1
|
Breslin JW. Edema and lymphatic clearance: molecular mechanisms and ongoing challenges. Clin Sci (Lond) 2023; 137:1451-1476. [PMID: 37732545 PMCID: PMC11025659 DOI: 10.1042/cs20220314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Resolution of edema remains a significant clinical challenge. Conditions such as traumatic shock, sepsis, or diabetes often involve microvascular hyperpermeability, which leads to tissue and organ dysfunction. Lymphatic insufficiency due to genetic causes, surgical removal of lymph nodes, or infections, leads to varying degrees of tissue swelling that impair mobility and immune defenses. Treatment options are limited to management of edema as there are no specific therapeutics that have demonstrated significant success for ameliorating microvascular leakage or impaired lymphatic function. This review examines current knowledge about the physiological, cellular, and molecular mechanisms that control microvascular permeability and lymphatic clearance, the respective processes for interstitial fluid formation and removal. Clinical conditions featuring edema, along with potential future directions are discussed.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, FL, U.S.A
| |
Collapse
|
2
|
Nyga A, Plak K, Kräter M, Urbanska M, Kim K, Guck J, Baum B. Dynamics of cell rounding during detachment. iScience 2023; 26:106696. [PMID: 37168576 PMCID: PMC10165398 DOI: 10.1016/j.isci.2023.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Animal cells undergo repeated shape changes, for example by rounding up and respreading as they divide. Cell rounding can be also observed in interphase cells, for example when cancer cells switch from a mesenchymal to an ameboid mode of cell migration. Nevertheless, it remains unclear how interphase cells round up. In this article, we demonstrate that a partial loss of substrate adhesion triggers actomyosin-dependent cortical remodeling and ERM activation, which facilitates further adhesion loss causing cells to round. Although the path of rounding in this case superficially resembles mitotic rounding in involving ERM phosphorylation, retraction fiber formation, and cortical remodeling downstream of ROCK, it does not require Ect2. This work provides insights into the way partial loss of adhesion actives cortical remodeling to drive cell detachment from the substrate. This is important to consider when studying the mechanics of cells in suspension, for example using methods like real-time deformability cytometry (RT-DC).
Collapse
Affiliation(s)
- Agata Nyga
- Cell Biology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Katarzyna Plak
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Martin Kräter
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Marta Urbanska
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Kyoohyun Kim
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Buzz Baum
- Cell Biology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| |
Collapse
|
3
|
Herrera-Martínez M, Hernández-Ramírez VI, Montaño S, Chávez-Munguía B, Hernández-Carlos B, Talamás-Rohana P. Alpha-terthienyl increases filamentous actin of Entamoeba histolytica. Mol Biochem Parasitol 2022; 252:111512. [PMID: 36084901 DOI: 10.1016/j.molbiopara.2022.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023]
Abstract
This study aimed to know if alpha terthienyl (α-T) affects E. histolytica viability and to analyze its effect on the actin cytoskeleton. Trophozoites of E. histolytica HM1-IMSS were treated with α-T, then, cell viability and morphology were evaluated using tetrazolium salts and scanning electron microscopy, respectively; while actin filaments (F-actin) were stained with rhodamine-phalloidin, observed by confocal microscopy and quantified by fluorometry. Data showed that α-T inhibited cell viability of trophozoites (IC50, 19.43 µg / mL), affected the cell morphology, and increased the F-actin in a dose-dependent manner. Production of reactive oxygen species and RhoA-GTP levels remained normal in α-T-treated amebas. Two inhibitors that affect the organization of the trophozoites cytoskeleton, one that interacts directly with actin, Cytochalasin D (CD), and one that affects the Rho signaling pathway by inhibiting the downstream effector Rock, Y27632, were tested. Y27632 did not affect the increase of polymerized actin observed with α-T, this compound partially ameliorates the potent disrupting effects of CD on actin filaments. Docking results suggest that α-T could be an antagonist of CD for the same interaction zone in actin, however, more studies are needed to define the action mechanism of this compound.
Collapse
Affiliation(s)
- Mayra Herrera-Martínez
- Instituto de Farmacobiología, Universidad de la Cañada, Carretera Teotitlán - San Antonio Nanahuatipán Km 1.7 s/n., Paraje Titlacuatitla, Teotitlán de Flores Magón, Oaxaca 68540, Mexico.
| | - Verónica Ivonne Hernández-Ramírez
- Departmento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, Ciudad de México 07360, Mexico.
| | - Sarita Montaño
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Calzada de las Américas, Norte 2771, Ciudad Universitaria, Burócrata, Culiacán Rosales, Sinaloa 80030, Mexico.
| | - Bibiana Chávez-Munguía
- Departmento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, Ciudad de México 07360, Mexico.
| | - Beatriz Hernández-Carlos
- Laboratorio de Productos Naturales, Instituto de Agroindustrias, Universidad Tecnológica de la Mixteca, Carretera a Acatlima Km. 2.5, Acatlima, Huajuapan de León, Oaxaca 69000, Mexico.
| | - Patricia Talamás-Rohana
- Departmento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, Ciudad de México 07360, Mexico.
| |
Collapse
|
4
|
Lakk M, Križaj D. TRPV4-Rho signaling drives cytoskeletal and focal adhesion remodeling in trabecular meshwork cells. Am J Physiol Cell Physiol 2021; 320:C1013-C1030. [PMID: 33788628 PMCID: PMC8285634 DOI: 10.1152/ajpcell.00599.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intraocular pressure (IOP) is dynamically regulated by the trabecular meshwork (TM), a mechanosensitive tissue that protects the eye from injury through dynamic regulation of aqueous humor flow. TM compensates for mechanical stress impelled by chronic IOP elevations through increased actin polymerization, tissue stiffness, and contractility. This process has been associated with open angle glaucoma; however, the mechanisms that link mechanical stress to pathological cytoskeletal remodeling downstream from the mechanotransducers remain poorly understood. We used fluorescence imaging and biochemical analyses to investigate cytoskeletal and focal adhesion remodeling in human TM cells stimulated with physiological strains. Mechanical stretch promoted F-actin polymerization, increased the number and size of focal adhesions, and stimulated the activation of the Rho-associated protein kinase (ROCK). Stretch-induced activation of the small GTPase Ras homolog family member A (RhoA), and tyrosine phosphorylations of focal adhesion proteins paxillin, focal adhesion kinase (FAK), vinculin, and zyxin were time dependently inhibited by ROCK inhibitor trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Y-27632), and by HC-067047, an antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. Both TRPV4 and ROCK activation were required for zyxin translocation and increase in the number/size of focal adhesions in stretched cells. Y-27632 blocked actin polymerization without affecting calcium influx induced by membrane stretch and the TRPV4 agonist GSK1016790A. These results reveal that mechanical tuning of TM cells requires parallel activation of TRPV4, integrins, and ROCK, with chronic stress leading to sustained remodeling of the cytoskeleton and focal complexes.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Department of Neurobiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
5
|
Tilve S, Iweka CA, Bao J, Hawken N, Mencio CP, Geller HM. Phospholipid phosphatase related 1 (PLPPR1) increases cell adhesion through modulation of Rac1 activity. Exp Cell Res 2020; 389:111911. [PMID: 32061832 DOI: 10.1016/j.yexcr.2020.111911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Phospholipid Phosphatase-Related Protein Type 1 (PLPPR1) is a six-transmembrane protein that belongs to the family of plasticity-related gene proteins, which is a novel brain-specific subclass of the lipid phosphate phosphatase superfamily. PLPPR1-5 have prominent roles in synapse formation and axonal pathfinding. We found that PLPPR1 overexpression in the mouse neuroblastoma cell line (Neuro2a) results in increase in cell adhesion and reduced cell migration. During migration, these cells leave behind long fibrous looking extensions of the plasma membrane causing a peculiar phenotype. Cells expressing PLPPR1 showed decreased actin turnover and decreased disassembly of focal adhesions. PLPPR1 also reduced active Rac1, and expressing dominant negative Rac1 produced a similar phenotype to overexpression of PLPPR1. The PLPPR1-induced phenotype of long fibers was reversed by introducing constitutively active Rac1. In summary, we show that PLPPR1 decreases active Rac1 levels that leads to cascade of events which increases cell adhesion.
Collapse
Affiliation(s)
- Sharada Tilve
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Chinyere Agbaegbu Iweka
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Jonathan Bao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Natalie Hawken
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Liu WY, Tang Q, Zhang Q, Hu CP, Huang JB, Sheng FF, Liu YL, Zhou M, Lai WJ, Li GB, Zhang R. Lycorine Induces Mitochondria-Dependent Apoptosis in Hepatoblastoma HepG2 Cells Through ROCK1 Activation. Front Pharmacol 2019; 10:651. [PMID: 31263414 PMCID: PMC6589644 DOI: 10.3389/fphar.2019.00651] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/20/2019] [Indexed: 01/13/2023] Open
Abstract
Lycorine, a naturally occurring compound extracted from the Amaryllidaceae plant family, has been reported to exhibit antitumor activity in various cancer cell types. In the present study, we investigated the molecular mechanisms underlying lycorine-induced apoptosis in hepatoblastoma HepG2 cells. We found that lycorine induced mitochondria-dependent apoptosis in HepG2 cells accompanied by mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (MMP) loss, adenosine triphosphate (ATP) depletion, Ca2+ and cytochrome c (Cyto C) release, as well as caspase activation. Furthermore, we found Rho associated coiled-coil containing protein kinase 1 (ROCK1) cleavage/activation played a critical role in lycorine-induced mitochondrial apoptosis. In addition, the ROCK inhibitor Y-27632 was employed, and we found that co-treatment with Y-27632 attenuated lycorine-induced mitochondrial injury and cell apoptosis. Meanwhile, an in vivo study revealed that lycorine inhibited tumor growth and induced apoptosis in a HepG2 xenograft mouse model in association with ROCK1 activation. Taken together, all these findings suggested that lycorine induced mitochondria-dependent apoptosis through ROCK1 activation in HepG2 cells, and this may be a theoretical basis for lycorine's anticancer effects.
