201
|
Zaitseva L, Cherepanov P, Leyens L, Wilson SJ, Rasaiyaah J, Fassati A. HIV-1 exploits importin 7 to maximize nuclear import of its DNA genome. Retrovirology 2009; 6:11. [PMID: 19193229 PMCID: PMC2660290 DOI: 10.1186/1742-4690-6-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/04/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nuclear import of the HIV-1 reverse transcription complex (RTC) is critical for infection of non dividing cells, and importin 7 (imp7) has been implicated in this process. To further characterize the function of imp7 in HIV-1 replication we generated cell lines stably depleted for imp7 and used them in conjunction with infection, cellular fractionation and pull-down assays. RESULTS Imp7 depletion impaired HIV-1 infection but did not significantly affect HIV-2, simian immunodeficiency virus (SIVmac), or equine infectious anemia virus (EIAV). The lentiviral dependence on imp7 closely correlated with binding of the respective integrase proteins to imp7. HIV-1 RTC associated with nuclei of infected cells with remarkable speed and knock down of imp7 reduced HIV-1 DNA nuclear accumulation, delaying infection. Using an HIV-1 mutant deficient for reverse transcription, we found that viral RNA accumulated within nuclei of infected cells, indicating that reverse transcription is not absolutely required for nuclear import. Depletion of imp7 impacted on HIV-1 DNA but not RNA nuclear import and also inhibited DNA transfection efficiency. CONCLUSION Although imp7 may not be essential for HIV-1 infection, our results suggest that imp7 facilitates nuclear trafficking of DNA and that HIV-1 exploits imp7 to maximize nuclear import of its DNA genome. Lentiviruses other than HIV-1 may have evolved to use alternative nuclear import receptors to the same end.
Collapse
Affiliation(s)
- Lyubov Zaitseva
- Wohl Virion Centre, Division of Infection and Immunity, University College London (UCL), London, UK
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
| | - Peter Cherepanov
- Division of Medicine, St Mary's Campus, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Lada Leyens
- Wohl Virion Centre, Division of Infection and Immunity, University College London (UCL), London, UK
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
| | - Sam J Wilson
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
- Centre for Post-genomic Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London, W1T 4JF, UK
| | - Jane Rasaiyaah
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
- Centre for Post-genomic Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London, W1T 4JF, UK
| | - Ariberto Fassati
- Wohl Virion Centre, Division of Infection and Immunity, University College London (UCL), London, UK
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London (UCL), London, UK
| |
Collapse
|
202
|
Barrero-Villar M, Barroso-González J, Cabrero JR, Gordón-Alonso M, Alvarez-Losada S, Muñoz-Fernández MA, Sánchez-Madrid F, Valenzuela-Fernández A. PI4P5-kinase Ialpha is required for efficient HIV-1 entry and infection of T cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:6882-8. [PMID: 18981107 DOI: 10.4049/jimmunol.181.10.6882] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV-1 envelope (Env) triggers membrane fusion between the virus and the target cell. The cellular mechanism underlying this process is not well known. Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is known to be important for the late steps of the HIV-1 infection cycle by promoting Gag localization to the plasma membrane during viral assembly, but it has not been implicated in early stages of HIV-1 membrane-related events. In this study, we show that binding of the initial HIV-1 Env-gp120 protein induces PIP(2) production in permissive lymphocytes through the activation of phosphatidylinositol-4-phosphate 5-kinase (PI4P5-K) Ialpha. Overexpression of wild-type PI4P5-K Ialpha increased HIV-1 Env-mediated PIP(2) production and enhanced viral replication in primary lymphocytes and CEM T cells, whereas PIP(2) production and HIV-1 infection were both severely reduced in cells overexpressing the kinase-dead mutant D227A (D/A)-PI4P5-K Ialpha. Similar results were obtained with replicative and single-cycle HIV-1 particles. HIV-1 infection was also inhibited by knockdown of endogenous expression of PI4P5-K Ialpha. These data indicate that PI4P5-K Ialpha-mediated PIP(2) production is crucial for HIV-1 entry and the early steps of infection in permissive lymphocytes.
Collapse
|
203
|
Barrero-Villar M, Cabrero JR, Gordón-Alonso M, Barroso-González J, Alvarez-Losada S, Muñoz-Fernández MA, Sánchez-Madrid F, Valenzuela-Fernández A. Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes. J Cell Sci 2008; 122:103-13. [PMID: 19066282 DOI: 10.1242/jcs.035873] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus 1 (HIV-1) envelope regulates the initial attachment of viral particles to target cells through its association with CD4 and either CXCR4 or CCR5. Although F-actin is required for CD4 and CXCR4 redistribution, little is known about the molecular mechanisms underlying this fundamental process in HIV infection. Using CD4(+) CXCR4(+) permissive human leukemic CEM T cells and primary lymphocytes, we have investigated whether HIV-1 Env might promote viral entry and infection by activating ERM (ezrin-radixin-moesin) proteins to regulate F-actin reorganization and CD4/CXCR4 co-clustering. The interaction of the X4-tropic protein HIV-1 gp120 with CD4 augments ezrin and moesin phosphorylation in human permissive T cells, thereby regulating ezrin-moesin activation. Moreover, the association and clustering of CD4-CXCR4 induced by HIV-1 gp120 requires moesin-mediated anchoring of actin in the plasma membrane. Suppression of moesin expression with dominant-negative N-moesin or specific moesin silencing impedes reorganization of F-actin and HIV-1 entry and infection mediated by the HIV-1 envelope protein complex. Therefore, we propose that activated moesin promotes F-actin redistribution and CD4-CXCR4 clustering and is also required for efficient X4-tropic HIV-1 infection in permissive lymphocytes.
Collapse
Affiliation(s)
- Marta Barrero-Villar
- Servicio de Inmunología, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Speelmon EC, Livingston-Rosanoff D, Desbien AL, Lee J, Wick WD, Hladik F, McElrath MJ. Impaired viral entry cannot explain reduced CD4+ T cell susceptibility to HIV type 1 in certain highly exposed individuals. AIDS Res Hum Retroviruses 2008; 24:1415-27. [PMID: 19000021 PMCID: PMC2764523 DOI: 10.1089/aid.2007.0256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rare individuals report repeated unprotected HIV-1 sexual exposures, yet remain seronegative for years. We investigated the possibility that reduced in vitro CD4(+) T cell susceptibility to HIV-1 infection protects such highly exposed seronegative (ES) individuals. Susceptibility to three R5-tropic HIV-1 isolates, regardless of inoculating dose, was remarkably similar between 81 ES and 33 low-risk controls. In 94% (99/105) of donors, we observed a 1.36 log-unit range in HIV-1(JR-CSF) production, with similar results for HIV-1(1192). The median frequency of intracellular Gag(+) T cells after single-round infection was similar in ES (5.2%) and controls (7.2%), p = 0.456. However, in repeated testing, CD4(+) T cells from two controls (6.1%) and four ES (4.9%) exhibited a 10- to 2500-fold reduction in HIV-1 production and required 5- to 12-fold greater HIV-1(1192) and HIV-1(JR-CSF) inocula to establish infection (TCID(50)). Reduced viral entry cannot explain the low producer phenotype; no differences in CCR5 receptor density or beta-chemokine production were observed. In conclusion, we have identified a remarkably narrow range of HIV-1 susceptibility in seronegative donors regardless of risk activity, which can be applied as a benchmark to assess vaccine-induced antiviral effector activities. However, CD4(+) T cells from a subset of individuals demonstrated reduced HIV-1 susceptibility unexplained by impaired entry, lending support to the possibility that cellular restriction of HIV-1 may account for continued seronegativity in some of those having repeated sexual exposure. Identifying the host-virus interactions responsible for diminished in vitro susceptibility may contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Emily C. Speelmon
- Medical Scientist Training Program, University of Washington, Seattle, Washington 98105
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98105
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Devon Livingston-Rosanoff
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Anthony L. Desbien
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Jean Lee
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - W. David Wick
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Florian Hladik
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98105
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington 98105
| |
Collapse
|
205
|
Diehl WE, Stansell E, Kaiser SM, Emerman M, Hunter E. Identification of postentry restrictions to Mason-Pfizer monkey virus infection in New World monkey cells. J Virol 2008; 82:11140-51. [PMID: 18799582 PMCID: PMC2573280 DOI: 10.1128/jvi.00269-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 09/08/2008] [Indexed: 11/20/2022] Open
Abstract
TRIM5alpha has been shown to be a major postentry determinant of the host range for gammaretroviruses and lentiviruses and, more recently, spumaviruses. However, the restrictive potential of TRIM5alpha against other retroviruses has been largely unexplored. We sought to determine whether or not Mason-Pfizer monkey virus (M-PMV), a prototype betaretrovirus isolated from rhesus macaques, was sensitive to restriction by TRIM5alpha. Cell lines from both Old World and New World primate species were screened for their susceptibility to infection by vesicular stomatitis virus G protein pseudotyped M-PMV. All of the cell lines tested that were established from Old World primates were found to be susceptible to M-PMV infection. However, fibroblasts established from three New World monkey species specifically resisted infection by this virus. Exogenously expressing TRIM5alpha from either tamarin or squirrel monkeys in permissive cell lines resulted in a block to M-PMV infection. Restriction in the resistant cell line of spider monkey origin was determined to occur at a postentry stage. However, spider monkey TRIM5alpha expression in permissive cells failed to restrict M-PMV infection, and interference with endogenous TRIM5alpha in the spider monkey fibroblasts failed to relieve the block to infectivity. Our results demonstrate that TRIM5alpha specificity extends to betaretroviruses and suggest that New World monkeys have evolved additional mechanisms to restrict the infection of at least one primate betaretrovirus.
