201
|
Oishi S, Harkins D, Kurniawan ND, Kasherman M, Harris L, Zalucki O, Gronostajski RM, Burne THJ, Piper M. Heterozygosity for Nuclear Factor One X in mice models features of Malan syndrome. EBioMedicine 2019; 39:388-400. [PMID: 30503862 PMCID: PMC6354567 DOI: 10.1016/j.ebiom.2018.11.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Nuclear Factor One X (NFIX) haploinsufficiency in humans results in Malan syndrome, a disorder characterized by overgrowth, macrocephaly and intellectual disability. Although clinical assessments have determined the underlying symptomology of Malan syndrome, the fundamental mechanisms contributing to the enlarged head circumference and intellectual disability in these patients remains undefined. METHODS Here, we used Nfix heterozygous mice as a model to investigate these aspects of Malan syndrome. Volumetric magnetic resonance imaging (MRI) was used to calculate the volumes of 20 brain sub regions. Diffusion tensor MRI was used to perform tractography-based analyses of the corpus callosum, hippocampal commissure, and anterior commissure, as well as structural connectome mapping of the whole brain. Immunohistochemistry examined the neocortical cellular populations. Two behavioral assays were performed, including the active place avoidance task to assess spatial navigation and learning and memory function, and the 3-chambered sociability task to examine social behaviour. FINDINGS Adult Nfix+/- mice exhibit significantly increased brain volume (megalencephaly) compared to wildtypes, with the cerebral cortex showing the highest increase. Moreover, all three forebrain commissures, in particular the anterior commissure, revealed significantly reduced fractional anisotropy, axial and radial diffusivity, and tract density intensity. Structural connectome analyses revealed aberrant connectivity between many crucial brain regions. Finally, Nfix+/- mice exhibit behavioral deficits that model intellectual disability. INTERPRETATION Collectively, these data provide a significant conceptual advance in our understanding of Malan syndrome by suggesting that megalencephaly underlies the enlarged head size of these patients, and that disrupted cortical connectivity may contribute to the intellectual disability these patients exhibit. FUND: Australian Research Council (ARC) Discovery Project Grants, ARC Fellowship, NYSTEM and Australian Postgraduate Fellowships.
Collapse
Affiliation(s)
- Sabrina Oishi
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Danyon Harkins
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nyoman D Kurniawan
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maria Kasherman
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; The Francis Crick Institute, 1 Midland Road, King's Cross, London, United Kingdom
| | - Oressia Zalucki
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Thomas H J Burne
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Brisbane, QLD 4076, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
202
|
Tripathy R, Leca I, van Dijk T, Weiss J, van Bon BW, Sergaki MC, Gstrein T, Breuss M, Tian G, Bahi-Buisson N, Paciorkowski AR, Pagnamenta AT, Wenninger-Weinzierl A, Martinez-Reza MF, Landler L, Lise S, Taylor JC, Terrone G, Vitiello G, Del Giudice E, Brunetti-Pierri N, D'Amico A, Reymond A, Voisin N, Bernstein JA, Farrelly E, Kini U, Leonard TA, Valence S, Burglen L, Armstrong L, Hiatt SM, Cooper GM, Aldinger KA, Dobyns WB, Mirzaa G, Pierson TM, Baas F, Chelly J, Cowan NJ, Keays DA. Mutations in MAST1 Cause Mega-Corpus-Callosum Syndrome with Cerebellar Hypoplasia and Cortical Malformations. Neuron 2018; 100:1354-1368.e5. [PMID: 30449657 PMCID: PMC6436622 DOI: 10.1016/j.neuron.2018.10.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/03/2018] [Accepted: 10/24/2018] [Indexed: 01/04/2023]
Abstract
Corpus callosum malformations are associated with a broad range of neurodevelopmental diseases. We report that de novo mutations in MAST1 cause mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCC-CH-CM) in the absence of megalencephaly. We show that MAST1 is a microtubule-associated protein that is predominantly expressed in post-mitotic neurons and is present in both dendritic and axonal compartments. We further show that Mast1 null animals are phenotypically normal, whereas the deletion of a single amino acid (L278del) recapitulates the distinct neurological phenotype observed in patients. In animals harboring Mast1 microdeletions, we find that the PI3K/AKT3/mTOR pathway is unperturbed, whereas Mast2 and Mast3 levels are diminished, indicative of a dominant-negative mode of action. Finally, we report that de novo MAST1 substitutions are present in patients with autism and microcephaly, raising the prospect that mutations in this gene give rise to a spectrum of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Ratna Tripathy
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ines Leca
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Tessa van Dijk
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Janneke Weiss
- Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Genetics, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Bregje W van Bon
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Maria Christina Sergaki
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Thomas Gstrein
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Martin Breuss
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Guoling Tian
- Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Nadia Bahi-Buisson
- Université Paris Descartes, Institut Cochin Hôpital Cochin, 75014 Paris, France
| | | | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Oxford, UK, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Andrea Wenninger-Weinzierl
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Maria Fernanda Martinez-Reza
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Lukas Landler
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Stefano Lise
- NIHR Oxford Biomedical Research Centre, Oxford, UK, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Oxford, UK, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy
| | - Giuseppina Vitiello
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy
| | - Ennio Del Giudice
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, 80131 Naples, Italy; Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Naples, Italy
| | - Alessandra D'Amico
- Department of Advanced Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Norine Voisin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | - Usha Kini
- Department of Clinical Genetics, Oxford Regional Genetics Service, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Thomas A Leonard
- Center for Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Stéphanie Valence
- Centre de référence des Malformations et Maladies Congénitales du Cervelet et Département de Génétique et Embryologie Médicale, APHP, Hôpital Trousseau, 75012 Paris, France
| | - Lydie Burglen
- Centre de référence des Malformations et Maladies Congénitales du Cervelet et Département de Génétique et Embryologie Médicale, APHP, Hôpital Trousseau, 75012 Paris, France
| | - Linlea Armstrong
- Provincial Medical Genetics Programme, BCWH and Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kimberly A Aldinger
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA
| | - William B Dobyns
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA
| | - Ghayda Mirzaa
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA
| | - Tyler Mark Pierson
- Departments of Pediatrics and Neurology & the Board of Governors Regenerative Medicine, Institute Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jamel Chelly
- Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Nicholas J Cowan
- Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA
| | - David Anthony Keays
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna Biocenter (VBC), Vienna 1030, Austria.
| |
Collapse
|
203
|
Mancinelli S, Lodato S. Decoding neuronal diversity in the developing cerebral cortex: from single cells to functional networks. Curr Opin Neurobiol 2018; 53:146-155. [DOI: 10.1016/j.conb.2018.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
|
204
|
Transcriptional control of long-range cortical projections. Curr Opin Neurobiol 2018; 53:57-65. [DOI: 10.1016/j.conb.2018.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
|
205
|
Kalebic N, Gilardi C, Albert M, Namba T, Long KR, Kostic M, Langen B, Huttner WB. Human-specific ARHGAP11B induces hallmarks of neocortical expansion in developing ferret neocortex. eLife 2018; 7:e41241. [PMID: 30484771 PMCID: PMC6303107 DOI: 10.7554/elife.41241] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/23/2018] [Indexed: 01/09/2023] Open
Abstract
The evolutionary increase in size and complexity of the primate neocortex is thought to underlie the higher cognitive abilities of humans. ARHGAP11B is a human-specific gene that, based on its expression pattern in fetal human neocortex and progenitor effects in embryonic mouse neocortex, has been proposed to have a key function in the evolutionary expansion of the neocortex. Here, we study the effects of ARHGAP11B expression in the developing neocortex of the gyrencephalic ferret. In contrast to its effects in mouse, ARHGAP11B markedly increases proliferative basal radial glia, a progenitor cell type thought to be instrumental for neocortical expansion, and results in extension of the neurogenic period and an increase in upper-layer neurons. Consequently, the postnatal ferret neocortex exhibits increased neuron density in the upper cortical layers and expands in both the radial and tangential dimensions. Thus, human-specific ARHGAP11B can elicit hallmarks of neocortical expansion in the developing ferret neocortex.
Collapse
Affiliation(s)
- Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Carlotta Gilardi
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Mareike Albert
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Katherine R Long
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Milos Kostic
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Barbara Langen
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
206
|
Ambrozkiewicz MC, Schwark M, Kishimoto-Suga M, Borisova E, Hori K, Salazar-Lázaro A, Rusanova A, Altas B, Piepkorn L, Bessa P, Schaub T, Zhang X, Rabe T, Ripamonti S, Rosário M, Akiyama H, Jahn O, Kobayashi T, Hoshino M, Tarabykin V, Kawabe H. Polarity Acquisition in Cortical Neurons Is Driven by Synergistic Action of Sox9-Regulated Wwp1 and Wwp2 E3 Ubiquitin Ligases and Intronic miR-140. Neuron 2018; 100:1097-1115.e15. [PMID: 30392800 DOI: 10.1016/j.neuron.2018.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 07/31/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
Abstract
The establishment of axon-dendrite polarity is fundamental for radial migration of neurons during cortex development of mammals. We demonstrate that the E3 ubiquitin ligases WW-Containing Proteins 1 and 2 (Wwp1 and Wwp2) are indispensable for proper polarization of developing neurons. We show that knockout of Wwp1 and Wwp2 results in defects in axon-dendrite polarity in pyramidal neurons, and their aberrant laminar cortical distribution. Knockout of miR-140, encoded in Wwp2 intron, engenders phenotypic changes analogous to those upon Wwp1 and Wwp2 deletion. Intriguingly, transcription of the Wwp1 and Wwp2/miR-140 loci in neurons is induced by the transcription factor Sox9. Finally, we provide evidence that miR-140 supervises the establishment of axon-dendrite polarity through repression of Fyn kinase mRNA. Our data delineate a novel regulatory pathway that involves Sox9-[Wwp1/Wwp2/miR-140]-Fyn required for axon specification, acquisition of pyramidal morphology, and proper laminar distribution of cortical neurons.
