1
|
Lee SY, Lee Y, Oh EY, Lee J, Kim JY, Park SI, Park HJ, Park SH, Choi EJ, Ha D, Oh A, Kim A, Ro HJ, Bang YJ, Kwak HW, Park HJ, Kim DH, Kim D, Lee SM, Cho NH, Nam JH. The therapeutic potential of mRNA-encoded SFTSV human monoclonal antibody encapsulated lipid nanoparticle in vivo. J Control Release 2025; 382:113735. [PMID: 40228669 DOI: 10.1016/j.jconrel.2025.113735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), caused by the SFTS virus (SFTSV), has emerged as a significant public health concern in East Asia since 2009. The high mortality rate of SFTS underscores the urgent need for effective preventive and therapeutic interventions. Although a Gn-specific human monoclonal antibody, Ab10, herein referred to as the protein S/A-TEN, has been previously reported, its development has been hindered by the economic challenges and low yields of large-scale production. To address this limitation, we developed an mRNA encapsulated lipid nanoparticle to produce SFTSV-specific human mAbs (mRNA S/A-TEN). This novel approach facilitates small-scale production, potentially enabling direct human application. The mRNA S/A-TEN antibody obtained from the injected-mouse serum showed high neutralizing antibody titers. Furthermore, we found that injecting the mRNA S/A-TEN antibody into mice that were infected with lethal SFTSV resulted in 100 % survival and assisted in a rapid recovery from organ failure. This study provides the first evidence that an mRNA-encoded SFTSV-specific human mAb can provide effective therapeutic protection against SFTSV infection, offering a promising therapeutic approach for the treatment of human SFTS.
Collapse
Affiliation(s)
- Soo-Yeon Lee
- The Catholic University of Korea, Bucheon, Republic of Korea; BK21 plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Yebeen Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Eun Young Oh
- College of Veterinary Medicine, Chungbuk National University, Cheongju, -si, Chungcheongbuk-do, Republic of Korea
| | - Jisun Lee
- The Catholic University of Korea, Bucheon, Republic of Korea
| | | | - Sang-In Park
- Department of Biomedical Laboratory Science, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Hyo-Jung Park
- The Catholic University of Korea, Bucheon, Republic of Korea; BK21 plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - So Hyun Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, -si, Chungcheongbuk-do, Republic of Korea
| | - Eun-Jin Choi
- The Catholic University of Korea, Bucheon, Republic of Korea; BK21 plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Dahyeon Ha
- The Catholic University of Korea, Bucheon, Republic of Korea; BK21 plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Ayoung Oh
- The Catholic University of Korea, Bucheon, Republic of Korea; BK21 plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Ayeon Kim
- The Catholic University of Korea, Bucheon, Republic of Korea; BK21 plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hyo-Jin Ro
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | | | | | | | | | - Daegeun Kim
- SML Biopharm, Gwangmyeong, Republic of Korea
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, -si, Chungcheongbuk-do, Republic of Korea.
| | - Nam-Hyuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do 13620, Republic of Korea.
| | - Jae-Hwan Nam
- The Catholic University of Korea, Bucheon, Republic of Korea; BK21 plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.
| |
Collapse
|
2
|
Cheng T, Xiao Q, Cui J, Dong S, Wu Y, Li W, Yang X, Ma L, Li Z, Sun P, Xie Y. Identification of lurasidone as a potent inhibitor of severe fever with thrombocytopenia syndrome virus by targeting the viral nucleoprotein. Front Microbiol 2025; 16:1578844. [PMID: 40356663 PMCID: PMC12066758 DOI: 10.3389/fmicb.2025.1578844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus that causes acute febrile illness with thrombocytopenia and a high mortality rate in humans. Currently, no specific antiviral agents have been approved for the prevention or treatment of SFTSV infection. The viral nucleoprotein (NP) is a critical component involved in viral RNA replication and transcription, representing a promising target for antiviral drug development. Methods We performed a structure-based virtual screening of the FDA-approved drug library using AutoDock Vina, aiming to identify potential inhibitors targeting the RNA-binding pocket of SFTSV NP. Promising candidates were further evaluated for antiviral activity in vitro. Results Among the screened compounds, lurasidone exhibited strong antiviral activity against SFTSV, with an IC50 value of 4.552 μM and a selectivity index (SI) greater than 10, indicating favorable antiviral potency and low cytotoxicity. Mechanistic investigations suggest that lurasidone may exert its inhibitory effect by directly binding to the NP, thereby interfering with viral genome replication. Conclusion This study identifies lurasidone as a potential antiviral candidate targeting SFTSV NP and provides a theoretical basis for the repurposing of FDA-approved drugs against emerging viral infections. These findings offer new insights into therapeutic strategies for the treatment of SFTSV.
Collapse
Affiliation(s)
- Ting Cheng
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingcui Xiao
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Cui
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuangjie Dong
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqin Wu
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenqiang Li
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinya Yang
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lina Ma
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiyong Li
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Virology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei, China
| | - Peng Sun
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Virology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei, China
| | - Yinli Xie
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Virology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Javaid N, Jang TW, Fu Y, Choi Y. SFTSV NSs interacts with AGO2 to regulate the RNAi pathway for viral replication. J Virol 2025; 99:e0220524. [PMID: 40013801 PMCID: PMC11998505 DOI: 10.1128/jvi.02205-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
RNA interference (RNAi) is a posttranscriptional gene silencing mechanism acting as an antiviral defense in eukaryotes. During viral replication, intermediate double-stranded RNAs are processed into virus-derived small interfering RNAs (vsiRNAs) by the host enzyme, DICER. These vsiRNAs are incorporated into the RNA-induced silencing complex (RISC), where AGO2 cleaves viral genomic RNAs. However, viruses have evolved mechanisms to suppress this pathway. Here, we report that the nonstructural protein (NSs) of severe fever with thrombocytopenia syndrome virus (SFTSV) interacts with RISC to suppress the RNAi pathway. NSs forms a ternary complex by interacting with both DICER and AGO2 of the RNAi pathway. The interaction between NSs and DICER, facilitated by the two RNase III domains of DICER, is disrupted in the absence of AGO2 or the DICER-interacting domain (PIWI) of AGO2, indicating a direct interaction between NSs and AGO2. Functional assays using shRNA- and siRNA-mediated silencing of GFP signal, along with co-localization studies, demonstrated that NSs competes with siRNA to interact with AGO2, thereby abolishing RNAi activity. Mutational analysis identified an NSs-A26 mutant that no longer interacts with AGO2 and is unable to suppress RNAi activity, suggesting that NSs acts as a viral suppressor of RNAi (VSR) for SFTSV. Viral infection led to the generation of vsiRNA and showed higher replication in AGO2-/- cells compared to wild-type (WT) cells, confirming the antiviral role of the RNAi pathway against SFTSV infection. These data suggest that the NSs-AGO2 interaction suppresses RNAi, counteracting the antiviral RNAi pathway, thereby facilitating SFTSV infection and pathogenesis.IMPORTANCERNA interference (RNAi) is the main antiviral defense pathway in plants and insects but is not predominant in mammals. While RNAi's role in countering severe fever with thrombocytopenia syndrome virus (SFTSV) infection has been studied in ticks, its role in humans is unknown. The SFTSV nonstructural protein (NSs) forms inclusion bodies (IBs) in the host, sequestering multiple antiviral proteins and facilitating pathogenesis, contributing to SFTSV's high mortality rate. Our study found that SFTSV NSs directly interacts with AGO2, a key RNAi protein, hindering its function. A novel NSs mutant failed to interact with AGO2 and lost its RNAi suppression ability, highlighting NSs as a viral suppressor of RNAi (VSR). Infection studies confirmed the RNAi pathway's critical role in combating SFTSV infection. This study demonstrates NSs's role in viral infection and suggests potential therapeutic approaches.
Collapse
Affiliation(s)
- Nasir Javaid
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| | - Tae-Won Jang
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| | - Yuting Fu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| | - Younho Choi
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| |
Collapse
|
4
|
Zhu ZM, Liu HY, An N, Li AL, Li J, Wang SJ, Yang G, Duan YW, Yang Y, Zhang M, Zhu QF, Liu SM, Feng YQ. Metabolic Profiling Reveals Potential Prognostic Biomarkers for SFTS: Insights into Disease Severity and Clinical Outcomes. Metabolites 2025; 15:228. [PMID: 40278357 PMCID: PMC12028903 DOI: 10.3390/metabo15040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Severe fever with thrombocytopenia syndrome (SFTS) is a viral infection primarily found in Asia, with a case fatality rate of about 10%. Despite its increasing prevalence, the underlying pathogenic mechanisms remain poorly understood, limiting the development of effective therapeutic interventions. Methods: We employed an untargeted metabolomics approach using liquid chromatography-mass spectrometry (LC-MS) to analyze serum samples from 78 SFTS patients during the acute phase of their illness. Differential metabolic features between survival and fatal cases were identified through multivariate statistical analysis. Furthermore, we constructed a metabolic prognostic model based on these biomarkers to predict disease severity. Results: Significant alterations were observed in four key metabolic pathways: sphingolipid metabolism, biosynthesis of phenylalanine, tyrosine, and tryptophan, primary bile acid biosynthesis, and phenylalanine metabolism. Elevated levels of phenyllactic acid and isocitric acid were strongly associated with adverse outcomes and demonstrated high discriminatory power in distinguishing fatal cases from survivors. The metabolic prognostic model incorporating these biomarkers achieved a sensitivity of 75% and a specificity of 90% in predicting disease severity. Conclusions: Our findings highlight the pivotal role of metabolic dysregulation in the pathogenesis of SFTS and suggest that targeting specific metabolic pathways could open new avenues for therapeutic development. The identification of prognostic biomarkers provides a valuable tool for early risk stratification and timely clinical intervention, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Zhuo-Min Zhu
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China; (Z.-M.Z.); (N.A.); (J.L.); (Y.-Q.F.)
- School of Public Health, Wuhan University, Wuhan 430072, China;
| | - Huan-Yu Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (H.-Y.L.); (A.-L.L.); (G.Y.); (Y.-W.D.); (Y.Y.)
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Na An
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China; (Z.-M.Z.); (N.A.); (J.L.); (Y.-Q.F.)
- School of Public Health, Wuhan University, Wuhan 430072, China;
| | - An-Ling Li
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (H.-Y.L.); (A.-L.L.); (G.Y.); (Y.-W.D.); (Y.Y.)
| | - Jia Li
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China; (Z.-M.Z.); (N.A.); (J.L.); (Y.-Q.F.)
- School of Public Health, Wuhan University, Wuhan 430072, China;
| | - Sai-Jun Wang
- School of Public Health, Wuhan University, Wuhan 430072, China;
| | - Gui Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (H.-Y.L.); (A.-L.L.); (G.Y.); (Y.-W.D.); (Y.Y.)
| | - Yong-Wei Duan
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (H.-Y.L.); (A.-L.L.); (G.Y.); (Y.-W.D.); (Y.Y.)
| | - Ying Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (H.-Y.L.); (A.-L.L.); (G.Y.); (Y.-W.D.); (Y.Y.)
| | - Mei Zhang
- Department of Clinical Laboratory, Ezhou Hospital of Traditional Chinese Medicine, Ezhou 436000, China;
| | - Quan-Fei Zhu
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China; (Z.-M.Z.); (N.A.); (J.L.); (Y.-Q.F.)
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (H.-Y.L.); (A.-L.L.); (G.Y.); (Y.-W.D.); (Y.Y.)
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China; (Z.-M.Z.); (N.A.); (J.L.); (Y.-Q.F.)
