301
|
Chang HC, Cho CY, Hung WC. Silencing of the metastasis suppressor RECK by RAS oncogene is mediated by DNA methyltransferase 3b-induced promoter methylation. Cancer Res 2006; 66:8413-20. [PMID: 16951151 DOI: 10.1158/0008-5472.can-06-0685] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RECK is a membrane-anchored glycoprotein that may negatively regulate matrix metalloproteinase activity to suppress tumor invasion and metastasis. Our previous study indicated that oncogenic RAS inhibited RECK expression via a histone deacetylation mechanism. In this study, we address whether DNA methyltransferases (DNMT) participate in the inhibition of RECK by RAS. Induction of Ha-RAS(Val12) oncogene increased DNMT3b, but not DNMT1 and DNMT3a, expression in 2-12 cells. In addition, induction of DNMT3b by RAS was through the extracellular signal-regulated kinase signaling pathway. Oncogenic RAS increased the binding of DNMT3b to the promoter of RECK gene and this binding induced promoter methylation, which could be reversed by 5'-azacytidine and DNMT3b small interfering RNA (siRNA). The MEK inhibitor U0126 also reversed RAS-induced DNMT3b binding and RECK promoter methylation. Treatment of 5'-azacytidine and DNMT3b siRNA restored RECK expression in 2-12 cells and potently suppressed RAS-stimulated cell invasion. In addition, the inhibitory effect of 5'-azacytidine on RAS-induced cell invasion was attenuated after knockdown of RECK by siRNA. Interestingly, human lung cancer cells harboring constitutively activated RAS exhibited lower RECK expression and higher promoter methylation of RECK gene. 5'-Azacytidine and DNMT3b siRNA restored RECK expression in these cells and effectively suppressed invasiveness. Collectively, our results suggest that RAS oncogene induces RECK gene silencing through DNMT3b-mediated promoter methylation, and DNMT inhibitors may be useful for the treatment of RAS-induced metastasis.
Collapse
Affiliation(s)
- Hui-Chiu Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
302
|
Stefanidakis M, Koivunen E. Cell-surface association between matrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression. Blood 2006; 108:1441-50. [PMID: 16609063 DOI: 10.1182/blood-2006-02-005363] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Leukocyte motility is known to be dependent on both β2-integrins and matrix metalloproteinases MMP-2/-9 or gelatinases, which mediate leukocyte adhesion and the proteolysis needed for invasion, respectively. Gelatinases not only play an important role in cell migration, tissue remodeling, and angiogenesis during development, but are also involved in the progression and invasiveness of many cancers, including leukemias. The concept that MMPs associate with integrins, as well as their importance in some physiologic and pathologic conditions, has been advanced previously but has not been examined on leukocytes. This review will examine mainly the function of the MMP-integrin complexes in normal leukocyte migration and the effect of integrin and broad-spectrum MMP inhibitors in tumor progression.
Collapse
Affiliation(s)
- Michael Stefanidakis
- Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
303
|
Kumamoto H, Ooya K. Immunohistochemical detection of MT1-MMP, RECK, and EMMPRIN in ameloblastic tumors. J Oral Pathol Med 2006; 35:345-51. [PMID: 16762015 DOI: 10.1111/j.1600-0714.2006.00432.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND To evaluate the roles of matrix-degrading proteinase regulators in progression of odontogenic tumors, expression of membrane-bound matrix metalloproteinase (MMP) MT1-MMP, MMP inhibitor RECK and MMP inducer EMMPRIN was analyzed in ameloblastic tumors as well as in tooth germs. METHODS Tissue specimens of 11 tooth germs, 40 ameloblastomas, and five malignant ameloblastic tumors were examined immunohistochemically with the use of antibodies against MT1-MMP, RECK, and EMMPRIN. RESULTS Immunohistochemical reactivity for MT1-MMP, RECK and EMMPRIN was detected predominantly in odontogenic epithelial cells near the basement membrane in tooth germs and benign and malignant ameloblastic tumors. The level of immunoreactivity for MT1-MMP was slightly higher in benign and malignant ameloblastic tumors than in tooth germs. RECK expression was lower in ameloblastomas than in tooth germs. Follicular ameloblastomas showed significantly lower expression of RECK than plexiform ameloblastomas, and immunoreactivity for RECK in acanthomatous ameloblastomas was slightly lower than that in other cellular variants. CONCLUSION Expression of MT1-MMP, RECK and EMMPRIN in tooth germs and ameloblastic tumors suggests that these normal and neoplastic epithelial components control MMP-dependent extracellular matrix (ECM) degradation during tooth development and tumor progression via epithelial-mesenchymal interactions.
Collapse
Affiliation(s)
- H Kumamoto
- Division of Oral Pathology, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | |
Collapse
|
304
|
Oh J, Diaz T, Wei B, Chang H, Noda M, Stetler-Stevenson WG. TIMP-2 upregulates RECK expression via dephosphorylation of paxillin tyrosine residues 31 and 118. Oncogene 2006; 25:4230-4. [PMID: 16491114 PMCID: PMC1502148 DOI: 10.1038/sj.onc.1209444] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 01/10/2006] [Accepted: 01/10/2006] [Indexed: 02/07/2023]
Abstract
We previously demonstrated that TIMP-2 increases the association of Crk with C3G and via subsequent activation of Rap1 enhances the expression of RECK, a membrane-anchored MMP inhibitor. In the present study, we investigate the mechanism of how the TIMP-2 signal is transduced from the alpha3beta1 integrin receptor to the Crk-C3G-Rap1 molecular complex. TIMP-2 treatment of human microvascular endothelial cells (hMVECs) increased the phosphorylation levels of Src at Tyr-527, the negative regulatory site, through enhanced association of Src with Csk. This results in the reduction of Src kinase activity and dephosphorylation of paxillin at Tyr-31/118, the target sites for Src kinase phosphorylation and also the binding sites for the downstream effector Crk. Such TIMP-2 effects accompany the disassembly of paxillin-Crk-DOCK180 molecular complex and, in turn, Rac1 inactivation. On the contrary, levels of paxillin-Crk-C3G complex formation are not reduced, rather slightly increased, which is consistent with our previous finding. Therefore, TIMP-2-mediated inhibition of Src kinase activity leads to the signaling switch from Rac1 to Rap1, thereby leading to enhanced RECK expression.
Collapse
Affiliation(s)
- J Oh
- Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do, Korea.
| | | | | | | | | | | |
Collapse
|
305
|
Rabien A, Burkhardt M, Jung M, Fritzsche F, Ringsdorf M, Schicktanz H, Loening SA, Kristiansen G, Jung K. Decreased RECK expression indicating proteolytic imbalance in prostate cancer is associated with higher tumor aggressiveness and risk of prostate-specific antigen relapse after radical prostatectomy. Eur Urol 2006; 51:1259-66. [PMID: 16806661 DOI: 10.1016/j.eururo.2006.05.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Decreased expression of reversion-inducing cysteine-rich protein with Kazal motifs (RECK) was recently shown in several cancer types. To evaluate its potential role for prostate carcinoma, we investigated RECK expression in prostate cancer (pCA) samples. METHODS RECK messenger RNA levels in 15 microdissected normal/tumor matches were determined by quantitative reverse transcriptase-polymerase chain reaction. Protein expression of RECK was evaluated by immunohistochemical staining in tissue samples of adenomectomies (n=24) and pCA samples after radical prostatectomy (n=247). RECK expression was related to preoperative prostate-specific antigen (PSA), tumor stage and grade, surgical margin status, and PSA relapse-free time after radical prostatectomy. RESULTS Consistent with lower RECK messenger RNA by 24%, RECK protein expression was decreased in pCA, compared with adjacent normal tissue and prostatic intraepithelial neoplasia. RECK expression in samples of benign prostatic hyperplasia from adenomectomy specimens was higher than in normal adjacent tissue of prostate carcinomas. Decreased RECK expression was associated with higher Gleason score (> or =7) and higher tumor stage. Multivariate analysis using the Cox proportional hazards model revealed that negative RECK expression was an independent prognostic factor for an increased risk of PSA relapse, especially in patients with higher tumor grades (Gleason score > or =7). CONCLUSIONS Decreased RECK expression correlating with the aggressiveness of pCA and the PSA relapse-free time could become an adjunct tissue biomarker to improve the follow-up and treatment decision for these pCA patients.
Collapse
Affiliation(s)
- Anja Rabien
- Department of Urology, Charité University Medicine, Humboldt University, Schumannstrasse 20/21, D-10098 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Chang H, Lee J, Poo H, Noda M, Diaz T, Wei B, Stetler-Stevenson WG, Oh J. TIMP-2 promotes cell spreading and adhesion via upregulation of Rap1 signaling. Biochem Biophys Res Commun 2006; 345:1201-6. [PMID: 16716258 DOI: 10.1016/j.bbrc.2006.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 05/01/2006] [Indexed: 01/24/2023]
Abstract
We previously demonstrated that TIMP-2 treatment of human microvascular endothelial cells (hMVECs) activates Rap1 via the pathway of paxillin-Crk-C3G. Here, we show that TIMP-2 overexpression in hMVECs by adenoviral infection enhances Rap1 expression, leading to further increase in Rap1-GTP. TIMP-2 expression, previously reported to inhibit cell migration, also leads to cell spreading accompanied with increased cell adhesion. HMVECs stably expressing Rap1 display a similar phenotype as hMVECs-TIMP-2, whereas the expression of inactive Rap1 mutant, Rap1(38N), leads to elongated appearance with greatly reduced cell adhesion. Furthermore, the phenotype of hMVECs-Rap1(38N) was not reversed by TIMP-2 overexpression. TIMP-2 greatly promotes the association of Rap1 with actin. Therefore, these findings suggest that TIMP-2 mediated alteration in cell morphology requires Rap1, TIMP-2 may recruit Rap1 to sites of actin cytoskeleton remodeling necessary for cell spreading, and enhanced cell adhesion by TIMP-2 expression may hinder cell migration.