Collapse
Affiliation(s)
- Mateusz C Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; International Max Planck Research School for Neurosciences, Georg-August-Universität Göttingen, Griesebachstrasse 5, 37077 Göttingen, Germany; Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Manuela Schwark
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Mika Kishimoto-Suga
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Ekaterina Borisova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, pr. Gagarina 24, 603950 Nizhny Novgorod, Russian Federation
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | - Andrea Salazar-Lázaro
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Alexandra Rusanova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, pr. Gagarina 24, 603950 Nizhny Novgorod, Russian Federation
| | - Bekir Altas
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; International Max Planck Research School for Neurosciences, Georg-August-Universität Göttingen, Griesebachstrasse 5, 37077 Göttingen, Germany
| | - Lars Piepkorn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Paraskevi Bessa
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Theres Schaub
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Xin Zhang
- Molecular Oncology, Medical University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Tamara Rabe
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Silvia Ripamonti
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Marta Rosário
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University, 1-1 Yanagito, Gifu 501-1193, Japan
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Tatsuya Kobayashi
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, pr. Gagarina 24, 603950 Nizhny Novgorod, Russian Federation
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
207
|
Abstract
The six-layered neocortex of the mammalian pallium has no clear homolog in birds or non-avian reptiles. Recent research indicates that although these extant amniotes possess a variety of divergent and nonhomologous pallial structures, they share a conserved set of neuronal cell types and circuitries. These findings suggest a principle of brain evolution: that natural selection preferentially preserves the integrity of information-processing pathways, whereas other levels of biological organization, such as the three-dimensional architectures of neuronal assemblies, are less constrained. We review the similarities of pallial neuronal cell types in amniotes, delineate candidate gene regulatory networks for their cellular identities, and propose a model of developmental evolution for the divergence of amniote pallial structures.
Collapse
Affiliation(s)
- Steven D Briscoe
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
208
|
Miskinyte G, Grønning Hansen M, Monni E, Lam M, Bengzon J, Lindvall O, Ahlenius H, Kokaia Z. Transcription factor programming of human ES cells generates functional neurons expressing both upper and deep layer cortical markers. PLoS One 2018; 13:e0204688. [PMID: 30307948 PMCID: PMC6181302 DOI: 10.1371/journal.pone.0204688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
Human neurodegenerative disorders affect specific types of cortical neurons. Efficient protocols for the generation of such neurons for cell replacement, disease modeling and drug screening are highly warranted. Current methods for the production of cortical neurons from human embryonic stem (ES) cells are often time-consuming and inefficient, and the functional properties of the generated cells have been incompletely characterized. Here we have used transcription factor (TF) programming with the aim to induce rapid differentiation of human ES cells to layer-specific cortical neurons (hES-iNs). Three different combinations of TFs, NEUROGENIN 2 (NGN2) only, NGN2 plus Forebrain Embryonic Zinc Finger-Like Protein 2 (FEZF2), and NGN2 plus Special AT-Rich Sequence-Binding Protein 2 (SATB2), were delivered to human ES cells by lentiviral vectors. We observed only subtle differences between the TF combinations, which all gave rise to the formation of pyramidal-shaped cells, morphologically resembling adult human cortical neurons expressing cortical projection neuron (PN) markers and with mature electrophysiological properties. Using ex vivo transplantation to human organotypic cultures, we found that the hES-iNs could integrate into adult human cortical networks. We obtained no evidence that the hES-iNs had acquired a distinct cortical layer phenotype. Instead, our single-cell data showed that the hES-iNs, similar to fetal human cortical neurons, expressed both upper and deep layer cortical neuronal markers. Taken together, our findings provide evidence that TF programming can direct human ES cells towards cortical neurons but that the generated cells are transcriptionally profiled to generate both upper and deep layer cortical neurons. Therefore, most likely additional cues will be needed if these cells should adopt a specific cortical layer and area identity.
Collapse
Affiliation(s)
- Giedre Miskinyte
- Laboratory of Stem Cells and Restorative Neurology, University Hospital, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Emanuela Monni
- Laboratory of Stem Cells and Restorative Neurology, University Hospital, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Matti Lam
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Stem Cells, Aging and Neurodegeneration Group, University Hospital, Lund, Sweden
| | - Johan Bengzon
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Neurosurgery, Department of Clinical Sciences Lund, University Hospital, Lund, Sweden
| | - Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, University Hospital, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Henrik Ahlenius
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Stem Cells, Aging and Neurodegeneration Group, University Hospital, Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, University Hospital, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
209
|
Han S, Dennis DJ, Balakrishnan A, Dixit R, Britz O, Zinyk D, Touahri Y, Olender T, Brand M, Guillemot F, Kurrasch D, Schuurmans C. A non-canonical role for the proneural gene Neurog1 as a negative regulator of neocortical neurogenesis. Development 2018; 145:dev157719. [PMID: 30201687 PMCID: PMC6198467 DOI: 10.1242/dev.157719] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/31/2018] [Indexed: 02/05/2023]
Abstract
Neural progenitors undergo temporal identity transitions to sequentially generate the neuronal and glial cells that make up the mature brain. Proneural genes have well-characterised roles in promoting neural cell differentiation and subtype specification, but they also regulate the timing of identity transitions through poorly understood mechanisms. Here, we investigated how the highly related proneural genes Neurog1 and Neurog2 interact to control the timing of neocortical neurogenesis. We found that Neurog1 acts in an atypical fashion as it is required to suppress rather than promote neuronal differentiation in early corticogenesis. In Neurog1-/- neocortices, early born neurons differentiate in excess, whereas, in vitro, Neurog1-/- progenitors have a decreased propensity to proliferate and form neurospheres. Instead, Neurog1-/- progenitors preferentially generate neurons, a phenotype restricted to the Neurog2+ progenitor pool. Mechanistically, Neurog1 and Neurog2 heterodimerise, and while Neurog1 and Neurog2 individually promote neurogenesis, misexpression together blocks this effect. Finally, Neurog1 is also required to induce the expression of neurogenic factors (Dll1 and Hes5) and to repress the expression of neuronal differentiation genes (Fezf2 and Neurod6). Neurog1 thus employs different mechanisms to temper the pace of early neocortical neurogenesis.
Collapse
Affiliation(s)
- Sisu Han
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Daniel J Dennis
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Molecular Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Olivier Britz
- The Francis Crick Institute-Mill Hill Laboratory, London NW7 1AA, UK
| | - Dawn Zinyk
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Thomas Olender
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marjorie Brand
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | | | - Deborah Kurrasch
- Department of Molecular Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
210
|
Dissecting executive control circuits with neuron types. Neurosci Res 2018; 141:13-22. [PMID: 30110598 DOI: 10.1016/j.neures.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/30/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022]
Abstract
Executive control supports our ability to behave flexibly in accordance with a given situation. In order to fully understand how cortical circuits achieve this task, we need to determine the intrinsic physiological and connection profiles of neuron types and analyze their functional roles during behavior. This article introduces current knowledge regarding neuron type classification in the cortex and reviews our understanding of how each neuron type is incorporated in the functional cortical circuit to implement executive control. Recent work using neuron-type specific imaging/recording has begun to reveal significant functional organizations of pyramidal neurons and their subtypes depending on the layers and long-range projection targets. GABAergic interneurons also make crucial contributions to executive control in a subtype-specific manner. Vasoactive intestinal peptide (VIP)-positive interneurons are preferentially recruited by top-down inputs from higher-order cortical regions and amplify the signals in pyramidal neurons by inhibiting other interneuron subtypes. Particularly in the prefrontal cortex, one of the hierarchically highest cortices, executive control signals are regulated by the VIP neuron-mediated disinhibition and robustly maintained through recurrent connections at a long time scale. The differences and commonalities in the functional organization between sensory areas and the prefrontal cortex are discussed.
Collapse
|
211
|
Chen QY, Li J, Sun H, Wu F, Zhu Y, Kluz T, Jordan A, DesMarais T, Zhang X, Murphy A, Costa M. Role of miR-31 and SATB2 in arsenic-induced malignant BEAS-2B cell transformation. Mol Carcinog 2018; 57:968-977. [PMID: 29603397 PMCID: PMC6588163 DOI: 10.1002/mc.22817] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
Arsenic is a naturally occurring and highly potent metalloid known to elicit serious public health concerns. Today, approximately 200 million people around the globe are exposed to arsenic-contaminated drinking water at levels greater than the World Health Organization's recommended limit of 10 parts per billion. As a class I human carcinogen, arsenic exposure is known to elicit various cancers, including lung, skin, liver, and kidney. Current evidence suggests that arsenic is capable of inducing both genotoxic and cytotoxic injury, as well as activating epigenetic pathways to induce carcinogenesis. Our study identifies a novel pathway that is implicated in arsenic-induced carcinogenesis. Arsenic down-regulated miRNA-31 and the release of this inhibition caused overexpression of special AT-rich sequence-binding protein 2 (SATB2). Arsenic is known to disrupt miRNA expression, and here we report for the first time that arsenic is capable of inhibiting miR-31 expression. As a direct downstream target of miR-31, SATB2 is a prominent transcription factor, and nuclear matrix binding protein implicated in many types of human diseases including lung cancer. Results from this study show that arsenic induces the overexpressing SATB2 by inhibiting miR-31 expression, which blocks the translation of SATB2 mRNA, since levels of SATB2 mRNA remain the same but protein levels decrease. Overexpression of SATB2 induces malignant transformation of human bronchial epithelial (BEAS-2B) cells indicating the importance of the expression of miR-31 in preventing carcinogenesis by suppressing SATB2 protein levels.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Jinquan Li
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical college, Wuhan University of Science and Technology, Wuhan, China
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Feng Wu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Yusha Zhu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Thomas Kluz
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Ashley Jordan
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Thomas DesMarais
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Xiaoru Zhang
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
212
|
Whitton L, Apostolova G, Rieder D, Dechant G, Rea S, Donohoe G, Morris DW. Genes regulated by SATB2 during neurodevelopment contribute to schizophrenia and educational attainment. PLoS Genet 2018; 14:e1007515. [PMID: 30040823 PMCID: PMC6097700 DOI: 10.1371/journal.pgen.1007515] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/17/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
SATB2 is associated with schizophrenia and is an important transcription factor regulating neocortical organization and circuitry. Rare mutations in SATB2 cause a syndrome that includes developmental delay, and mouse studies identify an important role for SATB2 in learning and memory. Interacting partners BCL11B and GATAD2A are also schizophrenia risk genes indicating that other genes interacting with or are regulated by SATB2 are making a contribution to schizophrenia and cognition. We used data from Satb2 mouse models to generate three gene-sets that contain genes either functionally related to SATB2 or targeted by SATB2 at different stages of development. Each was tested for enrichment using the largest available genome-wide association studies (GWAS) datasets for schizophrenia and educational attainment (EA) and enrichment analysis was also performed for schizophrenia and other neurodevelopmental disorders using data from rare variant sequencing studies. These SATB2 gene-sets were enriched for genes containing common variants associated with schizophrenia and EA, and were enriched for genes containing rare variants reported in studies of schizophrenia, autism and intellectual disability. In the developing cortex, genes targeted by SATB2 based on ChIP-seq data, and functionally affected when SATB2 is not expressed based on differential expression analysis using RNA-seq data, show strong enrichment for genes associated with EA. For genes expressed in the hippocampus or at the synapse, those targeted by SATB2 are more strongly enriched for genes associated EA than gene-sets not targeted by SATB2. This study demonstrates that single gene findings from GWAS can provide important insights to pathobiological processes. In this case we find evidence that genes influenced by SATB2 and involved in synaptic transmission, axon guidance and formation of the corpus callosum are contributing to schizophrenia and cognition. Schizophrenia is a complex disorder caused by many genes. Using new gene discoveries to understand pathobiology is a foundation for development of new treatments. Current drugs for schizophrenia are only partially effective and do not treat cognitive deficits, which are key factors for explaining disability, leading to unemployment, homelessness and social isolation. Genome-wide association studies (GWAS) of schizophrenia have been effective at identifying individual SNPs and genes that contribute to risk but have struggled to immediately uncover the bigger picture of the underlying biology of the disorder. Here we take an individual gene identified in a schizophrenia GWAS called SATB2, which on its own is a very important regulator of brain development. We use functional genomics data from mouse studies to identify sets of others genes that are influenced by SATB2 during development. We show that these gene sets are enriched for common variants associated with schizophrenia and educational attainment (used as a proxy for cognition), and for rare variants that increase risk of various neurodevelopmental disorders. This study provides evidence that the molecular mechanisms that underpin schizophrenia and cognitive function include disruption of biological processes influenced by SATB2 as the brain is being organized and wired during development.
