1
|
Istomina PV, Gorchakov AA, Paoin C, Yamabhai M. Phage display for discovery of anticancer antibodies. N Biotechnol 2024; 83:205-218. [PMID: 39186973 DOI: 10.1016/j.nbt.2024.08.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Antibodies and antibody-based immunotherapeutics are the mainstays of cancer immunotherapy. Expanding the repertoire of cancer-specific and cancer-associated epitopes targetable with antibodies represents an important area of research. Phage display is a powerful approach allowing the use of diverse antibody libraries to be screened for binding to a wide range of targets. In this review, we summarize the basics of phage display technology and highlight the advances in anticancer antibody identification and modification via phage display platform. Finally, we describe phage display-derived anticancer monoclonal antibodies that have been approved to date or are in clinical development.
Collapse
Affiliation(s)
- Polina V Istomina
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Suranaree, Muang, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Andrey A Gorchakov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Lavrentieva 8/2, Novosibirsk 630090, Russia
| | - Chatchanok Paoin
- Medical Oncology Division, Institute of Medicine, Suranaree University of Technology, Suranaree, Muang, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Suranaree, Muang, 111 University Avenue, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
2
|
Aljabali AAA, Aljbaly MBM, Obeid MA, Shahcheraghi SH, Tambuwala MM. The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages. Methods Mol Biol 2024; 2738:279-315. [PMID: 37966606 DOI: 10.1007/978-1-0716-3549-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The use of biomaterials, such as bacteriophages, as drug delivery vehicles (DDVs) has gained increasing interest in recent years due to their potential to address the limitations of conventional drug delivery systems. Bacteriophages offer several advantages as drug carriers, such as high specificity for targeting bacterial cells, low toxicity, and the ability to be engineered to express specific proteins or peptides for enhanced targeting and drug delivery. In addition, bacteriophages have been shown to reduce the development of antibiotic resistance, which is a major concern in the field of antimicrobial therapy. Many initiatives have been taken to take up various payloads selectively and precisely by surface functionalization of the outside or interior of self-assembling viral protein capsids. Bacteriophages have emerged as a promising platform for the targeted delivery of therapeutic agents, including drugs, genes, and imaging agents. They possess several properties that make them attractive as drug delivery vehicles, including their ability to specifically target bacterial cells, their structural diversity, their ease of genetic manipulation, and their biocompatibility. Despite the potential advantages of using bacteriophages as drug carriers, several challenges and limitations need to be addressed. One of the main challenges is the limited host range of bacteriophages, which restricts their use to specific bacterial strains. However, this can also be considered as an advantage, as it allows for precise and targeted drug delivery to the desired bacterial cells. The use of biomaterials, including bacteriophages, as drug delivery vehicles has shown promising potential to address the limitations of conventional drug delivery systems. Further research is needed to fully understand the potential of these biomaterials and address the challenges and limitations associated with their use.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | | | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, UK.
| |
Collapse
|
3
|
Huh H, Chen DW, Foldvari M, Slavcev R, Blay J. EGFR-targeted bacteriophage lambda penetrates model stromal and colorectal carcinoma tissues, is taken up into carcinoma cells, and interferes with 3-dimensional tumor formation. Front Immunol 2022; 13:957233. [PMID: 36591314 PMCID: PMC9800840 DOI: 10.3389/fimmu.2022.957233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Colorectal cancer and other adult solid cancers pose a significant challenge for successful treatment because the tumor microenvironment both hinders the action of conventional therapeutics and suppresses the immune activities of infiltrating leukocytes. The immune suppression is largely the effect of enhanced local mediators such as purine nucleosides and eicosanoids. Genetic approaches have the promise of interfering with these mechanisms of local immunosuppression to allow both intrinsic and therapeutic immunological anticancer processes. Bacterial phages offer a novel means of enabling access into tissues for therapeutic genetic manipulations. Methods We generated spheroids of fibroblastic and CRC cancer cells to model the 3-dimensional stromal and parenchymal components of colorectal tumours. We used these to examine the access and effects of both wildtype (WT) and epidermal growth factor (EGF)-presenting bacteriophage λ (WT- λ and EGF-λ) as a means of delivery of targeted genetic interventions in solid cancers. We used both confocal microscopy of spheroids exposed to AF488-tagged phages, and the recovery of viable phages as measured by plaque-forming assays to evaluate access; and measures of mitochondrial enzyme activity and cellular ATP to evaluate the outcome on the constituent cells. Results Using flourescence-tagged derivatives of these bacteriophages (AF488-WT-λ and AF488-EGF-λ) we showed that phage entry into these tumour microenvironments was possible and that the EGF ligand enabled efficient and persistent uptake into the cancer cell mass. EGF-λ became localized in the intracellular portion of cancer cells and was subjected to subsequent cellular processing. The targeted λ phage had no independent effect upon mature tumour spheroids, but interfered with the early formation and growth of cancer tissues without the need for addition of a toxic payload, suggesting that it might have beneficial effects by itself in addition to any genetic intervention delivered to the tumour. Interference with spheroid formation persisted over the duration of culture. Discussion We conclude that targeted phage technology is a feasible strategy to facilitate delivery into colorectal cancer tumour tissue (and by extension other solid carcinomas) and provides an appropriate delivery vehicle for a gene therapeutic that can reduce local immunosuppression and/or deliver an additional direct anticancer activity.
Collapse
Affiliation(s)
- Haein Huh
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Ding-Wen Chen
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | | | - Roderick Slavcev
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada,*Correspondence: Jonathan Blay, ; Roderick Slavcev,
| | - Jonathan Blay
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada,Department of Pathology, Dalhousie University, Halifax, NS, Canada,*Correspondence: Jonathan Blay, ; Roderick Slavcev,
| |
Collapse
|
4
|
Cegarra C, Cameron B, Chaves C, Dabdoubi T, Do TM, Genêt B, Roudières V, Shi Y, Tchepikoff P, Lesuisse D. An innovative strategy to identify new targets for delivering antibodies to the brain has led to the exploration of the integrin family. PLoS One 2022; 17:e0274667. [PMID: 36108060 PMCID: PMC9477330 DOI: 10.1371/journal.pone.0274667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Increasing brain exposure of biotherapeutics is key to success in central nervous system disease drug discovery. Accessing the brain parenchyma is especially difficult for large polar molecules such as biotherapeutics and antibodies because of the blood-brain barrier. We investigated a new immunization strategy to identify novel receptors mediating transcytosis across the blood-brain barrier.
Method
We immunized mice with primary non-human primate brain microvascular endothelial cells to obtain antibodies. These antibodies were screened for their capacity to bind and to be internalized by primary non-human primate brain microvascular endothelial cells and Human Cerebral Microvascular Endothelial Cell clone D3. They were further evaluated for their transcytosis capabilities in three in vitro blood-brain barrier models. In parallel, their targets were identified by two different methods and their pattern of binding to human tissue was investigated using immunohistochemistry.
Results
12 antibodies with unique sequence and internalization capacities were selected amongst more than six hundred. Aside from one antibody targeting Activated Leukocyte Cell Adhesion Molecule and one targeting Striatin3, most of the other antibodies recognized β1 integrin and its heterodimers. The antibody with the best transcytosis capabilities in all blood-brain barrier in vitro models and with the best binding capacity was an anti-αnβ1 integrin. In comparison, commercial anti-integrin antibodies performed poorly in transcytosis assays, emphasizing the originality of the antibodies derived here. Immunohistochemistry studies showed specific vascular staining on human and non-human primate tissues.
Conclusions
This transcytotic behavior has not previously been reported for anti-integrin antibodies. Further studies should be undertaken to validate this new mechanism in vivo and to evaluate its potential in brain delivery.
Collapse
Affiliation(s)
- Céline Cegarra
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
- * E-mail:
| | | | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | | | - Tuan-Minh Do
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Bruno Genêt
- Integrated Drug Discovery, Sanofi, Vitry-Sur-Seine, France
| | - Valérie Roudières
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Yi Shi
- Histology, Translational Sciences, Sanofi, Vitry-Sur-Seine, France
| | | | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| |
Collapse
|
5
|
Bacteriophages as Therapeutic and Diagnostic Vehicles in Cancer. Pharmaceuticals (Basel) 2021; 14:ph14020161. [PMID: 33671476 PMCID: PMC7923149 DOI: 10.3390/ph14020161] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Evolution of nanomedicine is the re-design of synthetic and biological carriers to implement novel theranostic platforms. In recent years, bacteriophage research favors this process, which has opened up new roads in drug and gene delivery studies. By displaying antibodies, peptides, or proteins on the surface of different bacteriophages through the phage display technique, it is now possible to unravel specific molecular determinants of both cancer cells and tumor-associated microenvironmental molecules. Downstream applications are manifold, with peptides being employed most of the times to functionalize drug carriers and improve their therapeutic index. Bacteriophages themselves were proven, in this scenario, to be good carriers for imaging molecules and therapeutics as well. Moreover, manipulation of their genetic material to stably vehiculate suicide genes within cancer cells substantially changed perspectives in gene therapy. In this review, we provide examples of how amenable phages can be used as anticancer agents, especially because their systemic administration is possible. We also provide some insights into how their immunogenic profile can be modulated and exploited in immuno-oncology for vaccine production.
Collapse
|
6
|
Isolation of Antibody Binders to MISIIR from a Phage Display Library by Sorting. Methods Mol Biol 2021. [PMID: 31939178 DOI: 10.1007/978-1-0716-0247-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cell surface antigens represent the most common targets for antibody-based cancer therapy. Isolation of lead antibodies to these membrane targets from antibody repertoires, such as immunized or naïve phage display libraries, has been a challenging task, which is an outstanding issue when soluble portion of the target(s) is not available, and/or a naïve phage display library is used. Common cell-based panning methods often encounter numerous difficulties, including high background and loss of cells during repeated washes. Here we described a novel FACS sorter-based protocol to isolate single-chain Fv molecules specific for defined antigen MSIIR expressed on stably transformed mammalian cells, and screening of unique binders to the tumor target.