Collapse
Affiliation(s)
- Hyeujin Chang
- Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Bachmeier BE, Iancu CM, Jochum M, Nerlich AG. Matrix metalloproteinases in cancer: comparison of known and novel aspects of their inhibition as a therapeutic approach. Expert Rev Anticancer Ther 2006; 5:149-63. [PMID: 15757447 DOI: 10.1586/14737140.5.1.149] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Matrix dissolution is a crucial step during tumor progression that converts a premalignant cell to an overtly malignant one. Main players in this step are the various matrix metalloproteinases (MMPs), which differ in substrate specificity and tissue distribution, and thereby also differ in presence and function during various stages of initial and systemic tumor spread. Accordingly, the inhibition of MMP synthesis and/or activity represents novel potential therapeutic strategies for the treatment of cancer patients. Considerable work has already been carried out on synthetic inhibitors of MMP activity, but with little or even adverse effects in recent clinical studies. The reasons may be inappropriate patient populations in too advanced tumor stages, or inappropriate enzymes as targets for inhibition. Upregulation of endogenous tissue inhibitors of MMP (TIMPs) also provided ambiguous results, since TIMPs possess biologic functions in addition to MMP inhibition, for example, TIMP-2 is a main player in the MMP-2 activation cascade. This may explain, at least in part, the adverse effects of TIMP application/upregulation. Other strategies have been sought in order to overcome these problems. These include the downregulation of MMP transcription by cytokines. However, the effects of cytokines (other than MMP inhibition) may also limit the use of this approach. Finally, empiric evidence for control and modulation of MMP transcription and/or activation by several naturally occurring substances, such as flavonoids, green tea polyphenols and curcumin, represent novel options for the control of MMP activity even in early tumor stages. Additionally, these substances have little or no toxic side effects and good bioavailability, and therefore their continuing analysis provides intriguing insight into tumor pathophysiology and possibly new therapeutic options.
Collapse
Affiliation(s)
- Beatrice E Bachmeier
- Department of Clinical Chemistry & Biochemistry, Surgical Clinic, Ludwig-Maximilians-University Munich, Nussbaumstr. 20, D-80336 Munich, Germany
| | | | | | | |
Collapse
|
308
|
Takagi S, Kato Y, Asano K, Ohsaki T, Bosnakovski D, Hoshino Y, Okumura M, Kadosawa T, Fujinaga T. Matrix metalloproteinase inhibitor RECK expression in canine tumors. J Vet Med Sci 2006; 67:761-7. [PMID: 16141662 DOI: 10.1292/jvms.67.761] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) selectively degrade the extracellular matrix, and they have been reported to play an important role in tumor invasion, metastasis and angiogenesis. These enzymes are closely related to tumor malignancy and patient survival time. Recently, reversion-inducing cysteine-rich protein with Kazal motifs (RECK) gene was identified as an endogenous membrane-anchored MMP inhibitor. The down-regulation of RECK has been implicated in tumor progression. In this study, the expression levels of the RECK messenger ribonucleic acid (mRNA) in various spontaneously developed canine tumors were investigated by using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), and the correlation between RECK and clinicopathological factors, as well as MMP-9 expression were analyzed. The median age of 36 dogs investigated in this study was 9 years old (range, 1-15 years old). Quantitative RT-PCR could detect low levels of expression of RECK mRNA in the tumor samples. The expression levels of RECK mRNA in some tumor tissue samples were significantly lower than those in normal tissue samples. No significant associations of RECK with clinicopathological factors were observed. Using the Mann-Whitney U test, the expression level of the MMP-9 mRNA was observed to be significantly correlated to RECK expression (p<0.05).
Collapse
Affiliation(s)
- Satoshi Takagi
- Laboratory of Veterinary Surgery, Department of Clinical Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Hsu MC, Chang HC, Hung WC. HER-2/neu represses the metastasis suppressor RECK via ERK and Sp transcription factors to promote cell invasion. J Biol Chem 2005; 281:4718-25. [PMID: 16377629 DOI: 10.1074/jbc.m510937200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase (MMP) inhibitory proteins may negatively regulate MMP activity to suppress tumor metastasis. In this study, we demonstrate that the HER-2/neu oncogene inhibits the expression of the MMP inhibitor RECK to promote cell invasion. RECK was inhibited via transcriptional repression in B104-1-1 cells, which express constitutively active HER-2/neu. Overexpression of HER-2/neu in NIH/3T3 or HaCaT cells also suppressed RECK expression. Deletion and mutation assays showed that HER-2/neu repressed RECK via the Sp1-binding site localized in the -82/-71 region from the translational start site. DNA affinity precipitation and chromatin immunoprecipitation assays indicated that binding of Sp1 and Sp3 to this consensus site was increased in B104-1-1 cells. We also found that HER-2/neu inhibited RECK via the ERK signaling pathway. Sp1 proteins phosphorylated at Thr453 and Thr739 by ERK bound preferentially to the RECK promoter, and this binding was reversed by HER-2/neu and ERK inhibitors. Furthermore, our data indicate that HER-2/neu obviously increased HDAC1 binding to the Sp1-binding site localized in the -82/-71 region of the RECK promoter. The histone deacetylase inhibitor trichostatin A reversed HER-2/neu-induced inhibition of RECK. HER-2/neu activation was associated with increased MMP-9 secretion and activation. Re-expression of RECK in HER-2/neu-overexpressing cells inhibited MMP-9 secretion and cell invasion. Taken together, our results suggest that HER-2/neu induces the binding of Sp proteins and HDAC1 to the RECK promoter to inhibit RECK expression and to promote cell invasion. Restoration of RECK provides a novel strategy for the inhibition of HER-2/neu-induced metastasis.
Collapse
Affiliation(s)
- Ming-Chuan Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | |
Collapse
|
310
|
Song SY, Son HJ, Nam E, Rhee JC, Park C. Expression of reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) as a prognostic indicator in gastric cancer. Eur J Cancer 2005; 42:101-8. [PMID: 16324834 DOI: 10.1016/j.ejca.2005.09.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 09/01/2005] [Accepted: 09/14/2005] [Indexed: 01/06/2023]
Abstract
In this study the expression levels of reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) in gastric cancer cell lines and tissues have been analysed in order to assess their value as a prognostic indicator. The expressions of RECK, activated matrix metalloproteinase (MMP)-7, and vascular endothelial growth factor (VEGF) in gastric cancer tissues and cell lines were evaluated by Western blot analysis; and MMP-2 and MMP-9 were evaluated by gelatin zymography. RECK expression in the context of gastric cancer was also compared with various clinicopathologic parameters and compared to the expression of activated MMP-7, MMP-2, and MMP-9. Fifty-two percent of the 102 gastric cancer tissues and 81.8% of the 11 gastric cancer cell lines exhibited reduced RECK expression. We also detected a significant inverse correlation between RECK expression and macroscopic tumour growth (P=0.018), lymphatic invasion (P=0.018), lymph node metastasis (P=0.000), stage (P=0.000), and MMP-9 (P=0.039). No correlation between RECK expression and MMP-7 and MMP-2, VEGF were detected. Our data strongly supports the hypothesis that RECK is a suppressor of malignancy, and constitutes a good prognostic indicator in gastric cancer.
Collapse
Affiliation(s)
- Sang Yong Song
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 135-710, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
311
|
Ferri N, Paoletti R, Corsini A. Lipid-modified proteins as biomarkers for cardiovascular disease: a review. Biomarkers 2005; 10:219-37. [PMID: 16191483 DOI: 10.1080/13547500500216660] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lipid-modified proteins are classified based on the identity of the attached lipid, a post- or co-translational modification required for their biological function. At least five different lipid modifications of cysteines, glycines and other residues on the COOH- and NH(2)-terminal domains have been described. Cysteine residues may be modified by the addition of a 16-carbon saturated fatty acyl group by a labile thioester bond (palmitoylation) or by prenylation processes that catalyze the formation of thioether bond with mevalonate derived isoprenoids, farnesol and geranylgeraniol. The NH(2)-terminal glycine residues may undergo a quite distinct process involving the formation of an amide bond with a 14-carbon saturated acyl group (myristoylation), while glycine residues in the COOH-terminal may be covalently attached with a cholesterol moiety by an ester bond. Finally, cell surface proteins can be anchored to the membrane through the addition of glycosylphosphatidylinositol moiety. Several lines of evidence suggest that lipid-modified proteins are directly involved in different steps of the development of lesions of atherosclerosis, from leukocyte recruitment to plaque rupture, and their expression or lipid modification are likely altered during atherogenesis. This review will briefly summarize the different enzymatic pathways of lipid modification and propose a series of lipid-modified proteins that can be used as biomarkers for cardiovascular disease.
