201
|
Tedford HW, Fletcher JI, King GF. Functional significance of the beta hairpin in the insecticidal neurotoxin omega-atracotoxin-Hv1a. J Biol Chem 2001; 276:26568-76. [PMID: 11313356 DOI: 10.1074/jbc.m102199200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
omega-Atracotoxin-Hv1a is an insect-specific neurotoxin whose phylogenetic specificity derives from its ability to antagonize insect, but not vertebrate, voltage-gated calcium channels. In order to help understand its mechanism of action and to enhance its utility as a lead compound for insecticide development, we used a combination of protein engineering and site-directed mutagenesis to probe the toxin for key functional regions. First, we constructed a Hairpinless mutant in which the C-terminal beta-hairpin, which is highly conserved in this family of neurotoxins, was excised without affecting the fold of the residual disulfide-rich core of the toxin. The Hairpinless mutant was devoid of insecticidal activity, indicating the functional importance of the hairpin. We subsequently developed a highly efficient system for production of recombinant toxin and then probed the hairpin for key functional residues using alanine-scanning mutagenesis followed by a second round of mutagenesis based on initial "hits" from the alanine scan. This revealed that two spatially proximal residues, Asn(27) and Arg(35), form a contiguous molecular surface that is essential for toxin activity. We propose that this surface of the beta-hairpin is a key site for interaction of the toxin with insect calcium channels.
Collapse
Affiliation(s)
- H W Tedford
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | |
Collapse
|
202
|
Lamark T, Ingebrigtsen M, Bjørnstad C, Melkko T, Mollnes TE, Nielsen EW. Expression of active human C1 inhibitor serpin domain in Escherichia coli. Protein Expr Purif 2001; 22:349-58. [PMID: 11437612 DOI: 10.1006/prep.2001.1445] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human C1 inhibitor is a highly glycosylated serine protease inhibitor of the serpin family. The protein contains two disulfide bonds. In this study, an N-terminally truncated form of recombinant C1 inhibitor was overexpressed in Escherichia coli strains BL21(DE3) and AD494(DE3), the latter enabling the formation of disulfide bonds within the cytoplasm. With both strains, a major fraction of the recombinant protein produced appeared to be insoluble. However, the soluble fraction of lysates from strain AD494(DE3) inhibited the C1s target protease in functional assays. Recombinant C1 inhibitor produced in this strain also displayed the ability to complex with C1s in vitro. In contrast, lysates from strain BL21(DE3) displayed no C1 inhibitor activity. These data support the notion that glycosylation is not important, whereas disulfide bond formation appears to be essential for the production of an active recombinant C1 inhibitor. Thus, bacterial strains that permit the formation of disulfide bonds may represent a reliable system for the production of recombinant C1 inhibitor. However, a major obstacle to large-scale production will be to produce the protein in a soluble form. Attempts to increase the yield of soluble protein by coexpression of the GroEL/ES chaperonins resulted in an increase in solubility.
Collapse
Affiliation(s)
- T Lamark
- Institute of Pharmacy, University of Tromsø, Tromsø, 9037, Norway.
| | | | | | | | | | | |
Collapse
|
203
|
Lauber T, Marx UC, Schulz A, Kreutzmann P, Rösch P, Hoffmann S. Accurate disulfide formation in Escherichia coli: overexpression and characterization of the first domain (HF6478) of the multiple Kazal-type inhibitor LEKTI. Protein Expr Purif 2001; 22:108-12. [PMID: 11388807 DOI: 10.1006/prep.2001.1415] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human hemofiltrate peptide HF6478, a putative serine proteinase inhibitor, which is part of the precursor protein LEKTI, was cloned, overexpressed, and purified. HF6478 contains two disulfide bridges with 1-4, 2-3 connectivity, sharing partial homology to Kazal-type domains and other serine proteinase inhibitors. It was expressed as thioredoxin (Trx) fusion protein, and disulfide formation occurred in the oxidative cytoplasm of Escherichia coli Origami (DE3) strain which carries a trxB(-)/gor522(-) double mutation. The soluble fusion protein was purified using metal-chelating affinity chromatography. Cleavage of the Trx fusion protein with factor Xa and subsequent purification yielded the final product in amounts sufficient for structural studies. Characterization of recombinant HF6478 was done by amino acid sequencing, mass spectrometry, capillary zone electrophoresis, and CD spectroscopy. Taking the blood filtrate peptide HF6478 as example, we present a strategy which should facilitate the expression of different extracellular proteins in the E. coli cytoplasm.
Collapse
Affiliation(s)
- T Lauber
- Lehrstuhl für Biopolymere, Universität Bayreuth, Universitätstrasse 30, 95447 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
204
|
Fernández LA, de Lorenzo V. Formation of disulphide bonds during secretion of proteins through the periplasmic-independent type I pathway. Mol Microbiol 2001; 40:332-46. [PMID: 11309117 DOI: 10.1046/j.1365-2958.2001.02410.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this work, we have investigated whether the bacterial type I secretion pathway, which does not have a periplasmic intermediate of the secreted protein, allows the formation of disulphide bridges. To this end, the formation of disulphide bonds has been studied in an antibody single-chain Fv (scFv) fragment secreted by the Escherichia coli haemolysin (Hly) transporter (a paradigm of type I secretion). The scFv antibody fragment was used as a disulphide bond and protein-folding reporter, as it contains two disulphide bridges that are required for its correct folding (i.e. to preserve its antigen-binding activity). We show that an scFv-HlyA hybrid secreted by Hly type I transporter (TolC, HlyB, HlyD) is accumulated in the extracellular medium with the disulphide bonds correctly formed. Neither periplasmic and inner membrane-bound Dsb enzymes (e.g. DsbC, DsbG, DsbB and DsbD) nor cytoplasmic thioredoxins (TrxA and TrxC) were required for scFv-HlyA oxidation. However, a mutation of the thioredoxin reductase gene (trxB), which leads to the cytoplasmic accumulation of the oxidized forms of thioredoxins, had a specific inhibitory effect on the Hly-dependent secretion of disulphide-containing proteins. These data suggest that premature cytoplasmic oxidation of the substrate may interfere with the secretion process. Taken together, these results indicate not only that the type I system tolerates secretion of disulphide-containing proteins, but also that disulphide bonds are specifically formed during the passage of the polypeptide through the export conduit.
Collapse
Affiliation(s)
- L A Fernández
- Centro Nacional de Biotecnología del Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
205
|
Johansson M, Brooks AJ, Jans DA, Vasudevan SG. A small region of the dengue virus-encoded RNA-dependent RNA polymerase, NS5, confers interaction with both the nuclear transport receptor importin-beta and the viral helicase, NS3. J Gen Virol 2001; 82:735-745. [PMID: 11257177 DOI: 10.1099/0022-1317-82-4-735] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dengue virus RNA-dependent RNA polymerase, NS5, and the protease/helicase, NS3, are multidomain proteins that have been shown to interact both in vivo and in vitro. A hyperphosphorylated form of NS5 that does not interact with NS3 has been detected in the nuclei of virus-infected cells, presumably as the result of the action of a functional nuclear localization sequence within the interdomain region of NS5 (residues 369-405). In this study, it is shown by using the yeast two-hybrid system that the C-terminal region of NS3 (residues 303-618) interacts with the N-terminal region of NS5 (residues 320-368). Further, it is shown that this same region of NS5 is also recognized by the cellular nuclear import receptor importin-beta. The interaction between NS5 and importin-beta and competition by NS3 with the latter for the same binding site on NS5 were confirmed by pull-down assays. The direct interaction of importin-beta with NS5 has implications for the mechanism by which this normally cytoplasmic protein may be targetted to the nucleus.