Collapse
Affiliation(s)
- Laura Whitton
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Galina Apostolova
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Rieder
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Dechant
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephen Rea
- Centre for Chromosome Biology, Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Derek W. Morris
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| |
Collapse
|
213
|
Piquet J, Toussay X, Hepp R, Lerchundi R, Le Douce J, Faivre É, Guiot E, Bonvento G, Cauli B. Supragranular Pyramidal Cells Exhibit Early Metabolic Alterations in the 3xTg-AD Mouse Model of Alzheimer's Disease. Front Cell Neurosci 2018; 12:216. [PMID: 30072874 PMCID: PMC6060432 DOI: 10.3389/fncel.2018.00216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/29/2018] [Indexed: 01/23/2023] Open
Abstract
The impairment of cerebral glucose utilization is an early and predictive biomarker of Alzheimer’s disease (AD) that is likely to contribute to memory and cognition disorders during the progression of the pathology. Yet, the cellular and molecular mechanisms underlying these metabolic alterations remain poorly understood. Here we studied the glucose metabolism of supragranular pyramidal cells at an early presymptomatic developmental stage in non-transgenic (non-Tg) and 3xTg-AD mice, a mouse model of AD replicating numerous hallmarks of the disease. We performed both intracellular glucose imaging with a genetically encoded fluorescence resonance energy transfer (FRET)-based glucose biosensor and transcriptomic profiling of key molecular elements of glucose metabolism with single-cell multiplex RT-PCR (scRT-mPCR). We found that juvenile pyramidal cells exhibit active glycolysis and pentose phosphate pathway at rest that are respectively enhanced and impaired in 3xTg-AD mice without alteration of neuronal glucose uptake or transcriptional modification. Given the importance of glucose metabolism for neuronal survival, these early alterations could initiate or at least contribute to the later neuronal dysfunction of pyramidal cells in AD.
Collapse
Affiliation(s)
- Juliette Piquet
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, Paris, France
| | - Xavier Toussay
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, Paris, France
| | - Régine Hepp
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, Paris, France
| | - Rodrigo Lerchundi
- CNRS UMR 9199, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, Molecular Imaging Center (MIRCen), Université Paris-Sud, Université Paris-Saclay, Paris, France
| | - Juliette Le Douce
- CNRS UMR 9199, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, Molecular Imaging Center (MIRCen), Université Paris-Sud, Université Paris-Saclay, Paris, France
| | - Émilie Faivre
- CNRS UMR 9199, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, Molecular Imaging Center (MIRCen), Université Paris-Sud, Université Paris-Saclay, Paris, France
| | - Elvire Guiot
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, Paris, France
| | - Gilles Bonvento
- CNRS UMR 9199, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, Molecular Imaging Center (MIRCen), Université Paris-Sud, Université Paris-Saclay, Paris, France
| | - Bruno Cauli
- UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, Paris, France
| |
Collapse
|
214
|
Abstract
We employ the language of Bayesian networks to systematically construct gene-regulation topologies from deep-sequencing single-nucleus RNA-Seq data for human neurons. From the perspective of the cell-state potential landscape, we identify attractors that correspond closely to different neuron subtypes. Attractors are also recovered for cell states from an independent data set confirming our models accurate description of global genetic regulations across differing cell types of the neocortex (not included in the training data). Our model recovers experimentally confirmed genetic regulations and community analysis reveals genetic associations in common pathways. Via a comprehensive scan of all theoretical three-gene perturbations of gene knockout and overexpression, we discover novel neuronal trans-differrentiation recipes (including perturbations of SATB2, GAD1, POU6F2 and ADARB2) for excitatory projection neuron and inhibitory interneuron subtypes.
Collapse
|
215
|
Ozair MZ, Kirst C, van den Berg BL, Ruzo A, Rito T, Brivanlou AH. hPSC Modeling Reveals that Fate Selection of Cortical Deep Projection Neurons Occurs in the Subplate. Cell Stem Cell 2018; 23:60-73.e6. [PMID: 29937203 DOI: 10.1016/j.stem.2018.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023]
Abstract
Cortical deep projection neurons (DPNs) are implicated in neurodevelopmental disorders. Although recent findings emphasize post-mitotic programs in projection neuron fate selection, the establishment of primate DPN identity during layer formation is not well understood. The subplate lies underneath the developing cortex and is a post-mitotic compartment that is transiently and disproportionately enlarged in primates in the second trimester. The evolutionary significance of subplate expansion, the molecular identity of its neurons, and its contribution to primate corticogenesis remain open questions. By modeling subplate formation with human pluripotent stem cells (hPSCs), we show that all classes of cortical DPNs can be specified from subplate neurons (SPNs). Post-mitotic WNT signaling regulates DPN class selection, and DPNs in the caudal fetal cortex appear to exclusively derive from SPNs. Our findings indicate that SPNs have evolved in primates as an important source of DPNs that contribute to cortical lamination prior to their known role in circuit formation.
Collapse
Affiliation(s)
- M Zeeshan Ozair
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Christoph Kirst
- Center for Studies in Physics and Biology and Kavli Neural Systems Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Bastiaan L van den Berg
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098XH Amsterdam, the Netherlands
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Tiago Rito
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
216
|
Yang C, Sun L, Zhang L, Zhou L, Niu D, Cao W, Li Z, Huang X, Kang Q, Jia L, Platik M, Liu X, Lai J, Cao D. SATB2 Shows Different Profiles Between Appendiceal Adenocarcinomas Ex Goblet Cell Carcinoids and Appendiceal/Colorectal Conventional Adenocarcinomas: An Immunohistochemical Study With Comparison to CDX2. Gastroenterology Res 2018; 11:221-230. [PMID: 29915633 PMCID: PMC5997472 DOI: 10.14740/gr1015w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/10/2018] [Indexed: 01/06/2023] Open
Abstract
Background Special AT-rich sequence-binding protein 2 (SATB2) is a novel marker for colorectal adenocarcinomas but little is known about its expression in appendiceal adenocarcinomas. We aim to investigate SATB2 in these tumors and colorectal adenocarcinomas with comparison to CDX2. Methods Immunohistochemical stains for SATB2 and CDX2 were performed in 49 appendiceal adenocarcinomas (23 conventional, 26 adenocarcinoma ex goblet cell carcinoids (AdexGCCs)) and 57 colorectal adenocarcinomas. Their expression was correlated with tumor differentiation and growth patterns. Results SATB2 staining was positive in 26/26 (100%) appendiceal AdexGCCs and 15/23 (65%) appendiceal conventional adenocarcinomas (P = 0.001). Their mean percentage of SATB2-positive cells was 93% and 34%, respectively (P < 0.0001). CDX2 staining was seen in 26/26 (100%) AdexGCCs and 22/23 (96%) appendiceal conventional adenocarcinomas (P = 0.4694). SATB2 and CDX2 showed similar staining in AdexGCCs but CDX2 labeled more tumor cells than SATB2 in conventional adenocarcinomas (mean 84% vs. 34%, P < 0.0001). SATB2 and CDX2 staining was seen in 82% (47/57) and 96% (55/57) colorectal adenocarcinomas, respectively (P = 0.01). The mean percentage of cells positive for SATB2 and CDX2 was 48% and 91%, respectively (P < 0.00001). Decreased SATB2 immunoreactivity was associated with non-glandular differentiation particularly signet ring cells in colorectal (P = 0.001) and appendiceal conventional adenocarcinomas (P = 0.04) but not in appendiceal AdexGCCs. Conclusions SATB2 is a highly sensitive marker for appendiceal AdexGCCs with similar sensitivity as CDX2. In colorectal and appendiceal conventional adenocarcinomas, SATB2 is not as sensitive as CDX2 and its immunoreactivity is dependent on tumor differentiation.
Collapse
Affiliation(s)
- Chen Yang
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.,These two authors contributed equally to this project
| | - Li Sun
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital (Beijing Cancer Hospital), Beijing, China.,These two authors contributed equally to this project
| | - Lingxin Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lixin Zhou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital (Beijing Cancer Hospital), Beijing, China
| | - Dongfeng Niu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital (Beijing Cancer Hospital), Beijing, China
| | - Wenfeng Cao
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, China
| | - Zhongwu Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital (Beijing Cancer Hospital), Beijing, China
| | - Xiaozheng Huang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital (Beijing Cancer Hospital), Beijing, China
| | - Qiang Kang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital (Beijing Cancer Hospital), Beijing, China
| | - Lin Jia
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital (Beijing Cancer Hospital), Beijing, China
| | - Marina Platik
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Xiuli Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jinping Lai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Dengfeng Cao
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
217
|
Specialized Subpopulations of Deep-Layer Pyramidal Neurons in the Neocortex: Bridging Cellular Properties to Functional Consequences. J Neurosci 2018; 38:5441-5455. [PMID: 29798890 DOI: 10.1523/jneurosci.0150-18.2018] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/25/2022] Open
Abstract
Neocortical pyramidal neurons with somata in layers 5 and 6 are among the most visually striking and enigmatic neurons in the brain. These deep-layer pyramidal neurons (DLPNs) integrate a plethora of cortical and extracortical synaptic inputs along their impressive dendritic arbors. The pattern of cortical output to both local and long-distance targets is sculpted by the unique physiological properties of specific DLPN subpopulations. Here we revisit two broad DLPN subpopulations: those that send their axons within the telencephalon (intratelencephalic neurons) and those that project to additional target areas outside the telencephalon (extratelencephalic neurons). While neuroscientists across many subdisciplines have characterized the intrinsic and synaptic physiological properties of DLPN subpopulations, our increasing ability to selectively target and manipulate these output neuron subtypes advances our understanding of their distinct functional contributions. This Viewpoints article summarizes our current knowledge about DLPNs and highlights recent work elucidating the functional differences between DLPN subpopulations.
