201
|
Cornell CT, Kiosses WB, Harkins S, Whitton JL. Inhibition of protein trafficking by coxsackievirus b3: multiple viral proteins target a single organelle. J Virol 2006; 80:6637-47. [PMID: 16775351 PMCID: PMC1488957 DOI: 10.1128/jvi.02572-05] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Despite replicating to very high titers, coxsackieviruses do not elicit strong CD8 T-cell responses, perhaps because antigen presentation is inhibited by virus-induced disruption of host protein trafficking. Herein, we evaluated the effects of three viral nonstructural proteins (2B, 2BC, and 3A) on intracellular trafficking. All three of these proteins inhibited secretion, to various degrees, and directly associated with the Golgi complex, causing trafficking proteins to accumulate in this compartment. The 3A protein almost completely ablated trafficking and secretion, by moving rapidly to the Golgi, and causing its disruption. Using an alanine-scanning 3A mutant, we show that Golgi targeting and disruption can be uncoupled. Thus, coxsackieviruses rely on the combined effects of several gene products that target a single cellular organelle to successfully block protein secretion during an infection. These findings have implications for viral pathogenesis.
Collapse
Affiliation(s)
- Christopher T Cornell
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
202
|
Jacob-Wilk D, Turina M, Van Alfen NK. Mycovirus cryphonectria hypovirus 1 elements cofractionate with trans-Golgi network membranes of the fungal host Cryphonectria parasitica. J Virol 2006; 80:6588-96. [PMID: 16775345 PMCID: PMC1488963 DOI: 10.1128/jvi.02519-05] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 04/09/2006] [Indexed: 11/20/2022] Open
Abstract
The mycovirus cryphonectria hypovirus 1 (CHV1) causes proliferation of vesicles in its host, Cryphonectria parasitica, the causal agent of chestnut blight. These vesicles have previously been shown to contain both CHV1 genomic double-stranded RNA (dsRNA) and RNA polymerase activity. To determine the cellular origins of these virus-induced membrane structures, we compared the fractionation of several cellular and viral markers. Results showed that viral dsRNA, helicase, polymerase, and protease p29 copurify with C. parasitica trans-Golgi network (TGN) markers, suggesting that the virus utilizes the fungal TGN for replication. We also show that the CHV1 protease p29 associates with vesicle membranes and is resistant to treatments that would release peripheral membrane proteins. Thus, p29 behaves as an integral membrane protein of the vesicular fraction derived from the fungal TGN. Protease p29 was also found to be fully susceptible to proteolytic digestion in the absence of detergent and, thus, is wholly or predominantly on the cytoplasmic face of the vesicles. Fractionation analysis of p29 deletion variants showed that sequences in the C terminal of p29 mediate membrane association. In particular, the C-terminal portion of the protein (Met-135-Gly-248) is sufficient for membrane association and is enough to direct p29 to the TGN vesicles in the absence of other viral elements.
Collapse
Affiliation(s)
- Debora Jacob-Wilk
- Department of Plant Pathology, College of Agricultural and Environmental Science, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
203
|
Liu S, Rodriguez AV, Tosteson MT. Role of simvastatin and methyl-beta-cyclodextrin [corrected] on inhibition of poliovirus infection. Biochem Biophys Res Commun 2006; 347:51-9. [PMID: 16824485 DOI: 10.1016/j.bbrc.2006.06.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 06/05/2006] [Indexed: 01/25/2023]
Abstract
Cells exposed to simvastatin or to methyl-beta-cyclodextrin show reduced poliovirus infection, without alteration in virus binding or on the kinetics of genome entry, suggesting that the steps which are altered are those post uncoating and genome entry. Reduction of infection by cyclodextrin is reversed by increasing MOI whereas that produced by simvastatin treatment is not, suggesting that the effects on infection are not due to a reduction in cholesterol. The differences in the characteristics of inhibition can be explained by the differential effects of the compounds. Cyclodextrin inhibits the store-operated calcium channels, suggesting that reduction in infection is through translational inhibition. Simvastatin produces vesicles from internal membranes which cannot sustain viral RNA synthesis, reducing infection through reduced transcription. The results indicate that the impact on viral infection by the cholesterol-modifying agents is due to the cellular changes produced rather than due to disruption of the cholesterol-rich domains.
Collapse
Affiliation(s)
- Shumei Liu
- Department of Cell Biology, Harvard Medical School, Cambridge, MA 02116, USA
| | | | | |
Collapse
|
204
|
Ahlquist P. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat Rev Microbiol 2006; 4:371-82. [PMID: 16582931 PMCID: PMC7097367 DOI: 10.1038/nrmicro1389] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viruses are exceptionally diverse and are grouped by genome replication and encapsidation strategies into seven distinct classes: two classes of DNA viruses (encapsidating single-stranded (ss)DNA or double-stranded (ds)DNA), three classes of RNA viruses (encapsidating mRNA-sense ssRNA, antisense ssRNA or dsRNA) and two classes of reverse-transcribing viruses (encapsidating RNA or DNA). Despite substantial life-cycle differences, positive-strand RNA ((+)RNA) viruses, dsRNA viruses and reverse-transcribing viruses share multiple similarities in genome replication. All replicate their genomes through RNA intermediates that also serve as mRNAs. Moreover, the intracellular RNA-replication complexes of (+)RNA viruses share similarities in structure, assembly and function with the polymerase-containing virion cores of dsRNA and reverse transcribing viruses. Brome mosaic virus (BMV) RNA-replication factors 1a and 2apol and cis-acting template-recruitment signals parallel retrovirus Gag, Pol and RNA-packaging signals in virion assembly: 1a localizes to specific membranes, self-interacts and induces ∼60-nm membrane invaginations to which it recruits 2apol and viral RNAs for replication. Therefore, like retroviruses and dsRNA viruses, BMV sequesters its genomic RNA and polymerase in a virus-induced compartment for replication. BMV and some other alphavirus-like (+)RNA viruses also parallel retroviruses in using tRNA-related sequences to initiate genome replication, and share with dsRNA reoviruses aspects of the function and interaction of their RNA polymerase and RNA-capping enzymes. Emerging results indicate that the genome-replication machineries of these viruses might share other mechanistic features. Whereas (+)RNA alphavirus-like viruses, dsRNA reoviruses and retroviruses are linked by the above similarities, (+)RNA picornaviruses, dsRNA birnaviruses and reverse-transcribing hepadnaviruses share some distinct features, including protein-primed nucleic-acid synthesis. Such parallels suggest that at least some (+)RNA viruses, dsRNA viruses and reverse-transcribing viruses might have evolved from common ancestors. The transitions required for such evolution can be readily envisioned and some have precedents. These underlying parallels in genome replication by four of the seven main virus classes might provide a basis for more generalizable or broader-spectrum approaches for virus control.
Despite major differences in the life cycles of the seven different classes of known viruses, the genome-replication processes of certain positive-strand RNA viruses, double-stranded RNA viruses and reverse-transcribing viruses show striking parallels. Paul Ahlquist highlights these similarities and discusses their intriguing evolutionary implications. Viruses are divided into seven classes on the basis of differing strategies for storing and replicating their genomes through RNA and/or DNA intermediates. Despite major differences among these classes, recent results reveal that the non-virion, intracellular RNA-replication complexes of some positive-strand RNA viruses share parallels with the structure, assembly and function of the replicative cores of extracellular virions of reverse-transcribing viruses and double-stranded RNA viruses. Therefore, at least four of seven principal virus classes share several underlying features in genome replication and might have emerged from common ancestors. This has implications for virus function, evolution and control.
Collapse
Affiliation(s)
- Paul Ahlquist
- Institute for Molecular Virology and Howard Hughes Medical Institute, University of Wisconsin--Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
205
|
Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJM, van der Meulen J, Koerten HK, Mommaas AM. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 2006; 80:5927-40. [PMID: 16731931 PMCID: PMC1472606 DOI: 10.1128/jvi.02501-05] [Citation(s) in RCA: 405] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 04/03/2006] [Indexed: 12/14/2022] Open
Abstract
The RNA replication complexes of mammalian positive-stranded RNA viruses are generally associated with (modified) intracellular membranes, a feature thought to be important for creating an environment suitable for viral RNA synthesis, recruitment of host components, and possibly evasion of host defense mechanisms. Here, using a panel of replicase-specific antisera, we have analyzed the earlier stages of severe acute respiratory syndrome coronavirus (SARS-CoV) infection in Vero E6 cells, in particular focusing on the subcellular localization of the replicase and the ultrastructure of the associated membranes. Confocal immunofluorescence microscopy demonstrated the colocalization, throughout infection, of replicase cleavage products containing different key enzymes for SARS-CoV replication. Electron microscopy revealed the early formation and accumulation of typical double-membrane vesicles, which probably carry the viral replication complex. The vesicles appear to be fragile, and their preservation was significantly improved by using cryofixation protocols and freeze substitution methods. In immunoelectron microscopy, the virus-induced vesicles could be labeled with replicase-specific antibodies. Opposite to what was described for mouse hepatitis virus, we did not observe the late relocalization of specific replicase subunits to the presumed site of virus assembly, which was labeled using an antiserum against the viral membrane protein. This conclusion was further supported using organelle-specific marker proteins and electron microscopy. Similar morphological studies and labeling experiments argued against the previously proposed involvement of the autophagic pathway as the source for the vesicles with which the replicase is associated and instead suggested the endoplasmic reticulum to be the most likely donor of the membranes that carry the SARS-CoV replication complex.
Collapse
Affiliation(s)
- Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
206
|
Roosendaal J, Westaway EG, Khromykh A, Mackenzie JM. Regulated cleavages at the West Nile virus NS4A-2K-NS4B junctions play a major role in rearranging cytoplasmic membranes and Golgi trafficking of the NS4A protein. J Virol 2006; 80:4623-32. [PMID: 16611922 PMCID: PMC1472005 DOI: 10.1128/jvi.80.9.4623-4632.2006] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A common feature associated with the replication of most RNA viruses is the formation of a unique membrane environment encapsulating the viral replication complex. For their part, flaviviruses are no exception, whereupon infection causes a dramatic rearrangement and induction of unique membrane structures within the cytoplasm of infected cells. These virus-induced membranes, termed paracrystalline arrays, convoluted membranes, and vesicle packets, all appear to have specific functions during replication and are derived from different organelles within the host cell. The aim of this study was to identify which protein(s) specified by the Australian strain of West Nile virus, Kunjin virus (KUNV), are responsible for the dramatic membrane alterations observed during infection. Thus, we have shown using immunolabeling of ultrathin cryosections of transfected cells that expression of the KUNV polyprotein intermediates NS4A-4B and NS2B-3-4A, as well as that of individual NS4A proteins with and without the C-terminal transmembrane domain 2K, resulted in different degrees of rearrangement of cytoplasmic membranes. The formation of the membrane structures characteristic for virus infection required coexpression of an NS4A-NS4B cassette with the viral protease NS2B-3pro which was shown to be essential for the release of the individual NS4A and NS4B proteins. Individual expression of NS4A protein retaining the C-terminal transmembrane domain 2K resulted in the induction of membrane rearrangements most resembling virus-induced structures, while removal of the 2K domain led to a less profound membrane rearrangement but resulted in the redistribution of the NS4A protein to the Golgi apparatus. The results show that cleavage of the KUNV polyprotein NS4A-4B by the viral protease is the key initiation event in the induction of membrane rearrangement and that the NS4A protein intermediate containing the uncleaved C-terminal transmembrane domain plays an essential role in these membrane rearrangements.