Collapse
Affiliation(s)
- Magnus Johansson
- Department of Biochemistry and Molecular Biology, James Cook University, Townsville, Queensland 4811, Australia1
| | - Andrew J Brooks
- Department of Biochemistry and Molecular Biology, James Cook University, Townsville, Queensland 4811, Australia1
| | - David A Jans
- Nuclear Signalling Laboratory, Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra, Australia2
| | - Subhash G Vasudevan
- Department of Biochemistry and Molecular Biology, James Cook University, Townsville, Queensland 4811, Australia1
| |
Collapse
|
206
|
Vaillancourt P, Zheng CF, Hoang DQ, Breister L. Affinity purification of recombinant proteins fused to calmodulin or to calmodulin-binding peptides. Methods Enzymol 2001; 326:340-62. [PMID: 11036652 DOI: 10.1016/s0076-6879(00)26064-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Vaillancourt
- Stratagene Cloning Systems, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
207
|
Huang HC, Sherman MY, Kandror O, Goldberg AL. The molecular chaperone DnaJ is required for the degradation of a soluble abnormal protein in Escherichia coli. J Biol Chem 2001; 276:3920-8. [PMID: 11062236 DOI: 10.1074/jbc.m002937200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to promoting protein folding and translocation, molecular chaperones of Hsp70/DnaJ families are essential for the selective breakdown of many unfolded proteins. It has been proposed that chaperones function in degradation to maintain the substrates in a soluble form. In Escherichia coli, a nonsecreted alkaline phosphatase mutant that lacks its signal sequence (PhoADelta2-22) fails to fold in the cytosol and is rapidly degraded at 37 degrees C. We show that PhoADelta2-22 is degraded by two ATP-dependent proteases, La (Lon) and ClpAP, and breakdown by both is blocked in a dnaJ259-ts mutant at 37 degrees C. Both proteases could be immunoprecipitated with PhoA, but to a much lesser extent in the dnaJ mutant. Therefore, DnaJ appears to promote formation of protease-substrate complexes. DnaJ could be coimmunoprecipitated with PhoA, and the extent of this association directly correlated with its rate of degradation. Although PhoA was not degraded when DnaJ was inactivated, 50% or more of the PhoA remained soluble. PhoA breakdown and solubility did not require ClpB. PhoA degradation was reduced in a thioredoxin-reductase mutant (trxB), which allowed PhoADelta2-22 to fold into an active form in the cytosol. Introduction of the dnaJ mutation into trxB cells further stabilized PhoA, increased enzyme activity, and left PhoA completely soluble. Thus, DnaJ, although not necessary for folding (or preventing PhoA aggregation), is required for PhoA degradation and must play an active role in this process beyond maintaining the substrate in a soluble form.
Collapse
Affiliation(s)
- H C Huang
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
208
|
Tatsuda D, Arimura H, Tokunaga H, Ishibashi M, Arakawa T, Tokunaga M. Expression and purification of cytokine receptor homology domain of human granulocyte-colony-stimulating factor receptor fusion protein in Escherichia coli. Protein Expr Purif 2001; 21:87-91. [PMID: 11162391 DOI: 10.1006/prep.2000.1343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Direct expression of the cytokine receptor homology (CRH) domain of granulocyte-colony-stimulating factor (G-CSF) receptor is lethal to Escherichia coli. For the efficient and stable production of an active CRH domain in E. coli, we fused the CRH domain with different proteins, such as maltose-binding protein (MalE), glutathione S-transferase, and thioredoxin (Trx). Among these, Trx appeared to be the best in terms of the protein expression level, purification efficiency by affinity chromatography, and binding activity to its ligand, G-CSF. The yield of active Trx-CRH fusion protein increased about 200-fold compared to that of previously reported MalE-CRH fusion.
Collapse
Affiliation(s)
- D Tatsuda
- Laboratory of Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | |
Collapse
|
209
|
Campos A, Zhang RG, Alkire RW, Matsumura P, Westbrook EM. Crystal structure of the global regulator FlhD from Escherichia coli at 1.8 A resolution. Mol Microbiol 2001; 39:567-80. [PMID: 11169099 DOI: 10.1046/j.1365-2958.2001.02247.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FlhD is a 13.3 kDa transcriptional activator protein of flagellar genes and a global regulator. FlhD activates the transcription of class II operons in the flagellar regulon when complexed with a second protein FlhC (21.5 kDa). FlhD also regulates other expression systems in Escherichia coli. We are seeking to understand this plasticity of FlhD's DNA-binding specificity and, to this end, we have determined the crystal structure of the isolated FlhD protein. The structure was solved by substituting seleno-methionine for natural sulphur-methionine in FlhD, crystallizing the protein and determining the structure factor phases by the method of multiple-energy anomalous dispersion (MAD). The FlhD protein is dimeric. The dimer is tightly coupled, with an intimate contact surface, implying that the dimer does not easily dissociate. The FlhD monomer is predominantly alpha-helical. The C-termini of both FlhD monomers (residues 83-116) are completely disrupted by crystal packing, implying that this region of FlhD is highly flexible. However, part of the C-terminus structure in chain A (residues 83-98) was modelled using a native FlhD crystal. What is seen in chain A suggests a classic DNA-binding, helix-turn-helix (HTH) motif. FlhD does not bind DNA by itself, so it may be that the DNA-binding HTH motif becomes rigidly defined only when FlhD forms a complex with some other protein, such as FlhC. If this were true, it might explain how FlhD exhibits plasticity in its DNA-binding specificity, as each partner protein with which it forms a complex could allosterically affect the binding specificity of its HTH motif. A disulphide bridge is seen between the unique cysteine residues (Cys-65) of FlhD native homodimers. Alanine substitution at Cys-65 does not affect FlhD transcription activator activity, suggesting that the disulphide bond is not necessary for either dimer stability or this function of FlhD. Electrostatic potential analysis indicates that dimeric FlhD has a negatively charged surface.
Collapse
Affiliation(s)
- A Campos
- Department of Microbiology and Immunology (M/C 790), College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave., MSB E-603, Chicago, IL 60612-7344, USA.
| | | | | | | | | |
Collapse
|
210
|
Nakajima H, Iwasaki T, Kitamoto K. Metalloadsorption by Saccharomyces cerevisiae cells expressing invertase-metallothionein (Suc2-Cup1) fusion protein localized to the cell surface. J GEN APPL MICROBIOL 2001; 47:47-51. [PMID: 12483568 DOI: 10.2323/jgam.47.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Harushi Nakajima
- Department of Biotechnology, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
211
|
Sardesai AA, Gowrishankar J. trans-acting mutations in loci other than kdpDE that affect kdp operon regulation in Escherichia coli: effects of cytoplasmic thiol oxidation status and nucleoid protein H-NS on kdp expression. J Bacteriol 2001; 183:86-93. [PMID: 11114904 PMCID: PMC94853 DOI: 10.1128/jb.183.1.86-93.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the K(+) transport operon kdp in Escherichia coli is induced during K(+)-limited growth by the action of a dual-component phosphorelay regulatory system comprised of a sensor kinase (integral membrane protein), KdpD, and a DNA-binding response regulator (cytoplasmic protein), KdpE. In this study, we screened for new dke (named dke for decreased kdp expression) mutations (in loci other than kdpDE) that led to substantially decreased kdp expression. One dke mutation was shown to be in hns, encoding the nucleoid protein H-NS. Another dke mutation was mapped to trxB (encoding thioredoxin reductase), and an equivalent reduction in kdp expression was demonstrated also for trxA mutants that are deficient in thioredoxin 1. Exogenously provided dithiothreitol rescued the kdp expression defect in trxB but not trxA mutants. Neither trxB nor trxA affected gene regulation mediated by another dual-component system tested, EnvZ-OmpR. Mutations in genes dsbC and dsbD did not affect kdp expression, suggesting that the trx effects on kdp are not mediated by alterations in protein disulfide bond status in the periplasm. Reduced kdp expression was observed even in a trxB strain that harbored a variant KdpD polypeptide bearing no Cys residues. A trxB hns double mutant was even more severely affected for kdp expression than either single mutant. The dke mutations themselves had no effect on strength of the signal controlling kdp expression, and constitutive mutations in kdpDE were epistatic to hns and trxB. These results indicate that perturbations in cytoplasmic thiol oxidation status and in levels of the H-NS protein exert additive effects, direct or indirect, at a step(s) upstream of KdpD in the signal transduction pathway, which significantly influence the magnitude of KdpD kinase activity obtained for a given strength of the inducing signal for kdp transcription.
Collapse
Affiliation(s)
- A A Sardesai
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | |
Collapse
|
212
|
Turner RJ, Aharonowitz Y, Weiner JH, Taylor DE. Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants inEscherichia coli. Can J Microbiol 2001. [DOI: 10.1139/w00-125] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tellurite (TeO32-) is highly toxic to most microorganisms. The mechanisms of toxicity or resistance are poorly understood. It has been shown that tellurite rapidly depletes the reduced thiol content within wild-type Escherichia coli. We have shown that the presence of plasmid-borne tellurite-resistance determinants protects against general thiol oxidation by tellurite. In the present study we observe that the tellurite-dependent depletion of cellular thiols in mutants of the glutathione and thioredoxin thiol:redox system was less than in wild-type cells. To identify the type of low-molecular-weight thiol compounds affected by tellurite exposure, the thiol-containing molecules were analyzed by reverse phase HPLC as their monobromobimane derivatives. Results indicated that reduced glutathione is a major initial target of tellurite reactivity within the cell. Other thiol species are also targeted by tellurite, including reduced coenzyme A. The presence of the tellurite resistance determinants kilA and ter protect against the loss of reduced glutathione by as much as 60% over a 2 h exposure. This protection of glutathione oxidation is likely key to the resistance mechanism of these determinants. Additionally, the thiol oxidation response curves were compared between selenite and tellurite. The loss of thiol compounds within the cell recovered from selenite but not to tellurite.Key words: tellurite, resistance, thiol oxidation, heavy metal toxicity, selenite, glutathione.
