1
|
Walton D, Gilbertson M, Cunningham M, Onorato D, Ringer J, Craft M. Monitoring Seroprevalence of Infectious Diseases in the Florida Panther (Puma concolor coryi). J Wildl Dis 2025; 61:88-99. [PMID: 39566539 DOI: 10.7589/jwd-d-24-00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/09/2024] [Indexed: 11/22/2024]
Abstract
Infectious diseases can have detrimental effects on wildlife populations, particularly those that persist at small sizes, have low genetic diversity, and are affected by fragmented habitat. One such example is the endangered Florida panther (Puma concolor coryi), which has been intensively managed since the early 1980s, with the current population ranging between 120 and 230 individuals. For more than three decades, panthers have been captured, demographics recorded, and blood samples collected to monitor for multiple infectious diseases; however, an updated comprehensive study of many of these pathogens has not occurred since 1991. Our goal was to identify temporal patterns and spatial clustering in seroprevalence; determine if the pathogens of interest tend to co-occur; and describe relationships between an individual's genetic assignment (admixed or canonical) and seropositivity. We analyzed serology data for eight pathogens representing different modes of transmission (direct, indirect, vector borne) and infection duration (acute, chronic) from 232 panthers collected between 1992 and 2017. Panthers held consistently high seropositivity for feline calicivirus (62.3%) and panleukopenia virus (79.7%) throughout the study, whereas feline herpesvirus and feline leukemia virus were at lower prevalence (3.1% and 2.4%, respectively), although neither had been noted prior to 1992. Panthers were frequently seropositive for canine distemper virus and feline immunodeficiency virus, and seroprevalence fluctuated through time. West Nile virus seropositivity increased over the study period following its introduction in North America in 1999. Panthers were consistently negative for feline coronavirus, which causes feline infectious peritonitis. Genetics and demographics (sex and age) had little influence on serostatus, and coexposure among pathogens did not tend to occur. Both feline immunodeficiency virus and feline leukemia virus appeared to have spatial clusters of seropositive individuals. Our findings enhance the understanding of pathogen exposure in panthers, informing and supporting ongoing surveillance efforts for timely detection and management of potential disease threats in vulnerable populations.
Collapse
Affiliation(s)
- Desiree Walton
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, Saint Paul, Minnesota 55108, USA
| | - Marie Gilbertson
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, Wisconsin 53706, USA
| | - Mark Cunningham
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 1105 SW Williston Road, Gainesville, Florida 32601, USA
| | - Dave Onorato
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 298 Sabal Palm Road, Naples, Florida 34114, USA
| | - Joshua Ringer
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 1105 SW Williston Road, Gainesville, Florida 32601, USA
- Foothills Wildlife Research Facility, Colorado Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, Colorado 80521, USA
| | - Meggan Craft
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, Minnesota 55108, USA
| |
Collapse
|
2
|
Gaboiphiwe K, Kabelo TI, Mosholombe PT, Hyera J, Fana EM, Masisi K, Lebani K. A Review of the Utility of Established Cell Lines for Isolation and Propagation of the Southern African Territories Serotypes of Foot-and-Mouth Disease Virus. Viruses 2024; 17:39. [PMID: 39861828 PMCID: PMC11768479 DOI: 10.3390/v17010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 01/27/2025] Open
Abstract
Cell culture underpins virus isolation and virus neutralisation tests, which are both gold-standard diagnostic methods for foot-and-mouth disease (FMD). Cell culture is also crucial for the propagation of inactivated foot-and-mouth disease virus (FMDV) vaccines. Both primary cells and cell lines are utilised in FMDV isolation and propagation. Widely used cell lines for FMDV and isolation and propagation include baby hamster kidney cells (BHK-21), swine kidney cells (IB-RS-2), foetal goat tongue (ZZ-R 127), foetal porcine kidney cells (LFBKvB6), bovine kidney cells (BK), human telomerase reverse transcriptase bovine thyroid (hTERT-BTY) and porcine kidney-originating PK-15 or SK 6 cell lines. This review highlights how different receptors and molecules-integrins, heparan sulphate (HS), and the Jumonji C-domain containing Protein 6 (JMJD6)-found on the surface of different cell types contribute to differences experienced with susceptibility and sensitivity of the cells to infection with different serotypes of FMDV. This review specifically focuses on Southern African territory (SAT) serotypes, which are unique to the Southern African context and are often under-investigated in cell line development for FMDV isolation and propagation.
Collapse
Affiliation(s)
- Kitsiso Gaboiphiwe
- World Organisation for Animal Health (WOAH) Foot-and-Mouth Disease Reference Laboratory, Botswana Vaccine Institute, Private Bag 0031, Gaborone, Botswana; (K.G.); (J.H.); (E.M.F.)
- Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana; (T.I.K.); (P.T.M.); (K.M.)
| | - Tshephang Iris Kabelo
- Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana; (T.I.K.); (P.T.M.); (K.M.)
| | - Petronella Thato Mosholombe
- Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana; (T.I.K.); (P.T.M.); (K.M.)
| | - Joseph Hyera
- World Organisation for Animal Health (WOAH) Foot-and-Mouth Disease Reference Laboratory, Botswana Vaccine Institute, Private Bag 0031, Gaborone, Botswana; (K.G.); (J.H.); (E.M.F.)
| | - Elliot Mpolokang Fana
- World Organisation for Animal Health (WOAH) Foot-and-Mouth Disease Reference Laboratory, Botswana Vaccine Institute, Private Bag 0031, Gaborone, Botswana; (K.G.); (J.H.); (E.M.F.)
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana; (T.I.K.); (P.T.M.); (K.M.)
| | - Kebaneilwe Lebani
- Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana; (T.I.K.); (P.T.M.); (K.M.)
| |
Collapse
|
3
|
Powell JD, Thomas MN, Anderson TK, Zeller MA, Gauger PC, Vincent Baker AL. 2018-2019 human seasonal H3N2 influenza A virus spillovers into swine with demonstrated virus transmission in pigs were not sustained in the pig population. J Virol 2024; 98:e0008724. [PMID: 39526773 DOI: 10.1128/jvi.00087-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Human seasonal H3 clade 3C3a influenza A viruses (IAV) were detected four times in U.S. pigs from commercial swine farms in Michigan, Illinois, and Virginia in 2019. To evaluate the relative risk of this spillover to the pig population, whole genome sequencing and phylogenetic characterization were conducted, and the results revealed that all eight viral gene segments were closely related to 2018-2019 H3N2 human seasonal IAV. Next, a series of in vitro viral kinetics, receptor binding, and antigenic characterization studies were performed using a representative A/swine/Virginia/A02478738/2018(H3N2) (SW/VA/19) isolate. Viral replication kinetic studies of SW/VA/19 demonstrated less efficient replication curves than all 10 swine H3N2 viruses tested but higher than three human H3N2 strains. Serial passaging experiments of SW/VA/19 in swine cells did not increase virus replication, but changes at HA amino acid positions 9 and 159 occurred. In swine transmission studies, wild-type SW/VA/19 was shed in nasal secretions and transmitted to all indirect contact pigs, whereas the human seasonal strain A/Switzerland/9715293/2013(H3N2) from the same 3C3a clade failed to transmit. SW/VA/19 induced minimal macroscopic and microscopic lung lesions. Collectively, these findings demonstrate that these human seasonal H3N2 3C3a-like viruses did not require reassortment with endemic swine IAV gene segments for virus shedding and transmission in pigs. Limited detections in the U.S. pig population in the subsequent period of time suggest a yet-unknown restriction factor likely limiting the spread of these viruses in the U.S. pig population.IMPORTANCEInterspecies human-to-swine IAV transmission occurs globally and contributes to increased IAV diversity in pig populations. We present data that a swine isolate from a 2018-2019 human-to-swine transmission event was shed for multiple days in challenged and contact pigs. By characterizing this introduction through bioinformatic, molecular, and animal experimental approaches, these findings better inform animal health practices and vaccine decision-making. Since wholly human seasonal H3N2 viruses in the United States were not previously identified as being transmissible in pigs (i.e., reverse zoonosis), these findings reveal that the interspecies barriers for transmission to pigs may not require significant changes to all human seasonal H3N2, although additional changes may be required for sustained transmission in swine populations.
