologic/genetics
- Phenotype
- Retroviridae/genetics
- Signal Transduction
- Smad7 Protein
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- N Vargesson
- Department of Genetics and Development, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|