Collapse
Affiliation(s)
- Jojanneke Roosendaal
- School of Molecular and Microbial Sciences, University of Queensland, Coopers Road, St. Lucia, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
207
|
Lerner RS, Nicchitta CV. mRNA translation is compartmentalized to the endoplasmic reticulum following physiological inhibition of cap-dependent translation. RNA (NEW YORK, N.Y.) 2006; 12:775-89. [PMID: 16540694 PMCID: PMC1440905 DOI: 10.1261/rna.2318906] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Eukaryotic cells utilize a cycle of ribosome trafficking on the endoplasmic reticulum (ER) to partition mRNAs between the cytosol and ER compartments. In this process, ribosomes engaged in the synthesis of signal sequence-bearing proteins are trafficked to the endoplasmic reticulum via the signal-recognition particle pathway and are released from the ER upon translation termination. Though the processes governing ribosome trafficking to the ER are well understood, little is known regarding the complementary ribosome release process. In this study, Coxsackie B virus (CBV) infection was used to inactivate the initiation stage of protein synthesis, thereby limiting translation to the elongation and termination stages. Ribosome partitioning between the cytosol and ER compartments was examined to determine the role of termination in ribosome release from the ER. CBV infection resulted in efficient cleavage of eIF4G and PABP, coincident with polyribosome breakdown in the cytosol and ER compartments. Termination resulted in the continued association of ribosomes with the ER compartment, rather than the expected process of ribosome release. Analyses of ribosome/mRNA loading patterns in the cytosol and ER revealed that CBV infection was accompanied by a suppression of mRNA translation in the cytosol and the sustained, although reduced, translation in the ER compartment. Direct biosynthetic labeling experiments demonstrated that protein synthesis on the ER was enhanced relative to the cytosol following CBV infection. In total, these data demonstrate that ribosome and mRNA release from the ER is regulated independent of translation termination and identify the ER as a privileged site for protein synthesis.
Collapse
Affiliation(s)
- Rachel S Lerner
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
208
|
García-Briones M, Rosas MF, González-Magaldi M, Martín-Acebes MA, Sobrino F, Armas-Portela R. Differential distribution of non-structural proteins of foot-and-mouth disease virus in BHK-21 cells. Virology 2006; 349:409-21. [PMID: 16624365 DOI: 10.1016/j.virol.2006.02.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 12/13/2005] [Accepted: 02/28/2006] [Indexed: 11/22/2022]
Abstract
Differences in the kinetics of expression and cell distribution among FMDV non-structural proteins (NSPs) have been observed in BHK-21-infected cells. 3D(pol) was the first protein detected by immunofluorescence (1.5 h p.i.), showing a perinuclear distribution. At 2-2.5 h p.i., 2B, 2C, 3B and 3C were detected, mostly exhibiting a punctuated, scattered pattern, while 3A and 3D(pol) appeared concentrated at one side of the nucleus. This distribution was exhibited by all the NSPs from 3 h p.i., being 2C and, to a lesser extent, precursors 2BC and 3ABBB, the only proteins detected by Western blotting at that infection time. From 4 h p.i., all mature NSPs as well as precursors 2BC, 3ABBB, 3ABB, 3AB and 3CD(pol) were detected by this technique. In spite of their similar immunofluorescence patterns, 2C and 3A co-localized partially by confocal microscopy at 3.5 h p.i., and 3A, but not 2C, co-localized with the ER marker calreticulin, suggesting differences in the distribution of these proteins and/or their precursors as infection proceeded. Transient expression of 2C and 3AB resulted in punctuated fluorescence patterns similar to those found in early infected cells, while 3A showed a more diffuse distribution. A shift towards a fibrous pattern was noticed for 3ABB, while a major change was observed in cells expressing 3ABBB, which displayed a perinuclear fibrous distribution. Interestingly, when co-expressed with 3D(pol), the pattern observed for 3ABBB fluorescence was altered, resembling that exhibited by cells transfected with 3AB. Transient expression of 3D(pol) showed a homogeneous cell distribution that included, as determined by confocal microscopy, the nucleus. This was confirmed by the detection of 3D(pol) in nuclear fractions of transfected cells. 3D(pol) and its precursor 3CD(pol) were also detected in nuclear fractions of infected cells, suggesting that these proteins can directly interact with the nucleus during FMDV infection.
Collapse
|
209
|
Mackenzie J. Wrapping things up about virus RNA replication. TRAFFIC (COPENHAGEN, DENMARK) 2006. [PMID: 16190978 DOI: 10.1111/j.1600-08 54.2005.00339.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
All single-stranded 'positive-sense' RNA viruses that infect mammalian, insect or plant cells rearrange internal cellular membranes to provide an environment facilitating virus replication. A striking feature of these unique membrane structures is the induction of 70-100 nm vesicles (either free within the cytoplasm, associated with other induced vesicles or bound within a surrounding membrane) harbouring the viral replication complex (RC). Although similar in appearance, the cellular composition of these vesicles appears to vary for different viruses, implying different organelle origins for the intracellular sites of viral RNA replication. Genetic analysis has revealed that induction of these membrane structures can be attributed to a particular viral gene product, usually a non-structural protein. This review will highlight our current knowledge of the formation and composition of virus RCs and describe some of the similarities and differences in RNA-membrane interactions observed between the virus families Flaviviridae and Picornaviridae.
Collapse
Affiliation(s)
- Jason Mackenzie
- School of Molecular and Microbial Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
210
|
Abstract
All single-stranded 'positive-sense' RNA viruses that infect mammalian, insect or plant cells rearrange internal cellular membranes to provide an environment facilitating virus replication. A striking feature of these unique membrane structures is the induction of 70-100 nm vesicles (either free within the cytoplasm, associated with other induced vesicles or bound within a surrounding membrane) harbouring the viral replication complex (RC). Although similar in appearance, the cellular composition of these vesicles appears to vary for different viruses, implying different organelle origins for the intracellular sites of viral RNA replication. Genetic analysis has revealed that induction of these membrane structures can be attributed to a particular viral gene product, usually a non-structural protein. This review will highlight our current knowledge of the formation and composition of virus RCs and describe some of the similarities and differences in RNA-membrane interactions observed between the virus families Flaviviridae and Picornaviridae.
Collapse
Affiliation(s)
- Jason Mackenzie
- School of Molecular and Microbial Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
211
|
de Jong AS, Visch HJ, de Mattia F, van Dommelen MM, Swarts HG, Luyten T, Callewaert G, Melchers WJ, Willems PH, van Kuppeveld FJ. The coxsackievirus 2B protein increases efflux of ions from the endoplasmic reticulum and Golgi, thereby inhibiting protein trafficking through the Golgi. J Biol Chem 2006; 281:14144-50. [PMID: 16540472 DOI: 10.1074/jbc.m511766200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus infection leads to a rapid reduction of the filling state of the endoplasmic reticulum (ER) and Golgi Ca2+ stores. The coxsackievirus 2B protein, a small membrane protein that localizes to the Golgi and to a lesser extent to the ER, has been proposed to play an important role in this effect by forming membrane-integral pores, thereby increasing the efflux of Ca2+ from the stores. Here, evidence is presented that supports this idea and that excludes the possibility that 2B reduces the uptake of Ca2+ into the stores. Measurement of intra-organelle-free Ca2+ in permeabilized cells revealed that the ability of 2B to reduce the Ca2+ filling state of the stores was preserved at steady ATP. Biochemical analysis in a cell-free system further showed that 2B had no adverse effect on the activity of the sarco/endoplasmic reticulum calcium ATPase, the Ca2+-ATPase that transports Ca2+ from the cytosol into the stores. To investigate whether 2B specifically affects Ca2+ homeostasis or other ion gradients, we measured the lumenal Golgi pH. Expression of 2B resulted in an increased Golgi pH, indicative for the efflux of H+ from the Golgi lumen. Together, these data support a model that 2B increases the efflux of ions from the ER and Golgi by forming membrane-integral pores. We have demonstrated that a major consequence of this activity is the inhibition of protein trafficking through the Golgi complex.
Collapse
Affiliation(s)
- Arjan S de Jong
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol 2006; 79:15189-98. [PMID: 16306590 PMCID: PMC1316023 DOI: 10.1128/jvi.79.24.15189-15198.2005] [Citation(s) in RCA: 446] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Replication of the genomic RNA of severe acute respiratory syndrome coronavirus (SARS-CoV) is mediated by replicase polyproteins that are processed by two viral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro). Previously, we showed that SARS-CoV PLpro processes the replicase polyprotein at three conserved cleavage sites. Here, we report the identification and characterization of a 316-amino-acid catalytic core domain of PLpro that can efficiently cleave replicase substrates in trans-cleavage assays and peptide substrates in fluorescent resonance energy transfer-based protease assays. We performed bioinformatics analysis on 16 papain-like protease domains from nine different coronaviruses and identified a putative catalytic triad (Cys1651-His1812-Asp1826) and zinc-binding site. Mutagenesis studies revealed that Asp1826 and the four cysteine residues involved in zinc binding are essential for SARS-CoV PLpro activity. Molecular modeling of SARS-CoV PLpro suggested that this catalytic core may also have deubiquitinating activity. We tested this hypothesis by measuring the deubiquitinating activity of PLpro by two independent assays. SARS CoV-PLpro hydrolyzed both diubiquitin and ubiquitin-7-amino-4-methylcoumarin (AMC) substrates, and hydrolysis of ubiquitin-AMC is approximately 180-fold more efficient than hydrolysis of a peptide substrate that mimics the PLpro replicase recognition sequence. To investigate the critical determinants recognized by PLpro, we performed site-directed mutagenesis on the P6 to P2' residues at each of the three PLpro cleavage sites. We found that PLpro recognizes the consensus cleavage sequence LXGG, which is also the consensus sequence recognized by cellular deubiquitinating enzymes. This similarity in the substrate recognition sites should be considered during the development of SARS-CoV PLpro inhibitors.
