1
|
Morphology, Histology, and Histochemistry of the Digestive Tract of the Marbled Flounder Pseudopleuronectes yokohamae. Animals (Basel) 2023; 13:ani13050936. [PMID: 36899793 PMCID: PMC10000053 DOI: 10.3390/ani13050936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
This study investigated the morphological, histological, and histochemical characteristics of the digestive tract of the marbled flounder (Pseudopleuronectes yokohamae). The relative length of the gut of the marbled flounder digestive tract was 1.54 ± 0.10 (n = 20), and it had a simple stomach and 6-9 pyloric caeca. The mucosal folds of the marbled flounder digestive tract exhibited a general branched morphology. The thickness and mucosal fold length of the intestinal muscularis externa showed similar aspects in all areas. The thickness of the intestinal muscularis externa was the thickest in the posterior intestine portion, and the length of mucosal folds was the longest in the anterior intestine portion. It was indicated that food digested by gastric acid in the stomach moves to the anterior portion (including pyloric caeca) and mid portion of the intestine, ensuring effective stimulation of cholecystokinin (CCK)-producing cells. In addition, the distribution pattern of CCK-producing cells in the intestine was very similar to that of mucus-secreting goblet cells. The CCK-producing cells and goblet cells in the marbled flounder were well-adapted to promote optimal control of the digestive process. Based on the morphological and histochemical studies, it was concluded that the marbled flounder displays a digestive tract comparable to that of fish species with carnivorous habits.
Collapse
|
2
|
Gomes AS, Lygre E, Harboe T, Zimmermann F, Jordal AEO, Hamre K, Rønnestad I. The role of cholecystokinin and peptide YY in feed intake in Atlantic halibut (Hippoglossus hippoglossus) larvae. Neuropeptides 2022; 91:102202. [PMID: 34741845 DOI: 10.1016/j.npep.2021.102202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Control of appetite and feed intake in fish larvae are still largely unexplored. Two of the key players in controlling vertebrate's feed intake are cholecystokinin (CCK) and peptide YY (PYY). Here we investigated the mRNA expression of pyy, cck and cck receptors (cckr) in the brain (head) and gut of Atlantic halibut larvae in response to three consecutive meals. We used Artemia nauplii cysts that are commonly ingested by halibut larvae when present as inert feed, and three water-soluble extracts as attractants to stimulate appetite. Cyst intake was not affected by the use of attractants and overall ingestion rate was low. Differences in mRNA expression of cck and pyy were observed between the halibut larvae that had eaten and those that had not despite readily available feed (cysts), supporting that mechanisms for control of feed intake are at least partly functional. All genes analysed were present in the brain and gut, however the different expression profiles between paralogues suggest potential divergent functions. In the gut, cck2 and pyyb mRNA expression was significantly higher in the larvae that ate cysts compared to larvae that decided to not eat, indicating that these genes play a satiety function in the halibut larvae similar to the general vertebrate scheme. However, cck2, cck2r1, and pyy mRNA expression in the brain were lower in the fed-filled larvae group compared to larvae before eating, which contrasts with the presumable anorectic function of these genes. Further research is required to fully evaluate how PYY and CCK affect the feeding biology in halibut larvae, contributing to formulate inert diets that can stimulate appetite and feed intake.
Collapse
Affiliation(s)
- Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Endre Lygre
- Department of Biological Sciences, University of Bergen, Bergen, Norway; Institute of Marine Research, Austevoll, Norway; Sogn Aqua AS, Bjordal, Norway
| | | | | | | | | | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Zhang H, Qin G, Sun J, Zhang B, Lin Q. The evolution and functional characterization of lined seahorse (Hippocampus erectus) CCKs involved in fasting and thermal stress response. Gen Comp Endocrinol 2018; 255:56-63. [PMID: 29051075 DOI: 10.1016/j.ygcen.2017.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/27/2017] [Accepted: 10/14/2017] [Indexed: 12/19/2022]
Abstract
The peptide cholecystokinin (CCK) plays an important role in the regulation of vertebrate appetite and feeding behaviour. In the present study, the full-length cDNA and genomic DNA sequences of two CCK precursors were cloned and analysed in the Syngnathidae fish, the lined seahorse (Hippocampus erectus). Both CCK1 and CCK2 in the seahorse consist of four exons. The sequence of the octapeptide of seahorse CCK1 (DYMGWMDF) was the same as that of the chicken and human, while the octapeptide of seahorse CCK2 (DYEGWMDF) was unique among vertebrates. According to the phylogenetic analysis, two types of CCKs were produced by teleost-specific genome duplication (TGD). Both CCK1 and CCK2 were highly expressed in the brain, while detectable amounts of CCK1 mRNA in the brood pouch and CCK2 mRNA in the intestine were also found. Both CCK1 and CCK2 mRNA levels significantly increased during the transition from endogenous to exogenous nutrition. Additionally, fasting induced a significant increase in the CCK1 mRNA expression in the brain of juvenile seahorses but had no effect on CCK2 transcript levels. In addition, the CCK1 and CCK2 mRNA levels in the seahorse brain significantly increased after a high-temperature treatment. Thus, the mRNA expression of CCK had obvious tissue specificities and this preliminary study opens new avenues for further functional studies on the endocrine regulations of CCK in the transition from endogenous to exogenous nutrition, food intake regulation and metabolism in the seahorse.
Collapse
Affiliation(s)
- Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Jinhui Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
4
|
Rønnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H. Appetite-Controlling Endocrine Systems in Teleosts. Front Endocrinol (Lausanne) 2017; 8:73. [PMID: 28458653 PMCID: PMC5394176 DOI: 10.3389/fendo.2017.00073] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms.