Collapse
Affiliation(s)
- N Ferri
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | |
Collapse
|
312
|
Simizu S, Takagi S, Tamura Y, Osada H. RECK-Mediated Suppression of Tumor Cell Invasion Is Regulated by Glycosylation in Human Tumor Cell Lines. Cancer Res 2005; 65:7455-61. [PMID: 16103099 DOI: 10.1158/0008-5472.can-04-4446] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RECK, a glycosylphosphatidylinositol (GPI)-anchored glycoprotein, negatively regulates matrix metalloproteinases (MMP), such as MMP-9, and inhibits tumor invasion and metastasis. The predicted amino acid sequence of human RECK includes five putative N-glycosylation sites; however, the precise biochemical role of glycosylated RECK remains unknown. In this study, we examined the link between glycosylation and the function of RECK in human tumor cell lines. RECK protein was glycosylated at Asn86, Asn200, Asn297, and Asn352 residues but not at the Asn39 residue in HT1080 cells. Although the glycosylation of these asparagine sites did not play a role in the cell surface localization of RECK as a GPI-anchored protein, the glycosylation of RECK Asn297 residue was involved in the suppression of MMP-9 secretion and Asn352 residue was necessary to inhibit MMP-2 activation. Moreover, RECK-suppressed tumor cell invasion was reversed by inhibiting glycosylation at Asn86, Asn297, and Asn352 residues of RECK. Thus, these findings indicate that glycosylation mediates RECK suppression of tumor cell invasion by multiple mechanisms such as suppressing MMP-9 secretion and inhibiting MMP-2 activation.
Collapse
Affiliation(s)
- Siro Simizu
- Antibiotics Laboratory, Discovery Research Institute, RIKEN and Graduate School of Science and Engineering, Saitama University, Japan
| | | | | | | |
Collapse
|
313
|
Takenaka K, Ishikawa S, Yanagihara K, Miyahara R, Hasegawa S, Otake Y, Morioka Y, Takahashi C, Noda M, Ito H, Wada H, Tanaka F. Prognostic Significance of Reversion-Inducing Cysteine-Rich Protein With Kazal Motifs Expression in Resected Pathologic Stage IIIA N2 Non–Small-Cell Lung Cancer. Ann Surg Oncol 2005; 12:817-24. [PMID: 16132376 DOI: 10.1245/aso.2005.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 04/28/2005] [Indexed: 01/11/2023]
Abstract
BACKGROUND Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a novel membrane-anchored matrix metalloproteinase inhibitor, and experimental studies have shown that RECK can suppress tumor progression through angiogenesis inhibition. We have already revealed that enhanced RECK expression is significantly correlated with a favorable prognosis in non-small-cell lung cancer (NSCLC). In this study, further analyses focused on pN2 disease were conducted to assess the clinical significance of RECK expression. METHODS A total of 118 patients with completely resected pathologic stage IIIA N2 NSCLC were retrospectively examined. RECK expression in the primary tumor, along with involved N2 nodes, was examined immunohistochemically. RESULTS RECK expression in the primary tumor was strong in 53 patients (44.9%) and was weak in the other 65 patients. The 5-year survival rate of patients with RECK-strong tumor (42.9%) was significantly higher than that of patients with RECK-weak tumor (23.1%; P = .017). Reduced RECK expression significantly correlated with a poor prognosis for patients with a single N2 node involved (P = .019), but not for patients with multiple N2 nodes involved (P = .440). A multivariate analysis confirmed that reduced RECK expression was an independent and significant factor to predict a poor prognosis (P = .031). RECK expression in involved N2 nodes was significantly higher than in primary tumors (P < .001). CONCLUSIONS RECK status was a novel prognostic factor in pathologic stage IIIA N2 NSCLC.
Collapse
Affiliation(s)
- Kazumasa Takenaka
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Shogoin-kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Hornebeck W, Lambert E, Petitfrère E, Bernard P. Beneficial and detrimental influences of tissue inhibitor of metalloproteinase-1 (TIMP-1) in tumor progression. Biochimie 2005; 87:377-83. [PMID: 15781325 DOI: 10.1016/j.biochi.2004.09.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 09/23/2004] [Indexed: 12/12/2022]
Abstract
Tissue inhibitor of metalloproteinase-1 (TIMP-1) is one representative of the natural matrix metalloproteinase (MMP) inhibitor family, encompassing four members. It inhibits all MMPs, except several MT-MMPs, and a disintegrin with a metalloproteinase domain (ADAM)-10 with Kis < nM. Unexpectedly, its upregulation was associated to poor clinical outcome for several cancer varieties. Such finding might be related to the growth-promoting and survival activities of TIMP-1 for normal and cancer cells. In most cases, such properties are MMP-independent and binding of TIMP-1 to an unknown receptor system can trigger JAK (or FAK)/PI3 kinase/Akt/bad-bclX2 (erythroid, myeloid, epithelial cell lines) or Ras/Raf1/FAK (osteosarcoma cell line) signaling pathways. The relationship between viral infection and TIMP-1 expression is here underlined. Thus, TIMP-1 might display a dual influence on tumor progression; either beneficial by inhibiting MMPs as MMP-9 and by impairing angiogenesis or detrimental by favoring cancer cells growth or survival. We consider that the proMMP-9/TIMP-1 balance is of critical importance in early events of tumor progression, and might show promise as diagnostic and prognostic marker of malignancy.
Collapse
Affiliation(s)
- William Hornebeck
- Center National de la Recherche Scientifique (CNRS) UMR 6198, IFR53 Biomolecules, Faculties of Medicine and Sciences, Reims University, 51, rue Cognacq Jay, 51100 Reims, France.
| | | | | | | |
Collapse
|
315
|
Abstract
Angiogenesis is the process by which new blood vessels are formed from preexisting vasculature. It is an essential feature of the female reproductive cycle, embryonic development and wound repair. Angiogenesis has also been identified as a causal or contributing factor in several pathologies, including cancer, where it is a rate-limiting step during tumor progression. Matrix metalloproteinases (MMPs) are a family of soluble and membrane-anchored proteolytic enzymes that can degrade components of the extracellular matrix (ECM) as well as a growing number of modulators of cell function. Several of the MMPs, in particular the gelatinases and membrane-type 1 MMP (MT1-MMP), have been linked to angiogenesis. Potential roles for these proteases during the angiogenic process include degradation of the basement membrane and perivascular ECM components, unmasking of cryptic biologically relevant sites in ECM components, modulation of angiogenic factors and production of endogenous angiogenic inhibitors. This review brings together what is currently known about the functions of the MMPs and the closely related ADAM (a disintegrin and metalloproteinase domain) and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) families in angiogenesis and considers how this information might be useful in manipulation of the angiogenic process, with a view to constraining tumor progression.
Collapse
Affiliation(s)
- Madeleine M Handsley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
316
|
van der Jagt MFP, Sweep FCGJ, Waas ET, Hendriks T, Ruers TJM, Merry AHH, Wobbes T, Span PN. Correlation of reversion-inducing cysteine-rich protein with kazal motifs (RECK) and extracellular matrix metalloproteinase inducer (EMMPRIN), with MMP-2, MMP-9, and survival in colorectal cancer. Cancer Lett 2005; 237:289-97. [PMID: 16046057 DOI: 10.1016/j.canlet.2005.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Revised: 06/04/2005] [Accepted: 06/06/2005] [Indexed: 11/21/2022]
Abstract
mRNA, and latent and active levels MMP-2 and -9 were higher in tumor tissue compared to normal tissue from 63 patients with colorectal cancer, whereas RECK and EMMPRIN levels were lower. Correlations between mRNA, latent, and active MMP were particular high for MMP-2 in tumor tissue (R(s)=0.6-0.8, P<0.001). For active MMP-2, but not for MMP-9, a significant negative partial correlation (R(p)=-0.440, P<0.001) for RECK was found in tumor tissue, which was confirmed by linear regression analysis. In exploratory survival analyses we found that in patients with localized disease the RECK level in normal or tumor tissue had a significant (P=0.017) association with overall survival.
Collapse
Affiliation(s)
- Michel F P van der Jagt
- Department of Surgery, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
317
|
Echizenya M, Kondo S, Takahashi R, Oh J, Kawashima S, Kitayama H, Takahashi C, Noda M. The membrane-anchored MMP-regulator RECK is a target of myogenic regulatory factors. Oncogene 2005; 24:5850-7. [PMID: 16007210 DOI: 10.1038/sj.onc.1208733] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The membrane-anchored MMP-regulator RECK is down regulated in many solid tumors; the extent of RECK down regulation correlates with poor prognosis. Forced expression of RECK in tumor cells results in suppression of angiogenesis, invasion, and metastasis. Studies on the roles and the mechanisms of regulation of the RECK gene during normal development may therefore yield important insights into how the malignant behaviors of tumor cells arise and how they can be controlled. Our previous studies indicate that mice lacking RECK die around E10.5 with reduced tissue integrity. In the present study, we have found that in later stage wild-type embryos, RECK is abundantly expressed in skeletal muscles, especially in the areas where the myoblast differentiation factor MRF4 is expressed. Consistent with this finding, the RECK-promoter is activated by MRF4 in cultured cells. In contrast, a myoblast determination factor MyoD suppresses the RECK-promoter. Myoblastic cells lacking RECK expression give rise to myotubes at higher efficiency than the cells expressing RECK, indicating that RECK suppresses myotube formation. These findings suggest that MyoD down regulates RECK to facilitate myotube formation, whereas MRF4 up regulates RECK to promote other aspects of myogenesis that require extracellular matrix integrity.