Collapse
|
7
|
A Functional Screening Strategy for Engineering Chimeric Antigen Receptors with Reduced On-Target, Off-Tumor Activation. Mol Ther 2020; 28:2564-2576. [PMID: 32827460 PMCID: PMC7704745 DOI: 10.1016/j.ymthe.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/27/2020] [Accepted: 08/05/2020] [Indexed: 01/15/2023] Open
Abstract
In recent years, chimeric antigen receptor (CAR) T cell cancer immunotherapies have advanced substantially in the clinic. However, challenges related to safety persist; one major concern occurs when CARs trigger a response to antigen present on healthy cells (on-target, off-tumor response). A strategy to ameliorate this relies on the complex relationship between receptor affinity and signaling, such that one can engineer a CAR that is only activated by tumor cells expressing high antigen levels. Here, we developed a CAR T cell display platform with stable genomic expression and rapid functional screening based on interleukin-2 signaling. Starting with a CAR with high affinity toward its target antigen, we combined CRISPR-Cas9 genome editing and deep mutational scanning to generate a library of antigen-binding domain variants. This library was subjected to multiple rounds of selection based on either antigen binding or cell signaling. Deep sequencing of the resulting libraries and a comparative analysis revealed the enrichment and depletion of specific variants from which we selected CARs that were selectively activated by tumor cells based on antigen expression levels. Our platform demonstrates how directed evolution based on functional screening and deep sequencing-guided selection can be combined to enhance the selectivity and safety of CARs.
Collapse
|
8
|
Georgieva JV, Goulatis LI, Stutz CC, Canfield SG, Song HW, Gastfriend BD, Shusta EV. Antibody screening using a human iPSC-based blood-brain barrier model identifies antibodies that accumulate in the CNS. FASEB J 2020; 34:12549-12564. [PMID: 32960493 DOI: 10.1096/fj.202000851r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/27/2022]
Abstract
Drug delivery across the blood-brain barrier (BBB) remains a significant obstacle for the development of neurological disease therapies. The low penetration of blood-borne therapeutics into the brain can oftentimes be attributed to the restrictive nature of the brain microvascular endothelial cells (BMECs) that comprise the BBB. One strategy beginning to be successfully leveraged is the use of endogenous receptor-mediated transcytosis (RMT) systems as a means to shuttle a targeted therapeutic into the brain. Limitations of known RMT targets and their cognate targeting reagents include brain specificity, brain uptake levels, and off-target effects, driving the search for new and potentially improved brain targeting reagent-RMT pairs. To this end, we deployed human-induced pluripotent stem cell (iPSC)-derived BMEC-like cells as a model BBB substrate on which to mine for new RMT-targeting antibody pairs. A nonimmune, human single-chain variable fragment (scFv) phage display library was screened for binding, internalization, and transcytosis across iPSC-derived BMECs. Lead candidates exhibited binding and internalization into BMECs as well as binding to both human and mouse BBB in brain tissue sections. Antibodies targeted the murine BBB after intravenous administration with one particular clone, 46.1-scFv, exhibiting a 26-fold increase in brain accumulation (8.1 nM). Moreover, clone 46.1-scFv was found to associate with postvascular, parenchymal cells, indicating its successful receptor-mediated transport across the BBB. Such a new BBB targeting ligand could enhance the transport of therapeutic molecules into the brain.
Collapse
Affiliation(s)
- Julia V Georgieva
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Loukas I Goulatis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Charles C Stutz
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott G Canfield
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Hannah W Song
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
9
|
Lajoie JM, Cho YK, Frost D, Bremner S, Li L, Shusta EV. A yeast display immunoprecipitation screen for targeted discovery of antibodies against membrane protein complexes. Protein Eng Des Sel 2019; 32:219-230. [PMID: 31769480 PMCID: PMC7017056 DOI: 10.1093/protein/gzz035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 11/12/2022] Open
Abstract
Yeast display immunoprecipitation is a combinatorial library screening platform for the discovery and engineering of antibodies against membrane proteins using detergent-solubilized membrane fractions or cell lysates as antigen sources. Here, we present the extension of this method for the screening of antibodies that bind to membrane protein complexes, enabling discovery of antibodies that target antigens involved in a functional protein-protein interaction of interest. For this proof-of-concept study, we focused on the receptor-mediated endocytosis machinery at the blood-brain barrier, and adaptin 2 (AP-2) was chosen as the functional interaction hub. The goal of this study was to identify antibodies that bound to blood-brain barrier (BBB) membrane protein complexes containing AP-2. Screening of a nonimmune yeast display antibody library was carried out using detergent-solubilized BBB plasma membranes as an antigen pool, and antibodies that could interact with protein complexes containing AP-2 were identified. Downstream characterization of isolated antibodies confirmed targeting of proteins known to play important roles in membrane trafficking. This functional yeast display immunoprecipitation screen may be applied to other systems where antibodies against other functional classes of protein complexes are sought.
Collapse
Affiliation(s)
- Jason M Lajoie
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Yong Ku Cho
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269, USA
| | - Dustin Frost
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
| | - Samantha Bremner
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave., Madison, WI 53792, USA
| |
Collapse
|
10
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
11
|
Nikfarjam S, Tohidkia MR, Mehdipour T, Soleimani R, Rahimi AAR, Nouri M. ---Successful Application of Whole Cell Panning for Isolation of Phage Antibody Fragments Specific to Differentiated Gastric Cancer Cells. Adv Pharm Bull 2019; 9:624-631. [PMID: 31857967 PMCID: PMC6912189 DOI: 10.15171/apb.2019.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose: Generation of antibodies which potentially discriminate between malignant and healthy cells is an important prerequisite for early diagnosis and treatment of gastric cancer (GC). Comparative analysis of cell surface protein landscape will provide an experimental basis for biomarker discovery, which is essential for targeted molecular therapies. This study aimed to isolate phage-displayed antibody fragments recognizing cell surface proteins, which were differently expressed between two closely related GC cell lines, namely AGS and MKN-45. Methods: We selected and screened a semisynthetic phage-scFv library on AGS, MKN-45, and NIH-3T3 cell lines by utilizing a tailored selection scheme that was designed to isolate phagescFvs that not only recognize the differentiated AGS cells but also distinguish them from NIH3T3 fibroblasts and the poorly differentiated MKN-45 cells. Results: After four rounds of subtractive whole cell panning, 14 unique clones were identified by ELISA screening and nucleotide sequencing. For further characterization, we focused on four phage-scFvs with strong signals in screening, and their specificity was confirmed by cell-based ELISA. Furthermore, the selected phage-scFvs were able to specifically stain AGS cells with 38.74% (H1), 11.04% (D11), 76.93% (G11), and 69.03% (D1) in flow cytometry analysis which supported the ability of these phage scFvs in distinguishing AGS from MKN-45 and NIH-3T3 cells. Conclusion: Combined with other proteomic techniques, these phage-scFvs can be applied to membrane proteome analysis and, subsequently, identification of novel tumor-related antigens mediating proliferation and differentiation of cells. Furthermore, such antibody fragments can be exploited for diagnostic purposes as well as targeted drug delivery of GC.
Collapse
Affiliation(s)
- Sepideh Nikfarjam
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tayebeh Mehdipour
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Soleimani
- Department of Molecular Biology, Research and Diagnostic Laboratory of Dook, Sari, Iran
| | - Ali Akbar Rahim Rahimi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Mehdipour T, Tohidkia MR, Ata Saei A, Kazemi A, Khajeh S, Rahim Rahimi AA, Nikfarjam S, Farhadi M, Halimi M, Soleimani R, Zubarev RA, Nouri M. Tailoring subtractive cell biopanning to identify diffuse gastric adenocarcinoma-associated antigens via human scFv antibodies. Immunology 2019; 159:96-108. [PMID: 31596953 DOI: 10.1111/imm.13129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
Among various solid tumours, gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Expansion into the peritoneal cavity, which results from dissemination of diffuse cancer cells, is the main cause of mortality in gastric adenocarcinoma patients. Therefore, investigation of putative biomarkers involved in metastasis is prerequisite for GC management. In an effort to discover potential tumour markers associated with peritoneal metastasis of GC, a semi-synthetic human scFv library (Tomlinson I) was used to isolate novel antibody fragments recognizing MKN-45, a poorly differentiated diffuse gastric adenocarcinoma cell line. Four rounds of subtractive selection each consisting of extensive pre-absorption of phage library with NIH-3T3 murine embryonic fibroblasts and AGS (a well-differentiated intestinal gastric adenocarcinoma) cell line were carried out prior to positive selection on MKN-45 target cells. ELISA-based screening of 192 phage-displayed scFv clones indicated 21 high-affinity binders with specific staining of MKN-45 compared with AGS cells. Diversity analysis of the selected phage-scFvs resulted in five distinct sequences with multiple frequency. Further analysis by ELISA and flow cytometry verified three clones that specifically recognized MKN-45 cells. Liquid chromatography-mass spectrometry analysis of the scFv-immunoprecipitated proteins has led to identification of c-Met, HSP90 α and HSP90 β as candidate biomarkers associated with diffuse GC. Immunohistochemistry revealed the capability of purified scFvs to differentiate diffuse and intestinal gastric adenocarcinoma. Taken together, the isolated MKN-45-specific scFv fragments and their cognate antigens would be beneficial in screening and management as well as targeting and therapy of the diffuse gastric adenocarcinoma.
