301
|
Ormsby MJ, Johnson SA, Carpena N, Meikle LM, Goldstone RJ, McIntosh A, Wessel HM, Hulme HE, McConnachie CC, Connolly JPR, Roe AJ, Hasson C, Boyd J, Fitzgerald E, Gerasimidis K, Morrison D, Hold GL, Hansen R, Walker D, Smith DGE, Wall DM. Propionic Acid Promotes the Virulent Phenotype of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Cell Rep 2020; 30:2297-2305.e5. [PMID: 32075765 PMCID: PMC7034058 DOI: 10.1016/j.celrep.2020.01.078] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/09/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Propionic acid (PA) is a bacterium-derived intestinal antimicrobial and immune modulator used widely in food production and agriculture. Passage of Crohn's disease-associated adherent-invasive Escherichia coli (AIEC) through a murine model, in which intestinal PA levels are increased to mimic the human intestine, leads to the recovery of AIEC with significantly increased virulence. Similar phenotypic changes are observed outside the murine model when AIEC is grown in culture with PA as the sole carbon source; such PA exposure also results in AIEC that persists at 20-fold higher levels in vivo. RNA sequencing identifies an upregulation of genes involved in biofilm formation, stress response, metabolism, membrane integrity, and alternative carbon source utilization. PA exposure also increases virulence in a number of E. coli isolates from Crohn's disease patients. Removal of PA is sufficient to reverse these phenotypic changes. Our data indicate that exposure to PA results in AIEC resistance and increased virulence in its presence.
Collapse
Affiliation(s)
- Michael J Ormsby
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Síle A Johnson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Nuria Carpena
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Lynsey M Meikle
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Robert J Goldstone
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Anne McIntosh
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Hannah M Wessel
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Heather E Hulme
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Ceilidh C McConnachie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - James P R Connolly
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Conor Hasson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Joseph Boyd
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Eamonn Fitzgerald
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Douglas Morrison
- Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow G75 0QF, UK
| | - Georgina L Hold
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Richard Hansen
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, UK
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - David G E Smith
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Daniel M Wall
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
302
|
Azimirad M, Krutova M, Balaii H, Kodori M, Shahrokh S, Azizi O, Yadegar A, Aghdaei HA, Zali MR. Coexistence of Clostridioides difficile and Staphylococcus aureus in gut of Iranian outpatients with underlying inflammatory bowel disease. Anaerobe 2020; 61:102113. [DOI: 10.1016/j.anaerobe.2019.102113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 01/09/2023]
|
303
|
Chong J, Liu P, Zhou G, Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 2020; 15:799-821. [PMID: 31942082 DOI: 10.1038/s41596-019-0264-1] [Citation(s) in RCA: 944] [Impact Index Per Article: 188.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
MicrobiomeAnalyst is an easy-to-use, web-based platform for comprehensive analysis of common data outputs generated from current microbiome studies. It enables researchers and clinicians with little or no bioinformatics training to explore a wide variety of well-established methods for microbiome data processing, statistical analysis, functional profiling and comparison with public datasets or known microbial signatures. MicrobiomeAnalyst currently contains four modules: Marker-gene Data Profiling (MDP), Shotgun Data Profiling (SDP), Projection with Public Data (PPD), and Taxon Set Enrichment Analysis (TSEA). This protocol will first introduce the MDP module by providing a step-wise description of how to prepare, process and normalize data; perform community profiling; identify important features; and conduct correlation and classification analysis. We will then demonstrate how to perform predictive functional profiling and introduce several unique features of the SDP module for functional analysis. The last two sections will describe the key steps involved in using the PPD and TSEA modules for meta-analysis and visual exploration of the results. In summary, MicrobiomeAnalyst offers a one-stop shop that enables microbiome researchers to thoroughly explore their preprocessed microbiome data via intuitive web interfaces. The complete protocol can be executed in ~70 min.
Collapse
Affiliation(s)
- Jasmine Chong
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Peng Liu
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Guangyan Zhou
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada. .,Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada. .,Department of Microbiology & Immunology, Montreal, Quebec, Canada. .,Department of Human Genetics, Montreal, Quebec, Canada.
| |
Collapse
|
304
|
Perna A, Hay E, Contieri M, De Luca A, Guerra G, Lucariello A. Adherent-invasive Escherichia coli (AIEC): Cause or consequence of inflammation, dysbiosis, and rupture of cellular joints in patients with IBD? J Cell Physiol 2020; 235:5041-5049. [PMID: 31898324 DOI: 10.1002/jcp.29430] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
There are many factors contributing to the development of gastrointestinal diseases, grouped into genetic, environmental, and lifestyle factors. In recent years attention has fallen on pathogens; in particular, Bacteroides fragilis, Fusobacterium nucleatum, Escherichia coli (E. coli) and Helicobacter pylori have been studied. Several points remain to be clarified, and above all, as regards the adherent-invasive E. coli strains of E. coli, one wonders if they are a cause or a consequence of the disease. In this review, we have tried to clarify some points by examining a series of recent publications regarding the involvement of the bacterium in the pathology, even if other studies are necessary.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Eleonora Hay
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcella Contieri
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| |
Collapse
|
305
|
Sabino J, Hirten RP, Colombel JF. Review article: bacteriophages in gastroenterology-from biology to clinical applications. Aliment Pharmacol Ther 2020; 51:53-63. [PMID: 31696976 DOI: 10.1111/apt.15557] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/25/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The gut microbiota plays an important role in the pathogenesis of several gastrointestinal diseases. Its composition and function are shaped by host-microbiota and intra-microbiota interactions. Bacteriophages (phages) are viruses that target bacteria and have the potential to modulate bacterial communities. AIMS To summarise phage biology and the clinical applications of phages in gastroenterology METHODS: PubMed was searched to identify relevant studies. RESULTS Phages induce bacterial cell lysis, integration of viral DNA into the bacteria and/or coexistence in a stable equilibrium. Bacteria and phages have co-evolved and their dynamic interactions are yet to be fully understood. The increasing need to modulate microbial communities (e.g., gut microbiota, multidrug-resistant bacteria) has been a strong stimulus for research in phages as an antibacterial therapy. In gastroenterology, phage therapy has been mainly studied in infectious diseases such as cholera. However, it is currently being explored in several other circumstances such as treating Clostridioides difficile colitis, targeting adherent-invasive Escherichia coli in Crohn's disease or eradicating Fusobacterium nucleatum in colorectal cancer. Overall, phage therapy has a favourable and acceptable safety profile. Presently, trials with phage therapy are ongoing in Crohn's disease. CONCLUSIONS Phage therapy is a promising therapeutic tool against pathogenic bacteria in the fields of infectious diseases and gastroenterology. Randomised, placebo-controlled trials with phage therapy for gastroenterological diseases are ongoing.
Collapse
Affiliation(s)
- João Sabino
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Gastroenterology, University Hospitals of Leuven, Leuven, Belgium
| | - Robert P Hirten
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
306
|
Reed H, Begun J. The future of faecal microbiota transplantation in gastrointestinal illness. MICROBIOLOGY AUSTRALIA 2020. [DOI: 10.1071/ma20027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The gut microbiome is made up of hundreds of trillions of microorganisms that reside in a state of homeostatic balance within the healthy individual. Next generation sequencing has provided insight into the diversity of these microorganisms that reside within our gastrointestinal tract; despite developments in metabolomics and culturing techniques, the functions of many of these bacteria remain largely elusive. As such, research into the capacity of the gut microbiome to regulate immune homeostasis has revealed the importance of bacteria in human health, with the potential for exploiting these bacteria only now coming into focus.
Collapse
|
307
|
Mikhalchik E, Balabushevich N, Vakhrusheva T, Sokolov A, Baykova J, Rakitina D, Scherbakov P, Gusev S, Gusev A, Kharaeva Z, Bukato O, Pobeguts O. Mucin adsorbed by E. coli can affect neutrophil activation in vitro. FEBS Open Bio 2019; 10:180-196. [PMID: 31785127 PMCID: PMC6996330 DOI: 10.1002/2211-5463.12770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria colonizing human intestine adhere to the gut mucosa and avoid the innate immune system. We previously demonstrated that Escherichia coli isolates can adsorb mucin from a diluted solution in vitro. Here, we evaluated the effect of mucin adsorption by E. coli cells on neutrophil activation in vitro. Activation was evaluated based on the detection of reactive oxygen species production by a chemiluminescent reaction (ChL), observation of morphological alterations in neutrophils and detection of exocytosis of myeloperoxidase and lactoferrin. We report that mucin adsorbed by cells of SharL1 isolate from Crohn's disease patient's inflamed ileum suppressed the potential for the activation of neutrophils in whole blood. Also, the binding of plasma complement proteins and immunoglobulins to the bacteria was reduced. Desialylated mucin, despite having the same adsorption efficiency to bacteria, had no effect on the blood ChL response. The effect of mucin suggests that it shields epitopes that interact with neutrophils and plasma proteins on the bacterial outer membrane. Potential candidates for these epitopes were identified among the proteins within the bacterial outer membrane fraction by 2D‐PAGE, fluorescent mucin binding on a blot and HPLC‐MS/MS. In vitro, the following proteins demonstrated mucin adsorption: outer membrane porins (OmpA, OmpC, OmpD and OmpF), adhesin OmpX, the membrane assembly factor OmpW, cobalamine transporter, ferrum uptake protein and the elongation factor Ef Tu‐1. In addition to their other functions, these proteins are known to be bacterial surface antigens. Therefore, the shielding of epitopes by mucin may affect the dynamics and intensity of an immune response.
Collapse
Affiliation(s)
- Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | | | - Tatiana Vakhrusheva
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Alexey Sokolov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia.,Institute of Experimental Medicine, St. Petersburg, Russia
| | - Julia Baykova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Daria Rakitina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Petr Scherbakov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Sergey Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Alexander Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | | | - Olga Bukato
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Olga Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
308
|
Fung TC. The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiol Dis 2019; 136:104714. [PMID: 31846737 DOI: 10.1016/j.nbd.2019.104714] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/05/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
Intestinal inflammatory disorders are associated with neurophysiological and behavioral symptoms. Conversely, many disorders of the central nervous system (CNS) are accompanied by intestinal complications. These observations suggest that intestinal and nervous system physiologies are functionally linked. Indeed, a growing body of literature has revealed multiple pathways mediating bidirectional communication between the intestine and the CNS, collectively referred to as the gut-brain axis. In particular, microbes naturally colonizing the mammalian gastrointestinal (GI) tract, termed the gut microbiota, not only correlate with but also play a causative role in regulating CNS function, development and host behavior. Despite these findings, our understanding of the cellular and molecular mechanisms that mediate gut-brain communication remains in its infancy. However, members of the gut microbiota have been established as potent modulators of intestinal, systemic and CNS-resident immune cell function, suggesting that gut-brain interactions may involve the host immune system. Multiple CNS disorders with gut microbiota associations, including neuroinflammatory, neuropsychiatric and neurodegenerative disorders, also have significant inflammatory manifestations. In this review, I discuss recent advances exploring the role of microbiota-immune interactions as a critical regulator of the gut-brain axis in the context of CNS and related disorders.