Collapse
Affiliation(s)
- Michiko Echizenya
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
318
|
Sukezane T, Oneyama C, Kakumoto K, Shibutani K, Hanafusa H, Akagi T. Human diploid fibroblasts are resistant to MEK/ERK-mediated disruption of the actin cytoskeleton and invasiveness stimulated by Ras. Oncogene 2005; 24:5648-55. [PMID: 16007212 DOI: 10.1038/sj.onc.1208724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ras-induced transformation is characterized not only by uncontrolled proliferation but also by drastic morphological changes accompanied by the disruption of the actin cytoskeleton. Previously, we reported that human fibroblasts are more resistant than rodent fibroblasts to Ras-induced transformation. To explore the molecular basis for the difference in susceptibility to Ras-induced transformation, we investigated the effect of activated H-Ras on the actin cytoskeleton in human diploid fibroblasts and in rat embryo fibroblasts, both of which are immortalized by SV40 early region. We demonstrate here that Ras-induced morphological changes, decreased expression of tropomyosin isoforms, and suppression of the ROCK/LIMK/Cofilin pathway observed in the rat fibroblasts were not detected in the human fibroblasts even with high expression levels of Ras. We also show that activation of the MEK/ERK pathway sufficed to induce all of these alterations in the rat fibroblasts, whereas the human fibroblasts were refractory to these MEK/ERK-mediated changes. In addition to morphological changes, we demonstrated that the expression of activated Ras induced an invasive phenotype in the rat, but not in the human fibroblasts. These studies provide evidence for the existence of human-specific mechanisms that resist Ras/MEK/ERK-mediated transformation.
Collapse
Affiliation(s)
- Taiko Sukezane
- Laboratory of Molecular Oncology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | |
Collapse
|
319
|
Takagi S, Kitamura T, Hosaka Y, Ohsaki T, Bosnakovski D, Kadosawa T, Okumura M, Fujinaga T. Molecular cloning of canine membrane-anchored inhibitor of matrix metalloproteinase, RECK. J Vet Med Sci 2005; 67:385-91. [PMID: 15876788 DOI: 10.1292/jvms.67.385] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) gene is one of the endogenous matrix metalloproteinase (MMP) inhibitors. It was reported that decreased RECK expression closely correlated with tumor malignancy. We determined the cDNA sequence of the canine RECK gene. The cDNA sequence and deduced amino acid of canine RECK were 2,913 bases and 971 residues, respectively. The predicted amino acid sequence of the protein showed 95.5% and 91.9% homology with human and mouse RECK, respectively. RECK mRNA expression was analyzed in various canine tissues and tumor cell lines by quantitative RT-PCR. The highest RECK expression was detected in lung and testis. In comparison with the tissues, a remarkably low expression level was detected in tumor cell lines. In addition, the RECK gene was transfected in the canine transitional cell carcinoma, and its influence on cell proliferation, migration, and invasion was analyzed. The transfected RECK gene suppressed only canine tumor invasion. These results showed that RECK might play an important role in tumor malignancy in dogs as well as in other mammalians.
Collapse
Affiliation(s)
- Satoshi Takagi
- Laboratory of Veterinary Surgery, Department of Clinical Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
320
|
Abstract
Cells are regulated by many different means, and there is more and more evidence emerging that changes in the microenvironment greatly affect cell function. MT1-MMP is a type I transmembrane proteinase which participates in pericellular proteolysis of extracellular matrix (ECM) macromolecules. The enzyme is cellular collagenase essential for skeletal development, cancer invasion, growth, and angiogenesis. MT1-MMP promotes cell invasion and motility by pericellular ECM degradation, shedding of CD44 and syndecan1, and by activating ERK. Thus MT1-MMP is one of the factors that influence the cellular microenvironment and thereby affect cell-signaling pathways and eventually alters cellular behavior. As a proteinase, MT1-MMP is regulated by inhibitors, but it also requires formation of a homo-oligomer complex, localization to migration front of the cells, and internalization to become a "functionally active" cell function modifier. Developing new means to inhibit "functional activity" of MT1-MMP may be a new direction to establish treatments for the diseases that MT1-MMP mediates such as cancer and rheumatoid arthritis.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology Division, Imperial College London, Hammersmith, London, United Kingdom
| | | |
Collapse
|
321
|
Dougherty GW, Chopp T, Qi SM, Cutler ML. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions. Exp Cell Res 2005; 306:168-79. [PMID: 15878342 DOI: 10.1016/j.yexcr.2005.01.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2004] [Revised: 01/20/2005] [Accepted: 01/25/2005] [Indexed: 01/29/2023]
Abstract
Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.
Collapse
Affiliation(s)
- Gerard W Dougherty
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, B3122, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
322
|
Björklund M, Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta Rev Cancer 2005; 1755:37-69. [PMID: 15907591 DOI: 10.1016/j.bbcan.2005.03.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 01/13/2023]
Abstract
The matrix metalloproteinases(MMP)-2 and -9, also known as the gelatinases have been long recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. In the recent years, a plethora of non-matrix proteins have also been identified as gelatinase substrates thus significantly broadening our understanding of these enzymes as proteolytic executors and regulators in various physiological and pathological states including embryonic growth and development, angiogenesis and tumor progression, inflammation, infective diseases, degenerative diseases of the brain and vascular diseases. Although the effect of broad-spectrum inhibitors of MMPs in the treatment of cancer has been disappointing in clinical trials, novel mechanisms of gelatinase inhibition have been now identified. Inhibition of the association of the gelatinases with cell-surface integrins appears to offer highly specific means to target these enzymes without inhibiting their catalytic activity in multiple cell types including endothelial cells, tumor cells and leukocytes. Here, we review the multiple functions of the gelatinases in cancer, and especially their role in the tumor cell migration and invasion.
Collapse
Affiliation(s)
- Mikael Björklund
- Department of Biological and Environmental Sciences, P.O. B 56 (Viikinkaari 5D), University of Helsinki, Finland
| | | |
Collapse
|
323
|
Chang HC, Liu LT, Hung WC. Involvement of histone deacetylation in ras-induced down-regulation of the metastasis suppressor RECK. Cell Signal 2005; 16:675-9. [PMID: 15093608 DOI: 10.1016/j.cellsig.2003.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2003] [Revised: 11/08/2003] [Accepted: 11/09/2003] [Indexed: 11/28/2022]
Abstract
RECK is a membrane-anchored glycoprotein that may negatively regulate matrix metalloproteinase (MMP) activity and inhibit tumor metastasis. Previous study demonstrated that oncogenic ras inhibited RECK expression via an Sp1 binding site in the RECK promoter. In this study, we investigated the molecular mechanism by which ras inhibited RECK expression. Co-transfection assay showed that Sp1 and Sp3 are transactivators, rather than repressors, for RECK gene. So, we tested whether ras activation induced the binding of histone deacetylases (HDACs) to Sp1 to repress RECK expression. Our data showed Sp1-associated HDAC1 in cells was increased after ras induction. By using DNA affinity precipitation assay, we found that induction of oncogenic ras enhanced the binding of HDAC1 to the DNA probe corresponding to the Sp1 site in the RECK promoter. Additionally, a HDAC inhibitor trichostatin A (TSA) potently antagonized the inhibitory action of ras on RECK. The signaling pathway by which ras suppresses RECK was also addressed. Induction of oncogenic ras activated extracellular signal-regulated kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38(HOG) kinase in 2-12 cells. Addition of PD98059 or overexpression of dominant-negative mutant of ERK2 indeed reversed ras-mediated inhibition of RECK promoter activity. Taken together, our results suggest that oncogenic ras represses RECK expression via a histone deacetylation mechanism.
Collapse
Affiliation(s)
- Hui-Chiu Chang
- Department of Physiology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | |
Collapse
|
324
|
van Lent PLEM, Span PN, Sloetjes AW, Radstake TRDJ, van Lieshout AWT, Heuvel JJTM, Sweep CGJ, van den Berg WB. Expression and localisation of the new metalloproteinase inhibitor RECK (reversion inducing cysteine-rich protein with Kazal motifs) in inflamed synovial membranes of patients with rheumatoid arthritis. Ann Rheum Dis 2005; 64:368-74. [PMID: 15485996 PMCID: PMC1755425 DOI: 10.1136/ard.2004.027870] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To assess the expression and localisation of the new metalloproteinase inhibitor RECK, an inhibitor of matrix metalloproteinase-14 (MMP-14) secretion and activity, in the synovial membrane of patients with rheumatoid arthritis (RA). METHODS RECK expression in synovium samples from patients with RA, osteoarthritis (OA), and "trauma" were studied by quantitative real time reverse transcription-polymerase chain reaction (Q-PCR). RECK mRNA levels were compared with those of the enzyme MMP-14. RECK expression on cryostat sections of synovium was disclosed by goat-antihuman RECK monoclonal antibody. RECK protein was detected on synovial cryostat sections and measured by western blotting. RECK expression on macrophages was investigated by double staining of CD68 and RECK on cryostat sections and characterised by confocal microscopy. RECK expression on RA monocytes or normal monocytes was further investigated by FACS analysis. RESULTS RECK expression in the synovial membrane of patients with RA was significantly lower than in OA and controls. MMP-14 mRNA levels were not significantly different between the three groups. In RA synovium, RECK protein was expressed mainly in the lining layer but also by macrophages around blood vessels. Fibroblasts and about 50% of the CD68 positive macrophages expressed RECK. In CD68 positive macrophages, RECK was only expressed in secretory granules and not on the membrane. The same pattern was found in M-CSF cultured macrophages of patients with RA and controls. In contrast, synovial fibroblasts showed a diffuse membrane expression within the synovium similar to cultured RA fibroblasts. RECK expression was low on the membrane of monocytes according to FACS analysis. CONCLUSION The new MMP inhibitor RECK is expressed in synovial membranes of RA, OA, and controls. RECK mRNA is lowest in RA synovial membranes. In contrast with fibroblasts, macrophages in the synovium express RECK only cytoplasmically and not on their membrane.