Collapse
|
213
|
Domingues H, Peters J, Schneider KH, Apeler H, Sebald W, Oschkinat H, Serrano L. Improving the refolding yield of interleukin-4 through the optimization of local interactions. J Biotechnol 2000; 84:217-30. [PMID: 11164263 DOI: 10.1016/s0168-1656(00)00327-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Interleukin-4 (IL-4) is a multifunctional cytokine that plays an important role in the regulation of various immune responses. However, the development of IL-4 or IL-4 variants into potential therapeutic drugs is hindered by the low efficiency of the in vitro refolding process of this protein. In this work, we have investigated the improvement of the refolding yield of IL-4 using two different rational design approaches. The first one is based on the so-called inverse hydrophobic effect and involved the replacement of a solvent exposed, non-conserved, hydrophobic residue (W91) by serine. This led to an increase in stability of 1.4 kcal mol(-1) and shifted the midpoint transition temperature (Tm) from 62 to 70 degrees C. The second approach is based on the stabilization of alpha-helices through the introduction of favorable local interactions. This strategy resulted in the following helix sequence for helix C of IL-4, 68ASAAEANRHKQLIRFLKRLDRNLWGLAG95. The mutant protein was stabilized by 0.5 kcal mol(-1), the Tm shifted to 68 degrees C, and a two-fold increase in the refolding yield was consistently observed. Our results make the large-scale production of IL-4 derivatives economically more viable, suggest that a similar approach can be applied to other related proteins, and may represent a general strategy to improve in vitro refolding yields through the selective optimization of the stability of alpha-helices.
Collapse
Affiliation(s)
- H Domingues
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69012, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
214
|
Katzen F, Beckwith J. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 2000; 103:769-79. [PMID: 11114333 DOI: 10.1016/s0092-8674(00)00180-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cytoplasmic membrane protein DsbD transfers electrons from the cytoplasm to the periplasm of E. coli, where its reducing power is used to maintain cysteines in certain proteins in the reduced state. We split DsbD into three structural domains, each containing two essential cysteines. Remarkably, when coexpressed, these truncated proteins restore DsbD function. Utilizing this three piece system, we were able to determine a pathway of the electrons through DsbD. Our findings strongly suggest that the pathway is based on a series of multistep redox reactions that include direct interactions between thioredoxin and DsbD, and between DsbD and its periplasmic substrates. A thioredoxin-fold domain in DsbD appears to have the novel role of intramolecular electron shuttle.
Collapse
Affiliation(s)
- F Katzen
- Department of Microbiology and Molecular Genetics Harvard Medical School 200 Longwood Avenue Boston, MA 02115, USA
| | | |
Collapse
|
215
|
Tang SJ, Sun KH, Sun GH, Chang TY, Lee GC. Recombinant expression of the Candida rugosa lip4 lipase in Escherichia coli. Protein Expr Purif 2000; 20:308-13. [PMID: 11049754 DOI: 10.1006/prep.2000.1304] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is difficult to express recombinant Candida rugosa lipases (CRLs) in heterologous systems, since C. rugosa utilizes a nonuniversal serine codon CUG for leucine. In this study, recombinant LIP4 in which all 19 CUG codons had been converted to a universal serine codon was overexpressed in Escherichia coli BL21(DE3). The recombinant LIP4 was found mainly in the inclusion bodies and showed a low catalytic activity. To increase the amount of soluble form and activity of recombinant LIP4, the DNA was fused to the gene for thioredoxin (TrxFus-LIP4) and then expressed in E. coli strain AD494(DE3). This strategy promotes the formation of disulfide bonds in the cytosol and yields enzymatically active forms of LIP4. The purified recombinant TrxFus-LIP4 and LIP4 expressed in AD494(DE3) had the same catalytic profiles. In addition, recombinant LIP4 had higher esterase activities toward long-chain ester and lower lipase activities toward tributyrin, triolein, and olive oil. This system for the expression of fungal lipase in E. coli strain AD494(DE3) is reliable and may produce enzymatically active forms of recombinant lipase without an in vitro refolding procedure.
Collapse
Affiliation(s)
- S J Tang
- Institute of Marine Biotechnology, Keelung, 20224, Taiwan.
| | | | | | | | | |
Collapse
|
216
|
Senkevich TG, White CL, Koonin EV, Moss B. A viral member of the ERV1/ALR protein family participates in a cytoplasmic pathway of disulfide bond formation. Proc Natl Acad Sci U S A 2000; 97:12068-73. [PMID: 11035794 PMCID: PMC17295 DOI: 10.1073/pnas.210397997] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins of the ERV1/ALR family are encoded by all eukaryotes and cytoplasmic DNA viruses for which substantial sequence information is available. Nevertheless, the roles of these proteins are imprecisely known. Multiple alignments of ERV1/ALR proteins indicated an invariant C-X-X-C motif, but no similarity to the thioredoxin fold was revealed by secondary structure predictions. We chose a virus model to investigate the role of these proteins as thiol oxidoreductases. When cells were infected with a mutant vaccinia virus in which the E10R gene encoding an ERV1/ALR family protein was repressed, the disulfide bonds of three other viral proteins-namely, the L1R and F9L proteins and the G4L glutaredoxin-were completely reduced. The same outcome occurred when Cys-43 or Cys-46, the putative redox cysteines of the E10R protein, was mutated to serine. These two cysteines were disulfide bonded during a normal virus infection but not if the synthesis of other viral late proteins was inhibited or the E10R protein was expressed by itself in uninfected cells, suggesting a requirement for an upstream viral thiol oxidoreductase. Remarkably, the cysteine-containing domains of the E10R and L1R viral membrane proteins and the glutaredoxin are in the cytoplasm, in which assembly of vaccinia virions occurs, rather than in the oxidizing environment of the endoplasmic reticulum. These data indicated a viral pathway of disulfide bond formation in which the E10R protein has a central role. By extension, the ERV1/ALR family may represent a ubiquitous class of cellular thiol oxidoreductases that interact with glutaredoxins or thioredoxins.
Collapse
Affiliation(s)
- T G Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
217
|
Wong BS, Vénien-Bryan C, Williamson RA, Burton DR, Gambetti P, Sy MS, Brown DR, Jones IM. Copper refolding of prion protein. Biochem Biophys Res Commun 2000; 276:1217-24. [PMID: 11027613 DOI: 10.1006/bbrc.2000.3604] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have shown previously that normal mouse prion protein (MoPrP) binds copper ions during protein refolding and acquires antioxidant activity. In this report, we probe the structure of the copper refolded form of MoPrP to determine how copper binding alters the secondary and tertiary features of the protein. Circular dichroism showed that recombinant MoPrP prepared in the presence of copper (as Cu(++)) showed an increased signal in the 210-220 nm range of the spectrum. Changes in protein conformation were localised to the N-terminal region of MoPrP using a panel of antibodies to assess epitope accessibility. The copper refolded recombinant prion protein had reduced proteinase K (PK) sensitivity when compared to the non-copper liganded form. Reduced PK sensitivity was not due to aggregation however as high resolution electron microscopy showed a homogenous preparation with little aggregate when compared to the non-copper form. Finally, disruption of the single disulphide linkage in MoPrP significantly diminished the antioxidant activity of the copper refolded form suggesting that activity was not solely dependent on bound copper but also on a conformation enabled by the formation of the disulphide bond.
Collapse
Affiliation(s)
- B S Wong
- School of Animal and Microbial Sciences, Reading, RG6 6AH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Kuai L, Wu C, Qiu Q, Zhang J, Zhou A, Wang S, Zhang H, Song Q, Liao S, Han Y, Liu J, Ma Z. Plasminogen activator inhibitor-1 fused with erythropoietin (EPO) mimetic peptide (EMP) enhances the EPO activity of EMP. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000; 56:59-62. [PMID: 10961539 DOI: 10.1034/j.1399-3011.2000.00716.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Erythropoietin (EPO) mimetic peptide (EMP) encoding sequence was inserted into the gene of plasminogen activator inhibitor-1 (PAI-1) between Ala348 and Pro349 (P2'-P3'), generating a novel gene, PAI-1/EMP (PMP). This was cloned into pET32a expression vector, fused with TrxA peptide in the vector, and a 63-kDa protein was expressed in inclusion bodies with an expression level >50%. The TrxA/PMP protein was purified by Ni-NTA-agarose metal-ligand affinity chromatography to a purity >90%, showing a single, silver-stained band on SDS-PAGE. Using a reticulocyte counting assay, the EPO activity of PMP was determined to be 5,000 IU/mg, 2,500-fold that of EMP.