Collapse
Affiliation(s)
- William E Diehl
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | | | | | | | | |
Collapse
|
206
|
Christ F, Thys W, De Rijck J, Gijsbers R, Albanese A, Arosio D, Emiliani S, Rain JC, Benarous R, Cereseto A, Debyser Z. Transportin-SR2 imports HIV into the nucleus. Curr Biol 2008; 18:1192-202. [PMID: 18722123 DOI: 10.1016/j.cub.2008.07.079] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/03/2008] [Accepted: 07/17/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) and other lentiviruses have the capacity to infect nondividing cells like macrophages. This requires import of the preintegration complex (PIC) through the nuclear pore. Although many cellular and viral determinants have been proposed, the mechanism leading to nuclear import is not yet understood. RESULTS Using yeast two-hybrid and pull-down, we identified and validated transportin-SR2 (TRN-SR2) as a bona fide binding partner of HIV-1 integrase. We confirmed the biological relevance of this interaction by RNAi. Depletion of TRN-SR2 interfered with the replication of HIV-1 and HIV-2 but not MoMLV in HeLaP4 cells. Knockdown of TRN-SR2 in primary macrophages likewise interfered with HIV-1 replication. Using Q-PCR, we pinpoint this block in replication to the early steps of the viral lifecycle. A reduction in 2-LTR formation suggests a block in PIC nuclear import upon siRNA-mediated knockdown. Different lines of evidence clearly proved that the late steps of viral replication are not affected. In an in vivo nuclear-import assay using labeled HIV-1 particles, the defect in nuclear import after depletion of TRN-SR2 was directly visualized. In comparison with control cell lines, the great majority of siRNA-treated cells did not contain any PIC in the nucleus. CONCLUSION Our data clearly demonstrate that TRN-SR2 is the nuclear-import factor of HIV.
Collapse
Affiliation(s)
- Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, KU Leuven and IRC, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Cyclophilin A-dependent restriction of human immunodeficiency virus type 1 capsid mutants for infection of nondividing cells. J Virol 2008; 82:12001-8. [PMID: 18829762 DOI: 10.1128/jvi.01518-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Among retroviruses, lentiviruses are unusual in their ability to efficiently infect both dividing and nondividing cells, such as activated T cells and macrophages, respectively. Recent studies implicate the viral capsid protein (CA) as a key determinant of cell-cycle-independent infection by human immunodeficiency virus type 1 (HIV-1). We investigated the effects of the host cell protein cyclophilin A (CypA), which binds to HIV-1 CA, on HIV-1 infection of nondividing cells. The HIV-1 CA mutants A92E, T54A, and R132K were impaired for infection of aphidicolin-arrested HeLa cells, but not HOS cells. The mutants synthesized normal quantities of two-long-terminal-repeat circles in arrested HeLa cells, indicating that the mutant preintegration complexes can enter the nuclei of both dividing and nondividing cells. The impaired infectivity of the CA mutants on both dividing and nondividing HeLa cells was relieved by either pharmacological or genetic disruption of the CypA-CA interaction or by RNA interference-mediated depletion of CypA expression in target cells. A second-site suppressor of the CypA-restricted phenotype also restored the ability of CypA-restricted HIV-1 mutants to infect growth-arrested HeLa cells. These results indicate that CypA-restricted mutants are specifically impaired at a step between nuclear import and integration in nondividing HeLa cells. This study reveals a novel target cell-specific restriction of HIV-1 CA mutants in nondividing cells that is dependent on CypA-CA interactions.
Collapse
|
208
|
Lin TY, Emerman M. Determinants of cyclophilin A-dependent TRIM5 alpha restriction against HIV-1. Virology 2008; 379:335-41. [PMID: 18678385 PMCID: PMC2615586 DOI: 10.1016/j.virol.2008.06.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 06/19/2008] [Accepted: 06/30/2008] [Indexed: 11/19/2022]
Abstract
TRIM5 alpha is a host protein that can bind to incoming retroviral capsid (CA) and inhibit retroviruses in a species-specific manner. The CA protein of HIV-1 also interacts with high affinity to the host protein cyclophilin A (CypA). This binding has been shown to positively affect some early stage of the viral life cycle in human cells. However, the CypA/CA interaction also renders HIV-1 more susceptible to rhesus TRIM5 alpha (rhTRIM5 alpha) restriction. We find that the ability of old world monkey TRIM5 alpha genes to restrict HIV-1 in a CypA-dependent manner is widespread. On the other hand, we find that simian immunodeficiency viruses from tantalus monkeys (SIVagmTAN), is unlike HIV-1 in that CypA does not enhance the rhTRIM5 alpha restriction against the virus even though the CA of this virus, like HIV-1, does bind CypA. Mapping of the determinants for this phenotype by swapping regions on CA between SIVagmTAN and HIV-1 showed that when SIVagmTAN contains loops between helices 4/5 (4-5 loop) and 6/7 (6-7 loop) from HIV-1 CA, it becomes susceptible to the CypA-enhanced rhTRIM5 alpha restriction. Surprisingly, when SIVagmTAN contains either loop from HIV-1 CA, it gains sensitivity to TRIM5 alpha from species which originally have no effect on the wild-type virus. Moreover, we find that CypA/CA interaction occurs early after viral entry but the CypA-enhanced restriction mostly acts on the stage after reverse transcription.
Collapse
Affiliation(s)
- Tsai-Yu Lin
- Pathobiology Graduate Program, Department of Global Health, University of Washington, Seattle, WA 98195 USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Michael Emerman
- Pathobiology Graduate Program, Department of Global Health, University of Washington, Seattle, WA 98195 USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| |
Collapse
|
209
|
OhAinle M, Kerns JA, Li MMH, Malik HS, Emerman M. Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. Cell Host Microbe 2008; 4:249-59. [PMID: 18779051 PMCID: PMC2608726 DOI: 10.1016/j.chom.2008.07.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/19/2008] [Accepted: 07/07/2008] [Indexed: 11/26/2022]
Abstract
The primate APOBEC3 gene locus encodes a family of proteins (APOBEC3A-H) with various antiviral and antiretroelement activities. Here, we trace the evolution of APOBEC3H activity in hominoids to identify a human-specific loss of APOBEC3H antiviral activity. Reconstruction of the predicted ancestral human APOBEC3H protein shows that human ancestors encoded a stable form of this protein with potent antiviral activity. Subsequently, the antiviral activity of APOBEC3H was lost via two polymorphisms that are each independently sufficient to destabilize the protein. Nonetheless, an APOBEC3H allele that encodes a stably expressed protein is still maintained at high frequency, primarily in African populations. This stable APOBEC3H protein has potent activity against retroviruses and retrotransposons, including HIV and LINE-1 elements. The surprising finding that APOBEC3H antiviral activity has been lost in the majority of humans may have important consequences for our susceptibility to retroviral infections as well as ongoing retroelement proliferation in the human genome.
Collapse
Affiliation(s)
- Molly OhAinle
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
210
|
Capsid proteins from human immunodeficiency virus type 1 and simian immunodeficiency virus SIVmac can coassemble into mature cores of infectious viruses. J Virol 2008; 82:8253-61. [PMID: 18579598 DOI: 10.1128/jvi.02663-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have recently shown that the Gag polyproteins from human immunodeficiency virus type 1 (HIV-1) and HIV-2 can coassemble and functionally complement each other. During virion maturation, the Gag polyproteins undergo proteolytic cleavage to release mature proteins including capsid (CA), which refolds and forms the outer shell of a cone-shaped mature core. Less than one-half of the CA proteins present within the HIV-1 virion are required to form the mature core. Therefore, it is unclear whether the mature core in virions containing both HIV-1 and HIV-2 Gag consists of CA proteins from a single virus or from both viruses. To determine whether CA proteins from two different viruses can coassemble into mature cores of infectious viruses, we exploited the specificity of the tripartite motif 5alpha protein from the rhesus monkey (rhTRIM5alpha) for cores containing HIV-1 CA (hCA) but not the simian immunodeficiency virus SIV(mac) CA protein (sCA). If hCA and sCA cannot coassemble into the same core when equal amounts of sCA and hCA are coexpressed, the infectivities of such virus preparations in cells should be inhibited less than twofold by rhTRIM5alpha. However, if hCA and sCA can coassemble into the same core structure to form a mixed core, rhTRIM5alpha would be able to recognize such cores and significantly restrict virus infectivity. We examined the restriction phenotypes of viruses containing both hCA and sCA. Our results indicate that hCA and sCA can coassemble into the same mature core to produce infectious virus. To our knowledge, this is the first demonstration of functional coassembly of heterologous CA protein into the retroviral core.
Collapse
|
211
|
Janas AM, Dong C, Wang JH, Wu L. Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry. Virology 2008; 375:442-51. [PMID: 18329684 PMCID: PMC2519004 DOI: 10.1016/j.virol.2008.01.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 11/28/2007] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) enters dendritic cells (DCs) through endocytosis and viral receptor-mediated fusion. Although endocytosis-mediated HIV-1 entry can generate productive infection in certain cell types, including human monocyte-derived macrophages, productive HIV-1 infection in DCs appears to be dependent on fusion-mediated viral entry. It remains to be defined whether endocytosed HIV-1 in DCs can initiate productive infection. Using HIV-1 infection and cellular fractionation assays to measure productive viral infection and entry, here we show that HIV-1 enters monocyte-derived DCs predominately through endocytosis; however, endocytosed HIV-1 cannot initiate productive HIV-1 infection in DCs. In contrast, productive HIV-1 infection in DCs requires fusion-mediated viral entry. Together, these results provide functional evidence in understanding HIV-1 cis-infection of DCs, suggesting that different pathways of HIV-1 entry into DCs determine the outcome of viral infection.
Collapse
Affiliation(s)
- Alicia M. Janas
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Chunsheng Dong
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Jian-Hua Wang
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Li Wu
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
212
|
Thomas JA, Gorelick RJ. Nucleocapsid protein function in early infection processes. Virus Res 2008; 134:39-63. [PMID: 18279991 PMCID: PMC2789563 DOI: 10.1016/j.virusres.2007.12.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/15/2023]
Abstract
The role of nucleocapsid protein (NC) in the early steps of retroviral replication appears largely that of a facilitator for reverse transcription and integration. Using a wide variety of cell-free assay systems, the properties of mature NC proteins (e.g. HIV-1 p7(NC) or MLV p10(NC)) as nucleic acid chaperones have been extensively investigated. The effect of NC on tRNA annealing, reverse transcription initiation, minus-strand-transfer, processivity of reverse transcription, plus-strand-transfer, strand-displacement synthesis, 3' processing of viral DNA by integrase, and integrase-mediated strand-transfer has been determined by a large number of laboratories. Interestingly, these reactions can all be accomplished to varying degrees in the absence of NC; some are facilitated by both viral and non-viral proteins and peptides that may or may not be involved in vivo. What is one to conclude from the observation that NC is not strictly required for these necessary reactions to occur? NC likely enhances the efficiency of each of these steps, thereby vastly improving the productivity of infection. In other words, one of the major roles of NC is to enhance the effectiveness of early infection, thereby increasing the probability of productive replication and ultimately of retrovirus survival.
