1
|
Yoshida M, Oda M. Affinity Maturation for Antibody Engineering: The Critical Role of Residues on CDR Loops of Antibodies in Antigen Binding. Molecules 2025; 30:532. [PMID: 39942636 PMCID: PMC11819675 DOI: 10.3390/molecules30030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
During the course of affinity maturation, antibodies exhibit enhanced antigen-binding affinities by altering the amino acids in their variable regions. Understanding the structural basis of these antibodies can be beneficial for antibody engineering. We determined the crystal structures of single-chain Fv (scFv) antibodies against (4-hydroxy-3-nitrophenyl)acetyl, C6 and E11, which had undergone affinity maturation. Compared with germline-type antibodies, the affinity-matured antibodies with somatic hypermutation from Lys58 to Arg58 of the heavy chain located in the complementarity-determining region 2 (CDR2) seemed to be critical for increasing the antigen-binding affinity. E11 possessed a disulfide bond at the base of CDR3 in the heavy chain, which contributed to a further increase in its antigen-binding affinity compared with that of C6. In this study, we generated several mutant scFvs of C6 and E11 and analyzed their antigen-binding thermodynamics using isothermal titration calorimetry. The results indicated that the CDR conformations could adjust antigen-binding not only at the mutated sites but also at the surrounding residues. The analysis of folding thermodynamics showed that the stability of the affinity-matured antibodies was lower than that of the germline-type antibodies and remarkably increased upon strong antigen binding. The results also indicated that the structural dynamics of the affinity-matured antibodies were greater than those of the germline-type antibodies and decreased upon antigen binding.
Collapse
Affiliation(s)
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
2
|
Shimizu T, Sun L, Ohnishi K. Influence of pre-B cell receptor deficiency on the immunoglobulin repertoires in peripheral blood B cells before and after immunization. Mol Immunol 2024; 166:87-100. [PMID: 38271880 DOI: 10.1016/j.molimm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
During B cell development, pre-B cell receptor (pre-BCR), comprising the immunoglobulin heavy chain (HC) and surrogate light chain (SLC), plays a crucial role. The expression of pre-BCR serves as a certification of HC quality, confirming its ability to associate with the SLC and light chain (LC). In mice lacking SLC, the absence of this quality control mechanism leads to a distorted repertoire of HCs in the spleen and bone marrow. In this study, we conducted a comparative analysis of the immunoglobulin gene repertoire in peripheral blood cells of both wild-type mice and pre-BCR-deficient mice. Our findings reveal differences not only in the μ HC repertoire but also in the α HC and κ LC repertoires of the pre-BCR-deficient mice. These results suggest that the pre-BCR-mediated quality check of HC influences the selection of class-switched HC and LC repertoires. To further explore the impact of pre-BCR deficiency, we immunized these mice with thymus-dependent antigens and compared the antigen-responding repertoires. Our observations indicate that the affinity maturation pathways remain consistent between wild-type mice and pre-BCR-deficient mice, albeit with variations in the degree of maturation.
Collapse
Affiliation(s)
- Takeyuki Shimizu
- Department of Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan.
| | - Lin Sun
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Kazuo Ohnishi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| |
Collapse
|
3
|
Vieira MC, Palm AKE, Stamper CT, Tepora ME, Nguyen KD, Pham TD, Boyd SD, Wilson PC, Cobey S. Germline-encoded specificities and the predictability of the B cell response. PLoS Pathog 2023; 19:e1011603. [PMID: 37624867 PMCID: PMC10484431 DOI: 10.1371/journal.ppat.1011603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Antibodies result from the competition of B cell lineages evolving under selection for improved antigen recognition, a process known as affinity maturation. High-affinity antibodies to pathogens such as HIV, influenza, and SARS-CoV-2 are frequently reported to arise from B cells whose receptors, the precursors to antibodies, are encoded by particular immunoglobulin alleles. This raises the possibility that the presence of particular germline alleles in the B cell repertoire is a major determinant of the quality of the antibody response. Alternatively, initial differences in germline alleles' propensities to form high-affinity receptors might be overcome by chance events during affinity maturation. We first investigate these scenarios in simulations: when germline-encoded fitness differences are large relative to the rate and effect size variation of somatic mutations, the same germline alleles persistently dominate the response of different individuals. In contrast, if germline-encoded advantages can be easily overcome by subsequent mutations, allele usage becomes increasingly divergent over time, a pattern we then observe in mice experimentally infected with influenza virus. We investigated whether affinity maturation might nonetheless strongly select for particular amino acid motifs across diverse genetic backgrounds, but we found no evidence of convergence to similar CDR3 sequences or amino acid substitutions. These results suggest that although germline-encoded specificities can lead to similar immune responses between individuals, diverse evolutionary routes to high affinity limit the genetic predictability of responses to infection and vaccination.
Collapse
Affiliation(s)
- Marcos C. Vieira
- Department of Ecology and Evolution, University of Chicago, Chicago, United States of America
| | - Anna-Karin E. Palm
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, United States of America
| | - Christopher T. Stamper
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Committee on Immunology, University of Chicago, Chicago, United States of America
| | - Micah E. Tepora
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, United States of America
| | - Khoa D. Nguyen
- Department of Pathology, Stanford University School of Medicine, Stanford, United States of America
| | - Tho D. Pham
- Department of Pathology, Stanford University School of Medicine, Stanford, United States of America
| | - Scott D. Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, United States of America
| | - Patrick C. Wilson
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, United States of America
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York City, United States of America
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, United States of America
| |
Collapse
|
4
|
Hägglöf T, Cipolla M, Loewe M, Chen ST, Mesin L, Hartweger H, ElTanbouly MA, Cho A, Gazumyan A, Ramos V, Stamatatos L, Oliveira TY, Nussenzweig MC, Viant C. Continuous germinal center invasion contributes to the diversity of the immune response. Cell 2023; 186:147-161.e15. [PMID: 36565698 PMCID: PMC9825658 DOI: 10.1016/j.cell.2022.11.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Antibody responses are characterized by increasing affinity and diversity over time. Affinity maturation occurs in germinal centers by a mechanism that involves repeated cycles of somatic mutation and selection. How antibody responses diversify while also undergoing affinity maturation is not as well understood. Here, we examined germinal center (GC) dynamics by tracking B cell entry, division, somatic mutation, and specificity. Our experiments show that naive B cells continuously enter GCs where they compete for T cell help and undergo clonal expansion. Consistent with late entry, invaders carry fewer mutations but can contribute up to 30% or more of the cells in late-stage germinal centers. Notably, cells entering the germinal center at later stages of the reaction diversify the immune response by expressing receptors that show low affinity to the immunogen. Paradoxically, the affinity threshold for late GC entry is lowered in the presence of high-affinity antibodies.
Collapse
Affiliation(s)
- Thomas Hägglöf
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Maximilian Loewe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Spencer T Chen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mohamed A ElTanbouly
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA.
| | - Charlotte Viant
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
5
|
Sugiyama Y, Fujiwara M, Sakamoto A, Tsushima H, Nishikimi A, Maruyama M. The immunosenescence-related factor DOCK11 is involved in secondary immune responses of B cells. Immun Ageing 2022; 19:2. [PMID: 34980182 PMCID: PMC8722084 DOI: 10.1186/s12979-021-00259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Memory B cells are an antigen-experienced B-cell population with the ability to rapidly differentiate into antibody-producing cells by recall responses. We recently found that dedicator of cytokinesis 11 (DOCK11) contributes to the expansion of antigen-specific populations among germinal center B cells upon immunization. In comparison, limited information is available on the contribution of DOCK11 to secondary humoral immune responses.
Results
In this study, effects of the DOCK11 deficiency in B cells were examined on secondary immune responses to protein antigen. The lack of DOCK11 in B cells resulted in the impaired induction of antibody-producing cells upon secondary immunization with protein antigen. DOCK11 was dispensable for the recall responses of antigen-experienced B cells, as demonstrated by the comparable induction of antibody-producing cells in mice given transfer of antigen-experienced B cells with no DOCK11 expression. Instead, the lack of DOCK11 in B cells resulted in the impaired secondary immune responses in a B cell-extrinsic manner, which was recovered by the adoptive transfer of cognate T cells.
Conclusions
We addressed that intrinsic and extrinsic effects of DOCK11 expression in B cells may contribute to secondary humoral immune responses in manner of the induction of cognate T-cell help.