Collapse
Affiliation(s)
- P L E M van Lent
- Department of Rheumatology, University Medical Centre Nijmegen, Geert Grooteplein 26-28, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
325
|
Emonard H, Bellon G, de Diesbach P, Mettlen M, Hornebeck W, Courtoy PJ. Regulation of matrix metalloproteinase (MMP) activity by the low-density lipoprotein receptor-related protein (LRP). A new function for an “old friend”. Biochimie 2005; 87:369-76. [PMID: 15781324 DOI: 10.1016/j.biochi.2004.11.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 11/15/2004] [Indexed: 12/27/2022]
Abstract
Matrix metalloproteinases (MMPs) are essential contributors to a microenvironment that promotes tumour progression. During the two last decades, inhibition of MMPs has become the focus of considerable interest for cancer therapy, and numerous synthetic metalloproteinase inhibitors have been developed by the pharmaceutical industry. However, clinical trials have shown disappointing efficacy or unexpected toxicity and new targets are thus eagerly awaited. The identification of endocytic clearance of several MMPs by the low-density lipoprotein receptor-related protein (LRP) might provide insight into novel strategies for controlling MMP level during malignant processes. This review attempts to summarize recent aspects on the cellular and molecular basis of LRP-mediated endocytic disposal of MMPs.
Collapse
Affiliation(s)
- Hervé Emonard
- CNRS UMR 6198, IFR 53, Faculté de Médecine, 51, rue Cognacq Jay, 51095 Reims cedex, France.
| | | | | | | | | | | |
Collapse
|
326
|
Shah PK, Wilkin DJ, Doherty TM, Uzui H, Rajavashisth TB, Asotra K, Pei D. Therapeutic developments in matrix metalloproteinase inhibition. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.5.665] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
327
|
Abstract
The matrix metalloproteinases (MMPs) are considered to be the physiological mediators of extracellular matrix remodelling. MMPs are involved in a variety of functions and in the nervous system, these include angiogenesis and the extension of neuronal growth cones during development. However, it has become increasingly evident that the aberrant expression of MMPs in the nervous system contributes to diseases that include among others, multiple sclerosis, malignant gliomas, Alzheimer's disease and stroke. This review highlights the evidence that MMPs are involved in diseases of the nervous system, and provides information for the potential beneficial use of MMP inhibitors in NS disorders. However, the application of MMP inhibitors to treat CNS diseases must be balanced carefully against the beneficial roles normally played by MMPs in CNS physiology or recovery.
Collapse
Affiliation(s)
- V W Yong
- Department of Oncology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
328
|
Takeuchi T, Hisanaga M, Nagao M, Ikeda N, Fujii H, Koyama F, Mukogawa T, Matsumoto H, Kondo S, Takahashi C, Noda M, Nakajima Y. The membrane-anchored matrix metalloproteinase (MMP) regulator RECK in combination with MMP-9 serves as an informative prognostic indicator for colorectal cancer. Clin Cancer Res 2005; 10:5572-9. [PMID: 15328199 DOI: 10.1158/1078-0432.ccr-03-0656] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE RECK, a membrane-anchored regulator of matrix metalloproteinases (MMPs), is widely expressed in healthy tissue, whereas it is expressed at lower levels in many tumor-derived cell lines. Studies in mice and cultured cells have shown that restoration of RECK expression inhibits tumor invasion, metastasis, and angiogenesis. However, the clinical relevance of these findings remains to be fully documented. Here we examined the expression of RECK and one of its targets, MMP-9, in colorectal cancer tissue. EXPERIMENTAL DESIGN The RECK and MMP-9 expression levels in colorectal cancer samples from 53 patients were determined by immunohistochemical techniques. The expression level of each protein was scored, and the patients were divided into two groups based on these scores. In 33 cases, we performed gelatin zymography to estimate the degree of MMP-2 and MMP-9 activation. Microvessel density and vascular endothelial growth factor (VEGF) expression were also evaluated histologically. RESULTS RECK protein was detected in 30 of 53 (56.6%) specimens. Importantly, patients with tumors expressing relatively high levels of RECK (high-RECK group) had a significantly lower risk of recurrence than did patients with tumors expressing relatively low levels of RECK (low-RECK group; P = 0.011). Moreover, RECK-dominant (RECK score > or = MMP-9 score) patients showed a significantly lower incidence of recurrence than did MMP-9-dominant patients (P = 0.0003). Multivariate analysis revealed that the RECK/MMP-9 balance was an independent prognostic factor (P = 0.0122). The expression of VEGF and microvessel density were inversely correlated with the level of RECK expression. CONCLUSIONS RECK/MMP-9-balance is an informative prognostic indicator for colorectal cancer. Our data also suggest that RECK suppresses tumor angiogenesis, probably by limiting the availability of VEGF in tumor tissues.
Collapse
Affiliation(s)
- Taku Takeuchi
- Department of Surgery, Nara Medical University, Kashihara-city, Nara, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Oh J, Seo DW, Diaz T, Wei B, Ward Y, Ray JM, Morioka Y, Shi S, Kitayama H, Takahashi C, Noda M, Stetler-Stevenson WG. Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Res 2005; 64:9062-9. [PMID: 15604273 DOI: 10.1158/0008-5472.can-04-1981] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The antiangiogenic function of the tissue inhibitors of metalloproteinases (TIMPs) has been attributed to their matrix metalloproteinase inhibitory activity. Here we demonstrate that TIMP-1 but not Ala+TIMP-1 inhibits both basal and vascular endothelial growth factor (VEGF)-stimulated migration of human microvascular endothelial cells (hMVECs), suggesting that this effect is dependent on direct inhibition of matrix metalloproteinase (MMP) activity. In contrast, TIMP-2 and mutant Ala+TIMP-2, which is devoid of MMP inhibitory activity, block hMVEC migration in response to VEGF-A stimulation. TIMP-2 and Ala+TIMP-2 also suppress basal hMVEC migration via a time-dependent mechanism mediated by enhanced expression of RECK, a membrane-anchored MMP inhibitor, which, in turn, inhibits cell migration. TIMP-2 treatment of hMVECs increases the association of Crk with C3G, resulting in enhanced Rap1 activation. hMVECs stably expressing Rap1 have increased RECK expression and display reduced cell migration compared with those expressing inactive Rap1(38N). RECK-null murine embryo fibroblasts fail to demonstrate TIMP-2-mediated decrease in cell migration despite activation of Rap1. TIMP-2-induced RECK decreases cell-associated MMP activity. Anti-RECK antibody increases MMP activity and reverses the TIMP-2-mediated reduction in cell migration. The effects of TIMP-2 on RECK expression and cell migration were confirmed in A2058 melanoma cells. These results suggest that TIMP-2 can inhibit cell migration via several distinct mechanisms. First, TIMP-2 can inhibit cell migration after VEGF stimulation by direct inhibition of MMP activity induced in response to VEGF stimulation. Secondly, TIMP-2 can disrupt VEGF signaling required for initiation of hMVEC migration. Third, TIMP-2 can enhance expression of RECK via Rap1 signaling resulting in an indirect, time-dependent inhibition of endothelial cell migration.
Collapse
Affiliation(s)
- Junseo Oh
- National Cancer Institute, Center for Cancer Research, Cell and Cancer Biology Branch, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Zucker S, Doshi K, Cao J. Measurement of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMP) in blood and urine: potential clinical applications. Adv Clin Chem 2004; 38:37-85. [PMID: 15521188 DOI: 10.1016/s0065-2423(04)38002-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Stanley Zucker
- Veterans Affairs Medical Center, Northport, New York 11768, USA
| | | | | |
Collapse
|
331
|
Abstract
The processes by which cancer cells leave the tumor and enter adjacent tissue is known as invasion, whereas metastasis refers to secondary tumor colonization of tissue at a distance from the primary lesion. These two events are the most lethal of cancer phenomena and the signaling mechanisms that govern them are complex. The Ras signaling pathways are well represented in their involvement in tumor initiation, but considerably less is known about their contribution to invasion and metastasis. In this review, we discuss the current evidence for mutant Ras proteins as significant players in these aspects of cancer progression.
Collapse
Affiliation(s)
- Paul M Campbell
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC 27599-7295, USA.
| | | |
Collapse
|
332
|
Takenaka K, Ishikawa S, Kawano Y, Yanagihara K, Miyahara R, Otake Y, Morioka Y, Takahashi C, Noda M, Wada H, Tanaka F. Expression of a novel matrix metalloproteinase regulator, RECK, and its clinical significance in resected non-small cell lung cancer. Eur J Cancer 2004; 40:1617-23. [PMID: 15196549 DOI: 10.1016/j.ejca.2004.02.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 02/17/2004] [Accepted: 02/26/2004] [Indexed: 11/16/2022]
Abstract
The reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) was initially isolated as a transformation-suppressor gene by expression cloning and found to encode a membrane-anchored regulator of the matrix metalloproteinases (MMPs). Experimental studies have shown that RECK can suppress tumour - invasion, metastasis and angiogenesis. However, the clinical impact of RECK remains unclear. To assess the clinical significance of RECK-expression in non-small cell lung cancer (NSCLC), a total of 171 patients with completely resected pathological stage (p-stage) I-IIIA NSCLC were retrospectively examined. Expression of RECK and vascular endothelial growth factor (VEGF) in tumour tissues was assessed by immunohistochemical staining (IHS). Intratumoural microvessel density (IMVD), a measurement of angiogenesis, was also determined by IHS using an anti-CD34 antibody. A significant inverse correlation between RECK-expression and tumour angiogenesis was documented; the mean IMVD in tumours with strong RECK-expression (157.1) was significantly lower than that observed in tumours with weak RECK-expression (194.5; P = 0.008). Interestingly, this inverse correlation was seen only when VEGF was strongly expressed, which suggests that RECK could suppress the angiogenesis induced by VEGF. The 5-year survival rate for patients with tumours with strong RECK-expression (75.8%) was significantly higher than that for patients with weakly expressing tumours (54.3%; P = 0.016). Subset analyses showed that the prognostic impact of RECK-status was evident in patients with either adenocarcinoma, poorly differentiated tumours, or p-stage IIIA disease. A multivariate analysis confirmed that reduced RECK-expression was an independent and significant factor in predicting a poor prognosis (P = 0.009; Hazard ratio (HR), 0.474 with a 95% Confidence interval (CI) of 0.271-0.830). In conclusion, RECK-status is a significant prognostic factor correlated with tumour angiogenesis in NSCLC patients.