Collapse
Affiliation(s)
- James A. Thomas
- AIDS Vaccine Program, Basic Sciences Program, SAIC-Frederick, Inc., NCI-Frederick, P.O. Box B, BLDG 535, RM 410, Frederick, MD 21702-1201, U.S.A
| | - Robert J. Gorelick
- AIDS Vaccine Program, Basic Sciences Program, SAIC-Frederick, Inc., NCI-Frederick, P.O. Box B, BLDG 535, RM 410, Frederick, MD 21702-1201, U.S.A
| |
Collapse
|
213
|
Zhang H, Zhao Q, Bhattacharya S, Waheed AA, Tong X, Hong A, Heck S, Curreli F, Goger M, Cowburn D, Freed EO, Debnath AK. A cell-penetrating helical peptide as a potential HIV-1 inhibitor. J Mol Biol 2008; 378:565-80. [PMID: 18374356 PMCID: PMC2695608 DOI: 10.1016/j.jmb.2008.02.066] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
The capsid domain of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein is a critical determinant of virus assembly, and is therefore a potential target for developing drugs for AIDS therapy. Recently, a 12-mer alpha-helical peptide (CAI) was reported to disrupt immature- and mature-like capsid particle assembly in vitro; however, it failed to inhibit HIV-1 in cell culture due to its inability to penetrate cells. The same group reported the X-ray crystal structure of CAI in complex with the C-terminal domain of capsid (C-CA) at a resolution of 1.7 A. Using this structural information, we have utilized a structure-based rational design approach to stabilize the alpha-helical structure of CAI and convert it to a cell-penetrating peptide (CPP). The modified peptide (NYAD-1) showed enhanced alpha-helicity. Experiments with laser scanning confocal microscopy indicated that NYAD-1 penetrated cells and colocalized with the Gag polyprotein during its trafficking to the plasma membrane where virus assembly takes place. NYAD-1 disrupted the assembly of both immature- and mature-like virus particles in cell-free and cell-based in vitro systems. NMR chemical shift perturbation analysis mapped the binding site of NYAD-1 to residues 169-191 of the C-terminal domain of HIV-1 capsid encompassing the hydrophobic cavity and the critical dimerization domain with an improved binding affinity over CAI. Furthermore, experimental data indicate that NYAD-1 most likely targets capsid at a post-entry stage. Most significantly, NYAD-1 inhibited a large panel of HIV-1 isolates in cell culture at low micromolar potency. Our study demonstrates how a structure-based rational design strategy can be used to convert a cell-impermeable peptide to a cell-permeable peptide that displays activity in cell-based assays without compromising its mechanism of action. This proof-of-concept cell-penetrating peptide may aid validation of capsid as an anti-HIV-1 drug target and may help in designing peptidomimetics and small molecule drugs targeted to this protein.
Collapse
Affiliation(s)
- Hongtao Zhang
- Laboratory of Molecular Modeling and Drug Design, Lindsley F. Kimball Research Institute of the New York Blood Center, 310 E 67th Street, New York, NY 10021, USA
| | - Qian Zhao
- Laboratory of Molecular Modeling and Drug Design, Lindsley F. Kimball Research Institute of the New York Blood Center, 310 E 67th Street, New York, NY 10021, USA
| | | | - Abdul A. Waheed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Xiaohe Tong
- Anaspec Corp., 2149 O'Toole Ave., San Jose, CA 95131, USA
| | - Anita Hong
- Anaspec Corp., 2149 O'Toole Ave., San Jose, CA 95131, USA
| | - Susanne Heck
- Laboratory of Flow Cytometry, Lindsley F. Kimball Research Institute of the New York Blood Center, 310 E 67th Street, New York, NY 10021, USA
| | - Francesca Curreli
- Laboratory of Molecular Modeling and Drug Design, Lindsley F. Kimball Research Institute of the New York Blood Center, 310 E 67th Street, New York, NY 10021, USA
| | - Michael Goger
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - David Cowburn
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Asim K. Debnath
- Laboratory of Molecular Modeling and Drug Design, Lindsley F. Kimball Research Institute of the New York Blood Center, 310 E 67th Street, New York, NY 10021, USA
| |
Collapse
|
214
|
Wang J, Shackelford JM, Selliah N, Shivers DK, O'Neill E, Garcia JV, Muthumani K, Weiner D, Yu XF, Gabuzda D, Finkel TH. The HIV-1 Vif protein mediates degradation of Vpr and reduces Vpr-induced cell cycle arrest. DNA Cell Biol 2008; 27:267-77. [PMID: 18462066 DOI: 10.1089/dna.2007.0707] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prior work has implicated viral protein R (Vpr) in the arrest of human immunodeficiency virus type 1 (HIV-1)-infected cells in the G2 phase of the cell cycle, associated with increased viral replication and host cell apoptosis. We and others have recently shown that virion infectivity factor (Vif ) also plays a role in the G2 arrest of HIV-1-infected cells. Here, we demonstrate that, paradoxically, at early time points postinfection, Vif expression blocks Vpr-mediated G2 arrest, while deletion of Vif from the HIV-1 genome leads to a marked increase in G2 arrest of infected CD4 T-cells. Consistent with this increased G2 arrest, T-cells infected with Vif-deleted HIV-1 express higher levels of Vpr protein than cells infected with wild-type virus. Further, expression of exogenous Vif inhibits the expression of Vpr, associated with a decrease in G2 arrest of both infected and transfected cells. Treatment with the proteasome inhibitor MG132 increases Vpr protein expression and G2 arrest in wild-type, but not Vif-deleted, NL4-3-infected cells, and in cells cotransfected with Vif and Vpr. In addition, Vpr coimmunoprecipitates with Vif in cotransfected cells in the presence of MG132. This suggests that inhibition of Vpr by Vif is mediated at least in part by proteasomal degradation, similar to Vif-induced degradation of APOBEC3G. Together, these data show that Vif mediates the degradation of Vpr and modulates Vpr-induced G2 arrest in HIV-1-infected T-cells.
Collapse
Affiliation(s)
- Jiangfang Wang
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Abstract
HIV integrates a DNA copy of its genome into a host cell chromosome in each replication cycle. The essential DNA cleaving and joining chemistry of integration is known, but there is less understanding of the process as it occurs in a cell, where two complex and dynamic macromolecular entities are joined: the viral pre-integration complex and chromatin. Among implicated cellular factors, much recent attention has coalesced around LEDGF/p75, a nuclear protein that may act as a chromatin docking factor or receptor for lentiviral pre-integration complexes. LEDGF/p75 tethers HIV integrase to chromatin, protects it from degradation, and strongly influences the genome-wide pattern of HIV integration. Depleting the protein from cells and/or over-expressing its integrase-binding domain blocks viral replication. Current goals are to establish the underlying mechanisms and to determine whether this knowledge can be exploited for antiviral therapy or for targeting lentiviral vector integration in human gene therapy.
Collapse
Affiliation(s)
- E M Poeschla
- Guggenheim 18, Mayo Clinic College of Medicine, 200 First Street SW, Rochester 55905, USA.
| |
Collapse
|
216
|
The LEM domain proteins emerin and LAP2alpha are dispensable for human immunodeficiency virus type 1 and murine leukemia virus infections. J Virol 2008; 82:5860-8. [PMID: 18400857 DOI: 10.1128/jvi.00076-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human nuclear envelope proteins emerin and lamina-associated polypeptide 2alpha (LAP2alpha) have been proposed to aid in the early replication steps of human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MLV). However, whether these factors are essential for HIV-1 or MLV infection has been questioned. Prior studies in which conflicting results were obtained were highly dependent on RNA interference-mediated gene silencing. To shed light on these contradictory results, we examined whether HIV-1 or MLV could infect primary cells from mice deficient for emerin, LAP2alpha, or both emerin and LAP2alpha. We observed HIV-1 and MLV infectivity in mouse embryonic fibroblasts (MEFs) from emerin knockout, LAP2alpha knockout, or emerin and LAP2alpha double knockout mice to be comparable in infectivity to wild-type littermate-derived MEFs, indicating that both emerin and LAP2alpha were dispensable for HIV-1 and MLV infection of dividing, primary mouse cells. Because emerin has been suggested to be important for infection of human macrophages by HIV-1, we also examined HIV-1 transduction of macrophages from wild-type mice or knockout mice, but again we did not observe a difference in susceptibility. These findings prompted us to reexamine the role of human emerin in supporting HIV-1 and MLV infection. Notably, both viruses efficiently infected human cells expressing high levels of dominant-negative emerin. We thus conclude that emerin and LAP2alpha are not required for the early replication of HIV-1 and MLV in mouse or human cells.
Collapse
|
217
|
Ptak RG, Gallay PA, Jochmans D, Halestrap AP, Ruegg UT, Pallansch LA, Bobardt MD, de Béthune MP, Neyts J, De Clercq E, Dumont JM, Scalfaro P, Besseghir K, Wenger RM, Rosenwirth B. Inhibition of human immunodeficiency virus type 1 replication in human cells by Debio-025, a novel cyclophilin binding agent. Antimicrob Agents Chemother 2008; 52:1302-17. [PMID: 18212100 PMCID: PMC2292519 DOI: 10.1128/aac.01324-07] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/16/2007] [Accepted: 01/16/2008] [Indexed: 12/30/2022] Open
Abstract
Debio-025 is a synthetic cyclosporine with no immunosuppressive capacity but a high inhibitory potency against cyclophilin A (CypA)-associated cis-trans prolyl isomerase (PPIase) activity. A lack of immunosuppressive effects compared to that of cyclosporine was demonstrated both in vitro and in vivo. For three cyclosporines, the inhibitory potential against PPIase activity was quantitatively correlated with that against human immunodeficiency virus type 1 (HIV-1) replication. Debio-025 selectively inhibited the replication of HIV-1 in a CD4+ cell line and in peripheral blood mononuclear cells: potent activity was demonstrated against clinical isolates of various HIV-1 subtypes, including isolates with multidrug resistance to reverse transcriptase and protease inhibitors. Simian immunodeficiency virus and HIV-2 strains were generally resistant to inhibition by Debio-025; however, some notable exceptions of sensitive HIV-2 clinical isolates were detected. In two-drug combination studies, additive inhibitory effects were found between Debio-025 and 19 clinically used drugs of different classes. Clinical HIV-1 isolates that are naturally resistant to Debio-025 and that do not depend on CypA for infection were identified. Comparison of the amino acid sequences of the CypA binding domain of the capsid (CA) protein from Debio-025-sensitive and -resistant HIV-1 isolates indicated that resistance was mostly associated with an H87Q/P exchange. Mechanistically, cyclosporines competitively inhibit the binding of CypA to the HIV-1 CA protein, which is an essential interaction required for early steps in HIV-1 replication. By real-time PCR we demonstrated that early reverse transcription is reduced in the presence of Debio-025 and that late reverse transcription is almost completely blocked. Thus, Debio-025 seems to interfere with the function of CypA during the progression/completion of HIV-1 reverse transcription.