Collapse
Affiliation(s)
- Joshua D Powell
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, USA
| | - Megan N Thomas
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, USA
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, USA
| | - Michael A Zeller
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, USA
| |
Collapse
|
4
|
Zeller MA, Carnevale de Almeida Moraes D, Ciacci Zanella G, Souza CK, Anderson TK, Baker AL, Gauger PC. Reverse zoonosis of the 2022-2023 human seasonal H3N2 detected in swine. NPJ VIRUSES 2024; 2:27. [PMID: 40295797 PMCID: PMC11721445 DOI: 10.1038/s44298-024-00042-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/04/2024] [Indexed: 04/30/2025]
Abstract
The Iowa State University Veterinary Diagnostic Laboratory detected nineteen human-to-swine reverse zoonoses of the 2022-2023 human seasonal H3N2 between November 2022 and November 2023. Cases from seven U.S. locations were detected: 3 Colorado, 1 Illinois, 1 Indiana, 2 Missouri, 7 North Carolina, 1 Ohio, and 1 Pennsylvania. One additional case was detected in Mexico and two cases were identified from Chile. Case samples were comprised of 4 nasal swabs and 15 oral fluids. Virus was successfully isolated from two of four nasal swab samples, but isolation from oral fluids was unsuccessful. The swine detections of H3 human viruses were classified to one of two human-seasonal H3 clades, 3C.2a1b.2a.2b and 3C.2a1b.2a.2a.1. Phylogenetic inference indicated at minimum 7 reverse zoonotic events occurred, with possible swine-to-swine transmission following the initial spillover. Twelve neuraminidase genes were sequenced, and nine were classified as human-seasonal H3N2 lineage: the remaining were endemic swine IAV NA genes from the N2.2002B, N2.1998, or the N1.Classical lineage, suggesting reassortment. The two viral isolates obtained from nasal swab samples were sequenced and were entirely human-lineage viruses. Seven swine samples with human seasonal H3 were sequenced and revealed co-detections with H1 1A.3.3.3 (gamma), with internal gene segments from both the triple reassortant internal gene (TRIG) and pandemic 2009 lineages. Serologic investigation of samples from swine production systems provided evidence for infection with human seasonal H3N2. One farm in the United States and four farms in Mexico had concurrent virologic evidence. The swine-isolated 3C.2a1b.2a.2b H3N2 was antigenically distinct from endemic 1990.4.A, 2010.1, and 2010.2 swine H3N2 lineages, but retained antigenic similarity to a recent human seasonal H3N2 (A/Darwin/6/2021). Pigs experimentally inoculated with a representative isolate demonstrated replication in the nose and lungs and minimal to mild macroscopic and microscopic lung lesions, but primary pigs did not transmit the virus to indirect contacts. If sustained in the pig population, this human seasonal H3 would represent the first new lineage detected in pigs the 2020 decade and present an emerging threat to swine health and production.
Collapse
Affiliation(s)
- Michael A Zeller
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, 50011-1134, USA.
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore.
| | | | - Giovana Ciacci Zanella
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, 50010, USA
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011-1134, USA
| | - Carine K Souza
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, 50011-1134, USA
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, 50010, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, 50010, USA
| | - Amy L Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, 50010, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, 50011-1134, USA
| |
Collapse
|
5
|
Hussain SS, Libby EF, Lever JEP, Tipper JL, Phillips SE, Mazur M, Li Q, Campos-Gómez J, Harrod KS, Rowe SM. ACE-2 Blockade & TMPRSS2 Inhibition Mitigate SARS-CoV-2 Severity Following Cigarette Smoke Exposure in Airway Epithelial Cells In Vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.23.600238. [PMID: 38979208 PMCID: PMC11230175 DOI: 10.1101/2024.06.23.600238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cigarette smoking is associated with COVID-19 prevalence and severity, but the mechanistic basis for how smoking alters SARS-CoV-2 pathogenesis is unknown. A potential explanation is that smoking alters the expression of the SARS-CoV-2 cellular receptor and point of entry, angiotensin converting enzyme-2 (ACE-2), and its cofactors including transmembrane protease serine 2 (TMPRSS2). We investigated the impact of cigarette smoking on the expression of ACE-2, TMPRSS2, and other known cofactors of SARS-CoV-2 infection and the resultant effects on infection severity in vitro. Cigarette smoke extract (CSE) exposure increased ACE-2 and TMPRSS2 mRNA expression compared to air control in ferret airway cells, Calu-3 cells, and primary human bronchial epithelial (HBE) cells derived from normal and COPD donors. CSE-exposed ferret airway cells inoculated with SARS-CoV-2 had a significantly higher intracellular viral load versus vehicle-exposed cells. Likewise, CSE-exposure increased both SARS-CoV-2 intracellular viral load and viral replication in both normal and COPD HBE cells over vehicle control. Apoptosis was increased in CSE-exposed, SARS-CoV-2-infected HBE cells. Knockdown of ACE-2 via an antisense oligonucleotide (ASO) reduced SARS-CoV-2 viral load and infection in CSE-exposed ferret airway cells that was augmented by co-administration of camostat mesylate to block TMPRSS2 activity. Smoking increases SARS-CoV-2 infection via upregulation of ACE2 and TMPRSS2.
Collapse
|
6
|
Ciacci Zanella G, Snyder CA, Arruda BL, Whitworth K, Green E, Poonooru RR, Telugu BP, Baker AL. Pigs lacking TMPRSS2 displayed fewer lung lesions and reduced inflammatory response when infected with influenza A virus. Front Genome Ed 2024; 5:1320180. [PMID: 38883409 PMCID: PMC11176495 DOI: 10.3389/fgeed.2023.1320180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/19/2023] [Indexed: 06/18/2024] Open
Abstract
Influenza A virus (IAV) infection is initiated by hemagglutinin (HA), a glycoprotein exposed on the virion's lipid envelope that undergoes cleavage by host cell proteases to ensure membrane fusion, entry into the host cells, and completion of the viral cycle. Transmembrane protease serine S1 member 2 (TMPRSS2) is a host transmembrane protease expressed throughout the porcine airway epithelium and is purported to play a major role in the HA cleavage process, thereby influencing viral pathogenicity and tissue tropism. Pigs are natural hosts of IAV and IAV disease causes substantial economic impact on the pork industry worldwide. Previous studies in mice demonstrated that knocking out expression of TMPRSS2 gene was safe and inhibited the spread of IAV after experimental challenge. Therefore, we hypothesized that knockout of TMPRSS2 will prevent IAV infectivity in the swine model. We investigated this hypothesis by comparing pathogenesis of an H1N1pdm09 virus challenge in wildtype (WT) control and in TMPRSS2 knockout (TMPRSS2 -/-) pigs. We demonstrated that TMPRSS2 was expressed in the respiratory tract in WT pigs with and without IAV infection. No differences in nasal viral shedding and lung lavage viral titers were observed between WT and TMPRSS2 -/- pigs. However, the TMPRSS2 -/- pig group had significantly less lung lesions and significant reductions in antiviral and proinflammatory cytokines in the lung. The virus titer results in our direct challenge model contradict prior studies in the murine animal model, but the reduced lung lesions and cytokine profile suggest a possible role for TMPRSS2 in the proinflammatory antiviral response. Further research is warranted to investigate the role of TMPRSS2 in swine IAV infection and disease.