Collapse
Affiliation(s)
- Thomas C Fung
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Dr. East, Los Angeles, CA 90095, United States.
| |
Collapse
|
309
|
Lepanto MS, Rosa L, Cutone A, Scotti MJ, Conte AL, Marazzato M, Zagaglia C, Longhi C, Berlutti F, Musci G, Valenti P, Conte MP. Bovine Lactoferrin Pre-Treatment Induces Intracellular Killing of AIEC LF82 and Reduces Bacteria-Induced DNA Damage in Differentiated Human Enterocytes. Int J Mol Sci 2019; 20:ijms20225666. [PMID: 31726759 PMCID: PMC6888356 DOI: 10.3390/ijms20225666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/10/2019] [Indexed: 12/17/2022] Open
Abstract
LF82, a prototype of adherent-invasive E. coli (AIEC), is able to adhere to, invade, survive and replicate into intestinal epithelial cells. LF82 is able to enhance either its adhesion and invasion by up-regulating carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM-6), the main cell surface molecule for bacterial adhesion, and its intracellular survival by inducing host DNA damage, thus blocking the cellular cycle. Lactoferrin (Lf) is a multifunctional cationic glycoprotein of natural immunity, exerting an anti-invasive activity against LF82 when added to Caco-2 cells at the moment of infection. Here, the infection of 12 h Lf pre-treated Caco-2 cells was carried out at a time of 0 or 3 or 10 h after Lf removal from culture medium. The effect of Lf pre-treatment on LF82 invasiveness, survival, cell DNA damage, CEACAM-6 expression, apoptosis induction, as well as on Lf subcellular localization, has been evaluated. Lf, even if removed from culture medium, reduced LF82 invasion and survival as well as bacteria-induced DNA damage in Caco-2 cells independently from induction of apoptosis, modulation of CEACAM-6 expression and Lf sub-cellular localization. At our knowledge, this is the first study showing that the sole Lf pre-treatment can activate protective intracellular pathways, reducing LF82 invasiveness, intracellular survival and cell-DNA damages.
Collapse
Affiliation(s)
- Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (M.J.S.); (A.L.C.); (M.M.); (C.Z.); (C.L.); (F.B.); (P.V.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (M.J.S.); (A.L.C.); (M.M.); (C.Z.); (C.L.); (F.B.); (P.V.)
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.M.)
| | - Mellani Jinnett Scotti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (M.J.S.); (A.L.C.); (M.M.); (C.Z.); (C.L.); (F.B.); (P.V.)
| | - Antonietta Lucia Conte
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (M.J.S.); (A.L.C.); (M.M.); (C.Z.); (C.L.); (F.B.); (P.V.)
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (M.J.S.); (A.L.C.); (M.M.); (C.Z.); (C.L.); (F.B.); (P.V.)
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (M.J.S.); (A.L.C.); (M.M.); (C.Z.); (C.L.); (F.B.); (P.V.)
| | - Catia Longhi
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (M.J.S.); (A.L.C.); (M.M.); (C.Z.); (C.L.); (F.B.); (P.V.)
| | - Francesca Berlutti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (M.J.S.); (A.L.C.); (M.M.); (C.Z.); (C.L.); (F.B.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.M.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (M.J.S.); (A.L.C.); (M.M.); (C.Z.); (C.L.); (F.B.); (P.V.)
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (M.J.S.); (A.L.C.); (M.M.); (C.Z.); (C.L.); (F.B.); (P.V.)
- Correspondence:
| |
Collapse
|
310
|
Proteomic dataset: Profiling of membrane fraction of Escherichia coli isolated from Crohn's disease patients after adhesion and invasion experiments. Data Brief 2019; 27:104417. [PMID: 31687427 PMCID: PMC6820108 DOI: 10.1016/j.dib.2019.104417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/27/2023] Open
Abstract
Crohn's disease (CD) is a type of inflammatory bowel disease (IDB). The endoscopic picture of Crohn's disease includes thickened submucosa, transmural inflammation, fissuring ulceration, and non-caseating granulomas. Intestinal microbiome dysbiosis has been described systematically in patients with IBD. In recent decades it was detailed that Escherichia coli, especially adherent-invasive E. coli (AIEC) pathotype, has been implicated in the pathogenesis of IBD, including Crohn's disease (Palmela, et al., 2018). In comparison with commensal strains of E. coli, AIEC strains have a large adhesive-invasive potential therefore its surface composition is of great interest. We presented a dataset of the membrane proteins of strains isolated from patients with Crohn's disease. From the set of Escherichia coli isolated from Crohn's disease patients [2] we chose three isolates with strongest AIEC pathotype. We performed proteome-wide LC-MS analysis of membrane fraction of this isolates after invasion or adhesion-invasion to human intestinal CaCo-2 cell line and prior to this (control). The data including LC-MS/MS raw files and exported MaxQuant search results with fasta files were deposited to the PRIDE repository project accession PXD014250.
Collapse
|
311
|
Palmer NP, Silvester JA, Lee JJ, Beam AL, Fried I, Valtchinov VI, Rahimov F, Kong SW, Ghodoussipour S, Hood HC, Bousvaros A, Grand RJ, Kunkel LM, Kohane IS. Concordance between gene expression in peripheral whole blood and colonic tissue in children with inflammatory bowel disease. PLoS One 2019; 14:e0222952. [PMID: 31618209 PMCID: PMC6795427 DOI: 10.1371/journal.pone.0222952] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Presenting features of inflammatory bowel disease (IBD) are non-specific. We hypothesized that mRNA profiles could (1) identify genes and pathways involved in disease pathogenesis; (2) identify a molecular signature that differentiates IBD from other conditions; (3) provide insight into systemic and colon-specific dysregulation through study of the concordance of the gene expression. METHODS Children (8-18 years) were prospectively recruited at the time of diagnostic colonoscopy for possible IBD. We used transcriptome-wide mRNA profiling to study gene expression in colon biopsies and paired whole blood samples. Using blood mRNA measurements, we fit a regression model for disease state prediction that was validated in an independent test set of adult subjects (GSE3365). RESULTS Ninety-eight children were recruited [39 Crohn's disease, 18 ulcerative colitis, 2 IBDU, 39 non-IBD]. There were 1,118 significantly differentially (IBD vs non-IBD) expressed genes in colon tissue, and 880 in blood. The direction of relative change in expression was concordant for 106/112 genes differentially expressed in both tissue types. The regression model from the blood mRNA measurements distinguished IBD vs non-IBD disease status in the independent test set with 80% accuracy using only 6 genes. The overlap of 5 immune and metabolic pathways in the two tissue types was significant (p<0.001). CONCLUSIONS Blood and colon tissue from patients with IBD share a common transcriptional profile dominated by immune and metabolic pathways. Our results suggest that peripheral blood expression levels of as few as 6 genes (IL7R, UBB, TXNIP, S100A8, ALAS2, and SLC2A3) may distinguish patients with IBD from non-IBD.
Collapse
Affiliation(s)
- Nathan P Palmer
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jocelyn A Silvester
- Division of Gastroenterology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jessica J Lee
- Division of Gastroenterology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew L Beam
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Inbar Fried
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vladimir I Valtchinov
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Evidence Based Imaging, Brigham and Women's Hospital, Harvard Medical School, Massachusetts, United States of America
| | - Fedik Rahimov
- Division of Genetics and Genomics, Boston Children's Hospital, Departments of Genetics and Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saum Ghodoussipour
- Division of Gastroenterology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Helen C Hood
- Division of Gastroenterology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Athos Bousvaros
- Division of Gastroenterology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard J Grand
- Division of Gastroenterology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Departments of Genetics and Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Isaac S Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
312
|
Yue B, Luo X, Yu Z, Mani S, Wang Z, Dou W. Inflammatory Bowel Disease: A Potential Result from the Collusion between Gut Microbiota and Mucosal Immune System. Microorganisms 2019; 7:microorganisms7100440. [PMID: 31614539 PMCID: PMC6843348 DOI: 10.3390/microorganisms7100440] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Host health depends on the intestinal homeostasis between the innate/adaptive immune system and the microbiome. Numerous studies suggest that gut microbiota are constantly monitored by the host mucosal immune system, and any slight disturbance in the microbial communities may contribute to intestinal immune disruption and increased susceptibility to inflammatory bowel disease (IBD), a chronic relapsing inflammatory condition of the gastrointestinal tract. Therefore, maintaining intestinal immune homeostasis between microbiota composition and the mucosal immune system is an effective approach to prevent and control IBD. The overall theme of this review is to summarize the research concerning the pathogenesis of IBD, with particular focus on the factors of gut microbiota-mucosal immune interactions in IBD. This is a comprehensive and in-depth report of the crosstalk between gut microbiota and the mucosal immune system in IBD pathogenesis, which may provide insight into the further evaluation of the therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Bei Yue
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Xiaoping Luo
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Zhilun Yu
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Sridhar Mani
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, The Bronx, NY 10461, USA.
| | - Zhengtao Wang
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Wei Dou
- Shanghai Key Laboratory of Formulated Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| |
Collapse
|
313
|
Wang SL, Shao BZ, Zhao SB, Chang X, Wang P, Miao CY, Li ZS, Bai Y. Intestinal autophagy links psychosocial stress with gut microbiota to promote inflammatory bowel disease. Cell Death Dis 2019; 10:391. [PMID: 31564717 PMCID: PMC6766473 DOI: 10.1038/s41419-019-1634-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
Psychosocial stress is a critical inducing factor of inflammatory bowel diseases (IBD), while autophagy is a novel central issue of IBD development. The present study investigated the potential role of autophagy in stress-related IBD in patients and animal model. The correlation between psychosocial stress and intestinal autophagy was determined in 23 patients with IBD. Corticotropin-releasing hormone (CRH), a well-established inducer of psychosocial stress, was administrated in dextran sulfate sodium (DSS)-induced IBD mice and lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages (BMDM). In IBD patients, the autophagy markers beclin-1, LC3-II/I ratio, Atg16L1, and Atg4B were significantly enhanced. The psychosocial stress score was positively associated with the levels of beclin-1 and the LC3II/I ratio in intestinal biopsy specimens. In IBD mouse model, CRH significantly aggravated intestinal inflammation, increased Paneth cell metaplasia, and enhanced intestinal autophagy (beclin-1, Atg16L1, PIK3R4, and Atg4B upregulation; GAA, CTSD, and PPKAA1 downregulation). Additionally, the CRH-induced gut microbial dysbiosis was evidenced by a marked increase in the number of detrimental bacteria. In LPS-stimulated BMDM, CRH substantially increased M1/M2 polarization and thus promoted inflammation. In both IBD mice and LPS-treated BMDM, blockade of autophagy by chloroquine abrogated the unbeneficial effects of CRH, whereas autophagy inducer rapamycin resulted in a pronounced protective effect against IBD lesion. Our data demonstrate that psychosocial stress may link the enhanced intestinal autophagy by modulating gut microbiota and inflammation to aggravate IBD. These data indicate autophagy as a promising therapeutic target for psychosocial stress-related IBD.
Collapse
Affiliation(s)
- Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Bo-Zong Shao
- General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Sheng-Bing Zhao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Xin Chang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Pei Wang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| |
Collapse
|
314
|
Ungaro F, Massimino L, D'Alessio S, Danese S. The gut virome in inflammatory bowel disease pathogenesis: From metagenomics to novel therapeutic approaches. United European Gastroenterol J 2019; 7:999-1007. [PMID: 31662858 DOI: 10.1177/2050640619876787] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
The association of intestinal dysbiosis with the pathogenesis of inflammatory bowel disease has been well established. Besides bacteria, microbiota comprises yeasts, archaea, protists and viruses, neglected actors in inflammatory bowel disease-associated microbiota. In the past, a great limitation in studying microbiota composition was the low sensitivity of sequencing technologies and that few computational approaches were sufficient to thoroughly analyse the whole microbiome. However, new cutting-edge technologies in nucleic acid sequencing, -omics analysis and the innovative statistics and bioinformatics pipelines made possible more sensitive and accurate metagenomics, ultimately identifying novel players in intestinal inflammation, including prokaryotic and eukaryotic viruses, that together form the gut virome. The discovery of peculiar inflammatory bowel disease-associated microbial strains will not only shed new light on inflammatory bowel disease aetiogenesis, they may also support the development of novel therapeutic strategies not merely treating symptoms, but precisely counteracting the primary cause of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia D'Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
315
|
Intestinal cytotoxicity induced by Escherichia coli is fully prevented by red wine polyphenol extract: Mechanistic insights in epithelial cells. Chem Biol Interact 2019; 310:108711. [DOI: 10.1016/j.cbi.2019.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/08/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
|
316
|
Organometallic Compounds and Metal Complexes in Current and Future Treatments of Inflammatory Bowel Disease and Colorectal Cancer-a Critical Review. Biomolecules 2019; 9:biom9090398. [PMID: 31443436 PMCID: PMC6770552 DOI: 10.3390/biom9090398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/04/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a significant increase in the clinical use of organometallic compounds and metal complexes for therapeutic purposes including treatment of inflammatory bowel diseases (IBD). Their action is based on the inhibition of the inflow of pro-inflammatory cytokines, the elimination of free radicals or the modulation of intestinal microbiota. In addition, these compounds are intended for use in the diagnosis and treatment of colorectal cancer (CRC) which is often a consequence of IBD. The aim of this study is to critically discuss recent findings on the use of organometallic compounds and metal complexes in the treatment of IBD and CRC and suggest future trends in drug design.