Collapse
Affiliation(s)
- Roger G Ptak
- Southern Research Institute, Frederick, Maryland 21701, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Larsen LSZ, Beliakova-Bethell N, Bilanchone V, Zhang M, Lamsa A, Dasilva R, Hatfield GW, Nagashima K, Sandmeyer S. Ty3 nucleocapsid controls localization of particle assembly. J Virol 2008; 82:2501-14. [PMID: 18094177 PMCID: PMC2258933 DOI: 10.1128/jvi.01814-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 12/12/2007] [Indexed: 01/07/2023] Open
Abstract
Expression of the budding yeast retrotransposon Ty3 results in production of viruslike particles (VLPs) and retrotransposition. The Ty3 major structural protein, Gag3, similar to retrovirus Gag, is processed into capsid, spacer, and nucleocapsid (NC) during VLP maturation. The 57-amino-acid Ty3 NC protein has 17 basic amino acids and contains one copy of the CX(2)CX(4)HX(4)C zinc-binding motif found in retrovirus NC proteins. Ty3 RNA, protein, and VLPs accumulate in clusters associated with RNA processing bodies (P bodies). This study investigated the role of the NC domain in Ty3-P body clustering and VLP assembly. Fifteen Ty3 NC Ala substitution and deletion mutants were examined using transposition, immunoblot, RNA protection, cDNA synthesis, and multimerization assays. Localization of Ty3 proteins and VLPs was characterized microscopically. Substitutions of each of the conserved residues of the zinc-binding motif resulted in the loss of Ty3 RNA packaging. Substitution of the first two of four conserved residues in this motif caused the loss of Ty3 RNA and protein clustering with P bodies and disrupted particle formation. NC was shown to be a mediator of formation of Ty3 RNA foci and association of Ty3 RNA and protein with P bodies. Mutations that disrupted these NC functions resulted in various degrees of Gag3 nuclear localization and a spectrum of different particle states. Our findings are consistent with the model that Ty3 assembly is associated with P-body components. We hypothesize that the NC domain acts as a molecular switch to control Gag3 conformational states that affect both assembly and localization.
Collapse
Affiliation(s)
- Liza S Z Larsen
- Department of Biological Chemistry, D240 Med. Sci. I, University of California, Irvine, CA 92697-1700, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells. PLoS Pathog 2008; 3:1502-10. [PMID: 17967060 PMCID: PMC2042020 DOI: 10.1371/journal.ppat.0030156] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 09/13/2007] [Indexed: 12/19/2022] Open
Abstract
HIV and other lentiviruses can productively infect nondividing cells, whereas most other retroviruses, such as murine leukemia virus, require cell division for efficient infection. However, the determinants for this phenotype have been controversial. Here, we show that HIV-1 capsid (CA) is involved in facilitating HIV infection of nondividing cells because amino acid changes on CA severely disrupt the cell-cycle independence of HIV. One mutant in the N-terminal domain of CA in particular has lost the cell-cycle independence in all cells tested, including primary macrophages. The defect in this mutant appears to be at a stage past nuclear entry. We also find that the loss of cell-cycle independence can be cell-type specific, which suggests that a cellular factor affects the ability of HIV to infect nondividing cells. Our data suggest that CA is directly involved at some step in the viral life cycle that is important for infection of nondividing cells. HIV and related viruses are unusual among retroviruses in their ability to replicate independently of cell-cycle progression of target cells. However, the determinants of this phenotype have been controversial. Here, we identified mutations on the surface of the capsid (CA) protein that reduce the ability of HIV to infect nondividing cells. These mutations also confer cell-cycle dependency on HIV, even in dividing cells. Interestingly, some CA mutants lose cell-cycle independence only in certain cell types. Thus, these findings suggest that a cellular factor targeting CA regulates HIV-1 infection in nondividing cells. Surprisingly, these mutations do not appear to affect nuclear localization of viral genomes, which points to a novel regulation of the cell-cycle independence of HIV by the CA protein.
Collapse
|
220
|
Marshall HM, Ronen K, Berry C, Llano M, Sutherland H, Saenz D, Bickmore W, Poeschla E, Bushman FD. Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting. PLoS One 2007; 2:e1340. [PMID: 18092005 PMCID: PMC2129110 DOI: 10.1371/journal.pone.0001340] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 11/26/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND To replicate, lentiviruses such as HIV must integrate DNA copies of their RNA genomes into host cell chromosomes. Lentiviral integration is favored in active transcription units, which allows efficient viral gene expression after integration, but the mechanisms directing integration targeting are incompletely understood. A cellular protein, PSIP1/LEDGF/p75, binds tightly to the lentiviral-encoded integrase protein (IN), and has been reported to be important for HIV infectivity and integration targeting. METHODOLOGY Here we report studies of lentiviral integration targeting in 1) human cells with intensified RNAi knockdowns of PSIP1/LEDGF/p75, and 2) murine cells with homozygous gene trap mutations in the PSIP1/LEDGF/p75 locus. Infections with vectors derived from equine infections anemia virus (EIAV) and HIV were compared. Integration acceptor sites were analyzed by DNA bar coding and pyrosequencing. CONCLUSIONS/SIGNIFICANCE In both PSIP1/LEDGF/p75-depleted cell lines, reductions were seen in lentiviral infectivity compared to controls. For the human cells, integration was reduced in transcription units in the knockdowns, and this reduction was greater than in our previous studies of human cells less completely depleted for PSIP1/LEDGF/p75. For the homozygous mutant mouse cells, similar reductions in integration in transcription units were seen, paralleling a previous study of a different mutant mouse line. Integration did not become random, however-integration in transcription units in both cell types was still favored, though to a reduced degree. New trends also appeared, including favored integration near CpG islands. In addition, we carried out a bioinformatic study of 15 HIV integration site data sets in different cell types, which showed that the frequency of integration in transcription units was correlated with the cell-type specific levels of PSIP1/LEDGF/p75 expression.
Collapse
Affiliation(s)
- Heather M. Marshall
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Keshet Ronen
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Charles Berry
- Department of Family, Preventive Medicine, San Diego School of Medicine, University of California at San Diego, San Diego, California, United States of America
| | - Manuel Llano
- Molecular Medicine Program, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Heidi Sutherland
- Medical Research Council (MRC) Human Genetics Unit, Edinburgh, United Kingdom
| | - Dyana Saenz
- Department of Family, Preventive Medicine, San Diego School of Medicine, University of California at San Diego, San Diego, California, United States of America
| | - Wendy Bickmore
- Medical Research Council (MRC) Human Genetics Unit, Edinburgh, United Kingdom
| | - Eric Poeschla
- Molecular Medicine Program, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
221
|
DaFonseca S, Blommaert A, Coric P, Hong SS, Bouaziz S, Boulanger P. The 3- O-(3’,3’-dimethylsuccinyl) derivative of betulinic acid (DSB) inhibits the assembly of virus-like particles in HIV-1 Gag precursor-expressing cells. Antivir Ther 2007. [DOI: 10.1177/135965350701200807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Background The 3- O-(3’,3’-dimethylsuccinyl) derivative of betulinic acid (DSB) blocks HIV-1 maturation by interfering with viral protease (PR) at the capsid (CA)-SP1 cleavage site, a crucial region in HIV-1 morphogenesis. Methods We analysed the effect of DSB on the assembly of HIV-1 Gag precursor (Pr55GagHIV) into membrane-enveloped virus-like particles (VLP) in baculovirus-infected cells expressing Pr55GagHIV, in a cellular context devoid of viral PR. Results DSB showed a dose-dependent negative effect on VLP assembly, with an IC50∼10 μM. The DSB inhibitory effect was p6-independent and was also observed for intracellular assembly of non-N-myristoylated Gag core-like particles. HIV-1 VLP assembled in the presence of DSB exhibited a lower stability of their inner cores upon membrane delipidation compared with control VLP, suggesting weaker Gag-Gag interactions. DSB also inhibited the assembly of simian immunodeficiency virus SIVmac251 VLP, although with a twofold lower efficacy (IC50∼20 μM). No detectable inhibitory activity was observed for murine leukaemia virus (MLV) VLP; however, fusion of the SP1-NC-p6 domains from HIV-1 to the matrix (MA)-CA domains from MLV conferred DSB sensitivity to the chimaeric Gag precursor Pr72GagMLV–HIV (IC50=30 μM). This observation suggested that the main DSB target on Pr55Gag was the SP1 domain, but the higher degree of DSB resistance for Pr72GagMLV–HIV compared with Pr55GagHIV implied that other upstream Gag region(s) might contribute to DSB reactivity. Conclusions Sequence alignment and three-dimensional modelling by homology of the CA-SP1-NC junction in HIV-1, SIVmac251 and Pr72GagMLV–HIV suggested that a higher hydrophilic character of the CA region immediately upstream to the HIV-1 CA-SP1 junction, as occurred in Pr72GagMLV–HIV, correlated with a lower DSB sensitivity.