Collapse
Affiliation(s)
- Giovana Ciacci Zanella
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Celeste A Snyder
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Bailey L Arruda
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Kristin Whitworth
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Erin Green
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Ravikanth Reddy Poonooru
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Bhanu P Telugu
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Amy L Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
7
|
Qousain Naqvi ST, Muhammad SA, Guo J, Zafar S, Ali A, Anderson LJ, Rostad CA, Bai B. Experimental trials of predicted CD4 + and CD8 + T-cell epitopes of respiratory syncytial virus. Front Immunol 2024; 15:1349749. [PMID: 38629077 PMCID: PMC11018974 DOI: 10.3389/fimmu.2024.1349749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Background Respiratory syncytial virus (RSV) is the most common cause of viral lower respiratory tract infections (LRTIs) in young children around the world and an important cause of LRTI in the elderly. The available treatments and FDA-approved vaccines for RSV only lessen the severity of the infection and are recommended for infants and elderly people. Methods We focused on developing a broad-spectrum vaccine that activates the immune system to directly combat RSV. The objective of this study is to identify CD4+ and CD8+ T-cell epitopes using an immunoinformatics approach to develop RSV vaccines. The efficacy of these peptides was validated through in-vitro and in-vivo studies involving healthy and diseased animal models. Results For each major histocompatibility complex (MHC) class-I and II, we found three epitopes of RSV proteins including F, G, and SH with an antigenic score of >0.5 and a projected SVM score of <5. Experimental validation of these peptides on female BALB/c mice was conducted before and after infection with the RSV A2 line 19f. We found that the 3RVMHCI (CD8+) epitope of the F protein showed significant results of white blood cells (19.72 × 103 cells/μl), neutrophils (6.01 × 103 cells/μl), lymphocytes (12.98 × 103 cells/μl), IgG antibodies (36.9 µg/ml), IFN-γ (86.96 ng/L), and granzyme B (691.35 pg/ml) compared to control at the second booster dose of 10 µg. Similarly, 4RVMHCII (CD4+) of the F protein substantially induced white blood cells (27.08 × 103 cells/μl), neutrophils (6.58 × 103 cells/μl), lymphocytes (16.64 × 103 cells/μl), IgG antibodies (46.13 µg/ml), IFN-γ (96.45 ng/L), and granzyme B (675.09 pg/ml). In-vitro studies showed that 4RVMHCII produced a significant level of antibodies in sera on day 45 comparable to mice infected with the virus. 4RVMHCII also induced high IFN-γ and IL-2 secretions on the fourth day of the challenge compared to the preinfectional stage. Conclusion In conclusion, epitopes of the F protein showed considerable immune response and are suitable for further validation.
Collapse
Affiliation(s)
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Jinlei Guo
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Sidra Zafar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Amjad Ali
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Larry J. Anderson
- Department of Pediatrics and Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Christina A. Rostad
- Department of Pediatrics and Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Baogang Bai
- School of Information and Technology, Wenzhou Business College, Wenzhou, Zhejiang, China
- Engineering Research Center of Intelligent Medicine, Wenzhou, Zhejiang Province, China
- The First School of Medical, School of Information and Engineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Hong SM, Ha EJ, Kim HW, Kim SJ, Ahn SM, An SH, Kim G, Kim S, Kwon HJ, Choi KS. Effects of G and SH Truncation on the Replication, Virulence, and Immunogenicity of Avian Metapneumovirus. Vaccines (Basel) 2024; 12:106. [PMID: 38276678 PMCID: PMC10818707 DOI: 10.3390/vaccines12010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Four mutants varying the length of the G and SH genes, including a G-truncated mutant (ΔG) and three G/SH-truncated mutants (ΔSH/G-1, ΔSH/G-2, and ΔSH/G-3), were generated via serially passaging the avian metapneumovirus strain SNU21004 into the cell lines Vero E6 and DF-1 and into embryonated chicken eggs. The mutant ΔG particles resembled parental virus particles except for the variance in the density of their surface projections. G and G/SH truncation significantly affected the viral replication in chickens' tracheal ring culture and in infected chickens but not in the Vero E6 cells. In experimentally infected chickens, mutant ΔG resulted in the restriction of viral replication and the attenuation of the virulence. The mutants ΔG and ΔSH/G-1 upregulated three interleukins (IL-6, IL-12, and IL-18) and three interferons (IFNα, IFNβ, and IFNγ) in infected chickens. In addition, the expression levels of innate immunity-related genes such as Mda5, Rig-I, and Lgp2, in BALB/c mice were also upregulated when compared to the parental virus. Immunologically, the mutant ΔG induced a strong, delayed humoral immune response, while the mutant ΔSH/G-1 induced no humoral immune response. Our findings indicate the potential of the mutant ΔG but not the mutant ΔSH/G-1 as a live attenuated vaccine candidate.
Collapse
Affiliation(s)
- Seung-Min Hong
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Eun-Jin Ha
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Ho-Won Kim
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Seung-Ji Kim
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Sun-Min Ahn
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| | - Se-Hee An
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea;
| | - Gun Kim
- Laboratory of Veterinary Pharmacology, Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 088026, Republic of Korea;
| | - Suji Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| | - Hyuk-Joon Kwon
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
- Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea
- Institutes of Green-bio Science Technology (GBST), Farm Animal Clinical Training and Research Center (FACTRC), Seoul National University, Pyeongchang 25354, Republic of Korea
- GeNiner Inc., Seoul 08826, Republic of Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 088026, Republic of Korea; (S.-M.H.); (E.-J.H.); (H.-W.K.); (S.-J.K.); (S.-M.A.)
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea;
| |
Collapse
|
9
|
Haach V, Bastos APA, Gava D, da Fonseca FN, Morés MAZ, Coldebella A, Franco AC, Schaefer R. A polyvalent virosomal influenza vaccine induces broad cellular and humoral immunity in pigs. Virol J 2023; 20:181. [PMID: 37587490 PMCID: PMC10428566 DOI: 10.1186/s12985-023-02153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Influenza A virus (IAV) is endemic in pigs globally and co-circulation of genetically and antigenically diverse virus lineages of subtypes H1N1, H1N2 and H3N2 is a challenge for the development of effective vaccines. Virosomes are virus-like particles that mimic virus infection and have proven to be a successful vaccine platform against several animal and human viruses. METHODS This study evaluated the immunogenicity of a virosome-based influenza vaccine containing the surface glycoproteins of H1N1 pandemic, H1N2 and H3N2 in pigs. RESULTS A robust humoral and cellular immune response was induced against the three IAV subtypes in pigs after two vaccine doses. The influenza virosome vaccine elicited hemagglutinin-specific antibodies and virus-neutralizing activity. Furthermore, it induced a significant maturation of macrophages, and proliferation of B lymphocytes, effector and central memory CD4+ and CD8+ T cells, and CD8+ T lymphocytes producing interferon-γ. Also, the vaccine demonstrated potential to confer long-lasting immunity until the market age of pigs and proved to be safe and non-cytotoxic to pigs. CONCLUSIONS This virosome platform allows flexibility to adjust the vaccine content to reflect the diversity of circulating IAVs in swine in Brazil. The vaccination of pigs may reduce the impact of the disease on swine production and the risk of swine-to-human transmission.