Collapse
Affiliation(s)
- Naina Barretto
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Bldg. 105, Maywood, IL 60153, USA
| | | | | | | | | | | |
Collapse
|
213
|
Villanueva RA, Rouillé Y, Dubuisson J. Interactions between virus proteins and host cell membranes during the viral life cycle. ACTA ACUST UNITED AC 2006; 245:171-244. [PMID: 16125548 PMCID: PMC7112339 DOI: 10.1016/s0074-7696(05)45006-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure and function of cells are critically dependent on membranes, which not only separate the interior of the cell from its environment but also define the internal compartments. It is therefore not surprising that the major steps of the life cycle of viruses of animals and plants also depend on cellular membranes. Indeed, interactions of viral proteins with host cell membranes are important for viruses to enter into host cells, replicate their genome, and produce progeny particles. To replicate its genome, a virus first needs to cross the plasma membrane. Some viruses can also modify intracellular membranes of host cells to create a compartment in which genome replication will take place. Finally, some viruses acquire an envelope, which is derived either from the plasma membrane or an internal membrane of the host cell. This paper reviews recent findings on the interactions of viral proteins with host cell membranes during the viral life cycle.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- CNRS-UPR2511, Institut de Biologie de Lille, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | |
Collapse
|
214
|
Abstract
This chapter provides an updated view of the host factors that are, at present, believed to participate in replication/transcription of RNA viruses. One of the major hurdles faced when attempting to identify host factors specifically involved in viral RNA replication/transcription is how to discriminate these factors from those involved in translation. Several of the host factors shown to affect viral RNA synthesis are factors known to be involved in protein synthesis, for example, translation factors. In addition, some of the factors identified to date appear to influence viral RNA amplification as well as viral protein synthesis, and translation and replication are frequently tightly associated. Several specific host factors actively participating in viral RNA transcription/replication have been identified and the regions of host protein/replicase or host protein/viral RNA interaction have been determined. The chapter centers exclusively on those factors that appear functionally important for viral amplification. It presents a list of the viruses for which a specific host factor associates with the polymerase, affecting viral genome amplification. It also indicates the usually accepted cell function of the factor and the viral polymerase or polymerase subunit to which the host factor binds.
Collapse
|
215
|
Shiu PKT, Zickler D, Raju NB, Ruprich-Robert G, Metzenberg RL. SAD-2 is required for meiotic silencing by unpaired DNA and perinuclear localization of SAD-1 RNA-directed RNA polymerase. Proc Natl Acad Sci U S A 2006; 103:2243-8. [PMID: 16461906 PMCID: PMC1413707 DOI: 10.1073/pnas.0508896103] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A gene unpaired during the meiotic homolog pairing stage in Neurospora generates a sequence-specific signal that silences the expression of all copies of that gene. This process is called Meiotic Silencing by Unpaired DNA (MSUD). Previously, we have shown that SAD-1, an RNA-directed RNA polymerase (RdRP), is required for MSUD. We isolated a second gene involved in this process, sad-2. Mutated Sad-2 (RIP) alleles, like those of Sad-1, are dominant and suppress MSUD. Crosses homozygous for Sad-2 are blocked at meiotic prophase. SAD-2 colocalizes with SAD-1 in the perinuclear region, where small interfering RNAs have been shown to reside in mammalian cells. A functional sad-2(+) gene is necessary for SAD-1 localization, but the converse is not true. The data suggest that SAD-2 may function to recruit SAD-1 to the perinuclear region, and that the proper localization of SAD-1 is important for its activity.
Collapse
Affiliation(s)
- Patrick K. T. Shiu
- *Division of Biological Sciences, University of Missouri, Columbia, MO 65211
- To whom correspondence may be addressed. E-mail:
or
| | - Denise Zickler
- Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay Cedex, France
| | - Namboori B. Raju
- Department of Biological Sciences, Stanford University, Stanford, CA 94305; and
| | | | - Robert L. Metzenberg
- Department of Biology, California State University, Northridge, CA 91330
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
216
|
Schmid D, Dengjel J, Schoor O, Stevanovic S, Münz C. Autophagy in innate and adaptive immunity against intracellular pathogens. J Mol Med (Berl) 2006; 84:194-202. [PMID: 16501849 DOI: 10.1007/s00109-005-0014-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/19/2005] [Indexed: 12/19/2022]
Abstract
Autophagy delivers cytoplasmic constituents for lysosomal degradation. Recent studies have demonstrated that this pathway mediates resistance to pathogens and is targeted for immune evasion by viruses and bacteria. Lysosomal degradation products, including pathogenic determinants, are then surveyed by the adaptive immune system to elicit antigen-specific T cell responses. CD4(+) T helper cells have been shown to recognize nuclear and cytosolic antigens via presentation by major histocompatibility complex (MHC) class II molecules after autophagy. Furthermore, some sources of natural MHC class II ligands display characteristics of autophagy substrates, and autophagosomes fuse with late endosomes, in which MHC class II loading is thought to occur. Although MHC class II antigen processing via autophagy has so far mainly been described for professional antigen-presenting cells like B cells, macrophages, and dendritic cells, it might be even more important for cells with less endocytic potential, like epithelial cells, when these express MHC class II at sites of inflammation. Therefore, autophagy might contribute to immune surveillance of intracellular pathogens via MHC class II presentation of intracellular pathogen-derived peptides.
Collapse
Affiliation(s)
- Dorothee Schmid
- Laboratory of Viral Immunobiology, and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
217
|
Abstract
Autophagy is a degradative transport route conserved among all eukaryotic organisms. During starvation, cytoplasmic components are randomly sequestered into large double-membrane vesicles called autophagosomes and delivered into the lysosome/vacuole where they are destroyed. Cells are able to modulate autophagy in response to their needs, and under certain circumstances, cargoes, such as aberrant protein aggregates, organelles, and bacteria can be selectively and exclusively incorporated into autophagosomes. As a result, this pathway plays an active role in many physiological processes, and it is induced in numerous pathological situations because of its ability to rapidly eliminate unwanted structures. Despite the advances in understanding the functions of autophagy and the identification of several factors, named Atg proteins that mediate it, the mechanism that leads to autophagosome formation is still a mystery. A major challenge in unveiling this process arises from the fact that the origin and the transport mode of the lipids employed to compose these structures is unknown. This compendium will review and analyze the current data about the possible membrane source(s) with a particular emphasis on the yeast Saccharomyces cerevisiae, the leading model organism for the study of autophagosome biogenesis, and on mammalian cells. The information acquired investigating the pathogens that subvert autophagy in order to replicate in the host cells will also be discussed because it could provide important hints for solving this mystery.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
218
|
The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol 2005. [PMID: 16306590 DOI: 10.1128/jvi.79.24.15189‐15198.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Replication of the genomic RNA of severe acute respiratory syndrome coronavirus (SARS-CoV) is mediated by replicase polyproteins that are processed by two viral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro). Previously, we showed that SARS-CoV PLpro processes the replicase polyprotein at three conserved cleavage sites. Here, we report the identification and characterization of a 316-amino-acid catalytic core domain of PLpro that can efficiently cleave replicase substrates in trans-cleavage assays and peptide substrates in fluorescent resonance energy transfer-based protease assays. We performed bioinformatics analysis on 16 papain-like protease domains from nine different coronaviruses and identified a putative catalytic triad (Cys1651-His1812-Asp1826) and zinc-binding site. Mutagenesis studies revealed that Asp1826 and the four cysteine residues involved in zinc binding are essential for SARS-CoV PLpro activity. Molecular modeling of SARS-CoV PLpro suggested that this catalytic core may also have deubiquitinating activity. We tested this hypothesis by measuring the deubiquitinating activity of PLpro by two independent assays. SARS CoV-PLpro hydrolyzed both diubiquitin and ubiquitin-7-amino-4-methylcoumarin (AMC) substrates, and hydrolysis of ubiquitin-AMC is approximately 180-fold more efficient than hydrolysis of a peptide substrate that mimics the PLpro replicase recognition sequence. To investigate the critical determinants recognized by PLpro, we performed site-directed mutagenesis on the P6 to P2' residues at each of the three PLpro cleavage sites. We found that PLpro recognizes the consensus cleavage sequence LXGG, which is also the consensus sequence recognized by cellular deubiquitinating enzymes. This similarity in the substrate recognition sites should be considered during the development of SARS-CoV PLpro inhibitors.
Collapse
|
219
|
Zhang SC, Zhang G, Yang L, Chisholm J, Sanfaçon H. Evidence that insertion of Tomato ringspot nepovirus NTB-VPg protein in endoplasmic reticulum membranes is directed by two domains: a C-terminal transmembrane helix and an N-terminal amphipathic helix. J Virol 2005; 79:11752-65. [PMID: 16140753 PMCID: PMC1212610 DOI: 10.1128/jvi.79.18.11752-11765.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 06/28/2005] [Indexed: 12/18/2022] Open
Abstract
The NTB-VPg protein of Tomato ringspot nepovirus is an integral membrane protein found in association with endoplasmic reticulum (ER)-derived membranes active in virus replication. A transmembrane helix present in a hydrophobic region at the C terminus of the NTB domain was previously shown to traverse the membranes, resulting in the translocation of the VPg domain in the lumen. We have now conducted an in planta analysis of membrane-targeting domains within NTB-VPg using in-frame fusions to the green fluorescent protein (GFP). As expected, the entire NTB-VPg protein directed the GFP fluorescence to ER membranes. GFP fusion proteins containing the C-terminal 86 amino acids of NTB-VPg also associated with ER membranes, resulting in ER-specific glycosylation at a naturally occurring glycosylation site in the VPg domain. Deletion of the hydrophobic region prevented the membrane association. The N-terminal 80 amino acids of NTB were also sufficient to direct the GFP fluorescence to intracellular membranes. A putative amphipathic helix in this region was necessary and sufficient to promote membrane association of the fusion proteins. Using in vitro membrane association assays and glycosylation site mapping, we show that the N terminus of NTB can be translocated in the lumen at least in vitro. This translocation was dependent on the presence of the putative amphipathic helix, suggesting that oligomeric forms of this helix traverse the membrane. Taken together, our results suggest that at least two distinct elements play a key role in the insertion of NTB-VPg in the membranes: a C-terminal transmembrane helix and an N-terminal amphipathic helix. An updated model of the topology of the protein in the membrane is presented.