Collapse
Affiliation(s)
- Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biology, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biology, University of Bergen, Bergen, Norway
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Rita Angotzi
- Department of Biology, University of Bergen, Bergen, Norway
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John’s, NL, Canada
| |
Collapse
|
5
|
Involvement of cholecystokinin (CCK) in the daily pattern of gastrointestinal regulation of Senegalese sole (Solea senegalensis) larvae reared under different feeding regimes. Comp Biochem Physiol A Mol Integr Physiol 2017; 203:126-132. [DOI: 10.1016/j.cbpa.2016.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/08/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022]
|
6
|
Volkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci 2016; 10:540. [PMID: 27965528 PMCID: PMC5126056 DOI: 10.3389/fnins.2016.00540] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Fish are the most diversified group of vertebrates and, although progress has been made in the past years, only relatively few fish species have been examined to date, with regards to the endocrine regulation of feeding in fish. In fish, as in mammals, feeding behavior is ultimately regulated by central effectors within feeding centers of the brain, which receive and process information from endocrine signals from both brain and peripheral tissues. Although basic endocrine mechanisms regulating feeding appear to be conserved among vertebrates, major physiological differences between fish and mammals and the diversity of fish, in particular in regard to feeding habits, digestive tract anatomy and physiology, suggest the existence of fish- and species-specific regulating mechanisms. This review provides an overview of hormones known to regulate food intake in fish, emphasizing on major hormones and the main fish groups studied to date.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of NewfoundlandSt. John's, NL, Canada
| |
Collapse
|
7
|
Hur SW, Kim SK, Kim DJ, Lee BI, Park SJ, Hwang HG, Jun JC, Myeong JI, Lee CH, Lee YD. Digestive Physiological Characteristics of the Gobiidae: - Characteristics of CCK-producing Cells and Mucus-secreting Goblet Cells of Stomach Fish and Stomachless Fish. Dev Reprod 2016; 20:207-217. [PMID: 27796002 PMCID: PMC5078146 DOI: 10.12717/dr.2016.20.3.207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, we investigated the characteristics of CCK-producing cells and mucus-secreting goblet cells with respect to stomach fish and stomachless fish of the Gobiidae in order to provide a basis for understanding the digestive physiology. Hairychin goby (Sagamia geneionema), which is stomachless fish, the numbers of mucus-secreting goblet cells is highest in the posterior intestine portion (P<0.05), while CCK-producing cells are scattered throughout the intestine. Gluttonous goby (Chasmichthys gulosus), which is stomach fish, mucus-secreting goblet cells are most abundant in the mid intestine portion (P<0.05), whereas CCK-producing cells are observed only in the anterior and mid intestine portion. Trident goby (Tridentiger obscurus) which is stomach fish, mucus-secreting goblet cells were most abundant in the mid intestine portion (P<0.05). CCK-producing cells are found in the anterior and mid intestine portion. Giurine goby, Rhinogobius giurinus which is also stomach fish, the largest number of mucus-secreting goblet cells showed in anterior intestine portion except for esophagus (P<0.05). CCK-producing cells are present only in the anterior and mid intestine portion. In S. geneionema, digestive action occurs in the posterior intestine portion to protect and functions to activate digestion. In contrast, in C. gulosus, T. obscurus and R. giurinus, their digestive action occurs in the anterior and mid intestine portion to protect and functions to activate digestion. Further studies of the modes of food ingestion by these fish, the contents of their digestive tracts, and the staining characteristics of the goblet cells need to be carried out.
Collapse
Affiliation(s)
- Sang-Woo Hur
- Aquaculture Management Division, National Institute of Fisheries Science (NIFS), Busan 46083, Korea
| | - Shin-Kwon Kim
- Aquaculture Management Division, National Institute of Fisheries Science (NIFS), Busan 46083, Korea
| | - Dae-Jung Kim
- Aquaculture Management Division, National Institute of Fisheries Science (NIFS), Busan 46083, Korea
| | - Bae-Ik Lee
- Aquaculture Management Division, National Institute of Fisheries Science (NIFS), Busan 46083, Korea
| | - Su-Jin Park
- Aquaculture Management Division, National Institute of Fisheries Science (NIFS), Busan 46083, Korea
| | - Hyung-Gyu Hwang
- Aquaculture Management Division, National Institute of Fisheries Science (NIFS), Busan 46083, Korea
| | - Je-Cheon Jun
- Aquaculture Management Division, National Institute of Fisheries Science (NIFS), Busan 46083, Korea
| | - Jeong-In Myeong
- Aquaculture Management Division, National Institute of Fisheries Science (NIFS), Busan 46083, Korea
| | - Chi-Hoon Lee
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Young-Don Lee
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
8
|
Neuroendocrine control of appetite in Atlantic halibut (Hippoglossus hippoglossus): Changes during metamorphosis and effects of feeding. Comp Biochem Physiol A Mol Integr Physiol 2015; 183:116-25. [DOI: 10.1016/j.cbpa.2015.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/18/2014] [Accepted: 01/15/2015] [Indexed: 12/14/2022]
|
9
|
Relative distribution of gastrin-, CCK-8-, NPY- and CGRP-immunoreactive cells in the digestive tract of dorado (Salminus brasiliensis). Tissue Cell 2015; 47:123-31. [PMID: 25771084 DOI: 10.1016/j.tice.2015.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/16/2023]
Abstract
The endocrine cells (ECs) of the gastrointestinal mucosa form the largest endocrine system in the body, not only in terms of cell numbers but also in terms of the different produced substances. Data describing the association between the relative distributions of the peptide-specific ECs in relation to feeding habits can be useful tools that enable the creation of a general expected pattern of EC distribution. We aimed to investigate the distribution of ECs immunoreactive for the peptides gastrin (GAS), cholecystokinin (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in different segments of the digestive tract of carnivorous fish dorado (Salminus brasiliensis) by using immunohistochemistry procedures. The distribution of endocrine cells immunoreactive for gastrin (GAS), cholecystokinin (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in digestive tract of dorado S. brasiliensis was examined by immunohistochemistry. The results describe the association between the distribution of the peptide-specific endocrine cells and feeding habits in different carnivorous fish. The largest number of endocrine cells immunoreactive for GAS, CCK-8, and CGRP were found in the pyloric stomach region and the pyloric caeca. However, NPY-immunoreactive endocrine cells were markedly restricted to the midgut. The distribution pattern of endocrine cells identified in S. brasiliensis is similar to that found in other carnivorous fishes.
Collapse
|
10
|
Micale V, Campo S, D'Ascola A, Guerrera MC, Levanti MB, Germanà A, Muglia U. Cholecystokinin: how many functions? Observations in seabreams. Gen Comp Endocrinol 2014; 205:166-7. [PMID: 24631546 DOI: 10.1016/j.ygcen.2014.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/27/2014] [Indexed: 11/29/2022]
Abstract
A short overview on the regional distribution of the gastro-intestinal peptide hormone cholecystokin (CCK) in fish is presented. In particular, the results of molecular and immunological studies on seabreams, Diplodus puntazzo and Diplodus sargus, are reported, which, by demonstrating CCK in the hindgut, open new questions regarding the functional role of this hormone in that part of the intestine. The putative involvement of hindgut CCK in the feedback control of digestive processes was tested by measuring CCK gene and protein expression in fed and fasted fish. The results of this study led to hypothesize different roles for the two CCK isoforms in D. sargus, one of which related to regulation of digestive processes from pyloric caeca through hindgut. On the other hand, a functional role alternative to regulation of digestive processes may be inferred for the other isoform.