Collapse
Affiliation(s)
- Vanessa Haach
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, Rio Grande Do Sul, CEP 90035-003, Brazil
| | | | - Danielle Gava
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | - Francisco Noé da Fonseca
- Embrapa Sede, Parque Estação Biológica, Brasília, Distrito Federal, CEP 70770-901, Brazil
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | | | - Arlei Coldebella
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | - Ana Cláudia Franco
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, Rio Grande Do Sul, CEP 90035-003, Brazil
| | - Rejane Schaefer
- Embrapa Suínos e Aves, BR-153, Km 110, Concórdia, Santa Catarina, CEP 89715-899, Brazil.
| |
Collapse
|
10
|
Garcia G, Irudayam JI, Jeyachandran AV, Dubey S, Chang C, Castillo Cario S, Price N, Arumugam S, Marquez AL, Shah A, Fanaei A, Chakravarty N, Joshi S, Sinha S, French SW, Parcells MS, Ramaiah A, Arumugaswami V. Innate immune pathway modulator screen identifies STING pathway activation as a strategy to inhibit multiple families of arbo and respiratory viruses. Cell Rep Med 2023; 4:101024. [PMID: 37119814 DOI: 10.1016/j.xcrm.2023.101024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023]
Abstract
RNA viruses continue to remain a threat for potential pandemics due to their rapid evolution. Potentiating host antiviral pathways to prevent or limit viral infections is a promising strategy. Thus, by testing a library of innate immune agonists targeting pathogen recognition receptors, we observe that Toll-like receptor 3 (TLR3), stimulator of interferon genes (STING), TLR8, and Dectin-1 ligands inhibit arboviruses, Chikungunya virus (CHIKV), West Nile virus, and Zika virus to varying degrees. STING agonists (cAIMP, diABZI, and 2',3'-cGAMP) and Dectin-1 agonist scleroglucan demonstrate the most potent, broad-spectrum antiviral function. Furthermore, STING agonists inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and enterovirus-D68 (EV-D68) infection in cardiomyocytes. Transcriptome analysis reveals that cAIMP treatment rescue cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provides protection against CHIKV in a chronic CHIKV-arthritis mouse model. Our study describes innate immune signaling circuits crucial for RNA virus replication and identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Ignatius Irudayam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Swati Dubey
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina Chang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sebastian Castillo Cario
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nate Price
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sathya Arumugam
- Department of Mathematics, Government College Daman, Daman, Dadra and Nagar Haveli and Daman and Diu 396210, India
| | - Angelica L Marquez
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aayushi Shah
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amir Fanaei
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nikhil Chakravarty
- Department of Epidemiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shantanu Joshi
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sanjeev Sinha
- All India Institute of Medical Sciences, New Delhi, India
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark S Parcells
- Department of Animal and Food Sciences, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Arunachalam Ramaiah
- Tata Institute for Genetics and Society, Center at inStem, Bangalore 560065, India; City of Milwaukee Health Department, Milwaukee, WI 53202, USA.
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Garcia G, Irudayam JI, Jeyachandran AV, Dubey S, Chang C, Cario SC, Price N, Arumugam S, Marquez AL, Shah A, Fanaei A, Chakravarty N, Joshi S, Sinha S, French SW, Parcells M, Ramaiah A, Arumugaswami V. Broad-spectrum antiviral inhibitors targeting pandemic potential RNA viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524824. [PMID: 36711787 PMCID: PMC9882367 DOI: 10.1101/2023.01.19.524824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RNA viruses continue to remain a clear and present threat for potential pandemics due to their rapid evolution. To mitigate their impact, we urgently require antiviral agents that can inhibit multiple families of disease-causing viruses, such as arthropod-borne and respiratory pathogens. Potentiating host antiviral pathways can prevent or limit viral infections before escalating into a major outbreak. Therefore, it is critical to identify broad-spectrum antiviral agents. We have tested a small library of innate immune agonists targeting pathogen recognition receptors, including TLRs, STING, NOD, Dectin and cytosolic DNA or RNA sensors. We observed that TLR3, STING, TLR8 and Dectin-1 ligands inhibited arboviruses, Chikungunya virus (CHIKV), West Nile virus (WNV) and Zika virus, to varying degrees. Cyclic dinucleotide (CDN) STING agonists, such as cAIMP, diABZI, and 2',3'-cGAMP, and Dectin-1 agonist scleroglucan, demonstrated the most potent, broad-spectrum antiviral function. Comparative transcriptome analysis revealed that CHIKV-infected cells had larger number of differentially expressed genes than of WNV and ZIKV. Furthermore, gene expression analysis showed that cAIMP treatment rescued cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provided protection against CHIKV in a CHIKV-arthritis mouse model. Cardioprotective effects of synthetic STING ligands against CHIKV, WNV, SARS-CoV-2 and enterovirus D68 (EV-D68) infections were demonstrated using human cardiomyocytes. Interestingly, the direct-acting antiviral drug remdesivir, a nucleoside analogue, was not effective against CHIKV and WNV, but exhibited potent antiviral effects against SARS-CoV-2, RSV (respiratory syncytial virus), and EV-D68. Our study identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses, which can be rapidly deployed to prevent or mitigate future pandemics.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Ignatius Irudayam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arjit Vijay Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Swati Dubey
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina Chang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sebastian Castillo Cario
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nate Price
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sathya Arumugam
- Department of Mathematics, Government College Daman, U.T of DNH & DD, India
| | - Angelica L. Marquez
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aayushi Shah
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amir Fanaei
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nikhil Chakravarty
- Department of Epidemiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shantanu Joshi
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Sanjeev Sinha
- All India Institute of Medical Sciences, New Delhi, India
| | - Samuel W. French
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Mark Parcells
- Department of Animal and Food Sciences, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Arunachalam Ramaiah
- Tata Institute for Genetics and Society, Center at inStem, Bangalore 560065, India
- City of Milwaukee Health Department, Milwaukee, WI 53202, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Lead Contact
| |
Collapse
|
12
|
Mo JS, Abente EJ, Cardenas Perez M, Sutton TC, Cowan B, Ferreri LM, Geiger G, Gauger PC, Perez DR, Vincent Baker AL, Rajao DS. Transmission of Human Influenza A Virus in Pigs Selects for Adaptive Mutations on the HA Gene. J Virol 2022; 96:e0148022. [PMID: 36317880 PMCID: PMC9682980 DOI: 10.1128/jvi.01480-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022] Open
Abstract
Influenza A viruses (FLUAV) cause respiratory diseases in many host species, including humans and pigs. The spillover of FLUAV between swine and humans has been a concern for both public health and the swine industry. With the emergence of the triple reassortant internal gene (TRIG) constellation, establishment of human-origin FLUAVs in pigs has become more common, leading to increased viral diversity. However, little is known about the adaptation processes that are needed for a human-origin FLUAV to transmit and become established in pigs. We generated a reassortant FLUAV (VIC11pTRIG) containing surface gene segments from a human FLUAV strain and internal gene segments from the 2009 pandemic and TRIG FLUAV lineages and demonstrated that it can replicate and transmit in pigs. Sequencing and variant analysis identified three mutants that emerged during replication in pigs, which were mapped near the receptor binding site of the hemagglutinin (HA). The variants replicated more efficiently in differentiated swine tracheal cells compared to the virus containing the wildtype human-origin HA, and one of them was present in all contact pigs. These results show that variants are selected quickly after replication of human-origin HA in pigs, leading to improved fitness in the swine host, likely contributing to transmission. IMPORTANCE Influenza A viruses cause respiratory disease in several species, including humans and pigs. The bidirectional transmission of FLUAV between humans and pigs plays a significant role in the generation of novel viral strains, greatly impacting viral epidemiology. However, little is known about the evolutionary processes that allow human FLUAV to become established in pigs. In this study, we generated reassortant viruses containing human seasonal HA and neuraminidase (NA) on different constellations of internal genes and tested their ability to replicate and transmit in pigs. We demonstrated that a virus containing a common internal gene constellation currently found in U.S. swine was able to transmit efficiently via the respiratory route. We identified a specific amino acid substitution that was fixed in the respiratory contact pigs that was associated with improved replication in primary swine tracheal epithelial cells, suggesting it was crucial for the transmissibility of the human virus in pigs.