Collapse
|
317
|
Hooper KM, Casanova V, Kemp S, Staines KA, Satsangi J, Barlow PG, Henderson P, Stevens C. The Inflammatory Bowel Disease Drug Azathioprine Induces Autophagy via mTORC1 and the Unfolded Protein Response Sensor PERK. Inflamm Bowel Dis 2019; 25:1481-1496. [PMID: 30889246 DOI: 10.1093/ibd/izz039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/26/2019] [Accepted: 02/22/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Genetic studies have strongly linked autophagy to Crohn's disease (CD), and stimulating autophagy in CD patients may be therapeutically beneficial. The aim of this study was to evaluate the effect of current inflammatory bowel disease (IBD) drugs on autophagy and investigate molecular mechanisms of action and functional outcomes in relation to this cellular process. METHODS Autophagy marker LC3 was evaluated by confocal fluorescence microscopy and flow cytometry. Drug mechanism of action was investigated by polymerase chain reaction (PCR) array with changes in signaling pathways examined by immunoblot and quantitative reverse transcription PCR (RT-qPCR). Clearance of adherent-invasive Escherichia coli (AIEC) and levels of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) were evaluated by gentamicin protection assays and RT-qPCR, respectively. The marker LC3 was analyzed in peripheral blood mononuclear cells (PBMCs) from pediatric patients by flow cytometry. RESULTS Azathioprine induces autophagy via mechanisms involving modulation of mechanistic target of rapamycin (mTORC1) signaling and stimulation of the unfolded protein response (UPR) sensor PERK. Induction of autophagy with azathioprine correlated with the enhanced clearance of AIEC and dampened AIEC-induced increases in TNFα. Azathioprine induced significant increase in autophagosome bound LC3-II in PBMC populations ex vivo, supporting in vitro findings. In patients, the CD-associated ATG16L1 T300A single-nucleotide polymorphism did not attenuate azathioprine induction of autophagy. CONCLUSIONS Modulation of autophagy via mTORC1 and the UPR may contribute to the therapeutic efficacy of azathioprine in IBD.
Collapse
Affiliation(s)
- Kirsty M Hooper
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Victor Casanova
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Sadie Kemp
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Katherine A Staines
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Jack Satsangi
- Centre for Genomic & Experimental Medicine, University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh Scotland
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, England
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| | - Paul Henderson
- Child Life and Health, University of Edinburgh, Edinburgh, Scotland
- Department of Pediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, Edinburgh, Scotland
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, Scotland
| |
Collapse
|
318
|
The commensal Escherichia coli CEC15 reinforces intestinal defences in gnotobiotic mice and is protective in a chronic colitis mouse model. Sci Rep 2019; 9:11431. [PMID: 31391483 PMCID: PMC6685975 DOI: 10.1038/s41598-019-47611-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
Escherichia coli is a regular inhabitant of the gut microbiota throughout life. However, its role in gut health is controversial. Here, we investigated the relationship between the commensal E. coli strain CEC15 (CEC), which we previously isolated, and the intestine in homeostatic and disease-prone settings. The impact of CEC was compared to that of the probiotic E. coli Nissle 1917 (Nissle) strain. The expression of ileal and colonic genes that play a key role in intestinal homeostasis was higher in CEC- and Nissle-mono-associated wild-type mice than in germfree mice. This included genes involved in the turnover of reactive oxygen species, antimicrobial peptide synthesis, and immune responses. The impact of CEC and Nissle on such gene expression was stronger in a disease-prone setting, i.e. in gnotobiotic IL10-deficient mice. In a chronic colitis model, CEC more strongly decreased signs of colitis severity (myeloperoxidase activity and CD3+ immune-cell infiltration) than Nissle. Thus, our study shows that CEC and Nissle contribute to increased expression of genes involved in the maintenance of gut homeostasis in homeostatic and inflammatory settings. We show that these E. coli strains, in particular CEC, can have a beneficial effect in a chronic colitis mouse model.
Collapse
|
319
|
Camprubí-Font C, Ruiz Del Castillo B, Barrabés S, Martínez-Martínez L, Martinez-Medina M. Amino Acid Substitutions and Differential Gene Expression of Outer Membrane Proteins in Adherent-Invasive Escherichia coli. Front Microbiol 2019; 10:1707. [PMID: 31447798 PMCID: PMC6691688 DOI: 10.3389/fmicb.2019.01707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/10/2019] [Indexed: 01/01/2023] Open
Abstract
Variations in the sequence and/or the expression of outer membrane proteins (OMPs) may modulate bacterial virulence. OmpA and OmpC have been involved in the interaction of adherent-invasive Escherichia coli (AIEC) strain LF82 with intestinal epithelial cells (IECs). Scarce data exist about OMPs sequence variants in a collection of AIEC strains, and no study of OMPs expression during infection exists. We aimed to determine whether particular mutations or differential expression of OMPs are associated with AIEC virulence. The ompA, ompC, and ompF genes in 14 AIEC and 30 non-AIEC strains were sequenced by Sanger method, and the protein expression profile was analyzed by urea-SDS-PAGE. Gene expression was determined during in vitro bacterial infection of intestine-407 cells by RT-qPCR. The distribution of amino acid substitutions in OmpA-A200V, OmpC-S89N, V220I, and W231D associated with pathotype and specific changes (OmpA-A200V, OmpC-V220I, D232A, OmpF-E51V, and M60K) correlated with adhesion and/or invasion indices but no particular variants were found specific of AIEC. OMPs protein levels did not differ according to pathotype when growing in Mueller-Hinton broth. Interestingly, higher OMPs gene expression levels were reported in non-AIEC growing in association with cells compared with those non-AIEC strains growing in the supernatants of infected cultures (p < 0.028), whereas in AIEC strains ompA expression was the only increased when growing in association with cells (p = 0.032), but they did not significantly alter ompC and ompF expression under this condition (p > 0.146). Despite no particular OMPs sequence variants have been found as a common and distinctive trait in AIEC, some mutations could facilitate a better interaction with the host. Moreover, the different behavior between pathotypes regarding OMPs gene expression at different stages of infection could be related with the virulence of the strains.
Collapse
Affiliation(s)
- Carla Camprubí-Font
- Laboratory of Molecular Microbiology, Department of Biology, Universitat de Girona, Girona, Spain
| | - Belén Ruiz Del Castillo
- Service of Microbiology, University Hospital Marques de Valdecilla-Valdecilla Biomedical Research Institute (IDIVAL), Santander, Spain
| | - Silvia Barrabés
- Biochemistry and Molecular Biology Unit, Department of Biology, Universitat de Girona, Girona, Spain
| | - Luis Martínez-Martínez
- Microbiology Unit, University Hospital Reina Sofia, Córdoba, Spain.,Department of Microbiology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | | |
Collapse
|
320
|
Wang F, Meng J, Zhang L, Roy S. Opioid use potentiates the virulence of hospital-acquired infection, increases systemic bacterial dissemination and exacerbates gut dysbiosis in a murine model of Citrobacter rodentium infection. Gut Microbes 2019; 11:172-190. [PMID: 31379246 PMCID: PMC7053978 DOI: 10.1080/19490976.2019.1629237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 05/29/2019] [Indexed: 02/03/2023] Open
Abstract
Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit their use. It was recently demonstrated that morphine treatment results in a significant disruption in gut barrier function, leading to an increased translocation of gut commensal bacteria. Further studies have indicated distinct alterations in the gut microbiome and metabolome following morphine treatment, contributing to the negative consequences that are associated with opioid use. However, it is unclear how opioids modulate gut homeostasis in the context of a hospital-acquired bacterial infection. Citrobacter rodentium is an ideal murine model of human infections with enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC). In the current study, a mouse model of C. rodentium infection was used to investigate the role of morphine in the modulation of gut homeostasis in the context of a hospital-acquired bacterial infection. Morphine treatment resulted in 1) the promotion of C. rodentium systemic dissemination, 2) an increase in the expression of the virulence factors of C. rodentium colonization in intestinal contents, 3) altered gut microbiome, 4) damaged integrity of gut epithelial barrier function, 5) inhibition of the C. rodentium-induced increase in goblet cells, and 6) dysregulated IL-17A immune response. This study demonstrates and further validates a positive correlation between opioid drug use/abuse and an increased risk of infections, suggesting that the overprescription of opioids may increase the susceptibility to hospital-acquired infection.
Collapse
Affiliation(s)
- Fuyuan Wang
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jingjing Meng
- Department of Surgery and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Li Zhang
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Sabita Roy
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Surgery and Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
321
|
Ferrante C, Recinella L, Ronci M, Orlando G, Di Simone S, Brunetti L, Chiavaroli A, Leone S, Politi M, Tirillini B, Angelini P, Covino S, Venanzoni R, Vladimir-Knežević S, Menghini L. Protective effects induced by alcoholic Phlomis fruticosa and Phlomis herba-venti extracts in isolated rat colon: Focus on antioxidant, anti-inflammatory, and antimicrobial activities in vitro. Phytother Res 2019; 33:2387-2400. [PMID: 31322313 DOI: 10.1002/ptr.6429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
Abstract
Phlomis fruticosa L. and P. herba-venti are species belonging to the Lamiaceae family, which have been traditionally used to prepare tonic and digestive drinks. Multiple studies also demonstrated the inhibitory effects of P. fruticosa extracts and essential oil against oxidative/proinflammatory pathways and bacterial strains deeply involved in ulcerative colitis. Considering these findings, the present study evaluated the effects of alcoholic P. fruticosa and P. herba-venti leaf extracts in isolated rat colon challenged with Escherichia coli lipopolysaccharide (LPS), an ex vivo experimental paradigm of ulcerative colitis. In this context, we assayed colon levels of pro-oxidant and proinflammatory biomarkers, including nitrites, malondialdehyde (MDA), lactate dehydrogenase (LDH), and serotonin (5-HT). Additionally, the extracts have been tested in order to evaluate possible inhibitory effects on specific bacterial and fungal strains involved in ulcerative colitis. Alcoholic P. fruticosa and P. herba-venti extracts were able to blunt LPS-induced nitrite, MDA, 5-HT, and LDH levels in isolated rat colon. The same extracts also inhibited the growth of Pseudomonas aeruginosa, E. coli, Staphylococcus aureus, Candida albicans and Candida tropicalis. In conclusion, our findings show a potential role exerted by alcoholic P. fruticosa and P. herba-venti in managing the clinical symptoms related to ulcerative colitis.
Collapse
Affiliation(s)
- Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Simonetta Di Simone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Matteo Politi
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Bruno Tirillini
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefano Covino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Sanda Vladimir-Knežević
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20/II, 10000, Zagreb, Croatia
| | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
322
|
Lo Presti A, Zorzi F, Del Chierico F, Altomare A, Cocca S, Avola A, De Biasio F, Russo A, Cella E, Reddel S, Calabrese E, Biancone L, Monteleone G, Cicala M, Angeletti S, Ciccozzi M, Putignani L, Guarino MPL. Fecal and Mucosal Microbiota Profiling in Irritable Bowel Syndrome and Inflammatory Bowel Disease. Front Microbiol 2019; 10:1655. [PMID: 31379797 PMCID: PMC6650632 DOI: 10.3389/fmicb.2019.01655] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
An imbalance in the bacterial species resulting in the loss of intestinal homeostasis has been described in inflammatory bowel diseases (IBD) and irritable bowel syndrome (IBS). In this prospective study, we investigated whether IBD and IBS patients exhibit specific changes in richness and distribution of fecal and mucosal-associated microbiota. Additionally, we assessed potential 16S rRNA gene amplicons biomarkers for IBD, IBS, and controls (CTRLs) by comparison of taxonomic composition. The relative abundance of bacteria, at phylum and genus/species levels, and the bacterial diversity were determined through 16S rRNA sequence-based fecal and mucosal microbiota analysis. Linear discriminant analysis effect size (LEfSe) was used for biomarker discovery associated to IBD and IBS as compared to CTRLs. In fecal and mucosal samples, the microbiota richness was characterized by a microbial diversity reduction, going from CTRLs to IBS to IBD. β-diversity analysis showed a clear separation between IBD and CTRLs and between IBD and IBS with no significant separation between IBS and CTRLs. β-diversity showed a clear separation between mucosa and stool samples in all the groups. In IBD, there was no difference between inflamed and not inflamed mucosa. Based upon the LEfSe data, the Anaerostipes and Ruminococcaceae were identified as the most differentially abundant bacterial taxa in CTRLs. Erysipelotrichi was identified as potential biomarker for IBS, while Gammaproteobacteria, Enterococcus, and Enterococcaceae for IBD. This study provides an overview of the alterations of microbiota and may aid in identifying potential 16S rRNA gene amplicons mucosal biomarkers for IBD and IBS.