Collapse
Affiliation(s)
- Valeria Micale
- Istituto per l'Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Messina, Italy.
| | - Salvatore Campo
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, Messina, Italy
| | - Angela D'Ascola
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, Messina, Italy
| | | | | | | | - Ugo Muglia
- School of Veterinary Sciences, University of Messina, Italy; Consorzio Interuniversitario INBB, Roma, Italy
| |
Collapse
|
11
|
Gomes AS, Kamisaka Y, Harboe T, Power DM, Rønnestad I. Functional modifications associated with gastrointestinal tract organogenesis during metamorphosis in Atlantic halibut (Hippoglossus hippoglossus). BMC DEVELOPMENTAL BIOLOGY 2014; 14:11. [PMID: 24552353 PMCID: PMC3940299 DOI: 10.1186/1471-213x-14-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/09/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Flatfish metamorphosis is a hormone regulated post-embryonic developmental event that transforms a symmetric larva into an asymmetric juvenile. In altricial-gastric teleost fish, differentiation of the stomach takes place after the onset of first feeding, and during metamorphosis dramatic molecular and morphological modifications of the gastrointestinal (GI-) tract occur. Here we present the functional ontogeny of the developing GI-tract from an integrative perspective in the pleuronectiforme Atlantic halibut, and test the hypothesis that the multiple functions of the teleost stomach develop synchronously during metamorphosis. RESULTS Onset of gastric function was determined with several approaches (anatomical, biochemical, molecular and in vivo observations). In vivo pH analysis in the GI-tract lumen combined with quantitative PCR (qPCR) of α and β subunits of the gastric proton pump (H+/K+-ATPase) and pepsinogen A2 indicated that gastric proteolytic capacity is established during the climax of metamorphosis. Transcript abundance of ghrelin, a putative orexigenic signalling molecule produced in the developing stomach, correlated (p < 0.05) with the emergence of gastric proteolytic activity, suggesting that the stomach's role in appetite regulation occurs simultaneously with the establishment of proteolytic function. A 3D models series of the GI-tract development indicated a functional pyloric sphincter prior to first feeding. Observations of fed larvae in vivo confirmed that stomach reservoir function was established before metamorphosis, and was thus independent of this event. Mechanical breakdown of food and transportation of chyme through the GI-tract was observed in vivo and resulted from phasic and propagating contractions established well before metamorphosis. The number of contractions in the midgut decreased at metamorphic climax synchronously with establishment of the stomach's proteolytic capacity and its increased peristaltic activity. Putative osmoregulatory competence of the GI-tract, inferred by abundance of Na+/K+-ATPase α transcripts, was already established at the onset of exogenous feeding and was unmodified by metamorphosis. CONCLUSIONS The functional specialization of the GI-tract was not exclusive to metamorphosis, and its osmoregulatory capacity and reservoir function were established before first feeding. Nonetheless, acid production and the proteolytic capacity of the stomach coincided with metamorphic climax, and also marked the onset of the stomach's involvement in appetite regulation via ghrelin.
Collapse
Affiliation(s)
- Ana S Gomes
- Department of Biology, University of Bergen, Po. Box 7803, NO-5020 Bergen, Norway
| | - Yuko Kamisaka
- Department of Biology, University of Bergen, Po. Box 7803, NO-5020 Bergen, Norway
| | - Torstein Harboe
- Institute of Marine Research, Austevoll Aquaculture Research Station, NO-5392 Storebø, Norway
| | - Deborah M Power
- Comparative and Molecular Endocrinology Group, Centre for Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, Po. Box 7803, NO-5020 Bergen, Norway
| |
Collapse
|
12
|
Tillner R, Rønnestad I, Harboe T, Ueberschär B. Evidence for a regulatory loop between cholecystokinin (CCK) and tryptic enzyme activity in Atlantic cod larvae (Gadus morhua). Comp Biochem Physiol A Mol Integr Physiol 2013; 166:490-5. [DOI: 10.1016/j.cbpa.2013.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 02/05/2023]
|
13
|
Babichuk NA, Volkoff H. Changes in expression of appetite-regulating hormones in the cunner (Tautogolabrus adspersus) during short-term fasting and winter torpor. Physiol Behav 2013; 120:54-63. [PMID: 23831740 DOI: 10.1016/j.physbeh.2013.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/26/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022]
Abstract
Feeding in vertebrates is controlled by a number of appetite stimulating (orexigenic, e.g., orexin and neuropeptide Y, NPY) and appetite suppressing (anorexigenic, e.g., cholecystokinin, CCK and cocaine- and amphetamine-regulated transcript, CART) hormones. Cunners (Tautogolabrus adspersus) survive the winter in shallow coastal waters by entering a torpor-like state, during which they forgo feeding. In order to better understand the mechanisms regulating appetite/fasting in these fish, quantitative real-time PCR was used to measure transcript expression levels of four appetite-regulating hormones: NPY, CART, orexin and CCK in the forebrain (hypothalamus and telencephalon) and CCK in the gut of fed, short-term summer fasted, and natural winter torpor cunners. Summer fasting induced a decrease in hypothalamic orexin levels and telencephalon NPY, CART and CCK mRNA levels. All brain hormone mRNA levels decreased during natural torpor as compared to fed summer fish. In the gut, CCK expression levels decreased during summer fasting. These results indicate that, in cunner, orexin, NPY, CART and CCK may play a role in appetite regulation and might mediate different physiological responses to short-term summer fasting and torpor-induced long-term fasting.
Collapse
Affiliation(s)
- Nicole A Babichuk
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | | |
Collapse
|
14
|
Ping HC, Feng K, Zhang GR, Wei KJ, Zou GW, Wang WM. Ontogeny expression of ghrelin, neuropeptide Y and cholecystokinin in blunt snout bream, Megalobrama amblycephala. J Anim Physiol Anim Nutr (Berl) 2013; 98:338-46. [DOI: 10.1111/jpn.12084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/16/2013] [Indexed: 12/14/2022]
Affiliation(s)
- H.-C. Ping
- Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture; College of Fisheries; Huazhong Agricultural University; Wuhan China
| | - K. Feng
- Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture; College of Fisheries; Huazhong Agricultural University; Wuhan China
| | - G.-R. Zhang
- Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture; College of Fisheries; Huazhong Agricultural University; Wuhan China
| | - K.-J. Wei
- Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture; College of Fisheries; Huazhong Agricultural University; Wuhan China
| | - G.-W. Zou
- Key Laboratory of Freshwater Biodiversity Conservation; Ministry of Agriculture; Yangtze River Fisheries Research Institute; Chinese Academy of Fishery Sciences; Wuhan China
| | - W.-M. Wang
- Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture; College of Fisheries; Huazhong Agricultural University; Wuhan China
| |
Collapse
|
15
|
Hur SW, Lee CH, Lee SH, Kim BH, Kim HB, Baek HJ, Lee YD. Characterization of cholecystokinin-producing cells and mucus-secreting goblet cells in the blacktip grouper, Epinephelus fasciatus. Tissue Cell 2012; 45:153-7. [PMID: 23274134 DOI: 10.1016/j.tice.2012.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/25/2012] [Accepted: 10/25/2012] [Indexed: 11/28/2022]
Abstract
The characteristics and distributions of cholecystokinin (CCK)-producing cells and mucus-secreting goblet cells were investigated in the digestive tract of the blacktip grouper (Epinephelus fasciatus). CCK-producing cells were scattered throughout the digestive tract. The highest frequency of CCK-producing cells was observed in the anterior intestine portion and pyloric ceca, with a very small number of cells distributed as far as the rectum. Mucus-secreting goblet cells were found to differ remarkably in their regional distributions and relative frequencies. High frequencies of mucus-secreting goblet cells were found in the digestive tract, mainly in the anterior intestine portion and pyloric ceca, but not the esophagus; the frequency decreased slightly toward the rectum. Our result suggests that food digested by gastric acid in the stomach moves on the anterior (including the pyloric ceca) and mid intestine portion, thereby ensuring effective stimulation of the CCK-producing cells. In addition, the distribution pattern of the CCK-producing cells closely resembled that of mucus-secreting goblet cells. In E. fasciatus, CCK-producing cells and mucus-secreting goblet cells seem to be well adapted to promoting optimal control of the digestive process.