Collapse
Affiliation(s)
- Jong-suk Mo
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | | - Matias Cardenas Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Troy C. Sutton
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Lucas M. Ferreri
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Phillip C. Gauger
- Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
13
|
Garcia G, Jeyachandran AV, Wang Y, Irudayam JI, Cario SC, Sen C, Li S, Li Y, Kumar A, Nielsen-Saines K, French SW, Shah PS, Morizono K, Gomperts BN, Deb A, Ramaiah A, Arumugaswami V. Hippo signaling pathway activation during SARS-CoV-2 infection contributes to host antiviral response. PLoS Biol 2022; 20:e3001851. [PMID: 36346780 PMCID: PMC9642871 DOI: 10.1371/journal.pbio.3001851] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited. In this study, we have uncovered a critical role for the evolutionarily conserved Hippo signaling pathway in COVID-19 pathogenesis. Given the complexity of COVID-19-associated cell injury and immunopathogenesis processes, we investigated Hippo pathway dynamics in SARS-CoV-2 infection by utilizing COVID-19 lung samples and human cell models based on pluripotent stem cell-derived cardiomyocytes (PSC-CMs) and human primary lung air-liquid interface (ALI) cultures. SARS-CoV-2 infection caused activation of the Hippo signaling pathway in COVID-19 lung and in vitro cultures. Both parental and Delta variant of concern (VOC) strains induced Hippo pathway. The chemical inhibition and gene knockdown of upstream kinases MST1/2 and LATS1 resulted in significantly enhanced SARS-CoV-2 replication, indicating antiviral roles. Verteporfin, a pharmacological inhibitor of the Hippo pathway downstream transactivator, YAP, significantly reduced virus replication. These results delineate a direct antiviral role for Hippo signaling in SARS-CoV-2 infection and the potential for this pathway to be pharmacologically targeted to treat COVID-19.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Yijie Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Joseph Ignatius Irudayam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Sebastian Castillo Cario
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Chandani Sen
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Shen Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Yunfeng Li
- Translational Pathology Core Laboratory, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Karin Nielsen-Saines
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Samuel W. French
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, United States of America
| | - Priya S. Shah
- Department of Chemical Engineering, University of California, Davis, California, United States of America
| | - Kouki Morizono
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Brigitte N. Gomperts
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, United States of America
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
- California Nanosystems Institute, UCLA, Los Angeles, California, United States of America
- Department of Molecular, Cell and Developmental Biology, Division of Life Sciences, University of California, Los Angeles, California, United States of America
| | - Arunachalam Ramaiah
- Tata Institute for Genetics and Society, Centre at inStem, Bangalore, India
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
- Section of Cell and Developmental Biology, University of California, San Diego, California, United States of America
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, United States of America
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California, United States of America
- California Nanosystems Institute, UCLA, Los Angeles, California, United States of America
| |
Collapse
|
14
|
Feng T, Li M, Zhang L, Li S, Yang Z, Kang L, Guo Y, Kong L, Wang T. Immunity of two novel hepatitis C virus polyepitope vaccines. Vaccine 2022; 40:6277-6287. [PMID: 36150975 DOI: 10.1016/j.vaccine.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Hepatitis C virus (HCV) infection remains a serious public health burden around the world. So far there is no effective vaccine against this virus. Neutralizing antibody (NAb) responses to the epitopes within HCV E1 and E2 proteins are related to the resolution of hepatitis C infection. E. coli heat-labile enterotoxin B subunit (LTB) has been described as potent immunity adjuvants. In this study, we constructed recombinant pET vectors: pET-R9-Bp (B cell polyepitopes) expressing 7 epitopes from HCV E1 and E2 proteins including R9 (E2384-411aa)-Bp (E1313-327aa-E2396-424aa-E2436-447aa-E2523-540aa-E2610-627aa-E2631-648aa) and pET-LTB-R9-Bp expressing LTB adjuvant in combination with R9-Bp. Recombinant proteins R9-Bp and LTB-R9-Bp were expressed successfully in E. coli and purified by the Ni-NTA column. Both R9-Bp and LTB-R9-Bp in BALB/c mice induced robust humoral immune response in the context of intraperitoneal or intramuscular immunization but not oral immunization. Intraperitoneal administration of LTB-R9-Bp induced a higher antibody titer (peak titer: 1:341000) than that of R9-Bp (peak titer: 1:85000) after the second boost (P = 0.0036 or 0.0002). However, comparable antibody peak titers were elicited for both R9-Bp and LTB-R9-Bp in intramuscular immunization albeit with significant difference (P = 0.0032) a week after the second boost. In addition, both R9-Bp and LTB-R9-Bp induced the secretion of cytokines including IFN-γ and IL-4 at similar levels. anti-sera induced by both R9-Bp and LTB-R9-Bp recognized native HCV E1 and E2 proteins. Moreover, these HCV-specific antisera inhibited significantly the entry of HCV (P < 0.0001). Taken together, these findings showed that E. coli-based both R9-Bp and LTB-R9-Bp could become promising HCV vaccines.
Collapse
Affiliation(s)
- Tian Feng
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mingzhi Li
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lirong Zhang
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Sha Li
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zibing Yang
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lumei Kang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Center for Laboratory Animal Science, Nanchang University, Nanchang, Jiangxi, China
| | - Yunli Guo
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingbao Kong
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Ting Wang
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
15
|
Olukitibi TA, Ao Z, Azizi H, Mahmoudi M, Coombs K, Kobasa D, Kobinger G, Yao X. Development and characterization of influenza M2 ectodomain and/or hemagglutinin stalk-based dendritic cell-targeting vaccines. Front Microbiol 2022; 13:937192. [PMID: 36003947 PMCID: PMC9393625 DOI: 10.3389/fmicb.2022.937192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
A universal influenza vaccine is required for broad protection against influenza infection. Here, we revealed the efficacy of novel influenza vaccine candidates based on Ebola glycoprotein dendritic cell (DC)-targeting domain (EΔM) fusion protein technology. The four copies of ectodomain matrix protein of influenza (tM2e) or M2e hemagglutinin stalk (HA stalk) peptides (HM2e) were fused with EΔM to generate EΔM-tM2e or EΔM-HM2e, respectively. We demonstrated that EΔM-HM2e- or EΔM-tM2e-pseudotyped viral particles can efficiently target DC/macrophages in vitro and induced significantly high titers of anti-HA and/or anti-M2e antibodies in mice. Significantly, the recombinant vesicular stomatitis virus (rVSV)-EΔM-tM2e and rVSV-EΔM-HM2e vaccines mediated rapid and potent induction of M2 or/and HA antibodies in mice sera and mucosa. Importantly, vaccination of rVSV-EΔM-tM2e or rVSV-EΔM-HM2e protected mice from influenza H1N1 and H3N2 challenges. Taken together, our study suggests that rVSV-EΔM-tM2e and rVSV-EΔM-HM2e are promising candidates that may lead to the development of a universal vaccine against different influenza strains.
Collapse
Affiliation(s)
- Titus Abiola Olukitibi
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hiva Azizi
- Centre de Recherche en Infectiologie de l’Université Laval, Centre Hospitalier de l’Université Laval, Québec, QC, Canada
| | - Mona Mahmoudi
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Coombs
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Darwyn Kobasa
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Gary Kobinger
- Centre de Recherche en Infectiologie de l’Université Laval, Centre Hospitalier de l’Université Laval, Québec, QC, Canada
- Galveston National Laboratory, 301 University Blvd., Galveston, TX, United States
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Xiaojian Yao,
| |
Collapse
|
16
|
Zhu L, Liu S, Zhuo Z, Lin Y, Zhang Y, Wang X, Kong L, Wang T. Expression and immunogenicity of nsp10 protein of porcine epidemic diarrhea virus. Res Vet Sci 2022; 144:34-43. [PMID: 35038674 PMCID: PMC8721950 DOI: 10.1016/j.rvsc.2021.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus, causes lethal watery diarrhea to the piglets, which poses significant economic losses and public health concerns. The nsp10 protein of PEDV is essential regulatory subunits that are critical for virus replication. Since PEDV nsp10 is a crucial regulator of viral RNA synthesis, it is promising that nsp10 might become anti-virus drugs target or candidate for rapid diagnosis of PEDV infection. In this study, the PEDV nsp10 was inserted into pMAL-c2x-MBP / pET-28a vector, efficiently and stably expressed in E.coli system. Then the purified nsp10 protein was found to mediate potent antibody responses in immunized mice. The antibodies of immunized mice and PEDV infection swine strongly recognized purified nsp10 protein from cell lysates. Furthermore, cytokines test revealed that the expression of IL-2, IL-4, IL-10, TNF-α, IFN-γ were significantly higher than those in control group, indicated that purified nsp10 protein induce the cellular immune response mechanism in mice. Using modified seroneutralization test, we also demonstrated that sera from nsp10-immunized mice inhibited PEDV replication to some extent. These findings suggest that nsp10 has a high immunogenicity. This study may have implications for future development of PEDV detection or anti-virus drugs for swine.