Collapse
Affiliation(s)
| | - Francesca Zorzi
- Gastrointestinal Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Silvia Cocca
- Unit of Digestive Disease, Campus Bio-Medico University, Rome, Italy
| | - Alessandra Avola
- Unit of Digestive Disease, Campus Bio-Medico University, Rome, Italy
| | - Fabiola De Biasio
- Unit of Digestive Disease, Campus Bio-Medico University, Rome, Italy
| | - Alessandra Russo
- Human Microbiome Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Eleonora Cella
- Unit of Medical Statistics and Molecular Epidemiology, Campus Bio-Medico University, Rome, Italy
| | - Sofia Reddel
- Human Microbiome Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Emma Calabrese
- Gastrointestinal Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Livia Biancone
- Gastrointestinal Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni Monteleone
- Gastrointestinal Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Michele Cicala
- Unit of Digestive Disease, Campus Bio-Medico University, Rome, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, Campus Bio-Medico University, Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Campus Bio-Medico University, Rome, Italy
| | - Lorenza Putignani
- Human Microbiome Unit and Parasitology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
323
|
Dong LN, Wang M, Guo J, Wang JP. Role of intestinal microbiota and metabolites in inflammatory bowel disease. Chin Med J (Engl) 2019; 132:1610-1614. [PMID: 31090547 PMCID: PMC6616233 DOI: 10.1097/cm9.0000000000000290] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The metabolites produced by the gut microbiota are of interest to scientists. The objective of this review was to provide an updated summary of progress regarding the microbiota and their metabolites and influences on the pathogenesis of inflammatory bowel disease (IBD). DATA SOURCES The author retrieved information from the PubMed database up to January 2018, using various combinations of search terms, including IBD, microbiota, and metabolite. STUDY SELECTION Both clinical studies and animal studies of intestinal microbiota and metabolites in IBD were selected. The information explaining the possible pathogenesis of microbiota in IBD was organized. RESULTS In IBD patients, the biodiversity of feces/mucosa-associated microbiota is decreased, and the probiotic microbiota is also decreased, whereas the pathogenic microbiota are increased. The gut microbiota may be a target for diagnosis and treatment of IBD. Substantial amounts of data support the view that the microbiota and their metabolites play pivotal roles in IBD by affecting intestinal permeability and the immune response. CONCLUSIONS This review highlights the advances in recent gut microbiota research and clarifies the importance of the gut microbiota in IBD pathogenesis. Future research is needed to study the function of altered bacterial community compositions and the roles of metabolites.
Collapse
Affiliation(s)
- Li-Na Dong
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Mu Wang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Jian Guo
- Department of General Surgery, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Jun-Ping Wang
- Department of Gastroenterology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| |
Collapse
|
324
|
FAN Y, LYU B. [Research frontier of inflammatory bowel disease]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:334-341. [PMID: 31496167 PMCID: PMC8800741 DOI: 10.3785/j.issn.1008-9292.2019.06.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Bin LYU
- 吕宾(1963-), 男, 硕士, 主任医师, 教授, 博士生导师, 主要从事食管疾病和消化道早期癌症临床研究及肠易激综合征基础研究; E-mail:
,
https://orcid.org/0000-0002-6247-571X
| |
Collapse
|
325
|
Sorrentino D, Nguyen VQ, Chitnavis MV. Capturing the Biologic Onset of Inflammatory Bowel Diseases: Impact on Translational and Clinical Science. Cells 2019; 8:E548. [PMID: 31174359 PMCID: PMC6627618 DOI: 10.3390/cells8060548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
While much progress has been made in the last two decades in the treatment and the management of inflammatory bowel diseases (IBD)-both ulcerative colitis (UC) and Crohn's Disease (CD)-as of today these conditions are still diagnosed only after they have become symptomatic. This is a major drawback since by then the inflammatory process has often already caused considerable damage and the disease might have become partially or totally unresponsive to medical therapy. Late diagnosis in IBD is due to the lack of accurate, non-invasive indicators that would allow disease identification during the pre-clinical stage-as it is often done in many other medical conditions. Here, we will discuss what is known about the biologic onset and pre-clinical CD with an emphasis on studies conducted in patients' first degree relatives. We will then review the possible strategies to diagnose IBD very early in time including screening, available disease markers and imaging, and the possible clinical implications of treating these conditions at or close to their biologic onset. Later, we will review the potential impact of conducting translational research in IBD during the pre-clinical stage, especially focusing on the role of the microbiome in disease etiology and pathogenesis. Finally, we will highlight possible future developments in the field and how they can impact IBD management and our scientific knowledge of these conditions.
Collapse
Affiliation(s)
- Dario Sorrentino
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, FRACP 3 Riverside Circle, Roanoke, VA 24016, USA.
- Department of Clinical and Experimental Medical Sciences, University of Udine School of Medicine, 33100 Udine, Italy.
| | - Vu Q Nguyen
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, FRACP 3 Riverside Circle, Roanoke, VA 24016, USA.
| | - Maithili V Chitnavis
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, FRACP 3 Riverside Circle, Roanoke, VA 24016, USA.
| |
Collapse
|
326
|
Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele TV, Schüller S, Juge N, Blanquet-Diot S. Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiol Rev 2019; 43:457-489. [DOI: 10.1093/femsre/fuz013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
A close symbiotic relationship exists between the intestinal microbiota and its host. A critical component of gut homeostasis is the presence of a mucus layer covering the gastrointestinal tract. Mucus is a viscoelastic gel at the interface between the luminal content and the host tissue that provides a habitat to the gut microbiota and protects the intestinal epithelium. The review starts by setting up the biological context underpinning the need for experimental models to study gut bacteria-mucus interactions in the digestive environment. We provide an overview of the structure and function of intestinal mucus and mucins, their interactions with intestinal bacteria (including commensal, probiotics and pathogenic microorganisms) and their role in modulating health and disease states. We then describe the characteristics and potentials of experimental models currently available to study the mechanisms underpinning the interaction of mucus with gut microbes, including in vitro, ex vivo and in vivo models. We then discuss the limitations and challenges facing this field of research.
Collapse
Affiliation(s)
- Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303 , USA
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA 30303 , USA
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Raphaële Gresse
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Thomas Sauvaitre
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
327
|
Crohn's Disease: Potential Drugs for Modulation of Autophagy. ACTA ACUST UNITED AC 2019; 55:medicina55060224. [PMID: 31146413 PMCID: PMC6630681 DOI: 10.3390/medicina55060224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Autophagy is an intracellular process whereby cytoplasmic constituents are degraded within lysosomes. Autophagy functions to eliminate unwanted or damaged materials such as proteins and organelles as their accumulation would be harmful to the cellular system. Autophagy also acts as a defense mechanism against invading pathogens and plays an important role in innate and adaptive immunity. In physiological processes, autophagy is involved in the regulation of tissue development, differentiation and remodeling, which are essential for maintaining cellular homeostasis. Recent studies have demonstrated that autophagy is linked to various diseases and involved in pathophysiological roles, such as adaptation during starvation, anti-aging, antigen presentation, tumor suppression and cell death. The modulation of autophagy has shown greatest promise in Crohn’s disease as most of autophagy drugs involved in these diseases are currently under clinical trials and some has been approved by Food and Drug Administration. This review article discusses autophagy and potential drugs that are currently available for its modulation in Crohn’s disease.
Collapse
|
328
|
Dong H, Terrell JL, Jahnke JP, Zu TNK, Hurley MM, Stratis-Cullum DN. Biofunctionalized Cellulose Nanofibrils Capable of Capture and Antiadhesion of Fimbriated Escherichia coli. ACS APPLIED BIO MATERIALS 2019; 2:2937-2945. [DOI: 10.1021/acsabm.9b00295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hong Dong
- Biotechnology Branch, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Jessica L. Terrell
- Biotechnology Branch, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Justin P. Jahnke
- Biotechnology Branch, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Theresah N. K. Zu
- Biotechnology Branch, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Margaret M. Hurley
- Biotechnology Branch, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Dimitra N. Stratis-Cullum
- Biotechnology Branch, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| |
Collapse
|
329
|
Kelleher M, Singh R, O'Driscoll CM, Melgar S. Carcinoembryonic antigen (CEACAM) family members and Inflammatory Bowel Disease. Cytokine Growth Factor Rev 2019; 47:21-31. [PMID: 31133507 DOI: 10.1016/j.cytogfr.2019.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is a chronic intestinal inflammatory condition with increasing incidence worldwide and whose pathogenesis remains largely unknown. The collected evidence indicates that genetic, environmental and microbial factors and a dysregulated immune response are responsible for the disease. IBD has an early onset and long term sufferers present a higher risk of developing colitis associated cancer (CAC). The carcinoembryonic antigen-related adhesion molecules (CEACAM) are a subgroup of the CEA family, found in a range of different cell types and organs including epithelial cells in the intestine. They can act as intercellular adhesions molecules for e.g. bacteria and soluble antigens. CEACAMs are involved in a number of different processes including cell adhesion, proliferation, differentiation and tumour suppression. Some CEACAMs such as CEACAM1, CEACAM5 and CEACAM6 are highly associated with cancer and are even recognised as valid clinical markers for certain cancer forms. However, their role in IBD pathogenesis is less understood. The purpose of this review is to provide a comprehensive summary of published literature on CEACAMs and intestinal inflammation (IBD). The interactions between CEACAMs and bacteria adhesion in relation to IBD pathophysiology will be addressed and potential new therapeutic and diagnostic opportunities will be identified.
Collapse
Affiliation(s)
- Maebh Kelleher
- APC Microbiome Ireland, University College Cork, Cork, T12YT20, Ireland; Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, T12YT20, Ireland.
| | - Raminder Singh
- APC Microbiome Ireland, University College Cork, Cork, T12YT20, Ireland; Department of Medicine, University College Cork, Cork, T12YT20, Ireland.
| | - Caitriona M O'Driscoll
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, T12YT20, Ireland.
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, T12YT20, Ireland.
| |
Collapse
|
330
|
Imai J, Kitamoto S, Sugihara K, Nagao-Kitamoto H, Hayashi A, Morhardt TL, Kuffa P, Higgins PDR, Barnich N, Kamada N. Flagellin-mediated activation of IL-33-ST2 signaling by a pathobiont promotes intestinal fibrosis. Mucosal Immunol 2019; 12:632-643. [PMID: 30742042 PMCID: PMC6462251 DOI: 10.1038/s41385-019-0138-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/17/2018] [Accepted: 01/20/2019] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis is a severe complication in patients with Crohn's disease (CD). Unfortunately, the trigger leading to the development of intestinal fibrosis in the context of CD remains elusive. Here, we show that colonization by a CD-associated pathobiont adherent-invasive Escherichia coli (AIEC) promotes the development of intestinal fibrosis. Exogenously inoculated AIEC strain LF82 and commensal E. coli HS were gradually eradicated from the intestine in healthy mice. In Salmonella- or dextran sodium sulfate-induced colitis models, AIEC exploited inflammation and stably colonize the gut. Consequently, persistent colonization by AIEC LF82 led to substantial fibrosis. In contrast, commensal E. coli HS was unable to derive a growth advantage from inflammation, thereby failing to colonize the inflamed intestine or promote intestinal fibrosis. AIEC colonization potentiated the expression of the IL-33 receptor ST2 in the intestinal epithelium, which is crucial for the development of intestinal fibrosis. The induction of ST2 by AIEC LF82 was mediated by flagellin, as the ΔfliC mutant failed to induce ST2. These observations provide novel insights into pathobiont-driven intestinal fibrosis and can lead to the development of novel therapeutic approaches for the treatment of intestinal fibrosis in the context of CD that target AIEC and/or its downstream IL-33-ST2 signaling.