Collapse
Affiliation(s)
- Tayebeh Mehdipour
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad R Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Amir Kazemi
- Department of Microbiology, Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran
| | - Shirin Khajeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali A Rahim Rahimi
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Nikfarjam
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Farhadi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Halimi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Soleimani
- Department of Molecular Biology, Research and Diagnostic Laboratory of Dook, Sari, Iran
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mohammad Nouri
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Neiveyans M, Melhem R, Arnoult C, Bourquard T, Jarlier M, Busson M, Laroche A, Cerutti M, Pugnière M, Ternant D, Gaborit N, Chardès T, Poupon A, Gouilleux-Gruart V, Pèlegrin A, Poul MA. A recycling anti-transferrin receptor-1 monoclonal antibody as an efficient therapy for erythroleukemia through target up-regulation and antibody-dependent cytotoxic effector functions. MAbs 2019; 11:593-605. [PMID: 30604643 PMCID: PMC6512944 DOI: 10.1080/19420862.2018.1564510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Targeting transferrin receptor 1 (TfR1) with monoclonal antibodies is a promising therapeutic strategy in cancer as tumor cells often overexpress TfR1 and show increased iron needs. We have re-engineered six anti-human TfR1 single-chain variable fragment (scFv) antibodies into fully human scFv2-Fcγ1 and IgG1 antibodies. We selected the more promising candidate (H7), based on its ability to inhibit TfR1-mediated iron-loaded transferrin internalization in Raji cells (B-cell lymphoma). The H7 antibody displayed nanomolar affinity for its target in both formats (scFv2-Fcγ1 and IgG1), but cross-reacted with mouse TfR1 only in the scFv2-Fc format. H7 reduced the intracellular labile iron pool and, contrary to what has been observed with previously described anti-TfR1 antibodies, upregulated TfR1 level in Raji cells. H7 scFv2-Fc format elimination half-life was similar in FcRn knock-out and wild type mice, suggesting that TfR1 recycling contributes to prevent H7 elimination in vivo. In vitro, H7 inhibited the growth of erythroleukemia and B-cell lymphoma cell lines (IC50 0.1 µg/mL) and induced their apoptosis. Moreover, the Im9 B-cell lymphoma cell line, which is resistant to apoptosis induced by rituximab (anti-CD20 antibody), was sensitive to H7. In vivo, tumor regression was observed in nude mice bearing ERY-1 erythroleukemia cell xenografts treated with H7 through a mechanism that involved iron deprivation and antibody-dependent cytotoxic effector functions. Therefore, targeting TfR1 using the fully human anti-TfR1 H7 is a promising tool for the treatment of leukemia and lymphoma.
Collapse
Affiliation(s)
- Madeline Neiveyans
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Rana Melhem
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Christophe Arnoult
- c CNRS , GICC UMR 7292 , Tours , France.,d Université François Rabelais de Tours , Tours , France
| | - Thomas Bourquard
- e UMR INRA CNRS Physiologie de la reproduction et des comportements, Université François Rabelais de Tours , Nouzilly , France
| | - Marta Jarlier
- b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Muriel Busson
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Adrien Laroche
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | | | - Martine Pugnière
- g PP2I, Plateforme Protéomique et Interactions Moléculaires , IRCM
| | - David Ternant
- c CNRS , GICC UMR 7292 , Tours , France.,d Université François Rabelais de Tours , Tours , France.,h CHRU de Tours, Department of medical pharmacology , Tours , France
| | - Nadège Gaborit
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Thierry Chardès
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Anne Poupon
- e UMR INRA CNRS Physiologie de la reproduction et des comportements, Université François Rabelais de Tours , Nouzilly , France
| | - Valérie Gouilleux-Gruart
- c CNRS , GICC UMR 7292 , Tours , France.,d Université François Rabelais de Tours , Tours , France
| | - Andre Pèlegrin
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Marie-Alix Poul
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| |
Collapse
|
14
|
Jalilzadeh-Razin S, Mantegi M, Tohidkia MR, Pazhang Y, Pourseif MM, Barar J, Omidi Y. Phage antibody library screening for the selection of novel high-affinity human single-chain variable fragment against gastrin receptor: an in silico and in vitro study. ACTA ACUST UNITED AC 2019; 27:21-34. [PMID: 30607886 DOI: 10.1007/s40199-018-0233-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND As a membrane G protein coupled receptors (GPCRs) family, gastrin/cholecystokinin-2 receptor (CCK2R) plays a key role in the initiation and development of gastric cancer. OBJECTIVES Targeting CCK2R by immunotherapeutics such as single-chain variable fragments (scFvs) may provide an effective treatment modality against gastric cancer. Thus, the main objective of this study was to isolate scFvs specific to CCK2R. METHODS To isolate scFvs specific to the CCK2R, we capitalized on a semi-synthetic diverse phage antibody library (PAL) and a solution-phase biopanning process. The library was panned against a biotinylated peptide of the second extracellular loop (ECL2) of CCK2R. After four rounds of biopanning, the selected soluble scFv clones were screened by enzyme-linked immunosorbent assay (ELISA) and examined for specific binding to the peptide. The selected scFvs were purified using immobilized metal affinity chromatography (IMAC). The binding affinity and specificity of the scFvs were examined by the surface plasmon resonance (SPR), immunoblotting and flow cytometry assays and molecular docking using ZDOCK v3.0.2. RESULTS Ten different scFvs were isolated, which displayed binding affinity ranging from 0.68 to 8.0 (nM). Immunoblotting and molecular docking analysis revealed that eight scFvs were able to detect the denatured form of CCK2R protein. Of the isolated scFvs, two scFvs showed high-binding affinity to the human gastric adenocarcinoma AGS cells. CONCLUSIONS Based on our findings, a couple of the selected scFvs showed markedly high-binding affinity to immobilized CCK2R peptide and CCK2R-overexpressing AGS cells. Therefore, these scFvs are proposed to serve as targeting and/or treatment agents in the diagnosis and immunotherapy of CCK2R-positive tumors. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Sepideh Jalilzadeh-Razin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Malihe Mantegi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Islamic Azad University of Urmia, Urmia, Iran
| | - Mohammad R Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yaghub Pazhang
- Department of Biochemistry, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Stutz CC, Georgieva JV, Shusta EV. Coupling Brain Perfusion Screens and Next Generation Sequencing to Identify Blood-Brain Barrier Binding Antibodies. AIChE J 2018; 64:4229-4236. [PMID: 30872841 DOI: 10.1002/aic.16360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antibodies that target the blood-brain barrier (BBB) in vivo are of particular interest for the treatment of neurological diseases. Here, we screened a phage display single-chain antibody (scFv) library by brain perfusion in an attempt to isolate scFv that target the rat BBB. After four rounds of screening, the resulting antibody pool remained highly complex and discrete clonal sampling did not identify any scFvs capable of binding to the rat BBB. Thus, the heavy chain CDR3 in the resulting pools was subjected to NGS, and the resulting data was used to identify 12 scFv clones that were of high abundance and/or enriched from round 3 to 4, signifying potential hits. Of these, two scFv, denoted scFv 4 and scFv 40, were identified that bound the rat BBB. Neither of these scFvs was identified by discrete sampling, motivating NGS as a tool to identify lead antibodies from complex in vivo screens.
Collapse
Affiliation(s)
- Charles C. Stutz
- Dept. of Chemical and Biological Engineering University of Wisconsin—Madison Madison WI 53706
| | - Julia V. Georgieva
- Dept. of Chemical and Biological Engineering University of Wisconsin—Madison Madison WI 53706
| | - Eric V. Shusta
- Dept. of Chemical and Biological Engineering University of Wisconsin—Madison Madison WI 53706
| |
Collapse
|
16
|
Phage display library selection of a hypoxia-binding scFv antibody for liver cancer metabolic marker discovery. Oncotarget 2018; 7:38105-38121. [PMID: 27203546 PMCID: PMC5122375 DOI: 10.18632/oncotarget.9460] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/04/2016] [Indexed: 01/29/2023] Open
Abstract
Hypoxia, which is frequently observed in liver cancer and metastasis, influences tumor progression and resistance to therapy. Although hypoxia-associated biomarkers are of use in other cancers, none is recognized as a surrogate for hypoxia in liver cancer. In this study, we generated seven unique human single-chain Fv (scFv) antibodies (Abs) specific to hypoxic liver cancer cells, using normoxia-depleted vs hypoxia-selected phage library panning technology. By developing the scFv immunoprecipitation-based mass spectrometry method, the antigen that bound with one of the Abs (H103) was identified as the M2 splice isoform of pyruvate kinase (PKM2), an enzyme that is a key regulator of aerobic glycolysis in cancer cells. Increased expression of PKM2 was induced by hypoxia in liver cancer cell lines. Immunohistochemical (IHC) staining showed that PKM2 was highly expressed in moderately and well differentiated hepatocellular carcinoma (HCC) tissues with a hypovascular staining pattern. High expression of PKM2 was also localized in the perinecrotic area of intrahepatic cholangiocarcinoma (ICC) tissues. The percentage of the HCC or ICC tumor expressing PKM2 was significantly higher with more tumor necrosis, low microvessel density, and advanced stage. Moreover, the H103 scFv Ab was efficiently internalized into hypoxic liver cancer cells and could have potential for targeted drug delivery. Conclusion: our study, for the first time, developed hypoxia-specific scFv Ab H103 to liver cancer cells, and revealed that PKM2 is a promising biomarker for hypoxia in HCC and ICC tissues. These allow further exploration of this valuable Ab and PKM2 antigen for hypoxia targeting in liver cancer.