Collapse
Affiliation(s)
- Sang-Woo Hur
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, South Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Micale V, Campo S, D'Ascola A, Guerrera MC, Levanti MB, Germanà A, Muglia U. Cholecystokinin in white sea bream: molecular cloning, regional expression, and immunohistochemical localization in the gut after feeding and fasting. PLoS One 2012; 7:e52428. [PMID: 23285038 PMCID: PMC3527491 DOI: 10.1371/journal.pone.0052428] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/13/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The peptide hormone cholecystokinin (CCK), secreted by the midgut, plays a key role in digestive physiology of vertebrates including teleosts, by stimulating pancreatic secretion, gut motility, and gallbladder contraction, as well as by delaying gastric emptying. Moreover, CCK is involved in the regulation of food intake and satiation. Secretion of CCK by the hindgut is controversial, and its biological activity remains to be elucidated. The present paper addresses the regional distribution of intestinal CCK in the white sea bream, Diplodus sargus, as well as the possible involvement of hindgut CCK in digestive processes. METHODOLOGY/PRINCIPAL FINDINGS Full-lengths mRNAs encoding two CCK isoforms (CCK-1 and CCK-2) were sequenced and phylogenetically analyzed. CCK gene and protein expression levels in the different gut segments were measured 3 h and 72 h after feeding, by quantitative real-time RT-PCR and Western blot, respectively. Moreover, endocrine CCK cells were immunoistochemically detected. Fasting induced a significant decrease in CCK-2 in all intestinal segments, including the hindgut. On the other hand, no significant difference was induced by fasting on hindgut CCK-1. CONCLUSIONS/SIGNIFICANCE The results demonstrated two CCK isoforms in the hindgut of D.sargus, one of which (CCK-2) may be involved in the feedback control of uncompleted digestive processes. On the other hand, a functional role alternative to regulation of digestive processes may be inferred for D.sargus CCK-1, since its expression was unaffected by feeding or fasting.
Collapse
Affiliation(s)
- Valeria Micale
- Istituto per l'Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Evidence for an ontogenetic change from pre-programmed to meal-responsive cck production in Atlantic herring, Clupea harengus L. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:17-20. [PMID: 23063626 DOI: 10.1016/j.cbpa.2012.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 11/21/2022]
Abstract
The effects of up to three days of food deprivation on the cholecystokinin (CCK)-producing cells in the Atlantic herring gut were assessed by quantifying the number of cells detected by in situ hybridization at three ontogenetic stages. In feeding larvae that still possessed yolk-sacs (2 and 8days after hatch, DAH), intestinal cck expression appeared to be maintained regardless of external nutritional conditions. In 30 DAH-old herring larvae with well-established exogenous feeding only, very few CCK-producing cells could be identified, indicating that cck production in the gut had shut down after three days of starvation. This suggests that cck transcription is pre-programmed by a local timer in the midgut during the yolk-sac stage, regardless of the nutritional status and presence of nutrients in the gut lumen; however, it becomes strongly influenced by the external nutritional conditions after the yolk has been completely absorbed. Our results suggest that CCK-producing cells in the gut develop "meal-responsiveness" later in post-hatch development.
Collapse
|
18
|
Hernández DR, Vigliano FA, Sánchez S, Bermúdez R, Domitrovic HA, Quiroga MI. Neuroendocrine system of the digestive tract in Rhamdia quelen juvenile: an immunohistochemical study. Tissue Cell 2012; 44:220-6. [PMID: 22537686 DOI: 10.1016/j.tice.2012.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 11/25/2022]
Abstract
In this work, an immunohistochemical study was performed to determine the distribution and relative frequencies of some neuromodulators of the digestive tract of silver catfish (Rhamdia quelen). The digestive tract of silver catfish was divided into six portions; the oesophagus, stomach, intestine (ascendant, descendant and convoluted segments), and rectum. Immunohistochemical method using a pool of specific antisera against-gastrin, -cholecystokinin-8, -leu-enkephalin, -neuropeptide Y, -calcitonin gene-related peptide (CGRP), and -vasoactive intestinal peptide (VIP) was employed. Immunoreactivity to all antisera was identified in neuroendocrine cells (NECs) localized in the gut epithelium, although no reaction was observed in the oesophagus or stomach. The morphology of NECs immunopositive to each antibody was similar. They were slender in shape, with basally located nucleus, and their main axis perpendicular to the basement membrane. The number of NECs immunoreactive to all antisera was higher in the ascendant and descendant intestine, exhibiting a decreasing trend toward distal segments of the gut. In addition, immunoreactivity to CGRP and VIP was observed in the myenteric plexus and nerve fibers distributed in the mucosal, submucosal and muscular layers. The higher number of immunopositive NECs in the ascendant and descendant intestine may indicate the primary role of these segments in the control of food intake by means of orexigenic and anorexigenic peripheral signals.
Collapse
Affiliation(s)
- D R Hernández
- Northeast Institute of Ichthyology, School of Veterinary Sciences, Northeast National University, Sargento Cabral 2139-3400-Corrientes, Argentina.
| | | | | | | | | | | |
Collapse
|
19
|
Drivenes Ø, Taranger GL, Edvardsen RB. Gene expression profiling of Atlantic cod (Gadus morhua) embryogenesis using microarray. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:167-176. [PMID: 21833508 DOI: 10.1007/s10126-011-9399-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/26/2011] [Indexed: 05/31/2023]
Abstract
Atlantic cod (Gadus morhua) is a fish species of high importance, as a key species in a range of Northern ecosystems, in fisheries, and as an emerging species in aquaculture. So far, little is known about the transcriptional activity during early developmental stages of Atlantic cod. Hence, we decided to use a cDNA microarray covering 7,000 genes to analyze the temporal activity of the transcriptome during cod embryogenesis. Twelve different embryonic time points were selected, covering major developmental stages and processes such as maternally derived mRNA, blastula, gastrula, segmentation, hatching, and first-feeding larval stage. The microarray analysis revealed a highly dynamic transcriptional profile, showing for the first time the differential expression of thousands of known and unknown genes during Atlantic cod embryogenesis. These initial findings will serve as an important baseline for future in-depth studies of candidate genes involved in development, reproductive control, disease resistance, growth, nutrient digestion, and metabolism.