Collapse
Affiliation(s)
- Shuo Cheng Zhang
- Pacific Agri-Food Research Centre, 4200 Highway 97, Summerland, BC, Canada V0H 1Z0
| | | | | | | | | |
Collapse
|
220
|
Zechmann B, Müller M, Zellnig G. Effects of different fixation and freeze substitution methods on the ultrastructural preservation of ZYMV-infected Cucurbita pepo (L.) leaves. Microscopy (Oxf) 2005; 54:393-402. [PMID: 16123060 DOI: 10.1093/jmicro/dfi054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
Different fixation protocols [chemical fixation, plunge and high pressure freezing (HPF)] were used to study the effects of Zucchini yellow mosaic virus (ZYMV) disease on the ultrastructure of adult leaves of Styrian oil pumpkin plants (Cucurbita pepo L. subsp. pepo var. styriaca Greb.) with the transmission electron microscope. Additionally, different media were tested for freeze substitution (FS) to evaluate differences in the ultrastructural preservation of cryofixed plant leaf cells. FS was either performed in (i) 2% osmium tetroxide in anhydrous acetone containing 0.2% uranyl acetate, (ii) 0.01% safranin in anhydrous acetone, (iii) 0.5% glutaraldehyde in anhydrous acetone or (iv) anhydrous acetone. No ultrastructural differences were found in well-preserved cells of plunge and high pressure frozen samples. Cryofixed cells showed a finer granulated cytosol and smoother membranes, than what was found in chemically fixed samples. HPF led in comparison to plunge frozen plant material to an excellent preservation of vascular bundle cells. The use of FS-media such as anhydrous acetone, 0.01% safranin and 0.5% glutaraldehyde led to low membrane contrast and did not preserve the inner fine structures of mitochondria. Additionally, the use of 0.5% glutaraldehyde caused the cytosol to be fuzzy and partly loosened. ZYMV-induced ultrastructural alterations like cylindrical inclusions and dilated ER-cisternae did not differ between chemically fixed and cryofixed cells and were found within the cytosol of infected leaf cells and within sieve tube elements. The results demonstrate specific structural differences depending on the FS-medium used, which has to be considered for investigations of selected cell structures.
Collapse
Affiliation(s)
- Bernd Zechmann
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, 8010 Graz, Austria.
| | | | | |
Collapse
|
221
|
Dye BT, Miller DJ, Ahlquist P. In vivo self-interaction of nodavirus RNA replicase protein a revealed by fluorescence resonance energy transfer. J Virol 2005; 79:8909-19. [PMID: 15994785 PMCID: PMC1168736 DOI: 10.1128/jvi.79.14.8909-8919.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Flock house virus (FHV) is the best-characterized member of the Nodaviridae, a family of small, positive-strand RNA viruses. Unlike most RNA viruses, FHV encodes only a single polypeptide, protein A, that is required for RNA replication. Protein A contains a C-proximal RNA-dependent RNA polymerase domain and localizes via an N-terminal transmembrane domain to the outer mitochondrial membrane, where FHV RNA replication takes place in association with invaginations referred to as spherules. We demonstrate here that protein A self-interacts in vivo by using flow cytometric analysis of fluorescence resonance energy transfer (FRET), spectrofluorometric analysis of bioluminescence resonance energy transfer, and coimmunoprecipitation. Several nonoverlapping protein A sequences were able to independently direct protein-protein interaction, including an N-terminal region previously shown to be sufficient for localization to the outer mitochondrial membrane (D. J. Miller and P. Ahlquist, J. Virol. 76:9856-9867, 2000). Mutations in protein A that diminished FRET also diminished FHV RNA replication, a finding consistent with an important role for protein A self-interaction in FHV RNA synthesis. Thus, the results imply that FHV protein A functions as a multimer rather than as a monomer at one or more steps in RNA replication.
Collapse
Affiliation(s)
- Billy T Dye
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
222
|
Belov GA, Fogg MH, Ehrenfeld E. Poliovirus proteins induce membrane association of GTPase ADP-ribosylation factor. J Virol 2005; 79:7207-16. [PMID: 15890959 PMCID: PMC1112117 DOI: 10.1128/jvi.79.11.7207-7216.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Poliovirus infection results in the disintegration of intracellular membrane structures and formation of specific vesicles that serve as sites for replication of viral RNA. The mechanism of membrane rearrangement has not been clearly defined. Replication of poliovirus is sensitive to brefeldin A (BFA), a fungal metabolite known to prevent normal function of the ADP-ribosylation factor (ARF) family of small GTPases. During normal membrane trafficking in uninfected cells, ARFs are involved in vesicle formation from different intracellular sites through interaction with numerous regulatory and coat proteins as well as in regulation of phospholipase D activity and cytoskeleton modifications. We demonstrate here that ARFs 3 and 5, but not ARF6, are translocated to membranes in HeLa cell extracts that are engaged in translation of poliovirus RNA. The accumulation of ARFs on membranes correlates with active replication of poliovirus RNA in vitro, whereas ARF translocation to membranes does not occur in the presence of BFA. ARF translocation can be induced independently by synthesis of poliovirus 3A or 3CD proteins, and we describe mutations that abolished this activity. In infected HeLa cells, an ARF1-enhanced green fluorescent protein fusion redistributes from Golgi stacks to the perinuclear region, where poliovirus RNA replication occurs. Taken together, the data suggest an involvement of ARF in poliovirus RNA replication.
Collapse
Affiliation(s)
- George A Belov
- Laboratory of Infectious Diseases, NIAID, NIH, Building 50, Room 6120, Bethesda, MD 20892-8011, USA
| | | | | |
Collapse
|
223
|
Cui ZQ, Zhang ZP, Zhang XE, Wen JK, Zhou YF, Xie WH. Visualizing the dynamic behavior of poliovirus plus-strand RNA in living host cells. Nucleic Acids Res 2005; 33:3245-52. [PMID: 15942027 PMCID: PMC1143693 DOI: 10.1093/nar/gki629] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dynamic analysis of viral nucleic acids in host cells is important for understanding virus–host interaction. By labeling endogenous RNA with molecular beacon, we have realized the direct visualization of viral nucleic acids in living host cells and have studied the dynamic behavior of poliovirus plus-strand RNA. Poliovirus plus-strand RNA was observed to display different distribution patterns in living Vero cells at different post-infection time points. Real-time imaging suggested that the translocation of poliovirus plus-strand RNA is a characteristic rearrangement process requiring intact microtubule network of host cells. Confocal-FRAP measurements showed that 49.4 ± 3.2% of the poliovirus plus-strand RNA molecules diffused freely (with a D-value of 9.6 ± 1.6 × 10−10 cm2/s) within their distribution region, while the remaining (50.5 ± 2.9%) were almost immobile and moved very slowly only with change of the RNA distribution region. Under the electron microscope, it was found that virus-induced membrane rearrangement is microtubule-associated in poliovirus-infected Vero cells. These results reveal an entrapment and diffusion mechanism for the movement of poliovirus plus-strand RNA in living mammalian cells, and demonstrate that the mechanism is mainly associated with microtubules and virus-induced membrane structures.
Collapse
Affiliation(s)
- Zong-Qiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
- Graduate School, Chinese Academy SciencesBeijing 100039, China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| | - Xian-En Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
- To whom correspondence should be addressed. Tel: + 86 10 58881508; Fax: +86 10 58881559;
| | - Ji-Kai Wen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| | - Ya-Feng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| | - Wei-Hong Xie
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| |
Collapse
|
224
|
Harris JR, Racaniello VR. Amino acid changes in proteins 2B and 3A mediate rhinovirus type 39 growth in mouse cells. J Virol 2005; 79:5363-73. [PMID: 15827151 PMCID: PMC1082767 DOI: 10.1128/jvi.79.9.5363-5373.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many steps of viral replication are dependent on the interaction of viral proteins with host cell components. To identify rhinovirus proteins involved in such interactions, human rhinovirus 39 (HRV39), a virus unable to replicate in mouse cells, was adapted to efficient growth in mouse cells producing the viral receptor ICAM-1 (ICAM-L cells). Amino acid changes were identified in the 2B and 3A proteins of the adapted virus, RV39/L. Changes in 2B were sufficient to permit viral growth in mouse cells; however, changes in both 2B and 3A were required for maximal viral RNA synthesis in mouse cells. Examination of infected HeLa cells by electron microscopy demonstrated that human rhinoviruses induced the formation of cytoplasmic membranous vesicles, similar to those observed in cells infected with other picornaviruses. Vesicles were also observed in the cytoplasm of HRV39-infected mouse cells despite the absence of viral RNA replication. Synthesis of picornaviral nonstructural proteins 2C, 2BC, and 3A is known to be required for formation of membranous vesicles. We suggest that productive HRV39 infection is blocked in ICAM-L cells at a step posttranslation and prior to the formation of a functional replication complex. The observation that changes in HRV39 2B and 3A proteins lead to viral growth in mouse cells suggests that one or both of these proteins interact with host cell proteins to promote viral replication.
Collapse
Affiliation(s)
- Julie R Harris
- Department of Microbiology, Columbia University College of Physicians & Surgeons, 701 W. 168th St., New York, NY 10032, USA
| | | |
Collapse
|
225
|
Choe SS, Dodd DA, Kirkegaard K. Inhibition of cellular protein secretion by picornaviral 3A proteins. Virology 2005; 337:18-29. [PMID: 15914217 DOI: 10.1016/j.virol.2005.03.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/10/2005] [Accepted: 03/30/2005] [Indexed: 10/25/2022]
Abstract
During poliovirus infection, anterograde traffic between the endoplasmic reticulum and the Golgi is inhibited due to the action of 3A, an 87 amino acid viral protein. The ability of poliovirus protein 3A to inhibit ER-to-Golgi traffic is not required for virus growth. Instead, we have suggested that the inhibition of host protein secretion, shown to reduce the secretion of interferon-beta, IL-6, and IL-8 and the expression of both newly synthesized MHC class I and TNF receptor in the plasma membrane of infected cells, affects growth in host organisms. To determine whether the ability of poliovirus 3A to inhibit ER-to-Golgi traffic is conserved, the ability of 3A proteins from several picornaviruses, including human rhinovirus 14, foot-and-mouth disease virus, enterovirus 71, hepatitis A, and Theiler's virus, was tested. Only the 3A proteins from another poliovirus, Sabin 3, and closely related coxsackievirus B3 inhibited ER-to-Golgi traffic as effectively as the 3A protein from poliovirus Mahoney type 1. Site-directed mutagenesis based on these findings and the three-dimensional structure of the amino-terminal domain of poliovirus 3A protein revealed that residues in the unstructured amino terminus of 3A are critical for the inhibition of host protein secretion.