Collapse
Affiliation(s)
- L Kuai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Miseta A, Csutora P. Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 2000; 17:1232-9. [PMID: 10908643 DOI: 10.1093/oxfordjournals.molbev.a026406] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The occurrence and relative positions of cysteine residues were investigated in proteins of various species. Considering random mathematical occurrence for an amino acid coded by two codons (3. 28%), cysteine is underrepresented in all organisms investigated. Representation of cysteine appears to correlate positively with the complexity of the organism, ranging between 2.26% in mammals and 0. 5% in some members of the Archeabacteria order. This observation, together with the results obtained from comparison of cysteine content of various ribosomal proteins, indicates that evolution takes advantage of increased use of cysteine residues. In all organisms studied except plants, two cysteines are frequently found two amino acid residues apart (C-(X)(2)-C motif). Such a motif is known to be present in a variety of metal-binding proteins and oxidoreductases. Remarkably, more than 21% of all of cysteines were found within the C-(X)(2)-C motifs in ARCHEA.: This observation may indicate that cysteine appeared in ancient metal-binding proteins first and was introduced into other proteins later.
Collapse
Affiliation(s)
- A Miseta
- Department of Clinical Chemistry, Faculty of Medicine, Pécs University, Pécs, Hungary.
| | | |
Collapse
|
220
|
Gururaja TL, Narasimhamurthy S, Payan DG, Anderson DC. A novel artificial loop scaffold for the noncovalent constraint of peptides. CHEMISTRY & BIOLOGY 2000; 7:515-27. [PMID: 10903937 DOI: 10.1016/s1074-5521(00)00137-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Few examples exist of peptides of < 35 residues that form a stable tertiary structure without disulfide bonds. A method for stabilization and noncovalent constraint of relatively short peptides may allow the construction and use of intracellular peptide libraries containing protein minidomains. RESULTS We have examined a novel method for the noncovalent constraint of peptides by attaching the peptide EFLIVKS (single-letter amino acid code), which forms dimers, to the amino and carboxyl termini of different peptide inserts. An 18 residue random coil taken from the inhibitor loop of barley chymotrypsin inhibitor 2 was inserted between the peptides to produce a 32-mer minidomain that is attacked only slowly by elastase, has numerous slowly exchanging protons, contains a high beta-structure content and has a T(m) above 37 degrees C. A point mutation disrupting the hydrophobic interior in both dimerizing peptides causes a loss of all slowly exchanging protons and of secondary structure. Adding specific charged residues to each terminus substantially increased the T(m), as did point mutants designed to add interdimerizer ion pairs. Three flexible epitope tag inserts and a nonamer insert do not appear to be folded in a stable structure by EFLIVKS. The properties of two peptides selected for expression in HeLa cells suggest they do form a stable tertiary structure. CONCLUSIONS Attaching short dimerizing peptides to both the amino and carboxyl termini of several 18-mer peptides appears to create stable monomeric tertiary structures. Mutations in the dimerizers can either destabilize or significantly stabilize a standard 18-mer insert. Dimerizing peptides flanking random insert sequences could be used as a strategy to generate heterogeneous peptide libraries with both extended and folded members.
Collapse
|
221
|
Burrows GG, Adlard KL, Bebo BF, Chang JW, Tenditnyy K, Vandenbark AA, Offner H. Regulation of encephalitogenic T cells with recombinant TCR ligands. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:6366-71. [PMID: 10843691 DOI: 10.4049/jimmunol.164.12.6366] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously described recombinant MHC class II beta1 and alpha1 domains loaded with free antigenic peptides with potent inhibitory activity on encephalitogenic T cells. We have now produced single-chain constructs in which the peptide Ag is genetically encoded within the same exon as the linked beta1 and alpha1 domains, overcoming the problem of displacement of peptide Ag from the peptide binding cleft. We here describe clinical effects of recombinant TCR ligands (RTLs) comprised of the rat RT1.B beta1alpha1 domains covalently linked to the 72-89 peptide of guinea pig myelin basic protein (RTL-201), to the corresponding 72-89 peptide from rat myelin basic protein (RTL-200), or to cardiac myosin peptide CM-2 (RTL-203). Only RTL-201 possessed the ability to prevent and treat active or passive experimental autoimmune encephalomyelitis. Amelioration of experimental autoimmune encephalomyelitis was associated with a selective inhibition of proliferation response and cytokine production by Ag-stimulated lymph node T cells and a drastic reduction in the number of encephalitogenic and recruited inflammatory cells infiltrating the CNS. The exquisitely selective inhibition could be observed between molecules that differ by a single methyl group (the single amino acid residue difference between RTL-200 (threonine) and RTL-201 (serine) at position 80 of the myelin basic protein peptide). These novel RTLs provide a platform for developing potent and selective human diagnostic and therapeutic agents for treatment of autoimmune disease.
Collapse
MESH Headings
- Adoptive Transfer
- Amino Acid Sequence
- Animals
- Cell Line
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Fluoresceins/analysis
- Guinea Pigs
- Histocompatibility Antigens/genetics
- Histocompatibility Antigens/metabolism
- Histocompatibility Antigens/pharmacology
- Immunosuppressive Agents/pharmacology
- Ligands
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Molecular Sequence Data
- Myelin Basic Protein/genetics
- Myelin Basic Protein/immunology
- Myelin Basic Protein/metabolism
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Rats
- Rats, Inbred Lew
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Staining and Labeling
- Succinimides/analysis
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes/chemistry
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- G G Burrows
- Department of Neurology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA.
| | | | | | | | | | | | | |
Collapse
|
222
|
Johnson TM, Quick MW, Sakai TT, Krishna NR. Expression of functional recombinant scorpion beta-neurotoxin Css II in E. coli. Peptides 2000; 21:767-72. [PMID: 10958995 DOI: 10.1016/s0196-9781(00)00206-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The gene for a beta-neurotoxin [Centruroides suffusus suffusus toxin II (Css II)] from the scorpion C. suffusus suffusus was synthesized by recursive PCR and cloned into the expression vector, pET15b. This recombinant vector was transformed into a thioredoxin mutant host bacterial cell, AD 494(DE3)pLysS, and expression was induced with isopropyl thiogalactoside (IPTG). Although the level of expression was low, the recombinant toxin was found only in the soluble fraction with no evidence for the formation of inclusion bodies as had been observed previously with other scorpion toxins. The recombinant Css II was purified by successive ion-exchange and hydrophobic interaction chromatography. Nuclear magnetic resonance (NMR) and circular dichroism (CD) spectral measurements indicate that the protein has a native structure with no indication of denatured species. The recombinant neurotoxin inhibits the uptake of [(3)H]GABA [gamma-aminobutyric acid (GABA)] in neuronal cells as effectively as natural beta-toxins.
Collapse
Affiliation(s)
- T M Johnson
- Department of Biochemistry & Molecular Genetics, CH19 Room B31, University of Alabama at Birmingham, Birmingham, AL 35294-2041, USA
| | | | | | | |
Collapse
|
223
|
Chen GH, Tang SJ, Chen CS, Jiang ST. Overexpression of the soluble form of chicken cystatin in Escherichia coli and its purification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2000; 48:2602-2607. [PMID: 10888591 DOI: 10.1021/jf000058x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cDNA encoding chicken cystatin was cloned into the pET-23a(+) expression vector and then transformed into Escherichia coli AD494(DE3)pLysS expression host. An active soluble form of cystatin was expressed in the cytoplasm of E. coli induced by isopropyl beta-D-thiogalactopyranoside. The recombinant chicken cystatin was purified to electrophoretic homogeneity by a simple and rapid method involving heat treatment and Sephacryl S-100 gel filtration chromatography. The recombinant cystatin behaved as a thermal-stable protein and exhibited papain-like protease inhibition activity comparable to the natural chicken cystatin.
Collapse
Affiliation(s)
- G H Chen
- Department of Food Science, National Taiwan Ocean University, Keelung
| | | | | | | |
Collapse
|
224
|
Arai R, Ueda H, Tsumoto K, Mahoney WC, Kumagai I, Nagamune T. Fluorolabeling of antibody variable domains with green fluorescent protein variants: application to an energy transfer-based homogeneous immunoassay. PROTEIN ENGINEERING 2000; 13:369-76. [PMID: 10835111 DOI: 10.1093/protein/13.5.369] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A site-specific and efficient fluorolabeling of antibody variable regions with green fluorescent protein (GFP) variants and its application to an energy transfer-based homogeneous fluoroimmunoassay (open sandwich FIA) were attempted. Two chimeric proteins, Trx-V(H)-EBFP and Trx-V(L)-EGFP, consisting of V(H) and V(L) fragments of anti-hen egg lysozyme (HEL) antibody HyHEL-10 and two GFP color variants, EBFP and EGFP, respectively, were designed to be expressed in cytoplasm of trxB - mutant Escherichia coli as fusions with thioredoxin from E.coli The mixture of two proteins could be purified with HEL-affinity chromatography, retaining sufficient intrinsic fluorescence and binding activity to HEL. A significant increase in fluorescence resonance energy transfer (FRET) dependent on HEL concentration was observed, indicating the reassociation of the V(H) and V(L) domains of these chimeric proteins due to co-existing antigen. With this open sandwich FIA, an HEL concentration of 1-100 microg/ml could be non-competitively determined. The assay could be performed in a microplate format and took only a few minutes to obtain a sufficient signal after simple mixing of the chimeric proteins with samples. This represents the first demonstration that the FRET between GFP variants is applicable to homogeneous immunoassay.