Collapse
|
218
|
Satb2 ablation decreases PTZ-induced seizure susceptibility and pyramidal neuronal excitability. Brain Res 2018; 1695:102-107. [PMID: 29750936 DOI: 10.1016/j.brainres.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
Abstract
Special AT-rich sequence-binding protein 2 (Satb2) is a transcriptional regulator and people with SATB2 mutation or duplication could display epilepsy. However, whether Satb2 is related with epilepsy and its mechanisms are largely unexplored. Here we found that the expression of Satb2 was decreased following the neuronal hyperactivities. Ablation of Satb2 in mice would decrease incidence and stage of seizure induced by intraperitoneal injection of pentylenetetrazol (PTZ). At cellular levels, we found pyramidal neuronal excitability and excitatory synaptic inputs in CA1 were decreased in Satb2 mutant mice. Taking together, we proved that deletion of Satb2 in mice increased PTZ seizure threshold probably by modulating neuronal excitability.
Collapse
|
219
|
Gorelik A, Sapir T, Ben-Reuven L, Reiner O. Complement C3 Affects Rac1 Activity in the Developing Brain. Front Mol Neurosci 2018; 11:150. [PMID: 29867343 PMCID: PMC5949353 DOI: 10.3389/fnmol.2018.00150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
The complement system, which is part of the innate immune response system, has been recently shown to participate in multiple key processes in the developing brain. Here we aimed to elucidate downstream signaling responses linking complement C3, a key molecule of the pathway, to small GTPases, known to affect the cytoskeleton. The expression pattern of the activated small GTPase Rac1 resembled that of complement C3. C3-deficient mice exhibited reduced Rac1 and elevated RhoA activity in comparison with control mice. The most pronounced reduction of Rac1 activity occurred at embryonic day 14. Rac1 has been implicated in neuronal migration as well as neuronal stem cell proliferation and differentiation. Consistent with the reduction in Rac1 activity, the expression of phospho-cofilin, decreased in migrating neurons. Reduced Rac1-GTP was also correlated with a decrease in the expression of progenitor markers (Nestin, Pax6 and Tbr2) and conversely the expression of neuronal markers (Dcx and NeuN) increased in C3 knockout (KO) cortices in comparison with wild-type (WT) cortices. More specifically, C3 deficiency resulted in a reduction in the number of the cells in S-phase and an elevation in the number of cells that precociously exited the cell cycle. Collectively, our findings suggest that C3 impacts the activity of small GTPases resulting in cell cycle defects and premature neuronal differentiation.
Collapse
Affiliation(s)
- Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Lihi Ben-Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
220
|
Römer S, Bender H, Knabe W, Zimmermann E, Rübsamen R, Seeger J, Fietz SA. Neural Progenitors in the Developing Neocortex of the Northern Tree Shrew ( Tupaia belangeri) Show a Closer Relationship to Gyrencephalic Primates Than to Lissencephalic Rodents. Front Neuroanat 2018; 12:29. [PMID: 29725291 PMCID: PMC5917011 DOI: 10.3389/fnana.2018.00029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/03/2018] [Indexed: 01/03/2023] Open
Abstract
The neocortex is the most complex part of the mammalian brain and as such it has undergone tremendous expansion during evolution, especially in primates. The majority of neocortical neurons originate from distinct neural stem and progenitor cells (NPCs) located in the ventricular and subventricular zone (SVZ). Previous studies revealed that the SVZ thickness as well as the abundance and distribution of NPCs, especially that of basal radial glia (bRG), differ markedly between the lissencephalic rodent and gyrencephalic primate neocortex. The northern tree shrew (Tupaia belangeri) is a rat-sized mammal with a high brain to body mass ratio, which stands phylogenetically mid-way between rodents and primates. Our study provides – for the first time – detailed data on the presence, abundance and distribution of bRG and other distinct NPCs in the developing neocortex of the northern tree shrew (Tupaia belangeri). We show that the developing tree shrew neocortex is characterized by an expanded SVZ, a high abundance of Pax6+ NPCs in the SVZ, and a relatively high percentage of bRG at peak of upper-layer neurogenesis. We further demonstrate that key features of tree shrew neocortex development, e.g., the presence, abundance and distribution of distinct NPCs, are closer related to those of gyrencephalic primates than to those of ferret and lissencephalic rodents. Together, our study provides novel insight into the evolution of bRG and other distinct NPCs in the neocortex development of Euarchontoglires and introduces the tree shrew as a potential novel model organism in the area of human brain development and developmental disorders.
Collapse
Affiliation(s)
- Sebastian Römer
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Hannah Bender
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Wolfgang Knabe
- Prosektur Anatomie, Medizinische Fakultät, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Rudolf Rübsamen
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Johannes Seeger
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
221
|
Molinard-Chenu A, Dayer A. The Candidate Schizophrenia Risk Gene DGCR2 Regulates Early Steps of Corticogenesis. Biol Psychiatry 2018; 83:692-706. [PMID: 29305086 DOI: 10.1016/j.biopsych.2017.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alterations in early steps of cortical circuit assembly are thought to play a critical role in vulnerability to schizophrenia (SZ), but the pathogenic impact of SZ-risk mutations on corticogenesis remains to be determined. DiGeorge syndrome critical region 2 (DGCR2) is located in the 22q11.2 locus, whose deletion is a major risk factor for SZ. Moreover, exome sequencing of individuals with idiopathic SZ identified a rare missense mutation in DGCR2, further suggesting that DGCR2 is involved in SZ. METHODS Here we investigated the function of Dgcr2 and the pathogenic impact of the SZ-risk DGCR2 mutation in mouse corticogenesis using in utero electroporation targeted to projection neurons. RESULTS Dgcr2 knockdown impaired radial locomotion and final translocation of projection neurons, leading to persistent laminar positioning alterations. The DGCR2 missense SZ-risk mutation had a pathogenic impact on projection neuron laminar allocation by reducing protein expression. Mechanistically, we identified Dgcr2 as a novel member of the Reelin complex, regulating the phosphorylation of Reelin-dependent substrates and the expression of Reelin-dependent transcriptional targets. CONCLUSIONS Overall, this study provides biological evidence that the SZ-risk gene DGCR2 regulates critical steps of early corticogenesis possibly through a Reelin-dependent mechanism. Additionally, we found that the SZ-risk mutation in DGCR2 has a pathogenic impact on cortical formation by reducing protein expression level, suggesting a functional role for DGCR2 haploinsufficiency in the 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
- Aude Molinard-Chenu
- Department of Psychiatry, University of Geneva Medical School, Geneva, Switzerland; Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, University of Geneva Medical Center, Geneva, Switzerland
| | - Alexandre Dayer
- Department of Psychiatry, University of Geneva Medical School, Geneva, Switzerland; Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, University of Geneva Medical Center, Geneva, Switzerland.
| |
Collapse
|
222
|
Sokpor G, Castro-Hernandez R, Rosenbusch J, Staiger JF, Tuoc T. ATP-Dependent Chromatin Remodeling During Cortical Neurogenesis. Front Neurosci 2018; 12:226. [PMID: 29686607 PMCID: PMC5900035 DOI: 10.3389/fnins.2018.00226] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
The generation of individual neurons (neurogenesis) during cortical development occurs in discrete steps that are subtly regulated and orchestrated to ensure normal histogenesis and function of the cortex. Notably, various gene expression programs are known to critically drive many facets of neurogenesis with a high level of specificity during brain development. Typically, precise regulation of gene expression patterns ensures that key events like proliferation and differentiation of neural progenitors, specification of neuronal subtypes, as well as migration and maturation of neurons in the developing cortex occur properly. ATP-dependent chromatin remodeling complexes regulate gene expression through utilization of energy from ATP hydrolysis to reorganize chromatin structure. These chromatin remodeling complexes are characteristically multimeric, with some capable of adopting functionally distinct conformations via subunit reconstitution to perform specific roles in major aspects of cortical neurogenesis. In this review, we highlight the functions of such chromatin remodelers during cortical development. We also bring together various proposed mechanisms by which ATP-dependent chromatin remodelers function individually or in concert, to specifically modulate vital steps in cortical neurogenesis.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Ricardo Castro-Hernandez
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| |
Collapse
|
223
|
Chen QY, Costa M. Oncogenic and tumor suppressive roles of special AT-rich sequence-binding protein. J Carcinog 2018; 17:2. [PMID: 30123095 PMCID: PMC6071479 DOI: 10.4103/jcar.jcar_8_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/28/2017] [Indexed: 12/28/2022] Open
Abstract
In recent years, research efforts have been centered on the functional roles of special AT-rich sequence-binding protein (SATB2) in cancer development. Existing studies differ in the types of tumor tissues and cell lines used, resulting in mixed results, which hinder the clear understanding of whether SATB2 acts as a tumor suppressor or promoter. Literature search for this review consisted of a basic search on PubMed using keywords "SATB2" and "special AT-rich sequence-binding protein 2." Each article was then selected for further examination based on relevance of the title. In consideration to possible missing data from a primary PubMed search, after coding for relevant information, articles listed in the references section were filtered for further review. The current literature suggests that SATB2 can act both as a tumor suppressor and as a promoter since it can be regulated by multiple factors and is able to target different downstream genes in various types of cancer cell lines as well as tissues. Future studies should focus on its contradictory roles in different types of tumors. This paper provides a comprehensive review of currently available research on the role of SATB2 in different cancer cells and tissues and may provide some insight into the contradictory roles of SATB2 in cancer development.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, NY, USA
| |
Collapse
|
224
|
Keil JM, Qalieh A, Kwan KY. Brain Transcriptome Databases: A User's Guide. J Neurosci 2018; 38:2399-2412. [PMID: 29437890 PMCID: PMC5858588 DOI: 10.1523/jneurosci.1930-17.2018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 12/20/2022] Open
Abstract
Transcriptional programs instruct the generation and maintenance of diverse subtypes of neural cells, establishment of distinct brain regions, formation and function of neural circuits, and ultimately behavior. Spatiotemporal and cell type-specific analyses of the transcriptome, the sum total of all RNA transcripts in a cell or an organ, can provide insights into the role of genes in brain development and function, and their potential contribution to disorders of the brain. In the previous decade, advances in sequencing technology and funding from the National Institutes of Health and private foundations for large-scale genomics projects have led to a growing collection of brain transcriptome databases. These valuable resources provide rich and high-quality datasets with spatiotemporal, cell type-specific, and single-cell precision. Most importantly, many of these databases are publicly available via user-friendly web interface, making the information accessible to individual scientists without the need for advanced computational expertise. Here, we highlight key publicly available brain transcriptome databases, summarize the tissue sources and methods used to generate the data, and discuss their utility for neuroscience research.