Collapse
Affiliation(s)
- Sunny S Choe
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305-5127, USA
| | | | | |
Collapse
|
226
|
Wessels E, Duijsings D, Notebaart RA, Melchers WJG, van Kuppeveld FJM. A proline-rich region in the coxsackievirus 3A protein is required for the protein to inhibit endoplasmic reticulum-to-golgi transport. J Virol 2005; 79:5163-73. [PMID: 15795300 PMCID: PMC1069528 DOI: 10.1128/jvi.79.8.5163-5173.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of the 3A protein of coxsackievirus B (CVB) to inhibit protein secretion was investigated for this study. Here we show that the ectopic expression of CVB 3A blocked the transport of both the glycoprotein of vesicular stomatitis virus, a membrane-bound secretory marker, and the alpha-1 protease inhibitor, a luminal secretory protein, at a step between the endoplasmic reticulum (ER) and the Golgi complex. CVB 3A contains a conserved proline-rich region in its N terminus. The importance of this proline-rich region was investigated by introducing Pro-to-Ala substitutions. The mutation of Pro19 completely abolished the ability of 3A to inhibit ER-to-Golgi transport. The mutation of Pro14, Pro17, or Pro20 also impaired this ability, but to a lesser extent. The mutation of Pro18 had no effect. We also investigated the possible importance of this proline-rich region for the function of 3A in viral RNA replication. To this end, we introduced the Pro-to-Ala mutations into an infectious cDNA clone of CVB3. The transfection of cells with in vitro-transcribed RNAs of these clones gave rise to mutant viruses that replicated with wild-type characteristics. We concluded that the proline-rich region in CVB 3A is required for its ability to inhibit ER-to-Golgi transport, but not for its function in viral RNA replication. The functional relevance of the proline-rich region is discussed in light of the proposed structural model of 3A.
Collapse
Affiliation(s)
- Els Wessels
- Department of Medical Microbiology, Nijmegen Center for Molecular Life Sciences, University Medical Center Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
227
|
Jackson WT, Giddings TH, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, Kirkegaard K. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 2005; 3:e156. [PMID: 15884975 PMCID: PMC1084330 DOI: 10.1371/journal.pbio.0030156] [Citation(s) in RCA: 677] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 03/02/2005] [Indexed: 12/11/2022] Open
Abstract
Infection of human cells with poliovirus induces the proliferation of double-membraned cytoplasmic vesicles whose surfaces are used as the sites of viral RNA replication and whose origin is unknown. Here, we show that several hallmarks of cellular autophagosomes can be identified in poliovirus-induced vesicles, including colocalization of LAMP1 and LC3, the human homolog of Saccharomyces cerevisiae Atg8p, and staining with the fluorophore monodansylcadaverine followed by fixation. Colocalization of LC3 and LAMP1 was observed early in the poliovirus replicative cycle, in cells infected with rhinoviruses 2 and 14, and in cells that express poliovirus proteins 2BC and 3A, known to be sufficient to induce double-membraned vesicles. Stimulation of autophagy increased poliovirus yield, and inhibition of the autophagosomal pathway by 3-methyladenine or by RNA interference against mRNAs that encode two different proteins known to be required for autophagy decreased poliovirus yield. We propose that, for poliovirus and rhinovirus, components of the cellular machinery of autophagosome formation are subverted to promote viral replication. Although autophagy can serve in the innate immune response to microorganisms, our findings are inconsistent with a role for the induced autophagosome-like structures in clearance of poliovirus. Instead, we argue that these double-membraned structures provide membranous supports for viral RNA replication complexes, possibly enabling the nonlytic release of cytoplasmic contents, including progeny virions, from infected cells.
Collapse
Affiliation(s)
- William T Jackson
- 1Departments of Microbiology and Immunology, Stanford UniversityStanford, CaliforniaUnited States of America
| | - Thomas H Giddings
- 2Department of Molecular, Cellularand Developmental Biology, University of Colorado, Boulder, ColoradoUnited States of America
| | - Matthew P Taylor
- 1Departments of Microbiology and Immunology, Stanford UniversityStanford, CaliforniaUnited States of America
| | - Sara Mulinyawe
- 3Biological Sciences, Stanford UniversityStanford, CaliforniaUnited States of America
| | - Marlene Rabinovitch
- 4Pediatrics, Stanford UniversityStanford, CaliforniaUnited States of America
| | - Ron R Kopito
- 3Biological Sciences, Stanford UniversityStanford, CaliforniaUnited States of America
| | - Karla Kirkegaard
- 1Departments of Microbiology and Immunology, Stanford UniversityStanford, CaliforniaUnited States of America
| |
Collapse
|
228
|
Moffat K, Howell G, Knox C, Belsham GJ, Monaghan P, Ryan MD, Wileman T. Effects of foot-and-mouth disease virus nonstructural proteins on the structure and function of the early secretory pathway: 2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport. J Virol 2005; 79:4382-95. [PMID: 15767438 PMCID: PMC1061540 DOI: 10.1128/jvi.79.7.4382-4395.2005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Infection of cells by picornaviruses leads to the generation of intracellular membrane vesicles. The expression of poliovirus (PV) 3A protein causes swelling of the endoplasmic reticulum (ER) and inhibition of protein trafficking between the ER and the Golgi apparatus. Here, we report that the nonstructural proteins of a second picornavirus, foot-and-mouth disease virus (FMDV), also perturb the secretory pathway. FMDV proteins 3A, 2B, 2C, and 2BC expressed alone in cells were recovered from crude membrane fractions, indicating membrane association. Immunofluorescence microscopy showed that 3A was located in a reticular structure and 2B was located in the ER, while 2C was located in both the ER and the bright punctate structures within the Golgi apparatus. 2BC gave punctate cytoplasmic staining and also caused accumulation of ER proteins in large vesicular structures located around the nuclei. The effect of the FMDV proteins on the trafficking of the vesicular stomatitis virus glycoprotein (G protein) from the ER to the cell surface was determined. Unlike its PV counterpart, the 3A protein of FMDV did not prevent trafficking of the G protein to the cell surface. Instead, surface expression of the G protein was blocked by 2BC, with retention of the G protein in a modified ER compartment staining for 2BC. The results suggest that the nonstructural proteins of different picornaviruses may vary in their ability to perturb the secretory pathway. Since FMDV 2BC can block the delivery of proteins to the cell surface, it may, as shown for PV 3A, play a role in immune evasion and contribute to the persistent infections observed in ruminants.
Collapse
Affiliation(s)
- Katy Moffat
- Pirbright Laboratory, Institute for Animal Health, Pirbright, Surrey GU24 0NF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
229
|
Knox C, Moffat K, Ali S, Ryan M, Wileman T. Foot-and-mouth disease virus replication sites form next to the nucleus and close to the Golgi apparatus, but exclude marker proteins associated with host membrane compartments. J Gen Virol 2005; 86:687-696. [PMID: 15722529 DOI: 10.1099/vir.0.80208-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Picornavirus infection of cells generally results in the production of membranous vesicles containing the viral proteins necessary for viral RNA synthesis. To determine whether foot-and-mouth disease virus (FMDV) infection induced similar structures, and which cellular components were involved, the subcellular distribution of FMDV proteins was compared with protein markers of cellular membrane compartments. Using immunofluorescence analysis and digital deconvolution, it was shown that FMDV structural and non-structural proteins co-localize to punctate structures in juxtanuclear virus assembly sites close to the Golgi complex. Significantly, viral protein 2C did not co-localize with marker proteins of the cis- or medial-Golgi compartments or trans-Golgi network. Furthermore, incubation of infected cells with brefeldin A caused a redistribution of Golgi proteins to the endoplasmic reticulum, but did not affect the distribution of 2C and, by inference, the integrity of the virus assembly site. Taken with the observation that 2C was membrane-associated, but failed to fractionate with Golgi markers on density gradients, it was possible to conclude that Golgi membranes were not a source of structures containing 2C. Further immunofluorescence analysis showed that 2C was also separate from marker proteins of the endoplasmic reticulum, endoplasmic reticulum intermediate compartment, endosomes and lysosomes. The results suggest that the membranes generated at FMDV assembly sites are able to exclude organelle-specific marker proteins, or that FMDV uses an alternative source of membranes as a platform for assembly and replication.
Collapse
Affiliation(s)
- Caroline Knox
- University of St Andrews, School of Biology, Centre for Biomolecular Sciences, Biomolecular Sciences Building, North Haugh, St Andrews KY16 9ST, UK
| | - Katy Moffat
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Shireen Ali
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Martin Ryan
- University of St Andrews, School of Biology, Centre for Biomolecular Sciences, Biomolecular Sciences Building, North Haugh, St Andrews KY16 9ST, UK
| | - Thomas Wileman
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| |
Collapse
|
230
|
Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 2005; 36:2503-18. [PMID: 15325588 PMCID: PMC7129593 DOI: 10.1016/j.biocel.2004.05.009] [Citation(s) in RCA: 1139] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 05/20/2004] [Accepted: 05/20/2004] [Indexed: 02/08/2023]
Abstract
Autophagy is the bulk degradation of proteins and organelles, a process essential for cellular maintenance, cell viability, differentiation and development in mammals. Autophagy has significant associations with neurodegenerative diseases, cardiomyopathies, cancer, programmed cell death, and bacterial and viral infections. During autophagy, a cup-shaped structure, the preautophagosome, engulfs cytosolic components, including organelles, and closes, forming an autophagosome, which subsequently fuses with a lysosome, leading to the proteolytic degradation of internal components of the autophagosome by lysosomal lytic enzymes. During the formation of mammalian autophagosomes, two ubiquitylation-like modifications are required, Atg12-conjugation and LC3-modification. LC3 is an autophagosomal ortholog of yeast Atg8. A lipidated form of LC3, LC3-II, has been shown to be an autophagosomal marker in mammals, and has been used to study autophagy in neurodegenerative and neuromuscular diseases, tumorigenesis, and bacterial and viral infections. The other Atg8 homologues, GABARAP and GATE-16, are also modified by the same mechanism. In non-starved rats, the tissue distribution of LC3-II differs from those of the lipidated forms of GABARAP and GATE-16, GABARAP-II and GATE-16-II, suggesting that there is a functional divergence among these three modified proteins. Delipidation of LC3-II and GABARAP-II is mediated by hAtg4B. We review the molecular mechanism of LC3-modification, the crosstalk between LC3-modification and mammalian Atg12-conjugation, and the cycle of LC3-lipidation and delipidation mediated by hAtg4B, as well as recent findings concerning the other two Atg8 homologues, GABARAP and GATE-16. We also highlight recent findings regarding the pathobiology of LC3-modification, including its role in microbial infection, cancer and neuromuscular diseases.