Collapse
Affiliation(s)
- Wu-Yi Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chang-Peng Hu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jing-Bin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Fang-Fang Sheng
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Ya-Li Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Min Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wen-Jing Lai
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Guo-Bing Li
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Integrin-Dependent Regulation of Small GTPases: Role in Cell Migration. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Lv Z, Hu M, Ren X, Fan M, Zhen J, Chen L, Lin J, Ding N, Wang Q, Wang R. Fyn Mediates High Glucose-Induced Actin Cytoskeleton Reorganization of Podocytes via Promoting ROCK Activation In Vitro. J Diabetes Res 2016; 2016:5671803. [PMID: 26881253 PMCID: PMC4736797 DOI: 10.1155/2016/5671803] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/04/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022] Open
Abstract
Fyn, a member of the Src family of tyrosine kinases, is a key regulator in cytoskeletal remodeling in a variety of cell types. Recent studies have demonstrated that Fyn is responsible for nephrin tyrosine phosphorylation, which will result in polymerization of actin filaments and podocyte damage. Thus detailed involvement of Fyn in podocytes is to be elucidated. In this study, we investigated the potential role of Fyn/ROCK signaling and its interactions with paxillin. Our results presented that high glucose led to filamentous actin (F-actin) rearrangement in podocytes, accompanied by paxillin phosphorylation and increased cell motility, during which Fyn and ROCK were markedly activated. Gene knockdown of Fyn by siRNA showed a reversal effect on high glucose-induced podocyte damage and ROCK activation; however, inhibition of ROCK had no significant effects on Fyn phosphorylation. These observations demonstrate that in vitro Fyn mediates high glucose-induced actin cytoskeleton remodeling of podocytes via promoting ROCK activation and paxillin phosphorylation.
Collapse
Affiliation(s)
- Zhimei Lv
- Department of Nephrology, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Mengsi Hu
- Department of Nephrology, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xiaoxu Ren
- Department of Nephrology, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Minghua Fan
- Department of Obstetrics and Gynecology, Second Hospital of Shandong University, Jinan 250033, China
| | - Junhui Zhen
- Department of Pathology, Medical School of Shandong University, Jinan 250012, China
| | - Liqun Chen
- Department of Nephrology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Jiangong Lin
- Department of Nephrology, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Nannan Ding
- Department of Nephrology, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Qun Wang
- Department of Nephrology, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Rong Wang
- Department of Nephrology, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- *Rong Wang:
| |
Collapse
|
9
|
Tzenaki N, Aivaliotis M, Papakonstanti EA. Focal adhesion kinase phosphorylates the phosphatase and tensin homolog deleted on chromosome 10 under the control of p110δ phosphoinositide-3 kinase. FASEB J 2015; 29:4840-52. [PMID: 26251180 DOI: 10.1096/fj.15-274589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/27/2015] [Indexed: 12/21/2022]
Abstract
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is regulated by various mechanisms that are not fully understood. This includes regulation by Tyr phosphorylation by a mechanism that remains elusive. Here, we show that focal adhesion kinase (FAK) phosphorylates PTEN in vitro, in cell-free systems and in cells. Furthermore, by mass spectrometry, we identified Tyr336 on PTEN as being phosphorylated by FAK. Tyr336 phosphorylation increased phosphatase activity, protein-lipid interaction, and protein stability of PTEN. In cells, including primary mouse macrophages and human cancer cell lines, FAK was found to be negatively regulated by p110δ phosphoinositide-3 kinase (PI3K), whereas the activation of FAK was positively regulated by RhoA-associated kinase (ROCK). Indeed, the phosphorylation of FAK was unexpectedly increased in macrophages derived from mice expressing kinase-dead p110δ. Pharmacologic inactivation of RhoA/ROCK reduced the phosphorylation of FAK to normal levels in cells with genetically inactivated p110δ. Likewise, pharmacologic inactivation of FAK reduced the phosphorylation of PTEN in cells expressing kinase-dead p110δ and restored the functional defects of p110δ inactivation, including Akt phosphorylation and cell proliferation. This work identifies FAK as a target of p110δ PI3K that links RhoA with PTEN and establishes for the first time that PTEN is a substrate of FAK-mediated Tyr phosphorylation.
Collapse
Affiliation(s)
- Niki Tzenaki
- *Department of Biochemistry, School of Medicine, University of Crete, Vassilika Vouton, Heraklion, Greece; and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Michalis Aivaliotis
- *Department of Biochemistry, School of Medicine, University of Crete, Vassilika Vouton, Heraklion, Greece; and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Evangelia A Papakonstanti
- *Department of Biochemistry, School of Medicine, University of Crete, Vassilika Vouton, Heraklion, Greece; and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| |
Collapse
|
10
|
Sun FQ, Duan H, Wang S, Li JJ. 17β-Estradiol Induces Overproliferation in Adenomyotic Human Uterine Smooth Muscle Cells of the Junctional Zone Through Hyperactivation of the Estrogen Receptor-Enhanced RhoA/ROCK Signaling Pathway. Reprod Sci 2015; 22:1436-44. [DOI: 10.1177/1933719115584447] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fu-Qing Sun
- Department of Gynecology, Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hua Duan
- Department of Gynecology, Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Sha Wang
- Department of Gynecology, Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jin-Jiao Li
- Department of Gynecology, Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Zhang Y, Duan X, Xiong B, Cui XS, Kim NH, Rui R, Sun SC. ROCK inhibitor Y-27632 prevents porcine oocyte maturation. Theriogenology 2014; 82:49-56. [PMID: 24681214 DOI: 10.1016/j.theriogenology.2014.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/17/2014] [Accepted: 02/22/2014] [Indexed: 11/19/2022]
Abstract
The inhibitor Y-27632 is a specific selective inhibitor of Rho-associated protein kinases (ROCKs), which are downstream effectors of Rho guanosine triphosphatease (GTPases) and regulate Rho-associated cellular functions, including actin cytoskeletal organization. Little is known regarding the effects of Y-27632 on mammalian oocyte maturation. In the present study, we investigated the effects of Y-27632 on porcine oocyte meiosis and possible regulatory mechanisms of ROCK during porcine oocyte maturation. We found that ROCK accumulated not only at spindles, but also at the cortex in porcine oocytes. Y-27632 treatment reduced ROCK expression, and inhibited porcine oocyte meiotic maturation, which might be because of the impairment of actin expression and actin-related spindle positioning. Y-27632 treatment also disrupted the formation of actin cap and cortical granule-free domain, which further confirmed a spindle positioning failure. Thus, Y-27632 has significant effects on the meiotic competence of mammalian oocytes by reducing ROCK expression, and the regulation is related to its effects on actin-mediated spindle positioning.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bo Xiong
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Rong Rui
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
12
|
Czarnowski A, Papp S, Szaraz P, Opas M. Calreticulin affects cell adhesiveness through differential phosphorylation of insulin receptor substrate-1. Cell Mol Biol Lett 2014; 19:77-97. [PMID: 24470116 PMCID: PMC6275655 DOI: 10.2478/s11658-014-0181-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/20/2014] [Indexed: 11/21/2022] Open
Abstract
Cellular adhesion to the underlying substratum is regulated through numerous signaling pathways. It has been suggested that insulin receptor substrate 1 (IRS-1) is involved in some of these pathways, via association with and activation of transmembrane integrins. Calreticulin, as an important endoplasmic reticulum-resident, calcium-binding protein with a chaperone function, plays an obvious role in proteomic expression. Our previous work showed that calreticulin mediates cell adhesion not only by affecting protein expression but also by affecting the state of regulatory protein phosphorylation, such as that of c-src. Here, we demonstrate that calreticulin affects the abundance of IRS-1 such that the absence of calreticulin is paralleled by a decrease in IRS-1 levels and the unregulated overexpression of calreticulin is accompanied by an increase in IRS-1 levels. These changes in the abundance of calreticulin and IRS-1 are accompanied by changes in cell-substratum adhesiveness and phosphorylation, such that increases in the expression of calreticulin and IRS-1 are paralleled by an increase in focal contact-based cell-substratum adhesiveness, and a decrease in the expression of these proteins brings about a decrease in cell-substratum adhesiveness. Wild type and calreticulin-null mouse embryonic fibroblasts (MEFs) were cultured and the IRS-1 isoform profile was assessed. Differences in morphology and motility were also quantified. While no substantial differences in the speed of locomotion were found, the directionality of cell movement was greatly promoted by the presence of calreticulin. Calreticulin expression was also found to have a dramatic effect on the phosphorylation state of serine 636 of IRS-1, such that phosphorylation of IRS-1 on serine 636 increased radically in the absence of calreticulin. Most importantly, treatment of cells with the RhoA/ROCK inhibitor, Y-27632, which among its many effects also inhibited serine 636 phosphorylation of IRS-1, had profound effects on cell-substratum adhesion, in that it suppressed focal contacts, induced extensive close contacts, and increased the strength of adhesion. The latter effect, while counterintuitive, can be explained by the close contacts comprising labile bonds but in large numbers. In addition, the lability of bonds in close contacts would permit fast locomotion. An interesting and novel finding is that Y-27632 treatment of MEFs releases them from contact inhibition of locomotion, as evidenced by the invasion of a cell's underside by the thin lamellae and filopodia of a cell in close apposition.
Collapse
Affiliation(s)
- Arthur Czarnowski
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
| | - Sylvia Papp
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
| | - Peter Szaraz
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Medical Sciences Building, room 6326, Toronto, Ontario M5S 1A8 Canada
| |
Collapse
|
13
|
Yotova I, Quan P, Gaba A, Leditznig N, Pateisky P, Kurz C, Tschugguel W. Raf-1 levels determine the migration rate of primary endometrial stromal cells of patients with endometriosis. J Cell Mol Med 2013; 16:2127-39. [PMID: 22225925 PMCID: PMC3822983 DOI: 10.1111/j.1582-4934.2011.01520.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Endometriosis is a disease characterized by the localization of endometrial tissue outside the uterine cavity. The differences observed in migration of human endometrial stromal cells (hESC) obtained from patients with endometriosis versus healthy controls were proposed to correlate with the abnormal activation of Raf-1/ROCKII signalling pathway. To evaluate the mechanism by which Raf-1 regulates cytoskeleton reorganization and motility, we used primary eutopic (Eu-, n = 16) and ectopic (Ec-, n = 8; isolated from ovarian cysts) hESC of patients with endometriosis and endometriosis-free controls (Co-hESC, n = 14). Raf-1 siRNA knockdown in Co- and Eu-hESC resulted in contraction and decreased migration versus siRNA controls. This phenotype was reversed following the re-expression of Raf-1 in these cells. Lowest Raf-1 levels in Ec-hESC were associated with hyperactivated ROCKII and ezrin/radixin/moesin (E/R/M), impaired migration and a contracted phenotype similar to Raf-1 knockdown in Co- and Eu-hESC. We further show that the mechanism by which Raf-1 mediates migration in hESC includes direct myosin light chain phosphatase (MYPT1) phosphorylation and regulation of the levels of E/R/M, paxillin, MYPT1 and myosin light chain (MLC) phosphorylation indirectly via the hyperactivation of ROCKII kinase. Furthermore, we suggest that in contrast to Co-and Eu-hESC, where the cellular Raf-1 levels regulate the rate of migration, the low cellular Raf-1 content in Ec-hESC, might ensure their restricted migration by preserving the contracted cellular phenotype. In conclusion, our findings suggest that cellular levels of Raf-1 adjust the threshold of hESC migration in endometriosis.