Collapse
|
17
|
Zhou Y, Zou H, Yau C, Zhao L, Hall SC, Drummond DC, Farr-Jones S, Park JW, Benz CC, Marks JD. Discovery of internalizing antibodies to basal breast cancer cells. Protein Eng Des Sel 2018; 31:17-28. [PMID: 29301020 PMCID: PMC6283401 DOI: 10.1093/protein/gzx063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 11/14/2022] Open
Abstract
We present a strategy to discover recombinant monoclonal antibodies (mAbs) to specific cancers and demonstrate this approach using basal subtype breast cancers. A phage antibody library was depleted of antibodies to common cell surface molecules by incubation with luminal breast cancer cell lines, and then selected on a single basal-like breast cancer cell line (MDA-MB-231) for binding associated receptor-mediated endocytosis. Additional profiling against two luminal and four basal-like cell lines revealed 61 unique basal-specific mAbs from a pool of 1440 phage antibodies. The unique mAbs were further screened on nine basal and seven luminal cell lines to identify those with the greatest affinity, specificity, and internalizing capability for basal-like breast cancer cells. Among the internalizing basal-specific mAbs were those recognizing four transmembrane receptors (EphA2, CD44, CD73 and EGFR), identified by immunoprecipitation-mass spectrometry and yeast-displayed antigen screening. Basal-like breast cancer expression of these four receptors was confirmed using a bioinformatic approach, and expression microarray data on 683 intrinsically subtyped primary breast tumors. This overall approach, which sequentially employs phage display antibody library selection, antigen identification and bioinformatic confirmation of antigen expression by cancer subtypes, offers efficient production of high-affinity mAbs with diagnostic and therapeutic utility against specific cancer subtypes.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco Rm 3C-38, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Hao Zou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco Rm 3C-38, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Christina Yau
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Lequn Zhao
- Department of Anesthesia and Perioperative Care, University of California, San Francisco Rm 3C-38, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Steven C Hall
- Department of Obstetrics, Gynecology & Reproductive Sciences, Sandler-Moore Mass Spectrometry Core Facility, 521 Parnassus Avenue, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daryl C Drummond
- Merrimack Pharmaceuticals Inc., One Kendall Square, Suite B7201, Cambridge, MA 02139, USA
| | - Shauna Farr-Jones
- Department of Anesthesia and Perioperative Care, University of California, San Francisco Rm 3C-38, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - John W Park
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, Box 1710, San Francisco, CA 94143, USA
| | - Christopher C Benz
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - James D Marks
- Department of Anesthesia and Perioperative Care, University of California, San Francisco Rm 3C-38, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Ave, San Francisco, CA 94110, USA
| |
Collapse
|
18
|
Jones ML, Mahler SM, Kumble S. Selection of Antibodies to Transiently Expressed Membrane Proteins Using Phage Display. Methods Mol Biol 2018; 1827:179-195. [PMID: 30196498 DOI: 10.1007/978-1-4939-8648-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell membrane proteins serve as attractive targets for biopharmaceutical development in addition to gauging their fundamental process in a biological system. Approximately 38% of the entire genome codes for plasma membrane proteins; however the discovery and development of antibody binders to such targets are a technical challenge. Methods to raise binders against such targets by cloning and expressing soluble extracellular regions have been met with limited success due to the loss of critical epitopes, with the resulting antibodies failing to bind to their target in its native conformation. This chapter outlines a "cell based biopanning" method in order to isolate antibodies against membrane proteins in their native conformation using transiently expressed, GFP-tagged target proteins. This method overcomes the limitations of non-specific binding of phage to the cells, abundance of irrelevant antigens on the cell surface, while retaining the native structure of the antigen on the cell surface.
Collapse
Affiliation(s)
- Martina L Jones
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, Australia.
| | - Stephen M Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, Australia
| | - Sumukh Kumble
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
19
|
Abstract
As of May 1, 2017, 74 antibody-based molecules have been approved by a regulatory authority in a major market. Additionally, there are 70 and 575 antibody-based molecules in phase III and phase I/II clinical trials, respectively. These total 719 antibody-based clinical stage molecules include 493 naked IgGs, 87 antibody-drug conjugates, 61 bispecific antibodies, 37 total Fc fusion proteins, 17 radioimmunoglobulins, 13 antibody fragments, and 11 immunocytokines. New uses for these antibodies are being discovered each year. For oncology, many of the exciting new approaches involve antibody modulation of T-cells. There are over 80 antibodies in clinical trials targeting T cell checkpoints, 26 T-cell-redirected bispecific antibodies, and 145 chimeric antigen receptor (CAR) cell-based candidates (all currently in phase I or II clinical trials), totaling more than 250 T cell interacting clinical stage antibody-based candidates. Finally, significant progress has been made recently on routes of delivery, including delivery of proteins across the blood-brain barrier, oral delivery to the gut, delivery to the cellular cytosol, and gene- and viral-based delivery of antibodies. Thus, there are currently at least 864 antibody-based clinical stage molecules or cells, with incredible diversity in how they are constructed and what activities they impart. These are followed by a next wave of novel molecules, approaches, and new methods and routes of delivery, demonstrating that the field of antibody-based biologics is very innovative and diverse in its approaches to fulfill their promise to treat unmet medical needs.
Collapse
|
20
|
Lykkemark S, Mandrup OA, Jensen MB, Just J, Kristensen P. A novel excision selection method for isolation of antibodies binding antigens expressed specifically by rare cells in tissue sections. Nucleic Acids Res 2017; 45:e107. [PMID: 28369551 PMCID: PMC5499801 DOI: 10.1093/nar/gkx207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/21/2017] [Indexed: 12/22/2022] Open
Abstract
There is a growing appreciation of single cell technologies to provide increased biological insight and allow development of improved therapeutics. The central dogma explains why single cell technologies is further advanced in studies targeting nucleic acids compared to proteins, as nucleic acid amplification makes experimental detection possible. Here we describe a novel method for single round phage display selection of antibody fragments from genetic libraries targeting antigens expressed by rare cells in tissue sections. We present and discuss the results of two selections of antibodies recognizing antigens expressed by perivascular cells surrounding capillaries located in a human brain section; with the aim of identifying biomarkers expressed by pericytes. The area targeted for selection was identified by a known biomarker and morphological appearance, however in situ hybridizations to nucleic acids can also be used for the identification of target cells. The antibody selections were performed directly on the tissue sections followed by excision of the target cells using a glass capillary attached to micromanipulation equipment. Antibodies bound to the target cells were characterized using ELISA, immunocytochemistry and immunohistochemistry. The described method will provide a valuable tool for the discovery of novel biomarkers on rare cells in all types of tissues.
Collapse
Affiliation(s)
- Simon Lykkemark
- Department of Clinical Medicine, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark.,Sino-Danish Centre for Education and Research (SDC), Niels Jensens Vej 2, 8000 Aarhus C, Denmark
| | - Ole Aalund Mandrup
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Mads Bjørnkjær Jensen
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Jesper Just
- Department of Molecular Biology and Genetics, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Peter Kristensen
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Alfaleh MA, Jones ML, Howard CB, Mahler SM. Strategies for Selecting Membrane Protein-Specific Antibodies using Phage Display with Cell-Based Panning. Antibodies (Basel) 2017; 6:E10. [PMID: 31548525 PMCID: PMC6698842 DOI: 10.3390/antib6030010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Membrane proteins are attractive targets for monoclonal antibody (mAb) discovery and development. Although several approved mAbs against membrane proteins have been isolated from phage antibody libraries, the process is challenging, as it requires the presentation of a correctly folded protein to screen the antibody library. Cell-based panning could represent the optimal method for antibody discovery against membrane proteins, since it allows for presentation in their natural conformation along with the appropriate post-translational modifications. Nevertheless, screening antibodies against a desired antigen, within a selected cell line, may be difficult due to the abundance of irrelevant organic molecules, which can potentially obscure the antigen of interest. This review will provide a comprehensive overview of the different cell-based phage panning strategies, with an emphasis placed on the optimisation of four critical panning conditions: cell surface antigen presentation, non-specific binding events, incubation time, and temperature and recovery of phage binders.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
22
|
Minter RR, Sandercock AM, Rust SJ. Phenotypic screening-the fast track to novel antibody discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017. [PMID: 28647091 DOI: 10.1016/j.ddtec.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The majority of antibody therapeutics have been isolated from target-led drug discovery, where many years of target research preceded drug program initiation. However, as the search for validated targets becomes more challenging and target space becomes increasingly competitive, alternative strategies, such as phenotypic drug discovery, are gaining favour. This review highlights successful examples of antibody phenotypic screens that have led to clinical drug candidates. We also review the requirements for performing an effective antibody phenotypic screen, including antibody enrichment and target identification strategies. Finally, the future impact of phenotypic drug discovery on antibody drug pipelines will be discussed.
Collapse
Affiliation(s)
- Ralph R Minter
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Alan M Sandercock
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Steven J Rust
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK.
| |
Collapse
|
23
|
Epitope-dependent mechanisms of CD27 neutralization revealed by X-ray crystallography. Mol Immunol 2017; 83:92-99. [DOI: 10.1016/j.molimm.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 11/18/2022]
|
24
|
Ha KD, Bidlingmaier SM, Su Y, Lee NK, Liu B. Identification of Novel Macropinocytosing Human Antibodies by Phage Display and High-Content Analysis. Methods Enzymol 2017; 585:91-110. [PMID: 28109445 PMCID: PMC8671048 DOI: 10.1016/bs.mie.2016.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Internalizing antibodies have great potential for the development of targeted therapeutics. Antibodies that internalize via the macropinocytosis pathway are particularly promising since macropinocytosis is capable of mediating rapid, bulk uptake and is selectively upregulated in many cancers. We hereby describe a method for identifying antibodies that internalize via macropinocytosis by screening phage-displayed single-chain antibody selection outputs with an automated fluorescent microscopy-based high-content analysis platform. Furthermore, this method can be similarly applied to other endocytic pathways if other fluorescent, pathway-specific, soluble markers are available.