Collapse
Affiliation(s)
| | | | - Eiki Kominami
- Corresponding author. Tel.: +81-3-5802-1031; fax: +81-3-5802-5889.
| |
Collapse
|
231
|
Abstract
Coronavirus genome replication and transcription take place at cytoplasmic membranes and involve coordinated processes of both continuous and discontinuous RNA synthesis that are mediated by the viral replicase, a huge protein complex encoded by the 20-kb replicase gene. The replicase complex is believed to be comprised of up to 16 viral subunits and a number of cellular proteins. Besides RNA-dependent RNA polymerase, RNA helicase, and protease activities, which are common to RNA viruses, the coronavirus replicase was recently predicted to employ a variety of RNA processing enzymes that are not (or extremely rarely) found in other RNA viruses and include putative sequence-specific endoribonuclease, 3′-to-5′ exoribonuclease, 2′-O-ribose methyltransferase, ADP ribose 1′-phosphatase and, in a subset of group 2 coronaviruses, cyclic phosphodiesterase activities. This chapter reviews (1) the organization of the coronavirus replicase gene, (2) the proteolytic processing of the replicase by viral proteases, (3) the available functional and structural information on individual subunits of the replicase, such as proteases, RNA helicase, and the RNA-dependent RNA polymerase, and (4) the subcellular localization of coronavirus proteins involved in RNA synthesis. Although many molecular details of the coronavirus life cycle remain to be investigated, the available information suggests that these viruses and their distant nidovirus relatives employ a unique collection of enzymatic activities and other protein functions to synthesize a set of 5′-leader-containing subgenomic mRNAs and to replicate the largest RNA virus genomes currently known.
Collapse
Affiliation(s)
- J Ziebuhr
- Institute of Virology and Immunology, University of Würzburg, Versbacher Str 7, 97078 Würzburg, Germany.
| |
Collapse
|
232
|
Abstract
All plus-strand RNA viruses replicate in association with cytoplasmic membranes of infected cells. The RNA replication complex of many virus families is associated with the endoplasmic reticulum membranes, for example, picorna-, flavi-, arteri-, and bromoviruses. However, endosomes and lysosomes (togaviruses), peroxisomes and chloroplasts (tombusviruses), and mitochondria (nodaviruses) are also used as sites for RNA replication. Studies of individual nonstructural proteins, the virus-specific components of the RNA replicase, have revealed that the replication complexes are associated with the membranes and targeted to the respective organelle by the ns proteins rather than RNA. Many ns proteins have hydrophobic sequences and may transverse the membrane like polytopic integral membrane proteins, whereas others interact with membranes monotopically. Hepatitis C virus ns proteins offer examples of polytopic transmembrane proteins (NS2, NS4B), a “tip-anchored” protein attached to the membrane by an amphipathic α-helix (NS5A) and a “tail-anchored” posttranslationally inserted protein (NS5B). Semliki Forest virus nsP1 is attached to the plasma membrane by a specific binding peptide in the middle of the protein, which forms an amphipathic α-helix. Interaction of nsP1 with membrane lipids is essential for its capping enzyme activities. The other soluble replicase proteins are directed to the endo-lysosomal membranes only as part of the initial polyprotein. Poliovirus ns proteins utilize endoplasmic reticulum membranes from which vesicles are released in COPII coats. However, these vesicles are not directed to the normal secretory pathway, but accumulate in the cytoplasm. In many cases the replicase proteins induce membrane invaginations or vesicles, which function as protective environments for RNA replication.
Collapse
Affiliation(s)
- Mark Marsh
- Cell Biology Unit, MRC-LMCB, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
233
|
Blondel B, Colbère-Garapin F, Couderc T, Wirotius A, Guivel-Benhassine F. Poliovirus, pathogenesis of poliomyelitis, and apoptosis. Curr Top Microbiol Immunol 2005; 289:25-56. [PMID: 15791950 DOI: 10.1007/3-540-27320-4_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Poliovirus (PV) is the causal agent of paralytic poliomyelitis, an acute disease of the central nervous system (CNS) resulting in flaccid paralysis. The development of new animal and cell models has allowed the key steps of the pathogenesis of poliomyelitis to be investigated at the molecular level. In particular, it has been shown that PV-induced apoptosis is an important component of the tissue injury in the CNS of infected mice, which leads to paralysis. In this review the molecular biology of PV and the pathogenesis of poliomyelitis are briefly described, and then several models of PV-induced apoptosis are considered; the role of the cellular receptor of PV, CD155, in the modulation of apoptosis is also addressed.
Collapse
Affiliation(s)
- B Blondel
- Laboratoire des Virus Entérotropes et Stratégies Antivirales, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
234
|
Villanueva RA, Galaz JL, Valdés JA, Jashés MM, Sandino AM. Genome assembly and particle maturation of the birnavirus infectious pancreatic necrosis virus. J Virol 2004; 78:13829-38. [PMID: 15564491 PMCID: PMC533905 DOI: 10.1128/jvi.78.24.13829-13838.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 08/11/2004] [Indexed: 11/20/2022] Open
Abstract
In this study, we have analyzed the morphogenesis of the birnavirus infectious pancreatic necrosis virus throughout the infective cycle in CHSE-214 cells by using a native agarose electrophoresis system. Two types of viral particles (designated A and B) were identified, isolated, and characterized both molecularly and biologically. Together, our results are consistent with a model of morphogenesis in which the genomic double-stranded RNA is immediately assembled, after synthesis, into a large (66-nm diameter) and uninfectious particle A, where the capsid is composed of both mature and immature viral polypeptides. Upon maturation, particles A yield particles B through the proteolytic cleavage of most of the remaining viral precursors within the capsid, the compaction of the particle (60-nm diameter), and the acquisition of infectivity. These studies will provide the foundation for further analyses of birnavirus particle assembly and RNA replication.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- Laboratorio de Virología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| | | | | | | | | |
Collapse
|
235
|
Banerjee R, Weidman MK, Echeverri A, Kundu P, Dasgupta A. Regulation of poliovirus 3C protease by the 2C polypeptide. J Virol 2004; 78:9243-56. [PMID: 15308719 PMCID: PMC506913 DOI: 10.1128/jvi.78.17.9243-9256.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 05/04/2004] [Indexed: 11/20/2022] Open
Abstract
Poliovirus-encoded nonstructural polypeptide 2C is a multifunctional protein that plays an important role in viral RNA replication. 2C interacts with both intracellular membranes and virus-specific RNAs and has ATPase and GTPase activities. Extensive computer analysis of the 2C sequence revealed that in addition to the known ATPase-, GTPase-, membrane-, and RNA-binding domains it also contains several "serpin" (serine protease inhibitor) motifs. We provide experimental evidence suggesting that 2C is indeed capable of regulating virus-encoded proteases. The purified 2C protein inhibits 3C(pro)-catalyzed cleavage of cellular transcription factors at Q-G sites in vitro. It also inhibits cleavage of a viral precursor by the other viral protease, 2A(pro). However, at least three cellular proteases appear not to be inhibited by 2C in vitro. The 2C-associated protease inhibitory activity can be depleted by anti-2C antibody. A physical interaction between 2C and His-tagged 3C(pro) can be demonstrated in vitro by coimmunoprecipitation of 2C with anti-His antibody. Deletion analysis suggests that the 2C central and C-terminal domains that include several serpin motifs are important for 3C(pro)-inhibitory activity. To examine the 2C protease inhibitory activity in vivo, stable HeLa cell lines were made that express 2C in an inducible fashion. Infection of 2C-expressing cells with poliovirus led to incomplete (or inefficient) processing of viral precursor polypeptides compared to control cell lines containing the vector alone. These results suggest that 2C can negatively regulate the viral protease 3C(pro). The possible role of the 2C protease inhibitory activity in viral RNA replication is discussed.
Collapse
Affiliation(s)
- Rajeev Banerjee
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1747, USA
| | | | | | | | | |
Collapse
|
236
|
Schwartz M, Chen J, Lee WM, Janda M, Ahlquist P. Alternate, virus-induced membrane rearrangements support positive-strand RNA virus genome replication. Proc Natl Acad Sci U S A 2004. [PMID: 15280537 DOI: 10.1073/pnas.040157101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
All positive-strand RNA [(+)RNA] viruses replicate their RNA on intracellular membranes, often in association with spherular invaginations of the target membrane. For brome mosaic virus, we previously showed that such spherules serve as compartments or mini-organelles for RNA replication and that their assembly, structure, and function have similarities to the replicative cores of retrovirus and double-stranded RNA virus virions. Some other (+)RNA viruses conduct RNA replication in association with individual or clustered double-membrane vesicles, appressed double membranes, or other structures whose possible relationships to the spherular invaginations are unclear. Here we show that modulating the relative levels and interactions of brome mosaic virus replication factors 1a and 2a polymerase (2apol) shifted the membrane rearrangements associated with RNA replication from small invaginated spherules to large, karmellae-like, multilayer stacks of appressed double membranes that supported RNA replication as efficiently as spherules. Spherules were induced by expressing 1a, which has functional similarities to retrovirus virion protein Gag, or 1a plus low levels of 2apol. Double-membrane layers were induced by 1a plus higher levels of 2apol and were suppressed by deleting the major 1a-interacting domain from 2apol. The stacked, double-membrane layers alternated with spaces that, like spherule interiors, were 50-60 nm wide, connected to the cytoplasm, and contained 1a and 2apol. These and other results suggest that seemingly diverse membrane rearrangements associated with RNA replication by varied (+)RNA viruses may represent topologically and functionally related structures formed by similar protein-protein and protein-membrane interactions and interconverted by altering the balances among those interactions.