Collapse
Affiliation(s)
- Iveta Yotova
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhang W, Huang Y, Gunst SJ. The small GTPase RhoA regulates the contraction of smooth muscle tissues by catalyzing the assembly of cytoskeletal signaling complexes at membrane adhesion sites. J Biol Chem 2012; 287:33996-4008. [PMID: 22893699 DOI: 10.1074/jbc.m112.369603] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The activation of the small GTPase RhoA is necessary for ACh-induced actin polymerization and airway smooth muscle (ASM) contraction, but the mechanism by which it regulates these events is unknown. Actin polymerization in ASM is catalyzed by the actin filament nucleation activator, N-WASp and the polymerization catalyst, Arp2/3 complex. Activation of the small GTPase cdc42, a specific N-WASp activator, is also required for actin polymerization and tension generation. We assessed the mechanism by which RhoA regulates actin dynamics and smooth muscle contraction by expressing the dominant negative mutants RhoA T19N and cdc42 T17N, and non-phosphorylatable paxillin Y118/31F and paxillin ΔLD4 deletion mutants in SM tissues. Their effects were evaluated in muscle tissue extracts and freshly dissociated SM cells. Protein interactions and cellular localization were analyzed using proximity ligation assays (PLA), immunofluorescence, and GTPase and kinase assays. RhoA inhibition prevented ACh-induced cdc42 activation, N-WASp activation and the interaction of N-WASp with the Arp2/3 complex at the cell membrane. ACh induced paxillin phosphorylation and its association with the cdc42 GEFS, DOCK180 and α/βPIX. Paxillin tyrosine phosphorylation and its association with βPIX were RhoA-dependent, and were required for cdc42 activation. The ACh-induced recruitment of paxillin and FAK to the cell membrane was dependent on RhoA. We conclude that RhoA regulates the contraction of ASM by catalyzing the assembly and activation of cytoskeletal signaling modules at membrane adhesomes that initiate signaling cascades that regulate actin polymerization and tension development in response to contractile agonist stimulation. Our results suggest that the RhoA-mediated assembly of adhesome complexes is a fundamental step in the signal transduction process in response to agonist -induced smooth muscle contraction.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
15
|
Martins GG, Kolega J. A role for microtubules in endothelial cell protrusion in three-dimensional matrices. Biol Cell 2012; 104:271-86. [PMID: 22211516 DOI: 10.1111/boc.201100088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/28/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Most cells reside in vivo in a three-dimensional (3D) environment surrounded by extracellular matrix and other neighbouring cells, conditions that are different from those found by cells cultured in vitro on two-dimensional (2D) substrata. Cell morphology and behaviour are very different under these two different conditions, but the structural basis for these differences is still not understood, especially the role of microtubules (MTs). To address this issue, we studied the early spreading behaviour of bovine aortic endothelial cells (BAECs) cultured in 3D collagen matrices and on 2D substrata, in the presence of MT-disrupting drugs. RESULTS We found that depolymerisation of MTs greatly reduces the ability of BAECs to form large and stable protrusions inside 3D collagen matrices, an effect that is less pronounced when the cells are cultured on 2D substrata. Colcemid-treated BAECs inside 3D matrices begin assembling protrusions and pull on the matrix, but they fail to extend those protrusions deep into the matrix. It has been previously reported that MT disruption affects Rho signalling which may result in increased cell rigidity and adhesiveness to 2D matrices. Accordingly, we demonstrate that colcemid treatment indeed leads to activation of Rho-kinase (ROCK) targets, which in turn results in activation of regulatory myosin light chains, and that blocking of ROCK mitigates some of the effects of MT disruption in cell spreading in 3D. CONCLUSIONS Our results show that MT depolymerisation is particularly disruptive when cells interact with pliable 3D matrices, suggesting a role for MTs and the Rho pathway in the fine-tuning of contractile and adhesive forces necessary to sustain cell motility in vivo.
Collapse
Affiliation(s)
- Gabriel G Martins
- Centro de Biologia Ambiental/Departamento de Biologia Animal, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | | |
Collapse
|
16
|
Chaturvedi LS, Marsh HM, Basson MD. Role of RhoA and its effectors ROCK and mDia1 in the modulation of deformation-induced FAK, ERK, p38, and MLC motogenic signals in human Caco-2 intestinal epithelial cells. Am J Physiol Cell Physiol 2011; 301:C1224-C1238. [PMID: 21849669 PMCID: PMC3213924 DOI: 10.1152/ajpcell.00518.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 08/11/2011] [Indexed: 12/12/2022]
Abstract
Repetitive deformation enhances intestinal epithelial migration across tissue fibronectin. We evaluated the contribution of RhoA and its effectors Rho-associated kinase (ROK/ROCK) and mammalian diaphanous formins (mDia1) to deformation-induced intestinal epithelial motility across fibronectin and the responsible focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), p38, and myosin light chain (MLC) signaling. We reduced RhoA, ROCK1, ROCK2, and mDia1 by smart-pool double-stranded short-interfering RNAs (siRNA) and pharmacologically inhibited RhoA, ROCK, and FAK in human Caco-2 intestinal epithelial monolayers on fibronectin-coated membranes subjected to 10% repetitive deformation at 10 cycles/min. Migration was measured by wound closure. Stimulation of migration by deformation was prevented by exoenzyme C3, Y27632, or selective RhoA, ROCK1, and ROCK2 or mDia1 siRNAs. RhoA, ROCK inhibition, or RhoA, ROCK1, ROCK2, mDia1, and FAK reduction by siRNA blocked deformation-induced nuclear ERK phosphorylation without preventing ERK phosphorylation in the cytoplasmic protein fraction. Furthermore, RhoA, ROCK inhibition or RhoA, ROCK1, ROCK2, and mDia1 reduction by siRNA also blocked strain-induced FAK-Tyr(925), p38, and MLC phosphorylation. These results suggest that RhoA, ROCK, mDia1, FAK, ERK, p38, and MLC all mediate the stimulation of intestinal epithelial migration by repetitive deformation. This pathway may be an important target for interventions to promote mechanotransduced mucosal healing during inflammation.
Collapse
|
17
|
Chen PW, Kroog GS. Leupaxin is similar to paxillin in focal adhesion targeting and tyrosine phosphorylation but has distinct roles in cell adhesion and spreading. Cell Adh Migr 2011; 4:527-40. [PMID: 20543562 DOI: 10.4161/cam.4.4.12399] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Focal adhesion (FA) formation is induced by extracellular matrix-stimulated integrin clustering and activation of receptors for diffusible factors. Leupaxin (LPXN) is a member of the paxillin family of FA proteins expressed in many cancer cell lines. We found activation of gastrin-releasing peptide receptor (GRPr) by bombesin (BN) stimulated LPXN translocation from cytoplasm to FAs. Using mutagenesis, we identified LIM3 as the primary FA targeting domain for LPXN and showed BN-induced LPXN tyrosine phosphorylation on residues 22, 62 and 72. A LIM3 point mutant of LPXN failed to target to FAs and had no BN-stimulated tyrosine phosphorylation. Conversely, a non-phosphorylatable mutant (Y22/62/72F) translocated to FAs after BN addition. Stimulation of FA formation using vinblastine also induced LPXN translocation and tyrosine phosphorylation. Therefore, dynamic LPXN tyrosine phosphorylation requires translocation to FAs. LPXN and paxillin had opposite roles in adhesion to collagen I (CNI) in MDA-MB-231 breast cancer cells. LPXN siRNA stimulated whereas paxillin siRNA inhibited cell adhesion. Knockdown of both LPXN and paxillin behaved similarly to paxillin knockdown alone, suggesting LPXN’s function in adhesion might depend on paxillin. Additionally, LPXN regulated cell spreading on CNI but not on fibronectin whereas paxillin knockdown suppressed spreading on both substrates. These results demonstrate that although LPXN and paxillin’s FA targeting and tyrosine phosphorylation are similar, each protein has distinct functions.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
18
|
Oviedo PJ, Sobrino A, Laguna-Fernandez A, Novella S, Tarín JJ, García-Pérez MA, Sanchís J, Cano A, Hermenegildo C. Estradiol induces endothelial cell migration and proliferation through estrogen receptor-enhanced RhoA/ROCK pathway. Mol Cell Endocrinol 2011; 335:96-103. [PMID: 20615453 DOI: 10.1016/j.mce.2010.06.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 01/29/2023]
Abstract
Migration and proliferation of endothelial cells are involved in re-endothelialization and angiogenesis, two important cardiovascular processes that are increased in response to estrogens. RhoA, a small GTPase which controls multiple cellular processes, is involved in the control of cell migration and proliferation. Our aim was to study the role of RhoA on estradiol-induced migration and proliferation and its dependence on estrogen receptors activity. Human umbilical vein endothelial cells were stimulated with estradiol, in the presence or absence of ICI 182780 (estrogen receptors antagonist) and Y-27632 (Rho kinase inhibitor). Estradiol increased Rho GEF-1 gene expression and RhoA (gene and protein expression and activity) in an estrogen receptor-dependent manner. Cell migration, stress fiber formation and cell proliferation were increased in response to estradiol and were also dependent on the estrogen receptors and RhoA activation. Estradiol decreased p27 levels, and significantly raised the expression of cyclins and CDK. These effects were counteracted by the use of either ICI 182780 or Y-27632. In conclusion, estradiol enhances the RhoA/ROCK pathway and increases cell cycle-related protein expression by acting through estrogen receptors. This results in an enhanced migration and proliferation of endothelial cells.
Collapse
Affiliation(s)
- Pilar J Oviedo
- Research Foundation, Hospital Clínico Universitario, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM. Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol 2010; 26:315-33. [PMID: 19575647 DOI: 10.1146/annurev.cellbio.011209.122036] [Citation(s) in RCA: 716] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed cell migration is a physical process that requires dramatic changes in cell shape and adhesion to the extracellular matrix. For efficient movement, these processes must be spatiotemporally coordinated. To a large degree, the morphological changes and physical forces that occur during migration are generated by a dynamic filamentous actin (F-actin) cytoskeleton. Adhesion is regulated by dynamic assemblies of structural and signaling proteins that couple the F-actin cytoskeleton to the extracellular matrix. Here, we review current knowledge of the dynamic organization of the F-actin cytoskeleton in cell migration and the regulation of focal adhesion assembly and disassembly with an emphasis on how mechanical and biochemical signaling between these two systems regulate the coordination of physical processes in cell migration.