- School of Public Health, Wuhan University, Wuhan 430072, China;
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
5
|
Zhang Y, Tian W, Zhang S, Lin L, Song C, Liu Y, Xu Y, Zhang L, Geng S, Li X, Wang X, Chen Z, Zhang W. Enhancing Sensitivity in Detecting Severe Fever With Thrombocytopenia Syndrome Virus: Development of a Reverse Transcription-Droplet Digital Polymerase Chain Reaction. J Infect Dis 2025; 231:512-520. [PMID: 39352170 DOI: 10.1093/infdis/jiae442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/31/2024] [Indexed: 02/21/2025] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a highly fatal disease. Droplet digital polymerase chain reaction (ddPCR) presents unparalleled sensitivity and enables absolute quantification of viral load. In this prospective study, we enrolled 111 patients with SFTS and collected 259 continuous samples. Our findings unveil a robust reverse transcription (RT)-ddPCR method for SFTS with a limit of detection of 2.46 copies/µL (95% CI, 1.50-11.05), surpassing the sensitivity of RT-quantitative polymerase chain reaction at 103.29 copies/µL (95% CI, 79.69-216.35). Longitudinal cohort analysis revealed significantly higher RT-ddPCR detection rates at days 10 to 11, 13 to 14, and ≥15 of the disease course as compared with RT-quantitative polymerase chain reaction (P < .05). Positive RT-ddPCR results were associated with declined platelet and elevated aspartate aminotransferase and lactate dehydrogenase on the same day vs negative RT-ddPCR samples. RT-ddPCR exhibits commendable diagnostic efficacy in SFTS, and it remains detectable in blood samples from patients with an extended disease course. Furthermore, RT-ddPCR correlates with clinical laboratory tests, furnishing valuable reference data for clinical diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University
- Beijing Institute of Infectious Diseases
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University
| | - Wen Tian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University
| | - Shuai Zhang
- Department of Clinical Laboratory, Yantai Qishan Hospital
| | - Ling Lin
- Department of Infectious Diseases, Yantai Qishan Hospital
| | - Chuan Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University
- Beijing Institute of Infectious Diseases
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University
| | - Yuanni Liu
- Department of Infectious Diseases, Yantai Qishan Hospital
| | - Yanli Xu
- Department of Infectious Diseases, Yantai Qishan Hospital
| | - Ligang Zhang
- Department of Infectious Diseases, Yantai Qishan Hospital
| | - Shuying Geng
- Department of Infectious Diseases, Yantai Qishan Hospital
| | - Xin Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University
| | - Xi Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University
- Beijing Institute of Infectious Diseases
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University
| | - Zhihai Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University
| | - Wei Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University
| |
Collapse
|
6
|
Ma W, Hao Y, Peng C, Zhang D, Yuan Y, Xiao P, Li N. Analysis of Gene Differences Between F and B Epidemic Lineages of Bandavirus Dabieense. Microorganisms 2025; 13:292. [PMID: 40005658 PMCID: PMC11857831 DOI: 10.3390/microorganisms13020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The prevalence of SFTS is becoming increasingly widespread and is expected to become a significant security issue. The article discusses the prevalence regions and genetic differences in two SFTSV lineages, so as to provide a scientific data basis for the clinical control and prevention of fever with thrombocytopenia syndrome. The literature involving SFTSV patients from 2009 to 2023 and SFTSV complete genome sequences uploaded by NCBI were collected and sorted out, based on time and SFTSV lineage division, we analyzed viral gene sequence. SFTSV patient data were continuously reported from 2009 to 2023, involving five countries including China, South Korea, Japan, Thailand, and Vietnam. There are obvious lineage and host divisions between the SFTSV lineages prevalent in China and abroad. The sources of B-lineage SFTSV samples are mainly concentrated in South Korea, Japan, and the middle and lower reaches of Hubei or Zhejiang in China, with half of the samples coming from humans and half from animals, and the F series SFTSV samples were mainly collected from provinces such as Anhui and Henan in China, with the main source being human patients. The F-lineage SFTSV is the highest proportion in the middle and upper provinces in China. The B lineage has recently appeared in Zhejiang and Taiwan and is prevalent abroad. Using prediction software based on molecular structure prediction technology, analyze the differences between the B and F lineages of SFTSV through prediction methods such as nucleotide mutations, gene recombination, mutation sites, and evolution rates. Conclusively, the differences in SFTSV between B and F lineages may be related to gene recombination of M and L fragments, it was also found that the B lineage had a lower recombination rate and mutation rate than the F lineage, and the evolutionary rate was prominently different. Comparative analysis of the differences in two SFTSV lineage genes could further understand the epidemic status of SFTSV and provide help and more insights for the prevention of the spread of specific types of SFTSV.
Collapse
Affiliation(s)
- Wenzhou Ma
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China; (W.M.); (Y.H.); (C.P.); (D.Z.); (Y.Y.)
| | - Yujia Hao
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China; (W.M.); (Y.H.); (C.P.); (D.Z.); (Y.Y.)
| | - Chengcheng Peng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China; (W.M.); (Y.H.); (C.P.); (D.Z.); (Y.Y.)
| | - Duo Zhang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China; (W.M.); (Y.H.); (C.P.); (D.Z.); (Y.Y.)
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuge Yuan
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China; (W.M.); (Y.H.); (C.P.); (D.Z.); (Y.Y.)
| | - Pengpeng Xiao
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China; (W.M.); (Y.H.); (C.P.); (D.Z.); (Y.Y.)
| | - Nan Li
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China; (W.M.); (Y.H.); (C.P.); (D.Z.); (Y.Y.)
| |
Collapse
|
7
|
Yang X, Si GQ, Ge HH, Li CH, Cui N, Yuan YM, Zhou C, Li H, Zhang XA, Lin L, Bao PT, Liu W. Atypical Patients With Severe Fever With Thrombocytopenia Syndrome. J Med Virol 2025; 97:e70164. [PMID: 39825735 DOI: 10.1002/jmv.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/20/2025]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease with a high fatality rate. The clinical diagnosis criteria mainly rely on white blood cell (WBC) and platelet (PLT), which, however, are of limited usage in identifying atypical SFTS. A multicenter study was performed in two hospitals from 2011 to 2023. SFTS patients were categorized as atypical or typical based on the clinical diagnosis criteria. Clinical progress and outcomes were compared between the two groups. A total of 2876 laboratory-confirmed SFTS patients were included in this study, 90.54% (2604/2876) of whom exhibited both thrombocytopenia and leukopenia and were defined as typical SFTS patients, while 9.46% (272/2876) were defined as atypical SFTS patients. Patients with typical SFTS were more likely to develop complications (adjusted odds ratio [OR] = 2.09, 95% confidence interval [CI]:1.48-2.92, p < 0.001) and fatal outcomes (adjusted OR = 2.24, 95% CI: 1.37-3.89, p = 0.002) compared to patients with atypical SFTS. Among atypical patients, those with decreased PLT and normal WBC levels (PLT↓ and WBC→) experienced increased complication rates (adjusted OR = 2.76, 95% CI: 1.30-6.05, p < 0.001) compared to those with decreased WBC and normal PLT (WBC↓ and PLT→). In the typical group, 238 patients developed thrombocytopenia earlier than leukocytopenia (defined as the TL group), while 311 subjects developed leukocytopenia earlier than thrombocytopenia (defined as the LT group). Compared to the LT group, patients in the TL group were more likely to develop fatal outcomes (HR = 1.91, 95% CI: 1.04-3.50). These findings highlight the presence of atypical SFTS cases that did not meet the clinical diagnosis criteria. Clinical profiles and outcomes differed between typical and atypical SFTS patients. A less stringent diagnostic criterion than combined thrombocytopenia and leukopenia is suggested for making clinical diagnoses within 7 days of disease onset.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Guang-Qian Si
- Graduate School, Hebei North University, Zhangjiakou, China
| | - Hong-Han Ge
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chun-Hui Li
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Ning Cui
- The 154th Hospital, China RongTong Medical Healthcare Group Co. Ltd, Xinyang, China
| | - Yi-Mei Yuan
- The 154th Hospital, China RongTong Medical Healthcare Group Co. Ltd, Xinyang, China
| | - Chao Zhou
- The 154th Hospital, China RongTong Medical Healthcare Group Co. Ltd, Xinyang, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Ling Lin
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China
| | - Peng-Tao Bao
- Senior Department of Pulmonary and Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| |
Collapse
|
8
|
Chae JB, Rim JM, Han SW, Cho YK, Kang JG, Chae JS. Prevalence, Isolation, and Molecular Characterization of Severe Fever with Thrombocytopenia Syndrome Virus in Cattle from the Republic of Korea. Vector Borne Zoonotic Dis 2024; 24:826-834. [PMID: 39029504 DOI: 10.1089/vbz.2024.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by Bandavirus dabieense. Initially identified in China, this disease has spread throughout Asian countries via tick bites and animal-to-human transmission. However, reports of the prevalence of SFTS virus (SFTSV) in cattle in Korea are lacking. This study aimed to investigate SFTSV infections in grazing cattle in the Republic of Korea (ROK). Materials and Methods: In total, 845 grazing cattle serum samples were collected over 2 years (2019 and 2020) in the ROK, and viral RNA was extracted using a kit. One-step RT-nested PCR was performed to amplify the S-segment of SFTSV. Positive serum samples were used to isolate SFTSV in Vero E6 cells, and the full sequences were analyzed. A phylogenetic tree was constructed using the maximum-likelihood method with MEGA X. In addition, immunoglobulin G antibodies against SFTSV were investigated using an enzyme-linked immunosorbent assay. Results: Here, 4.0% of serum samples (34/845) were positive for SFTSV S-segments, and one virus isolate was cultured in Vero E6 cells. Phylogenetic analysis based on the partial S-segment classified 4 SFTSV isolates as the B-2 genotype, 9 as the B-3 genotype, 18 as an unclassified B genotype, and 3 as the D genotype. One cultured virus was classified as the B-2 genotype based on SFTSV L-, M-, and S-segments. Antibody detection results showed that 21.1% of serum samples (161/763) were positive for SFTSV. Conclusion: To the best of our knowledge, this is the first study performed to identify the prevalence of SFTSV in grazing cattle in the ROK. Our findings indicate the necessity for more intensive and continuous SFTSV monitoring, not only in cattle but also in other animals, to comprehend the genetic diversity of the virus and its potential eco-epidemiological impact on human health.
Collapse
Affiliation(s)
- Jeong-Byoung Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Min Rim
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Kyoung Cho
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Gu Kang
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Yuan F, Zhu L, Tian D, Xia M, Zheng MH, Zhang Q, Zhang T, Zhang X, Zheng A. The first discovery of severe fever with thrombocytopenia virus in the center of metropolitan Beijing, China. Virol Sin 2024; 39:875-881. [PMID: 39522880 PMCID: PMC11738777 DOI: 10.1016/j.virs.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Severe fever with thrombocytopenia virus (SFTSV), an emerging tick-borne bandavirus, poses a significant public health threat in rural China. Since 2021, an increase of local cases has been noted in the rural-urban fringe of Beijing. This study aimed to assess the formation of natural foci in urban areas by conducting a field survey of ticks and hedgehogs from the second to fifth ring roads of Beijing. Our survey revealed a diverse tick population in city parks, including the major SFTSV vector, Haemaphysalis longicornis. Parthenogenetic H. longicornis, known for its role in the rapid spread of SFTSV, was identified in key locations such as Beihai Park and Taoranting Park, near the Forbidden City. Notably, high SFTSV seroprevalence and RNA prevalence were found in hedgehogs and parasitic ticks in the center of Beijing. Phylogenetic analyses of SFTSV RNA and mitochondrial sequences of parthenogenetic H. longicornis ticks revealed the existence of diverse lineages of SFTSV and H. longicornis ticks within Beijing, suggesting multiple invasion events happened. These findings reveal the circulation of SFTSV in central Beijing, highlighting the need for urgent attention and enhanced surveillance measures.
Collapse
Affiliation(s)
- Fei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lianglong Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Tian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100069, China
| | - Mengyu Xia
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Hao Zheng
- The High School Affiliated to Renmin University of China, Beijing 100872, China
| | - Qing Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100069, China
| | - Tingyu Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100069, China
| | - Xing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Li ZM, Duan SH, Yu TM, Li B, Zhang WK, Zhou CM, Yu XJ. Bunyavirus SFTSV NSs utilizes autophagy to escape the antiviral innate immune response. Autophagy 2024; 20:2133-2145. [PMID: 38762760 PMCID: PMC11423686 DOI: 10.1080/15548627.2024.2356505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) nonstructural protein (NSs) is an important viral virulence factor that sequesters multiple antiviral proteins into inclusion bodies to escape the antiviral innate immune response. However, the mechanism of the NSs restricting host innate immunity remains largely elusive. Here, we found that the NSs induced complete macroautophagy/autophagy by interacting with the CCD domain of BECN1, thereby promoting the formation of a BECN1-dependent autophagy initiation complex. Importantly, our data showed that the NSs sequestered antiviral proteins such as TBK1 into autophagic vesicles, and therefore promoted the degradation of TBK1 and other antiviral proteins. In addition, the 8A mutant of NSs reduced the induction of BECN1-dependent autophagy flux and degradation of antiviral immune proteins. In conclusion, our results indicated that SFTSV NSs sequesters antiviral proteins into autophagic vesicles for degradation and to escape antiviral immune responses.
Collapse
Affiliation(s)
- Ze-Min Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Shu-Hui Duan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Tian-Mei Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Bang Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Wen-Kang Zhang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Chuan-Min Zhou
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Sun Q, Liu Y, Han Y, Liu W, Cao X, Li B, Wang X. Rodent Ecology and Etiological Investigation in China: Results from Vector Biology Surveillance - Shandong Province, China, 2012-2022. China CDC Wkly 2024; 6:911-917. [PMID: 39346691 PMCID: PMC11425298 DOI: 10.46234/ccdcw2024.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Rodents are hosts of a wide range of zoonotic disease pathogens which threaten human health. However, comprehensive investigations of rodent ecology and etiology in Shandong are lacking. Thus, we aimed to analyze rodent ecology and infection with relevant pathogens in Shandong Province, China. Methods Rodent survey data collected from 2012 to 2022 in Shandong Province were used in this study. Rodents captured from 2020 to 2022 were identified to species and tested for pathogens. Results From 2012 to 2022, 4,145 rodents were captured, with an average capture rate of 0.70%. High capture rates were observed in rural residential areas and other habitats, such as farmland and forestland. Rattus norvegicus (R. norvegicus) was the dominant species, followed by Mus musculus (M. musculus). The regions with the highest capture rates of R. norvegicus were Dongying (0.82%) and Heze (0.63%), while M. musculus was more prevalent in Dongying (0.81%) and Weihai (0.56%). Rodent capture rates were highest between March and September. The positive detection rates of Hantavirus (HV), Leptospira interrogans (L. interrogans), Rickettsia typhi (R. typhi), Anaplasma phagocytophilum (A. phagocytophilum), and Francisella tularensis (F. tularensis) in rodents were 2.58%, 1.10%, 0.94%, 0.16%, and 0.19%, respectively. Conclusions The rodent capture rate in human habitation environments has trended downward in Shandong Province, with R. norvegicus and M. musculus being the dominant species. Rodent infection risk from HV, L. interrogans, and R. typhi showed seasonal variation. Strengthening rodent surveillance and maintaining a low capture rate of host animals could be pivotal for preventing and controlling relevant rodent-borne diseases in high-risk areas.