Collapse
Affiliation(s)
- R Arai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | |
Collapse
|
225
|
Vinetz JM, Valenzuela JG, Specht CA, Aravind L, Langer RC, Ribeiro JM, Kaslow DC. Chitinases of the avian malaria parasite Plasmodium gallinaceum, a class of enzymes necessary for parasite invasion of the mosquito midgut. J Biol Chem 2000; 275:10331-41. [PMID: 10744721 DOI: 10.1074/jbc.275.14.10331] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Plasmodium ookinete produces chitinolytic activity that allows the parasite to penetrate the chitin-containing peritrophic matrix surrounding the blood meal in the mosquito midgut. Since the peritrophic matrix is a physical barrier that the parasite must cross to invade the mosquito, and the presence of allosamidin, a chitinase inhibitor, in a blood meal prevents the parasite from invading the midgut epithelium, chitinases (3.2.1.14) are potential targets of malaria parasite transmission-blocking interventions. We have purified a chitinase of the avian malaria parasite Plasmodium gallinaceum and cloned the gene, PgCHT1, encoding it. PgCHT1 encodes catalytic and substrate-binding sites characteristic of family 18 glycohydrolases. Expressed in Escherichia coli strain AD494 (DE3), recombinant PgCHT1 was found to hydrolyze polymeric chitin, native chitin oligosaccharides, and 4-methylumbelliferone derivatives of chitin oligosaccharides. Allosamidin inhibited recombinant PgCHT1 with an IC(50) of 7 microM and differentially inhibited two chromatographically separable P. gallinaceum ookinete-produced chitinase activities with IC(50) values of 7 and 12 microM, respectively. These two chitinase activities also had different pH activity profiles. These data suggest that the P. gallinaceum ookinete uses products of more than one chitinase gene to initiate mosquito midgut invasion.
Collapse
Affiliation(s)
- J M Vinetz
- World Health Organization Collaborating Center for Tropical Diseases, Department of Pathology, the University of Texas Medical Branch, Galveston, Texas 77615, USA.
| | | | | | | | | | | | | |
Collapse
|
226
|
Ostermeier M, Benkovic SJ. A two-phagemid system for the creation of non-phage displayed antibody libraries approaching one trillion members. J Immunol Methods 2000; 237:175-86. [PMID: 10725461 DOI: 10.1016/s0022-1759(99)00245-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have designed a two-phagemid system for the construction of very large non-phage displayed Fab antibody libraries in E. coli approaching 10(12) members. The system can accommodate both periplasmic and cytoplasmic Fab expression and should prove useful for the direct selection of functional antibodies by genetic techniques. We successfully alleviate problems of Fab vector instability and report a set of improved 5' primers for the amplification of mouse Ig V(H)95% of mouse Ig V(H) genes and minimize the amount of N-terminal amino acid changes while maintaining the flexibility of periplasmic or cytoplasmic antibody expression in E. coli.
Collapse
Affiliation(s)
- M Ostermeier
- The Pennsylvania State University, Department of Chemistry, 414 Wartik Laboratory, University Park, PA 16802, USA
| | | |
Collapse
|
227
|
van Geest M, Lolkema JS. Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol Mol Biol Rev 2000; 64:13-33. [PMID: 10704472 PMCID: PMC98984 DOI: 10.1128/mmbr.64.1.13-33.2000] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain structural information about membrane proteins. A critical step in the biosynthetic pathway leading to the folded protein in the membrane is its insertion into the lipid bilayer. Understanding of the fundamentals of the insertion and folding processes will significantly improve the methods used to predict the three-dimensional membrane protein structure from the amino acid sequence. In the first part of this review, biochemical approaches to elucidate membrane protein topology are reviewed and evaluated, and in the second part, the use of similar techniques to study membrane protein insertion is discussed. The latter studies search for signals in the polypeptide chain that direct the insertion process. Knowledge of the topogenic signals in the nascent chain of a membrane protein is essential for the evaluation of membrane topology studies.
Collapse
Affiliation(s)
- M van Geest
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
228
|
Schwalbach G, Sibler AP, Choulier L, Deryckère F, Weiss E. Production of fluorescent single-chain antibody fragments in Escherichia coli. Protein Expr Purif 2000; 18:121-32. [PMID: 10686142 DOI: 10.1006/prep.1999.1185] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We describe a novel vector-host system suitable for the efficient preparation of fluorescent single-chain antibody Fv fragments (scFv) in Escherichia coli. The previously described pscFv1F4 vector used for the bacterial expression of functional scFv to the E6 protein of human papillomavirus type 16 was modified by appending to its C-terminus the green fluorescent protein (GFP). The expression of the scFv1F4-GFP fusion proteins was monitored by analyzing of the typical GFP fluorescence of the transformed cells under UV illumination. The brightest signal was obtained when scFv1F4 was linked to the cycle 3 GFP variant (GFPuv) and expressed in the cytoplasm of AD494(DE3) bacteria under control of the arabinose promoter. Although the scFv1F4 expressed under these conditions did not contain disulfide bridges, about 1% of the molecules were able to bind antigen. Fluorescence analysis of antigen-coated agarose beads incubated with the cytoplasmic scFv-GFP complexes showed that a similar proportion of fusions retained both E6-binding and green-light-emitting activities. The scFv1F4-GFPuv molecules were purified by affinity chromatography and successfully used to detect viral E6 protein in transfected COS cells by fluorescence microscopy. When an anti-beta-galactosidase scFv, which had previously been adapted to cytoplasmic expression at high levels, was used in this system, it was possible to produce large amounts of functional fluorescent antibody fragments. This indicates that these labeled scFvs may have many applications in fluorescence-based single-step immunoassays.
Collapse
Affiliation(s)
- G Schwalbach
- Ecole Supérieure de Biotechnologie de Strasbourg, ULP/UPRES 1329, boulevard Sébastien Brant, Illkirch, 67400, France
| | | | | | | | | |
Collapse
|
229
|
Banères JL, Roquet F, Martin A, Parello J. A minimized human integrin alpha(5)beta(1) that retains ligand recognition. J Biol Chem 2000; 275:5888-903. [PMID: 10681581 DOI: 10.1074/jbc.275.8.5888] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two isolated recombinant fragments from human integrin alpha(5)beta(1) encompassing the FG-GAP repeats III to VII of alpha(5) and the insertion-type domain from beta(1), respectively, are structurally well defined in solution, based on CD evidence. Divalent cation binding induces a conformational adaptation that is achieved by Ca(2+) or Mg(2+) (or Mn(2+)) with alpha(5) and only by Mg(2+) (or Mn(2+)) with beta(1). Mn(2+) bound to beta(1) is highly hydrated ( approximately 3 water molecules), based on water NMR relaxation, in agreement with a metal ion-dependent adhesion site-type metal coordination. Each fragment saturated with Mg(2+) (or Mn(2+)) binds a recombinant fibronectin ligand in an RGD-dependent manner. A conformational rearrangement is induced on the fibronectin ligand upon binding to the alpha(5), but not to the beta(1) fragment, based on CD. Ligand binding results in metal ion displacement from beta(1). Both alpha(5) and beta(1) fragments form a stable heterodimer (alpha(5)beta(1) mini-integrin) that retains ligand recognition to form a 1:1:1 ternary complex, in the presence of Mg(2+), and induces a specific conformational adaptation of the fibronectin ligand. A two-site model for RGD binding to both alpha and beta integrin components is inferred from our data using low molecular weight RGD mimetics.