Collapse
Affiliation(s)
- Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
20
|
Benzothiophene containing Rho kinase inhibitors: Efficacy in an animal model of glaucoma. Bioorg Med Chem Lett 2010; 20:3361-6. [DOI: 10.1016/j.bmcl.2010.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 12/13/2022]
|
21
|
Dempsey EC, Wick MJ, Karoor V, Barr EJ, Tallman DW, Wehling CA, Walchak SJ, Laudi S, Le M, Oka M, Majka S, Cool CD, Fagan KA, Klemm DJ, Hersh LB, Gerard NP, Gerard C, Miller YE. Neprilysin null mice develop exaggerated pulmonary vascular remodeling in response to chronic hypoxia. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:782-96. [PMID: 19234135 DOI: 10.2353/ajpath.2009.080345] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neprilysin is a transmembrane metalloendopeptidase that degrades neuropeptides that are important for both growth and contraction. In addition to promoting carcinogenesis, decreased levels of neprilysin increases inflammation and neuroendocrine cell hyperplasia, which may predispose to vascular remodeling. Early pharmacological studies showed a decrease in chronic hypoxic pulmonary hypertension with neprilysin inhibition. We used a genetic approach to test the alternate hypothesis that neprilysin depletion increases chronic hypoxic pulmonary hypertension. Loss of neprilysin had no effect on baseline airway or alveolar wall architecture, vessel density, cardiac function, hematocrit, or other relevant peptidases. Only lung neuroendocrine cell hyperplasia and a subtle neuropeptide imbalance were found. After chronic hypoxia, neprilysin-null mice exhibited exaggerated pulmonary hypertension and striking increases in muscularization of distal vessels. Subtle thickening of proximal media/adventitia not typically seen in mice was also detected. In contrast, adaptive right ventricular hypertrophy was less than anticipated. Hypoxic wild-type pulmonary vessels displayed close temporal and spatial relationships between decreased neprilysin and increased cell growth. Smooth muscle cells from neprilysin-null pulmonary arteries had increased proliferation compared with controls, which was decreased by neprilysin replacement. These data suggest that neprilysin may be protective against chronic hypoxic pulmonary hypertension in the lung, at least in part by attenuating the growth of smooth muscle cells. Lung-targeted strategies to increase neprilysin levels could have therapeutic benefits in the treatment of this disorder.
Collapse
Affiliation(s)
- Edward C Dempsey
- Cardiovascular Pulmonary Research Laboratory; B-133, University of Colorado Denver, 12700 E. 19 Ave, Aurora, CO 80046, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Papusheva E, Mello de Queiroz F, Dalous J, Han Y, Esposito A, Jares-Erijmanxa EA, Jovin TM, Bunt G. Dynamic conformational changes in the FERM domain of FAK are involved in focal-adhesion behavior during cell spreading and motility. J Cell Sci 2009; 122:656-66. [PMID: 19208768 DOI: 10.1242/jcs.028738] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Focal adhesion kinase (FAK) controls cellular adhesion and motility processes by its tight link to integrin- and extracellular-matrix-mediated signaling. To explore the dynamics of the regulation of FAK, we constructed a FRET-based probe that visualizes conformational rearrangements of the FERM domain of FAK in living cells. The sensor reports on an integrin-mediated conformational change in FAK following cellular adhesion. The perturbation is kinase-independent and involves the polybasic KAKTLR sequence in the FERM domain. It is manifested by an increased FRET signal and is expressed primarily in focal adhesions, and to a lesser extent in the cytoplasm. The conformational change in the FERM domain of FAK is observed in two consecutive phases during spreading - early and late - and is enriched in fully adhered motile cells at growing and sliding peripheral focal-adhesion sites, but not in stable or retracting focal adhesions. Inhibition of the actomyosin system indicates the involvement of tension signaling induced by Rho-associated kinase, rather than by myosin light-chain kinase, in the modulation of the FERM response. We conclude that the heterogeneous conformation of the FERM domain in focal adhesions of migrating cells reflects a complex regulatory mechanism for FAK that appears to be under the influence of cellular traction forces.
Collapse
Affiliation(s)
- Ekaterina Papusheva
- Molecular Biology of Neuronal Signals, Max-Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Del Re DP, Miyamoto S, Brown JH. Focal adhesion kinase as a RhoA-activable signaling scaffold mediating Akt activation and cardiomyocyte protection. J Biol Chem 2008; 283:35622-9. [PMID: 18854312 DOI: 10.1074/jbc.m804036200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RhoA a small G-protein that has an established role in cell growth and in regulation of the actin cytoskeleton. Far less is known about whether RhoA can modulate cell fate. We previously reported that sustained RhoA activation induces cardiomyocyte apoptosis (Del Re, D. P., Miyamoto, S., and Brown, J. H. (2007) J. Biol. Chem. 282, 8069-8078). Here we demonstrate that less chronic RhoA activation affords a survival advantage, protecting cardiomyocytes from apoptotic insult induced by either hydrogen peroxide treatment or glucose deprivation. Under conditions where RhoA is protective, we observe Rho kinase-dependent cytoskeletal rearrangement and activation of focal adhesion kinase (FAK). Activation of endogenous cardiomyocyte FAK leads to its increased association with the p85 regulatory subunit of phosphatidylinositol-3-kinase (PI3K) and to concomitant activation of Akt. Treatment of isolated perfused hearts with sphingosine 1-phosphate recapitulates this response. The pathway by which RhoA mediates cardiomyocyte Akt activation is demonstrated to require Rho kinase, FAK and PI3K, but not Src, based on studies with pharmacological inhibitors (Y-27632, LY294002, PF271 and PP2) and inhibitory protein expression (FAK-related nonkinase). Inhibition of RhoA-mediated Akt activation at any of these steps, including inhibition of FAK, prevents RhoA from protecting cardiomyocytes against apoptotic insult. We further demonstrate that stretch of cardiomyocytes, which activates endogenous RhoA, induces the aforementioned signaling pathway, providing a physiologic context in which RhoA-mediated FAK phosphorylation can activate PI3K and Akt. We suggest that RhoA-mediated effects on the cardiomyocyte cytoskeleton provide a novel mechanism for protection from apoptosis.
Collapse
Affiliation(s)
- Dominic P Del Re
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
25
|
Chan B, Sukhatme VP. Receptor tyrosine kinase EphA2 mediates thrombin-induced upregulation of ICAM-1 in endothelial cells in vitro. Thromb Res 2008; 123:745-52. [PMID: 18768213 DOI: 10.1016/j.thromres.2008.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 03/08/2008] [Accepted: 07/17/2008] [Indexed: 02/07/2023]
Abstract
Thrombin potently induces endothelial inflammation. One of the responses is upregulation of adhesion molecules such as ICAM-1, resulting in enhanced leukocyte attachment to the endothelium. In this report, we examine the contribution of EphA2 in thrombin-induced expression of ICAM-1 in human umbilical vein endothelial cells (HUVECs). We showed that thrombin transiently induced tyrosine- phosphorylation of EphA2 in a Src-kinase dependent manner. This transactivation was mediated through PAR-1, because a PAR-1 specific agonistic peptide also transactivated EphA2. Expression knockdown of endogenous EphA2 by siRNAs blocked ICAM-1 upregulation and leukocyte/endothelium attachment induced by thrombin. Overexpression of exogenous mouse EphA2 rescued both ICAM-1 expression and leukocyte attachment induced by thrombin in endogenous EphA2-knockdown HUVECs. Mechanistically, we showed EphA2 knockdown suppressed thrombin-induced serine 536 phosphorylation of NFkappaB, an event critical of ICAM-1 transcriptional upregulation. Collectively, our results strongly suggest EphA2 is a necessary component for thrombin-induced ICAM-1 upregulation.
Collapse
Affiliation(s)
- Barden Chan
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RW 563, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
26
|
Assoian RK, Klein EA. Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol 2008; 18:347-52. [PMID: 18514521 DOI: 10.1016/j.tcb.2008.05.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/05/2008] [Accepted: 05/06/2008] [Indexed: 01/07/2023]
Abstract
Integrin-mediated cell attachment to the extracellular matrix is an established regulator of the cell cycle, and the best-characterized targets of this process are the cyclin D1 gene and members of the cip and kip (cip/kip) family of cdk inhibitors. Manipulation of intracellular tension affects the same targets, supporting the idea that integrin activation and intracellular tension are closely related. Several signaling cascades, including FAK, Rho GTPases and ERK, transmit the integrin and tensional signals to pathways controlling the cell cycle. However, the experimental approaches that have generated these results alter cell adhesion and tension in ways that do not reflect the subtlety of those occurring in vivo. Increasing emphasis is therefore being placed on approaches that use micropatterning to control cell spreading, and deformable substrata to model the compliance of biological tissue.