Collapse
Affiliation(s)
- Sandrina DaFonseca
- Laboratoire de Virologie & Pathologie Humaine, Université de Lyon I and CNRS FRE-3011, Faculté de Médecine Laënnec, 69372 Lyon Cedex 08, France
| | - Armand Blommaert
- Unité de Pharmacologie Chimique et Génétique, INSERM U-640 and CNRS UMR-8151, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Pascale Coric
- Unité de Pharmacologie Chimique et Génétique, INSERM U-640 and CNRS UMR-8151, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Saw See Hong
- Laboratoire de Virologie & Pathologie Humaine, Université de Lyon I and CNRS FRE-3011, Faculté de Médecine Laënnec, 69372 Lyon Cedex 08, France
| | - Serge Bouaziz
- Unité de Pharmacologie Chimique et Génétique, INSERM U-640 and CNRS UMR-8151, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Pierre Boulanger
- Laboratoire de Virologie & Pathologie Humaine, Université de Lyon I and CNRS FRE-3011, Faculté de Médecine Laënnec, 69372 Lyon Cedex 08, France
- Laboratoire de Virologie Médicale, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 69677 Bron Cedex, France
| |
Collapse
|
222
|
Dong C, Janas AM, Wang JH, Olson WJ, Wu L. Characterization of human immunodeficiency virus type 1 replication in immature and mature dendritic cells reveals dissociable cis- and trans-infection. J Virol 2007; 81:11352-62. [PMID: 17686876 PMCID: PMC2045571 DOI: 10.1128/jvi.01081-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/26/2007] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells (DCs) transmit human immunodeficiency virus type 1 (HIV-1) to CD4(+) T cells through the trans- and cis-infection pathways; however, little is known about the relative efficiencies of these pathways and whether they are interdependent. Here we compare cis- and trans-infections of HIV-1 mediated by immature DCs (iDCs) and mature DCs (mDCs), using replication-competent and single-cycle HIV-1. Monocyte-derived iDCs were differentiated into various types of mDCs by lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), and CD40 ligand (CD40L). iDCs and CD40L-induced mDCs were susceptible to HIV-1 infection and mediated efficient viral transmission to CD4(+) T cells. Although HIV-1 cis-infection was partially restricted in TNF-alpha-induced mDCs and profoundly blocked in LPS-induced mDCs, these cells efficiently promoted HIV-1 trans-infection of CD4(+) T cells. The postentry restriction of HIV-1 infection in LPS-induced mDCs was identified at the levels of reverse transcription and postintegration, using real-time PCR quantification of viral DNA and integration. Furthermore, nucleofection of DCs with HIV-1 proviral DNA confirmed that impaired gene expression of LPS-induced mDCs was responsible for the postentry restriction of HIV-1 infection. Our results suggest that various DC subsets in vivo may differentially contribute to HIV-1 dissemination via dissociable cis- and trans-infections.
Collapse
Affiliation(s)
- Chunsheng Dong
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
223
|
Wang JH, Janas AM, Olson WJ, Wu L. Functionally distinct transmission of human immunodeficiency virus type 1 mediated by immature and mature dendritic cells. J Virol 2007; 81:8933-43. [PMID: 17567699 PMCID: PMC1951429 DOI: 10.1128/jvi.00878-07] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 06/03/2007] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells (DCs) potently stimulate the transmission of human immunodeficiency virus type 1 (HIV-1) to CD4(+) T cells. Immature DCs (iDCs) located in submucosal tissues can capture HIV-1 and migrate to lymphoid tissues, where they become mature DCs (mDCs) for effective antigen presentation. DC maturation promotes HIV-1 transmission; however, the underlying mechanisms remain unclear. Here we have compared monocyte-derived iDCs and mDCs for their efficiencies and mechanisms of HIV-1 transmission. We have found that mDCs significantly facilitate HIV-1 endocytosis and efficiently concentrate HIV-1 at virological synapses, which contributes to mDC-enhanced viral transmission, at least in part. mDCs were more efficient than iDCs in transferring HIV-1 to various types of target cells independently of C-type lectins, which partially accounted for iDC-mediated HIV-1 transmission. Efficient HIV-1 trans-infection mediated by iDCs and mDCs required contact between DCs and target cells. Moreover, rapid HIV-1 degradation occurred in both iDCs and mDCs, which correlated with the lack of HIV-1 retention-mediated long-term viral transmission. Our results provide new insights into the mechanisms underlying DC-mediated HIV-1 transmission, suggesting that HIV-1 exploits mDCs to facilitate its dissemination within lymphoid tissues.
Collapse
Affiliation(s)
- Jian-Hua Wang
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
224
|
Pineda MJ, Orton BR, Overbaugh J. A TRIM5alpha-independent post-entry restriction to HIV-1 infection of macaque cells that is dependent on the path of entry. Virology 2007; 363:310-8. [PMID: 17350067 PMCID: PMC2743720 DOI: 10.1016/j.virol.2007.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 11/20/2006] [Accepted: 02/01/2007] [Indexed: 12/18/2022]
Abstract
The replication of human immunodeficiency type-1 (HIV-1) is restricted in macaque cells, in part due to host factors that provide intrinsic immunity after entry. Here we show that a rhesus macaque epithelial cell line engineered to express human CD4, sMAGI cells, has at least two post-entry restrictions to HIV-1 replication: one that is dependent on a previously described post-entry restriction factor of macaque cells, TRIM5alpha, and another that is primarily TRIM5alpha-independent. The TRIM5alpha restriction, which was observed with particles that had an HIV-1 core pseudotyped with VSV-G envelope, is saturable and can be completely abrogated by introducing TRIM5alpha-specific siRNA into the cells. A similar TRIM5alpha-dependent restriction was observed when sMAGI cells expressing human CCR5 were infected with an R5-HIV-1. In contrast, even when viruses enter sMAGI cells using CD4 and an endogenous rhesus coreceptor at levels sufficient to saturate TRIM5alpha, they do not productively infect the sMAGI cells. Nor does treatment of sMAGI cells with TRIM5alpha-specific siRNA relieve this post-entry restriction; this was true whether the HIV-1 core was pseudotyped with SIV envelope or an R5-HIV-1 envelope. Together these data suggest that there is an alternate restriction to replication, here called Lv3, that is encountered by viruses that enter via interaction with CD4 and an endogenous rhesus coreceptor. Thus, these findings suggest that post-entry events are dependent upon the mechanism by which HIV-1 enters the cell.
Collapse
Affiliation(s)
- Mario Javier Pineda
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Seattle, Washington, US 98109
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195
| | - Brannon R. Orton
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Seattle, Washington, US 98109
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Seattle, Washington, US 98109
| |
Collapse
|
225
|
De Rijck J, Vandekerckhove L, Christ F, Debyser Z. Lentiviral nuclear import: a complex interplay between virus and host. Bioessays 2007; 29:441-51. [PMID: 17450594 DOI: 10.1002/bies.20561] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although the capacity to infect non-dividing cells is a hallmark of lentiviruses, nuclear import is still barely understood. More than 100 research papers have been dedicated to this topic during the last 15 years, yet, more questions have been raised than answers. The signal-facilitating translocation of the viral preintegration complex (PIC) through the nuclear pore complex (NPC) remains unknown. It is clear, however, that nuclear import is the result of a complex interplay between viral and cellular components. In this review, we discuss the current knowledge on nuclear import. We focus on the controversies and pitfalls and discuss the interplay between virus and host.
Collapse
Affiliation(s)
- Jan De Rijck
- Laboratory for Molecular Virology and Gene Therapy, KULeuven and IRC KULAK, Leuven, Belgium
| | | | | | | |
Collapse
|
226
|
Hladik F, Sakchalathorn P, Ballweber L, Lentz G, Fialkow M, Eschenbach D, McElrath MJ. Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity 2007; 26:257-70. [PMID: 17306567 PMCID: PMC1885958 DOI: 10.1016/j.immuni.2007.01.007] [Citation(s) in RCA: 386] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 11/08/2006] [Accepted: 01/02/2007] [Indexed: 11/18/2022]
Abstract
Understanding the initial events in the establishment of vaginal human immunodeficiency virus type-1 (HIV-1) entry and infection has been hampered by the lack of appropriate experimental models. Here, we show in an ex vivo human organ culture system that upon contact in situ, HIV-1 rapidly penetrated both intraepithelial vaginal Langerhans and CD4+ T cells. HIV-1 entered CD4+ T cells almost exclusively by CD4 and CCR5 receptor-mediated direct fusion, without requiring passage from Langerhans cells, and overt productive infection ensued. By contrast, HIV-1 entered CD1a+ Langerhans cells primarily by endocytosis, by means of multiple receptors, and virions persisted intact within the cytoplasm for several days. Our findings shed light on the very earliest steps of mucosal HIV infection in vivo and may guide the design of effective strategies to block local transmission and prevent HIV-1 spread.
Collapse
Affiliation(s)
- Florian Hladik
- Program in Infectious Diseases, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Polachai Sakchalathorn
- Program in Infectious Diseases, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lamar Ballweber
- Program in Infectious Diseases, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gretchen Lentz
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Michael Fialkow
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - David Eschenbach
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - M. Juliana McElrath
- Program in Infectious Diseases, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Pathobiology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Corresponding author
| |
Collapse
|
227
|
Lee SK, Boyko V, Hu WS. Capsid is an important determinant for functional complementation of murine leukemia virus and spleen necrosis virus Gag proteins. Virology 2007; 360:388-97. [PMID: 17156810 PMCID: PMC2706498 DOI: 10.1016/j.virol.2006.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 09/14/2006] [Accepted: 10/26/2006] [Indexed: 01/20/2023]
Abstract
In this report, we examined the abilities and requirements of heterologous Gag proteins to functionally complement each other to support viral replication. Two distantly related gammaretroviruses, murine leukemia virus (MLV) and spleen necrosis virus (SNV), were used as a model system because SNV proteins can support MLV vector replication. Using chimeric or mutant Gag proteins that could not efficiently support MLV vector replication, we determined that a homologous capsid (CA) domain was necessary for the functional complementation of MLV and SNV Gag proteins. Findings from the bimolecular fluorescence complementation assay revealed that MLV and SNV Gag proteins were capable of colocalizing and interacting in cells. Taken together, our results indicated that MLV and SNV Gag proteins can interact in cells; however, a homologous CA domain is needed for functional complementation of MLV and SNV Gag proteins to complete virus replication. This requirement of homologous Gag most likely occurs at a postassembly step(s) of the viral replication.
Collapse
Affiliation(s)
- Sook-Kyung Lee
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702
| | - Vitaly Boyko
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702
| | - Wei-Shau Hu
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702
| |
Collapse
|
228
|
Abstract
Human immunodeficiency virus 1 (HIV-1) and other retroviruses synthesize a DNA copy of their genome after entry into the host cell. Integration of this DNA into the host cell's genome is an essential step in the viral replication cycle. The viral DNA is synthesized in the cytoplasm and is associated with viral and cellular proteins in a large nucleoprotein complex. Before integration into the host genome can occur, this complex must be transported to the nucleus and must cross the nuclear envelope. This Review summarizes our current knowledge of how this journey is accomplished.