Collapse
Affiliation(s)
| | | | | | | | - Bin Liu
- Corresponding author Department of Anesthesia, University of California at San Francisco, 1001 Potrero Ave., Box 1305, San Francisco, CA 94110-1305,
| |
Collapse
|
25
|
Geddie ML, Kohli N, Kirpotin DB, Razlog M, Jiao Y, Kornaga T, Rennard R, Xu L, Schoerberl B, Marks JD, Drummond DC, Lugovskoy AA. Improving the developability of an anti-EphA2 single-chain variable fragment for nanoparticle targeting. MAbs 2016; 9:58-67. [PMID: 27854147 DOI: 10.1080/19420862.2016.1259047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibody-targeted nanoparticles have great promise as anti-cancer drugs; however, substantial developmental challenges of antibody modules prevent many candidates from reaching the clinic. Here, we describe a robust strategy for developing an EphA2-targeting antibody fragment for immunoliposomal drug delivery. A highly bioactive single-chain variable fragment (scFv) was engineered to overcome developmental liabilities, including low thermostability and weak binding to affinity purification resins. Improved thermostability was achieved by modifying the framework of the scFv, and complementarity-determining region (CDR)-H2 was modified to increase binding to protein A resins. The results of our engineering campaigns demonstrate that it is possible, using focused design strategies, to rapidly improve the stability and manufacturing characteristics of an antibody fragment for use as a component of a novel therapeutic construct.
Collapse
Affiliation(s)
| | | | | | | | - Yang Jiao
- a Merrimack, Inc. , Cambridge , MA , USA
| | | | | | - Lihui Xu
- a Merrimack, Inc. , Cambridge , MA , USA
| | | | - James D Marks
- a Merrimack, Inc. , Cambridge , MA , USA.,b Department of Anesthesia and Pharmaceutical Chemistry , University of California San Francisco , San Francisco , CA , USA
| | | | | |
Collapse
|
26
|
Yao VJ, D'Angelo S, Butler KS, Theron C, Smith TL, Marchiò S, Gelovani JG, Sidman RL, Dobroff AS, Brinker CJ, Bradbury ARM, Arap W, Pasqualini R. Ligand-targeted theranostic nanomedicines against cancer. J Control Release 2016; 240:267-286. [PMID: 26772878 PMCID: PMC5444905 DOI: 10.1016/j.jconrel.2016.01.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/17/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentially overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human scFvs against these tumor-specific receptors. We compare the characteristics of different types of simple and complex nanocarriers, and discuss potential types of therapeutic cargos and conjugation strategies. The modular design of functionalized protocells may improve the efficacy and safety of nanomedicines for future cancer therapy.
Collapse
Affiliation(s)
- Virginia J Yao
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Sara D'Angelo
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Kimberly S Butler
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Christophe Theron
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Tracey L Smith
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Serena Marchiò
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; Department of Oncology, University of Turin, Candiolo, 10060, Italy
| | - Juri G Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Andrey S Dobroff
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - C Jeffrey Brinker
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131; Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131; Cancer Research and Treatment Center, Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131; Self-Assembled Materials Department, Sandia National Laboratories, Albuquerque, NM 87185
| | - Andrew R M Bradbury
- Bioscience Division, Los Alamos National Laboratories, Los Alamos, NM, 87545
| | - Wadih Arap
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131.
| | - Renata Pasqualini
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131.
| |
Collapse
|
27
|
Tillotson BJ, Goulatis LI, Parenti I, Duxbury E, Shusta EV. Engineering an Anti-Transferrin Receptor ScFv for pH-Sensitive Binding Leads to Increased Intracellular Accumulation. PLoS One 2015; 10:e0145820. [PMID: 26713870 PMCID: PMC4694649 DOI: 10.1371/journal.pone.0145820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes.
Collapse
Affiliation(s)
- Benjamin J. Tillotson
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
| | - Loukas I. Goulatis
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
| | - Isabelle Parenti
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
| | - Elizabeth Duxbury
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
| | - Eric V. Shusta
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
28
|
Gonzalez-Munoz AL, Minter RR, Rust SJ. Phenotypic screening: the future of antibody discovery. Drug Discov Today 2015; 21:150-156. [PMID: 26440132 DOI: 10.1016/j.drudis.2015.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
Abstract
Most antibody therapeutics have been isolated from high throughput target-based screening. However, as the number of validated targets diminishes and the target space becomes increasingly competitive, alternative strategies, such as phenotypic screening, are gaining momentum. Here, we review successful phenotypic screens, including those used to isolate antibodies against cancer and infectious agents. We also consider exciting advances in the expression and phenotypic screening of antibody repertoires in single cell autocrine systems. As technologies continue to develop, we believe that antibody phenotypic screening will increase further in popularity and has the potential to provide the next generation of therapeutic antibodies.
Collapse
Affiliation(s)
- Andrea L Gonzalez-Munoz
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Ralph R Minter
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Steven J Rust
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK.
| |
Collapse
|
29
|
Li Y, Liu PC, Shen Y, Snavely MD, Hiraga K. A Cell-Based Internalization and Degradation Assay with an Activatable Fluorescence-Quencher Probe as a Tool for Functional Antibody Screening. ACTA ACUST UNITED AC 2015; 20:869-75. [PMID: 26024945 PMCID: PMC4512523 DOI: 10.1177/1087057115588511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 05/05/2015] [Indexed: 11/15/2022]
Abstract
For the development of therapeutically potent anti-cancer antibody drugs, it is often important to identify antibodies that internalize into cells efficiently, rather than just binding to antigens on the cell surface. Such antibodies can mediate receptor endocytosis, resulting in receptor downregulation on the cell surface and potentially inhibiting receptor function and tumor growth. Also, efficient antibody internalization is a prerequisite for the delivery of cytotoxic drugs into target cells and is critical for the development of antibody–drug conjugates. Here we describe a novel activatable fluorescence–quencher pair to quantify the extent of antibody internalization and degradation in the target cells. In this assay, candidate antibodies were labeled with a fluorescent dye and a quencher. Fluorescence is inhibited outside and on the surface of cells, but activated upon endocytosis and degradation of the antibody. This assay enabled the development of a process for rapid characterization of candidate antibodies potentially in a high-throughput format. By employing an activatable secondary antibody, primary antibodies in purified form or in culture supernatants can be screened for internalization and degradation. Because purification of candidate antibodies is not required, this method represents a direct functional screen to identify antibodies that internalize efficiently early in the discovery process.
Collapse
Affiliation(s)
- Yan Li
- Antibody Technology, Eli Lilly and Company, New York, NY, USA
| | | | - Yang Shen
- Antibody Technology, Eli Lilly and Company, New York, NY, USA
| | | | - Kaori Hiraga
- Antibody Technology, Eli Lilly and Company, New York, NY, USA
| |
Collapse
|
30
|
Creating highly amplified enzyme-linked immunosorbent assay signals from genetically engineered bacteriophage. Anal Biochem 2015; 470:7-13. [DOI: 10.1016/j.ab.2014.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 01/08/2023]
|
31
|
Bidlingmaier S, Su Y, Liu B. Combining Phage and Yeast Cell Surface Antibody Display to Identify Novel Cell Type-Selective Internalizing Human Monoclonal Antibodies. Methods Mol Biol 2015; 1319:51-63. [PMID: 26060069 DOI: 10.1007/978-1-4939-2748-7_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | | | | |
Collapse
|
32
|
Selecting an Optimal Antibody for Antibody- Drug Conjugate Therapy. ANTIBODY-DRUG CONJUGATES 2015. [DOI: 10.1007/978-3-319-13081-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Tillotson BJ, Lajoie JM, Shusta EV. Yeast Display-Based Antibody Affinity Maturation Using Detergent-Solubilized Cell Lysates. Methods Mol Biol 2015; 1319:65-78. [PMID: 26060070 PMCID: PMC5076467 DOI: 10.1007/978-1-4939-2748-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is often desired to identify or engineer antibodies that target membrane proteins (MPs). However, due to their inherent insolubility in aqueous solutions, MPs are often incompatible with in vitro antibody discovery and optimization platforms. Recently, we adapted yeast display technology to accommodate detergent-solubilized cell lysates as sources of MP antigens. The following protocol details the incorporation of cell lysates into a kinetic screen designed to obtain antibodies with improved affinity via slowed dissociation from an MP antigen.
Collapse
Affiliation(s)
| | | | - Eric V. Shusta
- To whom correspondence should be addressed: Eric V. Shusta, Department of Chemical and Biological Engineering, University of Wisconsin – Madison, 3631 Engineering Hall, 1415 Engineering Dr., Madison, WI 53706, , Ph: (608) 265-5103, Fax: (608) 262-5434
| |
Collapse
|
34
|
Bernard JML, Francis MB. Chemical strategies for the covalent modification of filamentous phage. Front Microbiol 2014; 5:734. [PMID: 25566240 PMCID: PMC4274979 DOI: 10.3389/fmicb.2014.00734] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/04/2014] [Indexed: 01/16/2023] Open
Abstract
Historically filamentous bacteriophage have been known to be the workhorse of phage display due to their ability to link genotype to phenotype. More recently, the filamentous phage scaffold has proven to be powerful outside the realm of phage display technology in fields such as molecular imaging, cancer research and materials, and vaccine development. The ability of the virion to serve as a platform for a variety of applications heavily relies on the functionalization of the phage coat proteins with a wide variety of functionalities. Genetic modification of the coat proteins has been the most widely used strategy for functionalizing the virion; however, complementary chemical modification strategies can help to diversify the range of materials that can be developed. This review emphasizes the recent advances that have been made in the chemical modification of filamentous phage as well as some of the challenges that are involved in functionalizing the virion.