Collapse
Affiliation(s)
- Richard K Assoian
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA.
| | | |
Collapse
|
27
|
|
28
|
Abstract
G protein-coupled receptor (GPCR) agonists, including neurotransmitters, hormones, chemokines, and bioactive lipids, act as potent cellular growth factors and have been implicated in a variety of normal and abnormal processes, including development, inflammation, and malignant transformation. Typically, the binding of an agonistic ligand to its cognate GPCR triggers the activation of multiple signal transduction pathways that act in a synergistic and combinatorial fashion to relay the mitogenic signal to the nucleus and promote cell proliferation. A rapid increase in the activity of phospholipases C, D, and A2 leading to the synthesis of lipid-derived second messengers, Ca2+ fluxes and subsequent activation of protein phosphorylation cascades, including PKC/PKD, Raf/MEK/ERK, and Akt/mTOR/p70S6K is an important early response to mitogenic GPCR agonists. The EGF receptor (EGFR) tyrosine kinase has emerged as a transducer in the signaling by GPCRs, a process termed transactivation. GPCR signal transduction also induces striking morphological changes and rapid tyrosine phosphorylation of multiple cellular proteins, including the non-receptor tyrosine kinases Src, focal adhesion kinase (FAK), and the adaptor proteins CAS and paxillin. The pathways stimulated by GPCRs are extensively interconnected by synergistic and antagonistic crosstalks that play a critical role in signal transmission, integration, and dissemination. The purpose of this article is to review recent advances in defining the pathways that play a role in transducing mitogenic responses induced by GPCR agonists.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1786, USA.
| |
Collapse
|
29
|
Morishita R, Ueda H, Ito H, Takasaki J, Nagata KI, Asano T. Involvement of Gq/11 in both integrin signal-dependent and -independent pathways regulating endothelin-induced neural progenitor proliferation. Neurosci Res 2007; 59:205-14. [PMID: 17707940 DOI: 10.1016/j.neures.2007.06.1478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/04/2007] [Accepted: 06/27/2007] [Indexed: 12/28/2022]
Abstract
We have previously shown that endothelin-B receptor stimulation increases neural progenitor proliferation, partly in G(i) and extracellular matrix molecule-dependent manner. In the present study, we investigated whether G(q/11) is also involved in this response and how G(i) and G(q/11) might regulate the extracellular signal-regulated kinase (ERK) pathway and integrin signaling. Endothelin-induced ERK phosphorylation was independent of integrin ligands, and an inhibitor of G(q/11), YM-254890, as well as pertussis toxin, partially inhibited endothelin-stimulated phosphorylation of Raf-1 and ERK. Endothelin-stimulated protein kinase C (PKC) was partially inhibited by both YM-254890 and pertussis toxin, while only pertussis toxin attenuated endothelin-induced Ras activation. In contrast, endothelin increased tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in an integrin ligand-dependent manner. Both YM-254890 and pertussis toxin partially inhibited endothelin-stimulated phosphorylation of these proteins. A PKC inhibitor and down-regulation of PKC prevented endothelin-induced phosphorylation of paxillin and ERK. In addition, endothelin-induced proliferation and DNA synthesis were partially inhibited by YM-254890 and pertussis toxin. Taken together, the results indicate that endothelin activates PKC via G(q/11) and G(i), and consequently stimulates the ERK cascade in cooperation with Ras signaling stimulated by G(i). PKC appears to increase tyrosine phosphorylation of paxillin to enhance integrin signaling, which further increases DNA synthesis and proliferation.
Collapse
Affiliation(s)
- Rika Morishita
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kamiya-cho, Kasugai, Aichi 480-0392, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Cho MK, Kim WD, Ki SH, Hwang JI, Choi S, Lee CH, Kim SG. Role of Galpha12 and Galpha13 as novel switches for the activity of Nrf2, a key antioxidative transcription factor. Mol Cell Biol 2007; 27:6195-208. [PMID: 17591699 PMCID: PMC1952151 DOI: 10.1128/mcb.02065-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Galpha12 and Galpha13 function as molecular regulators responding to extracellular stimuli. NF-E2-related factor 2 (Nrf2) is involved in a protective adaptive response to oxidative stress. This study investigated the regulation of Nrf2 by Galpha12 and Galpha13. A deficiency of Galpha12, but not of Galpha13, enhanced Nrf2 activity and target gene transactivation in embryo fibroblasts. In mice, Galpha12 knockout activated Nrf2 and thereby facilitated heme catabolism to bilirubin and its glucuronosyl conjugations. An oligonucleotide microarray demonstrated the transactivation of Nrf2 target genes by Galpha12 gene knockout. Galpha12 deficiency reduced Jun N-terminal protein kinase (JNK)-dependent Nrf2 ubiquitination required for proteasomal degradation, and so did Galpha13 deficiency. The absence of Galpha12, but not of Galpha13, increased protein kinase C delta (PKC delta) activation and the PKC delta-mediated serine phosphorylation of Nrf2. Galpha13 gene knockout or knockdown abrogated the Nrf2 phosphorylation induced by Galpha12 deficiency, suggesting that relief from Galpha12 repression leads to the Galpha13-mediated activation of Nrf2. Constitutive activation of Galpha13 promoted Nrf2 activity and target gene induction via Rho-mediated PKC delta activation, corroborating positive regulation by Galpha13. In summary, Galpha12 and Galpha13 transmit a JNK-dependent signal for Nrf2 ubiquitination, whereas Galpha13 regulates Rho-PKC delta-mediated Nrf2 phosphorylation, which is negatively balanced by Galpha12.
Collapse
Affiliation(s)
- Min Kyung Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Sillim-dong, Gwanak-gu, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Papakonstanti EA, Ridley AJ, Vanhaesebroeck B. The p110delta isoform of PI 3-kinase negatively controls RhoA and PTEN. EMBO J 2007; 26:3050-61. [PMID: 17581634 PMCID: PMC1914109 DOI: 10.1038/sj.emboj.7601763] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 05/23/2007] [Indexed: 01/22/2023] Open
Abstract
Inactivation of PI 3-kinase (PI3K) signalling is critical for tumour suppression by PTEN. This is thought to be a unidirectional relationship in which PTEN degrades the lipids produced by PI3K, thus controlling cell proliferation, survival and migration. We now show that this relationship is in fact bidirectional, whereby PI3K reciprocally controls PTEN. We report that the p110delta PI3K negatively regulates PTEN, through a pathway involving inhibition of RhoA. Inactivation of p110delta in macrophages led to reduced Akt and Rac1 activation, but paradoxically to increased RhoA and PTEN activity. Partial inactivation of p190RhoGAP and a reduced binding of cytoplasmic RhoA to the cyclin-dependent kinase inhibitor p27 both contributed to the increased RhoA-GTP levels upon p110delta inactivation. Pharmacological inhibition of ROCK, a downstream effector kinase of RhoA, restored all signalling and functional defects of p110delta inactivation, including Akt phosphorylation, chemotaxis and proliferation. This work identifies the RhoA/ROCK pathway as a major target of p110delta-mediated PI3K signalling, and establishes for the first time that PI3K controls itself, via a feedback loop involving PTEN.
Collapse
Affiliation(s)
| | - Anne J Ridley
- Ludwig Institute for Cancer Research, London, UK
- Department of Biochemistry and Molecular Biology, University College London, London, UK
| | - Bart Vanhaesebroeck
- Ludwig Institute for Cancer Research, London, UK
- Department of Biochemistry and Molecular Biology, University College London, London, UK
- Ludwig Institute for Cancer Research, 91 Riding House Street, London W1W 7BS, UK. Tel.: +44 207 878 4066; Fax: +44 207 878 4040; E-mail:
| |
Collapse
|
32
|
Williams MJ, Habayeb MS, Hultmark D. Reciprocal regulation of Rac1 and Rho1 inDrosophilacirculating immune surveillance cells. J Cell Sci 2007; 120:502-11. [PMID: 17227793 DOI: 10.1242/jcs.03341] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many cell types it is evident that the small GTPases Rac and Rho regulate each other's activities. What is unclear is exactly how this regulation occurs. To further elucidate this interaction we examined the activities of Rac1 and Rho1 in Drosophila cellular immune surveillance cells. In larvae the cellular immune response involves circulating cells (hemocytes) that can be recruited from a hematopoietic organ located behind the brain, as well as a sessile population found just underneath the larval cuticle. We demonstrate for the first time that Rho-kinase activation requires both Rho1 and the Drosophila c-Jun N-terminal kinase (Basket). We also show that Rac1, via Basket, regulates Rho1 activity, possibly by inhibiting RhoGAPp190. In the reciprocal pathway, co-expression of dominant negative Rho-kinase and constitutive active Rho1 induces a Rac1-like phenotype. This induction requires the formin Diaphanous. Co-expression of dominant negative Rho-kinase and constitutive active Rho1 also induces filopodia formation, with Diaphanous enriched at the tips. The Rac1-like phenotypes, and filopodia formation, could be blocked by co-expression of dominant negative Rac1. Finally, though dominant negative Rac1 is able to block filopodia formation in the overexpression experiments, only Rac2 is necessary for filopodia formed by hemocytes after parasitization.
Collapse
Affiliation(s)
- Michael J Williams
- Umeå Centre for Molecular Pathogenesis (UCMP), Umeå University, S-901 87, Umeå, Sweden.
| | | | | |
Collapse
|
33
|
Malek AM, Xu C, Kim ES, Alper SL. Hypertonicity triggers RhoA-dependent assembly of myosin-containing striated polygonal actin networks in endothelial cells. Am J Physiol Cell Physiol 2006; 292:C1645-59. [PMID: 17192281 DOI: 10.1152/ajpcell.00533.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Endothelial cells respond to mechanical stresses of the circulation with cytoskeletal rearrangements such as F-actin stress fiber alignment along the axis of fluid flow. Endothelial cells are exposed to hypertonic stress in the renal medulla or during mannitol treatment of cerebral edema. We report here that arterial endothelial cells exposed to hypertonic stress rearranged F-actin into novel actin-myosin II fibers with regular 0.5-microm striations, in which alpha-actinin colocalizes with actin. These striated fibers assembled over hours into three-dimensional, irregular, polygonal actin networks most prominent at the cell base, and occasionally surrounding the nucleus in a geodesic-like structure. Hypertonicity-induced assembly of striated polygonal actin networks was inhibited by cytochalasin D, blebbistatin, cell ATP depletion, and intracellular Ca(2+) chelation but did not require intact microtubules, regulatory volume increase, or de novo RNA or protein synthesis. Striated polygonal actin network assembly was insensitive to inhibitors of MAP kinases, tyrosine kinases, or phosphatidylinositol 3-kinase, but was prevented by C3 exotoxin, by the RhoA kinase inhibitor Y-27632, and by overexpressed dominant-negative RhoA. In contrast, overexpression of dominant-negative Rac or of dominant-negative cdc42 cDNAs did not prevent striated polygonal actin network assembly. The actin networks described here are novel in structure, as striated actin-myosin structures in nonmuscle cells, as a cellular response to hypertonicity, and as a cytoskeletal regulatory function of RhoA. Endothelial cells may use RhoA-dependent striated polygonal actin networks, possibly in concert with cytoskeletal load-bearing elements, as a contractile, tension-generating component of their defense against isotropic compressive forces.