Collapse
Affiliation(s)
- Jin Imai
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Gastroenterology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Sho Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kohei Sugihara
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hiroko Nagao-Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Atsushi Hayashi
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Research Laboratory, Miyarisan Pharmaceutical Co., Ltd., Tokyo, 114-0016, Japan
| | - Tina L Morhardt
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Kuffa
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Peter D R Higgins
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nicolas Barnich
- UMR1071 Inserm/University Clermont Auvergne, INRA USC2018, M2iSH, CRNH Auvergne, Clermont-Ferrand, France
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
331
|
Ormsby MJ, Logan M, Johnson SA, McIntosh A, Fallata G, Papadopoulou R, Papachristou E, Hold GL, Hansen R, Ijaz UZ, Russell RK, Gerasimidis K, Wall DM. Inflammation associated ethanolamine facilitates infection by Crohn's disease-linked adherent-invasive Escherichia coli. EBioMedicine 2019; 43:325-332. [PMID: 31036531 PMCID: PMC6557746 DOI: 10.1016/j.ebiom.2019.03.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The predominance of specific bacteria such as adherent-invasive Escherichia coli (AIEC) within the Crohn's disease (CD) intestine remains poorly understood with little evidence uncovered to support a selective pressure underlying their presence. Intestinal ethanolamine is however readily accessible during periods of intestinal inflammation, and enables pathogens to outcompete the host microbiota under such circumstances. METHODS Quantitative RT-PCR (qRT-PCR) to determine expression of genes central to ethanolamine metabolism; transmission electron microscopy to detect presence of bacterial microcompartments (MCPs); in vitro infections of both murine and human macrophage cell lines examining intracellular replication of the AIEC-type strain LF82 and clinical E. coli isolates in the presence of ethanolamine; determination of E. coli ethanolamine utilization (eut) operon transcription in faecal samples from healthy patients, patients with active CD and the same patients in remission following treatment. RESULTS Growth on the intestinal short chain fatty acid propionic acid (PA) stimulates significantly increased transcription of the eut operon (fold change relative to glucose: >16.9; p-value <.01). Additionally ethanolamine was accessible to intra-macrophage AIEC and stimulated significant increases in growth intracellularly when it was added extracellularly at concentrations comparable to those in the human intestine. Finally, qRT-PCR indicated that expression of the E. coli eut operon was increased in children with active CD compared to healthy controls (fold change increase: >4.72; P < .02). After clinical remission post-exclusive enteral nutrition treatment, the same CD patients exhibited significantly reduced eut expression (Pre vs Post fold change decrease: >15.64; P < .01). INTERPRETATION Our data indicates a role for ethanolamine metabolism in selecting for AIEC that are consistently overrepresented in the CD intestine. The increased E. coli metabolism of ethanolamine seen in the intestine during active CD, and its decrease during remission, indicates ethanolamine use may be a key factor in shaping the intestinal microbiome in CD patients, particularly during times of inflammation. FUND: This work was funded by Biotechnology and Biological Sciences Research Council (BBSRC) grants BB/K008005/1 & BB/P003281/1 to DMW; by a Tenovus Scotland grant to MJO; by Glasgow Children's Hospital Charity, Nestle Health Sciences, Engineering and Physical Sciences Research Council (EPSRC) and Catherine McEwan Foundation grants awarded to KG; and by a Natural Environment Research Council (NERC) fellowship (NE/L011956/1) to UZI. The IBD team at the Royal Hospital for Children, Glasgow are supported by the Catherine McEwan Foundation and Yorkhill IBD fund. RKR and RH are supported by NHS Research Scotland Senior fellowship awards.
Collapse
Affiliation(s)
- Michael J Ormsby
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Michael Logan
- School of Engineering, University of Glasgow, Glasgow, Rankine Building, 79-85 Oakfield Ave, Glasgow G12 8LT, United Kingdom
| | - Síle A Johnson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Anne McIntosh
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Ghaith Fallata
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Rodanthi Papadopoulou
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
| | - Eleftheria Papachristou
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
| | - Georgina L Hold
- Microbiome Research Centre, St George and Sutherland Clinical School, UNSW, Australia
| | - Richard Hansen
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, United Kingdom
| | - Umer Z Ijaz
- School of Engineering, University of Glasgow, Glasgow, Rankine Building, 79-85 Oakfield Ave, Glasgow G12 8LT, United Kingdom
| | - Richard K Russell
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, United Kingdom
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
| | - Daniel M Wall
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
332
|
Lee JG, Han DS, Jo SV, Lee AR, Park CH, Eun CS, Lee Y. Characteristics and pathogenic role of adherent-invasive Escherichia coli in inflammatory bowel disease: Potential impact on clinical outcomes. PLoS One 2019; 14:e0216165. [PMID: 31034508 PMCID: PMC6488085 DOI: 10.1371/journal.pone.0216165] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/15/2019] [Indexed: 12/29/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) has been reported as associated with the pathogenesis of inflammatory bowel disease (IBD). We aimed to investigate the characteristics of mucosa-associated E. coli and the clinical significance of AIEC in Korean IBD patients. E. coli strains were isolated from the mucosal tissues of 18 Crohn’s disease (CD) patients, 24 ulcerative colitis (UC) patients, and 9 healthy controls (HC). Adhesion, invasion, and survival assays were performed to evaluate phenotypic features of E. coli isolates and to identify AIEC. The presence of virulence genes and cytokine expression were examined using PCR. In addition, data on IBD-related hospitalization were collected. A total of 59 E. coli strains were isolated (25 from CD, 27 from UC, and 7 from HC). The average levels of adhesion, invasion, and survival were higher in E. coli strains from IBD patients than those from HC (adhesion: 1.65 vs. 0.71, p = 0.046; invasion: 1.68 vs. 0.52, p = 0.039; survival: 519.55 vs. 47.55, p = 0.363). Prevalence of AIEC in HC, CD and UC patients was 22.2%, 38.9% and 37.5%, respectively. E. coli isolates from IBD patients had various virulence genes and were associated with increased expression of TNF-α and IL-17. IBD-related hospitalization within 3 years was 18.8% in patients with AIEC and 11.5% in patients without AIEC. E. coli strains from IBD patients showed high levels of adhesion, invasion, and survival. AIEC strains were identified in both CD and UC patients at a similar rate. AIEC may be associated with sustaining inflammation in the pre-existing inflammatory mucosa.
Collapse
Affiliation(s)
- Jae Gon Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
- * E-mail:
| | - Su Vin Jo
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - A. Reum Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Chang Soo Eun
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Yangsoon Lee
- Department of Laboratory Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
333
|
Kostovcikova K, Coufal S, Galanova N, Fajstova A, Hudcovic T, Kostovcik M, Prochazkova P, Jiraskova Zakostelska Z, Cermakova M, Sediva B, Kuzma M, Tlaskalova-Hogenova H, Kverka M. Diet Rich in Animal Protein Promotes Pro-inflammatory Macrophage Response and Exacerbates Colitis in Mice. Front Immunol 2019; 10:919. [PMID: 31105710 PMCID: PMC6497971 DOI: 10.3389/fimmu.2019.00919] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Diet is a major factor determining gut microbiota composition and perturbances in this complex ecosystem are associated with the inflammatory bowel disease (IBD). Here, we used gnotobiotic approach to analyze, how interaction between diet rich in proteins and gut microbiota influences the sensitivity to intestinal inflammation in murine model of ulcerative colitis. We found that diet rich in animal protein (aHPD) exacerbates acute dextran sulfate sodium (DSS)-induced colitis while diet rich in plant protein (pHPD) does not. The deleterious effect of aHPD was also apparent in chronic DSS colitis and was associated with distinct changes in gut bacteria and fungi. Therefore, we induced acute DSS-colitis in germ-free mice and transferred gut microbiota from aCD or aHPD fed mice to find that this effect requires presence of microbes and aHPD at the same time. The aHPD did not change the number of regulatory T cells or Th17 cells and still worsened the colitis in immuno-deficient RAG2 knock-out mice suggesting that this effect was not dependent on adaptive immunity. The pro-inflammatory effect of aHPD was, however, abrogated when splenic macrophages were depleted with clodronate liposomes. This treatment prevented aHPD induced increase in colonic Ly-6Chigh pro-inflammatory monocytes, but the ratio of resident Ly-6C−/low macrophages was not changed. These data show that the interactions between dietary protein of animal origin and gut microbiota increase sensitivity to intestinal inflammation by promoting pro-inflammatory response of monocytes.
Collapse
Affiliation(s)
- Klara Kostovcikova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia.,Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the CAS, v.v.i., Prague, Czechia
| | - Stepan Coufal
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | - Natalie Galanova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | - Alena Fajstova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the CAS, v.v.i., Nový Hrádek, Czechia
| | - Martin Kostovcik
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | | | - Martina Cermakova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | - Blanka Sediva
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia.,Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czechia
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v.v.i., Prague, Czechia.,Department of Pharmacology, Institute of Experimental Medicine of the CAS, v.v.i., Prague, Czechia
| |
Collapse
|
334
|
Schmitz JM, Tonkonogy SL, Dogan B, Leblond A, Whitehead KJ, Kim SC, Simpson KW, Sartor RB. Murine Adherent and Invasive E. coli Induces Chronic Inflammation and Immune Responses in the Small and Large Intestines of Monoassociated IL-10-/- Mice Independent of Long Polar Fimbriae Adhesin A. Inflamm Bowel Dis 2019; 25:875-885. [PMID: 30576451 PMCID: PMC6458545 DOI: 10.1093/ibd/izy386] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Adherent and invasive Escherichia coli (AIEC) is preferentially associated with ileal Crohn's disease (CD). The role of AIEC in the development of inflammation and its regional tropism is unresolved. The presence of long polar fimbriae (LPF) in 71% of ileal CD AIEC suggests a role for LPF in the tropism and virulence of AIEC. The aim of our study is to determine if AIEC, with or without LpfA, induces intestinal inflammation in monoassociated IL-10-/- mice. METHODS We compared murine AIEC strains NC101 (phylogroup B2, LpfA-) and CUMT8 (phylogroup B1, LpfA+), and isogenic mutant CUMT8 lacking lpfA154, with a non-AIEC (E. coli K12), evaluating histologic inflammation, bacterial colonization, mucosal adherence and invasion, and immune activation. RESULTS IL-10-/- mice monoassociated with AIEC (either CUMT8, CUMT8:ΔlpfA, or NC101) but not K12 developed diffuse small intestinal and colonic inflammation. There was no difference in the magnitude and distribution of inflammation in mice colonized with CUMT8:ΔlpfA compared with wild-type CUMT8. Bacterial colonization was similar for all E. coli strains. Fluorescence in situ hybridization revealed mucosal adherence and tissue invasion by AIEC but not K12. Production of the cytokines IL-12/23 p40 by the intestinal tissue and IFN-γ and IL-17 by CD4 T cells correlated with inflammation. CONCLUSIONS IL-10-/- mice monoassociated with murine AIEC irrespective of LpfA expression developed chronic inflammation accompanied by IL-12/23 p40 production in the small and large intestines and IFN-γ/IL-17 production by CD4 T cells that model the interplay between enteric pathosymbionts, host susceptibility, and enhanced immune responses in people with IBD.