Collapse
Affiliation(s)
- Youichi Suzuki
- Laboratory for Host Factors, Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
229
|
Abstract
The HIV-1 structural protein matrix (MA) is involved in a number of essential steps during infection and appears to possess multiple, seemingly conflicting targeting signals. Although MA has long been known to be crucial for virion assembly, details regarding this function, and the domains responsible for mediating it, are still emerging. MA has also been implicated in nuclear import of HIV cDNA and is purported to contain a nuclear targeting signal. Little is known about how these opposing plasma membrane and nuclear targeting signals are regulated and which signals predominate at various stages of infection. Additionally, MA has recently been implicated in a number of novel roles during infection including viral entry/uncoating, cytoskeletal-mediated transport, and targeting viral assembly to lipid rafts. Here we discuss our current understanding of MA's functions during infection and explore the recent advancements made in elucidating the mechanism of these processes. It appears that MA possesses a cache of targeting signals that are likely to be regulated throughout the infectious cycle by a combination of structural and biochemical modifications including phosphorylation, myristoylation, and multimerization. The ability of HIV to modify the properties of MA at specific stages of infection is central to the multifunctional behavior of MA and the efficiency of HIV infection. The recently reported success of drugs specifically designed to block MA function (Haffar O, Dubrovsky L, and Lowe R et al. J Virol 2005;79:13028-13036) confirms the importance of this protein for HIV infection and highlights a potentially new avenue in multivalent drug therapy.
Collapse
Affiliation(s)
- Anna C Hearps
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | |
Collapse
|
230
|
Abstract
Retroviruses make a long and complex journey from outside the cell to the nucleus in the early stages of infection, and then an equally long journey back out again in the late stages of infection. Ongoing efforts are identifying an enormous array of cellular proteins that are used by the viruses in the course of their travels. These host factors are potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute HHSC 1310c, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, New York 10032, USA.
| |
Collapse
|
231
|
Yueh A, Leung J, Bhattacharyya S, Perrone LA, de los Santos K, Pu SY, Goff SP. Interaction of moloney murine leukemia virus capsid with Ubc9 and PIASy mediates SUMO-1 addition required early in infection. J Virol 2007; 80:342-52. [PMID: 16352559 PMCID: PMC1317516 DOI: 10.1128/jvi.80.1.342-352.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast two-hybrid screens led to the identification of Ubc9 and PIASy, the E2 and E3 small ubiquitin-like modifier (SUMO)-conjugating enzymes, as proteins interacting with the capsid (CA) protein of the Moloney murine leukemia virus. The binding site in CA for Ubc9 was mapped by deletion and alanine-scanning mutagenesis to a consensus motif for SUMOylation at residues 202 to 220, and the binding site for PIASy was mapped to residues 114 to 176, directly centered on the major homology region. Expression of CA and a tagged SUMO-1 protein resulted in covalent transfer of SUMO-1 to CA in vivo. Mutations of lysine residues to arginines near the Ubc9 binding site and mutations at the PIASy binding site reduced or eliminated CA SUMOylation. Introduction of these mutations into the complete viral genome blocked virus replication. The mutants exhibited no defects in the late stages of viral gene expression or virion assembly. Upon infection, the mutant viruses were able to carry out reverse transcription to synthesize normal levels of linear viral DNA but were unable to produce the circular viral DNAs or integrated provirus normally found in the nucleus. The results suggest that the SUMOylation of CA mediated by an interaction with Ubc9 and PIASy is required for early events of infection, after reverse transcription and before nuclear entry and viral DNA integration.
Collapse
Affiliation(s)
- Andrew Yueh
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
232
|
Iordanskiy S, Bukrinsky M. Reverse transcription complex: the key player of the early phase of HIV replication. Future Virol 2007; 2:49-64. [PMID: 23658595 DOI: 10.2217/17460794.2.1.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sergey Iordanskiy
- The George Washington University, Washington, DC, USA ; The D.I. Ivanovsky Institute of Virology, Moscow, Russia
| | | |
Collapse
|
233
|
Arhel N, Munier S, Souque P, Mollier K, Charneau P. Nuclear import defect of human immunodeficiency virus type 1 DNA flap mutants is not dependent on the viral strain or target cell type. J Virol 2006; 80:10262-9. [PMID: 17005705 PMCID: PMC1617309 DOI: 10.1128/jvi.00974-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously established, using human immunodeficiency virus type 1 (HIV-1) strain LAI, that the HIV-1 central DNA Flap acts as a cis determinant of viral genome nuclear import. Although the impact of the DNA Flap on nuclear import has already found numerous independent confirmations in the context of lentivirus vectors, it has been claimed that it may be nonessential for infectious virus strains LAI, YU-2 (J. D. Dvorin et al., J. Virol. 76:12087-12096, 2002), HXB2, and NL4-3 (A. Limon et al., J. Virol. 76:12078-12086, 2002). We conducted a detailed analysis of virus infectivity using the provirus clones provided by the authors and analogous target cells. In contrast to published data, our results show that all cPPT mutant viruses exhibit reduced infectivity corresponding to a nuclear import defect irrespective of the viral genetic background or target cell.
Collapse
Affiliation(s)
- Nathalie Arhel
- Groupe de Virologie Moléculaire et Vectorologie, Département de Virologie, Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris, France
| | | | | | | | | |
Collapse
|
234
|
Fassati A. HIV infection of non-dividing cells: a divisive problem. Retrovirology 2006; 3:74. [PMID: 17067381 PMCID: PMC1635064 DOI: 10.1186/1742-4690-3-74] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 10/26/2006] [Indexed: 02/07/2023] Open
Abstract
Understanding how lentiviruses can infect terminally differentiated, non-dividing cells has proven a very complex and controversial problem. It is, however, a problem worth investigating, for it is central to HIV-1 transmission and AIDS pathogenesis. Here I shall attempt to summarise what is our current understanding for HIV-1 infection of non-dividing cells. In some cases I shall also attempt to make sense of controversies in the field and advance one or two modest proposals.
Collapse
Affiliation(s)
- Ariberto Fassati
- Wohl Virion Centre and MRC-UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK.
| |
Collapse
|
235
|
Sagar M, Wu X, Lee S, Overbaugh J. Human immunodeficiency virus type 1 V1-V2 envelope loop sequences expand and add glycosylation sites over the course of infection, and these modifications affect antibody neutralization sensitivity. J Virol 2006; 80:9586-98. [PMID: 16973562 PMCID: PMC1617272 DOI: 10.1128/jvi.00141-06] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the course of infection, human immunodeficiency virus type 1 (HIV-1) continuously adapts to evade the evolving host neutralizing antibody responses. Changes in the envelope variable loop sequences, particularly the extent of glycosylation, have been implicated in antibody escape. To document modifications that potentially influence antibody susceptibility, we compared envelope variable loops 1 and 2 (V1-V2) from multiple sequences isolated at the primary phase of infection to those isolated around 2 to 3 years into the chronic phase of infection in nine women with HIV-1 subtype A. HIV-1 sequences isolated during chronic infection had significantly longer V1-V2 loops, with a significantly higher number of potential N-linked glycosylation sites, than the sequences isolated early in infection. To assess the effects of these V1-V2 changes on antibody neutralization and infectivity, we created chimeric envelope sequences, which incorporated a subject's V1-V2 sequences into a common subtype A envelope backbone and then used them to generate pseudotyped viruses. Compared to the parent virus, the introduction of a subject's early-infection V1-V2 envelope variable loops rendered the chimeric envelope more sensitive to that subject's plasma samples but only to plasma samples collected >6 months after the sequences were isolated. Neutralization was not detected with the same plasma when the early-infection V1-V2 sequences were replaced with chronic-infection V1-V2 sequences, suggesting that changes in V1-V2 contribute to antibody escape. Pseudotyped viruses with V1-V2 segments from different times in infection, however, showed no significant difference in neutralization sensitivity to heterologous pooled plasma, suggesting that viruses with V1-V2 loops from early in infection were not inherently more neutralization sensitive. Pseudotyped viruses bearing chimeric envelopes with early-infection V1-V2 sequences showed a trend in infecting cells with low CD4 concentrations more efficiently, while engineered viruses with V1-V2 sequences isolated during chronic infection were moderately better at infecting cells with low CCR5 concentrations. These studies suggest that changes within the V1-V2 envelope domains over the course of an infection influence sensitivity to autologous neutralizing antibodies and may also impact host receptor/coreceptor interactions.
Collapse
Affiliation(s)
- Manish Sagar
- Department of Medicine, Brigham and Women's Hospital, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
236
|
Yu JH, Schaffer DV. High-throughput, library-based selection of a murine leukemia virus variant to infect nondividing cells. J Virol 2006; 80:8981-8. [PMID: 16940510 PMCID: PMC1563944 DOI: 10.1128/jvi.00615-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaretroviruses, such as murine leukemia virus (MLV), are functionally distinguished from lentiviruses, such as human immunodeficiency virus, by their inability to infect nondividing cells. Attempts to engineer this property into MLV have been hindered by an incomplete understanding of early events in the viral life cycle. We utilized a transposon-based method to generate saturated peptide insertion libraries of MLV gag-pol variants with nuclear localization signals randomly incorporated throughout these overlapping genes. High-throughput selection of the libraries via iterative retroviral infection of nondividing cells led to the identification of a novel variant that successfully transduced growth-arrested cells. Vector packaging by cotransfection of the gag-pol.NLS variant with wild-type gag-pol produced high-titer virions capable of infecting neurons in vitro and in vivo. The capacity of mutant virions to transduce nondividing cells could help to elucidate incompletely understood mechanisms of the viral life cycle and greatly broaden the gene therapy applications of retroviral vectors. Furthermore, the ability to engineer key intracellular viral infection steps has potential implications for the understanding, design, and control of other post-entry events. Finally, this method of library generation and selection for a desired phenotype directly in a mammalian system can be readily expanded to address other challenges in protein engineering.
Collapse
Affiliation(s)
- Julie H Yu
- Department of Chemical Engineering, University of California-Berkeley, 201 Gilman Hall, Berkeley, CA 94720-1462, USA
| | | |
Collapse
|
237
|
Lin TY, Emerman M. Cyclophilin A interacts with diverse lentiviral capsids. Retrovirology 2006; 3:70. [PMID: 17038183 PMCID: PMC1622752 DOI: 10.1186/1742-4690-3-70] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 10/12/2006] [Indexed: 12/20/2022] Open
Abstract
Background The capsid (CA) protein of HIV-1 binds with high affinity to the host protein cyclophilin A (CypA). This binding positively affects some early stage of the viral life-cycle because prevention of binding either by drugs that occupy that active site of cyclophilin A, by mutation in HIV-1 CA, or RNAi that knocks down intracellular CypA level diminishes viral infectivity. The closely related lentivirus, SIVcpz also binds CypA, but it was thought that this interaction was limited to the HIV-1/SIVcpz lineage because other retroviruses failed to interact with CypA in a yeast two-hybrid assay. Results We find that diverse lentiviruses, FIV and SIVagmTAN also bind to CypA. Mutagenesis of FIV CA showed that an amino acid that is in a homologous position to the proline at amino acid 90 of HIV-1 CA is essential for FIV interactions with CypA. Conclusion These results demonstrate that CypA binding to lentiviruses is more widespread than previously thought and suggest that this interaction is evolutionarily important for lentiviral infection.