Collapse
Affiliation(s)
- Liting Zhu
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shiguo Liu
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zewen Zhuo
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yanxi Lin
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yanni Zhang
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Xiaoling Wang
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
17
|
Garcia G, Wang Y, Ignatius Irudayam J, Jeyachandran AV, Cario SC, Sen C, Li S, Li Y, Kumar A, Nielsen-Saines K, French SW, Shah PS, Morizono K, Gomperts B, Deb A, Ramaiah A, Arumugaswami V. Hippo Signaling Pathway Activation during SARS-CoV-2 Infection Contributes to Host Antiviral Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.07.487520. [PMID: 35441167 PMCID: PMC9016637 DOI: 10.1101/2022.04.07.487520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2, responsible for the COVID-19 pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited. In this study, we have uncovered a critical role for the evolutionarily conserved Hippo signaling pathway in COVID-19 pathogenesis. Given the complexity of COVID-19 associated cell injury and immunopathogenesis processes, we investigated Hippo pathway dynamics in SARS-CoV-2 infection by utilizing COVID-19 lung samples, and human cell models based on pluripotent stem cell-derived cardiomyocytes (PSC-CMs) and human primary lung air-liquid interface (ALI) cultures. SARS-CoV-2 infection caused activation of the Hippo signaling pathway in COVID-19 lung and in vitro cultures. Both parental and Delta variant of concern (VOC) strains induced Hippo pathway. The chemical inhibition and gene knockdown of upstream kinases MST1/2 and LATS1 resulted in significantly enhanced SARS-CoV-2 replication, indicating antiviral roles. Verteporfin a pharmacological inhibitor of the Hippo pathway downstream transactivator, YAP, significantly reduced virus replication. These results delineate a direct antiviral role for Hippo signaling in SARS-CoV-2 infection and the potential for this pathway to be pharmacologically targeted to treat COVID-19.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yijie Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Joseph Ignatius Irudayam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Sebastian Castillo Cario
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Chandani Sen
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Shen Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Yunfeng Li
- Translational Pathology Core Laboratory, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI USA
| | - Karin Nielsen-Saines
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Samuel W. French
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Priya S Shah
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA
| | - Kouki Morizono
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Brigitte Gomperts
- UCLA Children’s Discovery and Innovation Institute, Mattel Children’s Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA.,Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.,California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Arunachalam Ramaiah
- Tata Institute for Genetics and Society, Centre at inStem, Bangalore, KA 560065, India,Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.,Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA.,To whom correspondence should be addressed: Vaithilingaraja Arumugaswami, DVM, PhD., 10833 Le Conte Ave, CHS B2-049A, Los Angeles, California 90095, Phone: (310) 794-9568, ; Arunachalam Ramaiah, PhD., 321 Steinhaus Hall, UCI, Irvine, CA 92697-2525,
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.,Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.,California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA.,Lead Contact,To whom correspondence should be addressed: Vaithilingaraja Arumugaswami, DVM, PhD., 10833 Le Conte Ave, CHS B2-049A, Los Angeles, California 90095, Phone: (310) 794-9568, ; Arunachalam Ramaiah, PhD., 321 Steinhaus Hall, UCI, Irvine, CA 92697-2525,
| |
Collapse
|
18
|
Development of a Universal Epitope-Based Influenza Vaccine and Evaluation of Its Effectiveness in Mice. Vaccines (Basel) 2022; 10:vaccines10040534. [PMID: 35455283 PMCID: PMC9026828 DOI: 10.3390/vaccines10040534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/10/2022] Open
Abstract
Vaccination is an effective and economically viable means of protection against the influenza virus, but due to rapid viral evolution, modern seasonal vaccines are not effective enough. Next-generation vaccines are designed to provide protection against a wide range of influenza virus strains, including pandemic variants. In our work, we made an epitope-based universal vaccine, rMVA-k1-k2, against the influenza virus based on the modified vaccinia Ankara (MVA) vector and using our own algorithms to select epitopes from conserved fragments of the NP, M1 and HA proteins of influenza A and B. We show that double immunization protects mice with a 67% or greater efficiency against viral influenza pneumonia when infected with various strains of the H1N1, H2N2, H3N2 and H5N1 subtypes of influenza A. In animals, the level of protection provided by the rMVA-k1-k2 vaccine was comparable to that provided by the universal M001 and MVA-NP+M1 (Invictus) vaccines, which have shown success in clinical trials, against strains of the H1N1 and H3N2 subtypes.
Collapse
|
19
|
Welch M, Krueger K, Zhang J, Piñeyro P, Magtoto R, Wang C, Giménez-Lirola L, Strait E, Mogler M, Gauger P. Detection of porcine parainfluenza virus type-1 antibody in swine serum using whole-virus ELISA, indirect fluorescence antibody and virus neutralizing assays. BMC Vet Res 2022; 18:110. [PMID: 35313864 PMCID: PMC8935814 DOI: 10.1186/s12917-022-03196-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine parainfluenza virus 1 (PPIV-1) is a respiratory virus in the family Paramyxoviridae and genus Respirovirus. It is closely related to bovine parainfluenza virus 3, human parainfluenza virus 1, and Sendai virus. Recent reports suggest PPIV-1 is widespread in swine herds in the United States and abroad. However, seroprevalence studies and the ability to evaluate cross neutralization between heterologous strains is not possible without validated antibody assays. This study describes the development of an indirect fluorescence antibody (IFA) assay, a whole virus enzyme-linked immunosorbent assay (wv-ELISA) and a serum virus neutralization (SVN) assay for the detection of PPIV-1 antibodies using 521 serum samples collected from three longitudinal studies and two different challenge strains in swine. RESULTS The area under the curve (AUC) of the wv-ELISA (95% CI, 0.93-0.98) was significantly higher (p = 0.03) compared to the IFA (95% CI, 0.90-0.96). However, no significant difference was observed between the IFA and wv-ELISA when compared to the SVN (95% CI, 0.92-0.97). All three assays demonstrated relatively uniform results at a 99% true negative rate, with only 11 disagreements observed between the IFA, wv-ELISA and SVN. CONCLUSIONS All three serology assays detected PPIV-1 antibody in swine serum of known status that was collected from experimental studies. The SVN detected seroconversion earlier compared to the IFA and the wv-ELISA. Both the wv-ELISA and the SVN had similar diagnostic performance, while the IFA was not as sensitive as the wv-ELISA. All three assays are considered valid for routine diagnostic use. These assays will be important for future studies to screen seronegative swine for research, determine PPIV-1 seroprevalence, and to evaluate vaccine efficacy against PPIV-1 under experimental and field conditions.