Collapse
|
6
|
A Trade-off Between Thermostability and Binding Affinity of Anti-(4-hydroxy-3-nitrophenyl)Acetyl Antibodies During the Course of Affinity Maturation. Protein J 2022; 41:293-303. [DOI: 10.1007/s10930-022-10053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
7
|
Meyer SJ, Steffensen M, Acs A, Weisenburger T, Wadewitz C, Winkler TH, Nitschke L. CD22 Controls Germinal Center B Cell Receptor Signaling, Which Influences Plasma Cell and Memory B Cell Output. THE JOURNAL OF IMMUNOLOGY 2021; 207:1018-1032. [PMID: 34330755 DOI: 10.4049/jimmunol.2100132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022]
Abstract
Germinal center reactions are established during a thymus-dependent immune response. Germinal center (GC) B cells are rapidly proliferating and undergo somatic hypermutation in Ab genes. This results in the production of high-affinity Abs and establishment of long-lived memory cells. GC B cells show lower BCR-induced signaling when compared with naive B cells, but the functional relevance is not clear. CD22 is a member of the Siglec family and functions as an inhibitory coreceptor on B cells. Interestingly, GC B cells downregulate sialic acid forms that serve as high-affinity ligands for CD22, indicating a role for CD22 ligand binding during GC responses. We studied the role of CD22 in the GC with mixed bone marrow chimeric mice and found a disadvantage of CD22-/- GC B cells during the GC reaction. Mechanistic investigations ruled out defects in dark zone/light zone distribution and affinity maturation. Rather, an increased rate of apoptosis in CD22-/- GC B cells was responsible for the disadvantage, also leading to a lower GC output in plasma cells and memory B cells. CD22-/- GC B cells showed a clearly increased calcium response upon BCR stimulation, which was almost absent in wild-type GC B cells. We conclude that the differential expression of the low-affinity cis CD22 ligands in the GC normally results in a strong attenuation of BCR signaling in GC B cells, probably due to higher CD22-BCR interactions. Therefore, attenuation of BCR signaling by CD22 is involved in GC output and B cell fate.
Collapse
Affiliation(s)
- Sarah J Meyer
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Marie Steffensen
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Andreas Acs
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Thomas Weisenburger
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Charlotte Wadewitz
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Thomas H Winkler
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Bello A, Jungnickel B. Impact of Chk1 dosage on somatic hypermutation in vivo. Immunol Cell Biol 2021; 99:879-893. [PMID: 34042197 DOI: 10.1111/imcb.12480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/19/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Checkpoint signaling in the context of a functional DNA damage response is crucial for the prevention of oncogenic transformation of cells. Our immune system, though, takes the risk of attenuated checkpoint responses during immunoglobulin diversification. B cells undergo continuous DNA damage and error-prone repair of their immunoglobulin genes during the process of somatic hypermutation. An accompanying attenuation of the DNA damage response via the ATR-Chk1 axis in B cells is believed to allow for a better DNA damage tolerance and for evasion of apoptosis, so as to ensure mutations to be passed on. We sought to determine whether the downregulation of Chk1 could also directly influence the process of hypermutation in vivo by altering the relative activity of error-prone DNA repair pathways. We analyzed the humoral response and the hypermutation process in mice whose B cells express reduced levels of the Chk1 protein. We found that Chk1 heterozygosity limits the accumulation of mutations in the immunoglobulin loci, likely by impacting on the survival of B cells as they accumulate DNA damage. Nevertheless, we unveiled an unanticipated role for Chk1 downregulation in favoring A/T mutagenesis at the antibody-variable regions during hypermutation. Even though immunoglobulin mutagenesis was found to be reduced, Chk1 signaling attenuation allows for sustained mutagenesis outside the immunoglobulin loci. Our study thus reveals that a proper Chk1 dosage is crucial for adequate somatic hypermutation in B cells.
Collapse
Affiliation(s)
- Amanda Bello
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
9
|
Wang J, Li T, Zan H, Rivera CE, Yan H, Xu Z. LUBAC Suppresses IL-21-Induced Apoptosis in CD40-Activated Murine B Cells and Promotes Germinal Center B Cell Survival and the T-Dependent Antibody Response. Front Immunol 2021; 12:658048. [PMID: 33953720 PMCID: PMC8089397 DOI: 10.3389/fimmu.2021.658048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
B cell activation by Tfh cells, i.e., through CD154 engagement of CD40 and IL-21, and survival within GCs are crucial for the T-dependent Ab response. LUBAC, composed of HOIP, SHARPIN, and HOIL-1, catalyzes linear ubiquitination (Linear M1-Ub) to mediate NF-κB activation and cell survival induced by TNF receptor superfamily members, which include CD40. As shown in this study, B cells expressing the Sharpin null mutation cpdm (Sharpincpdm) could undergo proliferation, CSR, and SHM in response to immunization by a T-dependent Ag, but were defective in survival within GCs, enrichment of a mutation enhancing the BCR affinity, and production of specific Abs. Sharpincpdm B cells stimulated in vitro with CD154 displayed normal proliferation and differentiation, marginally impaired NF-κB activation and survival, but markedly exacerbated death triggered by IL-21. While activating the mitochondria-dependent apoptosis pathway in both Sharpin+/+ and Sharpincpdm B cells, IL-21 induced Sharpincpdm B cells to undergo sustained activation of caspase 9 and caspase 8 of the mitochondria-dependent and independent pathway, respectively, and ultimately caspase 3 in effecting apoptosis. These were associated with loss of the caspase 8 inhibitor cFLIP and reduction in cFLIP Linear M1-Ub, which interferes with cFLIP poly-ubiquitination at Lys48 and degradation. Finally, the viability of Sharpincpdm B cells was rescued by caspase inhibitors but virtually abrogated – together with Linear M1-Ub and cFLIP levels – by a small molecule HOIP inhibitor. Thus, LUBAC controls the cFLIP expression and inhibits the effects of caspase 8 and IL-21-activated caspase 9, thereby suppressing apoptosis of CD40 and IL-21-activated B cells and promoting GC B cell survival.
Collapse
Affiliation(s)
- Jingwei Wang
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Division of Neonatology, Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tianbao Li
- Department of Molecular Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Carlos E Rivera
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Hui Yan
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Zhenming Xu
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
10
|
Chen H, Zhang Y, Ye AY, Du Z, Xu M, Lee CS, Hwang JK, Kyritsis N, Ba Z, Neuberg D, Littman DR, Alt FW. BCR selection and affinity maturation in Peyer's patch germinal centres. Nature 2020; 582:421-425. [PMID: 32499646 PMCID: PMC7478071 DOI: 10.1038/s41586-020-2262-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/28/2020] [Indexed: 12/23/2022]
Abstract
The antigen-binding variable regions of the B cell receptor (BCR) and of antibodies are encoded by exons that are assembled in developing B cells by V(D)J recombination1. The BCR repertoires of primary B cells are vast owing to mechanisms that create diversity at the junctions of V(D)J gene segments that contribute to complementarity-determining region 3 (CDR3), the region that binds antigen1. Primary B cells undergo antigen-driven BCR affinity maturation through somatic hypermutation and cellular selection in germinal centres (GCs)2,3. Although most GCs are transient3, those in intestinal Peyer's patches (PPs)-which depend on the gut microbiota-are chronic4, and little is known about their BCR repertoires or patterns of somatic hypermutation. Here, using a high-throughput assay that analyses both V(D)J segment usage and somatic hypermutation profiles, we elucidate physiological BCR repertoires in mouse PP GCs. PP GCs from different mice expand public BCR clonotypes (clonotypes that are shared between many mice) that often have canonical CDR3s in the immunoglobulin heavy chain that, owing to junctional biases during V(D)J recombination, appear much more frequently than predicted in naive B cell repertoires. Some public clonotypes are dependent on the gut microbiota and encode antibodies that are reactive to bacterial glycans, whereas others are independent of gut bacteria. Transfer of faeces from specific-pathogen-free mice to germ-free mice restored germ-dependent clonotypes, directly implicating BCR selection. We identified somatic hypermutations that were recurrently selected in such public clonotypes, indicating that affinity maturation occurs in mouse PP GCs under homeostatic conditions. Thus, persistent gut antigens select recurrent BCR clonotypes to seed chronic PP GC responses.
Collapse
Affiliation(s)
- Huan Chen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Yuxiang Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Adam Yongxin Ye
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Zhou Du
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Mo Xu
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
- The Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Cheng-Sheng Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Joyce K Hwang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Nia Kyritsis
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Zhaoqing Ba
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Donna Neuberg
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dan R Littman
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
- The Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- The Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Nishiguchi A, Numoto N, Ito N, Azuma T, Oda M. Three-dimensional structure of a high affinity anti-(4-hydroxy-3-nitrophenyl)acetyl antibody possessing a glycine residue at position 95 of the heavy chain. Mol Immunol 2019; 114:545-552. [DOI: 10.1016/j.molimm.2019.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
|
12
|
Schoeler K, Aufschnaiter A, Messner S, Derudder E, Herzog S, Villunger A, Rajewsky K, Labi V. TET enzymes control antibody production and shape the mutational landscape in germinal centre B cells. FEBS J 2019; 286:3566-3581. [PMID: 31120187 PMCID: PMC6851767 DOI: 10.1111/febs.14934] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
Upon activation by antigen, B cells form germinal centres where they clonally expand and introduce affinity-enhancing mutations into their B-cell receptor genes. Somatic mutagenesis and class switch recombination (CSR) in germinal centre B cells are initiated by the activation-induced cytidine deaminase (AID). Upon germinal centre exit, B cells differentiate into antibody-secreting plasma cells. Germinal centre maintenance and terminal fate choice require transcriptional reprogramming that associates with a substantial reconfiguration of DNA methylation patterns. Here we examine the role of ten-eleven-translocation (TET) proteins, enzymes that facilitate DNA demethylation and promote a permissive chromatin state by oxidizing 5-methylcytosine, in antibody-mediated immunity. Using a conditional gene ablation strategy, we show that TET2 and TET3 guide the transition of germinal centre B cells to antibody-secreting plasma cells. Optimal AID expression requires TET function, and TET2 and TET3 double-deficient germinal centre B cells show defects in CSR. However, TET2/TET3 double-deficiency does not prevent the generation and selection of high-affinity germinal centre B cells. Rather, combined TET2 and TET3 loss-of-function in germinal centre B cells favours C-to-T and G-to-A transition mutagenesis, a finding that may be of significance for understanding the aetiology of B-cell lymphomas evolving in conditions of reduced TET function.