Collapse
Affiliation(s)
- Tsai-Yu Lin
- Pathobiology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Michael Emerman
- Pathobiology Graduate Program, University of Washington, Seattle, WA 98195, USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
238
|
Zaitseva L, Myers R, Fassati A. tRNAs promote nuclear import of HIV-1 intracellular reverse transcription complexes. PLoS Biol 2006; 4:e332. [PMID: 17020411 PMCID: PMC1584419 DOI: 10.1371/journal.pbio.0040332] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 08/08/2006] [Indexed: 11/19/2022] Open
Abstract
Infection of non-dividing cells is a biological property of HIV-1 crucial for virus transmission and AIDS pathogenesis. This property depends on nuclear import of the intracellular reverse transcription and pre-integration complexes (RTCs/PICs). To identify cellular factors involved in nuclear import of HIV-1 RTCs, cytosolic extracts were fractionated by chromatography and import activity examined by the nuclear import assay. A near-homogeneous fraction was obtained, which was active in inducing nuclear import of purified and labeled RTCs. The active fraction contained tRNAs, mostly with defective 3' CCA ends. Such tRNAs promoted HIV-1 RTC nuclear import when synthesized in vitro. Active tRNAs were incorporated into and recovered from virus particles. Mutational analyses indicated that the anticodon loop mediated binding to the viral complex whereas the T-arm may interact with cellular factors involved in nuclear import. These tRNA species efficiently accumulated into the nucleus on their own in a energy- and temperature-dependent way. An HIV-1 mutant containing MLV gag did not incorporate tRNA species capable of inducing HIV-1 RTC nuclear import and failed to infect cell cycle-arrested cells. Here we provide evidence that at least some tRNA species can be imported into the nucleus of human cells and promote HIV-1 nuclear import.
Collapse
Affiliation(s)
- Lyubov Zaitseva
- Wohl Virion Centre, London, United Kingdom
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Richard Myers
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
- Centre of Postgenomic Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Ariberto Fassati
- Wohl Virion Centre, London, United Kingdom
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
239
|
Boggio R, Chiocca S. Viruses and sumoylation: recent highlights. Curr Opin Microbiol 2006; 9:430-6. [PMID: 16815735 PMCID: PMC7108358 DOI: 10.1016/j.mib.2006.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/20/2006] [Indexed: 12/02/2022]
Abstract
Since its discovery in 1997, SUMO (small ubiquitin-like modifier) has been implicated in a range of activities, indicating that this protein is as important in the cell as ubiquitin is. Although it can function throughout the cell, it appears to be involved more in nuclear functions. The growing list of substrates that are covalently modified by SUMO includes many viral proteins; SUMO appears to facilitate viral infection of cells, making it a possible target for antiviral therapies. It therefore is important to understand how viruses manipulate the cellular sumoylation system and how sumoylation affects viral functions.
Collapse
|
240
|
Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, Crawford G, Collins F, Shinn P, Leipzig J, Hannenhalli S, Berry CC, Ecker JR, Bushman FD. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2006; 2:e60. [PMID: 16789841 PMCID: PMC1480600 DOI: 10.1371/journal.ppat.0020060] [Citation(s) in RCA: 278] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 05/09/2006] [Indexed: 11/19/2022] Open
Abstract
Retroviruses differ in their preferences for sites for viral DNA integration in the chromosomes of infected cells. Human immunodeficiency virus (HIV) integrates preferentially within active transcription units, whereas murine leukemia virus (MLV) integrates preferentially near transcription start sites and CpG islands. We investigated the viral determinants of integration-site selection using HIV chimeras with MLV genes substituted for their HIV counterparts. We found that transferring the MLV integrase (IN) coding region into HIV (to make HIVmIN) caused the hybrid to integrate with a specificity close to that of MLV. Addition of MLV gag (to make HIVmGagmIN) further increased the similarity of target-site selection to that of MLV. A chimeric virus with MLV Gag only (HIVmGag) displayed targeting preferences different from that of both HIV and MLV, further implicating Gag proteins in targeting as well as IN. We also report a genome-wide analysis indicating that MLV, but not HIV, favors integration near DNase I-hypersensitive sites (i.e., +/- 1 kb), and that HIVmIN and HIVmGagmIN also favored integration near these features. These findings reveal that IN is the principal viral determinant of integration specificity; they also reveal a new role for Gag-derived proteins, and strengthen models for integration targeting based on tethering of viral IN proteins to host proteins.
Collapse
Affiliation(s)
- Mary K Lewinski
- Infectious Disease Laboratory, The Salk Institute, La Jolla, California, United States of America
| | - Masahiro Yamashita
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Angela Ciuffi
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Heather Marshall
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Gregory Crawford
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Francis Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Shinn
- Genomic Analysis Laboratory, The Salk Institute, La Jolla, California, United States of America
| | - Jeremy Leipzig
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sridhar Hannenhalli
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Charles C Berry
- Department of Family/Preventive Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute, La Jolla, California, United States of America
| | - Frederic D Bushman
- Infectious Disease Laboratory, The Salk Institute, La Jolla, California, United States of America
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
241
|
Baum C, Schambach A, Bohne J, Galla M. Retrovirus Vectors: Toward the Plentivirus? Mol Ther 2006; 13:1050-63. [PMID: 16632409 DOI: 10.1016/j.ymthe.2006.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/16/2006] [Accepted: 03/16/2006] [Indexed: 01/19/2023] Open
Abstract
Recombinant retroviral vectors based upon simple gammaretroviruses, complex lentiviruses, or potentially nonpathogenic spumaviruses represent relatively well characterized tools that are widely used for stable gene transfer. Different members of the Retroviridae family have developed distinct and potentially useful features related to their life cycle. These natural differences can be exploited for specialized applications in gene therapy and could conceivably be combined to create future retroviral hybrid vectors, ideally incorporating the following features: an efficient, noncytopathic packaging system with low likelihood of recombination; serum resistance; an ability to pseudotype with cell-specific envelopes; high-fidelity reverse transcription before cell entry; unrestricted cytoplasmic transport and nuclear import; an insulated expression cassette; specific chromosomal targeting; and physiologic or regulated levels of transgene expression. We envisage that, compared to contemporary vectors, a hybrid vector combining these properties would have increased therapeutic efficacy and an enhanced biosafety profile. Many of the above goals will require the inclusion of nonretroviral components into vector particles or transgenes.
Collapse
Affiliation(s)
- Christopher Baum
- Department of Experimental Hematology, Hannover Medical School, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
242
|
Dismuke DJ, Aiken C. Evidence for a functional link between uncoating of the human immunodeficiency virus type 1 core and nuclear import of the viral preintegration complex. J Virol 2006; 80:3712-20. [PMID: 16571788 PMCID: PMC1440469 DOI: 10.1128/jvi.80.8.3712-3720.2006] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) particles begin their replication upon fusion with the plasma membrane of target cells and release of the viral core into the host cell cytoplasm. Soon thereafter, the viral capsid, which is composed of a polymer of the CA protein, disassociates from the internal ribonucleoprotein complex. While this disassembly process remains poorly understood, the available evidence indicates that proper uncoating of the core is a key step in infection. Defects in uncoating most often lead to a failure of the virus to undergo reverse transcription, resulting in an inability to form a functional viral preintegration complex (PIC). In a previous study, we reported that an HIV-1 mutant containing two substitutions in CA (Q63A/67A) was unusual in that it was poorly infectious yet synthesized normal levels of viral DNA. Here we report that this mutant is impaired for nuclear entry. Quantitative analysis of viral DNA synthesis from infected cells by Southern blotting and real-time PCR revealed that the Q63A/Q67A mutant is impaired in the synthesis of one-long terminal repeat (1-LTR) and 2-LTR circles. Isolation of PICs from acutely infected cells revealed that the Q63A/Q67A mutant produces protein-DNA complexes similar to wild-type in yield and overall composition, but these PICs contained elevated levels of CA and were impaired for integration in vitro. These results demonstrate that mutations in CA can have deleterious effects on both nuclear targeting and integration, suggesting that these steps in the HIV-1 life cycle are dependent on proper uncoating of the viral core.
Collapse
Affiliation(s)
- David J Dismuke
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, Tennessee 37232-2363, USA
| | | |
Collapse
|
243
|
OhAinle M, Kerns JA, Malik HS, Emerman M. Adaptive evolution and antiviral activity of the conserved mammalian cytidine deaminase APOBEC3H. J Virol 2006; 80:3853-62. [PMID: 16571802 PMCID: PMC1440450 DOI: 10.1128/jvi.80.8.3853-3862.2006] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 01/30/2006] [Indexed: 01/01/2023] Open
Abstract
The APOBEC3 genes encode cytidine deaminases that act as components of an intrinsic immune defense that have potent activity against a variety of retroelements. This family of genes has undergone a rapid expansion from one or two genes in nonprimate mammals to at least seven members in primates. Here we describe the evolution and function of an uncharacterized antiviral effector, APOBEC3H, which represents the most evolutionarily divergent APOBEC3 gene found in primates. We found that APOBEC3H has undergone significant adaptive evolution in primates. Consistent with our previous findings implicating adaptively evolving APOBEC3 genes as antiviral effectors, APOBEC3H from Old World monkeys (OWMs) has efficient antiviral activity against primate lentiviruses, is sensitive to inactivation by the simian immunodeficiency virus Vif protein, and is capable of hypermutating retroviral genomes. In contrast, human APOBEC3H is inherently poorly expressed in primate cells and is ineffective at inhibiting retroviral replication. Both OWM and human APOBEC3H proteins can be expressed in bacteria, where they display significant DNA mutator activity. Thus, humans have retained an APOBEC3H gene that encodes a functional, but poorly expressed, cytidine deaminase with no apparent antiviral activity. The consequences of the lack of antiviral activity of human APOBEC3H are likely to be relevant to the current-day abilities of humans to combat retroviral challenges.