Collapse
Affiliation(s)
- Michael Welch
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Karen Krueger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Ronaldo Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA.,Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, 2438 Osborn Drive, Ames, IA, 50011, USA
| | - Luis Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA
| | - Erin Strait
- Merck Animal Health, Ames, IA, USA.,Ceva Animal Health, LLC, 8901 Rosehill Road, Lenexa, KS, 66215, USA
| | | | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA, 50011, USA.
| |
Collapse
|
20
|
Skrobarczyk JW, Martin CL, Bhatia SS, Pillai SD, Berghman LR. Electron-Beam Inactivation of Human Rotavirus (HRV) for the Production of Neutralizing Egg Yolk Antibodies. Front Immunol 2022; 13:840077. [PMID: 35359996 PMCID: PMC8964080 DOI: 10.3389/fimmu.2022.840077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
Electron beam (eBeam) inactivation of pathogens is a commercially proven technology in multiple industries. While commonly used in a variety of decontamination processes, this technology can be considered relatively new to the pharmaceutical industry. Rotavirus is the leading cause of severe gastroenteritis among infants, children, and at-risk adults. Infections are more severe in developing countries where access to health care, clean food, and water is limited. Passive immunization using orally administered egg yolk antibodies (chicken IgY) is proven for prophylaxis and therapy of viral diarrhea, owing to the stability of avian IgY in the harsh gut environment. Since preservation of viral antigenicity is critical for successful antibody production, the aim of this study was to demonstrate the effective use of electron beam irradiation as a method of pathogen inactivation to produce rotavirus-specific neutralizing egg yolk antibodies. White leghorn hens were immunized with the eBeam-inactivated viruses every 2 weeks until serum antibody titers peaked. The relative antigenicity of eBeam-inactivated Wa G1P[8] human rotavirus (HRV) was compared to live virus, thermally, and chemically inactivated virus preparations. Using a sandwich ELISA (with antibodies against recombinant VP8 for capture and detection of HRV), the live virus was as expected, most immunoreactive. The eBeam-inactivated HRV’s antigenicity was better preserved when compared to thermally and chemically inactivated viruses. Additionally, both egg yolk antibodies and serum-derived IgY were effective at neutralizing HRV in vitro. Electron beam inactivation is a suitable method for the inactivation of HRV and other enteric viruses for use in both passive and active immunization strategies.
Collapse
Affiliation(s)
- Jill W. Skrobarczyk
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
| | - Cameron L. Martin
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
| | - Sohini S. Bhatia
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
- National Center for Electron Beam Research, Texas A&M University, College Station, TX, United States
| | - Suresh D. Pillai
- National Center for Electron Beam Research, Texas A&M University, College Station, TX, United States
- Department of Food Science and Technology, Texas A&M University, College Station, TX, United States
| | - Luc R. Berghman
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
- *Correspondence: Luc R. Berghman,
| |
Collapse
|
21
|
Salazar-García M, Acosta-Contreras S, Rodríguez-Martínez G, Cruz-Rangel A, Flores-Alanis A, Patiño-López G, Luna-Pineda VM. Pseudotyped Vesicular Stomatitis Virus-Severe Acute Respiratory Syndrome-Coronavirus-2 Spike for the Study of Variants, Vaccines, and Therapeutics Against Coronavirus Disease 2019. Front Microbiol 2022; 12:817200. [PMID: 35095820 PMCID: PMC8795712 DOI: 10.3389/fmicb.2021.817200] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
World Health Organization (WHO) has prioritized the infectious emerging diseases such as Coronavirus Disease (COVID-19) in terms of research and development of effective tests, vaccines, antivirals, and other treatments. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), the etiological causative agent of COVID-19, is a virus belonging to risk group 3 that requires Biosafety Level (BSL)-3 laboratories and the corresponding facilities for handling. An alternative to these BSL-3/-4 laboratories is to use a pseudotyped virus that can be handled in a BSL-2 laboratory for study purposes. Recombinant Vesicular Stomatitis Virus (VSV) can be generated with complementary DNA from complete negative-stranded genomic RNA, with deleted G glycoprotein and, instead, incorporation of other fusion protein, like SARS-CoV-2 Spike (S protein). Accordingly, it is called pseudotyped VSV-SARS-CoV-2 S. In this review, we have described the generation of pseudotyped VSV with a focus on the optimization and application of pseudotyped VSV-SARS-CoV-2 S. The application of this pseudovirus has been addressed by its use in neutralizing antibody assays in order to evaluate a new vaccine, emergent SARS-CoV-2 variants (delta and omicron), and approved vaccine efficacy against variants of concern as well as in viral fusion-focused treatment analysis that can be performed under BSL-2 conditions.
Collapse
Affiliation(s)
- Marcela Salazar-García
- Laboratorio de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Samyr Acosta-Contreras
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | | | - Armando Cruz-Rangel
- Laboratorio de Bioquímica de Enfermedades Crónicas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alejandro Flores-Alanis
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Genaro Patiño-López
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Victor M. Luna-Pineda
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| |
Collapse
|
22
|
Rahman Siregar A, Gärtner S, Götting J, Stegen P, Kaul A, Schulz TF, Pöhlmann S, Winkler M. A Recombinant System and Reporter Viruses for Papiine Alphaherpesvirus 2. Viruses 2022; 14:v14010091. [PMID: 35062295 PMCID: PMC8778148 DOI: 10.3390/v14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Primate simplex viruses, including Herpes simplex viruses 1 and 2, form a group of closely related herpesviruses, which establish latent infections in neurons of their respective host species. While neuropathogenic infections in their natural hosts are rare, zoonotic transmission of Macacine alphaherpesvirus 1 (McHV1) from macaques to humans is associated with severe disease. Human infections with baboon-derived Papiine alphaherpesvirus 2 (PaHV2) have not been reported, although PaHV2 and McHV1 share several biological properties, including neuropathogenicity in mice. The reasons for potential differences in PaHV2 and McHV1 pathogenicity are presently not understood, and answering these questions will require mutagenic analysis. Here, we report the development of a recombinant system, which allows rescue of recombinant PaHV2. In addition, we used recombineering to generate viruses carrying reporter genes (Gaussia luciferase or enhanced green fluorescent protein), which replicate with similar efficiency as wild-type PaHV2. We demonstrate that these viruses can be used to analyze susceptibility of cells to infection and inhibition of infection by neutralizing antibodies and antiviral compounds. In summary, we created a recombinant system for PaHV2, which in the future will be invaluable for molecular analyses of neuropathogenicity of PaHV2.
Collapse
Affiliation(s)
- Abdul Rahman Siregar
- German Primate Center, Infection Biology Unit, Leibniz Institute for Primate Research, 37077 Gottingen, Germany; (A.R.S.); (S.G.); (P.S.); (A.K.); (S.P.)
- Faculty of Biology and Psychology, University Göttingen, 30073 Gottingen, Germany
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Sabine Gärtner
- German Primate Center, Infection Biology Unit, Leibniz Institute for Primate Research, 37077 Gottingen, Germany; (A.R.S.); (S.G.); (P.S.); (A.K.); (S.P.)
| | - Jasper Götting
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (J.G.); (T.F.S.)
| | - Philipp Stegen
- German Primate Center, Infection Biology Unit, Leibniz Institute for Primate Research, 37077 Gottingen, Germany; (A.R.S.); (S.G.); (P.S.); (A.K.); (S.P.)
| | - Artur Kaul
- German Primate Center, Infection Biology Unit, Leibniz Institute for Primate Research, 37077 Gottingen, Germany; (A.R.S.); (S.G.); (P.S.); (A.K.); (S.P.)
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (J.G.); (T.F.S.)
| | - Stefan Pöhlmann
- German Primate Center, Infection Biology Unit, Leibniz Institute for Primate Research, 37077 Gottingen, Germany; (A.R.S.); (S.G.); (P.S.); (A.K.); (S.P.)