Collapse
Affiliation(s)
- Katia Schoeler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Andreas Aufschnaiter
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Simon Messner
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Sebastian Herzog
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany
| | - Verena Labi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| |
Collapse
|
13
|
On being the right size: antibody repertoire formation in the mouse and human. Immunogenetics 2017; 70:143-158. [DOI: 10.1007/s00251-017-1049-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023]
|
14
|
Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class HIV-1 broadly neutralizing antibodies. Proc Natl Acad Sci U S A 2017; 114:8614-8619. [PMID: 28747530 DOI: 10.1073/pnas.1709203114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Variable regions of Ig chains provide the antigen recognition portion of B-cell receptors and derivative antibodies. Ig heavy-chain variable region exons are assembled developmentally from V, D, J gene segments. Each variable region contains three antigen-contacting complementarity-determining regions (CDRs), with CDR1 and CDR2 encoded by the V segment and CDR3 encoded by the V(D)J junction region. Antigen-stimulated germinal center (GC) B cells undergo somatic hypermutation (SHM) of V(D)J exons followed by selection for SHMs that increase antigen-binding affinity. Some HIV-1-infected human subjects develop broadly neutralizing antibodies (bnAbs), such as the potent VRC01-class bnAbs, that neutralize diverse HIV-1 strains. Mature VRC01-class bnAbs, including VRC-PG04, accumulate very high SHM levels, a property that hinders development of vaccine strategies to elicit them. Because many VRC01-class bnAb SHMs are not required for broad neutralization, high overall SHM may be required to achieve certain functional SHMs. To elucidate such requirements, we used a V(D)J passenger allele system to assay, in mouse GC B cells, sequence-intrinsic SHM-targeting rates of nucleotides across substrates representing maturation stages of human VRC-PG04. We identify rate-limiting SHM positions for VRC-PG04 maturation, as well as SHM hotspots and intrinsically frequent deletions associated with SHM. We find that mature VRC-PG04 has low SHM capability due to hotspot saturation but also demonstrate that generation of new SHM hotspots and saturation of existing hotspot regions (e.g., CDR3) does not majorly influence intrinsic SHM in unmutated portions of VRC-PG04 progenitor sequences. We discuss implications of our findings for bnAb affinity maturation mechanisms.
Collapse
|
15
|
Sato Y, Inaba S, Fukada H, Azuma T, Oda M. Pronounced effect of hapten binding on thermal stability of an anti-(4-hydroxy-3-nitrophenyl)acetyl antibody possessing a glycine residue at position 95 of the heavy chain. Mol Immunol 2017; 85:130-136. [DOI: 10.1016/j.molimm.2017.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 10/20/2022]
|
16
|
Kono N, Sun L, Toh H, Shimizu T, Xue H, Numata O, Ato M, Ohnishi K, Itamura S. Deciphering antigen-responding antibody repertoires by using next-generation sequencing and confirming them through antibody-gene synthesis. Biochem Biophys Res Commun 2017; 487:300-306. [PMID: 28412367 DOI: 10.1016/j.bbrc.2017.04.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/10/2017] [Indexed: 11/16/2022]
Abstract
Vast diversity and high specificity of antigen recognition by antibodies are hallmarks of the acquired immune system. Although the molecular mechanisms that yield the extremely large antibody repertoires are precisely understood, comprehensive description of the global antibody repertoire generated in individual bodies has been hindered by the lack of powerful measures. To obtain holistic understanding of the antibody-repertoire space, we used next-generation sequencing (NGS) to analyze the deep profiles of naive and antigen-responding repertoires of the IgM, IgG1, and IgG2c classes formed in individual mice. The overall landscapes of naive IgM repertoires were almost the same for each mouse, whereas those of IgG1 and IgG2c differed considerably among naive individuals. Next, we immunized mice with a model antigen, nitrophenol (NP)-hapten linked to chicken γ-globulin (CGG) carrier, and compared the antigen-responding repertoires in individual mice. To extract the complete antigen response, we developed an intelligible method for detecting common components of antigen-responding repertoires. The major responding antibodies were IGHV1-72/IGHD1-1/IGHJ2 for NP-hapten and IGHV9-3/IGHD3-1/IGHJ2 for CGG-carrier protein. The antigen-binding specificities of the identified antibodies were confirmed through ELISA after antibody-gene synthesis and expression of the corresponding NGS reads. Thus, we deciphered antigen-responding antibody repertoires by inclusively analyzing the antibody-repertoire space generated in individual bodies by using NGS, which avoided inadvertent omission of key antibody repertoires.
Collapse
Affiliation(s)
- Naoko Kono
- Center for Influenza Virus Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Lin Sun
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroyuki Toh
- School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Takeyuki Shimizu
- Department of Immunology, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Hanbing Xue
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Osamu Numata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kazuo Ohnishi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | - Shigeyuki Itamura
- Center for Influenza Virus Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
17
|
Essential role of immobilized chemokine CXCL12 in the regulation of the humoral immune response. Proc Natl Acad Sci U S A 2017; 114:2319-2324. [PMID: 28193885 DOI: 10.1073/pnas.1611958114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemokines control the migration of a large array of cells by binding to specific receptors on cell surfaces. The biological function of chemokines also depends on interactions between nonreceptor binding domains and proteoglycans, which mediate chemokine immobilization on cellular or extracellular surfaces and formation of fixed gradients. Chemokine gradients regulate synchronous cell motility and integrin-dependent cell adhesion. Of the various chemokines, CXCL12 has a unique structure because its receptor-binding domain is distinct and does not overlap with the immobilization domains. Although CXCL12 is known to be essential for the germinal center (GC) response, the role of its immobilization in biological functions has never been addressed. In this work, we investigated the unexplored paradigm of CXCL12 immobilization during the germinal center reaction, a fundamental process where cellular traffic is crucial for the quality of humoral immune responses. We show that the structure of murine germinal centers and the localization of GC B cells are impaired when CXCL12 is unable to bind to cellular or extracellular surfaces. In such mice, B cells carry fewer somatic mutations in Ig genes and are impaired in affinity maturation. Therefore, immobilization of CXCL12 is necessary for proper trafficking of B cells during GC reaction and for optimal humoral immune responses.
Collapse
|
18
|
Daugan M, Murira A, Mindt BC, Germain A, Tarrab E, Lapierre P, Fritz JH, Lamarre A. Type I Interferon Impairs Specific Antibody Responses Early during Establishment of LCMV Infection. Front Immunol 2016; 7:564. [PMID: 27994594 PMCID: PMC5136549 DOI: 10.3389/fimmu.2016.00564] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/22/2016] [Indexed: 12/29/2022] Open
Abstract
Elicitation of type I interferon (IFN-I) has been shown to both enhance and impair cell-mediated immune responses in acute and persistent viral infections, respectively. Here, we show that, in addition to its effect on T cells, IFN-I drives impairment of specific antibody responses through interaction with B cells in the acute phase of lymphocytic choriomeningitis virus (LCMV) infection. This impairment was limited to the T cell-dependent B cell response and was associated with disruption of B cell follicles, development of hypergammaglobulinemia (HGG), and expansion of the T follicular helper cell population. Antigen-specific antibody responses were restored by ablation of IFN-I signaling through antibody-mediated IFN-I receptor blockade and B cell-specific IFN-I receptor knockout. Importantly, IFN-I receptor deficiency in B cells also accelerated the development of LCMV neutralizing antibodies and alleviated HGG. These results provide a potential therapeutic target toward efficient treatment measures that limit immunopathology in persistent viral infections.
Collapse
Affiliation(s)
- Matthieu Daugan
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Armstrong Murira
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Barbara C. Mindt
- Complex Traits Group, Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Amélie Germain
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Esther Tarrab
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Pascal Lapierre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Jörg H. Fritz
- Complex Traits Group, Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Complex Traits Group, Department of Physiology, McGill University, Montréal, QC, Canada
| | - Alain Lamarre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
19
|
Lütkecosmann S, Warsinke A, Tschöpe W, Eichler R, Hanack K. A novel monoclonal antibody suitable for the detection of leukotriene B4. Biochem Biophys Res Commun 2016; 482:1054-1059. [PMID: 27913298 DOI: 10.1016/j.bbrc.2016.11.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022]
Abstract
Leukotriene B4 as an inflammatory mediator is an important biomarker for different respiratory diseases like asthma, chronic obstructive pulmonary disease or cystic lung fibrosis. Therefore the detection of LTB4 is helpful in the diagnosis of these pulmonary diseases. However, until now its determination in exhaled breath condensates suffers from problems of accuracy. Reasons for that could be improper sample collection and preparation methods of condensates and the lack of consistently assay specificity and reproducibility of the used immunoassay detection system. In this study we describe the development and the characterization of a specific monoclonal antibody (S27BC6) against LTB4, its use as molecular recognition element for the development of an enzyme-linked immunoassay to detect LTB4 and discuss possible future diagnostic applications.