Collapse
MESH Headings
- Animals
- Bacterial Adhesion
- Escherichia coli/immunology
- Escherichia coli Infections/immunology
- Escherichia coli Infections/metabolism
- Escherichia coli Infections/microbiology
- Escherichia coli Infections/pathology
- Escherichia coli Proteins/metabolism
- Fimbriae Proteins/metabolism
- Fimbriae, Bacterial/immunology
- Fimbriae, Bacterial/pathology
- Inflammation/etiology
- Inflammation/metabolism
- Inflammation/pathology
- Interleukin-10/physiology
- Intestine, Large/immunology
- Intestine, Large/metabolism
- Intestine, Large/microbiology
- Intestine, Large/pathology
- Intestine, Small/immunology
- Intestine, Small/metabolism
- Intestine, Small/microbiology
- Intestine, Small/pathology
- Mice
- Mice, Knockout
Collapse
Affiliation(s)
- Julia M Schmitz
- Center for Gastrointestinal Biology and Disease, University of North Carolina and North Carolina State University, Chapel Hill and Raleigh, North Carolina
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Susan L Tonkonogy
- Center for Gastrointestinal Biology and Disease, University of North Carolina and North Carolina State University, Chapel Hill and Raleigh, North Carolina
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Belgin Dogan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Anna Leblond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Kristi J Whitehead
- Center for Gastrointestinal Biology and Disease, University of North Carolina and North Carolina State University, Chapel Hill and Raleigh, North Carolina
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sandra C Kim
- Center for Gastrointestinal Biology and Disease, University of North Carolina and North Carolina State University, Chapel Hill and Raleigh, North Carolina
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kenneth W Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina and North Carolina State University, Chapel Hill and Raleigh, North Carolina
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
335
|
Chen L, Zhong R, Zhang L, Zhang H. The Chronic Effect of Transgenic Maize Line with mCry1Ac or maroACC Gene on Ileal Microbiota Using a Hen Model. Microorganisms 2019; 7:microorganisms7030092. [PMID: 30909622 PMCID: PMC6463162 DOI: 10.3390/microorganisms7030092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/03/2019] [Accepted: 03/12/2019] [Indexed: 01/16/2023] Open
Abstract
The experiment was to determine the chronic effects of two transgenic maize lines that contained the mCry1Ac gene from the Bacillus thuringiensis strain (BT) and the maroACC gene from Agrobacterium tumefaciens strain (CC), respectively, on ileal microbiota of laying hens. Seventy-two laying hens were randomly assigned to one of the three dietary treatments for 12 weeks, as follows: (1) nontransgenic near-isoline maize-based diet (CT diet), (2) BT maize-based diet (BT diet), and (3) CC maize-based diet (CC diet). Ileum histological examination did not indicate a chronic effect of two transgenic maize diets. Few differences were observed in any bacterial taxa among the treatments that used high-throughput 16S rRNA gene sequencing. The only differences that were observed for bacterial genera were that Bifidobacterium belong within the Bifidobacteriaceae family tended to be greater (p = 0.114) abundant in hens fed the transgenic maize-based diet than in hens fed the CT diet. Birds that consumed the CC maize diet tended to have less abundance (p = 0.135) of Enterobacteriaceae family in the ileum than those that consumed the CT maize diet. These results indicate the lack of adverse effects of the BT maize and the CC maize lines on the ileal microbiota of hens for long term and provide important data regarding biosafety assessment of the transgenic maize lines.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lilan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
336
|
Cross talk between neutrophils and the microbiota. Blood 2019; 133:2168-2177. [PMID: 30898860 DOI: 10.1182/blood-2018-11-844555] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 12/18/2022] Open
Abstract
The microbiota has emerged as an important regulator of the host immunity by the induction, functional modulation, or suppression of local and systemic immune responses. In return, the host immune system restricts translocation and fine tunes the composition and distribution of the microbiota to maintain a beneficial symbiosis. This paradigm applies to neutrophils, a critical component of the innate immunity, allowing their production and function to be influenced by microbial components and metabolites derived from the microbiota, and engaging them in the process of microbiota containment and regulation. The cross talk between neutrophils and the microbiota adjusts the magnitude of neutrophil-mediated inflammation on challenge while preventing neutrophil responses against commensals under steady state. Here, we review the major molecular and cellular mediators of the interactions between neutrophils and the microbiota and discuss their interplay and contribution in chronic inflammatory diseases and cancer.
Collapse
|
337
|
Goren I, Godny L, Reshef L, Yanai H, Gophna U, Tulchinsky H, Dotan I. Starch Consumption May Modify Antiglycan Antibodies and Fecal Fungal Composition in Patients With Ileo-Anal Pouch. Inflamm Bowel Dis 2019; 25:742-749. [PMID: 30535148 DOI: 10.1093/ibd/izy370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) are characterized by serologic responses to glycans. Patients with ulcerative colitis (UC) after proctocolectomy with ileo-anal anastomosis (pouch surgery) may develop inflammation (pouchitis) that resembles Crohn's disease (CD). We hypothesized that patients' serologic responses were affected by their consumption of dietary sugars. This study analyzed the correlations between antiglycan antibody expression and dietary sugar consumption in patients with UC pouch and the evolution in antibody levels over time. METHODS Patients were followed prospectively for 2 consecutive visits. The following antiglycan carbohydrate antibodies were detected by enzyme-linked immunosorbent assay: antichitobioside (ACCA), antilaminaribioside (ALCA), antimannobioside (AMCA), and anti-Saccharomyces cerevisiae (ASCA) antibodies. Patients completed a food frequency questionnaire. The fungal community in patients' fecal samples was analyzed by sequencing the internal transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA. RESULTS We included 75 UC pouch patients aged 45.2 ± 14 years who underwent pouch surgery 9.8 ± 6.7 years previously. Of these patients, 34.7% (n = 26) showed seropositivity for antiglycan antibodies. Starch consumption was significantly higher in patients with positive serologic responses (P = 0.05). Higher starch consumption was associated with higher AMCA and ACCA titers, which increased by 4.08% (0.8%-7.4%; P = 0.014) and 4.8% (0.7%-9.1%; P = 0.007), respectively, for each 10-g increase of dietary starch. The per-patient change in the relative abundance of Candida albicans in fecal samples correlated positively with changes in starch consumption (Spearman's r = 0.72; P = 0.012). CONCLUSIONS Starch consumption correlated with positive antiglycan serology (ACCA and AMCA), suggesting that increased dietary starch intake may promote a specific immune response in patients with IBD.
Collapse
Affiliation(s)
- Idan Goren
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lihi Godny
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leah Reshef
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Henit Yanai
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Gophna
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Tulchinsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
338
|
Schoultz I, Keita ÅV. Cellular and Molecular Therapeutic Targets in Inflammatory Bowel Disease-Focusing on Intestinal Barrier Function. Cells 2019; 8:193. [PMID: 30813280 PMCID: PMC6407030 DOI: 10.3390/cells8020193] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
The human gut relies on several cellular and molecular mechanisms to allow for an intact and dynamical intestinal barrier. Normally, only small amounts of luminal content pass the mucosa, however, if the control is broken it can lead to enhanced passage, which might damage the mucosa, leading to pathological conditions, such as inflammatory bowel disease (IBD). It is well established that genetic, environmental, and immunological factors all contribute in the pathogenesis of IBD, and a disturbed intestinal barrier function has become a hallmark of the disease. Genetical studies support the involvement of intestinal barrier as several susceptibility genes for IBD encode proteins with key functions in gut barrier and homeostasis. IBD patients are associated with loss in bacterial diversity and shifts in the microbiota, with a possible link to local inflammation. Furthermore, alterations of immune cells and several neuro-immune signaling pathways in the lamina propria have been demonstrated. An inappropriate immune activation might lead to mucosal inflammation, with elevated secretion of pro-inflammatory cytokines that can affect the epithelium and promote a leakier barrier. This review will focus on the main cells and molecular mechanisms in IBD and how these can be targeted in order to improve intestinal barrier function and reduce inflammation.
Collapse
Affiliation(s)
- Ida Schoultz
- School of Medical Sciences, Örebro University, 703 62 Örebro, Sweden.
| | - Åsa V Keita
- Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics & Oncology, Medical Faculty, Linköping University, 581 85 Linköping, Sweden.
| |
Collapse
|
339
|
Burrello C, Pellegrino G, Giuffrè MR, Lovati G, Magagna I, Bertocchi A, Cribiù FM, Boggio F, Botti F, Trombetta E, Porretti L, Di Sabatino A, Vecchi M, Rescigno M, Caprioli F, Facciotti F. Mucosa-associated microbiota drives pathogenic functions in IBD-derived intestinal iNKT cells. Life Sci Alliance 2019; 2:2/1/e201800229. [PMID: 30760554 PMCID: PMC6374994 DOI: 10.26508/lsa.201800229] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) pathogenesis has been linked to the aberrant activation of the Gut-associated lymphoid tissues against components of the intestinal microbiota. Although the contribution of CD4+ T helper cells to inflammatory processes is being increasingly acknowledged, the functional engagement of human invariant natural killer T (iNKT) cells is still poorly defined. Here, we evaluated the functional characteristics of intestinal iNKT cells during IBD pathogenesis and to exploit the role of mucosa-associated microbiota recognition in triggering iNKT cells' pro-inflammatory responses in vivo. Lamina propria iNKT cells, isolated from surgical specimens of active ulcerative colitis and Crohn's disease patients and non-IBD donors, were phenotypically and functionally analyzed ex vivo, and stable cell lines and clones were generated for in vitro functional assays. iNKT cells expressing a pro-inflammatory cytokine profile were enriched in the lamina propria of IBD patients, and their exposure to the mucosa-associated microbiota drives pro-inflammatory activation, inducing direct pathogenic activities against the epithelial barrier integrity. These observations suggest that iNKT cell pro-inflammatory functions may contribute to the fuelling of intestinal inflammation in IBD patients.
Collapse
Affiliation(s)
- Claudia Burrello
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Gabriella Pellegrino
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maria Rita Giuffrè
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Lovati
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Ilaria Magagna
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Alice Bertocchi
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Boggio
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fiorenzo Botti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Porretti
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maria Rescigno
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
340
|
Dobranowski PA, Tang C, Sauvé JP, Menzies SC, Sly LM. Compositional changes to the ileal microbiome precede the onset of spontaneous ileitis in SHIP deficient mice. Gut Microbes 2019; 10:578-598. [PMID: 30760087 PMCID: PMC6748580 DOI: 10.1080/19490976.2018.1560767] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inflammatory bowel disease, encompassing both ulcerative colitis and Crohn's disease, is characterized by chronic, relapsing-remitting gastrointestinal inflammation of unknown etiology. SHIP deficient mice develop fully penetrant, spontaneous ileitis at 6 weeks of age, and thus offer a tractable model of Crohn's disease-like inflammation. Since disruptions to the microbiome are implicated in the pathogenesis of Crohn's disease, we conducted a 16S rRNA gene survey of the ileum, cecum, colon, and stool contents of SHIP+/+ and SHIP-/- mice. We predicted that diversity and compositional changes would occur after, and possibly prior to, the onset of overt disease. No differences were found in alpha diversity, but significant changes in beta diversity and specific commensal populations were observed in the ileal compartment of SHIP deficient mice after the onset of overt disease. Specifically, reductions in the Bacteroidales taxa, Muribaculum intestinale, and an expansion in Lactobacillus were most notable. In contrast, expansions to bacterial taxa previously associated with inflammation, including Bacteroides, Parabacteroides, and Prevotella were observed in the ilea of SHIP deficient mice prior to the onset of overt disease. Finally, antibiotic treatment reduced the development of intestinal inflammation in SHIP-/- mice. Thus, our findings indicate that SHIP is involved in maintaining ileal microbial homeostasis. These results have broader implications for humans, since reduced SHIP protein levels have been reported in people with Crohn's disease.