Collapse
Affiliation(s)
- Øyvind Drivenes
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
| | | | | |
Collapse
|
20
|
Peterson BC, Waldbieser GC, Riley LG, Upton KR, Kobayashi Y, Small BC. Pre- and postprandial changes in orexigenic and anorexigenic factors in channel catfish (Ictalurus punctatus). Gen Comp Endocrinol 2012; 176:231-9. [PMID: 22366470 DOI: 10.1016/j.ygcen.2012.01.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/25/2012] [Accepted: 01/28/2012] [Indexed: 12/13/2022]
Abstract
Ghrelin (GRLN), cocaine and amphetamine regulated transcript (CART), neuropeptide Y (NPY), and cholecystokinin (CCK) are neuropeptides involved in the regulation of appetite and feeding in vertebrates. We examined pre- and postprandial changes in the expression of plasma GHRL and mRNAs encoding GRLN, CART, NPY, and CCK in channel catfish. Fish were entrained to eat at 0900 h for 2 weeks. Fish were then sampled at 0700, 0800, and 0900 h. Remaining fish were either offered feed at 0900 h (Fed) or fasted (Unfed). Fish sampling continued at 0.5, 1, 2, and 4 h post feeding. Feeding increased abundance of whole brain CART mRNA out to 4 h with no effect observed in unfed fish. Whole brain NPY expression peaked at 0.5 h in both treatments. NPY expression then declined in fed fish but remained elevated in unfed fish. No differences in plasma or stomach GRLN expression were observed. Two separate cDNAs for CCK were identified. Brain CCKa and CCKb expression increased after feeding. These results suggest CART, NPY, and CCK play roles in the regulation of channel catfish feeding. Taken together, these results provide new insights into the neural and gastroenteric mechanisms regulating appetite in channel catfish.
Collapse
Affiliation(s)
- Brian C Peterson
- USDA-ARS Catfish Genetics Research Unit, Thad Cochran National Warmwater Aquaculture Center, Stoneville, MS 38776, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Kurokawa T, Koshio M, Kaiya H, Hashimoto H, Nomura K, Uji S, Awaji M, Gen K, Tanaka H. Distribution of pepsinogen- and ghrelin-producing cells in the digestive tract of Japanese eel (Anguilla japonica) during metamorphosis and the adult stage. Gen Comp Endocrinol 2011; 173:475-82. [PMID: 21827762 DOI: 10.1016/j.ygcen.2011.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 07/05/2011] [Accepted: 07/25/2011] [Indexed: 11/17/2022]
Abstract
Pepsinogen is the precursor form of the gastric-specific digestive enzyme, pepsin. Ghrelin is a representative gastric hormone with multiple functions in vertebrates, including the regulation of growth hormone release, stimulation of food intake and gastrointestinal motility function. We investigated chronological changes in the distribution of pepsinogen-expressing cells by in situ hybridization and ghrelin-immunoreactive cells by immunohistochemistry in the Japanese eel (Anguilla japonica) during metamorphosis from the leptocephalus sage to the elver stage. The ghrelin-producing cells first appeared in the gastric cecum and pyloric portion of the stomach in the late phase of metamorphosing leptocephali, whereas the pepsinogen-producing cells were first detected in the early phase of the glass-eel stage. These suggest that endocrine cells differentiated earlier than exocrine cells in the eel stomach. Accompanying eel development, the distribution of ghrelin-producing cells spread to the esophagus and other regions of the stomach, but not to the intestine. These results may be related to the changes in dietary habits during metamorphosis in the Japanese eel.
Collapse
Affiliation(s)
- Tadahide Kurokawa
- Tohoku National Fisheries Research Institute, Fisheries Research Agency, 3-27-5, Shinhama, Shiogama, Miyagi 985-0001, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Einarsdóttir IE, Power DM, Jönsson E, Björnsson BT. Occurrence of ghrelin-producing cells, the ghrelin receptor and Na+,K+-ATPase in tissues of Atlantic halibut (Hippoglossus hippoglossus) during early development. Cell Tissue Res 2011; 344:481-98. [DOI: 10.1007/s00441-011-1158-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
|
23
|
Rojas-García CR, Morais S, Rønnestad I. Cholecystokinin (CCK) in Atlantic herring (Clupea harengus L.) — Ontogeny and effects of feeding and diurnal rhythms. Comp Biochem Physiol A Mol Integr Physiol 2011; 158:455-60. [DOI: 10.1016/j.cbpa.2010.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 11/17/2022]
|
24
|
Vigliano FA, Muñoz L, Hernández D, Cerutti P, Bermúdez R, Quiroga MI. An immunohistochemical study of the gut neuroendocrine system in juvenile pejerrey Odontesthes bonariensis (Valenciennes). JOURNAL OF FISH BIOLOGY 2011; 78:901-911. [PMID: 21366580 DOI: 10.1111/j.1095-8649.2011.02912.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this study, several neuropeptides were identified by immunohistochemistry in neuroendocrine cells (NEC) located in the gut epithelium and nerve cell bodies of the enteric nervous system of pejerrey Odontesthes bonariensis, a species that is a promising candidate for intensive aquaculture. The neuropeptides involved in orexigenic or anorexigenic action, i.e. gastrin, cholecystokinin-8, neuropeptide Y and calcitonin gene-related peptide (CGRP), displayed a significantly higher number of immunoreactive NECs in the anterior intestine, suggesting that this region of the gut plays an important role in the peripheral control of food intake. On the other hand, leu-enkephalin and vasoactive intestinal peptide (VIP), both associated with the modulation of the enteric immune system, showed no significant variations in the mean value of immunopositive NECs between the anterior and posterior intestine. This may indicate that their activity is required at a similar level along the entire gut. In addition, CGRP and VIP-immunoreactive neurons and nerve fibres were observed in the myenteric plexus, which might exert synergistic effects with the neuropeptides immunolocalized in NECs.
Collapse
Affiliation(s)
- F A Vigliano
- Cátedra de Histología y Embriología, Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, Bv. Ovidio Lagos y Ruta 33, S2170HGJ, Casilda, Argentina.
| | | | | | | | | | | |
Collapse
|
25
|
Micale V, Levanti MB, Germanà A, Guerrera MC, Kurokawa T, Muglia U. Ontogeny and distribution of cholecystokinin-immuno reactive cells in the digestive tract of sharpsnout sea bream, Diplodus puntazzo (Cetti, 1777), during larval development. Gen Comp Endocrinol 2010; 169:23-7. [PMID: 20619264 DOI: 10.1016/j.ygcen.2010.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/14/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
Abstract
The appearance and regional distribution of cholecystokinin-immuno reactive cells (CCK-IR) in the developing gut of larval Diplodus puntazzo were studied by means of immunohistochemistry, with the aim of understanding the role of this peptide hormone in the acquisition of digestive capacity. Immunohistochemical reaction showed CCK-IR cells from 10 days after hatching (DAH), near the pyloric sphincter and past the first bend in the midgut, as well as in the hindgut. At 25 DAH CCK-IR cells were scattered throughout the midgut, as well as in the hindgut. Since gastric glands appeared at 30 DAH, CCK-IR cells were most abundant in the anterior midgut, near and including the pyloric caeca, and just afore the ileo-rectal sphincter in the posterior midgut, as well as in the hindgut. In older larvae (39 DAH), CCK-IR cells were mainly distributed in the anterior midgut, including the pyloric caeca, as well as in the hindgut. No CCK-IR cells were detected in the foregut at any stage. The distribution pattern of CCK-IR cells differed from other species which also possess a rotated gut as D. puntazzo. In fact, although cells were abundant in regions where the ingested food is retained, so that they can be stimulated to modulating the release of digestive enzymes, a large number of cells occurred also in the hindgut.