Collapse
Affiliation(s)
- Adel M Malek
- Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
34
|
Minuz P, Fumagalli L, Gaino S, Tommasoli R, Degan M, Cavallini C, Lecchi A, Cattaneo M, Lechi Santonastaso C, Berton G. Rapid stimulation of tyrosine phosphorylation signals downstream of G-protein-coupled receptors for thromboxane A2 in human platelets. Biochem J 2006; 400:127-34. [PMID: 16859489 PMCID: PMC1635449 DOI: 10.1042/bj20061015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Signals ensuing from trimeric G-protein-coupled receptors synergize to induce platelet activation. At low doses, the thromboxane A2 analogue U46619 does not activate integrin alphaIIbbeta3 or trigger platelet aggregation, but it induces shape changes. In the present study, we addressed whether low doses of U46619 trigger tyrosine phosphorylation independently of integrin alphaIIbbeta3 activation and ADP secretion, and synergize with adrenaline (epinephrine) to induce aggregation in acetylsalicylic acid (aspirin)-treated platelets. Low doses of U46619 triggered tyrosine phosphorylation of different proteins, including FAK (focal adhesion kinase), Src and Syk, independently of signals ensuing from integrin alphaIIbbeta3 or ADP receptors engaged by secreted ADP. The G(12/13)-mediated Rho/Rho-kinase pathway was also increased by low doses of U46619; however, this pathway was not upstream of tyrosine phosphorylation, because this occurred in the presence of the Rho-kinase inhibitor Y-27632. Although low doses of U46619 or adrenaline alone were unable to trigger platelet aggregation and integrin alphaIIbbeta3 activation, the combination of the two stimuli effectively induced these responses. PP2, a tyrosine kinase inhibitor, and Y-27632 inhibited platelet activation induced by low doses of U46619 plus adrenaline and, when used in combination, totally suppressed this platelet response. In addition, the two inhibitors selectively blocked tyrosine kinases and the Rho/Rho-kinase pathway respectively. These findings suggest that both tyrosine phosphorylation and the Rho/Rho-kinase pathway are required to activate platelet aggregation via G(12/13) plus G(z) signalling.
Collapse
Affiliation(s)
- Pietro Minuz
- *Department of Biomedical and Surgical Sciences, University of Verona, Verona, Italy
| | - Laura Fumagalli
- †Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| | - Stefania Gaino
- ‡Department of Morphological and Biomedical Sciences, University of Verona, Verona, Italy
| | - Rosa M. Tommasoli
- ‡Department of Morphological and Biomedical Sciences, University of Verona, Verona, Italy
| | - Maurizio Degan
- ‡Department of Morphological and Biomedical Sciences, University of Verona, Verona, Italy
| | - Chiara Cavallini
- ‡Department of Morphological and Biomedical Sciences, University of Verona, Verona, Italy
| | - Anna Lecchi
- §Angelo Bianchi Bonomi Haemophila and Thrombosis Centre, IRCCS Maggiore Hospital, University of Milan, Milan, Italy
| | - Marco Cattaneo
- ∥Unit of Haematology and Thrombosis, San Paolo Hospital, DMCO-University of Milan, Milan, Italy
| | | | - Giorgio Berton
- †Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
- To whom correspondence should be addressed (email )
| |
Collapse
|
35
|
Yagi Y, Otani H, Ando S, Oshiro A, Kawai K, Nishikawa H, Araki H, Fukuhara S, Inagaki C. Involvement of Rho signaling in PAR2-mediated regulation of neutrophil adhesion to lung epithelial cells. Eur J Pharmacol 2006; 536:19-27. [PMID: 16564523 DOI: 10.1016/j.ejphar.2006.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 02/15/2006] [Indexed: 11/24/2022]
Abstract
Protease-activated receptor 2 (PAR2) has been implicated in the pathogenesis of airway inflammation. We report that epithelial PAR2 stimulation with trypsin (0.05-1 U/ml) or an agonist peptide (SLIGKV-NH2, 1-100 microM) for 0.5-3 h dose- and time-dependently enhanced neutrophil adhesion to alveolar type II epithelial cells (A549 cells) and that this stimulation also induced the formation of epithelial actin filaments. Both responses in neutrophil adhesion and epithelial actin reorganization were reduced by a Rho inhibitor, mevastatin and by a Rho-associated kinase (ROCK) inhibitor, Y-27632 ((R)-(+)-trans-N-(4-Pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide). Neutrophil adherence was also inhibited by an inhibitor of actin polymerization, cytochalasin D and a tyrosine kinase inhibitor, genistein. Further, the PAR2-mediated tyrosine phosphorylation of focal adhesion kinase (FAK), a major cytoskeleton protein, was detected, and this response was inhibited by mevastatin or Y-27632. These results suggest that PAR2 stimulation of alveolar epithelial cells enhances neutrophil adhesion presumably at least in part through Rho/ROCK signal-mediated actin cytoskeleton reorganization associated with the tyrosine phosphorylation of FAK.
Collapse
Affiliation(s)
- Yasuhiro Yagi
- Department of Pharmacology, Kansai Medical University, Moriguchi Osaka 570-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Valenick LV, Schwarzbauer JE. Ligand density and integrin repertoire regulate cellular response to LPA. Matrix Biol 2006; 25:223-31. [PMID: 16503403 DOI: 10.1016/j.matbio.2006.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 12/06/2005] [Accepted: 01/04/2006] [Indexed: 01/24/2023]
Abstract
Engagement of integrin receptors by the extracellular matrix (ECM) protein fibronectin (FN) activates intracellular signaling, cytoskeletal reorganization and cellular tension. The soluble factor lysophosphatidic acid (LPA) acts through Rho GTPase and its effector Rho kinase (ROCK) to enhance alpha5beta1 integrin-mediated cell spreading on the Arg-Gly-Asp (RGD) cell-binding domain of FN. A second cell-binding site for alpha4 integrins resides in the CS1 segment of the alternatively spliced V region of FN. We show here that LPA treatment of alpha4beta1-expressing CHOalpha4 cells on FN induced a significant decrease in spread cell area. LPA also decreased apoptosis induced by serum-deprivation in CHOalpha4 and human A375 melanoma cells in an alpha4beta1-dependent manner. Improvement in cell viability and changes in cell morphology were dependent on ROCK and on the number of substrate binding sites for alpha4beta1. LPA signaling combined with alpha4beta1-mediated adhesion appears to sustain cell viability in situations where FN matrix is limiting. Such cooperation may impact dynamic cellular events such as wound healing, fibrosis, and metastasis.
Collapse
Affiliation(s)
- Leyla V Valenick
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | |
Collapse
|
37
|
Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, Salanga M, Mazur E, Ingber DE. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 2006; 90:3762-73. [PMID: 16500961 PMCID: PMC1440757 DOI: 10.1529/biophysj.105.071506] [Citation(s) in RCA: 443] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cells change their form and function by assembling actin stress fibers at their base and exerting traction forces on their extracellular matrix (ECM) adhesions. Individual stress fibers are thought to be actively tensed by the action of actomyosin motors and to function as elastic cables that structurally reinforce the basal portion of the cytoskeleton; however, these principles have not been directly tested in living cells, and their significance for overall cell shape control is poorly understood. Here we combine a laser nanoscissor, traction force microscopy, and fluorescence photobleaching methods to confirm that stress fibers in living cells behave as viscoelastic cables that are tensed through the action of actomyosin motors, to quantify their retraction kinetics in situ, and to explore their contribution to overall mechanical stability of the cell and interconnected ECM. These studies reveal that viscoelastic recoil of individual stress fibers after laser severing is partially slowed by inhibition of Rho-associated kinase and virtually abolished by direct inhibition of myosin light chain kinase. Importantly, cells cultured on stiff ECM substrates can tolerate disruption of multiple stress fibers with negligible overall change in cell shape, whereas disruption of a single stress fiber in cells anchored to compliant ECM substrates compromises the entire cellular force balance, induces cytoskeletal rearrangements, and produces ECM retraction many microns away from the site of incision; this results in large-scale changes of cell shape (> 5% elongation). In addition to revealing fundamental insight into the mechanical properties and cell shape contributions of individual stress fibers and confirming that the ECM is effectively a physical extension of the cell and cytoskeleton, the technologies described here offer a novel approach to spatially map the cytoskeletal mechanics of living cells on the nanoscale.
Collapse
Affiliation(s)
- Sanjay Kumar
- Vascular Biology Program, Department of Pathology, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115-5737, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dadke D, Jarnik M, Pugacheva EN, Singh MK, Golemis EA. Deregulation of HEF1 impairs M-phase progression by disrupting the RhoA activation cycle. Mol Biol Cell 2006; 17:1204-17. [PMID: 16394104 PMCID: PMC1382310 DOI: 10.1091/mbc.e05-03-0237] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The focal adhesion-associated signaling protein HEF1 undergoes a striking relocalization to the spindle at mitosis, but a function for HEF1 in mitotic signaling has not been demonstrated. We here report that overexpression of HEF1 leads to failure of cells to progress through cytokinesis, whereas depletion of HEF1 by small interfering RNA (siRNA) leads to defects earlier in M phase before cleavage furrow formation. These defects can be explained mechanistically by our determination that HEF1 regulates the activation cycle of RhoA. Inactivation of RhoA has long been known to be required for cytokinesis, whereas it has recently been determined that activation of RhoA at the entry to M phase is required for cellular rounding. We find that increased HEF1 sustains RhoA activation, whereas depleted HEF1 by siRNA reduces RhoA activation. Furthermore, we demonstrate that chemical inhibition of RhoA is sufficient to reverse HEF1-dependent cellular arrest at cytokinesis. Finally, we demonstrate that HEF1 associates with the RhoA-GTP exchange factor ECT2, an orthologue of the Drosophila cytokinetic regulator Pebble, providing a direct means for HEF1 control of RhoA. We conclude that HEF1 is a novel component of the cell division control machinery and that HEF1 activity impacts division as well as cell attachment signaling events.
Collapse
Affiliation(s)
- Disha Dadke
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|
39
|
Jacobs M, Hayakawa K, Swenson L, Bellon S, Fleming M, Taslimi P, Doran J. The structure of dimeric ROCK I reveals the mechanism for ligand selectivity. J Biol Chem 2005; 281:260-8. [PMID: 16249185 DOI: 10.1074/jbc.m508847200] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ROCK or Rho-associated kinase, a serine/threonine kinase, is an effector of Rho-dependent signaling and is involved in actin-cytoskeleton assembly and cell motility and contraction. The ROCK protein consists of several domains: an N-terminal region, a kinase catalytic domain, a coiled-coil domain containing a RhoA binding site, and a pleckstrin homology domain. The C-terminal region of ROCK binds to and inhibits the kinase catalytic domains, and this inhibition is reversed by binding RhoA, a small GTPase. Here we present the structure of the N-terminal region and the kinase domain. In our structure, two N-terminal regions interact to form a dimerization domain linking two kinase domains together. This spatial arrangement presents the kinase active sites and regulatory sequences on a common face affording the possibility of both kinases simultaneously interacting with a dimeric inhibitory domain or with a dimeric substrate. The kinase domain adopts a catalytically competent conformation; however, no phosphorylation of active site residues is observed in the structure. We also determined the structures of ROCK bound to four different ATP-competitive small molecule inhibitors (Y-27632, fasudil, hydroxyfasudil, and H-1152P). Each of these compounds binds with reduced affinity to cAMP-dependent kinase (PKA), a highly homologous kinase. Subtle differences exist between the ROCK- and PKA-bound conformations of the inhibitors that suggest that interactions with a single amino acid of the active site (Ala215 in ROCK and Thr183 in PKA) determine the relative selectivity of these compounds. Hydroxyfasudil, a metabolite of fasudil, may be selective for ROCK over PKA through a reversed binding orientation.