Collapse
Affiliation(s)
| | | | | | | | - Laura May Sly
- University of British Columbia,BC Children’s Hospital research institute,CONTACT Laura May Sly BC Children’s Hospital research institute, 950 West 28th Avenue, A5-142TRB, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
341
|
Evaluating Metagenomic Prediction of the Metaproteome in a 4.5-Year Study of a Patient with Crohn's Disease. mSystems 2019; 4:mSystems00337-18. [PMID: 30801026 PMCID: PMC6372841 DOI: 10.1128/msystems.00337-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Although genetic approaches are the standard in microbiome analysis, proteome-level information is largely absent. This discrepancy warrants a better understanding of the relationship between gene copy number and protein abundance, as this is crucial information for inferring protein-level changes from metagenomic data. As it remains unknown how metaproteomic systems evolve during dynamic disease states, we leveraged a 4.5-year fecal time series using samples from a single patient with colonic Crohn's disease. Utilizing multiplexed quantitative proteomics and shotgun metagenomic sequencing of eight time points in technical triplicate, we quantified over 29,000 protein groups and 110,000 genes and compared them to five protein biomarkers of disease activity. Broad-scale observations were consistent between data types, including overall clustering by principal-coordinate analysis and fluctuations in Gene Ontology terms related to Crohn's disease. Through linear regression, we determined genes and proteins fluctuating in conjunction with inflammatory metrics. We discovered conserved taxonomic differences relevant to Crohn's disease, including a negative association of Faecalibacterium and a positive association of Escherichia with calprotectin. Despite concordant associations of genera, the specific genes correlated with these metrics were drastically different between metagenomic and metaproteomic data sets. This resulted in the generation of unique functional interpretations dependent on the data type, with metaproteome evidence for previously investigated mechanisms of dysbiosis. An example of one such mechanism was a connection between urease enzymes, amino acid metabolism, and the local inflammation state within the patient. This proof-of-concept approach prompts further investigation of the metaproteome and its relationship with the metagenome in biologically complex systems such as the microbiome. IMPORTANCE A majority of current microbiome research relies heavily on DNA analysis. However, as the field moves toward understanding the microbial functions related to healthy and disease states, it is critical to evaluate how changes in DNA relate to changes in proteins, which are functional units of the genome. This study tracked the abundance of genes and proteins as they fluctuated during various inflammatory states in a 4.5-year study of a patient with colonic Crohn's disease. Our results indicate that despite a low level of correlation, taxonomic associations were consistent in the two data types. While there was overlap of the data types, several associations were uniquely discovered by analyzing the metaproteome component. This case study provides unique and important insights into the fundamental relationship between the genes and proteins of a single individual's fecal microbiome associated with clinical consequences.
Collapse
|
342
|
von Martels JZH, Bourgonje AR, Harmsen HJM, Faber KN, Dijkstra G. Assessing intestinal permeability in Crohn's disease patients using orally administered 52Cr-EDTA. PLoS One 2019; 14:e0211973. [PMID: 30730969 PMCID: PMC6366711 DOI: 10.1371/journal.pone.0211973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
Background Intestinal permeability can be assessed by monitoring renal excretion of orally administered radioactively 51Cr-labeled ethylenediaminetetraacetic acid (51Cr-EDTA). Although considered safe, patient participation in using radio-labeled tracers is low. Here, we used orally administered 52Cr-EDTA as non-radioactive alternative to assess intestinal permeability in CD and analyzed the association with disease activity, disease location and gut microbial dysbiosis. Materials and methods 60 CD patients with low (n = 25) and increased (n = 35) fecal calprotectin levels (cut-off: 100 μg/g feces) ingested 20 mL 52Cr-EDTA (20 mmol/L) solution whereafter 24-h urine was collected. Urinary 52Cr-EDTA concentrations were quantified using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Fecal Enterobacteriaceae and Faecalibacterium prausnitzii were quantified using FISH. Correlations between urinary 52Cr-EDTA excretion and other parameters were established using nonparametric Spearman’s correlation coefficients (ρ). Results CD patients with increased fecal calprotectin levels (> 100 μg/g) demonstrated an elevated urinary 52Cr-EDTA/creatinine ratio (772 vs. 636 μmol/mol, P = 0.132). Patients with primarily colonic disease showed the highest 52Cr-EDTA excretion. Importantly, a positive correlation was observed for the urinary 52Cr-EDTA/creatinine ratio and fecal calprotectin levels (ρ = 0.325, P < 0.05). Finally, urinary 52Cr-EDTA/creatinine ratio negatively correlated with the relative abundance of Faecalibacterium prausnitzii (ρ = -0.221, P = 0.092), while positively correlating with Enterobacteriaceae (ρ = 0.202, P = 0.126). Conclusions Orally administered and renal excreted 52Cr-EDTA may be used to assess intestinal permeability in CD and correlates with fecal calprotectin levels and bacterial species relevant to CD. This test may improve non-invasive detection of disease exacerbations and help monitor disease activity.
Collapse
Affiliation(s)
- Julius Z. H. von Martels
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
343
|
Ahmad W, Nguyen NH, Boland BS, Dulai PS, Pride DT, Bouland D, Sandborn WJ, Singh S. Comparison of Multiplex Gastrointestinal Pathogen Panel and Conventional Stool Testing for Evaluation of Diarrhea in Patients with Inflammatory Bowel Diseases. Dig Dis Sci 2019; 64:382-390. [PMID: 30361807 PMCID: PMC6358459 DOI: 10.1007/s10620-018-5330-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Gastrointestinal pathogen panels (GPPs) are increasingly being used for evaluation of diarrhea. The impact of these tests on patients with inflammatory bowel diseases (IBD) is unknown. We performed a time-interrupted cohort study comparing GPPs and conventional stool evaluation in patients with IBD with diarrhea. METHODS We included 268 consecutive patients with IBD who underwent GPP (BioFire Diagnostics®) (n = 134) or conventional stool culture and Clostridium difficile polymerase chain reaction testing (n = 134) during suspected IBD flare between 2012 and 2016. Primary outcome was composite of 30-day IBD-related hospitalization, surgery, or emergency department visit; secondary outcome was IBD treatment modification. RESULTS Overall, 41/134 (30.6%) patients tested positive on GPP (18 C. difficile, 17 other bacterial infections, and 6 viral pathogens) versus 14/134 patients (10.4%, all C. difficile) testing positive on conventional testing. Rate of IBD treatment modification in response to stool testing was lower in GPP group as compared conventional stool testing group (35.1 vs. 64.2%, p < 0.01). On multivariate analysis, diagnostic evaluation with GPP was associated with three times higher odds of IBD-related hospitalization/surgery/ED visit (95% CI, 1.27-7.14), as compared to conventional stool testing. This negative impact was partly mediated by differences in ordering provider specialty, with non-gastroenterologists more likely to order GPP as compared to gastroenterologists. CONCLUSIONS In patients with suspected flare of IBD, GPPs have higher pathogen detection rate and lead to lower rate of IBD treatment modification. A diagnostic testing strategy based on GPPs is associated with higher hospital-related healthcare utilization as compared to conventional stool testing, particularly when utilized by non-gastroenterologists.
Collapse
Affiliation(s)
- Waseem Ahmad
- Department of Internal Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nghia H Nguyen
- Department of Internal Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brigid S Boland
- Division of Gastroenterology, University of California San Diego, 9452 Medical Center Drive, ACTRI 1W501, La Jolla, CA, 92093, USA
| | - Parambir S Dulai
- Division of Gastroenterology, University of California San Diego, 9452 Medical Center Drive, ACTRI 1W501, La Jolla, CA, 92093, USA
| | - David T Pride
- Department of Pathology and Infectious Diseases, University of California San Diego, La Jolla, CA, USA
| | - Daniel Bouland
- Division of Hospital Medicine, University of California San Diego, La Jolla, CA, USA
| | - William J Sandborn
- Division of Gastroenterology, University of California San Diego, 9452 Medical Center Drive, ACTRI 1W501, La Jolla, CA, 92093, USA
| | - Siddharth Singh
- Division of Gastroenterology, University of California San Diego, 9452 Medical Center Drive, ACTRI 1W501, La Jolla, CA, 92093, USA.
- Division of Biomedical Informatics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
344
|
Elhenawy W, Tsai CN, Coombes BK. Host-Specific Adaptive Diversification of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Cell Host Microbe 2019; 25:301-312.e5. [PMID: 30683582 DOI: 10.1016/j.chom.2018.12.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/05/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Abstract
Crohn's disease (CD) is an inflammatory bowel disease influenced by bacteria. Adherent-invasive E. coli (AIEC) is associated with CD, yet the adaptations facilitating AIEC gut colonization are unknown. AIEC isolates exhibit high genetic diversity, suggesting strains evolve independently across different gut environments. We tracked the adaptive evolution of AIEC in a murine model of chronic colonization across multiple hosts and transmission events. We detected evolved lineages that outcompeted the ancestral strain in the host through independent mechanisms. One lineage was hypermotile because of a mobile insertion sequence upstream of the master flagellar regulator, flhDC, which enhanced AIEC invasion and establishment of a mucosal niche. Another lineage outcompeted the ancestral strain through improved use of acetate, a short-chain fatty acid in the gut. The presence of hypermotile and acetate-consuming lineages discriminated E. coli isolated from CD patients from healthy controls, suggesting an evolutionary trajectory that distinguishes AIEC from commensal E. coli.
Collapse
Affiliation(s)
- Wael Elhenawy
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Caressa N Tsai
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Brian K Coombes
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Hamilton, ON, Canada.
| |
Collapse
|
345
|
Preisker S, Brethack AK, Bokemeyer A, Bettenworth D, Sina C, Derer S. Crohn's Disease Patients in Remission Display an Enhanced Intestinal IgM⁺ B Cell Count in Concert with a Strong Activation of the Intestinal Complement System. Cells 2019; 8:78. [PMID: 30669641 PMCID: PMC6356943 DOI: 10.3390/cells8010078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 01/05/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term that comprises Crohn's disease (CD) and ulcerative colitis (UC). Both entities are characterized by a disturbed mucosal immune response and an imbalance of intestinal microbiota composition. The complement system (C) plays a critical role in the detection, and clearance of bacteria and dysregulation of single complement components has been linked to IBD. Here, we asked if the C contributes to distinct subtypes of inflammation observed in CD and UC. We performed systematical expression analyses of the intestinal C in IBD patients and controls. Immunohistochemistry or immunoblot experiments were performed to verify qPCR data. Activity of the three activation pathways of C was studied in sera samples. In CD patients a strong upregulation of the C was observed enabling the definition of unique expression patterns being associated either with remission or active disease. These data were reflected by an enhanced C activation in sera and fecal samples. An excessive mucosal presence of immunoglobulin M (IgM) and CR2/CD21 positive B cells in concert with decreased fecal IgA level was identified in CD patients in remission. These findings point to an exacerbated induction of the intestinal C that may potentially be involved in the etiology of CD.
Collapse
Affiliation(s)
- Sophie Preisker
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany.
| | - Ann-Kathrin Brethack
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany.
| | - Arne Bokemeyer
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, 48149 Münster, Germany.
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, 48149 Münster, Germany.
| | - Christian Sina
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany.
| | - Stefanie Derer
- Institute of Nutritional Medicine, Molecular Gastroenterology, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany.
| |
Collapse
|
346
|
Preventive Effect of Spontaneous Physical Activity on the Gut-Adipose Tissue in a Mouse Model That Mimics Crohn's Disease Susceptibility. Cells 2019; 8:cells8010033. [PMID: 30634469 PMCID: PMC6356941 DOI: 10.3390/cells8010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Crohn’s disease is characterized by abnormal ileal colonization by adherent-invasive E. coli (AIEC) and expansion of mesenteric adipose tissue. This study assessed the preventive effect of spontaneous physical activity (PA) on the gut-adipose tissue in a mouse model that mimics Crohn’s disease susceptibility. Thirty-five CEABAC10 male mice performed spontaneous PA (wheel group; n = 24) or not (controls; n = 11) for 12 weeks. At week 12, mice were orally challenged with the AIEC LF82 strain for 6 days. Body composition, glycaemic control, intestinal permeability, gut microbiota composition, and fecal short-chain fatty acids were assessed in both groups. Animals were fed a high fat/high sugar diet throughout the study. After exposure to AIEC, mesenteric adipose tissue weight was lower in the wheel group. Tight junction proteins expression increased with spontaneous PA, whereas systemic lipopolysaccharides were negatively correlated with the covered distance. Bifidobacterium and Lactobacillus decreased in controls, whereas Oscillospira and Ruminococcus increased in the wheel group. Fecal propionate and butyrate were also higher in the wheel group. In conclusion, spontaneous physical activity promotes healthy gut microbiota composition changes and increases short-chain fatty acids in CEABAC10 mice fed a Western diet and exposed to AIEC to mimic Crohn’s disease.