Collapse
Affiliation(s)
- J L Banères
- Chimie Biomoléculaire et Interactions Biologiques, UPRESA CNRS 5074, Faculté de Pharmacie, 15 Av. Ch. Flahault, 34060 Montpellier Cédex 2, France.
| | | | | | | |
Collapse
|
230
|
Wang Y, Bjes ES, Esser AF. Molecular aspects of complement-mediated bacterial killing. Periplasmic conversion of C9 from a protoxin to a toxin. J Biol Chem 2000; 275:4687-92. [PMID: 10671498 DOI: 10.1074/jbc.275.7.4687] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As part of the membrane attack complex complement protein C9 is responsible for direct killing of bacteria. Here we show that in the periplasmic space of an Escherichia coli cell C9 is converted from a protoxin to a toxin by periplasmic conditions missing in spheroplasts. This conversion is independent of the pathway by which C9 enters the periplasm. Both, C9 shocked into the periplasm and plasmid-expressed C9 targeted to the periplasm via a signal sequence are toxic. Toxicity requires disulfide-linked C9 because export into the periplasm of cells defective in disulfide bond synthesis (dsbA and dsbB mutants) is not toxic unless N-acetylcysteine is added externally to promote cystines. A N-terminal fragment, C9[1-144], is not toxic nor is cytoplasmically expressed C9, even in trxB mutants that are able to form disulfide bonds in the cytoplasm. Importantly, expression of full-length C9 in complement-resistant cells has no effect on their viability. Expression and translocation into the periplasm may provide a novel model to identify molecular mechanisms of other bactericidal disulfide-linked proteins and to investigate the nature of bacterial complement resistance.
Collapse
Affiliation(s)
- Y Wang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
231
|
Debarbieux L, Beckwith J. On the functional interchangeability, oxidant versus reductant, of members of the thioredoxin superfamily. J Bacteriol 2000; 182:723-7. [PMID: 10633106 PMCID: PMC94335 DOI: 10.1128/jb.182.3.723-727.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli thioredoxin 1 has been characterized in vivo and in vitro as one of the most efficient reductants of disulfide bonds. Nevertheless, under some conditions, thioredoxin 1 can also act in vivo as an oxidant, promoting formation of disulfide bonds in the cytoplasm (E. J. Stewart, F. Aslund, and J. Beckwith, EMBO J. 17:5543-5550, 1998). We recently showed that when a signal sequence is attached to thioredoxin 1 it is exported to the periplasm, where it can also act as an oxidant, replacing the normal periplasmic catalyst of disulfide bond formation, DsbA, in oxidizing cell envelope proteins (L. Debarbieux and J. Beckwith, Proc. Natl. Acad. Sci. USA 95:10751-10756, 1998). Here we report pulse-chase studies of the efficiency of disulfide bond formation in strains exporting thioredoxin 1 and more-oxidizing variants of it. While the exported thioredoxin 1 itself substantially speeds up the kinetics of disulfide bond formation, a version of this protein containing the DsbA active site exhibits kinetics that are indistinguishable from those of the DsbA protein itself. Further, we confirm the findings of Jonda et al. (S. Jonda, M. Huber-Wunderlich, R. Glockshuber, and E. Mössner, EMBO J. 18:3271-3281, 1999), who found that DsbB is responsible for the oxidation of exported thioredoxin 1, and we report the detection of a disulfide-bonded DsbB-thioredoxin 1 complex. Finally, we have found that under conditions of high-level expression of exported thioredoxin 1, the protein can act as both an oxidant and a reductant.
Collapse
Affiliation(s)
- L Debarbieux
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
232
|
Abstract
ER-60 protease contains two CGHC motifs that appear to include an active site cysteine residue(s). Its proteolytic activity was lost with a double mutation of the C-terminal cysteines of the two motifs to alanine, but not with a single mutation of the C-terminal cysteine of either of the motifs to alanine. This suggests that these C-terminal cysteines independently constitute the catalytic active site. A mutation of both histidine residues in the two CGHC motifs to serine did not abolish the proteolytic activity, suggesting these histidine residues in the CGHC motifs do not constitute the catalytic dyad of ER-60 protease.
Collapse
Affiliation(s)
- H Okudo
- Research Institute for Food Science, Kyoto University, Uji, Kyoto, Japan
| | | | | | | |
Collapse
|
233
|
Verheyden G, Volckaert G, Engelborghs Y. Expression of chymotrypsin(ogen) in the thioredoxin reductase deficient mutant strain of Escherichia coli AD494(DE3) and purification via a fusion product with a hexahistidine-tail. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 737:213-24. [PMID: 10681058 DOI: 10.1016/s0378-4347(99)00365-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A reliable protocol was designed for fast expression and purification of recombinant chymotrypsin(ogen). The zymogen was overexpressed in soluble form as a (His)6-fusion construct in the cytoplasm of the thioredoxin reductase deficient Escherichia coli strain AD494(DE3). This allowed purification of chymotrypsinogen in a highly selective affinity chromatography capture step using a Ni-NTA column. After activation with enterokinase, the enzymatically active chymotrypsin was purified in a polishing step using a modified soybean trypsin inhibitor agarose column. This expression system and the use of affinity chromatography for capture and polishing, offers an easier and faster route to recombinant chymotrypsin(ogen) than the previously described use of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- G Verheyden
- Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Belgium
| | | | | |
Collapse
|
234
|
Abstract
Prokaryotic cells employ redox-sensing transcription factors to detect elevated levels of reactive oxygen species and regulate expression of antioxidant genes. In Escherichia coli, two such transcription factors, OxyR and SoxR, have been well characterized. The OxyR protein contains a thiol-disulfide redox switch to sense hydrogen peroxide. The SoxR protein uses a 2Fe-2S cluster to sense superoxide generated by redox-cycling agents, as well as to sense nitric oxide. Both proteins are turned on and off with very fast kinetics (approximate minutes), allowing rapid cellular responses to oxidative stress. The mechanisms by which these and other prokaryotic proteins sense redox signals have provided useful paradigms for understanding redox signal transduction in eukaryotic cells.
Collapse
Affiliation(s)
- M Zheng
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
235
|
Abstract
Eukaryotic organisms from yeast to human possess a mitochondrial thioredoxin system composed of thioredoxin and thioredoxin reductase, similar to the cytosolic thioredoxin system that exists in the same cells. Yeast and mammalian mitochondrial thioredoxins are monomers of approximately 12 kDa and contain the typical conserved active site WCGPC. However, there are important differences between yeast and mammalian mitochondrial thioredoxin reductases that resemble the differences between their cytosolic counterparts. Mammalian mitochondrial thioredoxin reductase is a selenoprotein that forms a homodimer of 55 kDa/subunit; while yeast mitochondrial thioredoxin reductase is a homodimer of 37 kDa/subunit and does not contain selenocysteine. A function of the mitochondrial thioredoxin system is as electron donor for a mitochondrial peroxiredoxin, an enzyme that detoxifies the hydrogen peroxide generated by the mitochondrial metabolism. Experiments with yeast mutants lacking both the mitochondrial thioredoxin system as well as the mitochondrial peroxiredoxin system suggest an important role for mitochondrial thioredoxin, thioredoxin reductase, and peroxiredoxin in the protection against oxidative stress.
Collapse
Affiliation(s)
- A Miranda-Vizuete
- Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden
| | | | | |
Collapse
|
236
|
Bessette PH, Aslund F, Beckwith J, Georgiou G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 1999; 96:13703-8. [PMID: 10570136 PMCID: PMC24128 DOI: 10.1073/pnas.96.24.13703] [Citation(s) in RCA: 493] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Under physiological conditions, the Escherichia coli cytoplasm is maintained in a reduced state that strongly disfavors the formation of stable disulfide bonds in proteins. However, mutants in which the reduction of both thioredoxins and glutathione is impaired (trxB gor mutants) accumulate oxidized, enzymatically active alkaline phosphatase in the cytoplasm. These mutants grow very poorly in the absence of an exogenous reductant and accumulate extragenic suppressors at a high frequency. One such suppressor strain, FA113, grows almost as rapidly as the wild type in the absence of reductant, exhibits slightly faster kinetics of disulfide bond formation, and has fully induced activity of the transcriptional activator, OxyR. FA113 gave substantially higher yields of properly oxidized proteins compared with wild-type or trxB mutant strains. For polypeptides with very complex patterns of disulfide bonds, such as vtPA and the full-length tPA, the amount of active protein was further enhanced up to 15-fold by co-expression of TrxA (thioredoxin 1) mutants with different redox potentials, or 20-fold by the protein disulfide isomerase, DsbC. Remarkably, higher yields of oxidized, biologically active proteins were obtained by expression in the cytoplasm of E. coli FA113 compared with what could be achieved via secretion into the periplasm of a wild-type strain, even under optimized conditions. These results demonstrate that the cytoplasm can be rendered sufficiently oxidizing to allow efficient formation of native disulfide bonds without compromising cell viability.