Collapse
Affiliation(s)
- Qintong Sun
- Institute of Disinfection & Disease Vector Control, Shandong Center for Disease Control and Prevention, Shandong Academy of Preventive Medicine, Jinan City, Shandong Province, China
| | - Yan Liu
- Institute of Disinfection & Disease Vector Control, Shandong Center for Disease Control and Prevention, Shandong Academy of Preventive Medicine, Jinan City, Shandong Province, China
| | - Yingnan Han
- Institute of Disinfection & Disease Vector Control, Shandong Center for Disease Control and Prevention, Shandong Academy of Preventive Medicine, Jinan City, Shandong Province, China
| | - Wenjie Liu
- Institute of Disinfection & Disease Vector Control, Shandong Center for Disease Control and Prevention, Shandong Academy of Preventive Medicine, Jinan City, Shandong Province, China
| | - Xinyue Cao
- Institute of Disinfection & Disease Vector Control, Shandong Center for Disease Control and Prevention, Shandong Academy of Preventive Medicine, Jinan City, Shandong Province, China
| | - Binghui Li
- Institute of Disinfection and Vector Control, Qingdao Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao City, Shandong Province, China
| | - Xuejun Wang
- Institute of Disinfection & Disease Vector Control, Shandong Center for Disease Control and Prevention, Shandong Academy of Preventive Medicine, Jinan City, Shandong Province, China
| |
Collapse
|
12
|
Yang P, Wu X, Shang H, Sun Z, Wang Z, Song Z, Yuan H, Deng F, Shen S, Guo Y, Zhang N. Molecular mechanism and structure-guided humanization of a broadly neutralizing antibody against SFTSV. PLoS Pathog 2024; 20:e1012550. [PMID: 39321193 PMCID: PMC11423973 DOI: 10.1371/journal.ppat.1012550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel tick-borne bunyavirus that causes severe fever with thrombocytopenia syndrome (SFTS), with a high mortality rate of up to 30%. The envelope glycoproteins of SFTSV, glycoprotein N (Gn) and glycoprotein C (Gc), facilitate the recognition of host receptors and the process of membrane fusion, allowing the virus to enter host cells. We previously reported a monoclonal antibody, mAb 40C10, capable of neutralizing different genotypes of SFTSV and SFTSV-related viruses. However, the specific neutralization mechanism is poorly understood. In this study, we elucidated the high-resolution structure of the SFTSV Gn head domain in complex with mAb 40C10, confirming that the binding epitope in the domain I region of SFTSV Gn, and it represented that a novel binding epitope of SFTSV Gn was identified. Through in-depth structural and sequence analyses, we found that the binding sites of mAb 40C10 are relatively conserved among different genotypes of SFTSV and SFTSV-related Heartland virus and Guertu virus, elucidating the molecular mechanism underlying the broad-spectrum neutralizing activity of mAb 40C10. Furthermore, we humanized of mAb 40C10, which is originally of murine origin, to reduce its immunogenicity. The resulting nine humanized antibodies maintained potent affinity and neutralizing activity. One of the humanized antibodies exhibited neutralizing activity at picomolar IC50 values and demonstrated effective therapeutic and protective effects in a mouse infection model. These findings provide a novel target for the future development of SFTSV vaccines or drugs and establish a foundation for the research and development of antibody therapeutics for clinical applications.
Collapse
Affiliation(s)
- Pinyi Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoli Wu
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hang Shang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Zixian Sun
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Zhiying Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zidan Song
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Hong Yuan
- Hangzhou Medimscience Biomedical Technology Co., Ltd., Hangzhou, Zhejiang, China
| | - Fei Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shu Shen
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Nan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Tao M, Liu Y, Ling F, Ren J, Zhang R, Shi X, Guo S, Jiang J, Sun J. Factors Associated With the Spatial Distribution of Severe Fever With Thrombocytopenia Syndrome in Zhejiang Province, China: Risk Analysis Based on Maximum Entropy. JMIR Public Health Surveill 2024; 10:e46070. [PMID: 39104047 PMCID: PMC11310739 DOI: 10.2196/46070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 08/07/2024] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease that was first identified in mainland China in 2009 and has been reported in Zhejiang Province, China, since 2011. However, few studies have focused on the association between ticks, host animals, and SFTS. Objective In this study, we analyzed the influence of meteorological and environmental factors as well as the influence of ticks and host animals on SFTS. This can serve as a foundational basis for the development of strategic policies aimed at the prevention and control of SFTS. Methods Data on SFTS incidence, tick density, cattle density, and meteorological and environmental factors were collected and analyzed using a maximum entropy-based model. Results As of December 2019, 463 laboratory-confirmed SFTS cases were reported in Zhejiang Province. We found that the density of ticks, precipitation in the wettest month, average temperature, elevation, and the normalized difference vegetation index were significantly associated with SFTS spatial distribution. The niche model fitted accurately with good performance in predicting the potential risk areas of SFTS (the average test area under the receiver operating characteristic curve for the replicate runs was 0.803 and the SD was 0.013). The risk of SFTS occurrence increased with an increase in tick density, and the response curve indicated that the risk was greater than 0.5 when tick density exceeded 1.4. The risk of SFTS occurrence decreased with increased precipitation in the wettest month, and the risk was less than 0.5 when precipitation exceeded 224.4 mm. The relationship between elevation and SFTS occurrence showed a reverse V shape, and the risk peaked at approximately 400 m. Conclusions Tick density, precipitation, and elevation were dominant influencing factors for SFTS, and comprehensive intervention measures should be adjusted according to these factors to reduce SFTS incidence in Zhejiang Province.
Collapse
Affiliation(s)
- Mingyong Tao
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Ying Liu
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Feng Ling
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jiangping Ren
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Rong Zhang
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xuguang Shi
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Song Guo
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianmin Jiang
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jimin Sun
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
14
|
Yu C, Lin Y, Dai Y, Wu B, Qi Z, Qian X. Recent research advances in the development of Dabie Banda virus vaccines. PLoS Negl Trop Dis 2024; 18:e0012411. [PMID: 39207951 PMCID: PMC11361446 DOI: 10.1371/journal.pntd.0012411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a newly identified tick-borne viral hemorrhagic fever caused by Dabie Banda virus (DBV). The virus was first discovered in eastern China in 2009 and is now considered an infectious disease with a mortality rate ranging from 6.3% to 30%. The best strategy for controlling SFTS is to develop effective vaccines. However, no approved vaccines are currently available to prevent this disease, despite the number of extensive and in-depth studies conducted on DBV in the past few years. This review focuses on the structure of DBV and the induced host immune responses which are the fundamental factors in vaccine development, and thoroughly summarizes the current research progress on DBV vaccines. The developing DBV vaccines include protein subunit vaccines, live attenuated vaccines, recombinant virus vector vaccines, and DNA vaccines. At present, almost all candidate vaccines for DBV are in the laboratory development or preclinical stages. There remain challenges in successfully developing clinically approved DBV vaccines.
Collapse
Affiliation(s)
- Chenyang Yu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yuxiang Lin
- College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Yixin Dai
- Nursing Department, Faculty of Health and Wellness, Linxia Modern Career College, Gansu, China
| | - Bingan Wu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xijing Qian
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Takeishi M, Morikawa S, Kuwata R, Kawaminami M, Shimoda H, Isawa H, Maeda K, Yoshikawa Y. Characterization and arbovirus susceptibility of cultured CERNI cells derived from sika deer (Cervus nippon). In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00933-z. [PMID: 38961045 DOI: 10.1007/s11626-024-00933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024]
Abstract
Cervus nippon (sika deer) are widely distributed throughout eastern Asia. Deer possess a variety of antibodies against several zoonotic pathogens, indicating that they act as reservoir of zoonoses. In this study, we reported the characterization of cultured cells derived from sika deer and evaluated their susceptibility to arthropod-borne viruses to clarify their usefulness in virological studies. Cells derived from testicular tissue in Dulbecco's modified eagle medium with 16% fetal bovine serum started growing as primary cultured cells. The diploid cells consisted of 68 chromosomes, consistent with those of Japanese sika deer previously reported. The phylogenetic analysis showed the cells formed a robust clade with Japanese population of C. nippon, indicating that the cultured cells established in this study were originated from the Japanese sika deer. The cells immortalized by the simian virus 40 T-antigen were predominantly spindle-shaped cells exhibiting adhesive properties, and cultivated at 37°C and 5% CO2, which are common culture conditions for many mammalian cell lines. Western blotting analysis indicated that the cultured cells were multiple types of cells that coexist, including at least epithelial, fibroblast, and also Leydig cells. We confirmed that the cells have susceptibility to several arboviruses distributed in Japan: Getah virus, Japanese encephalitis virus, Oz virus, and severe fever with thrombocytopenia syndrome virus, but not to Tarumiz tick virus. From these results, the cells contribute to clarify the role of sika deer as a reservoir of zoonoses in nature and deer-associated experimental research at the cellular and molecular levels.
Collapse
Affiliation(s)
- Makoto Takeishi
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Shigeru Morikawa
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Ryusei Kuwata
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan.
| | - Mitsumori Kawaminami
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8515, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8515, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yasuhiro Yoshikawa
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| |
Collapse
|
16
|
Wu X, Moming A, Zhang Y, Wang Z, Zhang T, Fu L, Qian J, Ni J, Hu S, Tang S, Zheng X, Wang H, Shen S, Deng F. Identification and characterization of three monoclonal antibodies targeting the SFTSV glycoprotein and displaying a broad spectrum recognition of SFTSV-related viruses. PLoS Negl Trop Dis 2024; 18:e0012216. [PMID: 38848311 PMCID: PMC11161016 DOI: 10.1371/journal.pntd.0012216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel tick-borne viral pathogen that causes severe fever with thrombocytopenia syndrome (SFTS). The disease was initially reported in central and eastern China, then later in Japan and South Korea, with a mortality rate of 13-30%. Currently, no vaccines or effective therapeutics are available for SFTS treatment. In this study, three monoclonal antibodies (mAbs) targeting the SFTSV envelope glycoprotein Gn were obtained using the hybridoma technique. Two mAbs recognized linear epitopes and did not neutralize SFTSV, while the mAb 40C10 can effectively neutralized SFTSV of different genotypes and also the SFTSV-related Guertu virus (GTV) and Heartland virus (HRTV) by targeting a spatial epitope of Gn. Additionally, the mAb 40C10 showed therapeutic effect in mice infected with different genotypes of SFTSV strains against death by preventing the development of lesions and by promoting virus clearance in tissues. The therapeutic effect could still be observed in mice infected with SFTSV which were administered with mAb 40C10 after infection even up to 4 days. These findings enhance our understanding of SFTSV immunogenicity and provide valuable information for designing detection methods and strategies targeting SFTSV antigens. The neutralizing mAb 40C10 possesses the potential to be further developed as a therapeutic monoclonal antibody against SFTSV and SFTSV-related viruses.
Collapse
Affiliation(s)
- Xiaoli Wu
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Abulimiti Moming
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yanfang Zhang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhiying Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Tao Zhang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Liyan Fu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Jin Qian
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jun Ni
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijing Hu
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shuang Tang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hualin Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shu Shen
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Fei Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
17
|
Hidaka K, Mitoma S, Norimine J, Shimojima M, Kuroda Y, Hinoura T. Seroprevalence for severe fever with thrombocytopenia syndrome virus among the residents of Miyazaki, Japan: An epidemiological study. J Infect Chemother 2024; 30:481-487. [PMID: 38042299 DOI: 10.1016/j.jiac.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
INTRODUCTION Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infectious disease caused by the SFTS virus (SFTSV). The Miyazaki Prefecture has the highest number of SFTS cases in Japan and requires countermeasures for prevention. In this study, we aimed to conduct an epidemiological survey in Miyazaki Prefecture to determine the exposure conditions of SFTSV by measuring the seroprevalence among residents of Miyazaki and to evaluate the factors that influence the endemicity of SFTS. METHODS The survey was conducted between June 2014 and April 2019 in all 26 municipalities in Miyazaki Prefecture. SFTSV antibodies were detected using an enzyme-linked immunosorbent assay in the blood samples of 6013 residents (3184 men and 2829 women). A questionnaire-based survey of the living environment was also conducted. RESULTS Multiple logistic regression analysis revealed that age and occupation were significant factors related to the proportion of participants with an optical density (OD) value > 0.2 and a seroprevalence of 0.9 % (54/6013). Seven seropositive individuals (0.1 %) with an OD value of >0.4 were identified (three men and four women, aged 54-69 years), and all were asymptomatic. One participant had a higher OD than the positive control. CONCLUSION Although SFTS is endemic in Miyazaki Prefecture, Japan, its seroprevalence is relatively low. Since some risk areas in Miyazaki prefecture have been identified, it is important to enhance awareness of SFTS in residences and reduce contact with ticks, especially in high-risk areas.