Collapse
Affiliation(s)
- Michael Schwartz
- Institute for Molecular Virology and Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
237
|
Schwartz M, Chen J, Lee WM, Janda M, Ahlquist P. Alternate, virus-induced membrane rearrangements support positive-strand RNA virus genome replication. Proc Natl Acad Sci U S A 2004; 101:11263-8. [PMID: 15280537 PMCID: PMC509192 DOI: 10.1073/pnas.0404157101] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
All positive-strand RNA [(+)RNA] viruses replicate their RNA on intracellular membranes, often in association with spherular invaginations of the target membrane. For brome mosaic virus, we previously showed that such spherules serve as compartments or mini-organelles for RNA replication and that their assembly, structure, and function have similarities to the replicative cores of retrovirus and double-stranded RNA virus virions. Some other (+)RNA viruses conduct RNA replication in association with individual or clustered double-membrane vesicles, appressed double membranes, or other structures whose possible relationships to the spherular invaginations are unclear. Here we show that modulating the relative levels and interactions of brome mosaic virus replication factors 1a and 2a polymerase (2apol) shifted the membrane rearrangements associated with RNA replication from small invaginated spherules to large, karmellae-like, multilayer stacks of appressed double membranes that supported RNA replication as efficiently as spherules. Spherules were induced by expressing 1a, which has functional similarities to retrovirus virion protein Gag, or 1a plus low levels of 2apol. Double-membrane layers were induced by 1a plus higher levels of 2apol and were suppressed by deleting the major 1a-interacting domain from 2apol. The stacked, double-membrane layers alternated with spaces that, like spherule interiors, were 50-60 nm wide, connected to the cytoplasm, and contained 1a and 2apol. These and other results suggest that seemingly diverse membrane rearrangements associated with RNA replication by varied (+)RNA viruses may represent topologically and functionally related structures formed by similar protein-protein and protein-membrane interactions and interconverted by altering the balances among those interactions.
Collapse
Affiliation(s)
- Michael Schwartz
- Institute for Molecular Virology and Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
238
|
Guo YX, Chan SW, Kwang J. Membrane association of greasy grouper nervous necrosis virus protein A and characterization of its mitochondrial localization targeting signal. J Virol 2004; 78:6498-508. [PMID: 15163743 PMCID: PMC416515 DOI: 10.1128/jvi.78.12.6498-6508.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Localization of RNA replication to intracellular membranes is a universal feature of positive-strand RNA viruses. The betanodavirus greasy grouper (Epinephelus tauvina) nervous necrosis virus (GGNNV) is a positive-RNA virus with one of the smallest genomes among RNA viruses replicating in fish cells. To understand the localization of GGNNV replication complexes, we generated polyclonal antisera against protein A, the GGNNV RNA-dependent RNA polymerase. Protein A was detected at 5 h postinfection in infected sea bass cells. Biochemical fractionation experiments revealed that GGNNV protein A sedimented with intracellular membranes upon treatment with an alkaline pH and a high salt concentration, indicating that GGNNV protein A is tightly associated with intracellular membranes in infected cells. Confocal immunofluorescence microscopy and bromo-UTP incorporation studies identified mitochondria as the intracellular site of protein A localization and viral RNA synthesis. In addition, protein A fused with green fluorescent protein (GFP) was detected in the mitochondria in transfected cells and was demonstrated to be tightly associated with intracellular membranes by biochemical fractionation analysis and membrane flotation assays, indicating that protein A alone was sufficient for mitochondrial localization in the absence of RNA replication, nonstructural protein B, or capsid proteins. Three sequence analysis programs showed two regions of hydrophobic amino acid residues, amino acids 153 to 173 and 229 to 249, to be transmembrane domains (TMD) that might contain a membrane association domain. Membrane fraction analysis showed that the major domain is N-terminal amino acids 215 to 255, containing the predicted TMD from amino acids 229 to 249. Using GFP as the reporter by systematically introducing deletions of these two regions in the constructs, we further confirmed that the N-terminal amino acids 215 to 255 of protein A function as a mitochondrial targeting signal.
Collapse
Affiliation(s)
- Yan Xiang Guo
- Animal Health Biotechnology Unit, Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, Singapore 117604
| | | | | |
Collapse
|
239
|
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. The disease was initially described in the 16th century and was the first animal pathogen identified as a virus. Recent FMD outbreaks in developed countries and their significant economic impact have increased the concern of governments worldwide. This review describes the reemergence of FMD in developed countries that had been disease free for many years and the effect that this has had on disease control strategies. The etiologic agent, FMD virus (FMDV), a member of the Picornaviridae family, is examined in detail at the genetic, structural, and biochemical levels and in terms of its antigenic diversity. The virus replication cycle, including virus-receptor interactions as well as unique aspects of virus translation and shutoff of host macromolecular synthesis, is discussed. This information has been the basis for the development of improved protocols to rapidly identify disease outbreaks, to differentiate vaccinated from infected animals, and to begin to identify and test novel vaccine candidates. Furthermore, this knowledge, coupled with the ability to manipulate FMDV genomes at the molecular level, has provided the framework for examination of disease pathogenesis and the development of a more complete understanding of the virus and host factors involved.
Collapse
Affiliation(s)
- Marvin J Grubman
- Plum Island Animal Disease Center, USDA, Agricultural Research Service, North Atlantic Area, Greenport, New York 11944, USA.
| | | |
Collapse
|
240
|
Abstract
The poliovirus RNA replication complex comprises multiple viral and possibly cellular proteins assembled on the cytoplasmic surface of rearranged intracellular membranes. Viral proteins 3A and 3AB perform several functions during the poliovirus replicative cycle, including significant roles in rearranging membranes, anchoring the viral polymerase to these membranes, inhibiting host protein secretion, and possibly providing the 3B protein primer for RNA synthesis. During poliovirus infection, the immunofluorescence signal of an amino-terminal epitope of 3A-containing proteins is markedly shielded compared to 3A protein expressed in the absence of other poliovirus proteins. This is not due to luminal orientation of all or a subset of the 3A-containing polypeptides, as shown by immunofluorescence following differential permeabilization and proteolysis experiments. Shielding of the 3A epitope is more pronounced in cells infected with wild-type poliovirus than in cells with temperature-sensitive mutant virus that contains a mutation in the 3D polymerase coding region adjacent to the 3AB binding site. Therefore, it is likely that direct binding of the poliovirus RNA-dependent RNA polymerase occludes the amino terminus of 3A-containing polypeptides in the RNA replication complex.
Collapse
Affiliation(s)
- Sunny S Choe
- 299 Campus Dr., Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
241
|
Monaghan P, Cook H, Jackson T, Ryan M, Wileman T. The ultrastructure of the developing replication site in foot-and-mouth disease virus-infected BHK-38 cells. J Gen Virol 2004; 85:933-946. [PMID: 15039536 DOI: 10.1099/vir.0.19408-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the type species of the Aphthovirus genus of the Picornaviridae: Infection by picornaviruses results in a major rearrangement of the host cell membranes to create vesicular structures where virus genome replication takes place. In this report, using fluorescence and electron microscopy, membrane rearrangements in the cytoplasm of FMDV-infected BHK-38 cells are documented. At 1.5-2.0 h post-infection, free ribosomes, fragmented rough endoplasmic reticulum, Golgi and smooth membrane-bound vesicles accumulated on one side of the nucleus. Newly synthesized viral RNA was localized to this region of the cell. The changes seen in FMDV-infected cells distinguish this virus from other members of the Picornaviridae, such as poliovirus. Firstly, the collapse of cellular organelles to one side of the cell has not previously been observed for other picornaviruses. Secondly, the membrane vesicles, induced by FMDV, appear distinct from those induced by other picornaviruses such as poliovirus and echovirus 11 since they are relatively few in number and do not aggregate into densely packed clusters. Additionally, the proportion of vesicles with double membranes is considerably lower in FMDV-infected cells. These differences did not result from the use of BHK-38 cells in this study, as infection of these cells by another picornavirus, bovine enterovirus (a close relative of poliovirus), resulted in morphological changes similar to those reported for poliovirus-infected cells. With conventional fixation, FMDV particles were not seen; however, following high-pressure freezing and freeze-substitution, many clusters of virus-like particles were seen.
Collapse
Affiliation(s)
- Paul Monaghan
- Institute for Animal Health, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Hannah Cook
- Institute for Animal Health, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Terry Jackson
- Institute for Animal Health, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Martin Ryan
- Division of Cell and Molecular Biology, University of St Andrews, Irvine Building, North Street, St Andrews, Fife KY16 9AL, UK
| | - Tom Wileman
- Institute for Animal Health, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| |
Collapse
|
242
|
Kirkegaard K, Taylor MP, Jackson WT. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2004; 2:301-14. [PMID: 15031729 PMCID: PMC7097095 DOI: 10.1038/nrmicro865] [Citation(s) in RCA: 343] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | |
Collapse
|
243
|
Crotty S, Saleh MC, Gitlin L, Beske O, Andino R. The poliovirus replication machinery can escape inhibition by an antiviral drug that targets a host cell protein. J Virol 2004; 78:3378-86. [PMID: 15016860 PMCID: PMC371039 DOI: 10.1128/jvi.78.7.3378-3386.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral replication depends on specific interactions with host factors. For example, poliovirus RNA replication requires association with intracellular membranes. Brefeldin A (BFA), which induces a major rearrangement of the cellular secretory apparatus, is a potent inhibitor of poliovirus RNA replication. Most aspects governing the relationship between viral replication complex and the host membranes remain poorly defined. To explore these interactions, we used a genetic approach and isolated BFA-resistant poliovirus variants. Mutations within viral proteins 2C and 3A render poliovirus resistant to BFA. In the absence of BFA, viruses containing either or both of these mutations replicated similarly to wild type. In the presence of BFA, viruses carrying a single mutation in 2C or 3A exhibited an intermediate-growth phenotype, while the double mutant was fully resistant. The viral proteins 2C and 3A have critical roles in both RNA replication and vesicle formation. The identification of BFA resistant mutants may facilitate the identification of cellular membrane-associated proteins necessary for induction of vesicle formation and RNA replication. Importantly, our data underscore the dramatic plasticity of the host-virus interactions required for successful viral replication.