Collapse
Affiliation(s)
- Steffi Lütkecosmann
- Chair of Immunotechnology, Department of Biotechnology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| | - Axel Warsinke
- FILT GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | - Katja Hanack
- Chair of Immunotechnology, Department of Biotechnology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany.
| |
Collapse
|
20
|
Id3 Orchestrates Germinal Center B Cell Development. Mol Cell Biol 2016; 36:2543-52. [PMID: 27457619 DOI: 10.1128/mcb.00150-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/18/2016] [Indexed: 11/20/2022] Open
Abstract
Previous studies have demonstrated that E proteins induce activation-induced deaminase (AID) expression in activated B cells. Here, we examined the role of Id3 in germinal center (GC) cells. We found that Id3 expression is high in follicular B lineage cells but declines in GC cells. Immunized mice with Id3 expression depleted displayed a block in germinal center B cell maturation, showed reduced numbers of marginal zone B cells and class-switched cells, and were associated with decreased antibody titers and lower numbers of plasma cells. In vitro, Id3-depleted B cells displayed a defect in class switch recombination. Whereas AID levels were not altered in Id3-depleted activated B cells, the expression of a subset of genes encoding signaling components of antigen receptor-, cytokine receptor-, and chemokine receptor-mediated signaling was significantly impaired. We propose that during the GC reaction, Id3 levels decline to activate the expression of genes encoding signaling components that mediate B cell receptor- and or cytokine receptor-mediated signaling to promote the differentiation of GC B cells.
Collapse
|
21
|
Shinnakasu R, Inoue T, Kometani K, Moriyama S, Adachi Y, Nakayama M, Takahashi Y, Fukuyama H, Okada T, Kurosaki T. Regulated selection of germinal-center cells into the memory B cell compartment. Nat Immunol 2016; 17:861-9. [DOI: 10.1038/ni.3460] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/07/2016] [Indexed: 12/11/2022]
|
22
|
Henry Dunand CJ, Wilson PC. Restricted, canonical, stereotyped and convergent immunoglobulin responses. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0238. [PMID: 26194752 DOI: 10.1098/rstb.2014.0238] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is becoming evident that B-cell responses to particular epitopes or in particular contexts can be highly convergent at the molecular level. That is, depending on the epitope targeted, persons of diverse genetic backgrounds and immunological histories can use highly similar, stereotyped B-cell receptors (BCRs) for a particular response. In some cases, multiple people with immunity to a particular epitope or with a type of B-cell neoplasia will elicit antibodies encoded by essentially identical immunoglobulin gene rearrangements. In other cases, particular VH genes encode antibodies important for immunity against pathogens such as influenza and HIV. It appears that the conserved antibody structures driving these stereotyped responses are highly limited and selected. There are interesting and important convergences in the types of stereotyped BCRs induced in conditions of immunity and B-cell-related pathology such as cancer and autoimmunity. By characterizing and understanding stereotyped B-cell responses, novel approaches to B-cell immunity and in understanding the underlying causes of B-cell pathology may be discovered. In this paper, we will review stereotyped BCR responses in various contexts of B-cell immunity and pathology.
Collapse
Affiliation(s)
- Carole J Henry Dunand
- Department of Medicine, Section of Rheumatology, Knapp Center for Lupus and Immunology Research, Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, Knapp Center for Lupus and Immunology Research, Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Montamat-Sicotte D, Liztler LC, Abreu C, Safavi S, Zahn A, Orthwein A, Muschen M, Oppezzo P, Muñoz DP, Di Noia JM. HSP90 inhibitors decrease AID levels and activity in mice and in human cells. Eur J Immunol 2015; 45:2365-76. [PMID: 25912253 PMCID: PMC4536124 DOI: 10.1002/eji.201545462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/26/2015] [Accepted: 04/25/2015] [Indexed: 01/25/2023]
Abstract
Activation induced deaminase (AID) initiates somatic hypermutation and class switch recombination of the Ig genes in antigen-activated B cells, underpinning antibody affinity maturation and isotype switching. AID can also be pathogenic by contributing to autoimmune diseases and oncogenic mutations. Moreover, AID can exert noncanonical functions when aberrantly expressed in epithelial cells. The lack of specific inhibitors prevents therapeutic applications to modulate AID functions. Here, we have exploited our previous finding that the HSP90 molecular chaperoning pathway stabilizes AID in B cells, to test whether HSP90 inhibitors could target AID in vivo. We demonstrate that chronic administration of HSP90 inhibitors decreases AID protein levels and isotype switching in immunized mice. HSP90 inhibitors also reduce disease severity in a mouse model of acute B-cell lymphoblastic leukemia in which AID accelerates disease progression. We further show that human AID protein levels are sensitive to HSP90 inhibition in normal and leukemic B cells, and that HSP90 inhibition prevents AID-dependent epithelial to mesenchymal transition in a human breast cancer cell line in vitro. Thus, we provide proof-of-concept that HSP90 inhibitors indirectly target AID in vivo and that endogenous human AID is widely sensitive to them, which could have therapeutic applications.
Collapse
Affiliation(s)
| | - Ludivine C Liztler
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
| | - Cecilia Abreu
- Research Laboratory on Chronic Lymphocytic Leukemia, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Shiva Safavi
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | | | - Markus Muschen
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco,USA
| | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Denise P Muñoz
- UCSF Benioff Children’s Hospital and Research Institute at Oakland, Oakland, USA
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| |
Collapse
|
24
|
Shimizu T, Azuma T. Detection and isolation of anti-hapten antibody-secreting cells by cellular affinity matrix technology. J Immunol Methods 2015; 422:80-6. [PMID: 25896213 DOI: 10.1016/j.jim.2015.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 11/17/2022]
Abstract
We developed a method to detect and isolate plasma cells that produce antigen-specific antibodies. An affinity matrix of hapten was constructed on a cell surface, and subsequent incubation allowed cells to secrete antibodies. Anti-hapten antibodies preferentially bound to the affinity matrix on the cells from which they were secreted. We showed that the combination of surface biotinylation and streptavidin which was conjugated with a high valence of hapten was suitable for sensitive detection of antibody binding. Using this protocol, anti-hapten plasma cells from immunized mouse spleen were detected and enriched by flow cytometry. This method allows for isolation of intact plasma cells according to the antibody specificity and may be useful for highly efficient and precise analysis of an antibody repertoire.
Collapse
Affiliation(s)
- Takeyuki Shimizu
- Department of Immunology, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku, Kochi 783-8505, Japan.
| | - Takachika Azuma
- Laboratory of Structural Immunology, Division of Bioinformatics, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Yamazaki, Noda, Chiba 278-0022, Japan.
| |
Collapse
|
25
|
Matsuda T, Yanase S, Takaoka A, Maruyama M. The immunosenescence-related gene Zizimin2 is associated with early bone marrow B cell development and marginal zone B cell formation. Immun Ageing 2015; 12:1. [PMID: 25729399 PMCID: PMC4343071 DOI: 10.1186/s12979-015-0028-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/24/2015] [Indexed: 12/24/2022]
Abstract
We originally cloned and identified murine Zizimin2 (Ziz2, Dock11) as a guanine nucleotide exchange factor (GEF) for Cdc42 and demonstrated that it activated the formation of filopodia. Since its expression pattern is restricted in immune tissues and Rho GTPases such as Cdc42 function in B cell development and immune responses, we expected Ziz2 to also be associated with B cell development and immune responses. However, the function of Ziz2 has not yet been fully examined in vivo. We also recently discovered that Ziz2 expression levels in immune tissues were reduced with aging in the mouse, suggesting that its expression is also associated with the mechanisms of immuno-senescence. To gain insights into the mechanisms underlying immuno-senescence, we generated Ziz2 knock out (KO) mice and examined the functions of Ziz2 in B cell development and immune responses. We also obtained Zizimin3 (Ziz3; Dock10) KO mice and examined the functions of Ziz3. The results revealed that Ziz2 KO mice had a higher percentage of early bone marrow B cells (Fraction A), but a reduced fraction of marginal zone (MZ) B cells. In addition, an examination of B cell-specific Ziz2 KO mice revealed that Ziz2 was intrinsically required for MZ B cell development, but not for mature follicular B cells. However, immune responses against NP-CGG (T cell-dependent), TNP-LPS (T cell-independent, TI, type I), and TNP-Ficoll (TI, type II) were not altered in KO mice. We finally demonstrated that CD1d-positive MZ B cell region outside CD169-positive marginal metallophilic macrophages (MMM) was narrowed in Ziz2 KO mice. Furthermore, MMM morphology appeared to be altered in Ziz2 KO mice. In conclusion, we herein showed that Ziz2 was associated with early bone marrow B cell development, MZ B cell formation, MZ B number/localization around MZ, and MMM morphology which may explain in part the mechanism underlying immuno-senescence.