Collapse
Affiliation(s)
- Kazumasa Takenaka
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Stefanidakis M, Ruohtula T, Borregaard N, Gahmberg CG, Koivunen E. Intracellular and Cell Surface Localization of a Complex between αMβ2 Integrin and Promatrix Metalloproteinase-9 Progelatinase in Neutrophils. THE JOURNAL OF IMMUNOLOGY 2004; 172:7060-8. [PMID: 15153528 DOI: 10.4049/jimmunol.172.11.7060] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have recently demonstrated that promatrix metalloproteinases (proMMPs), particularly proMMP-9, are potent ligands of the leukocyte beta(2) integrins. We studied here the complex formation between proMMP-9 and alpha(M)beta(2), the major MMP and integrin of neutrophils. On resting neutrophils, the proMMP-9/alpha(M)beta(2) complex was primarily detected in intracellular granules, but after cellular activation it became localized to the cell surface, as demonstrated by immunoprecipitation and double immunofluorescence. Further indication of the complex formation was that neutrophils and alpha(M)beta(2)-transfected L cells, but not the wild-type L cells or leukocyte adhesion deficiency cells, bound to immobilized proMMP-9 or its recombinant catalytic domain in a beta(2) integrin-dependent manner. Peptides that bound to the alpha(M) integrin-I domain and inhibited its complex formation with proMMP-9 prevented neutrophil migration in a transendothelial assay in vitro and in a thioglycolate-elicited peritonitis in vivo. These results suggest that the translocating proMMP-9/alpha(M)beta(2) complex may be part of the cell surface machinery guiding neutrophil migration.
Collapse
Affiliation(s)
- Michael Stefanidakis
- Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
334
|
Nuttall RK, Sampieri CL, Pennington CJ, Gill SE, Schultz GA, Edwards DR. Expression analysis of the entire MMP and TIMP gene families during mouse tissue development. FEBS Lett 2004; 563:129-34. [PMID: 15063736 DOI: 10.1016/s0014-5793(04)00281-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 02/27/2004] [Accepted: 03/08/2004] [Indexed: 10/26/2022]
Abstract
Matrix metalloproteinases (MMPs) and adamalysins (ADAMs) cleave many extracellular proteins, including matrix, growth factors, and receptors. We profiled the RNA levels of every MMP, several ADAMs, and inhibitors of metalloproteinases (TIMPs and RECK) in numerous mouse tissues during development and in the uterus during pregnancy. Observations include: most secreted MMPs are expressed at low to undetectable levels in tissues, whereas membrane-bound MMPs, ADAMs and inhibitors are abundant; almost every proteinase and inhibitor is present in the uterus or placenta at some time during gestation; the mouse collagenases mColA and mColB are found exclusively in the uterus and testis; and each tissue has its unique signature of proteinase and inhibitor expression.
Collapse
Affiliation(s)
- Robert K Nuttall
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
335
|
Abstract
Gene ablation in mice offers a powerful tool to assay in vivo the role of selected molecules. Numerous new mouse models of matrix metalloproteinases (MMP) deficiency have been developed in the past 5 years and have yielded a new understanding of the role of MMPs while also putting to rest assumptions based on data predating the days of mouse models. The phenotype of the MT1-MMP deficient mouse is one example which illustrates the sometimes rather surprising insights into extracellular matrix remodeling in development and growth that can be gained with mouse genetics. While MT1-MMP appears to play little or no role in embryonic development, loss of this enzyme results in progressive impairment of postnatal growth and development affecting both the skeleton and the soft connective tissues. The underlying pathologic mechanism is loss of an indispensable collagenolytic activity, which remains essentially uncompensated. Our findings demonstrate that growth and maintenance of the skeleton requires coordinated and simultaneous MT1-MMP-dependent remodeling of all soft tissue attachments (ligaments, tendons, joint capsules). We note that the phenotype of the MT1-MMP deficient mouse bears no resemblance to those of mice deficient in MMP-2 and tissue inhibitors of metallo-proteinase (TIMP)-2 all but dispelling the view that activation of MMP-2 by the MT1-MMP/TIMP-2/proMMP-2 axis plays a significant role in growth and development throughout life. It is of interest to note that loss of a single catabolic function such as selective collagen degradation mediated by MT1-MMP gives rise to profound impairment of a number of both anabolic and catabolic functions.
Collapse
Affiliation(s)
- Kenn Holmbeck
- Matrix Metalloproteinase Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
336
|
Scott LA, Vass JK, Parkinson EK, Gillespie DAF, Winnie JN, Ozanne BW. Invasion of normal human fibroblasts induced by v-Fos is independent of proliferation, immortalization, and the tumor suppressors p16INK4a and p53. Mol Cell Biol 2004; 24:1540-59. [PMID: 14749371 PMCID: PMC344183 DOI: 10.1128/mcb.24.4.1540-1559.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasion is generally perceived to be a late event during the progression of human cancer, but to date there are no consistent reports of alterations specifically associated with malignant conversion. We provide evidence that the v-Fos oncogene induces changes in gene expression that render noninvasive normal human diploid fibroblasts highly invasive, without inducing changes in growth factor requirements or anchorage dependence for proliferation. Furthermore, v-Fos-stimulated invasion is independent of the pRb/p16(INK4a) and p53 tumor suppressor pathways and telomerase. We have performed microarray analysis using Affymetrix GeneChips, and the gene expression profile of v-Fos transformed cells supports its role in the regulation of invasion, independent from proliferation. We also demonstrate that invasion, but not proliferation, is dependent on the activity of the up-regulated epidermal growth factor receptor. Taken together, these results indicate that AP-1-directed invasion could precede deregulated proliferation during tumorigenesis and that sustained activation of AP-1 could be the epigenetic event required for conversion of a benign tumor into a malignant one, thereby explaining why many malignant human tumors present without an obvious premalignant hyperproliferative dysplastic lesion.
Collapse
Affiliation(s)
- Linda A Scott
- Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Glasgow G61 1BD, United Kingdom
| | | | | | | | | | | |
Collapse
|
337
|
Chand HS, Du X, Ma D, Inzunza HD, Kamei S, Foster D, Brodie S, Kisiel W. The effect of human tissue factor pathway inhibitor-2 on the growth and metastasis of fibrosarcoma tumors in athymic mice. Blood 2004; 103:1069-77. [PMID: 14525759 DOI: 10.1182/blood-2003-06-1930] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractHuman tissue factor pathway inhibitor-2 (TFPI-2) is a matrix-associated Kunitz inhibitor that inhibits the plasmin- and trypsin-mediated activation of zymogen matrix metalloproteinases involved in tumor progression, invasion, and metastasis. To directly assess its role in tumor growth and metastasis in vivo, we stably transfected HT-1080 fibrosarcoma cells expressing either fully active wild-type human TFPI-2 (WT) or inactive R24Q TFPI-2 (QT) and examined their ability to form tumors and metastasize in athymic mice in comparison to mock-transfected cells (MT). MT and QT fibrosarcoma tumors grew 2 to 3 times larger than WT tumors. Tumor metastasis was confined to the lung and was observed in 75% of mice treated with either MT or QT cells, whereas only 42% of mice treated with WT cells developed lung metastases. Real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analyses of each tumor group revealed 3- to 6-fold lower levels of murine vascular endothelial growth factor gene expression in WT tumors in relation to either MT or QT tumors. Comparative tumor gene expression analysis revealed that several human genes implicated in oncogenesis, invasion, metastasis, apoptosis, and angiogenesis had significantly altered levels of expression in WT tumors. Our collective data demonstrate that secretion of inhibitory TFPI-2 by a highly metastatic tumor cell markedly inhibits its growth and metastasis in vivo by regulating pericellular extracellular matrix (ECM) remodeling and angiogenesis. (Blood. 2004;103:1069-1077)
Collapse
Affiliation(s)
- Hitendra Singh Chand
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
338
|
Liu LT, Peng JP, Chang HC, Hung WC. RECK is a target of Epstein-Barr virus latent membrane protein 1. Oncogene 2004; 22:8263-70. [PMID: 14614450 DOI: 10.1038/sj.onc.1207157] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) has been suggested to be involved in tumor metastasis. However, the molecular mechanism of LMP1-induced metastasis is largely unknown. In this study, we investigated the effect of LMP1 on the expression of RECK, a metastasis suppressor gene, in an EBV-negative nasopharyngeal carcinoma (NPC) cell line. Our data demonstrated that LMP1 induced downregulation of RECK via transcription repression in TW04 cells. In addition, we found that LMP1 acted via an Sp1 site to inhibit RECK promoter activity. We next studied the signaling pathway that mediated the effect of LMP1 on RECK expression. Our results showed that LMP1 potently stimulated the activity of extracellular signal-regulated kinases (ERKs) and inhibition of ERK activity by PD98059 antagonized LMP1-induced downregulation of RECK. Conversely, the c-Jun N-terminal kinase inhibitor SP600125 and p38(HOG) kinase inhibitor SB203580 had little effect. We also found that the expression of LMP1 increased the invasive ability of TW04 cells. The importance of RECK in LMP1-induced invasiveness was supported by three observations. First, restoration of RECK expression by PD98059 reduced LMP1-induced release of active MMP-9. Second, suppression of PD98059-induced RECK expression by small interference RNA abolished the inhibitory action of PD98059 on LMP1-induced invasiveness. Third, coexpression of RECK with LMP1 in TW04 cells effectively suppressed cell invasiveness induced by LMP1. Taken together, these results suggest that LMP1 inhibits RECK expression via the ERK/Sp1 signaling pathway and this inhibition is a critical step for LMP1-induced tumor metastasis.