Collapse
Affiliation(s)
- Shane Crotty
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, California 94143-2280, USA
| | | | | | | | | |
Collapse
|
244
|
Liu J, Wei T, Kwang J. Membrane-association properties of avian encephalomyelitis virus protein 3A. Virology 2004; 321:297-306. [PMID: 15051389 DOI: 10.1016/j.virol.2004.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 01/03/2004] [Accepted: 01/04/2004] [Indexed: 11/24/2022]
Abstract
Avian encephalomyelitis virus (AEV) protein 3A is a membrane-interacting protein containing a stretch of 21 hydrophobic amino acid residues. Membrane-association property was assayed using chick embryo brain (CEB) cells transfected with the fusion GFP-3A and its various deletion mutants demonstrate that 3A is integrally interacted with membranes by its hydrophobic domain and further defines that the motif of amino acid residues 45-51, the most C-terminal hydrophobic domain essential for this feature. Expression of 3A in transfected CEB cells results in membrane permeability modifications through association of the third motif with membranes, which can be demonstrated by release of lactate dehydrogenase (LDH) into the medium. Furthermore, the localization of the protein 3A in transfected CEB and Cos-7 cells exhibited an overlapping staining pattern with an endoplasmic reticulum (ER) and involved in the disassembly of the Golgi apparatus under double-staining and confocal microscopic observations, whereas the 3A mutants lacking amino acids 45-51 could not localize to the ER and display an intact Golgi morphology as seen in the mutant devoid of the complete hydrophobic domain after transfection. Taken together, our results demonstrate that the motif (aa 45-51) of the transmembrane domain might be fundamental for the stable interaction of the protein 3A with the ER membrane regardless of the cell types. Although this motif was deleted, the resultant protein did not localize to the ER, which directly results in the loss of the ability to block the ER-to-Golgi transport by 3A protein and hence makes the morphology of the Golgi apparatus return to normal.
Collapse
Affiliation(s)
- Jue Liu
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, The National University of Singapore, Singapore 117604, Singapore
| | | | | |
Collapse
|
245
|
Turner KA, Sit TL, Callaway AS, Allen NS, Lommel SA. Red clover necrotic mosaic virus replication proteins accumulate at the endoplasmic reticulum. Virology 2004; 320:276-90. [PMID: 15016550 DOI: 10.1016/j.virol.2003.12.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 12/09/2003] [Accepted: 12/11/2003] [Indexed: 11/18/2022]
Abstract
Red clover necrotic mosaic virus (RCNMV) encodes N-terminally overlapping proteins of 27 and 88 kDa (p27 and p88) known to be required for replication. Green fluorescent protein (GFP) fusions were used to visualize the location of p27 and p88 within Nicotiana benthamiana cells. GFP:p27 fusions localized to the endoplasmic reticulum (ER), co-localized with ER-targeted yellow fluorescent protein and caused membrane restructuring and proliferation. Cellular fractionation of virus-inoculated N. benthamiana leaves confirmed the association of p27 with ER membranes. GFP:p88 fusions also localized to the ER and co-localized with GFP:p27. Both fusion proteins co-localize to the cortical and cytoplasmic ER and were associated with invaginations of the nuclear envelope. Independent accumulation in, and perturbation of, the ER suggests that p27 and p88 function together in the replication complex. This is the first report of a member of the Tombusviridae replicating in association with the ER.
Collapse
Affiliation(s)
- Katherine A Turner
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
| | | | | | | | | |
Collapse
|
246
|
Prentice E, Jerome WG, Yoshimori T, Mizushima N, Denison MR. Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem 2004; 279:10136-41. [PMID: 14699140 PMCID: PMC7957857 DOI: 10.1074/jbc.m306124200] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 12/11/2003] [Indexed: 01/27/2023] Open
Abstract
The coronavirus mouse hepatitis virus (MHV) performs RNA replication on double membrane vesicles (DMVs) in the cytoplasm of the host cell. However, the mechanism by which these DMVs form has not been determined. Using genetic, biochemical, and cell imaging approaches, the role of autophagy in DMV formation and MHV replication was investigated. The results demonstrated that replication complexes co-localize with the autophagy proteins, microtubule-associated protein light-chain 3 and Apg12. MHV infection induces autophagy by a mechanism that is resistant to 3-methyladenine inhibition. MHV replication is impaired in autophagy knockout, APG5-/-, embryonic stem cell lines, but wild-type levels of MHV replication are restored by expression of Apg5 in the APG5-/-cells. In MHV-infected APG5-/-cells, DMVs were not detected; rather, the rough endoplasmic reticulum was dramatically swollen. The results of this study suggest that autophagy is required for formation of double membrane-bound MHV replication complexes and that DMV formation significantly enhances the efficiency of replication. Furthermore, the rough endoplasmic reticulum is implicated as the possible source of membranes for replication complexes.
Collapse
Affiliation(s)
- Erik Prentice
- Department of Microbiology and Immunology, Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee 37221, USA
| | | | | | | | | |
Collapse
|
247
|
Campanella M, de Jong AS, Lanke KWH, Melchers WJG, Willems PHGM, Pinton P, Rizzuto R, van Kuppeveld FJM. The coxsackievirus 2B protein suppresses apoptotic host cell responses by manipulating intracellular Ca2+ homeostasis. J Biol Chem 2004; 279:18440-50. [PMID: 14976205 DOI: 10.1074/jbc.m309494200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Enteroviruses, small cytolytic RNA viruses, confer an antiapoptotic state to infected cells in order to suppress infection-limiting apoptotic host cell responses. This antiapoptotic state also lends protection against cell death induced by metabolic inhibitors like actinomycin D and cycloheximide. The identity of the viral antiapoptotic protein and the underlying mechanism are unknown. Here, we provide evidence that the coxsackievirus 2B protein modulates apoptosis by manipulating intracellular Ca(2+) homeostasis. Using fluorescent Ca(2+) indicators and organelle-targeted aequorins, we demonstrate that ectopic expression of 2B in HeLa cells decreases the Ca(2+) content of both the endoplasmic reticulum and the Golgi, resulting in down-regulation of Ca(2+) signaling between these stores and the mitochondria, and increases the influx of extracellular Ca(2+). In our studies of the physiological importance of the 2B-induced alterations in Ca(2+) signaling, we found that the expression of 2B suppressed caspase activation and apoptotic cell death induced by various stimuli, including actinomycin D and cycloheximide. Mutants of 2B that were defective in reducing the Ca(2+) content of the stores failed to suppress apoptosis. These data implicate a functional role of the perturbation of intracellular Ca(2+) compartmentalization in the enteroviral strategy to suppress intrinsic apoptotic host cell responses. The putative down-regulation of an endoplasmic reticulum-dependent apoptotic pathway is discussed.
Collapse
Affiliation(s)
- Michelangelo Campanella
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Center for the Study of Inflammatory Diseases, Via Borsari 46, I-44100 Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
248
|
de Jong AS, Melchers WJG, Glaudemans DHRF, Willems PHGM, van Kuppeveld FJM. Mutational analysis of different regions in the coxsackievirus 2B protein: requirements for homo-multimerization, membrane permeabilization, subcellular localization, and virus replication. J Biol Chem 2004; 279:19924-35. [PMID: 14976211 DOI: 10.1074/jbc.m314094200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coxsackievirus 2B protein is a small hydrophobic protein (99 amino acids) that increases host cell membrane permeability, possibly by forming homo-multimers that build membrane-integral pores. Previously, we defined the functional role of the two hydrophobic regions HR1 and HR2. Here, we investigated the importance of regions outside HR1 and HR2 for multimerization, increasing membrane permeability, subcellular localization, and virus replication through analysis of linker insertion and substitution mutants. From these studies, the following conclusions could be drawn. (i) The hydrophilic region ((58)RNHDD(62)) between HR1 and HR2 is critical for multimerization and increasing membrane permeability. Substitution analysis of Asn(61) and Asn(62) demonstrated the preference for short polar side chains (Asp, Asn), residues that are often present in turns, over long polar side chains (Glu, Gln). This finding supports the idea that the hydrophilic region is involved in pore formation by facilitating a turn between HR1 and HR2 to reverse chain direction. (ii) Studies undertaken to define the downstream boundary of HR2 demonstrated that the aromatic residues Trp(80) and Trp(82), but not the positively charged residues Arg(81), Lys(84), and Lys(86) are important for increasing membrane permeability. (iii) The N terminus is not required for multimerization but does contribute to the membrane-active character of 2B. (iv) The subcellular localization of 2B does not rely on regions outside HR1 and HR2 and does not require multimerization. (v) Virus replication requires both the membrane-active character and an additional function of 2B that is not connected to this activity.
Collapse
Affiliation(s)
- Arjan S de Jong
- Department of Medical Microbiology, Nijmegen Center for Molecular Life Sciences, University Medical Center Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
249
|
Pacheco JM, Henry TM, O'Donnell VK, Gregory JB, Mason PW. Role of nonstructural proteins 3A and 3B in host range and pathogenicity of foot-and-mouth disease virus. J Virol 2004; 77:13017-27. [PMID: 14645558 PMCID: PMC296074 DOI: 10.1128/jvi.77.24.13017-13027.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of foot-and-mouth disease virus (FMDV) differs from that of other picornaviruses in that it encodes a larger 3A protein (>50% longer than poliovirus 3A), as well as three copies of protein 3B (also known as VPg). Previous studies have shown that a deletion of amino acids 93 to 102 of the 153-codon 3A protein is associated with an inability of a Taiwanese strain of FMDV (O/TAW/97) to cause disease in bovines. Recently, an Asian virus with a second 3A deletion (amino acids 133 to 143) has also been detected (N. J. Knowles et al., J. Virol. 75:1551-1556, 2001). Genetically engineered viruses harboring the amino acids 93 to 102 or 133 to 143 grew well in porcine cells but replicated poorly in bovine cells, whereas a genetically engineered derivative of the O/TAW/97 virus expressing a full-length 3A (strain A12) grew well in both cell types. Interestingly, a virus with a deletion spanning amino acid 93 to 144 also grew well in porcine cells and caused disease in swine. Further, genetically engineered viruses containing only a single copy of VPg were readily recovered with the full-length 3A, the deleted 3A (amino acids 93 to 102), or the "super" deleted forms of 3A (missing amino acids 93 to 144). All of the single-VPg viruses were attenuated in porcine cells and replicated poorly in bovine cells. The single-VPg viruses produced a mild disease in swine, indicating that the VPg copy number is an important determinant of host range and virulence. The association of VPg copy number with increased virulence in vivo may help to explain why all naturally occurring FMDVs have retained three copies of VPg.
Collapse
Affiliation(s)
- Juan M Pacheco
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | |
Collapse
|
250
|
Blondel B, Couderc T, Simonin Y, Gosselin AS, Guivel-Benhassine F. Poliovirus and Apoptosis. VIRUSES AND APOPTOSIS 2004; 36:151-69. [PMID: 15171611 DOI: 10.1007/978-3-540-74264-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- B Blondel
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, 75724 Paris cedex 15, France
| | | | | | | | | |
Collapse
|