Collapse
Affiliation(s)
- Takenori Matsuda
- />Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi 474-8511 Japan
| | - Shougo Yanase
- />Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi 474-8511 Japan
| | - Akinori Takaoka
- />Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita15 Nishi7, Kita-ku, Sapporo 060-0815 Japan
| | - Mitsuo Maruyama
- />Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi 474-8511 Japan
| |
Collapse
|
26
|
Hu J, Oda SK, Shotts K, Donovan EE, Strauch P, Pujanauski LM, Victorino F, Al-Shami A, Fujiwara Y, Tigyi G, Oravecz T, Pelanda R, Torres RM. Lysophosphatidic acid receptor 5 inhibits B cell antigen receptor signaling and antibody response. THE JOURNAL OF IMMUNOLOGY 2014; 193:85-95. [PMID: 24890721 DOI: 10.4049/jimmunol.1300429] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lysophospholipids have emerged as biologically important chemoattractants capable of directing lymphocyte development, trafficking, and localization. Lysophosphatidic acid (LPA) is a major lysophospholipid found systemically, and its levels are elevated in certain pathological settings, such as cancer and infections. In this study, we demonstrate that BCR signal transduction by mature murine B cells is inhibited upon LPA engagement of the LPA5 (GPR92) receptor via a Gα12/13-Arhgef1 pathway. The inhibition of BCR signaling by LPA5 manifests by impaired intracellular calcium store release and most likely by interfering with inositol 1,4,5-triphosphate receptor activity. We further show that LPA5 also limits Ag-specific induction of CD69 and CD86 expression and that LPA5-deficient B cells display enhanced Ab responses. Thus, these data show that LPA5 negatively regulates BCR signaling, B cell activation, and immune response. Our findings extend the influence of lysophospholipids on immune function and suggest that alterations in LPA levels likely influence adaptive humoral immunity.
Collapse
Affiliation(s)
- Jiancheng Hu
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Shannon K Oda
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Kristin Shotts
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Erin E Donovan
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Pamela Strauch
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Lindsey M Pujanauski
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Francisco Victorino
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Amin Al-Shami
- Lexicon Pharmaceuticals, Inc, The Woodlands, TX, 77381 USA.,Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yuko Fujiwara
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Gabor Tigyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tamas Oravecz
- Lexicon Pharmaceuticals, Inc, The Woodlands, TX, 77381 USA
| | - Roberta Pelanda
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Raul M Torres
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
27
|
Murakami A, Moriyama H, Osako-Kabasawa M, Endo K, Nishimura M, Udaka K, Muramatsu M, Honjo T, Azuma T, Shimizu T. Low-affinity IgM antibodies lacking somatic hypermutations are produced in the secondary response of C57BL/6 mice to (4-hydroxy-3-nitrophenyl)acetyl hapten. Int Immunol 2013; 26:195-208. [PMID: 24285827 DOI: 10.1093/intimm/dxt057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Class-switched memory B cells, which are generated through the processes of somatic hypermutation (SHM) and affinity-based selection in germinal centers, contribute to the production of affinity-matured IgG antibodies in the secondary immune response. However, changes in the affinity of IgM antibodies during the immune response have not yet been studied, although IgM(+) memory B cells have been shown to be generated. In order to understand the relationship between IgM affinity and the recall immune response, we prepared hybridomas producing anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) IgM antibodies from C57BL/6 mice and from activation-induced cytidine deaminase (AID)-deficient mice. Binding analysis by ELISA showed that mAbs obtained from the secondary immune response contained IgM mAbs with affinity lower than the affinity of mAbs obtained from the primary response. By analyzing sequences of the IgM genes of hybridomas and plasma cells, we found many unmutated VH genes. VH genes that had neither tyrosine nor glycine at position 95 were frequent. The repertoire change may correlate with the lower affinity of IgM antibodies in the secondary response. The sequence and affinity changes in IgM antibodies were shown to be independent of SHM by analyzing hybridomas from AID-deficient mice. A functional assay revealed a reciprocal relationship between affinity and complement-dependent hemolytic activity toward NP-conjugated sheep RBCs; IgM antibodies with lower affinities had higher hemolytic activity. These findings indicate that lower affinity IgM antibodies with enhanced complement activation function are produced in the secondary immune response.
Collapse
Affiliation(s)
- Akikazu Murakami
- Laboratory of Structural Immunology, Division of Bioinformatics, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kaji T, Furukawa K, Ishige A, Toyokura I, Nomura M, Okada M, Takahashi Y, Shimoda M, Takemori T. Both mutated and unmutated memory B cells accumulate mutations in the course of the secondary response and develop a new antibody repertoire optimally adapted to the secondary stimulus. Int Immunol 2013; 25:683-95. [PMID: 24021876 DOI: 10.1093/intimm/dxt030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High-affinity memory B cells are preferentially selected during secondary responses and rapidly differentiate into antibody-producing cells. However, it remains unknown whether only high-affinity, mutated memory B cells simply expand to dominate the secondary response or if in fact memory B cells with a diverse VH repertoire, including those with no mutations, accumulate somatic mutations to create a new repertoire through the process of affinity maturation. In this report, we took a new approach to address this question by analyzing the VH gene repertoire of IgG1(+) memory B cells before and after antigen re-exposure in a host unable to generate IgG(+) B cells. We show here that both mutated and unmutated IgG1(+) memory B cells respond to secondary challenge and expand while accumulating somatic mutations in their VH genes in a stepwise manner. Both types of memory cells subsequently established a VH gene repertoire dominated by two major clonotypes, which are distinct from the original repertoire before antigen re-exposure. In addition, heavily mutated memory B cells were excluded from the secondary repertoire. Thus, both mutated and unmutated IgG1(+) memory cells equally contribute to establish a new antibody repertoire through a dynamic process of mutation and selection, becoming optimally adapted to the recall challenge.
Collapse
Affiliation(s)
- Tomohiro Kaji
- Laboratory for Immunological Memory, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zahn A, Daugan M, Safavi S, Godin D, Cheong C, Lamarre A, Di Noia JM. Separation of function between isotype switching and affinity maturation in vivo during acute immune responses and circulating autoantibodies in UNG-deficient mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:5949-60. [PMID: 23667108 DOI: 10.4049/jimmunol.1202711] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Activation-induced deaminase converts deoxycytidine to deoxyuridine at the Ig loci. Complementary pathways, initiated by the uracil-DNA glycosylase (UNG) or the mismatch repair factor MSH2/MSH6, must process the deoxyuridine to initiate class-switch recombination (CSR) and somatic hypermutation. UNG deficiency most severely reduces CSR efficiency and only modestly affects the somatic hypermutation spectrum in vitro. This would predict isotype-switching deficiency but normal affinity maturation in Ung(-/-) mice in vivo, but this has not been tested. Moreover, puzzling differences in the amount of circulating Ig between UNG-deficient humans and mice make it unclear to what extent MSH2/MSH6 can complement for UNG in vivo. We find that Ab affinity maturation is indeed unaffected in Ung(-/-) mice, even allowing IgM responses with higher than normal affinity. Ung(-/-) mice display normal to only moderately reduced basal levels of most circulating Ig subclasses and gut-associated IgA, which are elicited in response to chronically available environmental Ag. In contrast, their ability to produce switched Ig in response to immunization or vesicular stomatitis virus infection is strongly impaired. Our results uncover a specific need for UNG in CSR for timely and efficient acute Ab responses in vivo. Furthermore, Ung(-/-) mice provide a novel model for separating isotype switching and affinity maturation during acute (but not chronic) Ab responses, which could be useful for dissecting their relative contribution to some infections. Interestingly, Ung(-/-) mice present with circulating autoantibodies, suggesting that UNG may impinge on tolerance.
Collapse
Affiliation(s)
- Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Klaus Rajewsky
- Program in Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
31
|
Leung WH, Tarasenko T, Biesova Z, Kole H, Walsh ER, Bolland S. Aberrant antibody affinity selection in SHIP-deficient B cells. Eur J Immunol 2012; 43:371-81. [PMID: 23135975 DOI: 10.1002/eji.201242809] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/18/2012] [Accepted: 11/02/2012] [Indexed: 01/01/2023]
Abstract
The strength of the Ag receptor signal influences development and negative selection of B cells, and it might also affect B-cell survival and selection in the GC. Here, we have used mice with B-cell-specific deletion of the 5'-inositol phosphatase SHIP as a model to study affinity selection in cells that are hyperresponsive to Ag and cytokine receptor stimulation. In the absence of SHIP, B cells have lower thresholds for Ag- and interferon (IFN)-induced activation, resulting in augmented negative selection in the BM and enhanced B-cell maturation in the periphery. Despite a tendency to spontaneously downregulate surface IgM expression, SHIP deficiency does not alter anergy induction in response to soluble hen-egg lysozyme Ag in the MDA4 transgenic model. SHIP-deficient B cells spontaneously produce isotype-switched antibodies; however, they are poor responders in immunization and infection models. While SHIP-deficient B cells form GCs and undergo mutation, they are not properly selected for high-affinity antibodies. These results illustrate the importance of negative regulation of B-cell responses, as lower thresholds for B-cell activation promote survival of low affinity and deleterious receptors to the detriment of optimal Ab affinity maturation.