Collapse
Affiliation(s)
- Kazuhiro Hidaka
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shuya Mitoma
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Junzo Norimine
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Masayuki Shimojima
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiki Kuroda
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takuji Hinoura
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
18
|
Wang Y, Qin LH, Zhang K, Zhang DW, Wang WJ, Xu AM, Qi YJ. Blood urea nitrogen to albumin ratio is a novel predictor of fatal outcome for patients with severe fever with thrombocytopenia syndrome. J Med Virol 2024; 96:e29731. [PMID: 38888065 DOI: 10.1002/jmv.29731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is associated with a high death rate and lacks a targeted therapy plan. The ratio of blood urea nitrogen to albumin, known as BAR, is a valuable method for assessing the outlook of various infectious diseases. The objective of this research was to evaluate the effectiveness of BAR in forecasting the outcome of individuals with SFTS. Four hundred and thirty-seven patients with SFTS from two clinical centers were included in this study according to inclusion and exclusion criteria. Clinical characteristics and test parameters of SFTS patients were analyzed between survival and fatal groups. Least absolute shrinkage and selection operator (LASSO) regression and Cox regression suggested that BAR might serve as a standalone prognostic indicator for patients with SFTS in the initial phase (hazard ratio = 18.669, 95% confidence interval [CI]: 8.558-40.725, p < 0.001). And BAR had a better predictive effectiveness in clinical outcomes in patients with SFTS with an AUC of 0.832 (95% CI: 0.788-0.876, p < 0.001), a cutoff value of 0.19, a sensitivity of 0.812, and a specificity of 0.726 compared to C-reactive protein, procalcitonin, and platelet to lymphocyte ratio via receiver operating characteristic curve. KM (Kaplan Meier) curves demonstrated that high level of BAR was associated with poor survival condition in patients with SFTS. Furthermore, the high level of BAR was associated with long hospital stays and test paraments of kidney, liver, and coagulation function in survival patients. So, BAR could be used as a promising early warning biomarker of adverse outcomes in patients with SFTS.
Collapse
Affiliation(s)
- Ye Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Ling-Han Qin
- Department of Laboratory Medicine, Infection Hospital Area of the First Affiliated Hospital of University of Science and Technology of China (Hefei Infectious Disease Hospital), Hefei, Anhui Province, People's Republic of China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui Province, People's Republic of China
| | - Ke Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Da-Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Wei-Jie Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - A-Man Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Ying-Jie Qi
- Department of Laboratory Medicine, Infection Hospital Area of the First Affiliated Hospital of University of Science and Technology of China (Hefei Infectious Disease Hospital), Hefei, Anhui Province, People's Republic of China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|
19
|
Kim M, Heo ST, Kim HC, Kang MJ, Kim S, Lee KH, Yoo JR. Correlation between the Cycle Threshold Values in Detection of Severe Fever with Thrombocytopenia Syndrome Virus Using PowerChek TM SFTSV Real-Time PCR Kit and Viral Load: Prognostic Implications. Viruses 2024; 16:700. [PMID: 38793582 PMCID: PMC11125572 DOI: 10.3390/v16050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND This study aimed to analyze the correlation between the cycle threshold (Ct) values of severe fever with thrombocytopenia syndrome (SFTS) virus small (S) and middle (M) segments and the SFTS viral load, aiming to estimate the initial viral load and predict prognosis in the early clinical course. METHOD A retrospective study was conducted with confirmed SFTS patients at Jeju National University Hospital (2016-2022). Patients were categorized into non-fatal and fatal groups. RESULTS This study included 49 patients with confirmed SFTS (non-fatal group, n = 42; fatal group, n = 7). A significant negative correlation (-0.783) was observed between the log SFTS viral load and Ct values (p < 0.001). This negative correlation was notably stronger in the fatal group (correlation coefficient -0.940) than in the non-fatal group (correlation coefficient -0.345). CONCLUSION In this study, we established a correlation between SFTS viral load and Ct values for estimating the initial viral load and early predicting prognosis. These results are expected to offer valuable insights for SFTS patient treatment and prognosis prediction.
Collapse
Affiliation(s)
- Misun Kim
- Department of Internal Medicine, Jeju National University Hospital, Jeju 63241, Republic of Korea; (M.K.); (S.T.H.); (H.C.K.); (M.J.K.); (S.K.)
- Department of Internal Medicine, Jeju National University College of Medicine, Jeju 63241, Republic of Korea
| | - Sang Taek Heo
- Department of Internal Medicine, Jeju National University Hospital, Jeju 63241, Republic of Korea; (M.K.); (S.T.H.); (H.C.K.); (M.J.K.); (S.K.)
- Department of Internal Medicine, Jeju National University College of Medicine, Jeju 63241, Republic of Korea
| | - Hee Cheol Kim
- Department of Internal Medicine, Jeju National University Hospital, Jeju 63241, Republic of Korea; (M.K.); (S.T.H.); (H.C.K.); (M.J.K.); (S.K.)
| | - Myeong Jin Kang
- Department of Internal Medicine, Jeju National University Hospital, Jeju 63241, Republic of Korea; (M.K.); (S.T.H.); (H.C.K.); (M.J.K.); (S.K.)
| | - Sora Kim
- Department of Internal Medicine, Jeju National University Hospital, Jeju 63241, Republic of Korea; (M.K.); (S.T.H.); (H.C.K.); (M.J.K.); (S.K.)
| | - Keun Hwa Lee
- Department of Microbiology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea;
| | - Jeong Rae Yoo
- Department of Internal Medicine, Jeju National University Hospital, Jeju 63241, Republic of Korea; (M.K.); (S.T.H.); (H.C.K.); (M.J.K.); (S.K.)
- Department of Internal Medicine, Jeju National University College of Medicine, Jeju 63241, Republic of Korea
| |
Collapse
|
20
|
Niu Y, Liu Y, Huang L, Liu W, Cheng Q, Liu T, Ning Q, Chen T. Antiviral immunity of severe fever with thrombocytopenia syndrome: current understanding and implications for clinical treatment. Front Immunol 2024; 15:1348836. [PMID: 38646523 PMCID: PMC11026560 DOI: 10.3389/fimmu.2024.1348836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Dabie Banda virus (DBV), a tick-borne pathogen, was first identified in China in 2009 and causes profound symptoms including fever, leukopenia, thrombocytopenia and multi-organ dysfunction, which is known as severe fever with thrombocytopenia syndrome (SFTS). In the last decade, global incidence and mortality of SFTS increased significantly, especially in East Asia. Though previous studies provide understandings of clinical and immunological characteristics of SFTS development, comprehensive insight of antiviral immunity response is still lacking. Here, we intensively discuss the antiviral immune response after DBV infection by integrating previous ex- and in-vivo studies, including innate and adaptive immune responses, anti-viral immune responses and long-term immune characters. A comprehensive overview of potential immune targets for clinical trials is provided as well. However, development of novel strategies for improving the prognosis of the disease remains on challenge. The current review may shed light on the establishment of immunological interventions for the critical disease SFTS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Chen
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
21
|
Oh B, Park SC, Yang MS, Yang D, Ham G, Tark D, You MJ, Oh SI, Kim B. Difference in Intraspecies Transmissibility of Severe Fever with Thrombocytopenia Syndrome Virus Depending on Abrogating Type 1 Interferon Signaling in Mice. Viruses 2024; 16:401. [PMID: 38543766 PMCID: PMC10974630 DOI: 10.3390/v16030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 05/23/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), a tick-borne zoonotic disease, is caused by infection with SFTS virus (SFTSV). A previous study reported that human-to-human direct transmission of SFTSV can occur. However, potential animal-to-animal transmission of SFTSV without ticks has not been fully clarified. Thus, the objective of this study was to investigate potential mice-to-mice transmission of SFTSV by co-housing three groups of mice [i.e., wild-type mice (WT), mice injected with an anti-type I interferon-α receptor-blocking antibody (IFNAR Ab), and mice with knockout of type I interferon-α receptor (IFNAR KO)] as spreaders or recipients with different immune competence. As a result, co-housed IFNAR Ab and IFNAR KO mice showed body weight loss with SFTS viral antigens detected in their sera, extracorporeal secretions, and various organs. Based on histopathology, white pulp atrophy in the spleen was observed in all co-housed mice except WT mice. These results obviously show that IFNAR Ab and IFNAR KO mice, as spreaders, exhibited higher transmissibility to co-housed mice than WT mice. Moreover, IFNAR KO mice, as recipients, were more susceptible to SFTSV infection than WT mice. These findings suggest that type I interferon signaling is a pivotal factor in mice intraspecies transmissibility of SFTSV in the absence of vectors such as ticks.
Collapse
Affiliation(s)
- Byungkwan Oh
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Seok-Chan Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Myeon-Sik Yang
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Daram Yang
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Gaeul Ham
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea;
| | - Myung Jo You
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Sang-Ik Oh
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Bumseok Kim
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| |
Collapse
|
22
|
Seo J, Kim G, Lim JA, Song S, Yoo DS, Cho HS, Oh Y. Tick Diversity and Pathogen Transmission in Daejeon, Korea: Implications from Companion Animals and Walking Trails. Vet Sci 2024; 11:90. [PMID: 38393108 PMCID: PMC10892892 DOI: 10.3390/vetsci11020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
With the ongoing global warming-induced climate change, there has been a surge in vector-borne diseases, particularly tick-borne diseases (TBDs). As the population of companion animals grows, there is growing concern from a One Health perspective about the potential for these animals to spread TBDs. In this study, ticks were collected from companion animals and the surrounding environment in Daejeon Metropolitan City, Korea, using flagging and dragging, and CO2 trap methods. These ticks were then subjected to conventional (nested) PCR for severe fever with thrombocytopenia syndrome virus (SFTSV), Anaplasma spp., Ehrlichia spp., and Borrelia spp. We identified a total of 29,176 ticks, consisting of three genera and four species: H. longicornis, H. flava, I. nipponensis, and A. testudinarium. Notably, H. longicornis was the predominant species. The presence of A. testudinarium suggested that the species traditionally found in southern regions are migrating northward, likely as a result of climate change. Our PCR results confirmed the presence of all four pathogens in both companion animals and the surrounding environment, underscoring the potential for the indirect transmission of tick-borne pathogens to humans through companion animals. These findings emphasize the importance of the ongoing surveillance of companion animals in the management and control of TBDs.
Collapse
Affiliation(s)
- Jinwoo Seo
- Division of Animal Health, Daejeon Institute of Health and Environment, Daejeon 34142, Republic of Korea; (J.S.); (J.-a.L.); (S.S.)
| | - Gyurae Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jeong-ah Lim
- Division of Animal Health, Daejeon Institute of Health and Environment, Daejeon 34142, Republic of Korea; (J.S.); (J.-a.L.); (S.S.)
| | - Seungho Song
- Division of Animal Health, Daejeon Institute of Health and Environment, Daejeon 34142, Republic of Korea; (J.S.); (J.-a.L.); (S.S.)
| | - Dae-Sung Yoo
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Ho-Seong Cho
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Yeonsu Oh
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| |
Collapse
|
23
|
Sano K, Kimura M, Sataka A, Hasegawa H, Tani H, Suzuki T. Characterization of antibodies targeting severe fever with thrombocytopenia syndrome virus glycoprotein Gc. Arch Virol 2024; 169:40. [PMID: 38308735 DOI: 10.1007/s00705-024-05968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/07/2023] [Indexed: 02/05/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a hemorrhagic fever caused by SFTS virus (SFTSV), which is primarily found in East Asian countries. Despite its high mortality rate and increasing incidence, no vaccines or therapeutics have yet been approved for use against SFTS. Antibody drugs have shown promise in treating lethal infectious diseases that currently have no established treatments. In the case of SFTS, however, only a limited amount of research has been done on SFTSV-neutralizing antibodies targeting the transmembrane proteins Gn and Gc, which play critical roles in viral infection. This study focuses on the production and characterization of antibodies targeting the SFTSV Gc protein. Monoclonal antibodies against Gc were generated through immunization of mice, and their antiviral activity was evaluated. Three out of four anti-Gc antibody clones from this study demonstrated dose-dependent SFTSV neutralization activity, two of which exhibited a synergistic effect on the neutralization activity of the anti-Gn antibody clone Mab4-5. Further studies are necessary to identify key sites on the SFTSV glycoprotein and to develop novel agents as well as antibodies with diverse mechanisms of action against SFTSV.
Collapse
Affiliation(s)
- Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Shinjuku, Tokyo, 162-8640, Japan
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Miyuki Kimura
- Department of Microbiology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Akiko Sataka
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Shinjuku, Tokyo, 162-8640, Japan
| | - Hideki Hasegawa
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Hideki Tani
- Department of Microbiology, Faculty of Medicine, University of Toyama, Toyama, Japan
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Shinjuku, Tokyo, 162-8640, Japan.
| |
Collapse
|
24
|
Wen Y, Fang Y, Cao F, Zhang G, Cheng S, Yu Y, Huang R, Ni Z, Li J. A person-to-person transmission cluster of severe fever with thrombocytopenia syndrome characterized by mixed viral infections with familial and nosocomial clustering. Heliyon 2024; 10:e24502. [PMID: 38298613 PMCID: PMC10827760 DOI: 10.1016/j.heliyon.2024.e24502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease with sporadic occurrence and high mortality. Herein, we report an example of the in-hospital transmission of SFTS virus (SFTSV) infections with familial and nosocomial clustering in Zhejiang Province, eastern China, from March to April 2023. The epidemiological investigation and genomic analysis revealed that at least eight suspected cases of SFTS occurred in this cluster, including one death and one asymptomatic case. Our report reemphasizes the risk of familial and nosocomial SFTSV infections in healthcare settings and the urgent need for the long-term systematic surveillance of SFTSV evolution in humans and animals in the eastern coastal regions of China.