Collapse
Affiliation(s)
- Marc Jacobs
- Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Du J, Jiang B, Barnard J. Differential regulation of cyclooxygenase-2 in nontransformed and ras-transformed intestinal epithelial cells. Neoplasia 2005; 7:761-70. [PMID: 16207478 PMCID: PMC1501890 DOI: 10.1593/neo.04652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 04/29/2005] [Accepted: 05/04/2005] [Indexed: 01/27/2023]
Abstract
To determine signaling pathways responsible for modulation of COX-2 expression in nontransformed and transformed epithelial cells, we studied a rat intestinal epithelial (RIE) cell line expressing constitutively active Ras and RhoA. Expression of COX-2 protein was higher in RIE-RhoA(63L) (four-fold) and RIE-Ras(12V) (seven-fold) cells than in parental cells. Prior work suggests that Ras hyperactivity induces the expression of transforming growth factor (TGF)beta and increases epidermal growth factor (EGF)-related peptide signaling-possible mechanisms for increased COX-2 expression. Expression of COX-2 was stimulated by TGFbeta and TGFalpha in RIE and RIE-Rho(63L) cells, but not further stimulated in RIE-Ras(12V) cells. PD153035, an inhibitor of EGF receptor tyrosine kinase, and PD98059, an inhibitor of Erk, attenuated COX-2 expression in RIE and RIE-RhoA(63L). However, the high levels of COX-2 expression in RIE-Ras(12V) cells were not inhibited by either compound. Titration with a pan-neutralizing anti-TGFbeta antibody did not decrease COX-2 in RIE-Ras(12V) cells, even with concurrent EGFR inhibition. Thus, stimulation of the EGF receptor is important in the modulation of COX-2 expression in nontransformed RIE and RIE-RhoA(63L) cells. In Ras-transformed cells, signaling by additional Ras effector pathways, perhaps the RhoA pathway, must be invoked. Identification of these pathways is critical for therapeutic manipulation of COX-2 expression.
Collapse
Affiliation(s)
- Jianguo Du
- Department of Pediatrics, Center for Cell and Vascular Biology, Columbus Children's Research Institute, Columbus, OH 43205, USA
| | | | | |
Collapse
|
41
|
Calandrella SO, Barrett KE, Keely SJ. Transactivation of the epidermal growth factor receptor mediates muscarinic stimulation of focal adhesion kinase in intestinal epithelial cells. J Cell Physiol 2005; 203:103-10. [PMID: 15389641 DOI: 10.1002/jcp.20190] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously shown that the Gq protein coupled receptor (GqPCR) agonist, carbachol (CCh), transactivates and recruits epidermal growth factor receptor (EGFr)-dependent signaling mechanisms in intestinal epithelial cells. Increasing evidence suggests that GqPCR agonists can also recruit focal adhesion-dependent signaling pathways in some cell types. Therefore, the aim of the present study was to investigate if CCh stimulates activation of the focal adhesion-associated protein, focal adhesion kinase (FAK), in intestinal epithelia and, if so, to examine the signaling mechanisms involved. Experiments were carried out on monolayers of T84 cells grown on permeable supports. CCh rapidly induced tyrosine phosphorylation of FAK in T84 cells. This effect was accompanied by phosphorylation of another focal adhesion-associated protein, paxillin, and association of FAK with paxillin. CCh-stimulated FAK phosphorylation was inhibited by a chelator of intracellular Ca2+, BAPTA/AM (20 microM), and was mimicked by thapsigargin (2 microM), which mobilizes intracellular Ca2+ in a receptor-independent fashion. CCh also induced association of FAK with the EGFr and FAK phosphorylation was attenuated by an EGFr inhibitor, tyrphostin AG1478, and an inhibitor of Src family kinases, PP2. The actin cytoskeleton disruptor, cytochalasin D (20 microM), abolished FAK phosphorylation in response to CCh but did not alter CCh-induced EGFr or ERK MAPK activation. In summary, these data demonstrate that agonists of GqPCRs have the ability to induce FAK activation in intestinal epithelial cells. GqPCR-induced FAK activation is mediated by via a pathway involving transactivation of the EGFr and alterations in the actin cytoskeleton.
Collapse
Affiliation(s)
- Sean O Calandrella
- Department of Medicine, University of California, San Diego, San Diego, California, USA
| | | | | |
Collapse
|
42
|
Rey O, Young SH, Yuan J, Slice L, Rozengurt E. Amino acid-stimulated Ca2+ oscillations produced by the Ca2+-sensing receptor are mediated by a phospholipase C/inositol 1,4,5-trisphosphate-independent pathway that requires G12, Rho, filamin-A, and the actin cytoskeleton. J Biol Chem 2005; 280:22875-82. [PMID: 15837785 DOI: 10.1074/jbc.m503455200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G protein-coupled Ca(2+)-sensing receptor (CaR) is an allosteric protein that responds to two different agonists, Ca(2+) and aromatic amino acids, with the production of sinusoidal or transient oscillations in intracellular Ca(2+) concentration ([Ca(2+)](i)). Here, we examined whether these differing patterns of [Ca(2+)](i) oscillations produced by the CaR are mediated by separate signal transduction pathways. Using real time imaging of changes in phosphatidylinositol 4,5-biphosphate hydrolysis and generation of inositol 1,4,5-trisphosphate in single cells, we found that stimulation of CaR by an increase in the extracellular Ca(2+) concentration ([Ca(2+)](o)) leads to periodic synthesis of inositol 1,4,5-trisphosphate, whereas l-phenylalanine stimulation of the CaR does not induce any detectable change in the level this second messenger. Furthermore, we identified a novel pathway that mediates transient [Ca(2+)](i) oscillations produced by the CaR in response to l-phenylalanine, which requires the organization of the actin cytoskeleton and involves the small GTPase Rho, heterotrimeric proteins of the G(12) subfamily, the C-terminal region of the CaR, and the scaffolding protein filamin-A. Our model envisages that Ca(2+) or amino acids stabilize unique CaR conformations that favor coupling to different G proteins and subsequent activation of distinct downstream signaling pathways.
Collapse
Affiliation(s)
- Osvaldo Rey
- Unit of Signal Transduction and Gastrointestinal Cancer, Division of Digestive Diseases, Department of Medicine, UCLA-CURE Digestive Diseases Research Center, David Geffen School of Medicine, University of California at Los Angeles, 90095, USA
| | | | | | | | | |
Collapse
|
43
|
Ehrenreiter K, Piazzolla D, Velamoor V, Sobczak I, Small JV, Takeda J, Leung T, Baccarini M. Raf-1 regulates Rho signaling and cell migration. ACTA ACUST UNITED AC 2005; 168:955-64. [PMID: 15753127 PMCID: PMC2171799 DOI: 10.1083/jcb.200409162] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Raf kinases relay signals inducing proliferation, differentiation, and survival. The Raf-1 isoform has been extensively studied as the upstream kinase linking Ras activation to the MEK/ERK module. Recently, however, genetic experiments have shown that Raf-1 plays an essential role in counteracting apoptosis, and that it does so independently of its ability to activate MEK. By conditional gene ablation, we now show that Raf-1 is required for normal wound healing in vivo and for the migration of keratinocytes and fibroblasts in vitro. Raf-1-deficient cells show a symmetric, contracted appearance, characterized by cortical actin bundles and by a disordered vimentin cytoskeleton. These defects are due to the hyperactivity and incorrect localization of the Rho-effector Rok-alpha to the plasma membrane. Raf-1 physically associates with Rok-alpha in wild-type (WT) cells, and reintroduction of either WT or kinase-dead Raf-1 in knockout fibroblasts rescues their defects in shape and migration. Thus, Raf-1 plays an essential, kinase-independent function as a spatial regulator of Rho downstream signaling during migration.
Collapse
Affiliation(s)
- Karin Ehrenreiter
- Department of Microbiology and Genetics, Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, 1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lepin EJ, Jin YP, Barwe SP, Rozengurt E, Reed EF. HLA class I signal transduction is dependent on Rho GTPase and ROK. Biochem Biophys Res Commun 2004; 323:213-7. [PMID: 15351723 DOI: 10.1016/j.bbrc.2004.08.082] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Indexed: 11/26/2022]
Abstract
Chronic rejection is the major limitation to long-term allograft survival. HLA class I signaling pathways have been implicated in this process because ligation of class I molecules by anti-HLA antibodies (Ab) initiates intracellular signals in smooth muscle cells (SMC) and endothelial cells (EC) that synergize with growth factor receptors to elicit cell survival and proliferation. Anti-HLA Ab mediate cell proliferation and survival through a focal adhesion kinase dependent pathway that requires the integrity of the actin cytoskeleton. In this study, we investigated the role of Rho and Rho-kinase (ROK) in class I signal transduction. We show that class I ligation results in activation of Rho and increased stress fiber formation. In addition, inhibitors of Rho GTPase and ROK block HLA class I-mediated tyrosyl phosphorylation of paxillin and FAK, central elements of the focal adhesion signaling complex. These results suggest that HLA class I-induced signaling in EC is dependent on Rho GTPase and ROK.