Collapse
Affiliation(s)
- Jenna M L Bernard
- Department of Chemistry, University of California at Berkeley Berkeley, CA, USA ; Materials Sciences Division - Lawrence Berkeley National Laboratories Berkeley, CA, USA
| | - Matthew B Francis
- Department of Chemistry, University of California at Berkeley Berkeley, CA, USA ; Materials Sciences Division - Lawrence Berkeley National Laboratories Berkeley, CA, USA
| |
Collapse
|
35
|
Koerber JT, Hornsby MJ, Wells JA. An improved single-chain Fab platform for efficient display and recombinant expression. J Mol Biol 2014; 427:576-86. [PMID: 25481745 DOI: 10.1016/j.jmb.2014.11.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/17/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022]
Abstract
Antibody phage display libraries combined with high-throughput selections have recently demonstrated tremendous promise to create the next generation of renewable, recombinant antibodies to study proteins and their many post-translational modification states; however, many challenges still remain, such as optimized antibody scaffolds. Recently, a single-chain fragment antigen binding (Fab) (scFab) format, in which the carboxy-terminus of the light chain is linked to the amino-terminus of the heavy chain, was described to potentially combine the high display levels of a single-chain fragment variable with the high stability of purified Fabs. However, this format required removal of the interchain disulfide bond to achieve modest display levels and subsequent bacterial expression resulted in high levels of aggregated scFab, hindering further use of scFabs. Here, we developed an improved scFab format that retains the interchain disulfide bond by increasing the linker length between the light and heavy chains to improve display and bacterial expression levels to 1-3 mg/L. Furthermore, rerouting of the scFab to the co-translational signal recognition particle pathway combined with reengineering of the signal peptide sequence results in display levels 24-fold above the original scFab format and 3-fold above parent Fab levels. This optimized scFab scaffold can be easily reformatted in a single step for expression in a bacterial or mammalian host to produce stable (Tm of 81 °C), predominantly monomeric (>90%) antibodies at a high yield. Ultimately, this new scFab format will advance high-throughput antibody generation platforms to discover the next generation of research and therapeutic antibodies.
Collapse
Affiliation(s)
- James T Koerber
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA; Recombinant Antibody Network, University of California, San Francisco, CA, 94158, USA
| | - Michael J Hornsby
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA; Recombinant Antibody Network, University of California, San Francisco, CA, 94158, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA; Recombinant Antibody Network, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
36
|
Zhao L, Qu L, Zhou J, Sun Z, Zou H, Chen YY, Marks JD, Zhou Y. High throughput identification of monoclonal antibodies to membrane bound and secreted proteins using yeast and phage display. PLoS One 2014; 9:e111339. [PMID: 25353955 PMCID: PMC4213037 DOI: 10.1371/journal.pone.0111339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/23/2014] [Indexed: 12/29/2022] Open
Abstract
Antibodies are ubiquitous and essential reagents for biomedical research. Uses of antibodies include quantifying proteins, identifying the temporal and spatial pattern of expression in cells and tissue, and determining how proteins function under normal or pathological conditions. Specific antibodies are only available for a small portion of the proteome, limiting study of those proteins for which antibodies do not exist. The technologies to generate target-specific antibodies need to be improved to obtain high quality antibodies to the proteome at reasonable cost. Here we show that renewable, validated, and standardized monoclonal antibodies can be generated at high throughput, without the need for antigen production or animal immunizations. In this study, 60 protein domains from 24 selected secreted proteins were expressed on the surface of yeast and used for selection of phage antibodies, over 400 monoclonal antibodies were identified within 3 weeks. A subset of these antibodies was validated for binding to cancer cells that overexpress the target protein by flow cytometry or immunohistochemistry. This approach will be applicable to many of the membrane-bound and the secreted proteins, 20–40% of the proteome, accelerating the timeline for Ab generation while reducing the cost.
Collapse
Affiliation(s)
- Lequn Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Liang Qu
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Jing Zhou
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Zhengda Sun
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Hao Zou
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Yunn-Yi Chen
- Departments of Pathology & Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - James D. Marks
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
- * E-mail: (YZ); (JDM)
| | - Yu Zhou
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
- * E-mail: (YZ); (JDM)
| |
Collapse
|
37
|
Uehara T, Rokugawa T, Kinoshita M, Nemoto S, Fransisco Lazaro GG, Hanaoka H, Arano Y. (67/68)Ga-labeling agent that liberates (67/68)Ga-NOTA-methionine by lysosomal proteolysis of parental low molecular weight polypeptides to reduce renal radioactivity levels. Bioconjug Chem 2014; 25:2038-45. [PMID: 25303645 DOI: 10.1021/bc5004058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The renal localization of gallium-67 or gallium-68 ((67/68)Ga)-labeled low molecular weight (LMW) probes such as peptides and antibody fragments constitutes a problem in targeted imaging. Wu et al. previously showed that (67)Ga-labeled S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (SCN-Bz-NOTA)-conjugated methionine ((67)Ga-NOTA-Met) was rapidly excreted from the kidney in urine following lysosomal proteolysis of the parental (67)Ga-NOTA-Bz-SCN-disulfide-stabilized Fv fragment (Bioconjugate Chem., (1997) 8, 365-369). In the present study, a new (67/68)Ga-labeling reagent for LMW probes that liberates (67/68)Ga-NOTA-Met was designed, synthesized, and evaluated using longer-lived (67)Ga in order to reduce renal radioactivity levels. We employed a methionine-isoleucine (MI) dipeptide bond as the cleavable linkage. The amine residue of MI was coupled with SCN-Bz-NOTA for (67)Ga-labeling, while the carboxylic acid residue of MI was derivatized to maleimide for antibody conjugation in order to synthesize NOTA-MI-Mal. A Fab fragment of the anti-Her2 antibody was thiolated with iminothiolane, and NOTA-MI-Mal was conjugated with the antibody fragment by maleimide-thiol chemistry. The Fab fragment was also conjugated with SCN-Bz-NOTA (NOTA-Fab) for comparison. (67)Ga-NOTA-MI-Fab was obtained at radiochemical yields of over 95% and was stable in murine serum for 24 h. In the biodistribution study using normal mice, (67)Ga-NOTA-MI-Fab registered significantly lower renal radioactivity levels from 1 to 6 h postinjection than those of (67)Ga-NOTA-Fab. An analysis of urine samples obtained 6 h after the injection of (67)Ga-NOTA-MI-Fab showed that the majority of radioactivity was excreted as (67)Ga-NOTA-Met. In the biodistribution study using tumor-bearing mice, the tumor to kidney ratios of (67)Ga-NOTA-MI-Fab were 4 times higher (6 h postinjection) than those of (67)Ga-NOTA-Fab. Although further studies including the structure of radiometabolites and/or cleavable linkages are required, the results of the present study indicate that the current chemical design is applicable to the development of (67)Ga-labeled Fabs for low renal radioactivity levels.
Collapse
Affiliation(s)
- Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 263-8675, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Ha KD, Bidlingmaier SM, Zhang Y, Su Y, Liu B. High-content analysis of antibody phage-display library selection outputs identifies tumor selective macropinocytosis-dependent rapidly internalizing antibodies. Mol Cell Proteomics 2014; 13:3320-31. [PMID: 25149096 PMCID: PMC4256486 DOI: 10.1074/mcp.m114.039768] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many forms of antibody-based targeted therapeutics, including antibody drug conjugates, utilize the internalizing function of the targeting antibody to gain intracellular entry into tumor cells. Ideal antibodies for developing such therapeutics should be capable of both tumor-selective binding and efficient endocytosis. The macropinocytosis pathway is capable of both rapid and bulk endocytosis, and recent studies have demonstrated that it is selectively up-regulated by cancer cells. We hypothesize that receptor-dependent macropinocytosis can be achieved using tumor-targeting antibodies that internalize via the macropinocytosis pathway, improving potency and selectivity of the antibody-based targeted therapeutic. Although phage antibody display libraries have been utilized to find antibodies that bind and internalize to target cells, no methods have been described to screen for antibodies that internalize specifically via macropinocytosis. We hereby describe a novel screening strategy to identify phage antibodies that bind and rapidly enter tumor cells via macropinocytosis. We utilized an automated microscopic imaging-based, High Content Analysis platform to identify novel internalizing phage antibodies that colocalize with macropinocytic markers from antibody libraries that we have generated previously by laser capture microdissection-based selection, which are enriched for internalizing antibodies binding to tumor cells in situ residing in their tissue microenvironment (Ruan, W., Sassoon, A., An, F., Simko, J. P., and Liu, B. (2006) Identification of clinically significant tumor antigens by selecting phage antibody library on tumor cells in situ using laser capture microdissection. Mol. Cell. Proteomics. 5, 2364–2373). Full-length human IgG molecules derived from macropinocytosing phage antibodies retained the ability to internalize via macropinocytosis, validating our screening strategy. The target antigen for a cross-species binding antibody with a highly active macropinocytosis activity was identified as ephrin type-A receptor 2. Antibody-toxin conjugates created using this macropinocytosing IgG were capable of potent and receptor-dependent killing of a panel of EphA2-positive tumor cell lines in vitro. These studies identify novel methods to screen for and validate antibodies capable of receptor-dependent macropinocytosis, allowing further exploration of this highly efficient and tumor-selective internalization pathway for targeted therapy development.