Collapse
Affiliation(s)
- Valeria Micale
- National Research Council, Institute for Marine Coastal Environment CNR-IAMC, Messina, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Webb KA, Khan IA, Nunez BS, Rønnestad I, Holt GJ. Cholecystokinin: molecular cloning and immunohistochemical localization in the gastrointestinal tract of larval red drum, Sciaenops ocellatus (L.). Gen Comp Endocrinol 2010; 166:152-9. [PMID: 19896946 DOI: 10.1016/j.ygcen.2009.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 10/18/2009] [Accepted: 10/28/2009] [Indexed: 11/26/2022]
Abstract
The current study sought to clarify the role of cholecystokinin (CCK) in the digestion of larval red drum (Sciaenops ocellatus) in order to better characterize the processes limiting the utilization of microparticulate diets at first feeding. The red drum CCK cDNA, isolated from adult anterior intestine and pyloric caeca, contains a 414 base pair (bp) open reading frame encoding a deduced amino acid sequence of 138 residues which is highly similar to preprocholecystokinin from other vertebrates. The mature CCK octapeptide has the same amino acid sequence as that found in mammals and in Atlantic herring (Clupea harengus). Tissue distribution analysis of adult and juvenile red drum using primers specific for red drum CCK mRNA revealed bright bands in samples from the brain, pyloric caeca, anterior intestine, and gonad with fainter bands seen in all other tissues. Immunohistochemical analysis of larval red drum showed that CCK-immunoreactive (CCK-IR) cells were present as early as 3 days post hatch (DPH) in some fish and were present in all fish by 6 DPH. CCK-IR cells were found in the anterior midgut in early larvae and had spread to the first bend of the gut by day 6. In older larvae (18+ DPH), CCK-IR cells were found in large numbers in the anterior intestine and in the developing pyloric caeca. The sequence and distribution of CCK mRNA along with the presence of CCK-IR cells in early red drum larvae suggest that CCK is present and may be capable of regulating pancreatic secretion in early red drum larvae.
Collapse
Affiliation(s)
- Kenneth A Webb
- University of Texas Marine Science Institute, Port Aransas, TX 78373, USA.
| | | | | | | | | |
Collapse
|
27
|
Hartviksen MB, Kamisaka Y, Jordal AEO, Koedijk RM, Rønnestad I. Distribution of cholecystokinin-immunoreactive cells in the gut of developing Atlantic cod Gadus morhua L. larvae fed zooplankton or rotifers. JOURNAL OF FISH BIOLOGY 2009; 75:834-844. [PMID: 20738582 DOI: 10.1111/j.1095-8649.2009.02325.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
One of the main gastrointestinal hormones, cholecystokinin (CCK), was studied in order to advance understanding of the control of the digestive process in Atlantic cod Gadus morhua larvae after onset of first feeding. Larvae were fed either natural zooplankton or enriched rotifers in similar rearing systems and sampled from hatching to 22 days post-hatch (dph). CCK was visualized by immunohistochemistry and the first CCK-immunoreactive (IR) cells were detected at 8 dph corresponding to 6 days after first feeding. The CCK-IR cells were mostly found in the anterior midgut, and the number of CCK-IR cells was lower in the posterior midgut. They were also present in the hindgut of some of the larvae, but not in the foregut. No clear differences were found in the ontogenetic appearance and the distribution pattern of CCK-IR cells between the two dietary treatments. This indicates that the onset of CCK production in the gut as well as the spatial distribution of the CCK-IR cells is not differentially affected by these diets. To what extent the hormone production itself is influenced by dietary factors needs to be studied by more sensitive methods.
Collapse
Affiliation(s)
- M B Hartviksen
- Department of Biology, University of Bergen, PB 7800, 5020 Bergen, Norway
| | | | | | | | | |
Collapse
|
28
|
MacDonald E, Volkoff H. Cloning, distribution and effects of season and nutritional status on the expression of neuropeptide Y (NPY), cocaine and amphetamine regulated transcript (CART) and cholecystokinin (CCK) in winter flounder (Pseudopleuronectes americanus). Horm Behav 2009; 56:58-65. [PMID: 19303880 DOI: 10.1016/j.yhbeh.2009.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 02/09/2009] [Accepted: 03/06/2009] [Indexed: 01/31/2023]
Abstract
cDNAs encoding for neuropeptide Y (NPY), cocaine and amphetamine regulated transcript (CART) and cholecystokinin (CCK) were cloned in winter flounder, a species that undergoes a period of natural fasting during the winter. Tissue distribution studies show that these peptides are present in several peripheral tissues, including gut and gonads, as well as within the brain. We assessed the effects of season and fasting on the expression of these peptides. Our results show that NPY and CCK, but not CART, show seasonal differences in expression with higher hypothalamic NPY and lower gut CCK expression levels in the winter. In the summer, fasting induced an increase in hypothalamic NPY expression levels and a decrease in gut CCK levels, but did not affect hypothalamic CART expression levels. None of the peptides examined was affected by fasting in the winter. Our results suggest that NPY and CCK, but maybe not CART, might have a major role in the regulation of feeding in winter flounder and might contribute to the seasonal fluctuations in appetite in this species.
Collapse
Affiliation(s)
- Erin MacDonald
- Department of Biology, Memorial University of Newfoundland, NL, Canada
| | | |
Collapse
|
29
|
MacDonald E, Volkoff H. Neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and cholecystokinin (CCK) in winter skate (Raja ocellata): cDNA cloning, tissue distribution and mRNA expression responses to fasting. Gen Comp Endocrinol 2009; 161:252-61. [PMID: 19523382 DOI: 10.1016/j.ygcen.2009.01.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 01/09/2023]
Abstract
cDNAs encoding for neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and cholecystokinin (CCK) were cloned in an elasmobranch fish, the winter skate. mRNA tissue distribution was examined for the three peptides as well as the effects of two weeks of fasting on their expression. Skate NPY, CART and CCK sequences display similarities with sequences for teleost fish but in general the degree of identity is relatively low (50%). All three peptides are present in brain and in several peripheral tissues, including gut and gonads. Within the brain, the three peptides are expressed in the hypothalamus, telencephalon, optic tectum and cerebellum. Two weeks of fasting induced an increase in telencephalon NPY and an increase in CCK in the gut but had no effects on hypothalamic NPY, CART and CCK, or on telencephalon CART. Our results provide basis for further investigation into the regulation of feeding in winter skate.