Collapse
Affiliation(s)
- P H Bessette
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
237
|
Gierlich A, van 't Slot KA, Li VM, Marie C, Hermann H, Knogge W. Heterologous expression of the avirulence gene product, NIP1, from the barley pathogen Rhynchosporium secalis. Protein Expr Purif 1999; 17:64-73. [PMID: 10497070 DOI: 10.1006/prep.1999.1098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NIP1, the product of the avirulence gene AvrRrs1 from Rhynchosporium secalis, a fungal pathogen of barley, is a small secreted cysteine-rich protein. This protein is essential for the specific recognition of the fungus by host plants carrying the complementary resistance gene Rrs1. Different heterologous expression systems were tested to produce sufficient quantities of NIP1 to allow its utilization in receptor identification and isolation. In addition, protein amounts higher than those produced in fungal cultures are required to determine its 3D structure and to analyze its interaction with a receptor. The most efficient method, the synthesis of a His-tag fusion protein in Escherichia coli combined with a refolding procedure, yielded up to 3 mg of recombinant NIP1 from a 1-liter bacterial culture. After removal of the His-tag, the recombinant protein showed the same physicochemical characteristics as the native NIP1 and, most importantly, full biological activity.
Collapse
Affiliation(s)
- A Gierlich
- Department of Biochemistry, Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, Köln, D-50829, Germany
| | | | | | | | | | | |
Collapse
|
238
|
Hill AS, Giersch TM, Loh CS, Skerritt JH. Immunoassay for wheat processing quality: utilization of a sandwich assay incorporating an immobilized single-chain fragment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 1999; 47:4484-4490. [PMID: 10552838 DOI: 10.1021/jf990167f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A single-chain fragment (scFv) was engineered from a monoclonal antibody to high molecular weight glutenin subunits (HMW-GS), wheat flour polypeptides that play a major role in determining the mixing- and extension strength-related properties of dough and its subsequent baking performance. The scFv was expressed in a thioredoxin mutant Escherichia coli strain that allows disulfide bond formation in the cytoplasm and incorporated into a diagnostic test for wheat quality. Although the scFv lacks the more highly conserved antibody constant regions usually involved with immobilization, it was able to be directly immobilized to a polystyrene microwell solid phase without chemical or covalent modification of the protein or solid phase and utilized as a capture antibody in a double-antibody (two-site) immunoassay. In the sandwich assay, increasing HMW-GS concentrations produced increasing assay color, and highly significant correlations were obtained between optical densities obtained in the ELISA using the scFv and the content of large glutenin polymers in flours as well as measures of dough strength as measured by resistance to dough extension in rheological testing. The assay using the scFv was able to be carried out at lower flour sample extract dilutions than that required for a similar assay utilizing a monoclonal capture antibody. This research shows that engineered antibody fragments can be utilized to provide superior assay performance in two-site ELISAs over monoclonal antibodies and is the first application of an engineered antibody to the analysis of food processing quality.
Collapse
Affiliation(s)
- A S Hill
- CSIRO Plant Industry and Quality Wheat Cooperative Research Centre Ltd., GPO Box 1600, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
239
|
Moura-da-Silva AM, Línica A, Della-Casa MS, Kamiguti AS, Ho PL, Crampton JM, Theakston RD. Jararhagin ECD-containing disintegrin domain: expression in escherichia coli and inhibition of the platelet-collagen interaction. Arch Biochem Biophys 1999; 369:295-301. [PMID: 10486149 DOI: 10.1006/abbi.1999.1372] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Jararhagin, a hemorrhagin from Bothrops jararaca venom, is a soluble snake venom component comprising metalloproteinase and disintegrin cysteine-rich domains and, therefore, is structurally closely related to the membrane-bound A Disintegrin And Metalloproteinase (ADAMs) protein family. Its hemorrhagic activity is associated with the effects of both metalloproteinase and disintegrin domains; the metalloproteinase enzymatically damages the endothelium and the disintegrin domain inhibits platelet-collagen interactions. The expression of whole jararhagin or its disintegrin domain has never been attempted before. The aim of this study was to investigate whether we could express the disintegrin domain of jararhagin and to verify whether this domain displays an inhibitory effect on the platelet-collagen interaction. Therefore, the cDNA fragment coding for the disintegrin plus cysteine-rich domains of jararhagin was cloned into the pET32a vector, used to transform the Escherichia coli AD494(DE3)pLysS strain. The thioredoxin-disintegrin fusion protein was recovered from the soluble extract of the cells, yielding up to 50 mg/liter culture. The fusion protein was isolated using polyhistidine binding resin which resulted in a main band of 45 kDa recognized by anti-native jararhagin antibodies. Antibodies raised in rabbits against the fusion protein had high enzyme-linked immunosorbent assay titers against native jararhagin and detected a band of 52 kDa on Western blots of whole B. jararaca venom demonstrating that these antibodies recognize the parent jararhagin molecule. Treatment of the fusion protein with enterokinase, followed by further capture of the enzyme, resulted in a band of 30 kDa, the expected size for jararhagin-C. Further purification of the cleaved disintegrin using FPLC Mono-Q columns resulted in one fraction capable of efficiently inhibiting collagen-induced platelet aggregation in a dose-dependent manner (IC(50) of 8.5 microg/ml).
Collapse
Affiliation(s)
- A M Moura-da-Silva
- Laboratório de Imunopatologia, Laboratório de Biotecnologia Molecular, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|
240
|
Burrows GG, Chang JW, Bächinger HP, Bourdette DN, Offner H, Vandenbark AA. Design, engineering and production of functional single-chain T cell receptor ligands. PROTEIN ENGINEERING 1999; 12:771-8. [PMID: 10506287 DOI: 10.1093/protein/12.9.771] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are membrane-anchored heterodimers on the surface of antigen presenting cells (APCs) that bind the T cell receptor, initiating a cascade of interactions that results in antigen-specific activation of clonal populations of T cells. The peptide binding/T cell recognition domains of rat MHC class II (alpha-1 and beta-1 domains) were expressed as a single exon for structural and functional characterization. These recombinant single-chain T cell receptor ligands (termed 'beta1alpha1' molecules) of approximately 200 amino acid residues were designed using the structural backbone of MHC class II molecules as template, and have been produced in Escherichia coli with and without N-terminal extensions containing antigenic peptides. Structural characterization using circular dichroism predicted that these molecules retained the antiparallel beta-sheet platform and antiparallel alpha-helices observed in the native MHC class II heterodimer. The proteins exhibited a cooperative two-state thermal folding-unfolding transition. Beta1alpha1 molecules with a covalently linked MBP-72-89 peptide showed increased stability to thermal unfolding relative to the empty beta1alpha1 molecules. This new class of small soluble polypeptide provides a template for designing and refining human homologues useful in detecting and regulating pathogenic T cells.
Collapse
Affiliation(s)
- G G Burrows
- Department of Neurology, Department of Biochemistry and Molecular Biology and Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97201, USA
| | | | | | | | | | | |
Collapse
|
241
|
Wall JG, Plückthun A. The hierarchy of mutations influencing the folding of antibody domains in Escherichia coli. PROTEIN ENGINEERING 1999; 12:605-11. [PMID: 10436087 DOI: 10.1093/protein/12.7.605] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In a systematic study of the periplasmic folding of antibody fragments in Escherichia coli, we have analysed the expression of an aggregation-prone and previously non-functional anti-phosphorylcholine antibody, T15, as a model system and converted it to a functional molecule. Introduction of heavy chain framework mutations previously found to improve the folding of a related antibody led to improved folding of T15 fragments and improved physiology of the host E.coli cells. Manipulation of the complementarity determining regions (CDR) of the framework-mutated forms of T15 further improved folding and bacterial host physiology, but no improvement was seen in the wild type, suggesting the existence of a hierarchy in sequence positions leading to aggregation. Rational mutagenesis of the T15 light chain led to the production of functional T15 fragments for the first time, with increased levels of functional protein produced from V(H) manipulated constructs. We propose that a hierarchical analysis of the primary amino acid sequence, as we have described, provides guidelines on how correctly folding, functional antibodies might be achieved and will allow further delineation of the decisive structural factors and pathways favouring protein aggregation.
Collapse
Affiliation(s)
- J G Wall
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190,CH-8057 Zürich, Switzerland
| | | |
Collapse
|
242
|
Jonda S, Huber-Wunderlich M, Glockshuber R, Mössner E. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm. EMBO J 1999; 18:3271-81. [PMID: 10369668 PMCID: PMC1171408 DOI: 10.1093/emboj/18.12.3271] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The thiol/disulfide oxidoreductase DsbA is the strongest oxidant of the thioredoxin superfamily and is required for efficient disulfide bond formation in the periplasm of Escherichia coli. To determine the importance of the redox potential of the final oxidant in periplasmic protein folding, we have investigated the ability of the most reducing thiol/disulfide oxidoreductase, E.coli thioredoxin, of complementing DsbA deficiency when secreted to the periplasm. In addition, we secreted thioredoxin variants with increased redox potentials as well as the catalytic a-domain of human protein disulfide isomerase (PDI) to the periplasm. While secreted wild-type thioredoxin and the most reducing thioredoxin variant could not replace DsbA, all more oxidizing thioredoxin variants as well as the PDI a-domain could complement DsbA deficiency in a DsbB-dependent manner. There is an excellent agreement between the activity of the secreted thioredoxin variants in vivo and their ability to oxidize polypeptides fast and quantitatively in vitro. We conclude that the redox potential of the direct oxidant of folding proteins and in particular its reactivity towards reduced polypeptides are crucial for efficient oxidative protein folding in the bacterial periplasm.