Collapse
|
347
|
Cauwel M, Sivignon A, Bridot C, Nongbe MC, Deniaud D, Roubinet B, Landemarre L, Felpin FX, Bouckaert J, Barnich N, Gouin SG. Heptylmannose-functionalized cellulose for the binding and specific detection of pathogenic E. coli. Chem Commun (Camb) 2019; 55:10158-10161. [DOI: 10.1039/c9cc05545b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We developed a chemical method to covalently functionalize cellulose nanofibers and cellulose paper with mannoside ligands displaying a strong affinity for the FimH adhesin from pathogenic E. coli strains.
Collapse
Affiliation(s)
- Madeleine Cauwel
- Université de Nantes
- CEISAM
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation
- UMR CNRS 6230
- UFR des Sciences et des Techniques
| | - Adeline Sivignon
- Clermont Université
- UMR 1071 Inserm/Université d’Auvergne
- 63000 Clermont-Ferrand
- France
| | - Clarisse Bridot
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF)
- UMR8576 CNRS
- Lille 59000
- France
| | - Medy C. Nongbe
- Université de Nantes
- CEISAM
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation
- UMR CNRS 6230
- UFR des Sciences et des Techniques
| | - David Deniaud
- Université de Nantes
- CEISAM
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation
- UMR CNRS 6230
- UFR des Sciences et des Techniques
| | - Benoit Roubinet
- Glycodiag, Bâtiment Physique-Chimie
- 45067 Orléans cedex 2
- France
| | | | - François-Xavier Felpin
- Université de Nantes
- CEISAM
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation
- UMR CNRS 6230
- UFR des Sciences et des Techniques
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF)
- UMR8576 CNRS
- Lille 59000
- France
| | - Nicolas Barnich
- Clermont Université
- UMR 1071 Inserm/Université d’Auvergne
- 63000 Clermont-Ferrand
- France
| | - Sébastien G. Gouin
- Université de Nantes
- CEISAM
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation
- UMR CNRS 6230
- UFR des Sciences et des Techniques
| |
Collapse
|
348
|
Patey O, McCallin S, Mazure H, Liddle M, Smithyman A, Dublanchet A. Clinical Indications and Compassionate Use of Phage Therapy: Personal Experience and Literature Review with a Focus on Osteoarticular Infections. Viruses 2018; 11:E18. [PMID: 30597868 PMCID: PMC6356659 DOI: 10.3390/v11010018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 01/30/2023] Open
Abstract
The history of phage therapy started with its first clinical application in 1919 and continues its development to this day. Phages continue to lack any market approval in Western medicine as a recognized drug, but are increasingly used as an experimental therapy for the compassionate treatment of patients experiencing antibiotic failure. The few formal experimental phage clinical trials that have been completed to date have produced inconclusive results on the efficacy of phage therapy, which contradicts the many successful treatment outcomes observed in historical accounts and recent individual case reports. It would therefore be wise to identify why such a discordance exists between trials and compassionate use in order to better develop future phage treatment and clinical applications. The multitude of observations reported over the years in the literature constitutes an invaluable experience, and we add to this by presenting a number of cases of patients treated compassionately with phages throughout the past decade with a focus on osteoarticular infections. Additionally, an abundance of scientific literature into phage-related areas is transforming our knowledge base, creating a greater understanding that should be applied for future clinical applications. Due to the increasing number of treatment failures anticipatedfrom the perspective of a possible post-antibiotic era, we believe that the introduction of bacteriophages into the therapeutic arsenal seems a scientifically sound and eminently practicable consideration today as a substitute or adjuvant to antibiotic therapy.
Collapse
Affiliation(s)
- Olivier Patey
- Service of Infectious and Tropical Diseases, CHI Lucie et Raymond Aubrac, 94190 Villeneuve Saint Georges, France.
| | - Shawna McCallin
- Department of Musculoskeletal Medicine DAL, Centre Hospitalier Universitaire Vaudois CHUV, Service of Plastic, Reconstructive & Hand Surgery, Regenerative Therapy Unit (UTR), CHUV-EPCR/Croisettes 22, 1066 Epalinges, Switzerland.
| | - Hubert Mazure
- HGM Consultants, 63 Rebecca Parade, Winston Hills, NSW 2153, Australia.
| | - Max Liddle
- School of Life Sciences, University of Technology, Ultimo, NSW 2007, Australia.
| | - Anthony Smithyman
- Cellabs Pty Ltd, and Founder Special Phage Services Pty Ltd, both of 7/27 Dale St, Brookvale, NSW 2100, Australia.
| | - Alain Dublanchet
- Service of Infectious and Tropical Diseases, CHI Lucie et Raymond Aubrac, 94190 Villeneuve Saint Georges, France.
| |
Collapse
|
349
|
Tyakht AV, Manolov AI, Kanygina AV, Ischenko DS, Kovarsky BA, Popenko AS, Pavlenko AV, Elizarova AV, Rakitina DV, Baikova JP, Ladygina VG, Kostryukova ES, Karpova IY, Semashko TA, Larin AK, Grigoryeva TV, Sinyagina MN, Malanin SY, Shcherbakov PL, Kharitonova AY, Khalif IL, Shapina MV, Maev IV, Andreev DN, Belousova EA, Buzunova YM, Alexeev DG, Govorun VM. Genetic diversity of Escherichia coli in gut microbiota of patients with Crohn's disease discovered using metagenomic and genomic analyses. BMC Genomics 2018; 19:968. [PMID: 30587114 PMCID: PMC6307143 DOI: 10.1186/s12864-018-5306-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Crohn's disease is associated with gut dysbiosis. Independent studies have shown an increase in the abundance of certain bacterial species, particularly Escherichia coli with the adherent-invasive pathotype, in the gut. The role of these species in this disease needs to be elucidated. METHODS We performed a metagenomic study investigating the gut microbiota of patients with Crohn's disease. A metagenomic reconstruction of the consensus genome content of the species was used to assess the genetic variability. RESULTS The abnormal shifts in the microbial community structures in Crohn's disease were heterogeneous among the patients. The metagenomic data suggested the existence of multiple E. coli strains within individual patients. We discovered that the genetic diversity of the species was high and that only a few samples manifested similarity to the adherent-invasive varieties. The other species demonstrated genetic diversity comparable to that observed in the healthy subjects. Our results were supported by a comparison of the sequenced genomes of isolates from the same microbiota samples and a meta-analysis of published gut metagenomes. CONCLUSIONS The genomic diversity of Crohn's disease-associated E. coli within and among the patients paves the way towards an understanding of the microbial mechanisms underlying the onset and progression of the Crohn's disease and the development of new strategies for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Alexander V. Tyakht
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
- ITMO University, 49 Kronverkskiy pr, Saint-Petersburg, Russian Federation 197101
| | - Alexander I. Manolov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Alexandra V. Kanygina
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
| | - Dmitry S. Ischenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
| | - Boris A. Kovarsky
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Anna S. Popenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Alexander V. Pavlenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Anna V. Elizarova
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
| | - Daria V. Rakitina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Julia P. Baikova
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Valentina G. Ladygina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Elena S. Kostryukova
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
| | - Irina Y. Karpova
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Tatyana A. Semashko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
| | - Andrei K. Larin
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | | | - Mariya N. Sinyagina
- Kazan Federal University, 18 Kremlyovskaya St., Kazan, Russian Federation 420008
| | - Sergei Y. Malanin
- Kazan Federal University, 18 Kremlyovskaya St., Kazan, Russian Federation 420008
| | - Petr L. Shcherbakov
- Moscow Clinical Scientific Center, 86 Shosse Entuziastov St., Moscow, Russian Federation 111123
| | - Anastasiya Y. Kharitonova
- Clinical and Research Institute of Emergency Children’s Surgery and Trauma, 22 Bolshaya Polyanka St., Moscow, Russian Federation 119180
| | - Igor L. Khalif
- State Scientific Center of Coloproctology, 2 Salam Adil St., Moscow, Russian Federation 123423
| | - Marina V. Shapina
- State Scientific Center of Coloproctology, 2 Salam Adil St., Moscow, Russian Federation 123423
| | - Igor V. Maev
- Moscow State University of Medicine and Dentistry, Build. 6, 20 Delegatskaya St., Moscow, Russian Federation 127473
| | - Dmitriy N. Andreev
- Moscow State University of Medicine and Dentistry, Build. 6, 20 Delegatskaya St., Moscow, Russian Federation 127473
| | - Elena A. Belousova
- Moscow Regional Research and Clinical Institute, 61/2 Shchepkina str, Moscow, Russian Federation 129110
| | - Yulia M. Buzunova
- Moscow Regional Research and Clinical Institute, 61/2 Shchepkina str, Moscow, Russian Federation 129110
| | - Dmitry G. Alexeev
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
| | - Vadim M. Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation 141700
- M.M. Shemyakin - Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, Russian Federation 117997
| |
Collapse
|
350
|
Mousavifar L, Touaibia M, Roy R. Development of Mannopyranoside Therapeutics against Adherent-Invasive Escherichia coli Infections. Acc Chem Res 2018; 51:2937-2948. [PMID: 30289687 DOI: 10.1021/acs.accounts.8b00397] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Preventing bacterial adhesion to host cells is a provocative and alternative approach to traditional antibiotic treatments given the increasing microbial resistance. A brief overview of common antibiotic treatments is described in light of their respective resistance and remaining susceptibility. This strategy has been seriously considered in the context of adherent-invasive infections in Crohn's disease and urinary tract infections in particular. The adhesions of various pathogenic Escherichia coli strains to host cells are primarily mediated through carbohydrate-protein interactions involving bacterial organelles called fimbriae that can recognize specific glycoconjugate receptors on host cells. Of particular interest are the FimH and PapG fimbriae, which bind to mannosylated glycoproteins and glycolipids of the galabiose series, respectively. Therefore, blocking FimH- and PapG-mediated bacterial adhesion to uroepithelial cells by high-affinity carbohydrate antagonists constitutes a challenging therapeutic target of high interest. This is of particular interest since bacterial adhesion to host cells is a parameter unlikely to be the subject of bacterial mutations without affecting the carbohydrate ligand binding interactions at the basis of the recognition and infection processes. To date, there have been several families of potent FimH antagonists that include natural O-linked as well as unnatural analogues of α-d-mannopyranosides. These observations led to a thorough understanding of the intimate binding site interactions that helped to reveal the so-called "tyrosine gate mechanism" at the origin of the strong necessary interactions with sugar-possessing hydrophobic aglycones. By modification of the aglycones of single monosaccharidic d-mannopyranosides, it was possible to replace the natural complex oligomannoside structure by simpler ones. An appealing and successful series of analogues have been disclosed, including nanomolecular architectures such as dendrimers, polymers, and liposomes. In addition, the data were compared to the above multivalent architectures and confirmed the possibility of working with small sugar candidates. This Account primarily concentrates on the most promising types of FimH inhibitors belonging to the family of α-C-linked mannopyranosides. However, one of the drawbacks associated with C-mannopyranosides has been that they were believed to be in the inverted chair conformation, which is obviously not recognized by the E. coli FimH. To decipher this situation, various synthetic approaches, conformational aspects, and restrictions are discussed using molecular modeling, high-field NMR spectroscopy, and X-ray analysis. These combined techniques pointed to the fact that several α-C-linked mannopyranosides do exist in the required 4C1 chair conformation. Ultimately, recent findings in this growing field of interest culminated in the identification of drug candidates that have reached clinical phase I.
Collapse
Affiliation(s)
- Leila Mousavifar
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
- INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
- INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec H7V 1B7, Canada
- Glycovax Pharma Inc., 424 Guy, Suite 202, Montréal, Québec H3J 1S6, Canada
| |
Collapse
|