Collapse
Affiliation(s)
- Kevin D Ha
- From the ‡Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110-1305
| | - Scott M Bidlingmaier
- From the ‡Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110-1305
| | - Yafeng Zhang
- From the ‡Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110-1305
| | - Yang Su
- From the ‡Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110-1305
| | - Bin Liu
- From the ‡Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110-1305
| |
Collapse
|
39
|
Jones AR, Stutz CC, Zhou Y, Marks JD, Shusta EV. Identifying blood-brain-barrier selective single-chain antibody fragments. Biotechnol J 2014; 9:664-74. [PMID: 24644233 PMCID: PMC4073886 DOI: 10.1002/biot.201300550] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/28/2014] [Accepted: 02/24/2014] [Indexed: 11/09/2022]
Abstract
The blood-brain barrier (BBB) represents an obstacle in targeting and delivering therapeutics to the central nervous system. In order to discover new BBB-targeting molecules, we panned a phage-displayed nonimmune human single-chain antibody fragment (scFv) library against a representative BBB model comprised of hydrocortisone-treated primary rat brain endothelial cells. Parallel screens were performed with or without pre-subtraction against primary rat heart and lung endothelial cells in an effort to identify antibodies that may have binding selectivity toward brain endothelial cells. After three rounds of screening, three unique scFvs, scFv15, scFv38, and scFv29, were identified that maintained binding to primary rat brain endothelial cells, both in phage and soluble scFv format. While scFv29 and to a lesser extent, scFv15, exhibited some brain endothelial cell specificity in tissue culture, scFv29 did not appear to bind a BBB antigen in vivo. In contrast, both scFv15 and scFv38 were capable of immunolabeling rat brain vessels in vivo and displayed brain vascular selectivity with respect to all peripheral organs tested other than heart. Taken together, scFv15 and scFv38 represent two new antibodies that are capable of binding antigens that are expressed at the BBB in vivo.
Collapse
Affiliation(s)
- Angela R. Jones
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - C. Christopher Stutz
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Yu Zhou
- Department of Anesthesia, University of California San Francisco, San Francisco, California, USA
| | - James D. Marks
- Department of Anesthesia, University of California San Francisco, San Francisco, California, USA
| | - Eric V. Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
40
|
Ayat H, Burrone OR, Sadghizadeh M, Jahanzad E, Rastgou N, Moghadasi S, Arbabi M. Isolation of scFv antibody fragments against HER2 and CEA tumor antigens from combinatorial antibody libraries derived from cancer patients. Biologicals 2013; 41:345-54. [DOI: 10.1016/j.biologicals.2013.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/29/2013] [Accepted: 05/28/2013] [Indexed: 12/23/2022] Open
|
41
|
Nejatollahi F, Ranjbar R, Younesi V, Asgharpour M. Deregulation of HER2 downstream signaling in breast cancer cells by a cocktail of anti-HER2 scFvs. Oncol Res 2013; 20:333-40. [PMID: 23924853 DOI: 10.3727/096504013x13657689382734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in 30% of patients with breast cancer. HER2 targeting is the mainstay of targeted therapy for the treatment of invasive breast cancers. Due to biological and therapeutic advantages, single chain fragment variable (scFv) antibodies have emerged as promising alternative therapeutics. In this study, we assessed the capability of three scFvs against HER2 extracellular domains (II, III, IV) in deregulation of some key signaling mediators that have important roles in growth, survival, angiogenesis, and cell migration of breast tumor cells. Downregulation of activated Akt (p-Akt), increase of p27 protein levels, and downregulation of HER1, HER2, HER3 and epidermal growth factor (EGF), CXCR3, CXCL10, and MMP2 were observed following treatment of breast cancer cells (SKBR3 cell line) with the scFvs and their combination. Our results suggest that the combination of the three scFvs could be considered as an effective cocktail on HER2 tumorgenic signaling pathways that leads to tumor growth suppression and death.
Collapse
|
42
|
A peptide derived from phage display library exhibits anti-tumor activity by targeting GRP78 in gastric cancer multidrug resistance cells. Cancer Lett 2013; 339:247-59. [PMID: 23792224 DOI: 10.1016/j.canlet.2013.06.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/09/2013] [Accepted: 06/13/2013] [Indexed: 11/23/2022]
Abstract
Multidrug resistance (MDR) remains a significant challenge to the clinical treatment of gastric cancer (GC). In the present study, using a phage display approach combined with MTT assays, we screened a specific peptide GMBP1 (Gastric cancer MDR cell-specific binding peptide), ETAPLSTMLSPY, which could bind to the surface of GC MDR cells specifically and reverse their MDR phenotypes. Immunocytochemical staining showed that the potential receptor of GMBP1 was located at the membrane and cytoplasm of MDR cells. In vitro and in vivo drug sensitivity assays, FACS analysis and Western blotting confirmed that GMBP1 was able to re-sensitize MDR cells to chemical drugs. Western blotting and proteomic approaches were used to screen the receptor of GMBP1, and GRP78, a MDR-related protein, was identified as a receptor of GMBP1. This result was further supported by immunofluoresence microscopy and Western blot. Additionally, Western blotting demonstrated that pre-incubation of GMBP1 in MDR cells greatly diminished MDR1, Bcl-2 and GRP78 expression but increased the expression of Bax, whereas downregulation of GRP78, function as a receptor and directly target for GMBP1, only inhibited MDR1 expression. Our findings suggest that GMBP1 could re-sensitize GC MDR cells to a variety of chemotherapeutic agents and this role might be mediated partly through down-regulating GRP78 expression and then inhibiting MDR1 expression. These findings indicate that peptide GMBP1 likely recognizes a novel GRP78 receptor and mediates cellular activities associated with the MDR phenotype, which provides new insight into research on the management of MDR in gastric cancer cells.
Collapse
|
43
|
Shukla GS, Krag DN, Peletskaya EN, Pero SC, Sun YJ, Carman CL, McCahill LE, Roland TA. Intravenous infusion of phage-displayed antibody library in human cancer patients: enrichment and cancer-specificity of tumor-homing phage-antibodies. Cancer Immunol Immunother 2013; 62:1397-410. [PMID: 23736951 DOI: 10.1007/s00262-013-1443-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/20/2013] [Indexed: 12/21/2022]
Abstract
Phage display is a powerful method for target discovery and selection of ligands for cancer treatment and diagnosis. Our goal was to select tumor-binding antibodies in cancer patients. Eligibility criteria included absence of preexisting anti-phage-antibodies and a Stage IV cancer status. All patients were intravenously administered 1 × 10(11) TUs/kg of an scFv library 1 to 4 h before surgical resection of their tumors. No significant adverse events related to the phage library infusion were observed. Phage were successfully recovered from all tumors. Individual clones from each patient were assessed for binding to the tumor from which clones were recovered. Multiple tumor-binding phage-antibodies were identified. Soluble scFv antibodies were produced from the phage clones showing higher tumor binding. The tumor-homing phage-antibodies and derived soluble scFvs were found to bind varying numbers (0-5) of 8 tested normal human tissues (breast, cervix, colon, kidney, liver, spleen, skin, and uterus). The clones that showed high tumor-specificity were found to bind corresponding tumors from other patients also. Clone enrichment was observed based on tumor binding and DNA sequence data. Clone sequences of multiple variable regions showed significant matches to certain cancer-related antibodies. One of the clones (07-2,355) that was found to share a 12-amino-acid-long motif with a reported IL-17A antibody was further studied for competitive binding for possible antigen target identification. We conclude that these outcomes support the safety and utility of phage display library panning in cancer patients for ligand selection and target discovery for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Girja S Shukla
- Department of Surgery, University of Vermont College of Medicine, Burlington, VT 05405, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Tani H, Osbourn JK, Walker EH, Rush RA, Ferguson IA. A novel in vivo method for isolating antibodies from a phage display library by neuronal retrograde transport selectively yields antibodies against p75(NTR.). MAbs 2013; 5:471-8. [PMID: 23549155 DOI: 10.4161/mabs.24112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The neurotrophin receptor p75(NTR) is utilized by a variety of pathogens to gain entry into the central nervous system (CNS). We tested if this entry portal might be exploited using a phage display library to isolate internalizing antibodies that target the CNS in vivo. By applying a phage library that expressed human single chain variable fragment (scFv) antibodies on their surface to a transected sciatic nerve, we showed that (1) phage conjugated to anti-p75(NTR) antibody or phage scFv library pre-panned against p75(NTR) are internalized by neurons expressing p75(NTR); (2) subsequent retrograde axonal transport separates internalized phage from the applied phage; and, (3) internalized phage can be recovered from a proximal ligature made on a nerve. This approach resulted in 13-fold increase in the number of phage isolated from the injured nerve compared with the starting population, and isolation of 18 unique internalizing p75(NTR) antibodies that were transported from the peripheral nerve into the spinal cord, through the blood-brain barrier. In addition, antibodies recognizing other potentially internalized antigens were identified through in vivo selection using a fully diverse library. Because p75(NTR) expression is upregulated in motor neurons in response to injury and in disease, the p75(NTR) antibodies may have substantial potential for cell-targeted drug/gene delivery. In addition, this novel selection method provides the potential to generate panels of antibodies that could be used to identify further internalization targets, which could aid drug delivery across the blood-brain barrier.