Collapse
Affiliation(s)
- S Jonda
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
243
|
Wong BS, Wang H, Brown DR, Jones IM. Selective oxidation of methionine residues in prion proteins. Biochem Biophys Res Commun 1999; 259:352-5. [PMID: 10362513 DOI: 10.1006/bbrc.1999.0802] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prion proteins are central to the pathogenesis of several neurodegenerative diseases through the postulated conversion of the endogenous cellular isoform (PrPc) into a pathogenic isoform (PrPSc). Although the cellular function of normal prion protein remains unresolved a number of studies have shown that prion proteins may be involved in the cellular response to oxidative stress. Here, using purified recombinant sources of mouse and chicken PrP refolded in the presence of copper (II) we show that the methionine residues of the protein are uniquely susceptible to oxidation. We suggest that Met residues may form an essential part of the mechanism of the antioxidant activity exhibited by normal prion protein.
Collapse
Affiliation(s)
- B S Wong
- NERC Institute of Virology and Environmental Microbiology, Oxford, OX1 3SR
| | | | | | | |
Collapse
|
244
|
Tavladoraki P, Girotti A, Donini M, Arias FJ, Mancini C, Morea V, Chiaraluce R, Consalvi V, Benvenuto E. A single-chain antibody fragment is functionally expressed in the cytoplasm of both Escherichia coli and transgenic plants. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:617-24. [PMID: 10336651 DOI: 10.1046/j.1432-1327.1999.00443.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the well-known crucial role of intradomain disulfide bridges for immunoglobulin folding and stability, the single-chain variable fragment of the anti-viral antibody F8 is functionally expressed when targeted to the reducing environment of the plant cytoplasm. We show here that this antibody fragment is also functionally expressed in the cytoplasm of Escherichia coli. A gel shift assay revealed that the single-chain variable fragment (scFv) accumulating in the plant and bacterial cytoplasm bears free sulfhydryl groups. Guanidinium chloride denaturation/renaturation studies indicated that refolding occurs even in a reducing environment, producing a functional molecule with the same spectral properties of the native scFv(F8). Taken together, these results suggest that folding and functionality of this antibody fragment are not prevented in a reducing environment. This antibody fragment could therefore represent a suitable framework for engineering recombinant antibodies to be targeted to the cytoplasm.
Collapse
Affiliation(s)
- P Tavladoraki
- ENEA, Dipartimento Innovazione, Divisione Biotecnologie e Agricoltura, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Harris CR, Silhavy TJ. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J Bacteriol 1999; 181:3438-44. [PMID: 10348856 PMCID: PMC93811 DOI: 10.1128/jb.181.11.3438-3444.1999] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1999] [Accepted: 04/06/1999] [Indexed: 11/20/2022] Open
Abstract
SecY and SecE are integral cytoplasmic membrane proteins that form an essential part of the protein translocation machinery in Escherichia coli. Sites of direct contact between these two proteins have been suggested by the allele-specific synthetic phenotypes exhibited by pairwise combinations of prlA and prlG signal sequence suppressor mutations in these genes. We have introduced cysteine residues within the first periplasmic loop of SecY and the second periplasmic loop of SecE, at a specific pair of positions identified by this genetic interaction. The expression of the cysteine mutant pair results in a dominant lethal phenotype that requires the presence of DsbA, which catalyzes the formation of disulfide bonds. A reducible SecY-SecE complex is also observed, demonstrating that these amino acids must be sufficiently proximal to form a disulfide bond. The use of cysteine-scanning mutagenesis enabled a second contact site to be discovered. Together, these two points of contact allow the modeling of a limited region of quaternary structure, establishing the first characterized site of interaction between these two proteins. This study proves that actual points of protein-protein contact can be identified by using synthetic phenotypes.
Collapse
Affiliation(s)
- C R Harris
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
246
|
Aslund F, Zheng M, Beckwith J, Storz G. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci U S A 1999; 96:6161-5. [PMID: 10339558 PMCID: PMC26852 DOI: 10.1073/pnas.96.11.6161] [Citation(s) in RCA: 430] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli transcription factor OxyR is activated by the formation of an intramolecular disulfide bond and subsequently is deactivated by enzymatic reduction of the disulfide bond. Here we show that OxyR can be activated by two possible pathways. In mutants defective in the cellular disulfide-reducing systems, OxyR is constitutively activated by a change in the thiol-disulfide redox status in the absence of added oxidants. In wild-type cells, OxyR is activated by hydrogen peroxide. By monitoring the presence of the OxyR disulfide bond after exposure to hydrogen peroxide in vivo and in vitro, we also show that the kinetics of OxyR oxidation by low concentrations of hydrogen peroxide is significantly faster than the kinetics of OxyR reduction, allowing for transient activation in an overall reducing environment. We propose that the activity of OxyR in vivo is determined by the balance between hydrogen peroxide levels and the cellular redox environment.
Collapse
Affiliation(s)
- F Aslund
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
247
|
Kuwabara I, Maruyama H, Kamisue S, Shima M, Yoshioka A, Maruyama IN. Mapping of the minimal domain encoding a conformational epitope by lambda phage surface display: factor VIII inhibitor antibodies from haemophilia A patients. J Immunol Methods 1999; 224:89-99. [PMID: 10357210 DOI: 10.1016/s0022-1759(99)00012-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Haemophilia A patients who receive repeated transfusion of fVIII concentrates often develop inhibitor alloantibodies, resulting in reduced efficacy of the therapy. Determination of fVIII epitopes for the alloantibodies is essential for an understanding of their inhibitory effect on blood coagulation. Random fragments of fVIII displayed on lambda phage particles were selected using two patient plasmas immobilized onto the surface of a microtiter plate. A set of clones defined the minimal domain that consisted of 157 amino acid residues including cysteine at both boundaries. The minimal domain absorbed most of the binding activities of the plasmas to fVIII, suggesting that the domain contains a major determinant for the plasmas. Site-directed mutagenesis and chemical denaturation of the domain confirmed that a tertiary structure formed by the disulfide bridge was recognized by the antibodies. The epitope domain defined overlaps with fVIII binding sites to vWf and phospholipid, and may play an important role in blood coagulation. Thus, the bacteriophage lambda surface display may be useful for mapping the minimal folding domain of various protein antigens that contain a conformational epitope.
Collapse
Affiliation(s)
- I Kuwabara
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
248
|
Aslund F, Beckwith J. The thioredoxin superfamily: redundancy, specificity, and gray-area genomics. J Bacteriol 1999; 181:1375-9. [PMID: 10049365 PMCID: PMC93523 DOI: 10.1128/jb.181.5.1375-1379.1999] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- F Aslund
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
249
|
Abstract
The intracellular expression of antibodies in mammalian cells is a strategy to inhibit the in vivo function of selected molecules but is limited by the unpredictable behaviour of antibodies when intracellularly expressed. Recent advances in the field of antibody expression in Escherichia coli show that the introduction of mutations can improve the properties of some antibody domains, but the general applicability of this approach to intracellular antibodies remains to be proved. As a complement to rational approaches, we describe selection schemes in which antibodies are selected on the basis of their performance in vivo as intracellular antibodies.
Collapse
Affiliation(s)
- A Cattaneo
- Neurosceince Program, International School for Advanced Studies (SISSA), Trieste, Italy.
| | | |
Collapse
|
250
|
Abstract
Hsp33, a member of a newly discovered heat shock protein family, was found to be a very potent molecular chaperone. Hsp33 is distinguished from all other known molecular chaperones by its mode of functional regulation. Its activity is redox regulated. Hsp33 is a cytoplasmically localized protein with highly reactive cysteines that respond quickly to changes in the redox environment. Oxidizing conditions like H2O2 cause disulfide bonds to form in Hsp33, a process that leads to the activation of its chaperone function. In vitro and in vivo experiments suggest that Hsp33 protects cells from oxidants, leading us to conclude that we have found a protein family that plays an important role in the bacterial defense system toward oxidative stress.
Collapse
Affiliation(s)
- U Jakob
- Department of Biology, University of Michigan, Ann Arbor 48109-1048, USA.
| | | | | | | |
Collapse
|