Collapse
Affiliation(s)
- Jason M Keil
- Molecular and Behavioral Neuroscience Institute
- Department of Human Genetics, and
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Adel Qalieh
- Molecular and Behavioral Neuroscience Institute
- Department of Human Genetics, and
| | - Kenneth Y Kwan
- Molecular and Behavioral Neuroscience Institute,
- Department of Human Genetics, and
| |
Collapse
|
225
|
Leone DP, Panagiotakos G, Heavner WE, Joshi P, Zhao Y, Westphal H, McConnell SK. Compensatory Actions of Ldb Adaptor Proteins During Corticospinal Motor Neuron Differentiation. Cereb Cortex 2018; 27:1686-1699. [PMID: 26830346 DOI: 10.1093/cercor/bhw003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although many genes that specify neocortical projection neuron subtypes have been identified, the downstream effectors that control differentiation of those subtypes remain largely unknown. Here, we demonstrate that the LIM domain-binding proteins Ldb1 and Ldb2 exhibit dynamic and inversely correlated expression patterns during cerebral cortical development. Ldb1-deficient brains display severe defects in proliferation and changes in regionalization, phenotypes resembling those of Lhx mutants. Ldb2-deficient brains, on the other hand, exhibit striking phenotypes affecting layer 5 pyramidal neurons: Immature neurons have an impaired capacity to segregate into mature callosal and subcerebral projection neurons. The analysis of Ldb2 single-mutant mice reveals a compensatory role of Ldb1 for Ldb2 during corticospinal motor neuron (CSMN) differentiation. Animals lacking both Ldb1 and Ldb2 uncover the requirement for Ldb2 during CSMN differentiation, manifested as incomplete CSMN differentiation, and ultimately leading to a failure of the corticospinal tract.
Collapse
Affiliation(s)
- Dino P Leone
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Georgia Panagiotakos
- Department of Biochemistry and Biophysics, The Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | | | - Pushkar Joshi
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yangu Zhao
- Laboratory of Mammalian Genes and Development, Program in Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Heiner Westphal
- Laboratory of Mammalian Genes and Development, Program in Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
226
|
Wuttke TV, Markopoulos F, Padmanabhan H, Wheeler AP, Murthy VN, Macklis JD. Developmentally primed cortical neurons maintain fidelity of differentiation and establish appropriate functional connectivity after transplantation. Nat Neurosci 2018; 21:517-529. [PMID: 29507412 PMCID: PMC5876138 DOI: 10.1038/s41593-018-0098-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 01/26/2018] [Indexed: 01/06/2023]
Abstract
Repair of complex CNS circuitry requires newly incorporated neurons to become appropriately, functionally integrated. One approach is to direct differentiation of endogenous progenitors in situ, or ex vivo followed by transplantation. Prior studies find that newly incorporated neurons can establish long-distance axon projections, form synapses and functionally integrate in evolutionarily old hypothalamic energy-balance circuitry. We now demonstrate that postnatal neocortical connectivity can be reconstituted with point-to-point precision, including cellular integration of specific, molecularly identified projection neuron subtypes into correct positions, combined with development of appropriate long-distance projections and synapses. Using optogenetics-based electrophysiology, experiments demonstrate functional afferent and efferent integration of transplanted neurons into transcallosal projection neuron circuitry. Results further indicate that 'primed' early postmitotic neurons, including already fate-restricted deep-layer projection neurons and/or plastic postmitotic neuroblasts with partially fate-restricted potential, account for the predominant population of neurons capable of achieving this optimal level of integration.
Collapse
Affiliation(s)
- Thomas V Wuttke
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Departments of Neurosurgery and of Neurology and Epileptology, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Foivos Markopoulos
- Dept. of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Hari Padmanabhan
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Aaron P Wheeler
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Venkatesh N Murthy
- Dept. of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D Macklis
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
227
|
Nomura T, Yamashita W, Gotoh H, Ono K. Species-Specific Mechanisms of Neuron Subtype Specification Reveal Evolutionary Plasticity of Amniote Brain Development. Cell Rep 2018; 22:3142-3151. [DOI: 10.1016/j.celrep.2018.02.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/19/2017] [Accepted: 02/22/2018] [Indexed: 10/17/2022] Open
|
228
|
Role of SATB2 in human pancreatic cancer: Implications in transformation and a promising biomarker. Oncotarget 2018; 7:57783-57797. [PMID: 27472393 PMCID: PMC5295389 DOI: 10.18632/oncotarget.10860] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/10/2016] [Indexed: 01/09/2023] Open
Abstract
SATB2 (special AT-rich binding protein-2), a transcription factor and chromatin modulator, regulates the expression of genes required for maintaining pluripotency and self-renewal. The molecular mechanisms by which human pancreatic normal ductal epithelial cells are transformed to cancer cells are not well understood. The main goal of the paper is to examine the molecular mechanisms by which SATB2 regulates transformation of human pancreatic normal ductal epithelial (HPNE) cells, and assess whether transformed HPNE cells gained the phenotypes of cancer stem cells (CSCs). The results demonstrate that SATB2 is highly expressed in pancreatic CSCs, primary tissues and cell lines, but not in HPNE cells. SATB2 induces cellular transformation, stemness and epithelial to mesenchymal transition in HPNE cells, and inhibition of its expression suppresses these activities. Overexpression of SATB2 in HPNE cells resulted in induction of stem cell markers (CD44, CD24 and CD133), and transcription factors (Oct4, Sox2 and Nanog). SATB2 can directly bind to promoters of Bcl-2, Bsp, Nanog, c-Myc, XIAP, Klf4 and Hoxa2, suggesting the role of SATB2 in pluripotency, cell survival and proliferation. SATB2-overexpressing HPNE cells (HPNE/SATB2) formed tumors in Balb C nude mice, whereas HPNE/Empty vector cells did not form any tumor. Since SATB2 is highly expressed in human pancreatic cancer tissues and cell lines, but not in HPNE cells and normal pancreatic tissue, it can drive pancreatic cancer growth and metastasis. Our findings suggest that SATB2 can induce dedifferentiation by inducing stemness and may have a role in pancreatic carcinogenesis, and can be used as a diagnostic biomarker.
Collapse
|
229
|
Massimino L, Flores-Garcia L, Di Stefano B, Colasante G, Icoresi-Mazzeo C, Zaghi M, Hamilton BA, Sessa A. TBR2 antagonizes retinoic acid dependent neuronal differentiation by repressing Zfp423 during corticogenesis. Dev Biol 2018; 434:231-248. [PMID: 29305158 PMCID: PMC7032051 DOI: 10.1016/j.ydbio.2017.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/26/2017] [Accepted: 12/28/2017] [Indexed: 01/14/2023]
Abstract
During cerebral cortex development, neural progenitors are required to elaborate a variety of cell differentiation signals to which they are continuously exposed. RA acid is a potent inducer of neuronal differentiation as it was found to influence cortical development. We report herein that TBR2, a transcription factor specific to Intermediate (Basal) Neural Progenitors (INPs), represses activation of the RA responsive element and expression of RA target genes in cell lines. This repressive action on RA signaling was functionally confirmed by the decrease of RA-mediated neuronal differentiation in neural stem cells stably overexpressing TBR2. In vivo mapping of RA activity in the developing cortex indicated that RA activity is detected in radial glial cells and subsequently downregulated in INPs, revealing a fine cell-type specific regulation of its signaling. Thus, TBR2 might be a molecular player in opposing RA signaling in INPs. Interestingly, this negative regulation is achieved at least in part by directly repressing the critical nuclear RA co-factor ZFP423. Indeed, we found ZFP423 to be expressed in the developing cortex and promote RA-dependent neuronal differentiation. These data indicate that TBR2 contributes to suppressing RA signaling in INPs, thereby enabling them to re-enter the cell cycle and delay neuronal differentiation.
Collapse
Affiliation(s)
- Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lisbeth Flores-Garcia
- Departments of Cellular&Molecular Medicine and Medicine, Moores Cancer Center, and Institute for Genomic Medicine, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0644, USA
| | - Bruno Di Stefano
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cecilia Icoresi-Mazzeo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Bruce A Hamilton
- Departments of Cellular&Molecular Medicine and Medicine, Moores Cancer Center, and Institute for Genomic Medicine, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0644, USA
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
230
|
Yang C, Sun L, Zhang L, Zhou L, Zhao M, Peng Y, Niu D, Li Z, Huang X, Kang Q, Jia L, Lai J, Cao D. Diagnostic Utility of SATB2 in Metastatic Krukenberg Tumors of the Ovary: An Immunohistochemical Study of 70 Cases With Comparison to CDX2, CK7, CK20, Chromogranin, and Synaptophysin. Am J Surg Pathol 2018; 42:160-171. [PMID: 28914716 DOI: 10.1097/pas.0000000000000951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
SATB2 is a sensitive marker for colorectal adenocarcinomas. No study has investigated its diagnostic utility in metastatic Krukenberg tumors (MKTs) of the ovary. Here we performed immunohistochemical staining SATB2 in 70 MKTs of various origins (stomach 27, colorectum 13, appendix 20 including 19 metastatic adenocarcinomas ex goblet cell carcinoids [AdexGCC] and 1 conventional poorly differentiated carcinoma with signet ring cells, breast 5, bladder 3, lung 2) to assess its diagnostic utility. We also compared SATB2 with CDX2, CK7, CK20, chromogranin, and synaptophysin in MKTs of gastric origin (MKTs-stomach), those of colorectal origin (MKTs-colorectum) and those due to appendiceal AdexGCCs (MKT-AdexGCCs) for their sensitivity and specificity to distinguish these tumors. SATB2 staining was seen in 1/27 (4%) MKTs-stomach (40% cells), 7/13 (54%) MKTs-colorectum (mean: 17% cells, median: 7%, range: 2% to 60%), and 19/19 (100%) of MKT-AdexGCCs (mean: 97% cells, median: 100%, range: 80% to 100%) (P<0.01 between any two). SATB2 staining was seen in 1/1 metastatic appendiceal poorly differentiated carcinoma with signet ring cells (5% cells), 1/3 MKTs of bladder origin (60% cells), 0/2 MKTs of pulmonary origin, and 1/5 MKTs of breast origin (10% cells). SATB2 staining was diffuse strong in MKT-AdexGCCs whereas in other MKTs it was focal and weak in the signet ring and nonsignet ring nonglandular cells and from focal weak to diffuse strong in well-formed glands. MKTs-stomach, MKTs-colorectum, and MKT-AdexGCCs showed no significant staining difference in CDX2 (100%, 100%, 100% cases, respectively; P=1.0), CK20 (96%, 100%, 100%, respectively; P=1.0), chromogranin (59%, 31%, 63%, respectively; P>0.05) or synaptophysin (59%, 63%, 84%, respectively; P>0.05) but they had significant difference in CK7 staining (93%, 8%, 42%, respectively; P<0.05). Among these 6 markers, SATB2 is the best one to distinguish MKT-AdexGCCs from MKTs-stomach (100% sensitivity, 96% specificity) and MKTs-colorectum (100% sensitivity and 100% specificity if staining more than 75% tumor cells as the cutoff). In distinguishing MKTs-stomach from MKTs-colorectum, SATB2 is not as good as CK7 which is the best marker. Our results indicate that SATB2 is a highly sensitive marker (100% sensitivity) for metastatic MKT-AdexGCCs with high specificity (100% specificity when showing strong staining in at least 75% cells) among MKTs. SATB2 is a useful marker for determining the primary sites of MKTs of the ovary.