Collapse
Affiliation(s)
- Yanping Wen
- Hangzhou Center for Disease Control and Prevention, Zhejiang, China
| | - Yezhen Fang
- Shangcheng District Center for Disease Control and Prevention, Zhejiang, China
| | - Feifei Cao
- Hangzhou Center for Disease Control and Prevention, Zhejiang, China
| | - Guozhong Zhang
- Hangzhou Center for Disease Control and Prevention, Zhejiang, China
| | - Shi Cheng
- Hangzhou Center for Disease Control and Prevention, Zhejiang, China
| | - Yue Yu
- Hangzhou Center for Disease Control and Prevention, Zhejiang, China
| | - Renjie Huang
- Hangzhou Center for Disease Control and Prevention, Zhejiang, China
| | - Zhimin Ni
- Shangcheng District Center for Disease Control and Prevention, Zhejiang, China
| | - Jun Li
- Hangzhou Center for Disease Control and Prevention, Zhejiang, China
| |
Collapse
|
25
|
Zhang Z, Hu X, Jiang Q, Jiao F, Du Q, Liu J, Luo M, Li A, Deng L, Xiong Y. Systemic inflammatory response syndrome in patients with severe fever with thrombocytopenia syndrome: prevalence, characteristics, and impact on prognosis. BMC Infect Dis 2024; 24:149. [PMID: 38291390 PMCID: PMC10829256 DOI: 10.1186/s12879-024-09026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is an emerging zoonosis with a high fatality rate in China. Previous studies have reported that dysregulated inflammatory response is associated with disease pathogenesis and mortality in patients with SFTS. This investigation aimed to evaluate the prevalence and characteristics of systemic inflammatory response syndrome (SIRS), and its impact on prognosis. METHODS Data on demographic characteristics, comorbid conditions, clinical manifestations, laboratory parameters, and survival time of patients with SFTS were collected. Patients were divided into the non-SIRS and SIRS groups according to the presence of SIRS, then their clinical data were compared. RESULTS A total of 290 patients diagnosed with SFTS were retrospectively enrolled, including 126(43.4%) patients with SIRS. Patients in the non-survivor group had more prevalence of SIRS than patients in the survivor group (P < 0.001), and SIRS (adjusted OR 2.885, 95% CI 1.226-6.786; P = 0.005) was shown as an independent risk factor for prognosis of patients with SFTS. Compared with patients without SIRS, patients with SIRS had lower WBC and neutrophils counts, and fibrinogen levels, but higher AST, LDH, amylase, lipase, CK, CK-MB, troponin I, APTT, thrombin time, D-dimer, CRP, IL-6, SAA levels, and viral load. The cumulative survival rate of patients with SIRS was significantly lower than that of patients without SIRS. Patients with SIRS also showed a higher incidence of bacterial or fungal infections than patients without SIRS. CONCLUSIONS SIRS is highly frequent in patients with SFTS, and it is associated with high mortality.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Qunqun Jiang
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fangzhou Jiao
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Du
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Liu
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingqi Luo
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Anling Li
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Liping Deng
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yong Xiong
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
26
|
Xu H, Jian X, Wen Y, Xu M, Jin R, Wu X, Zhou F, Cao J, Xiao G, Peng K, Xie Y, Chen H, Zhang L. A nanoluciferase SFTSV for rapid screening antivirals and real-time visualization of virus infection in mice. EBioMedicine 2024; 99:104944. [PMID: 38176215 PMCID: PMC10806088 DOI: 10.1016/j.ebiom.2023.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen that causes severe hemorrhagic fever in humans, but no FDA-approved specific antivirals or vaccines are available to treat or prevent SFTS. METHODS The plasmids construction and transfection were performed to generate the recombinant SFTSV harboring the nanoluciferase gene (SFTSV-Nluc). Immunostaining plaque assay was performed to measure viral titers, and DNA electrophoresis and Sanger sequencing were performed to evaluate the genetic stability. Luciferase assay and quantitative RT-PCR were performed to evaluate the efficacy of antivirals in vitro. Bioluminescence imaging, titration of virus from excised organs, hematology, and histopathology and immunohistochemistry were performed to evaluate the efficacy of antivirals in vivo. FINDINGS SFTSV-Nluc exhibited high genetic stability and replication kinetics similar to those of wild-type virus (SFTSVwt), then a rapid high-throughput screening system for identifying inhibitors to treat SFTS was developed, and a nucleoside analog, 4-FlU, was identified to effectively inhibit SFTSV in vitro. SFTSV-Nluc mimicked the replication characteristics and localization of SFTSVwt in counterpart model mice. Bioluminescence imaging of SFTSV-Nluc allowed real-time visualization and quantification of SFTSV replication in the mice. 4-FlU was demonstrated to inhibit the replication of SFTSV with more efficiency than T-705 and without obvious adverse effect in vivo. INTERPRETATION The high-throughput screening system based on SFTSV-Nluc for use in vitro and in vivo revealed that a safe and effective antiviral nucleoside analog, 4-FlU, may be a basis for the strategic treatment of SFTSV and other bunyavirus infections, paving the way for the discovery of antivirals. FUNDING This work was supported by grants from the National Key Research and Development Plan of China (2021YFC2300700 to L. Zhang, 2022YFC2303300 to L. Zhang), Strategic Priority Research Program of Chinese Academy of Sciences (XDB0490000 to L. Zhang), National Natural Science Foundation of China (31970165 to L. Zhang, U22A20379 to G. Xiao), the Science and Technology Commission of Shanghai Municipality (21S11903100 to Y. Xie), Hubei Natural Science Foundation for Distinguished Young Scholars (2022CFA099 to L. Zhang).
Collapse
Affiliation(s)
- Huan Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqin Jian
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxi Wen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengwei Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junyuan Cao
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China.
| | | | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
27
|
Wang R, Liu S, Sun H, Xu C, Wen Y, Wu X, Zhang W, Nie K, Li F, Fu S, Yin Q, He Y, Xu S, Liang G, Deng L, Wei Q, Wang H. Metatranscriptomics Reveals the RNA Virome of Ixodes Persulcatus in the China-North Korea Border, 2017. Viruses 2023; 16:62. [PMID: 38257762 PMCID: PMC10819109 DOI: 10.3390/v16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, numerous viruses have been identified from ticks, and some have been linked to clinical cases of emerging tick-borne diseases. Chinese northeast frontier is tick infested. However, there is a notable lack of systematic monitoring efforts to assess the viral composition in the area, leaving the ecological landscape of viruses carried by ticks not clear enough. Between April and June 2017, 7101 ticks were collected to perform virus surveillance on the China-North Korea border, specifically in Tonghua, Baishan, and Yanbian. A total of 2127 Ixodes persulcatus were identified. Further investigation revealed the diversity of tick-borne viruses by transcriptome sequencing of Ixodes persulcatus. All ticks tested negative for tick-borne encephalitis virus. Transcriptome sequencing expanded 121 genomic sequence data of 12 different virus species from Ixodes persulcatus. Notably, a new segmented flavivirus, named Baishan Forest Tick Virus, were identified, closely related to Alongshan virus and Harz mountain virus. Therefore, this new virus may pose a potential threat to humans. Furthermore, the study revealed the existence of seven emerging tick-borne viruses dating back to 2017. These previously identified viruses included Mudanjiang phlebovirus, Onega tick phlebovirus, Sara tick phlebovirus, Yichun mivirus, and three unnamed viruses (one belonging to the Peribunyaviridae family and the other two belonging to the Phenuiviridae family). The existence of these emerging tick-borne viruses in tick samples collected in 2017 suggests that their history may extend further than previously recognized. This study provides invaluable insights into the virome of Ixodes persulcatus in the China-North Korea border region, enhancing our ongoing efforts to manage the risks associated with tick-borne viruses.
Collapse
Affiliation(s)
- Ruichen Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Shenghui Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Hongliang Sun
- Changchun Institute of Biological Products Co., Ltd., Changchun 130012, China; (H.S.); (X.W.)
| | - Chongxiao Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Yanhan Wen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Xiwen Wu
- Changchun Institute of Biological Products Co., Ltd., Changchun 130012, China; (H.S.); (X.W.)
| | - Weijia Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Kai Nie
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Shihong Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Qikai Yin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Ying He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Songtao Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Guodong Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Liquan Deng
- School of Public Health, Jilin University, Changchun 130021, China
| | - Qiang Wei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huanyu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| |
Collapse
|
28
|
Rim JM, Han SW, Cho YK, Kang JG, Choi KS, Chae JS. Serologic and Molecular Prevalence of Severe Fever with Thrombocytopenia Syndrome Virus Among Poultry in the Republic of Korea. Vector Borne Zoonotic Dis 2023; 23:662-669. [PMID: 37788402 DOI: 10.1089/vbz.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by Dabie bandavirus, which belongs to the genus Bandavirus, family Phenuiviridae, and order Bunyavirales. It has been found in tick species, various animals, and humans. The aim of this study was to detect RNA of antigens and antibodies against SFTS virus (SFTSV) among poultry such as chickens, ducks, and wild geese from five provinces in the Republic of Korea (ROK). Materials and Methods: A one-step reverse transcriptase (RT)-PCR and nested PCR were performed after viral RNA extraction. The phylogenetic tree was constructed after sequencing data were analyzed and aligned. An indirect enzyme-linked immunosorbent assay (ELISA) and a neutralization test (NT) were performed to test for IgG antibodies of SFTSV. Results: Of a total of 606 poultry serum samples collected, 568 and 539 serum samples were used to perform ELISA and NT, respectively. Of a total of 606 serum samples tested by RT-PCR targeting the S segment, 15 (2.5%) were positive for SFTSV. From the 15 positive serum samples for the SFTSV antigen, three from chickens, three from ducks, and one from wild geese were classified as genotype B-2; one from chickens was classified as genotype B-3; and three from chickens and four from wild geese were classified as genotype D. Of the 568 serum samples tested by ELISA, 83 (28.0%) from chickens, 81 (32.9%) from ducks, and 8 (30.8%) from wild geese were seropositive. Of the 539 serum samples for which an NT was performed, 113 (38.6%) from chickens and 75 (30.5%) from ducks were positive for SFTSV antibodies. Conclusions: The results of this study provide useful information regarding detection of SFTSV RNA and antibodies among poultry and the possibility of SFTSV transmission in various types of poultry, including chickens, ducks, and wild geese, in the ROK.
Collapse
Affiliation(s)
- Ji-Min Rim
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Kyoung Cho
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Gu Kang
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Tian W, Zhang Y, Geng S, Wang J, Ji W, Xu Y, Gao X, Li X, Lin L, Liu Y, Song C, Chen Z, Zhang W. Evaluation of reverse transcription loop-mediated isothermal amplification assay for the detection of severe fever with thrombocytopenia syndrome in clinical laboratories: A single-center study. J Med Virol 2023; 95:e29258. [PMID: 38054542 DOI: 10.1002/jmv.29258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/09/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an acute infectious disease prevalent in East Asia with a high mortality rate (5%-30%). Reverse transcription loop-mediated isothermal amplification (RT-LAMP), a rapid nucleic acid-based diagnostic technique, is a useful alternative for the clinical diagnosis of SFTS, particularly in resource-limited hospitals or rural clinics in SFTS virus-endemic regions. However, the actual clinical sensitivity and specificity of RT-LAMP remain unclear. This study evaluated the field application of RT-LAMP. This prospective field study included 130 patients with laboratory-confirmed SFTS from Yantai, Shandong Province, China. Two sets of RT-LAMP primers were validated, and one set of RT-LAMP assays was optimized for field detection. Nucleic acids of serially collected serum/plasma samples were identified using quantitative reverse transcription polymerase chain reaction (RT-qPCR) and RT-LAMP. In laboratory tests, we optimized the detection time of primer set 2 for the RT-LAMP to 60 min. Notably, the onsite testing of 279 plasma samples from patients with SFTS revealed that the sensitivity and specificity of the test were 81.9% and 96.3%, respectively. We also analyzed samples with different durations of the disease, and our study showed that the sensitivity of RT-LAMP detection at the beginning of admission was 89.92%. Univariate analysis showed that the detection rate of RT-LAMP was similar to that of RT-qPCR in the first 5 days of the disease course and was lower than that of RT-qPCR on Days 6 and 14-15 of the disease course. The positive detection rate in patients aged ≥ 65 years was significantly higher than that in younger age groups. RT-LAMP is a simple, suitable, and rapid clinical detection method of SFTS onsite screening. It is more suitable for screening patients in the early stages of the disease and analyzing samples obtained from patients aged ≥ 65 years before the 6th day of the disease course.
Collapse
Affiliation(s)
- Wen Tian
- Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuying Geng
- Department of Infectious Diseases, Yantai City Hospital for Infectious Disease, Yantai, China
| | - Jianxin Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wenjuan Ji
- Department of Infectious Diseases, Yantai City Hospital for Infectious Disease, Yantai, China
| | - Yanli Xu
- Department of Infectious Diseases, Yantai City Hospital for Infectious Disease, Yantai, China
| | - Xu Gao
- Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xin Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ling Lin
- Department of Infectious Diseases, Yantai City Hospital for Infectious Disease, Yantai, China
| | - Yuanni Liu
- Department of Infectious Diseases, Yantai City Hospital for Infectious Disease, Yantai, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhihai Chen
- Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Miura K, Fujinaga J. A Case of Severe Fever With Thrombocytopenia Syndrome With Recurrent Shock and Erythema. Cureus 2023; 15:e50305. [PMID: 38205478 PMCID: PMC10776456 DOI: 10.7759/cureus.50305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a fatal infectious disease often transmitted through tick bites and exposure to fluids from infected individuals. Early diagnosis is critical due to the high mortality rates of the disease; however, it might be challenging if a patient's history of tick contact is unclear. We report a detailed diagnosis of SFTS in a 69-year-old man with atypical symptoms but without identifiable tick bites. The diagnosis was made on the basis of massive diarrhea, recurrent shock, and unusual erythema presentation following hospital admission.