Collapse
Affiliation(s)
- Wai-Hang Leung
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | | |
Collapse
|
32
|
Dominguez-Sola D, Victora GD, Ying CY, Phan RT, Saito M, Nussenzweig MC, Dalla-Favera R. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat Immunol 2012; 13:1083-91. [PMID: 23001145 PMCID: PMC3711534 DOI: 10.1038/ni.2428] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/21/2012] [Indexed: 12/14/2022]
Abstract
After antigenic challenge, B cells enter the dark zone (DZ) of germinal centers (GCs) to proliferate and hypermutate their immunoglobulin genes. Mutants with greater affinity for the antigen are positively selected in the light zone (LZ) to either differentiate into plasma and memory cells or reenter the DZ. The molecular circuits that govern positive selection in the GC are not known. We show here that the GC reaction required biphasic regulation of expression of the cell-cycle regulator c-Myc that involved its transient induction during early GC commitment, its repression by Bcl-6 in DZ B cells and its reinduction in B cells selected for reentry into the DZ. Inhibition of c-Myc in vivo led to GC collapse, which indicated an essential role for c-Myc in GCs. Our results have implications for the mechanism of GC selection and the role of c-Myc in lymphomagenesis.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Cycle/genetics
- Cell Cycle/immunology
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Gene Expression Regulation
- Genes, Reporter
- Genes, myc/immunology
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/pathology
- Green Fluorescent Proteins
- Lymphoma/genetics
- Lymphoma/metabolism
- Lymphoma/pathology
- Mice
- Mice, Transgenic
- Proto-Oncogene Proteins c-bcl-6/genetics
- Proto-Oncogene Proteins c-bcl-6/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
| | - Gabriel D. Victora
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Carol Y. Ying
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Ryan T. Phan
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Masumichi Saito
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
33
|
Schelonka RL, Ivanov II, Vale AM, Dimmitt RA, Khaled M, Schroeder HW. Absence of N addition facilitates B cell development, but impairs immune responses. Immunogenetics 2011; 63:599-609. [PMID: 21660592 PMCID: PMC3181008 DOI: 10.1007/s00251-011-0543-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/24/2011] [Indexed: 12/02/2022]
Abstract
The programmed, stepwise acquisition of immunocompetence that marks the development of the fetal immune response proceeds during a period when both T cell receptor and immunoglobulin (Ig) repertoires exhibit reduced junctional diversity due to physiologic terminal deoxynucleotidyl transferase (TdT) insufficiency. To test the effect of N addition on humoral responses, we transplanted bone marrow from TdT-deficient (TdT(-/-)) and wild-type (TdT(+/+)) BALB/c mice into recombination activation gene 1-deficient BALB/c hosts. Mice transplanted with TdT(-/-) cells exhibited diminished humoral responses to the T-independent antigens α-1-dextran and (2,4,6-trinitrophenyl) hapten conjugated to AminoEthylCarboxymethyl-FICOLL, to the T-dependent antigens NP(19)CGG and hen egg lysozyme, and to Enterobacter cloacae, a commensal bacteria that can become an opportunistic pathogen in immature and immunocompromised hosts. An exception to this pattern of reduction was the T-independent anti-phosphorylcholine response to Streptococcus pneumoniae, which is normally dominated by the N-deficient T15 idiotype. Most of the humoral immune responses in the recipients of TdT(-/-) bone marrow were impaired, yet population of the blood with B and T cells occurred more rapidly. To further test the effect of N-deficiency on B cell and T cell population growth, transplanted TdT-sufficient and -deficient BALB/c IgM(a) and congenic TdT-sufficient CB17 IgM(b) bone marrow were placed in competition. TdT(-/-) cells demonstrated an advantage in populating the bone marrow, the spleen, and the peritoneal cavity. TdT deficiency, which characterizes fetal lymphocytes, thus appears to facilitate filling both central and peripheral lymphoid compartments, but at the cost of altered responses to a broad set of antigens.
Collapse
Affiliation(s)
- Robert L. Schelonka
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Present Address: Oregon Health and Science University, Portland, OR 97239 USA
| | - Ivaylo I. Ivanov
- Department of Microbiology, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
- Present Address: Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032 USA
| | - Andre M. Vale
- Department of Medicine, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
| | - Reed A. Dimmitt
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Mahnaz Khaled
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Harry W. Schroeder
- Department of Microbiology, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
- Department of Medicine, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
- Department of Genetics, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
| |
Collapse
|
34
|
Abstract
Apoptosis is crucial for immune system homeostasis, including selection and survival of long-lived antibody-forming cells and memory cells. The interactions between proapoptotic and pro-survival proteins of the Bcl-2 family are critical for this process. In this report, we show that expression of the proapoptotic BH3-only Bcl-2 family member Puma was selectively up-regulated on in vitro activation with antigens or mitogens of both human and mouse B cells. Puma expression coincided in vivo, with the prosurvival Bcl-2 family member Mcl-1 within the germinal centers and its expression correlates with the germinal center like phenotype of Burkitt lymphoma. Experiments performed in Puma-deficient mice revealed that Puma is essential for apoptosis of mitogen-activated B cells in vitro and for the control of memory B-cell survival. In conclusion, using both human and murine models, our data show that Puma has a major role in the T cell- dependent B-cell immune response. These data demonstrate that Puma is a major regulator of memory B lymphocyte survival and therefore a key molecule in the control of the immune response.
Collapse
|
35
|
High-resolution description of antibody heavy-chain repertoires in humans. PLoS One 2011; 6:e22365. [PMID: 21829618 PMCID: PMC3150326 DOI: 10.1371/journal.pone.0022365] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/20/2011] [Indexed: 11/19/2022] Open
Abstract
Antibodies' protective, pathological, and therapeutic properties result from their considerable diversity. This diversity is almost limitless in potential, but actual diversity is still poorly understood. Here we use deep sequencing to characterize the diversity of the heavy-chain CDR3 region, the most important contributor to antibody binding specificity, and the constituent V, D, and J segments that comprise it. We find that, during the stepwise D-J and then V-DJ recombination events, the choice of D and J segments exert some bias on each other; however, we find the choice of the V segment is essentially independent of both. V, D, and J segments are utilized with different frequencies, resulting in a highly skewed representation of VDJ combinations in the repertoire. Nevertheless, the pattern of segment usage was almost identical between two different individuals. The pattern of V, D, and J segment usage and recombination was insufficient to explain overlap that was observed between the two individuals' CDR3 repertoires. Finally, we find that while there are a near-infinite number of heavy-chain CDR3s in principle, there are about 3–9 million in the blood of an adult human being.
Collapse
|
36
|
Murakami A, Takahashi Y, Nishimura M, Shimizu T, Azuma T. The amino acid residue at position 95 and the third CDR region in the H chain determine the ceiling affinity and the maturation pathway of an anti-(4-hydroxy-3-nitrophenyl)acetyl antibody. Mol Immunol 2010; 48:48-58. [PMID: 20961619 DOI: 10.1016/j.molimm.2010.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 10/18/2022]
Abstract
Two groups of anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) Abs each possessing a different amino acid, Tyr or Gly, at position 95, appeared respectively at early and late stages of immunization. The early Abs predominantly harbored Tyr95 and were referred to as the Tyr95 type. These had ∼100-fold lower ceiling affinity than the late Abs harboring Gly95, which were referred to as the Gly95 type. We found that in order to raise affinity, the Tyr95 type utilized a mutation at position 33 in V(H), while the Gly95 type used multiple mutations in both V(H) and V(L), and that the effect of the mutations was reciprocal; the former mutation had a positive effect on Tyr95 type Abs but a negative effect on Gly95 type Abs, and vice versa. The reciprocal effect of these mutations on affinity enabled us to assess the type of Abs prepared by introducing 20 different amino acids at position 95. We found that Abs harboring Lys95, Arg95, Pro95, and Tyr95 belonged to the Tyr95 type and those with Ala95 and Gly95, to the Gly95 type. Since this dependency on the amino acid at position 95 was observed in H chains whose third CDR (CDR 3H) consisted of 9 amino acids and not 11, the CDR 3H region was also considered to play an important role in determining the maturation pathway and the magnitude of the ceiling affinity.
Collapse
Affiliation(s)
- Akikazu Murakami
- Research Institute for Biological Sciences (RIBS), Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | |
Collapse
|
37
|
Swanson CL, Wilson TJ, Strauch P, Colonna M, Pelanda R, Torres RM. Type I IFN enhances follicular B cell contribution to the T cell-independent antibody response. ACTA ACUST UNITED AC 2010; 207:1485-500. [PMID: 20566717 PMCID: PMC2901065 DOI: 10.1084/jem.20092695] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Humoral immunity to viruses and encapsulated bacteria is comprised of T cell-independent type 2 (TI-2) antibody responses that are characterized by rapid antibody production by marginal zone and B1 B cells. We demonstrate that toll-like receptor (TLR) ligands influence the TI-2 antibody response not only by enhancing the overall magnitude but also by skewing this response to one that is dominated by IgG isotypes. Importantly, TLR ligands facilitate this response by inducing type I interferon (IFN), which in turn elicits rapid and significant amounts of antigen-specific IgG2c predominantly from FO (follicular) B cells. Furthermore, we show that although the IgG2c antibody response requires B cell-autonomous IFN-alpha receptor signaling, it is independent of B cell-intrinsic TLR signaling. Thus, innate signals have the capacity to enhance TI-2 antibody responses by promoting participation of FO B cells, which then elaborate effective IgG anti-pathogen antibodies.