Collapse
Affiliation(s)
- Chen Yang
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Li Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital (Beijing Cancer Hospital), Beijing
| | - Lingxin Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Lixin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital (Beijing Cancer Hospital), Beijing
| | - Ming Zhao
- Department of Pathology, Zhejiang Provincial People's Hospital
- Department of Pathology, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yan Peng
- Department of Pathology, University of Texas-Southwestern Medical Center, Dallas, TX
| | - Dongfeng Niu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital (Beijing Cancer Hospital), Beijing
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital (Beijing Cancer Hospital), Beijing
| | - Xiaozheng Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital (Beijing Cancer Hospital), Beijing
| | - Qiang Kang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital (Beijing Cancer Hospital), Beijing
| | - Lin Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital (Beijing Cancer Hospital), Beijing
| | - Jinping Lai
- Department of Pathology, University of Florida, Gainesville, FL
| | - Dengfeng Cao
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
231
|
Gil-Ibañez P, García-García F, Dopazo J, Bernal J, Morte B. Global Transcriptome Analysis of Primary Cerebrocortical Cells: Identification of Genes Regulated by Triiodothyronine in Specific Cell Types. Cereb Cortex 2018; 27:706-717. [PMID: 26534908 DOI: 10.1093/cercor/bhv273] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thyroid hormones, thyroxine, and triiodothyronine (T3) are crucial for cerebral cortex development acting through regulation of gene expression. To define the transcriptional program under T3 regulation, we have performed RNA-Seq of T3-treated and untreated primary mouse cerebrocortical cells. The expression of 1145 genes or 7.7% of expressed genes was changed upon T3 addition, of which 371 responded to T3 in the presence of cycloheximide indicating direct transcriptional regulation. The results were compared with available transcriptomic datasets of defined cellular types. In this way, we could identify targets of T3 within genes enriched in astrocytes and neurons, in specific layers including the subplate, and in specific neurons such as prepronociceptin, cholecystokinin, or cortistatin neurons. The subplate and the prepronociceptin neurons appear as potentially major targets of T3 action. T3 upregulates mostly genes related to cell membrane events, such as G-protein signaling, neurotransmission, and ion transport and downregulates genes involved in nuclear events associated with the M phase of cell cycle, such as chromosome organization and segregation. Remarkably, the transcriptomic changes induced by T3 sustain the transition from fetal to adult patterns of gene expression. The results allow defining in molecular terms the elusive role of thyroid hormones on neocortical development.
Collapse
Affiliation(s)
- Pilar Gil-Ibañez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Francisco García-García
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Joaquín Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Bioinformatics of Rare Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.,Functional Genomics Node, INB at CIPF, Valencia, Spain
| | - Juan Bernal
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Biomedical Research on Rare Diseases, Madrid, Spain
| | - Beatriz Morte
- Center for Biomedical Research on Rare Diseases, Madrid, Spain
| |
Collapse
|
232
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
233
|
MacDonald JL, Fame RM, Gillis-Buck EM, Macklis JD. Caveolin1 Identifies a Specific Subpopulation of Cerebral Cortex Callosal Projection Neurons (CPN) Including Dual Projecting Cortical Callosal/Frontal Projection Neurons (CPN/FPN). eNeuro 2018; 5:ENEURO.0234-17.2017. [PMID: 29379878 PMCID: PMC5780842 DOI: 10.1523/eneuro.0234-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/27/2022] Open
Abstract
The neocortex is composed of many distinct subtypes of neurons that must form precise subtype-specific connections to enable the cortex to perform complex functions. Callosal projection neurons (CPN) are the broad population of commissural neurons that connect the cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes and connectivity is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We identify in mouse that the lipid-bound scaffolding domain protein Caveolin 1 (CAV1) is specifically expressed by a unique subpopulation of Layer V CPN that maintain dual ipsilateral frontal projections to premotor cortex. CAV1 is expressed by over 80% of these dual projecting callosal/frontal projection neurons (CPN/FPN), with expression peaking early postnatally as axonal and dendritic targets are being reached and refined. CAV1 is localized to the soma and dendrites of CPN/FPN, a unique population of neurons that shares information both between hemispheres and with premotor cortex, suggesting function during postmitotic development and refinement of these neurons, rather than in their specification. Consistent with this, we find that Cav1 function is not necessary for the early specification of CPN/FPN, or for projecting to their dual axonal targets. CPN subtype-specific expression of Cav1 identifies and characterizes a first molecular component that distinguishes this functionally unique projection neuron population, a population that expands in primates, and is prototypical of additional dual and higher-order projection neuron subtypes.
Collapse
Affiliation(s)
- Jessica L. MacDonald
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
- Department of Biology, Syracuse University, Syracuse, NY 13244
| | - Ryann M. Fame
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Eva M. Gillis-Buck
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Jeffrey D. Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| |
Collapse
|
234
|
Schmoeckel E, Kirchner T, Mayr D. SATB2 is a supportive marker for the differentiation of a primary mucinous tumor of the ovary and an ovarian metastasis of a low-grade appendiceal mucinous neoplasm (LAMN): A series of seven cases. Pathol Res Pract 2017; 214:426-430. [PMID: 29487003 DOI: 10.1016/j.prp.2017.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 11/19/2022]
Abstract
The differentiation between a primary mucinous ovarian neoplasm and an extra-ovarian metastasis in the ovary is often challenging in the histopathologic practice. Among various ovarian metastases from the gastro-intestinal tract the low-grade appendiceal mucinous neoplasm (LAMN) is an important differential diagnosis to consider particularly in case of pseudomyxoma peritonei. A newly recognized marker in the routine diagnostic of a mucinous neoplasm in the ovary is SATB2 (Special AT-rich sequence-binding protein 2). The expression of SATB2 is, within cells of epithelial lineages, mainly restricted to the lower gastro-intestinal tract, indicating colorectal or appendiceal cancer origin. We report seven cases of LAMN, which clinically became apparent due to ovarian metastases in context of pseudomyxoma peritonei or at least small foci of peritoneal tumor spread. An immunohistochemical marker-panel including SATB2, CDX2, CK20, CK7, PAX8, ER and PR revealed a strong expression of SATB2 in all seven cases. On the contrary SATB2-negativity could be demonstrated in the 40 cases of mucinous borderline tumors and primary mucinous carcinomas of the ovary. The histopathologic tentative diagnosis of an ovarian metastasis of LAMN could be confirmed in the findings of the Appendix in six of seven cases. This report supports SATB2 as an additional diagnostic marker for the diagnosis of an ovarian manifestation of LAMN.
Collapse
Affiliation(s)
- Elisa Schmoeckel
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany.
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| |
Collapse
|
235
|
Oishi K, Nakajima K. Subtype Specification of Cerebral Cortical Neurons in Their Immature Stages. Neurochem Res 2017; 43:238-244. [PMID: 29185180 DOI: 10.1007/s11064-017-2441-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
The diversification of neuronal subtypes during corticogenesis is fundamental to the establishment of the complex cortical structure. Although subtype specification has been assumed to occur in neural progenitor cells, increasing evidence has begun to reveal the plasticity of subtype determination in immature neurons. Here, we summarize recent findings regarding the regulation of subtype specification during later periods of neuronal differentiation, such as the post-mitotic and post-migratory stages. We also discuss thalamocortical axons as an extra-cortical cue that provides information on the subtype determination of immature cortical neurons.
Collapse
Affiliation(s)
- Koji Oishi
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
236
|
Nitarska J, Smith JG, Sherlock WT, Hillege MMG, Nott A, Barshop WD, Vashisht AA, Wohlschlegel JA, Mitter R, Riccio A. A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development. Cell Rep 2017; 17:1683-1698. [PMID: 27806305 PMCID: PMC5149529 DOI: 10.1016/j.celrep.2016.10.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/03/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
Histone modifications and chromatin remodeling represent universal mechanisms by which cells adapt their transcriptional response to rapidly changing environmental conditions. Extensive chromatin remodeling takes place during neuronal development, allowing the transition of pluripotent cells into differentiated neurons. Here, we report that the NuRD complex, which couples ATP-dependent chromatin remodeling with histone deacetylase activity, regulates mouse brain development. Subunit exchange of CHDs, the core ATPase subunits of the NuRD complex, is required for distinct aspects of cortical development. Whereas CHD4 promotes the early proliferation of progenitors, CHD5 facilitates neuronal migration and CHD3 ensures proper layer specification. Inhibition of each CHD leads to defects of neuronal differentiation and migration, which cannot be rescued by expressing heterologous CHDs. Finally, we demonstrate that NuRD complexes containing specific CHDs are recruited to regulatory elements and modulate the expression of genes essential for brain development. The ATPases CHD3, CHD4, and CHD5 are mutually exclusive subunits of the NuRD complex CHD3, CHD4, and CHD5 regulate distinct and non-redundant aspects of cortical development Loss of each CHD leads to specific defects of neuronal proliferation and migration CHD3, CHD4, and CHD5 regulate distinct set of genes essential for brain development
Collapse
Affiliation(s)
- Justyna Nitarska
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - Jacob G Smith
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - William T Sherlock
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - Michele M G Hillege
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - Alexi Nott
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK
| | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1737 USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1737 USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1737 USA
| | - Richard Mitter
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Antonella Riccio
- MRC Laboratory for Molecular and Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
237
|
Popovitchenko T, Rasin MR. Transcriptional and Post-Transcriptional Mechanisms of the Development of Neocortical Lamination. Front Neuroanat 2017; 11:102. [PMID: 29170632 PMCID: PMC5684109 DOI: 10.3389/fnana.2017.00102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022] Open
Abstract
The neocortex is a laminated brain structure that is the seat of higher cognitive capacity and responses, long-term memory, sensory and emotional functions, and voluntary motor behavior. Proper lamination requires that progenitor cells give rise to a neuron, that the immature neuron can migrate away from its mother cell and past other cells, and finally that the immature neuron can take its place and adopt a mature identity characterized by connectivity and gene expression; thus lamination proceeds through three steps: genesis, migration, and maturation. Each neocortical layer contains pyramidal neurons that share specific morphological and molecular characteristics that stem from their prenatal birth date. Transcription factors are dynamic proteins because of the cohort of downstream factors that they regulate. RNA-binding proteins are no less dynamic, and play important roles in every step of mRNA processing. Indeed, recent screens have uncovered post-transcriptional mechanisms as being integral regulatory mechanisms to neocortical development. Here, we summarize major aspects of neocortical laminar development, emphasizing transcriptional and post-transcriptional mechanisms, with the aim of spurring increased understanding and study of its intricacies.