Collapse
Affiliation(s)
- Koji Miura
- Emergency Medicine, Kurashiki Central Hospital, Kurashiki, JPN
| | - Jun Fujinaga
- Emergency and Critical Care Center, Kurashiki Central Hospital, Kurashiki, JPN
| |
Collapse
|
31
|
Wang J, Luo M, Li T, Liu Y, Jiang G, Wu Y, Liu Q, Gong Z, Sun J. The ecological and etiological investigation of ticks and rodents in China: results from an ongoing surveillance study in Zhejiang Province. Front Vet Sci 2023; 10:1268440. [PMID: 38089699 PMCID: PMC10715276 DOI: 10.3389/fvets.2023.1268440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/13/2023] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVES This study aimed to analyze the population density of vector ticks and reservoir hosts rodents, and to investigate the relevant pathogen infection in Zhejiang Province, China. METHODS In this surveillance study, the data of ticks density were collected with the tick picking method on animal body surface and the drag-flag method, while the rodent density with the night trapping method. The samples of ticks were examined for the severe fever with thrombocytopenia syndrome virus (SFTSV), and blood serum and organs from rodents were subjected for SFTSV, hantavirus, Leptospira, Orientia tsutsugamushi (O. tsutsugamushi) and Yersinia pestis (Y. pestis) screening in the laboratory. RESULTS From 2017 to 2022 in Zhejiang Province, 16,230 parasitic ticks were found in 1848 positive animals, with the density of parasitic ticks of 1.29 ticks per host animal, and a total of 5,201 questing ticks were captured from 1,140,910 meters of vegetation distance with the questing tick density of 0.46 ticks/flag·100 m. Haemaphysalis longicornis (H. longicornis) was the major species. A total of 2,187,739 mousetraps were distributed and 12,705 rodents were trapped, with the density of 0.58 per 100 trap-nights. Rattus norvegicus was the major species. For SFTSV screening, two groups nymphal ticks of H. longicornis were tested to be positive. For the rodents samples, the Leptospira had a positive rate of 12.28% (197/1604), the hantavirus was 1.00% (16/1604), and the O. tsutsugamushi was 0.15% (2/1332). No positive results were found with SFTSV and Y. pestis in the rodents samples. CONCLUSION Findings from this study indicated that the ticks and rodents were widely distributed in Zhejiang Province. Particularly, the positive detection of SFTSV, Leptospira, hantavirus and O. tsutsugamushi in ticks or rodents from this area suggested that more attention should be paid to the possibilities of relevant vector-borne diseases occurrence.
Collapse
Affiliation(s)
- Jinna Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Mingyu Luo
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Tianqi Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ying Liu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Guoqin Jiang
- Shaoxing Center for Disease Control and Prevention, Shaoxing, China
| | - Yuyan Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Qinmei Liu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhenyu Gong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jimin Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
32
|
Zhang Z, Hu X, Jiang Q, Du Q, Liu J, Luo M, Deng L, Xiong Y. Prevalence and clinical characteristics of increased pancreatic enzymes in patients with severe fever with thrombocytopenia syndrome. PLoS Negl Trop Dis 2023; 17:e0011758. [PMID: 37943950 PMCID: PMC10662747 DOI: 10.1371/journal.pntd.0011758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND AND AIM The increased pancreatic enzymes have recently been reported in patients with severe fever with thrombocytopenia syndrome (SFTS). However, its significance has not been elucidated clearly. The aim of this study was to explore the prevalence, clinical characteristics of elevated pancreatic enzymes (amylase and lipase) and its association with AP in patients with SFTS. METHODS Data of demographics, comorbid conditions, clinical symptoms, laboratory parameters and survival time of patients with SFTS were collected. Patients were assigned into the non-AP and AP groups according to the diagnostic criteria of AP. Patients in the non-AP group were divided into the normal (3×ULN) groups according to the serum amylase and lipase levels, and then their clinical data were compared. RESULTS A total of 284 patients diagnosed with SFTS were retrospectively enrolled, including 248 patients in the non-AP group and 36 patients in the AP group. Patients in the non-AP group were composed of 48, 116 and 84 patients in the normal, EPE and HPE groups, respectively. Compared with patients in the normal and EPE groups, patients in the HPE group had higher serum levels of laboratory parameters referring to liver, kidney, heart and coagulation system injury, as well as higher viral load. The cumulative survival rate of patients in the HPE group was significantly lower than that of patients in the normal group. In addition, patients in the AP group also had higher serum levels of laboratory variables reflecting liver, heart, coagulation dysfunction and viral load than patients in the HPE group. The cumulative survival rate of patients in the AP group was significantly lower than that of patients in the HPE group. CONCLUSION The increased pancreatic enzymes are very common in patients with SFTS, but they are not always associated with AP. Though AP accounts for the majority of deaths for patients with elevated pancreatic enzymes, patients with pancreatic enzymes >3×ULN except for AP also have a high in-hospital mortality rate.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Qunqun Jiang
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Du
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Liu
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingqi Luo
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liping Deng
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yong Xiong
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Kim JY, Jeon K, Park SI, Bang YJ, Park HJ, Kwak HW, Kim DH, Lee SY, Choi EJ, Cho NH, Nam JH. mRNA vaccine encoding Gn provides protection against severe fever with thrombocytopenia syndrome virus in mice. NPJ Vaccines 2023; 8:167. [PMID: 37907507 PMCID: PMC10618158 DOI: 10.1038/s41541-023-00771-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023] Open
Abstract
We developed a promising mRNA vaccine against severe fever with thrombocytopenia syndrome (SFTS), an infectious disease caused by the SFTS virus that is primarily transmitted through tick bites. Administration of lipid nanoparticle-encapsulated mRNA-Gn successfully induced neutralizing antibodies and T-cell responses in mice. The vaccinated mice were protected against a lethal SFTS virus challenge, suggesting that this mRNA vaccine may be an effective and successful SFTS vaccine candidate.
Collapse
Affiliation(s)
- Jae-Yong Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
- SML Biopharm, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Kyeongseok Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-In Park
- SML Biopharm, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Yoo-Jin Bang
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
- SML Biopharm, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Hyeong-Jun Park
- SML Biopharm, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Hye Won Kwak
- SML Biopharm, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Do-Hyung Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
- SML Biopharm, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Soo-Yeon Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Eun-Jin Choi
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea.
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
34
|
He X, Yang F, Wu Y, Lu J, Gao X, Zhu X, Yang J, Liu S, Xiao G, Pan X. Identification of tanshinone I as cap-dependent endonuclease inhibitor with broad-spectrum antiviral effect. J Virol 2023; 97:e0079623. [PMID: 37732786 PMCID: PMC10617418 DOI: 10.1128/jvi.00796-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/23/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE The spread of avian-borne, tick-borne, and rodent-borne pathogens has the potential to pose a serious threat to human health, and candidate vaccines as well as therapeutics for these pathogens are urgently needed. Tanshinones, especially tanshinone I, were identified as a cap-dependent endonuclease inhibitor with broad-spectrum antiviral effects on negative-stranded, segmented RNA viruses including bandavirus, orthomyxovirus, and arenavirus from natural products, implying an important resource of candidate antivirals from the traditional Chinese medicines. This study supplies novel candidate antivirals for the negative-stranded, segmented RNA virus and highlights the endonuclease involved in the cap-snatching process as a reliable broad-spectrum antiviral target.
Collapse
Affiliation(s)
- Xiaoxue He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fan Yang
- The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Jia Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| | - Xuerui Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Jie Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Zhang Z, Hu X, Jiang Q, Hu W, Li A, Deng L, Xiong Y. Clinical characteristics and outcomes of acute kidney injury in patients with severe fever with thrombocytopenia syndrome. Front Microbiol 2023; 14:1236091. [PMID: 37779695 PMCID: PMC10533938 DOI: 10.3389/fmicb.2023.1236091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is an emerging zoonosis caused by a novel bunyavirus. Until recently, the SFTS related acute kidney injury (AKI) was largely unexplored. This study aimed to investigate the clinical characteristics and outcomes of AKI in patients with SFTS. Methods The non-AKI and AKI groups were compared in terms of general characteristics, clinical features, laboratory parameters and cumulative survival rate. The independent risk factors for in-hospital mortality in patients with SFTS were analyzed by multivariate logistic regression to identify the population with poor prognosis. Results A total of 208 consecutive patients diagnosed with SFTS were enrolled, including 153 (73.6%) patients in the non-AKI group and 55 (26.4%) patients in the AKI group. Compared with patients without AKI, patients with AKI were older and had a higher frequency of diabetes. Among these laboratory parameters, platelet count, albumin and fibrinogen levels of patients with AKI were identified to be significantly lower than those of patients without AKI, while ALT, AST, ALP, triglyceride, LDH, BUN, uric acid, creatine, Cys-C, β2-MG, potassium, AMY, lipase, CK-MB, TnI, BNP, APTT, thrombin time, D-dimer, CRP, IL-6, PCT and ESR levels were significantly higher in patients with AKI. A higher SFTS viral load was also detected in the AKI patients than in the non-AKI patients. The cumulative survival rates of patients at AKI stage 2 or 3 were significantly lower than those of patients without AKI or at AKI stage 1. However, there was no significant difference in the cumulative survival rates between patients without AKI and those with stage 1 AKI. Univariate and multivariate binary logistic regression analyses demonstrated that stage 2 or 3 AKI was an independent risk factor for in-hospital mortality in patients with SFTS. Conclusion AKI is associated with poor outcomes in patients with SFTS, especially patients at AKI stage 2 or 3, who generally have high mortality. Our findings support the importance of early identification and timely treatment of AKI in patients with SFTS.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qunqun Jiang
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjia Hu
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Anling Li
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liping Deng
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yong Xiong
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Meng X, Liu Y, Li J, Wang L, Shi R, Chen Y, Zhu Y, Zhuang S. Metagenomic next-generation sequencing for diagnosis and efficacy evaluation of a critical case of SFTS complicated by invasive pulmonary aspergillosis. IDCases 2023; 33:e01884. [PMID: 37663136 PMCID: PMC10470360 DOI: 10.1016/j.idcr.2023.e01884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by SFTS virus (SFTSV). SFTS patients were prone to invasive pulmonary aspergillosis (IPA), which was directly related to increased mortality. Here, we present a critical case of SFTS complicated by IPA in a previously healthy 58-year-old woman. On day 1, SFTSV and three different Aspergillus species were both detected in the patient's bronchoalveolar lavage fluid and blood through metagenomic next-generation sequencing (mNGS). After 17 days of treatment, the patient was still in poor condition and A. fumigatus was once again detected in her blood through mNGS. Then her family decided to give up treatment because of financial problems and grave prognosis. She was discharged home and died the next day. Medical personnel should be alter to the possibility of IPA in SFTS patients due to its high mortality. mNGS may be used as an auxiliary diagnostic tool and efficacy-monitoring method for suspected SFTS complicated by IPA.
Collapse
Affiliation(s)
- Xing Meng
- Department of Emergency Intensive Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liu
- Genskey Medical Technology Co., Ltd, Beijing, China
| | - Jun Li
- Genskey Medical Technology Co., Ltd, Beijing, China
| | - Liang Wang
- Genskey Medical Technology Co., Ltd, Beijing, China
| | - Ruixue Shi
- Genskey Medical Technology Co., Ltd, Beijing, China
| | - Ying Chen
- Genskey Medical Technology Co., Ltd, Beijing, China
| | - Yun Zhu
- Genskey Medical Technology Co., Ltd, Beijing, China
| | | |
Collapse
|
37
|
Yang K, Chen J, Chen Z, Zheng Y. Risk Factors for Death in Patients with Severe Fever with Thrombocytopenia Syndrome. Am J Trop Med Hyg 2023; 109:94-100. [PMID: 37253446 PMCID: PMC10324000 DOI: 10.4269/ajtmh.22-0667] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/13/2023] [Indexed: 06/01/2023] Open
Abstract
To establish a Cox regression model predicting risk factors for mortality in patients with severe fever with thrombocytopenia syndrome (SFTS), a total of 109 SFTS patients treated at The Second Hospital of Nanjing between June 2016 and October 2020 were included in this study. The patients were categorized into survival (n = 82) and death (n = 27) groups, and the clinical manifestations on admission and laboratory examination were collected. The factors associated with the mortality risk of SFTS patients were explored by univariate and binary logistic regression analyses. The receiver operating characteristic curve was used to evaluate the predictive value of independent influencing factors and the STFS scoring system. Univariate screening showed that the putative influencing factors were age, Acute Physiology and Chronic Health Evaluation II (APACHE II) score, invasive mechanical ventilation, continuous renal replacement therapy, application of vasoactive medications, absolute count of lymphocytes, count of platelets, and levels of albumin and D-dimer (P < 0.05). Binary logistic regression showed that age (P = 0.042), APACHE II score (P = 0.030), and vasoactive medications (P = 0.035) were independent risk factors in SFTS patients. The combined prediction equation for the mortality risk of SFTS patients was "Combined predictor = age + 3.162 × APACHE II score + 22.306 × vasoactive medications," and the predictive value of combined predictor was greater than that of age (P = 0.004) or APACHE II score (P < 0.001). The combination of age, APACHE II score, and vasoactive medications had the highest ability to predict the risk of death. The STFS scoring system could make the clinical application of independent risk factors feasible.