Collapse
Affiliation(s)
- Erin MacDonald
- Department of Biology, Memorial University of Newfoundland, NL, Canada
| | | |
Collapse
|
30
|
Holmgren S, Olsson C. Chapter 10 The Neuronal and Endocrine Regulation of Gut Function. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1546-5098(09)28010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
31
|
Bosi G, Bermùdez R, Domeneghini C. The galaninergic enteric nervous system of pleuronectiformes (Pisces, Osteichthyes): an immunohistochemical and confocal laser scanning immunofluorescence study. Gen Comp Endocrinol 2007; 152:22-9. [PMID: 17400219 DOI: 10.1016/j.ygcen.2007.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/10/2007] [Accepted: 02/07/2007] [Indexed: 12/30/2022]
Abstract
The galaninergic enteric nervous system of three flatfishes was studied using immunohistochemical and immunofluorescence methods. Galanin-like immunoreactivity was mainly detected within the enteric intramural neurons of the stomachs and the proximal intestines. The sole, Solea solea L. and the flounder, Platichthys flesus L. showed a similar occurrence and relative distribution of galaninergic intramural neurons. Rare nervous fibre immunoreactive to the anti-galanin serum were observed in the muscular layers of the oesophagus of the turbot, Psetta maxima L. The presence and relative abundance of galanin-like immunoreactive neurons in the remaining organs of the alimentary canal of the turbot showed a different pattern in comparison to those observed in the sole and the flounder. A galanin-like peptide was detected in nerve fibres running through the exocrine parenchyma of the pancreas of all three species. It is conceivable that the galaninergic system in these species plays a role in regulating gut muscle activity, and in controlling pancreatic secretion. Galanin and choline acetyltransferase were co-localized within the same neurons of the stomach and intestine. The result confirms the hypothesis that galanin in the gut of fish functions as a cholinergic modulator. Differently from other fish species, immunoreactive endocrine cells were not detected in the studied pleuronectiformes.
Collapse
Affiliation(s)
- G Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, University of Milan, via Trentacoste n. 2, I-20134 Milan, Italy.
| | | | | |
Collapse
|
32
|
Kofuji PYM, Murashita K, Hosokawa H, Masumoto T. Effects of exogenous cholecystokinin and gastrin on the secretion of trypsin and chymotrypsin from yellowtail (Seriola quinqueradiata) isolated pyloric caeca. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:124-30. [PMID: 17126578 DOI: 10.1016/j.cbpa.2006.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 09/19/2006] [Accepted: 09/25/2006] [Indexed: 11/28/2022]
Abstract
The humoral control of secretion of the proteolytic enzymes trypsin and chymotrypsin was studied in yellowtail (Seriola quinqueradiata). In vitro trials were performed to investigate the effects of cholecystokinin (CCK) and two commercially available gastrin peptides. Isolated preparations of pyloric caeca/pancreas release trypsin and chymotrypsin when incubated with cholecystokinin (CCK) at 10 microM and gastrin I (G1) at 50 microM after 15 min of incubation. On the other hand, G1 at 10 microM and gastrin-related peptide (G2) did not enhance trypsin and chymotrypsin secretion. The studies concerning the CCK effects at different incubation temperatures have shown that trypsin and chymotrypsin secretion at 25 degrees C was stimulated by CCK after 15 min, while at 10, 15 and 20 degrees C the stimulatory effects of CCK were observed only after 30 min of incubation. The CCK effects were increased at higher incubation temperatures and longer incubation periods.
Collapse
Affiliation(s)
- Patricia Y M Kofuji
- Laboratory of Fish Nutrition, Faculty of Agriculture, Kochi University, Monobe 200, Nankoku, Kochi 783-8502, Japan
| | | | | | | |
Collapse
|
33
|
Lange S, Bambir SH, Dodds AW, Bowden T, Bricknell I, Espelid S, Magnadóttir B. Complement component C3 transcription in Atlantic halibut (Hippoglossus hippoglossus L.) larvae. FISH & SHELLFISH IMMUNOLOGY 2006; 20:285-94. [PMID: 16039879 DOI: 10.1016/j.fsi.2005.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 04/08/2005] [Accepted: 05/01/2005] [Indexed: 05/03/2023]
Abstract
The complement systems of fish are well developed and play an important role in the innate immune response. Complement C3 is the central protein of all three activation pathways and is the major opsonin of the complement system and essential for the generation of the membrane attack complex. A 1548 bp part of complement component C3 was isolated from a halibut liver cDNA library by immunoscreening. The deduced amino acid sequence showed that this part of halibut C3 contained key amino acids for factor H, I and properdin binding as well as two N-glycosylation sites. Digoxigenine labelled mRNA probes were synthesised and the transcription of C3 was monitored in three larval stages at 206, 430 and 1000 degrees d (30, 50 and 99 days post hatching), by in situ hybridisation. C3 mRNA was detected in muscle, liver, brain, chondrocytes, spinal cord, eye, intestines, oesophagus and kidney. These findings are in accordance with a former immunohistochemical study on halibut C3 protein ontogeny, indicating that C3 is indeed locally expressed in many organs from the youngest stages on. Complement may thus be linked to the formation and generation of different organs during development and play an important role in the early immune response of halibut larvae.
Collapse
Affiliation(s)
- Sigrun Lange
- Institute for Experimental Pathology, University of Iceland, Keldur, IS-112 Reykjavík, Iceland.
| | | | | | | | | | | | | |
Collapse
|
34
|
Murashita K, Fukada H, Hosokawa H, Masumoto T. Cholecystokinin and peptide Y in yellowtail (Seriola quinqueradiata): molecular cloning, real-time quantitative RT-PCR, and response to feeding and fasting. Gen Comp Endocrinol 2006; 145:287-97. [PMID: 16242687 DOI: 10.1016/j.ygcen.2005.09.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 08/27/2005] [Accepted: 09/02/2005] [Indexed: 11/21/2022]
Abstract
In fish, the peptide hormones cholecystokinin (CCK) and peptide Y (PY) may be involved in pancreatic exocrine secretion, as found with mammalian CCK and peptide YY (PYY); CCK stimulates, whereas PYY inhibits, pancreatic exocrine secretion in mammals. However, there is very little information on these hormones in fish; in particular, the function of PY is still unknown. Therefore, as a first step for understanding the role of CCK and PY in regulating pancreatic exocrine in fish, the cDNAs of CCK and PY were cloned from the digestive tract of yellowtail (Seriola quinqueradiata). The peptide sequence of yellowtail CCK-8, DYLGWMDF, is identical to sequences found in several teleosts. The mature form of yellowtail PY consists of 36 amino acids and has high identity to other fish PYs (88.9-97.2%). Real-time quantitative RT-PCR assays were developed to measure yellowtail CCK and PY mRNA levels. CCK mRNA levels were extremely high in the brain and, among the digestive organs, high concentrations were found in the pyloric caeca and anterior intestine. PY mRNA levels were low in the brain and highest in the anterior intestine. In fasting experiments, mRNA levels of CCK and PY in the anterior intestine showed an antagonistic change after fasting; CCK decreased whereas PY increased. These data suggest that CCK and PY in yellowtail may relate to digestion including, enzyme secretion.