Collapse
Affiliation(s)
- Tatiana Popovitchenko
- Neuroscience and Cell Biology, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Mladen-Roko Rasin
- Neuroscience and Cell Biology, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
238
|
Lin MY, Wang YL, Wu WL, Wolseley V, Tsai MT, Radic V, Thornton ME, Grubbs BH, Chow RH, Huang IC. Zika Virus Infects Intermediate Progenitor Cells and Post-mitotic Committed Neurons in Human Fetal Brain Tissues. Sci Rep 2017; 7:14883. [PMID: 29093521 PMCID: PMC5665882 DOI: 10.1038/s41598-017-13980-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) infection is associated with microcephaly in fetuses, but the pathogenesis of ZIKV-related microcephaly is not well understood. Here we show that ZIKV infects the subventricular zone in human fetal brain tissues and that the tissue tropism broadens with the progression of gestation. Our research demonstrates also that intermediate progenitor cells (IPCs) are the main target cells for ZIKV. Post-mitotic committed neurons become susceptible to ZIKV infection as well at later stages of gestation. Furthermore, activation of microglial cells, DNA fragmentation, and apoptosis of infected or uninfected cells could be found in ZIKV-infected brain tissues. Our studies identify IPCs as the main target cells for ZIKV. They also suggest that immune activation after ZIKV infection may play an important role in the pathogenesis of ZIKV-related microcephaly.
Collapse
Affiliation(s)
- Ming-Yi Lin
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yi-Ling Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wan-Lin Wu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Victoria Wolseley
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ming-Ting Tsai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Vladimir Radic
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew E Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert H Chow
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - I-Chueh Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
239
|
Ambrozkiewicz MC, Bessa P, Salazar-Lázaro A, Salina V, Tarabykin V. Satb2 Cre/+ mouse as a tool to investigate cell fate determination in the developing neocortex. J Neurosci Methods 2017; 291:113-121. [DOI: 10.1016/j.jneumeth.2017.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/18/2017] [Accepted: 07/22/2017] [Indexed: 01/05/2023]
|
240
|
Hantman AW, Kaltschmidt JA. Satb2 Stations Neurons along Reflex Arcs. Neuron 2017; 91:711-713. [PMID: 27537478 DOI: 10.1016/j.neuron.2016.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nociceptive flexor withdrawal reflex has an august place in the history of neuroscience. In this issue of Neuron, Hilde et al. (2016) advance our understanding of this reflex by characterizing the molecular identity and circuit connectivity of component interneurons. They assess how a DNA-binding factor Satb2 controls cell position, molecular identity, pre-and postsynaptic targeting, and function of a population of inhibitory sensory relay interneurons that serve to integrate both proprioceptive and nociceptive afferent information.
Collapse
Affiliation(s)
- Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Julia A Kaltschmidt
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA; Neuroscience Program and Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
241
|
Wang HL, Kim CJ, Koo J, Zhou W, Choi EK, Arcega R, Chen ZE, Wang H, Zhang L, Lin F. Practical Immunohistochemistry in Neoplastic Pathology of the Gastrointestinal Tract, Liver, Biliary Tract, and Pancreas. Arch Pathol Lab Med 2017; 141:1155-1180. [PMID: 28854347 DOI: 10.5858/arpa.2016-0489-ra] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT - Immunomarkers with diagnostic, therapeutic, or prognostic values have been increasingly used to maximize the benefits of clinical management of patients with neoplastic diseases of the gastrointestinal tract, liver, biliary tract, and pancreas. OBJECTIVES - To review the characteristics of immunomarkers that are commonly used in surgical pathology practice for neoplasms of the gastrointestinal tract, liver, biliary tract, and pancreas, and to summarize the clinical usefulness of immunomarkers that have been discovered in recent years in these fields. DATA SOURCES - Data sources include literature review, authors' research data, and personal practice experience. CONCLUSIONS - Immunohistochemistry is an indispensable tool for the accurate diagnosis of neoplastic diseases of the gastrointestinal tract, liver, biliary tract, and pancreas. Useful immunomarkers are available to help distinguish malignant neoplasms from benign conditions, determine organ origins, and subclassify neoplasms that are morphologically and biologically heterogeneous. Specific immunomarkers are also available to help guide patient treatment and assess disease aggressiveness, which are keys to the success of personalized medicine. Pathologists will continue to play a critical role in the discovery, validation, and application of new biomarkers, which will ultimately improve patient care.
Collapse
|
242
|
Mercer A, Thomson AM. Cornu Ammonis Regions-Antecedents of Cortical Layers? Front Neuroanat 2017; 11:83. [PMID: 29018334 PMCID: PMC5622992 DOI: 10.3389/fnana.2017.00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Studying neocortex and hippocampus in parallel, we are struck by the similarities. All three to four layered allocortices and the six layered mammalian neocortex arise in the pallium. All receive and integrate multiple cortical and subcortical inputs, provide multiple outputs and include an array of neuronal classes. During development, each cell positions itself to sample appropriate local and distant inputs and to innervate appropriate targets. Simpler cortices had already solved the need to transform multiple coincident inputs into serviceable outputs before neocortex appeared in mammals. Why then do phylogenetically more recent cortices need multiple pyramidal cell layers? A simple answer is that more neurones can compute more complex functions. The dentate gyrus and hippocampal CA regions-which might be seen as hippocampal antecedents of neocortical layers-lie side by side, albeit around a tight bend. Were the millions of cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal cell layers would be some 40 times larger. Even if evolution had managed to fold this immense sheet into the space available, the distances between neurones that needed to be synaptically connected would be huge and to maintain the speed of information transfer, massive, myelinated fiber tracts would be needed. How much more practical to stack the "cells that fire and wire together" into narrow columns, while retaining the mechanisms underlying the extraordinary precision with which circuits form. This demonstrably efficient arrangement presents us with challenges, however, not the least being to categorize the baffling array of neuronal subtypes in each of five "pyramidal layers." If we imagine the puzzle posed by this bewildering jumble of apical dendrites, basal dendrites and axons, from many different pyramidal and interneuronal classes, that is encountered by a late-arriving interneurone insinuating itself into a functional circuit, we can perhaps begin to understand why definitive classification, covering every aspect of each neurone's structure and function, is such a challenge. Here, we summarize and compare the development of these two cortices, the properties of their neurones, the circuits they form and the ordered, unidirectional flow of information from one hippocampal region, or one neocortical layer, to another.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Alex M. Thomson
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
243
|
SATB2/β-catenin/TCF-LEF pathway induces cellular transformation by generating cancer stem cells in colorectal cancer. Sci Rep 2017. [PMID: 28887549 DOI: 10.1038/s41598‐017‐05458‐y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent studies have demonstrated the involvement of colorectal cancer (CRC) stem cells (CSC) in transformation, cancer progression and metastasis. The main goal of this paper was to examine the molecular mechanisms by which SATB2 induced malignant transformation of colorectal epithelial cells. SATB2 induced malignant transformation and these transformed cells gained the characteristics of CSCs by expressing stem cell markers (CD44, CD133, LGR5 and DCLK1) and transcription factors (c-Myc, Nanog and Sox2). Overexpression of SATB2 in normal colorectal epithelial cells increased cell motility, migration and invasion, which were associated with an increase in N-cadherin and Zeb1, and decrease in E-cadherin expression. SATB2 overexpression also upregulated XIAP and cyclin D1, suggesting its role in cell survival and cell cycle. Furthermore, the expression of SATB2 was positively correlated with β-catenin expression in CRC. In contrary, depletion of SATB2 inhibited cell proliferation, colony formation, cell motility and expression of β-catenin, Snail, Slug, Zeb1 and N-cadherin, and upregulated E-cadherin. Furthermore, SATB2 silencing inhibited the expression of stem cell markers, pluripotency maintaining transcription factors, cell cycle and cell proliferation/survival genes and TCF/LEF targets. Finally, β-catenin/TCF-LEF pathway mediated the biological effects of SATB2 in CSCs. These studies support the role of SATB2/β-catenin/TCF-LEF pathway in transformation and carcinogenesis.
Collapse
|
244
|
Yu W, Ma Y, Shankar S, Srivastava RK. SATB2/β-catenin/TCF-LEF pathway induces cellular transformation by generating cancer stem cells in colorectal cancer. Sci Rep 2017; 7:10939. [PMID: 28887549 PMCID: PMC5591219 DOI: 10.1038/s41598-017-05458-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 05/31/2017] [Indexed: 12/11/2022] Open
Abstract
Recent studies have demonstrated the involvement of colorectal cancer (CRC) stem cells (CSC) in transformation, cancer progression and metastasis. The main goal of this paper was to examine the molecular mechanisms by which SATB2 induced malignant transformation of colorectal epithelial cells. SATB2 induced malignant transformation and these transformed cells gained the characteristics of CSCs by expressing stem cell markers (CD44, CD133, LGR5 and DCLK1) and transcription factors (c-Myc, Nanog and Sox2). Overexpression of SATB2 in normal colorectal epithelial cells increased cell motility, migration and invasion, which were associated with an increase in N-cadherin and Zeb1, and decrease in E-cadherin expression. SATB2 overexpression also upregulated XIAP and cyclin D1, suggesting its role in cell survival and cell cycle. Furthermore, the expression of SATB2 was positively correlated with β-catenin expression in CRC. In contrary, depletion of SATB2 inhibited cell proliferation, colony formation, cell motility and expression of β-catenin, Snail, Slug, Zeb1 and N-cadherin, and upregulated E-cadherin. Furthermore, SATB2 silencing inhibited the expression of stem cell markers, pluripotency maintaining transcription factors, cell cycle and cell proliferation/survival genes and TCF/LEF targets. Finally, β-catenin/TCF-LEF pathway mediated the biological effects of SATB2 in CSCs. These studies support the role of SATB2/β-catenin/TCF-LEF pathway in transformation and carcinogenesis.