Collapse
Affiliation(s)
- Li-Teh Liu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
339
|
Kioi M, Yamamoto K, Higashi S, Koshikawa N, Fujita K, Miyazaki K. Matrilysin (MMP-7) induces homotypic adhesion of human colon cancer cells and enhances their metastatic potential in nude mouse model. Oncogene 2003; 22:8662-70. [PMID: 14647460 DOI: 10.1038/sj.onc.1207181] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Matrilysin (MMP-7) is thought to contribute to invasive growth and metastasis of colon carcinoma and many other human cancers. The present study demonstrates that treatment of human colon carcinoma cells with active matrilysin induces cell aggregation in vitro and promotes liver metastasis in nude mice. When two kinds of colon carcinoma cell lines were incubated with active matrilysin, this enzyme efficiently bound to the cell surface and induced loose cell aggregation, which led to E-cadherin-mediated tight cell aggregation. Synthetic MMP inhibitors inhibited both the membrane binding of matrilysin and matrilysin-induced cell aggregation, while TIMP-2 inhibited only the cell aggregation. Two other active MMPs, stromelysin and gelatinase A, neither bound to cell membrane nor induced cell aggregation. Tumor cells in loose cell aggregates could reaggregate even after they were freed from matrilysin and dispersed. When injected into the spleen of nude mice, the tumor cells in the stable aggregates produced much larger metastatic nodules in the livers than control cells and those in the loose aggregates. These results suggest that matrilysin may enhance metastatic potential of tumor cells by processing a cell surface protein(s) and thereby inducing loose and then tight aggregation of tumor cells.
Collapse
Affiliation(s)
- Mitomu Kioi
- Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | | | | | | | |
Collapse
|
340
|
Sancéau J, Truchet S, Bauvois B. Matrix metalloproteinase-9 silencing by RNA interference triggers the migratory-adhesive switch in Ewing's sarcoma cells. J Biol Chem 2003; 278:36537-46. [PMID: 12847101 DOI: 10.1074/jbc.m304300200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enhanced expression of (pro)matrix metalloproteinase-9 (MMP-9) is associated with human tumor invasion and/or metastasis. COH cells derived from a highly invasive and metastatic Ewing's sarcoma constitutively express proMMP-9. Transfection of a double stranded RNA that targets the MMP-9 mRNA into COH cells depleted the corresponding mRNA and protein as demonstrated by reverse transcriptase-PCR, enzyme-linked immunosorbent assay, and gelatin zymography. proMMP-9 extinction resulted in the following: (i) decreased spreading on extracellular matrix (fibronectin, laminin, collagen IV)-coated surfaces, (ii) inhibition of migration toward fibronectin, and (iii) induced aggregation, which was specifically disrupted by a function-blocking E-cadherin antibody. MMP-9 knockdown concomitantly resulted in increased levels of surface E-cadherin, redistribution at the plasma membrane of beta-catenin, and its physical association with E-cadherin. Moreover, induction of E-cadherin-mediated adhesion was associated with RhoA activation and changes in paxillin cytoskeleton. Finally, an inhibitor of gelatinolytic activity of pro-MMP9 did not reduce COH cell migration confirming that the enzymatic property of COH MMP-9 was not required for migration toward fibronectin. Overall, our observations define a novel critical role for proMMP-9 in providing a cellular switch between stationary and migratory cell phases.
Collapse
Affiliation(s)
- Josiane Sancéau
- Unité 365 INSERM, Institut Curie, 75248 Paris cedex 05, France
| | | | | |
Collapse
|
341
|
Sasahara RM, Brochado SM, Takahashi C, Oh J, Maria-Engler SS, Granjeiro JM, Noda M, Sogayar MC. Transcriptional control of the RECK metastasis/angiogenesis suppressor gene. CANCER DETECTION AND PREVENTION 2003; 26:435-43. [PMID: 12507228 DOI: 10.1016/s0361-090x(02)00123-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RECK gene is widely expressed in normal human tissues but is downregulated in tumor cell lines and oncogenically transformed fibroblasts. RECK encodes a membrane-anchored glycoprotein that suppresses tumor invasion and angiogenesis by regulating matrix-metalloproteinases (MMP-2, MMP-9 and MT1-MMP). Understanding of the transcriptional regulation of tumor/metastasis suppressor genes constitutes a potent approach to the molecular basis of malignant transformation. In order to uncover the mechanisms of control of RECK gene expression, the RECK promoter has been cloned and characterized. One of the elements responsible for the Ras-mediated downregulation of mouse RECK gene is the Sp1 site, to which Sp1 and Sp3 factors bind. Other regulatory events, such as DNA methylation of the RECK promoter and histone acetylation/deacetylation have been studied to understand the underlying mechanisms of RECK expression. Understanding of the mechanisms which control RECK gene transcription may lead to the development of new strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Regina Maki Sasahara
- Instituto de Química, Universidade de São Paulo, CP 26077, São Paulo 05513-970, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
342
|
Span PN, Sweep CGJ, Manders P, Beex LVAM, Leppert D, Lindberg RLP. Matrix metalloproteinase inhibitor reversion-inducing cysteine-rich protein with Kazal motifs: a prognostic marker for good clinical outcome in human breast carcinoma. Cancer 2003; 97:2710-5. [PMID: 12767082 DOI: 10.1002/cncr.11395] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The recently described reversion-inducing cysteine-rich protein with Kazal motifs (RECK) inhibits membrane Type 1 matrix metalloproteinase (MMP-14), MMP-2, and MMP-9 secretion and enzymatic activity. Its expression is essential for normal vasculogenesis. Down-regulation of RECK has been implicated in tumor angiogenesis and progression. METHODS The authors assessed the prognostic value of RECK expression in tumor tissue specimens from 278 breast carcinoma patients with a median follow-up time of 75 months (range, 2-169 months). RECK mRNA levels were measured by real-time quantitative reverse transcriptase-polymerase chain reaction. RESULTS Expression levels of RECK were lower in tumor tissue specimens than in adjacent normal breast tissue specimens from 10 patients (P = 0.028). No relevant associations of RECK with established clinicopathologic factors or treatment regimens were found. RECK expression predicted a longer recurrence-free survival time (RFS; P = 0.037) at the optimal cutoff value (hazard ratio, 0.66; 95% confidence interval, 0.44-0.98). The 100 patients whose tumors exhibited low levels of RECK had a mean RFS time of 80.4 months and a 61.8% 5-year RFS rate, whereas the 178 patients with tumors with high RECK expression had a mean RFS time of 91.2 months and a 73.0% 5-year RFS rate. Multivariate Cox regression analysis showed that RECK expression maintained a significant independent prognostic value for RFS time (P = 0.047). CONCLUSIONS These results are in agreement with the notion of RECK being an important tumor-suppressor gene. Therefore, the possibility of applying RECK, a pharmaceutical mimetic, or drugs activating endogenous RECK expression, as possible therapeutic or preventive agents for breast carcinoma should be explored.
Collapse
Affiliation(s)
- Paul N Span
- Department of Chemical Endocrinology, University Medical Center Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
343
|
Abstract
Matrix metalloproteinases (MMPs) are believed to play a pivotal role in malignant behavior of cancer cells such as rapid tumor growth, invasion, and metastasis by degrading extracellular matrix (ECM). Different types of synthetic inhibitors against MMPs (MMPIs) were developed as candidates for anti-cancer therapeutics and so far clinical trials had led to no significant success. However, this does not diminish the importance of MMPs in the malignancy of cells. Details about MMPs, specifically when and how they take part in the development of cancer are necessary for more advanced application of MMPIs. In this paper, we summarize recent knowledge about membrane-type 1 matrix metalloproteinase (MT1-MMP) which is expressed on cancer cell surface as an invasion-promoting proteinase. By localizing at the leading edge of invasive cancer cells, MT1-MMP degrades components of the tissue barriers. One of the major targets is type I collagen, the most abundant ECM component. Although MT1-MMP itself cannot degrade type IV collagen in the basement membrane, it binds to and activates proMMP-2, one of the type IV collagenases. However, degradation of the ECM is not the sole function of MT1-MMP. MT1-MMP also regulates cell-ECM interaction by processing cell adhesion molecules such as CD44 and integrin alphav chain, and eventually promotes cell migration as well. In addition to the transcriptional regulation, invasion-promoting activity of the MT1-MMP is also strictly monitored at the post-translational level. Precise knowledge about the regulation will give us insight to develop new methods for treating invasive cancer patients.
Collapse
Affiliation(s)
- Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
344
|
Abstract
Matrix metalloproteinases (MMPs), also designated matrixins, hydrolyze components of the extracellular matrix. These proteinases play a central role in many biological processes, such as embryogenesis, normal tissue remodeling, wound healing, and angiogenesis, and in diseases such as atheroma, arthritis, cancer, and tissue ulceration. Currently 23 MMP genes have been identified in humans, and most are multidomain proteins. This review describes the members of the matrixin family and discusses substrate specificity, domain structure and function, the activation of proMMPs, the regulation of matrixin activity by tissue inhibitors of metalloproteinases, and their pathophysiological implication.