Collapse
Affiliation(s)
- Cristina L Swanson
- Integrated Department of Immunology, University of Colorado, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
38
|
Preferential localization of IgG memory B cells adjacent to contracted germinal centers. Proc Natl Acad Sci U S A 2010; 107:12192-7. [PMID: 20547847 DOI: 10.1073/pnas.1005443107] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has long been presumed that after leaving the germinal centers (GCs), memory B cells colonize the marginal zone or join the recirculating pool. Here we demonstrate the preferential localization of nitrophenol-chicken gamma-globulin-induced CD38(+)IgG1(+) memory B cells adjacent to contracted GCs in the spleen. The memory B cells in this region proliferated after secondary immunization, a response that was abolished by depletion of CD4(+) T cells. We also found that these IgG1(+) memory B cells could present antigen on their surface, and that this activity was required for their activation. These results implicate this peri-GC region as an important site for survival and reactivation of memory B cells.
Collapse
|
39
|
Zotos D, Coquet JM, Zhang Y, Light A, D'Costa K, Kallies A, Corcoran LM, Godfrey DI, Toellner KM, Smyth MJ, Nutt SL, Tarlinton DM. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. ACTA ACUST UNITED AC 2010; 207:365-78. [PMID: 20142430 PMCID: PMC2822601 DOI: 10.1084/jem.20091777] [Citation(s) in RCA: 616] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Germinal centers (GCs) are sites of B cell proliferation, somatic hypermutation, and selection of variants with improved affinity for antigen. Long-lived memory B cells and plasma cells are also generated in GCs, although how B cell differentiation in GCs is regulated is unclear. IL-21, secreted by T follicular helper cells, is important for adaptive immune responses, although there are conflicting reports on its target cells and mode of action in vivo. We show that the absence of IL-21 signaling profoundly affects the B cell response to protein antigen, reducing splenic and bone marrow plasma cell formation and GC persistence and function, influencing their proliferation, transition into memory B cells, and affinity maturation. Using bone marrow chimeras, we show that these activities are primarily a result of CD3-expressing cells producing IL-21 that acts directly on B cells. Molecularly, IL-21 maintains expression of Bcl-6 in GC B cells. The absence of IL-21 or IL-21 receptor does not abrogate the appearance of T cells in GCs or the appearance of CD4 T cells with a follicular helper phenotype. IL-21 thus controls fate choices of GC B cells directly.
Collapse
Affiliation(s)
- Dimitra Zotos
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wu Y, El Shikh MEM, El Sayed RM, Best AM, Szakal AK, Tew JG. IL-6 produced by immune complex-activated follicular dendritic cells promotes germinal center reactions, IgG responses and somatic hypermutation. Int Immunol 2009; 21:745-56. [PMID: 19461124 DOI: 10.1093/intimm/dxp041] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reports that follicular dendritic cells (FDCs) produce IL-6 prompted the hypotheses that immune complexes (ICs) induce FDCs to produce IL-6 and that FDC-IL-6 promotes germinal center (GC) reactions, somatic hypermutation (SHM) and IgG production. FDCs were activated in vitro by addition of ICs and FDC-IL-6 production was determined. Wild-type (WT) and IL-6 knockout (KO) mice, as well as chimeras with WT and IL-6 KO cells, were immunized with (4-hydroxy-3-nitrophenyl)-acetyl (NP)-chicken gamma globulin (CGG) and used to study anti-(4-hydroxy-3-iodo-5-nitrophenyl) acetyl (NIP) responses, GC formation and SHM in the VH186.2 gene segment in Ig-gamma. FDC-IL-6 increased when FDCs encountered ICs. At low immunogen dose, 1 microg NP-CGG per mouse, the IgG anti-NIP response in IL-6 KO mice was low and immunohistochemistry revealed a reduction in both the number and size of GCs. The physiological relevance of FDC-IL-6 was apparent in the chimeric mice where total splenocytes from WT mice were unable to provide the IL-6 needed for normal IgG and GC responses in IL-6 KO animals with IL-6-defective FDCs. Moreover, the rate of mutation decreased from 18 to 8.9 mutations per 1000 bases (P < 0.001) in WT versus IL-6 KO mice. Addition of anti-IL-6 to GC reactions in vitro reduced antibody levels and SHM from 3.5 to 0.65 mutations per 1000 bases (P < 0.02). Thus, the absence of FDC-IL-6 correlated with a reduction in SHM that coincided with the reduction in GCs and specific anti-NIP. This is the first study to document that ICs induce FDC-IL-6 and that FDC-derived IL-6 is physiologically relevant in generating optimal GC reactions, SHM and IgG levels.
Collapse
Affiliation(s)
- Yongzhong Wu
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
41
|
Exploration of factors affecting the onset and maturation course of follicular lymphoma through simulations of the germinal center. Bull Math Biol 2009; 71:1432-62. [PMID: 19412639 DOI: 10.1007/s11538-009-9408-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 02/10/2009] [Indexed: 10/20/2022]
Abstract
Genetic mutations frequently observed in human follicular lymphoma (FL) B-cells result in aberrant expression of the anti-apoptotic protein bcl-2 and surface immunoglobulins (Igs) which display one or more novel variable (V) region N-glycosylation motifs. In the present study, we develop a simulation model of the germinal center (GC) to explore how these mutations might influence the emergence and clonal expansion of key mutants which provoke FL development. The simulations employ a stochastic method for calculating the cellular dynamics, which incorporates actual IgV region sequences and a simplified hypermutation scheme. We first bring our simulations into agreement with experimental data for well-characterized normal and bcl-2(+) anti-hapten GC responses in mice to provide a model for understanding how bcl-2 expression leads to permissive selection and memory cell differentiation of weakly competitive B-cells. However, as bcl-2 expression in the GC alone is thought to be insufficient for FL development, we next monitor simulated IgV region mutations to determine the emergence times of key mutants displaying aberrant N-glycosylation motifs recurrently observed in human FL IgV regions. Simulations of 26 germline V(H) gene segments indicate that particular IgV regions have a dynamical selective advantage by virtue of the speed with which one or more of their key sites can generate N-glycosylation motifs upon hypermutation. Separate calculations attribute the high occurrence frequency of such IgV regions in FL to an ability to produce key mutants at a fast enough rate to overcome stochastic processes in the GC that hinder clonal expansion. Altogether, these simulations characterize three pathways for FL maturation through positively selected N-glycosylations, namely, via one of two key sites within germline V(H) region gene segments, or via a site in the third heavy chain complementarity-determining region (CDR-H3) that is generated from VDJ recombination.
Collapse
|
42
|
Chappell CP, Dauner J, Jacob* J. ONTOGENY OF THE SECONDARY ANTIBODY RESPONSE: ORIGINS AND CLONAL DIVERSITY. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 633:27-41. [DOI: 10.1007/978-0-387-79311-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
43
|
Teng G, Hakimpour P, Landgraf P, Rice A, Tuschl T, Casellas R, Papavasiliou FN. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 2008; 28:621-9. [PMID: 18450484 DOI: 10.1016/j.immuni.2008.03.015] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 02/06/2008] [Accepted: 03/04/2008] [Indexed: 12/18/2022]
Abstract
B lymphocytes perform somatic hypermutation and class-switch recombination (CSR) of the immunoglobulin locus to generate an antibody repertoire diverse in both affinity and function. These somatic diversification processes are catalyzed by activation-induced cytidine deaminase (AID), a potent DNA mutator whose expression and function are highly regulated. Here we show that AID was regulated posttranscriptionally by a lymphocyte-specific microRNA, miR-155. We found that miR-155 was upregulated in murine B lymphocytes undergoing CSR and that it targeted a conserved site in the 3'-untranslated region of the mRNA encoding AID. Disruption of this target site in vivo resulted in quantitative and temporal deregulation of AID expression, along with functional consequences for CSR and affinity maturation. Thus, miR-155, which has recently been shown to play important roles in regulating the germinal-center reaction, does so in part by directly downmodulating AID expression.