Collapse
Affiliation(s)
- Molly OhAinle
- Molecular and Cellular Biology Program, University of Washington, Seattle 98109, USA
| | | | | | | |
Collapse
|
244
|
Yamashita M, Emerman M. Retroviral infection of non-dividing cells: old and new perspectives. Virology 2006; 344:88-93. [PMID: 16364740 DOI: 10.1016/j.virol.2005.09.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 09/10/2005] [Indexed: 12/16/2022]
Abstract
The dependence of retroviral replication on cell proliferation was described as early as 1958, although different classes of retroviruses are able to infect non-dividing cells with different efficiencies. For example, the human immunodeficiency virus (HIV) and other lentiviruses infect most non-dividing cells nearly as well as dividing cells, while the gammaretroviruses such as the murine leukemia virus (MLV) cannot infect non-dividing cells, and other retroviruses have intermediate phenotypes. One exception to the ability of HIV to infect non-dividing cells involves resting CD4+ T cells in vitro where there are multiple restrictions. However, recent data show that there is massive infection of non-activated CD4+ T cell during acute infection which suggests that the situation is different in vivo. Finally, much work trying to explain the difference between HIV and MLV in non-dividing cells has focused on describing the ability of HIV to enter the nucleus during interphase. However, we suggest that events in the viral life-cycle other than nuclear import may be more important in determining the ability of a given retrovirus to infect non-dividing cells.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
245
|
Speelmon EC, Livingston-Rosanoff D, Li SS, Vu Q, Bui J, Geraghty DE, Zhao LP, McElrath MJ. Genetic association of the antiviral restriction factor TRIM5alpha with human immunodeficiency virus type 1 infection. J Virol 2006; 80:2463-71. [PMID: 16474153 PMCID: PMC1395369 DOI: 10.1128/jvi.80.5.2463-2471.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 12/02/2005] [Indexed: 11/20/2022] Open
Abstract
The innate antiviral factor TRIM5alpha restricts the replication of some retroviruses through its interaction with the viral capsid protein, leading to abortive infection. While overexpression of human TRIM5alpha results in modest restriction of human immunodeficiency virus type 1 (HIV-1), this inhibition is insufficient to block productive infection of human cells. We hypothesized that polymorphisms within TRIM5 may result in increased restriction of HIV-1 infection. We sequenced the TRIM5 gene (excluding exon 5) and the 4.8-kb 5' putative regulatory region in genomic DNA from 110 HIV-1-infected subjects and 96 exposed seronegative persons, along with targeted gene sequencing in a further 30 HIV-1-infected individuals. Forty-eight single nucleotide polymorphisms (SNPs), including 20 with allele frequencies of >1.0%, were identified. Among these were two synonymous and eight nonsynonymous coding polymorphisms. We observed no association between TRIM5 polymorphism in HIV-1-infected subjects and their set-point viral load after acute infection, although one TRIM5 haplotype was weakly associated with more rapid CD4(+) T-cell loss. Importantly, a TRIM5 haplotype containing the nonsynonymous SNP R136Q showed increased frequency among HIV-1-infected subjects relative to exposed seronegative persons, with an odds ratio of 5.49 (95% confidence interval = 1.83 to 16.45; P = 0.002). Nonetheless, we observed no effect of individual TRIM5alpha nonsynonymous mutations on the in vitro HIV-1 susceptibility of CD4(+) T cells. Therefore, any effect of TRIM5alpha polymorphism on HIV-1 infection in primary lymphocytes may depend on combinations of SNPs or on DNA sequences in linkage disequilibrium with the TRIM5alpha coding sequence.
Collapse
Affiliation(s)
- Emily C Speelmon
- Medical Scientist Training Program, Molecular and Cellular Biology Program, University of Washington, Seattle, 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Jarrosson-Wuilleme L, Goujon C, Bernaud J, Rigal D, Darlix JL, Cimarelli A. Transduction of nondividing human macrophages with gammaretrovirus-derived vectors. J Virol 2006; 80:1152-9. [PMID: 16414992 PMCID: PMC1346929 DOI: 10.1128/jvi.80.3.1152-1159.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is commonly accepted that infection of nondividing cells by gammaretroviruses such as the murine leukemia viruses is inefficient due to their inability to cross the nuclear envelope barrier. Challenging this notion, we now show that human nondividing macrophages display a specific window of susceptibility to transduction with a Friend murine leukemia virus (F-MLV)-derived vector during their differentiation from monocytes. This finding suggests that factors other than the nuclear membrane govern permissiveness to gammaretroviral infection and raises the possibility of using the macrophage tropism of F-MLV in gene therapy.
Collapse
Affiliation(s)
- Loraine Jarrosson-Wuilleme
- LaboRetro, INSERM U412, Ecole Normale Supérieure de Lyon, IFR 128 BioSciences Lyon-Gerland, 46 Allée d'Italie, 69364 Lyon, France
| | | | | | | | | | | |
Collapse
|
247
|
Kaiser SM, Emerman M. Uracil DNA glycosylase is dispensable for human immunodeficiency virus type 1 replication and does not contribute to the antiviral effects of the cytidine deaminase Apobec3G. J Virol 2006; 80:875-82. [PMID: 16378989 PMCID: PMC1346881 DOI: 10.1128/jvi.80.2.875-882.2006] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is well established that many host factors are involved in the replication of human immunodeficiency virus (HIV) type 1. One host protein, uracil DNA glycosylase 2 (UNG2), binds to multiple viral proteins and is packaged into HIV type 1 virions. UNG initiates the removal of uracils from DNA, and this has been proposed to be important both for reverse transcription and as a mediator to the antiviral effect of virion-incorporated Apobec3G, a cytidine deaminase that generates numerous uracils in the viral DNA during virus replication. We used a natural human UNG-/- cell line as well as cells that express a potent catalytic active-site inhibitor of UNG to assess the effects of removing UNG activity on HIV infectivity. In both cases, we find UNG2 activity and protein to be completely dispensable for virus replication. Moreover, we find that virion-associated UNG2 does not affect the loss of infectivity caused by Apobec3G.
Collapse
Affiliation(s)
- Shari M Kaiser
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
248
|
Wiley RD, Gummuluru S. Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 2006; 103:738-43. [PMID: 16407131 PMCID: PMC1334656 DOI: 10.1073/pnas.0507995103] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immature dendritic cells (DCs) capture HIV type 1 (HIV-1) and can transmit captured virus particles to T cells. In this report, we show that HIV-1 particles captured by DCs can be transmitted to T cells by exocytosis without de novo infection. Captured HIV-1 particles were rapidly endocytosed to tetraspan protein (CD9, CD63)-positive endocytic compartments that were reminiscent of multivesicular endosomal bodies. Furthermore, some of the endocytosed virus particles were constitutively released into the extracellular milieu in association with HLA-DR1(+), CD1b(+), CD9(+), and CD63(+) vesicles (exosomes) and could initiate productive infections of CD4(+) target cells. Surprisingly, the exocytosed vesicle-associated HIV-1 particles from DCs were 10-fold more infectious on a perparticle basis than cell-free virus particles. These studies describe a previously undescribed mechanism of DC-mediated HIV-1 transmission and suggest that virus particle trafficking to multivesicular endosomal bodies and subsequent exocytosis can provide HIV-1 particles captured by DCs an avenue for immune escape.
Collapse
Affiliation(s)
- Rebecca D Wiley
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
249
|
Abstract
Retroviruses are efficient vehicles for delivering transgenes in vivo. Their ability to integrate into the host genome, providing a permanent imprint of their genes in the host, is a key asset for gene therapy. Furthermore, the lentivirus subset of retroviruses can infect nondividing as well as dividing cells. This expands the cell types capable of gene therapy, driving the development of lentiviral vectors. However, the precise mechanisms used by different retroviruses to efficiently deliver their genes into cell nuclei remains largely unclear. Understanding these molecular mechanisms may reveal features to improve the efficacy of current retroviral vectors. Moreover, this knowledge may expose elements pliable to other gene therapy vehicles to improve their in vivo performance and circumvent the biosafety concerns of using retroviral vectors. Therefore, the mechanisms underlying the early trafficking of retroviral vectors in host cells are reviewed here, as understood from studying the native retroviruses. Events after virus entry up to nuclear delivery of the viral cDNA are discussed. Cellular obstacles faced by these retroviral vectors and how they advance beyond these barriers is emphasized.
Collapse
Affiliation(s)
- J L Anderson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3093, USA
| | | |
Collapse
|
250
|
Ako-Adjei D, Johnson MC, Vogt VM. The retroviral capsid domain dictates virion size, morphology, and coassembly of gag into virus-like particles. J Virol 2005; 79:13463-72. [PMID: 16227267 PMCID: PMC1262573 DOI: 10.1128/jvi.79.21.13463-13472.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The retroviral structural protein, Gag, is capable of independently assembling into virus-like particles (VLPs) in living cells and in vitro. Immature VLPs of human immunodeficiency virus type 1 (HIV-1) and of Rous sarcoma virus (RSV) are morphologically distinct when viewed by transmission electron microscopy (TEM). To better understand the nature of the Gag-Gag interactions leading to these distinctions, we constructed vectors encoding several RSV/HIV-1 chimeric Gag proteins for expression in either insect cells or vertebrate cells. We used TEM, confocal fluorescence microscopy, and a novel correlative scanning EM (SEM)-confocal microscopy technique to study the assembly properties of these proteins. Most chimeric proteins assembled into regular VLPs, with the capsid (CA) domain being the primary determinant of overall particle diameter and morphology. The presence of domains between matrix and CA also influenced particle morphology by increasing the spacing between the inner electron-dense ring and the VLP membrane. Fluorescently tagged versions of wild-type RSV, HIV-1, or murine leukemia virus Gag did not colocalize in cells. However, wild-type Gag proteins colocalized extensively with chimeric Gag proteins bearing the same CA domain, implying that Gag interactions are mediated by CA. A dramatic example of this phenomenon was provided by a nuclear export-deficient chimera of RSV Gag carrying the HIV-1 CA domain, which by itself localized to the nucleus but relocalized to the cytoplasm in the presence of wild type HIV-1 Gag. Wild-type and chimeric Gag proteins were capable of coassembly into a single VLP as viewed by correlative fluorescence SEM if, and only if, the CA domain was derived from the same virus. These results imply that the primary selectivity of Gag-Gag interactions is determined by the CA domain.
Collapse
Affiliation(s)
- Danso Ako-Adjei
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|