Collapse
Affiliation(s)
- Robert Visse
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, 1 Aspenlea Rd, London W6 8LH, UK
| | | |
Collapse
|
345
|
Tudek B. Imidazole ring-opened DNA purines and their biological significance. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:12-9. [PMID: 12542970 DOI: 10.5483/bmbrep.2003.36.1.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fragmentation of purine imidazole ring and production of formamidopyrimidines in deoxynucleosides (Fapy lesions) occurs upon DNA oxidation as well as upon spontaneous or alkali-triggered rearrangement of certain alkylated bases. Many chemotherapeutic agents such as cyclophosphamide or thiotepa produce such lesions in DNA. Unsubstituted FapyA and FapyG, formed upon DNA oxidation cause moderate inhibition of DNA synthesis, which is DNA polymerase and sequence dependent. Fapy-7MeG, a methylated counterpart of FapyG-, a efficiently inhibits DNA replication in vitro and in E.coli, however its mutagenic potency is low. This is probably due to preferential incorporation of cytosine opposite Fapy-7MeG and preferential extension of Fapy-7MeG:C pair. In contrast, FapyA and Fapy-7MeA possess miscoding potential. Both lesions in SOS induced E.coli preferentially mispair with cytosine giving rise to A-->G transitions. Fapy lesions substituted with longer chain alkyl groups also show simult aneous lethal and mutagenic properties. Fapy lesions are actively eliminated from DNA by repair glycosylases specific for oxidized purines and pyrimidines both in bacteria and eukaryotic cells. Bacterial enzymes include E.coli formamidopyrimidine-DNA-glycosylase (Fpg protein), endonuclease III (Nth protein) and endonuclease VIII (Nei protein).
Collapse
Affiliation(s)
- Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
346
|
Yoon SO, Park SJ, Yun CH, Chung AS. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:128-37. [PMID: 12542983 DOI: 10.5483/bmbrep.2003.36.1.128] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinases (MMPs), zinc dependent proteolytic enzymes, cleave extracellular matrix (ECM: collagen, laminin, firbronectin, etc) as well as non-matrix substrates (growth factors, cell surface receptors, etc). The deregulation of MMPs is involved in many diseases, such as tumor metastasis, rheumatoid arthritis, and periodontal disease. Metastasis is the major cause of death among cancer patients. In this review, we will focus on the roles of MMPs in tumor metastasis. The process of metastasis involves a cascade of linked, sequential steps that involve multiple host-tumor interactions. Specifically, MMPs are involved in many steps of tumor metastasis. These include tumor invasion, migration, host immune escape, extravasation, angiogenesis, and tumor growth. Therefore, without MMPs, the tumor cell cannot perform successful metastasis. The activities of MMPs are tightly regulated at the gene transcription levels, zymogen activation by proteolysis, and inhibition of active forms by endogenous inhibitors, tissue inhibitor of metalloproteinase (TIMP), and RECK. The detailed regulations of MMPs are described in this review.
Collapse
Affiliation(s)
- Sang-Oh Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | |
Collapse
|
347
|
Godschalk RWL, Van Schooten FJ, Bartsch H. A critical evaluation of DNA adducts as biological markers for human exposure to polycyclic aromatic compounds. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:1-11. [PMID: 12542969 DOI: 10.5483/bmbrep.2003.36.1.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The causative role of polycyclic aromatic hydrocarbons (PAH) in human carcinogenesis is undisputed. Measurements of PAH-DNA adduct levels in easily accessible white blood cells therefore represent useful early endpoints in exposure intervention or chemoprevention studies. The successful applicability of DNA adducts as early endpoints depends on several criteria: i. adduct levels in easily accessible surrogate tissues should reflect adduct levels in target-tissues, ii. toxicokinetics and the temporal relevance should be properly defined. iii. sources of interand intra-individual variability must be known and controllable, and finally iv. adduct analyses must have advantages as compared to other markers of PAHexposure. In general, higher DNA adduct levels or a higher proportion of subjects with detectable DNA adduct levels were found in exposed individuals as compared with nonexposed subjects, but saturation may occur at high exposures. Furthermore, DNA adduct levels varied according to changes in exposure, for example smoking cessation resulted in lower DNA adduct levels and adduct levels paralleled seasonal variations of air-pollution. Intraindividual variation during continuous exposure was low over a short period of time (weeks), but varied significantly when longer time periods (months) were investigated. Inter-individual variation is currently only partly explained by genetic polymorphisms in genes involved in PAH-metabolism and deserves further investigation. DNA adduct measurements may have three advantages over traditional exposure assessment: i. they can smooth the extreme variability in exposure which is typical for environmental toxicants and may integrate exposure over a longer period of time. Therefore, DNA adduct assessment may reduce the monitoring effort. ii. biological monitoring of DNA adducts accounts for all exposure routes. iii. DNA adducts may account for inter-individual differences in uptake, elimination, distribution, metabolism and repair amongst exposed individuals. In conclusion, there is now a sufficiently large scientific basis to justify the application of DNA adduct measurements as biomarkers in exposure assessment and intervention studies. Their use in risk-assessment, however, requires further investigation.
Collapse
Affiliation(s)
- Roger W L Godschalk
- Department of Health Risk Analysis and Toxicology, University of Maastricht, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
348
|
Abstract
The matrix metalloproteinase family in humans comprises 23 enzymes, which are involved in many biological processes and diseases. It was previously thought that these enzymes acted only to degrade components of the extracellular matrix, but this view has changed with the discovery that non-extracellular-matrix molecules are also substrates.
Collapse
Affiliation(s)
- Robert PT Somerville
- Department of Biomedical Engineering, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Samantha A Oblander
- Department of Biomedical Engineering, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
349
|
Liu LT, Chang HC, Chiang LC, Hung WC. Induction of RECK by nonsteroidal anti-inflammatory drugs in lung cancer cells. Oncogene 2002; 21:8347-50. [PMID: 12447698 DOI: 10.1038/sj.onc.1206017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Revised: 09/03/2002] [Accepted: 09/03/2002] [Indexed: 11/08/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to exert anti-angiogenic and anti-metastatic activity both in vitro and in vivo. Block of angiogenesis and metastasis by NSAIDs has been found to be mediated partly via suppression of matrix metalloproteinase (MMP) activity. However, the molecular mechanism of this inhibitory action has not been well defined. Recent works demonstrated that a membrane-anchored MMP inhibitor RECK may potently suppress MMP-2 and -9 activity to inhibit angiogenesis and metastasis in vitro and in vivo. In this study, we test the possibility that NSAIDs may up-regulate RECK to inhibit MMP activity. RT-PCR analyses showed that NS398 and aspirin up-regulated RECK mRNA level in CL-1 human lung cancer cells. Additionally, NSAIDs increased RECK protein level as detected by immunoblotting. Since RECK is a membrane-anchored glycoprotein, we also performed immunofluorescent staining to assess the expression of RECK on cell surface. Our results showed that fluorescent intensity of RECK was obviously increased after NSAID treatment. Moreover, induction of RECK by NSAIDs was associated with reduction of MMP-2 activity. We also found that NSAID-activated RECK expression might not be mediated via inhibition of cyclo-oxygenases (COXs) because addition of prostaglandin E(2) (PGE(2)) could not counteract the effect of NSAIDs and overexpression of COX-2 could not down-regulate RECK. Taken together, our results suggest that induction of RECK expression may be one of the mechanisms by which NSAIDs suppress MMP activity to block angiogenesis and metastasis.
Collapse
Affiliation(s)
- Li-Teh Liu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | |
Collapse
|
350
|
Shum JKS, Melendez JA, Jeffrey JJ. Serotonin-induced MMP-13 production is mediated via phospholipase C, protein kinase C, and ERK1/2 in rat uterine smooth muscle cells. J Biol Chem 2002; 277:42830-40. [PMID: 12213812 DOI: 10.1074/jbc.m205094200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Serotonin (5-hydroxytryptamine; 5-HT), acting via the 5-HT(2A) receptor, up-regulates the transcription and production of interstitial collagenase (matrix metalloproteinase-13; MMP-13), a critical enzyme responsible for maintaining the integrity of the uterus, after parturition. Serotonin treatment of rat uterine myometrial smooth muscle cells induced inositol phosphate (IP) turnover, which was abolished by the 5-HT(2A) receptor-specific antagonists ketanserin and spiperone. The phospholipase C (PLC) inhibitors and D609 attenuated serotonin-mediated-IP turnover with a corresponding inhibition of MMP-13 protein production. Subsequent recovery of both MMP-13 protein expression and IP generation was seen following the removal of D609. Protein kinase C (PKC) activators, the diacylglycerol analogue 1,2-dioctanoyl-sn-glycerol and phorbol myristate acetate (PMA), mimicked the effect of serotonin on MMP-13 protein expression; prolonged PMA treatment (which down-regulates PKC) lowered MMP-13 protein levels. The PKC-specific inhibitors bisindolylmaleimide I, calphostin C, CGP 41251, and the PKCdelta-selective inhibitor rottlerin were able to suppress serotonin up-regulation of MMP-13. Furthermore, the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059 blocked serotonin-dependent activation of p44/42 MAPK (pERK1/2), a downstream effector of PKC and also down-regulated MMP-13 protein expression. Similarly, calphostin C and rottlerin depressed activation of p44/42 MAPK. From these studies, serotonin, binding through the 5-HT(2A) receptor, initiates a signaling cascade whereby stimulation of PLC leads to the activation of PKC and subsequently the ERK1/2 pathway, which ultimately results in MMP-13 production.
Collapse
Affiliation(s)
- Jenny K S Shum
- Centers for Cell Biology and Cancer Research and Immunology and Microbial Disease, MC-151, Albany Medical College, Albany, New York 12208, USA
| | | | | |
Collapse
|