Collapse
Affiliation(s)
- Kai Yang
- Department of Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Chen
- Department of Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyi Chen
- Department of Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yishan Zheng
- Department of Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
38
|
Kim J, Hong HJ, Hwang JH, Shin NR, Hwang K. Risk factors associated with death due to severe fever with thrombocytopenia syndrome in hospitalized Korean patients (2018-2022). Osong Public Health Res Perspect 2023; 14:151-163. [PMID: 37415432 PMCID: PMC10522827 DOI: 10.24171/j.phrp.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) has no vaccine or treatment and an extremely high fatality rate. We aimed to analyze and evaluate the risk factors for death associated with SFTS. METHODS Among reports from 2018 to 2022, we compared and analyzed 1,034 inpatients aged 18 years or older with laboratory-confirmed SFTS who underwent complete epidemiological investigations. RESULTS Most of the inpatients with SFTS were aged 50 years or older (average age, 67.6 years). The median time from symptom onset to death was 9 days, and the average case fatality rate was 18.5%. Risk factors for death included age of 70 years or older (odds ratio [OR], 4.82); agriculture-related occupation (OR, 2.01); underlying disease (OR, 7.20); delayed diagnosis (OR, 1.28 per day); decreased level of consciousness (OR, 5.53); fever/chills (OR, 20.52); prolonged activated partial thromboplastin time (OR, 4.19); and elevated levels of aspartate aminotransferase (OR, 2.91), blood urea nitrogen (OR, 2.62), and creatine (OR, 3.21). CONCLUSION The risk factors for death in patients with SFTS were old age; agriculture-related occupation; underlying disease; delayed clinical suspicion; fever/chills; decreased level of consciousness; and elevated activated partial thromboplastin time, aspartate aminotransferase, blood urea nitrogen, and creatine levels.
Collapse
Affiliation(s)
- Jia Kim
- Division of Zoonotic and Vector Borne Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Hyo-jeong Hong
- Division of Zoonotic and Vector Borne Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Ji-hye Hwang
- Division of Zoonotic and Vector Borne Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Na-Ri Shin
- Division of Zoonotic and Vector Borne Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Kyungwon Hwang
- Division of Zoonotic and Vector Borne Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| |
Collapse
|
39
|
Kim JY, Jeon K, Hong JJ, Park SI, Cho H, Park HJ, Kwak HW, Park HJ, Bang YJ, Lee YS, Bae SH, Kim SH, Hwang KA, Jung DI, Cho SH, Seo SH, Kim G, Oh H, Lee HY, Kim KH, Lim HY, Jeon P, Lee JY, Chung J, Lee SM, Ko HL, Song M, Cho NH, Lee YS, Hong SH, Nam JH. Heterologous vaccination utilizing viral vector and protein platforms confers complete protection against SFTSV. Sci Rep 2023; 13:8189. [PMID: 37210393 DOI: 10.1038/s41598-023-35328-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus was first discovered in 2009 as the causative agent of severe fever with thrombocytopenia syndrome. Despite its potential threat to public health, no prophylactic vaccine is yet available. This study developed a heterologous prime-boost strategy comprising priming with recombinant replication-deficient human adenovirus type 5 (rAd5) expressing the surface glycoprotein, Gn, and boosting with Gn protein. This vaccination regimen induced balanced Th1/Th2 immune responses and resulted in potent humoral and T cell-mediated responses in mice. It elicited high neutralizing antibody titers in both mice and non-human primates. Transcriptome analysis revealed that rAd5 and Gn proteins induced adaptive and innate immune pathways, respectively. This study provides immunological and mechanistic insight into this heterologous regimen and paves the way for future strategies against emerging infectious diseases.
Collapse
Affiliation(s)
- Jae-Yong Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
- SML Biopharm, Gwangmyeong, Gyeonggi-do, Republic of Korea
| | - Kyeongseok Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung Joo Hong
- Immunology and Infectious Disease Lab, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)/University of Science and Technology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Sang-In Park
- SML Biopharm, Gwangmyeong, Gyeonggi-do, Republic of Korea
| | - Hyeonggon Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | - Hye Won Kwak
- SML Biopharm, Gwangmyeong, Gyeonggi-do, Republic of Korea
| | - Hyeong-Jun Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
- SML Biopharm, Gwangmyeong, Gyeonggi-do, Republic of Korea
| | - Yoo-Jin Bang
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
- SML Biopharm, Gwangmyeong, Gyeonggi-do, Republic of Korea
| | - Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | - Seo-Hyeon Bae
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | - So-Hee Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyung-Ah Hwang
- Department of Research and Development, Genetree Research, Seoul, Republic of Korea
| | - Dae-Im Jung
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea
| | - Seong Hoo Cho
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea
| | - Sang Hwan Seo
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea
| | - Green Kim
- Immunology and Infectious Disease Lab, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)/University of Science and Technology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Hanseul Oh
- Immunology and Infectious Disease Lab, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)/University of Science and Technology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Hwal-Yong Lee
- Immunology and Infectious Disease Lab, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)/University of Science and Technology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Ki Hyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hee-Young Lim
- Center for Emerging Virus Research, National Institutes of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Pyeonghwa Jeon
- Center for Emerging Virus Research, National Institutes of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, National Institutes of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hae Li Ko
- Scripps Korea Antibody Institute, Chuncheon, 24341, Republic of Korea
| | - Manki Song
- Science Unit, International Vaccine Institute, Seoul, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Young-Suk Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea.
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
40
|
Park JY, Chandran S, Hewawaduge C, Lee JH. Development and evaluation of a mouse model susceptible to severe fever with thrombocytopenia syndrome virus by rAAV-based exogenous human DC-SIGN expression. Microb Pathog 2023; 178:106079. [PMID: 36966885 DOI: 10.1016/j.micpath.2023.106079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
Experimental animal model is indispensable to evaluate the prophylactic and therapeutic candidates against severe fever with thrombocytopenia syndrome virus (SFTSV). To develop a suitable mouse model for SFTSV infection, we delivered human dendritic cell-specific ICAM-3-grabbing non-integrin (hDC-SIGN) by adeno-associated virus (AAV2) and validated its susceptibility for SFTSV infection. Western blot and RT-PCR assays confirmed the expression of hDC-SIGN in transduced cell lines and a significantly increased viral infectivity was observed in cells expressing hDC-SIGN. The C57BL/6 mice transduced with AAV2 exhibited a stable hDC-SIGN expression in the organs for 7 days. Upon SFTSV challenge with 1 × 105 FAID50, the mice transduced with rAAV-hDC-SIGN showed a 12.5% mortality and reduced platelet and white blood cell count in accordance with higher viral titer than control group. Liver and spleen samples collected from the transduced mice had pathological signs similar to the IFNAR-/- mice with severe SFTSV infection. Collectively, the rAAV-hDC-SIGN transduced mouse model can be used as an accessible and promising tool for studying the SFTSV pathogenesis and pre-clinical evaluation of vaccines and therapeutics against the SFTSV infection.
Collapse
Affiliation(s)
- Ji-Young Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Sivasankar Chandran
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea.
| |
Collapse
|
41
|
Liang S, Xie W, Li Z, Zhang N, Wang X, Qin Y, Bao C, Hu J. Analysis of fatal cases of severe fever with thrombocytopenia syndrome in Jiangsu province, China, between 2011 and 2022: A retrospective study. Front Public Health 2023; 11:1076226. [PMID: 37033043 PMCID: PMC10076888 DOI: 10.3389/fpubh.2023.1076226] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV), which has a high fatality rate. This disease has become increasingly prevalent in recent years in Jiangsu province, with a noticeable rise in its incidence. Notably, fatal cases have also been increasing. Our study aimed to analyze the epidemiological characteristics and risk factors associated with the fatal cases of SFTS in Jiangsu province from 2011 to September 2022. Methods A retrospective study was performed among 698 SFTS cases during 2011-2022 in Jiangsu Province, China. Cox regression analyses were used to determine the dependent and independent risk factors that affected patient survival time. ArcGIS 10.7 was used for the visualization of the geographical distribution of the deaths from SFTS. Results There were 698 SFTS cases reported, with an increasing incidence, over the 12-year period. Among these cases, 43 deaths were reported. Fatal cases of SFTS were reported in 12 district counties from 2011 to 2022. Notably, most of the deaths occurred in Lishui county of Nanjing City. The median age of those who died was 69 years, with age ranges from 50 to 83 years. Multivariable Cox regression analysis showed that older age (>70) and living in Lishui county were risk factors for death from SFTS in Jiangsu province. Therefore, older adults aged over 70 years and residing in Lishui county were the high-risk group for SFTS mortality. Discussion Over the past 12 years, we have observed a consistent rise in the incidence of SFTS, accompanied by a relatively high case fatality rate, making it a critical public health issue. Therefore, it is urgently necessary to study the impact of meteorological factors on SFTS epidemics and devise prevention and control strategies.
Collapse
Affiliation(s)
- Shuyi Liang
- Jiangsu Provincial Center for Disease Control and Prevention, Acute Infectious Disease Control and Prevention Institute, Nanjing, China
| | - Wei Xie
- Jiangsu Provincial Center for Disease Control and Prevention, Institute of Food Safety and Assessment, Nanjing, China
| | - Zhifeng Li
- Jiangsu Provincial Center for Disease Control and Prevention, Acute Infectious Disease Control and Prevention Institute, Nanjing, China
| | - Nan Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Acute Infectious Disease Control and Prevention Institute, Nanjing, China
| | - Xiaochen Wang
- Jiangsu Provincial Center for Disease Control and Prevention, Acute Infectious Disease Control and Prevention Institute, Nanjing, China
| | - Yuanfang Qin
- Jiangsu Provincial Center for Disease Control and Prevention, Acute Infectious Disease Control and Prevention Institute, Nanjing, China
| | - Changjun Bao
- Jiangsu Provincial Center for Disease Control and Prevention, Acute Infectious Disease Control and Prevention Institute, Nanjing, China
| | - Jianli Hu
- Jiangsu Provincial Center for Disease Control and Prevention, Acute Infectious Disease Control and Prevention Institute, Nanjing, China
| |
Collapse
|
42
|
Hu Q, Zhang Y, Jiang J, Zheng A. Two Point Mutations in the Glycoprotein of SFTSV Enhance the Propagation Recombinant Vesicular Stomatitis Virus Vectors at Assembly Step. Viruses 2023; 15:800. [PMID: 36992507 PMCID: PMC10052781 DOI: 10.3390/v15030800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen for which approved therapeutic drugs or vaccines are not available. We previously developed a recombinant vesicular stomatitis virus-based vaccine candidate (rVSV-SFTSV) by replacing the original glycoprotein with Gn/Gc from SFTSV, which conferred complete protection in a mouse model. Here, we found that two spontaneous mutations, M749T/C617R, emerged in the Gc glycoprotein during passaging that could significantly increase the titer of rVSV-SFTSV. M749T/C617R enhanced the genetic stability of rVSV-SFTSV, and no further mutations appeared after 10 passages. Using immunofluorescence analysis, we found that M749T/C617R could increase glycoprotein traffic to the plasma membrane, thus facilitating virus assembly. Remarkably, the broad-spectrum immunogenicity of rVSV-SFTSV was not affected by the M749T/C617R mutations. Overall, M749T/C617R could enhance the further development of rVSV-SFTSV into an effective vaccine in the future.
Collapse
Affiliation(s)
- Qiang Hu
- College of Life Science, Hebei University, Baoding 071002, China
| | - Yuhang Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jiafu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
43
|
Xia G, Sun S, Zhou S, Li L, Li X, Zou G, Huang C, Li J, Zhang Z. A new model for predicting the outcome and effectiveness of drug therapy in patients with severe fever with thrombocytopenia syndrome: A multicenter Chinese study. PLoS Negl Trop Dis 2023; 17:e0011158. [PMID: 36877734 PMCID: PMC10019728 DOI: 10.1371/journal.pntd.0011158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/16/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND There are a few models for predicting the outcomes of patients with severe fever with thrombocytopenia syndrome (SFTS) based on single-center data, but clinicians need more reliable models based on multicenter data to predict the clinical outcomes and effectiveness of drug therapy. METHODOLOGY/PRINCIPAL FINDINGS This retrospective multicenter study analyzed data from 377 patients with SFTS, including a modeling group and a validation group. In the modeling group, the presence of neurologic symptoms was a strong predictor of mortality (odds ratio: 168). Based on neurologic symptoms and the joint indices score, which included age, gastrointestinal bleeding, and the SFTS virus viral load, patients were divided into double-positive, single-positive, and double-negative groups, which had mortality rates of 79.3%, 6.8%, and 0%, respectively. Validation using data on 216 cases from two other hospitals yielded similar results. A subgroup analysis revealed that ribavirin had a significant effect on mortality in the single-positive group (P = 0.006), but not in the double-positive or double-negative group. In the single-positive group, prompt antibiotic use was associated with reduced mortality (7.2% vs 47.4%, P < 0.001), even in individuals without significant granulocytopenia and infection, and early prophylaxis was associated with reduced mortality (9.0% vs. 22.8%, P = 0.008). The infected group included SFTS patients with pneumonia or sepsis, while the noninfected group included patients with no signs of infection. The white blood cell count and levels of C-reactive protein and procalcitonin differed significantly between the infection and non-infection groups (P = 0.020, P = 0.011, and P = 0.003, respectively), although the absolute difference in the medians were small. CONCLUSIONS/SIGNIFICANCE We developed a simple model to predict mortality in patients with SFTS. Our model may help to evaluate the effectiveness of drugs in these patients. In patients with severe SFTS, ribavirin and antibiotics may reduce mortality.