Collapse
Affiliation(s)
- Koji Murashita
- Faculty of Agriculture, Kochi University, B200 Monobe, Nankoku, Kochi 783-8502, Japan
| | | | | | | |
Collapse
|
35
|
Volkoff H, Canosa LF, Unniappan S, Cerdá-Reverter JM, Bernier NJ, Kelly SP, Peter RE. Neuropeptides and the control of food intake in fish. Gen Comp Endocrinol 2005; 142:3-19. [PMID: 15862543 DOI: 10.1016/j.ygcen.2004.11.001] [Citation(s) in RCA: 394] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/06/2004] [Accepted: 11/09/2004] [Indexed: 11/21/2022]
Abstract
The brain, particularly the hypothalamus, integrates input from factors that stimulate (orexigenic) and inhibit (anorexigenic) food intake. In fish, the identification of appetite regulators has been achieved by the use of both peptide injections followed by measurements of food intake, and by molecular cloning combined with gene expression studies. Neuropeptide Y (NPY) is the most potent orexigenic factor in fish. Other orexigenic peptides, orexin A and B and galanin, have been found to interact with NPY in the control of food intake in an interdependent and coordinated manner. On the other hand cholecystokinin (CCK), cocaine and amphetamine-regulated transcript (CART), and corticotropin-releasing factor (CRF) are potent anorexigenic factors in fish, the latter being involved in stress-related anorexia. CCK and CART have synergistic effects on food intake and modulate the actions of NPY and orexins. Although leptin has not yet been identified in fish, administration of mammalian leptin inhibits food intake in goldfish. Moreover, leptin induces CCK gene expression in the hypothalamus and its actions are mediated at least in part by CCK. Other orexigenic factors have been identified in teleost fish, including the agouti-related protein (AgRP) and ghrelin. Additional anorexigenic factors include bombesin (or gastrin-releasing peptide), alpha-melanocyte-stimulating hormone (alpha-MSH), tachykinins, and urotensin I. In goldfish, nutritional status can modify the expression of mRNAs encoding a number of these peptides, which provides further evidence for their roles as appetite regulators: (1) brain mRNA expression of CCK, CART, tachykinins, galanin, ghrelin, and NPY undergo peri-prandial variations; and (2) fasting increases the brain mRNA expression of NPY, AgRP, and ghrelin as well as serum ghrelin levels, and decreases the brain mRNA expression of tachykinins, CART, and CCK. This review will provide an overview of recent findings in this field.
Collapse
Affiliation(s)
- H Volkoff
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada A1B 3X9
| | | | | | | | | | | | | |
Collapse
|
36
|
Kamisaka Y, Drivenes O, Kurokawa T, Tagawa M, Rønnestad I, Tanaka M, Helvik JV. Cholecystokinin mRNA in Atlantic herring, Clupea harengus--molecular cloning, characterization, and distribution in the digestive tract during the early life stages. Peptides 2005; 26:385-93. [PMID: 15652644 DOI: 10.1016/j.peptides.2004.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 10/11/2004] [Accepted: 10/14/2004] [Indexed: 11/19/2022]
Abstract
The mRNA of the peptide hormone cholecystokinin (CCK) was isolated from juvenile Atlantic herring, Clupea harengus, by RT-PCR. The open reading frame encodes a 137 amino acid-long precursor protein. The peptide sequence of herring CCK-8, DYMGWMDF, is identical to that of higher vertebrates and elasmobranchs, and contains methionine in the sixth position from the C-terminus, which has not been reported previously in teleosts. Expression analysis by in situ hybridization shows that positive endocrine-like cells were mainly located in the pyloric caeca and to a less extent in the rectum of the juvenile. A few positive cells were also found in the pyloric portion of the stomach and the intestine. CCK cells were present in all the larvae examined from the day of hatching onwards. Although the CCK cells were scattered throughout the whole midgut, no signals were detected in either the foregut or the hindgut. Since herring larvae have a straight gut, the distribution pattern of CCK cells seems to be reflected in the anatomy of the gut.
Collapse
Affiliation(s)
- Yuko Kamisaka
- Department of Biology, University of Bergen, Allégt 41, N-5007 Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
37
|
Buddington RK, Krogdahl A. Hormonal regulation of the fish gastrointestinal tract. Comp Biochem Physiol A Mol Integr Physiol 2004; 139:261-71. [PMID: 15556381 DOI: 10.1016/j.cbpb.2004.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 08/18/2004] [Accepted: 09/06/2004] [Indexed: 10/26/2022]
Abstract
The gastrointestinal tracts (GIT) of fish and other vertebrates are challenged with a diversity of functional demands caused by changes and differences in dietary inputs and environmental conditions. This contribution reviews how hormonal regulation plays an essential role in modulating the GIT functions of fish to match changes in functional demands. Exemplary is how hormones produced by the GIT, the associated organs (e.g., pancreas), and other sources (e.g., hypothalamus, adrenal cortex, thyroid, gonads) modulate the digestive processes (motility, secretion, and nutrient absorption) in response to dietary inputs. Hormones regulate the other GIT functions of osmoregulation (secretion and absorption of electrolytes and water), immunity, endocrine secretions, metabolism, and the elimination of toxic metabolites and environmental contaminants to match changes in environmental conditions and physiological states. Although the regulatory molecules and associated signaling pathways have been conserved during evolution of the vertebrate GIT, the specific responses often vary among fish with different feeding habits and from different environments, and can differ from those described for mammals.
Collapse
Affiliation(s)
- Randal K Buddington
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| | | |
Collapse
|
38
|
Kamisaka Y, Fujii Y, Yamamoto S, Kurokawa T, Rønnestad I, Totland GK, Tagawa M, Tanaka M. Distribution of cholecystokinin-immunoreactive cells in the digestive tract of the larval teleost, ayu, Plecoglossus altivelis. Gen Comp Endocrinol 2003; 134:116-21. [PMID: 14511981 DOI: 10.1016/s0016-6480(03)00242-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The ontogenetic development of cholecystokinin-immunoreactive (CCK-IR) cells was studied in larval ayu, Plecoglossus altivelis. This species has a straight digestive tract during the larval phase. CCK-IR cells were present in all the larvae from the day of hatching (0 days after hatching, DAH). An immunoreaction to anti-trypsinogen antibody was also detected in the pancreas at this stage. The distribution pattern of the CCK-IR cells was quantified by recording the location of CCK-IR cells at 1, 16, and 76 DAH. Although the number of CCK-IR cells increased during development, the distribution pattern of CCK-IR cells did not change until 76 DAH. The CCK-IR cells were scattered throughout the midgut, with the exception of the regions adjacent to the pyloric and rectal sphincters. No CCK-IR cells were detected in the foregut or the hindgut. This distribution pattern differs from species with rotated digestive tracts, whose CCK-IR cells are only found in the anterior part of the midgut. CCK-IR cells seem to be located in regions where the ingested food is retained and thus can easily receive chemical signals from the food and the digestive process in order to control the release of the hormone.
Collapse
Affiliation(s)
- Yuko Kamisaka
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan.
| | | | | | | | | | | | | | | |
Collapse
|