Collapse
Affiliation(s)
- Eric J Lepin
- UCLA Immunogenetics Center, David Geffen School of Medicine, University of California, Los Angeles, 1000 Veteran Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
45
|
Yang CC, Ogawa H, Dwinell MB, McCole DF, Eckmann L, Kagnoff MF. Chemokine receptor CCR6 transduces signals that activate p130Cas and alter cAMP-stimulated ion transport in human intestinal epithelial cells. Am J Physiol Cell Physiol 2004; 288:C321-8. [PMID: 15483227 DOI: 10.1152/ajpcell.00171.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human colon epithelial cells express the G protein-coupled receptor CCR6, the sole receptor for the chemokine CCL20 (also termed MIP-3alpha). CCL20 produced by intestinal epithelial cells is upregulated in response to proinflammatory stimuli and microbial infection, and it chemoattracts leukocytes, including CCR6-expressing immature myeloid dendritic cells, into sites of inflammation. The aim of this study was to determine whether CCR6 expressed by intestinal epithelial cells acts as a functional receptor for CCL20 and whether stimulation with CCL20 alters intestinal epithelial cell functions. The human colon epithelial cell lines T84, Caco-2, HT-29, and HCA-7 were used to model colonic epithelium. Polarized intestinal epithelial cells constitutively expressed CCR6, predominantly on the apical side. Consistent with this, apical stimulation of polarized intestinal epithelial cells resulted in tyrosine phosphorylation of the p130 Crk-associated substrate (Cas), an adaptor/scaffolding protein that localizes in focal adhesions and has a role in regulating cytoskeletal elements important for cell attachment and migration. In addition, CCL20 stimulation inhibited agonist-stimulated production of the second messenger cAMP and cAMP-mediated chloride secretory responses by intestinal epithelial cells. Inhibition was abrogated by pertussis toxin, consistent with signaling through Galphai proteins that negatively regulate adenylyl cyclases and cAMP production. These data indicate that signaling events, occurring via the activation of the apically expressed chemokine receptor CCR6 on polarized intestinal epithelial cells, alter specialized intestinal epithelial cell functions, including electrogenic ion secretion and possibly epithelial cell adhesion and migration.
Collapse
Affiliation(s)
- Charles C Yang
- Laboratory of Mucosal Immunology, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623, USA
| | | | | | | | | | | |
Collapse
|
46
|
Le Boeuf F, Houle F, Huot J. Regulation of Vascular Endothelial Growth Factor Receptor 2-mediated Phosphorylation of Focal Adhesion Kinase by Heat Shock Protein 90 and Src Kinase Activities. J Biol Chem 2004; 279:39175-85. [PMID: 15247219 DOI: 10.1074/jbc.m405493200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of endothelial cells to vascular endothelial growth factor (VEGF) induced tyrosine phosphorylation of focal adhesion kinase (FAK) on site Tyr(407), an effect that required the association of VEGF receptor 2 (VEGFR2) with HSP90. The association of VEGFR2 with HSP90 involved the last 130 amino acids of VEGFR2 and was blocked by geldanamycin, a specific inhibitor of HSP90. Moreover, geldanamycin inhibited the VEGF-induced activation of the small GTPase RhoA, which resulted in an inhibition of phosphorylation of FAK on site Tyr(407). In this context, the inhibition of RhoA kinase (ROCK) with Y27632 or by expression of dominant negative forms of RhoA or ROCK impaired the VEGF-induced phosphorylation of Tyr(407) within FAK. In contrast to phosphorylation of Tyr(861), the phosphorylation of site Tyr(407) was insensitive to Src kinase inhibition by 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2). We also found that the recruitment of paxillin to FAK was inhibited by geldanamycin but not by PP2, whereas both geldanamycin and PP2 inhibited the recruitment of vinculin to FAK. In accordance, the recruitment of paxillin and vinculin to FAK was inhibited in cells that express the mutant FAK-Y407F, whereas the expression of the mutant Y861F inhibited the recruitment of paxillin but not of vinculin. Importantly, cell migration was abolished in cells in which the signal from the VEGFR2-HSP90 pathway was blocked by the expression of Delta130VEGFR2, a deletant of VEGFR2 that does not associate with HSP90. Our findings underscore for the first time the key role played by the VEGFR2-HSP90-RhoA-ROCK-FAK/Tyr(407) pathway in transducing the VEGF signal that leads to the assembly of focal adhesions and endothelial cell migration.
Collapse
Affiliation(s)
- Fabrice Le Boeuf
- Le Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Québec G1R 2J6, Canada
| | | | | |
Collapse
|
47
|
Breitenlechner C, Gassel M, Hidaka H, Kinzel V, Huber R, Engh RA, Bossemeyer D. Protein kinase A in complex with Rho-kinase inhibitors Y-27632, Fasudil, and H-1152P: structural basis of selectivity. Structure 2004; 11:1595-607. [PMID: 14656443 DOI: 10.1016/j.str.2003.11.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinases require strict inactivation to prevent spurious cellular signaling; overactivity can cause cancer or other diseases and necessitates selective inhibition for therapy. Rho-kinase is involved in such processes as tumor invasion, cell adhesion, smooth muscle contraction, and formation of focal adhesion fibers, as revealed using inhibitor Y-27632. Another Rho-kinase inhibitor, HA-1077 or Fasudil, is currently used in the treatment of cerebral vasospasm; the related nanomolar inhibitor H-1152P improves on its selectivity and potency. We have determined the crystal structures of HA-1077, H-1152P, and Y-27632 in complexes with protein kinase A (PKA) as a surrogate kinase to analyze Rho-kinase inhibitor binding properties. Features conserved between PKA and Rho-kinase are involved in the key binding interactions, while a combination of residues at the ATP binding pocket that are unique to Rho-kinase may explain the inhibitors' Rho-kinase selectivity. Further, a second H-1152P binding site potentially points toward PKA regulatory domain interaction modulators.
Collapse
|
48
|
Lunn JA, Rozengurt E. Hyperosmotic stress induces rapid focal adhesion kinase phosphorylation at tyrosines 397 and 577. Role of Src family kinases and Rho family GTPases. J Biol Chem 2004; 279:45266-78. [PMID: 15302877 DOI: 10.1074/jbc.m314132200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperosmotic stress induced by treatment of Swiss 3T3 cells with the non-permeant solutes sucrose or sorbitol, rapidly and robustly stimulated endogenous focal adhesion kinase (FAK) phosphorylation at Tyr-397, the major autophosphorylation site, and at Tyr-577, within the kinase activation loop. Hyperosmotic stress-stimulated FAK phosphorylation at Tyr-397 occurred via a Src-independent pathway, whereas Tyr-577 phosphorylation was completely blocked by exposure to the Src family kinase inhibitor PP-2. Inhibition of p38 MAP kinase or phosphatidylinositol 3-kinases did not prevent FAK phosphorylation stimulated by hyperosmotic stress. Overexpression of N17 RhoA did not reduce hyperosmotic stress-mediated localization of phosphorylated FAK to focal contacts and treatment with the Rho-associated kinase inhibitor Y-27632 did not prevent FAK translocation and tyrosine phosphorylation in response to hyperosmotic stress. Overexpression of N17 Rac only slightly altered the hyperosmotic stress-mediated localization of phosphorylated FAK to focal contacts. In contrast, overexpression of the N17 mutant of Cdc42 disrupted hyperosmotic stress-stimulated FAK Tyr-397 localization to focal contacts. Additionally, treatment of cells with Clostridium difficile toxin B potently inhibited hyperosmotic stress-induced FAK tyrosine phosphorylation. Furthermore, FAK null fibroblasts compared with their FAK containing controls show markedly increased sensitivity, manifest by subsequent apoptosis, to sustained hyperosmotic stress. Our results indicate that FAK plays a fundamental role in protecting cells from hyperosmotic stress, and that the pathway(s) that mediates FAK autophosphorylation at Tyr-397 in response to osmotic stress can be distinguished from the pathways utilized by many other stimuli, including neuropeptides and bioactive lipids (Rho- and Rho-associated kinase-dependent), tyrosine kinase receptor agonists (phosphatidylinositol 3-kinase-dependent), and integrins (Src-dependent).
Collapse
Affiliation(s)
- J Adrian Lunn
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA-CURE, Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
49
|
Kole TP, Tseng Y, Huang L, Katz JL, Wirtz D. Rho kinase regulates the intracellular micromechanical response of adherent cells to rho activation. Mol Biol Cell 2004; 15:3475-84. [PMID: 15146061 PMCID: PMC452598 DOI: 10.1091/mbc.e04-03-0218] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Local sol-gel transitions of the cytoskeleton modulate cell shape changes, which are required for essential cellular functions, including motility and adhesion. In vitro studies using purified cytoskeletal proteins have suggested molecular mechanisms of regulation of cytoskeleton mechanics; however, the mechanical behavior of living cells and the signaling pathways by which it is regulated remains largely unknown. To address this issue, we used a nanoscale sensing method, intracellular microrheology, to examine the mechanical response of the cell to activation of the small GTPase Rho. We observe that the cytoplasmic stiffness and viscosity of serum-starved Swiss 3T3 cells transiently and locally enhances upon treatment with lysophosphatidic acid, and this mechanical behavior follows a trend similar to Rho activity. Furthermore, the time-dependent activation of Rho decreases the degree of microheterogeneity of the cytoplasm. Our results reveal fundamental differences between intracellular elasticity and cellular tension and suggest a critical role for Rho kinase in the regulation of intracellular mechanics.
Collapse
Affiliation(s)
- Thomas P Kole
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
50
|
Oliveira MJ, Van Damme J, Lauwaet T, De Corte V, De Bruyne G, Verschraegen G, Vaneechoutte M, Goethals M, Ahmadian MR, Müller O, Vandekerckhove J, Mareel M, Leroy A. Beta-casein-derived peptides, produced by bacteria, stimulate cancer cell invasion and motility. EMBO J 2004; 22:6161-73. [PMID: 14609961 PMCID: PMC275444 DOI: 10.1093/emboj/cdg586] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In colon cancer, enteric bacteria and dietary factors are major determinants of the microenvironment but their effect on cellular invasion is not known. We therefore incubated human HCT-8/E11 colon cancer cells with bacteria or bacterial conditioned medium on top of collagen type I gels. Listeria monocytogenes stimulate cellular invasion through the formation of a soluble motility-promoting factor, identified as a 13mer beta-casein-derived peptide (HKEMPFPKYPVEP). The peptide is formed through the combined action of Mpl, a Listeria thermolysin-like metalloprotease, and a collagen-associated trypsin-like serine protease. The 13mer peptide was also formed by tumour biopsies isolated from colon cancer patients and incubated with a beta-casein source. The pro- invasive 13mer peptide-signalling pathway implicates activation of Cdc42 and inactivation of RhoA, linked to each other through the serine/threonine p21- activated kinase 1. Since both changes are necessary but not sufficient, another pathway might branch upstream of Cdc42 at phosphatidylinositol 3-kinase. Delta opioid receptor (deltaOR) is a candidate receptor for the 13mer peptide since naloxone, an deltaOR antagonist, blocks both deltaOR serine phosphorylation and 13mer peptide-mediated invasion.
Collapse
Affiliation(s)
- Maria José Oliveira
- Laboratory of Experimental Cancerology, Gent University Hospital, De Pintelaan 185, Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|