Collapse
Affiliation(s)
- Grace Teng
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Chappell CP, Jacob J. Germinal Center-Derived B Cell Memory. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 590:139-48. [PMID: 17191383 DOI: 10.1007/978-0-387-34814-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Craig P Chappell
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329, USA
| | | |
Collapse
|
45
|
Fischer SF, Bouillet P, O'Donnell K, Light A, Tarlinton DM, Strasser A. Proapoptotic BH3-only protein Bim is essential for developmentally programmed death of germinal center-derived memory B cells and antibody-forming cells. Blood 2007; 110:3978-84. [PMID: 17720882 PMCID: PMC2190612 DOI: 10.1182/blood-2007-05-091306] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
T cell-dependent B-cell immune responses induce germinal centers that are sites for expansion, diversification, and selection of antigen-specific B cells. During the immune response, antigen-specific B cells are removed in a process that favors the retention of cells with improved affinity for antigen, a cell death process inhibited by excess Bcl-2. In this study, we examined the role of the BH3-only protein Bim, an initiator of apoptosis in the Bcl-2-regulated pathway, in the programmed cell death accompanying an immune response. After immunization, Bim-deficient mice showed persistence of both memory B cells lacking affinity-enhancing mutations in their immunoglobulin genes and antibody-forming cells secreting low-affinity antibodies. This was accompanied by enhanced survival of both cell types in culture. We have identified for the first time the physiologic mechanisms for killing low-affinity antibody-expressing B cells in an immune response and have shown this to be dependent on the BH3-only protein Bim.
Collapse
Affiliation(s)
- Silke F Fischer
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Furukawa K, Shimizu T, Murakami A, Kono R, Nakagawa M, Sagawa T, Yamato I, Azuma T. Strategy for affinity maturation of an antibody with high evolvability to (4-hydroxy-3-nitrophenyl) acetyl hapten. Mol Immunol 2007; 44:2436-45. [PMID: 17118452 DOI: 10.1016/j.molimm.2006.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/13/2006] [Accepted: 10/19/2006] [Indexed: 10/23/2022]
Abstract
In order to quantitate the contribution of amino acid replacements to an increase in affinity during affinity maturation, we measured thermodynamic parameters of the antigen-antibody interaction for a group of anti-(4-hydroxy-3-nitrophenyl) acetyl monoclonal antibodies whose differences in amino acid sequences had arisen only from somatic hypermutation. We prepared a common ancestor and hypothetical intermediate clones that might occur on the affinity maturation pathway, by employing site-directed mutagenesis. Isothermal calorimetric titration of the antigen-antibody reaction revealed that antibody evolution proceeds in two steps. The first step is driven by a decrease in enthalpy, in which two amino acid replacements in the VL region play an essential role. Further accumulation of amino acid replacements in VH and VL regions during the second step induce a progressive increase in affinity, which is driven by an increase in entropy, which has a cooperative mutational effect.
Collapse
Affiliation(s)
- Koji Furukawa
- Age Dimension Research Center, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Källberg E, Leanderson T. Joining-chain (J-chain) negative mice are B cell memory deficient. Eur J Immunol 2006; 36:1398-403. [PMID: 16688681 DOI: 10.1002/eji.200635981] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The systemic immune response of joining-chain (J-chain)-deficient mice (J(-/-) mice) on a C57BL/6 background against the hapten 4-hydroxy-3-nitrophenyl (NP) was analysed. While primary IgG responses to the hapten were similar to those observed in WT control animals, secondary immune responses were compromised both at the level of serum IgG and the number of responding B cells. The repertoire switch from lambda to kappa in secondary immune responses was diminished in J(-/-) mice. The number of somatic mutations introduced in the V(H) 186.2 gene during the primary immune response was reduced, while the frequency of affinity-increasing mutations in position 33 was similar. By adoptive transfer experiments it could be shown that the compromised secondary immune response was transferred with T cells from J(-/-) mice. Thus, J-chain-deficient mice have a selective defect in T helper cell function during B cell immune responses, resulting in a deficiency in the formation of B cell memory.
Collapse
|
48
|
Chappell CP, Jacob J. Identification of memory B cells using a novel transgenic mouse model. THE JOURNAL OF IMMUNOLOGY 2006; 176:4706-15. [PMID: 16585564 DOI: 10.4049/jimmunol.176.8.4706] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Memory B cells help to protect the host from invading pathogens by maintaining persistent levels of Ag-specific serum Ab and generating rapid Ab responses upon re-exposure to Ag. Unambiguous identification of memory B cells has been a major obstacle to furthering our knowledge concerning both the development of B cell memory and secondary Ab responses due to an absence of specific cell surface markers. Germinal centers (GCs) are thought to be the major site of Ig hypermutation and Ag-driven selection of memory B cells. To develop a model that would identify GC-derived memory B cells, we generated transgenic mice that expressed cre recombinase in a GC-specific fashion. Interbreeding these mice with the cre-reporter strain, ROSA26R, produced progeny in which beta-galactosidase (beta-gal) was permanently expressed in B cells of the GC-memory pathway. Analysis following immunization with (4-hydroxy-3-nitrophenyl)acetyl coupled to chicken gamma globulin showed that long-lived beta-gal+ B cells exclusively contained somatically mutated lambda1 V regions and were capable of producing Ag-specific Ab-forming cell (AFC) responses that were >100-fold higher than those afforded by beta-gal- B cells following adoptive transfer to naive hosts. Secondary challenge of immune mice showed that only approximately 20% of secondary AFCs expressed beta-gal. Interestingly, we found that somatic hypermutation of rearranged lambda1 V regions within secondary AFCs showed a strong correlation with beta-gal expression, suggesting that nonmutated B cells contribute significantly to secondary Ab responses. This model should provide useful insights into memory B cell development, maintenance, and differentiation following immunization or pathogenic infection.
Collapse
Affiliation(s)
- Craig P Chappell
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30307, USA
| | | |
Collapse
|
49
|
Shimoda M, Li T, Pihkala JPS, Koni PA. Role of MHC Class II on Memory B Cells in Post-Germinal Center B Cell Homeostasis and Memory Response. THE JOURNAL OF IMMUNOLOGY 2006; 176:2122-33. [PMID: 16455968 DOI: 10.4049/jimmunol.176.4.2122] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the role of B cell Ag presentation in homeostasis of the memory B cell compartment in a mouse model where a conditional allele for the beta-chain of MHC class II (MHC-II) is deleted in the vast majority of all B cells by cd19 promoter-mediated expression of Cre recombinase (IA-B mice). Upon T cell-dependent immunization, a small number of MHC-II(+) B cells in IA-B mice dramatically expanded and restored normal albeit delayed levels of germinal center (GC) B cells with an affinity-enhancing somatic mutation to Ag. IA-B mice also established normal levels of MHC-II(+) memory B cells, which, however, subsequently lost MHC-II expression by ongoing deletion of the conditional iab allele without significant loss in their number. Furthermore, in vivo Ag restimulation of MHC-II(-) memory B cells of IA-B mice failed to cause differentiation into plasma cells (PCs), even in the presence of Ag-specific CD4(+) T cells. In addition, both numbers and Ag-specific affinity of long-lived PCs during the late post-GC phase, as well as post-GC serum affinity maturation, were significantly reduced in IA-B mice. These results support a notion that MHC-II-dependent T cell help during post-GC phase is not absolutely required for the maintenance of memory B cell frequency but is important for their differentiation into PCs and for the establishment of the long-lived PC compartment.
Collapse
Affiliation(s)
- Michiko Shimoda
- Program in Molecular Immunology, Immunotherapy Center, Medical College of Georgia, Augusta, 30912, USA
| | | | | | | |
Collapse
|
50
|
Furukawa K, Manabe A, Furukawa A, Kuba H, Okajima T, Azuma T. Initial repertoire of anti-(4-hydroxy-3-nitrophenylacetyl) antibodies as potential donors for effective affinity maturation. Mol Immunol 2006; 43:1751-60. [PMID: 16406527 DOI: 10.1016/j.molimm.2005.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 11/16/2005] [Accepted: 11/18/2005] [Indexed: 11/22/2022]
Abstract
We previously found that there are two distinct antibody (Ab) maturation pathways for the immune response of C57BL/6 mice to 4-hydroxy-3-nitrophenylacetyl (NP), one involving Abs with high evolvability (group-H) and the other involving Abs with low evolvability (group-L). Commitment to whichever pathway is followed pre-determined in B cells at an early developmental stage. Candidates for the group-L or -H pathway are thus expected to pre-exist in the initial repertoire of the immune response. In the present study, we examined the initial Ab repertoire from the viewpoint of the latent potential of these Abs for effective affinity maturation. At first, we prepared anti-NP B cell hybridomas at 1 week postimmunization. Although the diversity of the obtained repertoire was maintained mainly by the third complementarity determining region of the heavy chain (CDR-H3), their changes in the near UV circular dichroism resulting from NP-binding allowed for classification into three groups according to the same rules applied in the pathway classification of the maturated Abs. This suggested that the innate structural properties of CDR-H3 were conserved throughout maturation. In other words, in exploring the structure of CDR-H3, it is possible to distinguish the latent potentials of Abs in effective affinity maturation even those making up the initial Ab repertoire. We then examined an artificially designed group-H Ab prototype and found its NP-binding ability sufficient for engagement in the initial repertoire. The question arose here as to why the majority of the actual initial repertoire consisted of the group-L ancestors regardless of their middling NP-binding affinity, which called for further discussion from the viewpoint of the dynamics possibly shaping the repertoire.
Collapse
Affiliation(s)
- Koji Furukawa
- Research Institute for Biological Sciences (RIBS), Tokyo University of Science, 2669, Yamazaki, Noda, Chiba 278-0022, Japan.
| | | | | | | | | | | |
Collapse
|