Collapse
Affiliation(s)
- Guomei Xia
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shanshan Sun
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shijun Zhou
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Lei Li
- Department of Infectious Diseases, Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Xu Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guizhou Zou
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
44
|
Zhang Z, Tan J, Jin W, Qian H, Wang L, Zhou H, Yuan Y, Wu X. Severe fever with thrombocytopenia syndrome virus trends and hotspots in clinical research: A bibliometric analysis of global research. Front Public Health 2023; 11:1120462. [PMID: 36817929 PMCID: PMC9933999 DOI: 10.3389/fpubh.2023.1120462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Since severe fever with thrombocytopenia syndrome virus (SFTSV) was first reported in 2009, a large number of relevant studies have been published. However, no bibliometrics analysis has been conducted on the literature focusing on SFTSV. This study aims to evaluate the research hotspots and future development trends of SFTSV research through bibliometric analysis, and to provide a new perspective and reference for future SFTSV research and the prevention of SFTSV. METHODS We retrieved global publications on SFTSV from the Web of Science Core Collection (WoSCC) and Scopus databases from inception of the database until 2022 using VOSviewer software and CiteSpace was used for bibliometric analysis. RESULTS The number of SFTSV-related publications has increased rapidly since 2011, peaking in 2021. A total of 45 countries/regions have published relevant publications, with China topping the list with 359. The Viruses-Basel has published the most papers on SFTSV. In addition, Yu et al. have made the greatest contribution to SFTSV research, with their published paper being the most frequently cited. The most popular SFTSV study topics included: (1) pathogenesis and symptoms, (2) characteristics of the virus and infected patients, and (3) transmission mechanism and risk factors for SFTSV. CONCLUSIONS In this study, we provide a detailed description of the research developments in SFTSV since its discovery and summarize the SFTSV research trends. SFTSV research is in a phase of explosive development, and a large number of publications have been published in the past decade. There is a lack of collaboration between countries and institutions, and international collaboration and exchanges should be strengthened in the future. The current research hotpots of SFTSV is antiviral therapy, immunotherapy, virus transmission mechanism and immune response.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Medical Records Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juntao Tan
- Operation Management Office, Affiliated Banan Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Jin
- Medical Records Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Qian
- Medical Records Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Loulei Wang
- Medical Records Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hu Zhou
- General Committee Office, The People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Yuan Yuan
- Medical Department, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
45
|
Aschenbrenner D, Ye Z, Zhou Y, Hu W, Brooks I, Williams I, Capitani M, Gartner L, Kotlarz D, Snapper SB, Klein C, Muise AM, Marsden BD, Huang Y, Uhlig HH. Pathogenic Interleukin-10 Receptor Alpha Variants in Humans - Balancing Natural Selection and Clinical Implications. J Clin Immunol 2023; 43:495-511. [PMID: 36370291 PMCID: PMC9892166 DOI: 10.1007/s10875-022-01366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
Balancing natural selection is a process by which genetic variants arise in populations that are beneficial to heterozygous carriers, but pathogenic when homozygous. We systematically investigated the prevalence, structural, and functional consequences of pathogenic IL10RA variants that are associated with monogenic inflammatory bowel disease. We identify 36 non-synonymous and non-sense variants in the IL10RA gene. Since the majority of these IL10RA variants have not been functionally characterized, we performed a systematic screening of their impact on STAT3 phosphorylation upon IL-10 stimulation. Based on the geographic accumulation of confirmed pathogenic IL10RA variants in East Asia and in Northeast China, the distribution of infectious disorders worldwide, and the functional evidence of IL-10 signaling in the pathogenesis, we identify Schistosoma japonicum infection as plausible selection pressure driving variation in IL10RA. Consistent with this is a partially augmented IL-10 response in peripheral blood mononuclear cells from heterozygous variant carriers. A parasite-driven heterozygote advantage through reduced IL-10 signaling has implications for health care utilization in regions with high allele frequencies and potentially indicates pathogen eradication strategies that target IL-10 signaling.
Collapse
Affiliation(s)
- Dominik Aschenbrenner
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Ziqing Ye
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Ying Zhou
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenhui Hu
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Isabel Brooks
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Isabelle Williams
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Melania Capitani
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- SenTcell Ltd., London, UK
| | - Lisa Gartner
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Scott B Snapper
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
- Gene Center, LMU Munich, Munich, Germany
- Deutsche Zentrum für Infektionsforschung (DZIF) and Deutsches Zentrum für Kinder- und Jugendgesundheit, Partner site Munich, Munich, Germany
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Toronto, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Brian D Marsden
- Centre of Medicines Discovery, NDM, University of Oxford, Oxford, OX3 7DQ, UK
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY, UK
| | - Ying Huang
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
- Department of Pediatrics, University of Oxford, Oxford, UK.
- Biomedical Research Center, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Lee JS, Chung SY. The Threat of Climate Change on Tick-Borne Infections: Rising Trend of Infections and Geographic Distribution of Climate Risk Factors Associated With Ticks. J Infect Dis 2023; 227:295-303. [PMID: 35861295 DOI: 10.1093/infdis/jiac300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 01/14/2023] Open
Abstract
Ticks transmit a wide range of pathogens. The spread of tick-borne infections is an emerging, yet often overlooked, threat in the context of climate change. The infections have rapidly increased over the past few years in South Korea despite no significant changes in socioeconomic circumstances. We investigated the impact of climate change on the surge of tick-borne infections and identified potential disease hot spots at a resolution of 5 km by 5 km. A composite index was constructed based on multiple climate and environmental indicators and compared with the observed tick-borne infections. The surge of tick-borne episodes corresponded to the rising trend of the index over time. High-risk areas identified by the index can be used to prioritize locations for disease prevention activities. Monitoring climate risk factors may provide an opportunity to predict the spread of the infections in advance.
Collapse
Affiliation(s)
- Jung-Seok Lee
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,International Vaccine Institute, Seoul, South Korea
| | - Suh-Yong Chung
- Division of International Studies, Korea University, Seoul, South Korea
| |
Collapse
|
47
|
Li YH, Huang WW, He WQ, He XY, Wang XH, Lin YL, Zhao ZJ, Zheng YT, Pang W. Longitudinal analysis of immunocyte responses and inflammatory cytokine profiles in SFTSV-infected rhesus macaques. Front Immunol 2023; 14:1143796. [PMID: 37033979 PMCID: PMC10073517 DOI: 10.3389/fimmu.2023.1143796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), an emerging bunyavirus, causes severe fever with thrombocytopenia syndrome (SFTS), with a high fatality rate of 20%-30%. At present, however, the pathogenesis of SFTSV remains largely unclear and no specific therapeutics or vaccines against its infection are currently available. Therefore, animal models that can faithfully recapitulate human disease are important to help understand and treat SFTSV infection. Here, we infected seven Chinese rhesus macaques (Macaca mulatta) with SFTSV. Virological and immunological changes were monitored over 28 days post-infection. Results showed that mild symptoms appeared in the macaques, including slight fever, thrombocytopenia, leukocytopenia, increased aspartate aminotransferase (AST) and creatine kinase (CK) in the blood. Viral replication was persistently detectable in lymphoid tissues and bone marrow even after viremia disappeared. Immunocyte detection showed that the number of T cells (mainly CD8+ T cells), B cells, natural killer (NK) cells, and monocytes decreased during infection. In detail, effector memory CD8+ T cells declined but showed increased activation, while both the number and activation of effector memory CD4+ T cells increased significantly. Furthermore, activated memory B cells decreased, while CD80+/CD86+ B cells and resting memory B cells (CD27+CD21+) increased significantly. Intermediate monocytes (CD14+CD16+) increased, while myeloid dendritic cells (mDCs) rather than plasmacytoid dendritic cells (pDCs) markedly declined during early infection. Cytokines, including interleukin-6 (IL-6), interferon-inducible protein-10 (IP-10), and macrophage inflammatory protein 1 (MCP-1), were substantially elevated in blood and were correlated with activated CD4+ T cells, B cells, CD16+CD56+ NK cells, CD14+CD16+ monocytes during infection. Thus, this study demonstrates that Chinese rhesus macaques infected with SFTSV resemble mild clinical symptoms of human SFTS and provides detailed virological and immunological parameters in macaques for understanding the pathogenesis of SFTSV infection.
Collapse
Affiliation(s)
- Yi-Hui Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen-Wu Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Office of Science and Technology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Qiang He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao-Yan He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xue-Hui Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Ya-Long Lin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zu-Jiang Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Yong-Tang Zheng, ; Wei Pang,
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Yong-Tang Zheng, ; Wei Pang,
| |
Collapse
|
48
|
Zhao C, Zhang X, Si X, Ye L, Lawrence K, Lu Y, Du C, Xu H, Yang Q, Xia Q, Yu G, Xu W, Yuan F, Hao J, Jiang JF, Zheng A. Hedgehogs as Amplifying Hosts of Severe Fever with Thrombocytopenia Syndrome Virus, China. Emerg Infect Dis 2022; 28:2491-2499. [PMID: 36417938 PMCID: PMC9707592 DOI: 10.3201/eid2812.220668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tickborne bandavirus mainly transmitted by Haemaphysalis longicornis ticks in East Asia, mostly in rural areas. As of April 2022, the amplifying host involved in the natural transmission of SFTSV remained unidentified. Our epidemiologic field survey conducted in endemic areas in China showed that hedgehogs were widely distributed, had heavy tick infestations, and had high SFTSV seroprevalence and RNA prevalence. After experimental infection of Erinaceus amurensis and Atelerix albiventris hedgehogs with SFTSV, we detected robust but transitory viremias that lasted for 9-11 days. We completed the SFTSV transmission cycle between hedgehogs and nymph and adult H. longicornis ticks under laboratory conditions with 100% efficiency. Furthermore, naive H. longicornis ticks could be infected by SFTSV-positive ticks co-feeding on naive hedgehogs; we confirmed transstadial transmission of SFTSV. Our study suggests that the hedgehogs are a notable wildlife amplifying host of SFTSV in China.
Collapse
|
49
|
Wang M, Huang P, Liu W, Tan W, Chen T, Zeng T, Zhu C, Shao J, Xue H, Li J, Yue M. Risk factors of severe fever with thrombocytopenia syndrome combined with central neurological complications: A five-year retrospective case-control study. Front Microbiol 2022; 13:1033946. [PMID: 36406394 PMCID: PMC9668900 DOI: 10.3389/fmicb.2022.1033946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/17/2022] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high mortality rate, especially SFTS combined with central neurological complications. The purpose of this study was to explore risk factors of central neurological complications in SFTS patients. METHODS In this retrospective study, SFTS patients admitted to the First Affiliated Hospital of Nanjing Medical University between January 2017 and December 2021 were enrolled. Based on the presence or absence of central neurological complications, SFTS patients were divided into case group and control group. The patients' laboratory parameters and clinical data were collected for statistical analysis. Receiver operating characteristic (ROC) curve analysis was used to evaluate the prediction accuracy of independent risk factors in identifying SFTS patients with central neurological complications. RESULTS In total, 198 hospitalized SFTS patients with complete medical records, clear etiological diagnosis and clinical outcomes were enrolled in this study. Of these, 74 (37.4%) cases were diagnosed with SFTS with central neurological complications, 29 (39.2%) cases died, and no death occurred in the control group. Multivariate logistic regression analysis revealed pulmonary rales, atrial fibrillation, and high serum SFTSV RNA, lactate dehydrogenase level during the fever stage as independent risk factors for the development of central neurological complications in SFTS patients. ROC curve analysis showed that the area under the ROC curve (AUC) of serum SFTSV RNA and lactate dehydrogenase levels were 0.748 (95%CI: 0.673-0.823, p < 0.001) and 0.864 (95%CI: 0.815-0.914, p < 0.001), respectively, in central neurological complications predicted in SFTS patients. CONCLUSION Severe fever with thrombocytopenia syndrome (SFTS) combined with central neurological complications has high morbidity and mortality and diverse clinical manifestations. Early monitoring of lung signs, electrocardiogram, blood SFTSV RNA, and lactate dehydrogenase levels in SFTS patients may be useful in predicting the occurrence of central neurological complications.
Collapse
Affiliation(s)
- Min Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Lab Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Weilong Tan
- Department of Infectious Disease Prevention and Control, Eastern Theater Command Centers for Disease Control and Prevention, Nanjing, China
| | - Tianyan Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Zeng
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanlong Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department Infectious and Tropical Diseases, The Second Affiliation Hospital of Hainan Medical University, Haikou, China
| | - Jianguo Shao
- Department of Gastroenterology, Nantong Third People’s Hospital Affiliated to Nantong University, Nantong, China
| | - Hong Xue
- Department of Hepatology, Nantong Third People’s Hospital Affiliated to Nantong University, Nantong, China
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Kim M, Hong KW, Kim SC, Kim RB, Cho MC. Analysis of Clinical Characteristics and Laboratory Data Related to the Prognosis of Korean Severe Fever with Thrombocytopenia Syndrome Patients: A Single-Center Study. Vector Borne Zoonotic Dis 2022; 22:559-567. [DOI: 10.1089/vbz.2022.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mutbyul Kim
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Kyung-Wook Hong
- Division of Infectious Diseases, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Seung Chan Kim
- Biostatistics Cooperation Center, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Rock Bum Kim
- Biostatistics Cooperation Center, Gyeongsang National University Hospital, Jinju, Republic of Korea
- Department of Preventive Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Min-Chul Cho
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|