Collapse
Affiliation(s)
- Hiroaki Tani
- Department of Human Physiology; Centre for Neuroscience; Flinders University School of Medicine; Adelaide, Australia; Current affiliation: Department of Neurology and Neurological Sciences; Stanford University School of Medicine; Stanford, CA USA
| | - Jane K Osbourn
- MedImmune Ltd. (Formerly Cambridge Antibody Technology); Cambridge, UK
| | - Edward H Walker
- MedImmune Ltd. (Formerly Cambridge Antibody Technology); Cambridge, UK
| | - Robert A Rush
- Department of Human Physiology; Centre for Neuroscience; Flinders University School of Medicine; Adelaide, Australia
| | - Ian A Ferguson
- Department of Human Physiology; Centre for Neuroscience; Flinders University School of Medicine; Adelaide, Australia
| |
Collapse
|
45
|
Tillotson BJ, de Larrinoa IF, Skinner CA, Klavas DM, Shusta EV. Antibody affinity maturation using yeast display with detergent-solubilized membrane proteins as antigen sources. Protein Eng Des Sel 2013; 26:101-12. [PMID: 23109730 PMCID: PMC3542525 DOI: 10.1093/protein/gzs077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/14/2012] [Accepted: 09/23/2012] [Indexed: 01/21/2023] Open
Abstract
Antigen preparations in the form of detergent-solubilized cell lysates could, in principle, render membrane proteins (MPs) compatible with in vitro antibody engineering technologies. To this end, detergent-solubilized cell lysates were coupled with the yeast surface display platform to affinity mature an anti-transferrin receptor (TfR) single-chain antibody (scFv). Lysates were generated from TfR-expressing HEK293 cells by solubilization with detergent-containing buffer after undergoing plasma membrane-restricted biotinylation. Lysate-resident TfR was then combined with a mutagenic anti-TfR scFv library in a competitive, dissociation rate screen, and scFvs were identified with up to 4-fold improved dissociation rates on the surface of yeast. Importantly, although the lysates contained a complex mixture of biotinylated proteins, the engineered scFvs retained their TfR binding specificity. When secreted by yeast as soluble proteins, mutant scFvs bound to cell surface TfR with 3-7-fold improvements in equilibrium binding affinity. Although a known MP antigen was targeted for purposes of this study, employing biotin tagging as a means of antigen detection makes the lysate-based approach particularly flexible. We have previously shown that yeast display can be used to identify lead antibodies using cell lysate-resident MP antigens, and combined with this work showing that antibodies can also be quantitatively engineered using cell lysates, these approaches may provide a high-throughput platform for generation and optimization of antibodies against MPs.
Collapse
Affiliation(s)
- Benjamin J. Tillotson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Iñigo F. de Larrinoa
- Departamento de Quimica Aplicada, Universidad del País Vasco, P M. Lardizabal 3, San Sebastian 20018, Spain
| | - Colin A. Skinner
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Derek M. Klavas
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Eric V. Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| |
Collapse
|
46
|
Robo4 is an effective tumor endothelial marker for antibody-drug conjugates based on the rapid isolation of the anti-Robo4 cell-internalizing antibody. Blood 2013; 121:2804-13. [PMID: 23365463 DOI: 10.1182/blood-2012-12-468363] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Monoclonal antibodies (mAbs) that are internalized into cells are a current focus in the development of antibody-drug conjugates (ADCs). We describe a phage display-based high-throughput screening system to rapidly isolate cell-internalizing mAbs. We simultaneously examined the cell-internalizing activities of several hundred independent mAbs and successfully isolated cell-internalizing mAbs against the tumor endothelial markers Roundabout homolog 4 (Robo4) and vascular endothelial growth factor receptor 2 (VEGFR2). Tumor accumulation of mAbs with high cell-internalizing activity was significantly higher than that of mAbs with low cell-internalizing activity. Furthermore, the antitumor effects of ADCs of mAbs with high cell-internalizing activity were significantly stronger than those of mAbs with low cell-internalizing activity. Although anti-VEGFR2 therapy caused a significant loss of body weight, anti-Robo4 therapy did not. These findings indicate that cell-internalizing activity plays an important role in the biodistribution and therapeutic effects of ADCs. Further, Robo4 can be an effective marker for tumor vascular targeting.
Collapse
|
47
|
Kim A, Shin TH, Shin SM, Pham CD, Choi DK, Kwon MH, Kim YS. Cellular internalization mechanism and intracellular trafficking of filamentous M13 phages displaying a cell-penetrating transbody and TAT peptide. PLoS One 2012; 7:e51813. [PMID: 23251631 PMCID: PMC3522607 DOI: 10.1371/journal.pone.0051813] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022] Open
Abstract
Cellular internalization of bacteriophage by surface-displayed cell penetrating peptides has been reported, though the underlying mechanism remains elusive. Here we describe in detail the internalization mechanism and intracellular trafficking and stability of filamentous M13 phages, the cellular entry of which is mediated by surface-displayed cell-penetrating light chain variable domain 3D8 VL transbody (3D8 VL-M13) or TAT peptide (TAT-M13). Recombinant 3D8 VL-M13 and TAT-M13 phages were efficiently internalized into living mammalian cells via physiologically relevant, energy-dependent endocytosis and were recovered from the cells in their infective form with the yield of 3D8 VL-M13 being higher (0.005∼0.01%) than that of TAT-M13 (0.001∼0.005%). Biochemical and genetic studies revealed that 3D8 VL-M13 was internalized principally by caveolae-mediated endocytosis via interaction with heparan sulfate proteoglycans as cell surface receptors, whereas TAT-M13 was internalized by clathrin- and caveolae-mediated endocytosis utilizing chondroitin sulfate proteoglycans as cell surface receptors, suggesting that phage internalization occurs by physiological endocytotic mechanism through specific cell surface receptors rather than non-specific transcytotic pathways. Internalized 3D8 VL-M13 phages routed to the cytosol and remained stable for more than 18 h without further trafficking to other subcellular compartments, whereas TAT-M13 phages routed to several subcellular compartments before being degraded in lysosomes even after 2 h of internalization. Our results suggest that the internalizing mechanism and intracellular trafficking of filamentous M13 bacteriophages largely follow the attributes of the displayed cell-penetrating moiety. Efficient internalization and cytosolic localization of 3D8 VL transbody-displayed phages will provide a useful tool for intracellular delivery of polar macromolecules such as proteins, peptides, and siRNAs.
Collapse
Affiliation(s)
- Aeyung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Tae-Hwan Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Seung-Min Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Chuong D. Pham
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea
| | - Dong-Ki Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Myung-Hee Kwon
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- * E-mail:
| |
Collapse
|
48
|
Verheesen P, Laeremans T. Selection by phage display of single domain antibodies specific to antigens in their native conformation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 911:81-104. [PMID: 22886247 DOI: 10.1007/978-1-61779-968-6_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Phage display of antibody fragments and other binding molecules is a well-established technique to identify ligands interacting with any molecule of interest. Selection of in vivo matured single domain antibody fragments from phage display libraries is very powerful as in these libraries each clone represents a noncombinatorial functional domain of a naturally circulating antibody, and thus such libraries contain a high number of antigen-specific clones. Consequently, individual binders to antigens of interest are efficiently obtained typically after one or two selection rounds. Furthermore, the large functional diversity within these antibody libraries allows the application of different and more stringent selection conditions resulting in the selection of complementary antibody panels. In this chapter, we present a guide to perform selections against purified antigens and antigens in their native conformation and context.
Collapse
|
49
|
Zhang J, Valianou M, Simmons H, Robinson MK, Lee HO, Mullins SR, Marasco WA, Adams GP, Weiner LM, Cheng JD. Identification of inhibitory scFv antibodies targeting fibroblast activation protein utilizing phage display functional screens. FASEB J 2012; 27:581-9. [PMID: 23104982 DOI: 10.1096/fj.12-210377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fibroblast activation protein (FAP) is a serine protease selectively expressed on tumor stromal fibroblasts in epithelial carcinomas and is important in cancer growth, adhesion, and metastases. As FAP enzymatic activity is a potent therapeutic target, we aimed to identify inhibitory antibodies. Using a competitive inhibition strategy, we used phage display techniques to identify 53 single-chain variable fragments (scFvs) after three rounds of panning against FAP. These scFvs were expressed and characterized for binding to FAP by surface plasmon resonance and flow cytometry. Functional assessment of these antibodies yielded an inhibitory scFv antibody, named E3, which could attenuate 35% of FAP cleavage of the fluorescent substrate Ala-Pro-7-amido-4-trifluoromethylcoumarin compared with nonfunctional scFv control. Furthermore, a mutant E3 scFv was identified by yeast affinity maturation. It had higher affinity (4-fold) and enhanced inhibitory effect on FAP enzyme activity (3-fold) than E3. The application of both inhibitory anti-FAP scFvs significantly affected the formation of 3-dimensional FAP-positive cell matrix, as demonstrated by reducing the fibronectin fiber orientation from 41.18% (negative antibody control) to 34.06% (E3) and 36.15% (mutant E3), respectively. Thus, we have identified and affinity-maturated the first scFv antibody capable of inhibiting FAP function. This scFv antibody has the potential to disrupt the role of FAP in tumor invasion and metastasis.
Collapse
Affiliation(s)
- Jiping Zhang
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhou Y, Zhao L, Marks JD. Selection and characterization of cell binding and internalizing phage antibodies. Arch Biochem Biophys 2012; 526:107-13. [PMID: 22627065 DOI: 10.1016/j.abb.2012.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/09/2012] [Accepted: 05/13/2012] [Indexed: 12/25/2022]
Abstract
Many therapeutic targets are cell surface receptors, which can be challenging antigens for antibody generation. For many therapeutic applications, one needs antibodies that not only bind the cell surface receptor but also are internalized into the cell. This allows use of the antibody to deliver various payloads into the cell to achieve a therapeutic effect. Phage antibody technology has proven a powerful tool for the generation and optimization of human antibodies to any antigen. While applied to the generation of antibodies to purified proteins, it is possible to directly select cell binding and internalizing antibodies on cells. Potential advantages of this approach include: cell surface receptors are in native conformation on intact cells while this might not be so for recombinant proteins; antibodies can be selected for both cell binding and internalization properties; the antibodies can be used to identify their tumor associated antigens; and such antibodies can be used for human treatment directly since they are human in sequence. This review will discuss the factors that impact the successful selection of cell binding and internalizing antibodies. These factors include the cell types used for selection, the impact of different phage antibody library formats, and the specific selection protocols used.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|