Collapse
Affiliation(s)
- Wei Yu
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 66128, USA
| | - Yiming Ma
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 66128, USA
| | - Sharmila Shankar
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 66128, USA.,Department of Pathology, University of Missouri-School of Medicine, Kansas City, MO, 64108, USA.,Stanley S. Scott Cancer Center, Department of Genetics, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA 70112, United States
| | - Rakesh K Srivastava
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 66128, USA. .,Department of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO, 64108, USA. .,Stanley S. Scott Cancer Center, Department of Genetics, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA 70112, United States.
| |
Collapse
|
245
|
Clare AJ, Wicky HE, Empson RM, Hughes SM. RNA-Sequencing Analysis Reveals a Regulatory Role for Transcription Factor Fezf2 in the Mature Motor Cortex. Front Mol Neurosci 2017; 10:283. [PMID: 28936162 PMCID: PMC5594072 DOI: 10.3389/fnmol.2017.00283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Forebrain embryonic zinc finger (Fezf2) encodes a transcription factor essential for the specification of layer 5 projection neurons (PNs) in the developing cerebral cortex. As with many developmental transcription factors, Fezf2 continues to be expressed into adulthood, suggesting it remains crucial to the maintenance of neuronal phenotypes. Despite the continued expression, a function has yet to be explored for Fezf2 in the PNs of the developed cortex. Here, we investigated the role of Fezf2 in mature neurons, using lentiviral-mediated delivery of a shRNA to conditionally knockdown the expression of Fezf2 in the mouse primary motor cortex (M1). RNA-sequencing analysis of Fezf2-reduced M1 revealed significant changes to the transcriptome, identifying a regulatory role for Fezf2 in the mature M1. Kyoto Encyclopedia Genes and Genomes (KEGG) pathway analyses of Fezf2-regulated genes indicated a role in neuronal signaling and plasticity, with significant enrichment of neuroactive ligand-receptor interaction, cell adhesion molecules and calcium signaling pathways. Gene Ontology analysis supported a functional role for Fezf2-regulated genes in neuronal transmission and additionally indicated an importance in the regulation of behavior. Using the mammalian phenotype ontology database, we identified a significant overrepresentation of Fezf2-regulated genes associated with specific behavior phenotypes, including associative learning, social interaction, locomotor activation and hyperactivity. These roles were distinct from that of Fezf2-regulated genes identified in development, indicating a dynamic transition in Fezf2 function. Together our findings demonstrate a regulatory role for Fezf2 in the mature brain, with Fezf2-regulated genes having functional roles in sustaining normal neuronal and behavioral phenotypes. These results support the hypothesis that developmental transcription factors are important for maintaining neuron transcriptomes and that disruption of their expression could contribute to the progression of disease phenotypes.
Collapse
Affiliation(s)
- Alison J Clare
- Department of Biochemistry, School of Biomedical Sciences, University of OtagoDunedin, New Zealand.,Brain Health Research Centre, University of OtagoDunedin, New Zealand.,Genetics Otago, University of OtagoDunedin, New Zealand
| | - Hollie E Wicky
- Department of Biochemistry, School of Biomedical Sciences, University of OtagoDunedin, New Zealand.,Brain Health Research Centre, University of OtagoDunedin, New Zealand.,Genetics Otago, University of OtagoDunedin, New Zealand
| | - Ruth M Empson
- Brain Health Research Centre, University of OtagoDunedin, New Zealand.,Department of Physiology, School of Biomedical Sciences, University of OtagoDunedin, New Zealand
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, University of OtagoDunedin, New Zealand.,Brain Health Research Centre, University of OtagoDunedin, New Zealand.,Genetics Otago, University of OtagoDunedin, New Zealand
| |
Collapse
|
246
|
Liu YN, Lu SY, Yao J. Application of induced pluripotent stem cells to understand neurobiological basis of bipolar disorder and schizophrenia. Psychiatry Clin Neurosci 2017; 71:579-599. [PMID: 28393474 DOI: 10.1111/pcn.12528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
The etiology of neuropsychiatric disorders, such as schizophrenia and bipolar disorder, usually involves complex combinations of genetic defects/variations and environmental impacts, which hindered, for a long time, research efforts based on animal models and patients' non-neuronal cells or post-mortem tissues. However, the development of human induced pluripotent stem cell (iPSC) technology by the Yamanaka group was immediately applied to establish cell research models for neuronal disorders. Since then, techniques to achieve highly efficient differentiation of different types of neural cells following iPSC modeling have made much progress. The fast-growing iPSC and neural differentiation techniques have brought valuable insights into the pathology and neurobiology of neuropsychiatric disorders. In this article, we first review the application of iPSC technology in modeling neuronal disorders and discuss the progress in the accompanying neural differentiation. Then, we summarize the progress in iPSC-based research that has been accomplished so far regarding schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Yao-Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Si-Yao Lu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| |
Collapse
|
247
|
Giannico GA, Gown AM, Epstein JI, Revetta F, Bishop JA. Role of SATB2 in distinguishing the site of origin in glandular lesions of the bladder/urinary tract. Hum Pathol 2017; 67:152-159. [PMID: 28711650 DOI: 10.1016/j.humpath.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/20/2017] [Accepted: 07/05/2017] [Indexed: 12/26/2022]
Abstract
The differential diagnosis of glandular lesions of the bladder/urinary tract can be challenging because of significant morphologic and immunohistochemical overlap between primary lesions and metastasis/direct extension from adjacent organs. Special AT-rich sequence-binding protein 2 (SATB2), encoded on chromosome 2q32-33, is a recently described DNA-binding protein involved in osteoblast lineage commitment and expressed in colorectal and appendiceal neoplasms. In this study, we hypothesized that immunohistochemistry for SATB2 may be of value in distinguishing primary adenocarcinoma of the bladder/urinary tract and urothelial carcinoma with glandular differentiation from gastrointestinal and endocervical primaries. Intensity and distribution of SATB2 nuclear labeling were semiquantitatively scored and compared with those of CDX2. The study included 43 primary adenocarcinomas of the bladder/urinary tract, 20 urothelial carcinomas with glandular differentiation, 26 adenocarcinomas of the uterine cervix, and 22 colorectal adenocarcinomas involving the bladder. Positive SATB2 immunostaining was observed in 21 of 43 (49%) primary bladder/urinary tract adenocarcinomas, in 17 of 22 (77%) colorectal adenocarcinomas, and in the glandular component of 4 of 18 (22%) urothelial carcinomas with glandular differentiation. SATB2 was negative in 25 of 26 endocervical adenocarcinomas and showed focal weak immunostaining (1+) in 1 of 26 (4%). The results were not significantly different from those seen with CDX2. We conclude that SATB2 immunohistochemistry is not useful in supporting urothelial versus gastrointestinal or endocervical origin in the differential diagnosis of glandular lesions of the bladder/urinary tract.
Collapse
Affiliation(s)
- Giovanna Angela Giannico
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232.
| | | | - Jonathan I Epstein
- Pathology, Johns Hopkins Medical Institutions, The Weinberg Building, Baltimore, MD 21231; Urology, Johns Hopkins Medical Institutions, The Weinberg Building, Baltimore, MD 21231; Oncology, Johns Hopkins Medical Institutions, The Weinberg Building, Baltimore, MD 21231.
| | - Frank Revetta
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232.
| | - Justin A Bishop
- Pathology, UT Southwestern Medical Center, Dallas, TX, 75390.
| |
Collapse
|
248
|
Jabaudon D. Fate and freedom in developing neocortical circuits. Nat Commun 2017; 8:16042. [PMID: 28671189 PMCID: PMC5500875 DOI: 10.1038/ncomms16042] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/23/2017] [Indexed: 12/22/2022] Open
Abstract
The activity of neuronal circuits of the neocortex underlies our ability to perceive the world and interact with our environment. During development, these circuits emerge from dynamic interactions between cell-intrinsic, genetically determined programs and input/activity-dependent signals, which together shape these circuits into adulthood. Building on a large body of experimental work, several recent technological developments now allow us to interrogate these nature–nurture interactions with single gene/single input/single-cell resolution. Focusing on excitatory glutamatergic neurons, this review discusses the genetic and input-dependent mechanisms controlling how individual cortical neurons differentiate into specialized cells to assemble into stereotypical local circuits within global, large-scale networks.
Proper functioning of the neocortex – the center of higher-order brain functions – depends on the correct assembly of neocortical neural circuits during development. Here the author discusses how cell-intrinsic developmental programs and activity-dependent signals together shape the formation of neocortical circuits.
Collapse
Affiliation(s)
- Denis Jabaudon
- Department of Basic Neurosciences, Geneva University, 1 rue Michel Servet, 1211 Geneva, Switzerland.,Clinic of Neurology, Geneva University Hospital, 1 rue Michel Servet, 1211 Geneva, Switzerland.,Geneva Neurocenter, Geneva University, 1 rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
249
|
Ma YN, Zhang HY, Fei LR, Zhang MY, Wang CC, Luo Y, Han YC. SATB2 suppresses non-small cell lung cancer invasiveness by G9a. Clin Exp Med 2017; 18:37-44. [DOI: 10.1007/s10238-017-0464-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/29/2017] [Indexed: 01/04/2023]
|
250
|
Nadadhur AG, Emperador Melero J, Meijer M, Schut D, Jacobs G, Li KW, Hjorth JJJ, Meredith RM, Toonen RF, Van Kesteren RE, Smit AB, Verhage M, Heine VM. Multi-level characterization of balanced inhibitory-excitatory cortical neuron network derived from human pluripotent stem cells. PLoS One 2017; 12:e0178533. [PMID: 28586384 PMCID: PMC5460818 DOI: 10.1371/journal.pone.0178533] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Generation of neuronal cultures from induced pluripotent stem cells (hiPSCs) serve the studies of human brain disorders. However we lack neuronal networks with balanced excitatory-inhibitory activities, which are suitable for single cell analysis. We generated low-density networks of hPSC-derived GABAergic and glutamatergic cortical neurons. We used two different co-culture models with astrocytes. We show that these cultures have balanced excitatory-inhibitory synaptic identities using confocal microscopy, electrophysiological recordings, calcium imaging and mRNA analysis. These simple and robust protocols offer the opportunity for single-cell to multi-level analysis of patient hiPSC-derived cortical excitatory-inhibitory networks; thereby creating advanced tools to study disease mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aishwarya G. Nadadhur
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Javier Emperador Melero
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Marieke Meijer
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Desiree Schut
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Gerbren Jacobs
- Department of Pediatrics / Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - J. J. Johannes Hjorth
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Rhiannon M. Meredith
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Ruud F. Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Ronald E. Van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Vivi M. Heine
- Department of Pediatrics / Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|