- Faculty of Biology and Psychology, University Göttingen, 30073 Gottingen, Germany
| | - Michael Winkler
- German Primate Center, Infection Biology Unit, Leibniz Institute for Primate Research, 37077 Gottingen, Germany; (A.R.S.); (S.G.); (P.S.); (A.K.); (S.P.)
- Correspondence: ; Tel.: +49-551-3851383
| |
Collapse
|
23
|
Volk A, Covini-Souris C, Kuehnel D, De Mey C, Römisch J, Schmidt T. SARS-CoV-2 Neutralization in Convalescent Plasma and Commercial Lots of Plasma-Derived Immunoglobulin. BioDrugs 2022; 36:41-53. [PMID: 34843105 PMCID: PMC8628143 DOI: 10.1007/s40259-021-00511-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Patients with primary or secondary immunodeficiency (PID or SID) face increased insecurity and discomfort in the light of the COVID-19 pandemic, not knowing if and to what extent their comorbidities may impact the course of a potential SARS-CoV-2 infection. Furthermore, recently available vaccination options might not be amenable or effective for all patients in this heterogeneous population. Therefore, these patients often rely on passive immunization with plasma-derived, intravenous or subcutaneous immunoglobulin (IVIG/SCIG). Whether the ongoing COVID-19 pandemic and/or the progress in vaccination programs lead to increased and potentially protective titers in plasma-derived immunoglobulins (Ig) indicated (e.g., for humoral immunodeficiency) remains a pressing question for this patient population. PURPOSE We investigated SARS-CoV-2 reactivity of US plasma-derived IVIG/SCIG products from the end of 2020 until June 2021 as well as in convalescent plasma (CP) from May 2020 to August 2020 to determine whether potentially neutralizing antibody titers may be present. METHODS Final containers of IVIG/SCIG and CP donations were analyzed by commercial ELISA for anti-SARS-CoV-2 S1-receptor binding domain (RBD) IgG as well as microneutralization assay using a patient-derived SARS-CoV-2 (D614G) isolate. Neutralization capacities of 313 single plasma donations and 119 plasma-derived IVIG/SCIG lots were determined. Results obtained from both analytical methods were normalized against the WHO International Standard. Finally, based on dense pharmacokinetic profiles of an IVIG preparation from previously published investigations, possible steady-state plasma levels of SARS-CoV-2 neutralization capacities were approximated based on currently measured anti-SARS-CoV-2 potencies in IVIG/SCIG preparations. RESULTS CP donations presented with high variability with regards to anti-SARS-CoV-2 reactivity in ELISA as well as in neutralization testing. While approximately 50% of convalescent donations were not/low neutralizing, approximately 10% were at or above 600 IU/mL. IVIG/SCIG lots derived from pre-pandemic plasma donations did not show neutralizing capacities for SARS-CoV-2. Lots produced between December 2020 and June 2021 entailing plasma donations after the emergence of SARS-CoV-2 showed a rapid and constant increase in anti-SARS-CoV-2 reactivity and neutralization capacity over time. While lot-to-lot variability was substantial, neutralization capacity increased from a mean of 21 IU/mL in December 2020 to 506 IU/mL in June 2021 with a maximum of 864 IU/mL for the most recent lots. Pharmacokinetic extrapolations, based on non-compartmental superposition principles using steady-state reference profiles from previously published pharmacokinetic investigations on IVIG in PID, yielded potential steady-state trough plasma levels of 16 IU/mL of neutralizing SARS-CoV-2 IgG based on the average final container concentration from May 2021 of 216 IU/mL. Maximum extrapolated trough levels could reach 64 IU/mL based on the latest maximal final container potency tested in June 2021. CONCLUSIONS SARS-CoV-2 reactivity and neutralization capacity in IVIG/SCIG produced from US plasma rapidly and in part exponentially increased in the first half of 2021. The observed increase of final container potencies is likely trailing the serological status of the US donor population in terms of COVID-19 convalescence and vaccination by at least 5 months due to production lead times and should in principle continue at least until Fall 2021. In summary, the data support rapidly increasing levels of anti-SARS-CoV-2 antibodies in IVIG/SCIG products, implicating that a certain level of protection could be possible against COVID-19 for regularly substituted PID/SID patients. Nevertheless, more research is still needed to confirm which plasma levels are needed to provide protection against SARS-CoV-2 infection in immune-compromised patients.
Collapse
Affiliation(s)
- Andreas Volk
- Virus and Prion Validation, Octapharma Biopharmaceuticals GmbH, Frankfurt, Germany.
| | | | - Denis Kuehnel
- Virus and Prion Validation, Octapharma Biopharmaceuticals GmbH, Frankfurt, Germany
| | | | - Jürgen Römisch
- R&D Plasma, Octapharma Pharmazeutika Produktionsgesellschaft m.b.H., Vienna, Austria
| | - Torben Schmidt
- Virus and Prion Validation, Octapharma Biopharmaceuticals GmbH, Frankfurt, Germany
| |
Collapse
|
24
|
Pathogenesis of a novel porcine parainfluenza virus type 1 isolate in conventional and colostrum deprived/caesarean derived pigs. Virology 2021; 563:88-97. [PMID: 34500147 DOI: 10.1016/j.virol.2021.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022]
Abstract
Two experimental challenge studies were conducted to evaluate the pathogenesis of a porcine parainfluenza virus type 1 (PPIV-1) isolate. Four-week-old conventional (CON) pigs were challenged in Study 1 and six-week-old caesarean derived/colostrum deprived (CDCD) pigs were challenged in Study 2. Results indicate that PPIV-1 shedding and replication occur in the upper and lower respiratory tracts of CON and CDCD pigs as detected by RT-qPCR and immunohistochemistry. Mild macroscopic lung lesions were observed in CON pigs but not in CDCD pigs. Microscopic lung lesions were mild and consisted of peribronchiolar lymphocytic cuffing and epithelial proliferation in CON and CDCD pigs. Serum neutralizing antibodies were detected in the CON and CDCD pigs by 14 and 7 days post inoculation, respectively. This study provides evidence that in spite of PPIV-1 infection and replication in challenged swine, significant clinical respiratory disease was not observed.
Collapse
|
25
|
Mulay A, Konda B, Garcia G, Yao C, Beil S, Villalba JM, Koziol C, Sen C, Purkayastha A, Kolls JK, Pociask DA, Pessina P, de Aja JS, Garcia-de-Alba C, Kim CF, Gomperts B, Arumugaswami V, Stripp BR. SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery. Cell Rep 2021; 35:109055. [PMID: 33905739 PMCID: PMC8043574 DOI: 10.1016/j.celrep.2021.109055] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/09/2020] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is the latest respiratory pandemic caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). Although infection initiates in the proximal airways, severe and sometimes fatal symptoms of the disease are caused by infection of the alveolar type 2 (AT2) cells of the distal lung and associated inflammation. In this study, we develop primary human lung epithelial infection models to understand initial responses of proximal and distal lung epithelium to SARS-CoV-2 infection. Differentiated air-liquid interface (ALI) cultures of proximal airway epithelium and alveosphere cultures of distal lung AT2 cells are readily infected by SARS-CoV-2, leading to an epithelial cell-autonomous proinflammatory response with increased expression of interferon signaling genes. Studies to validate the efficacy of selected candidate COVID-19 drugs confirm that remdesivir strongly suppresses viral infection/replication. We provide a relevant platform for study of COVID-19 pathobiology and for rapid drug screening against SARS-CoV-2 and emergent respiratory pathogens.
Collapse
Affiliation(s)
- Apoorva Mulay
- Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bindu Konda
- Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Changfu Yao
- Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen Beil
- Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jaquelyn M Villalba
- Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; California State University, Long Beach, CA, USA
| | - Colin Koziol
- Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chandani Sen
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Arunima Purkayastha
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jay K Kolls
- Tulane School of Medicine, New Orleans, LA 70112, USA
| | | | - Patrizia Pessina
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Julio Sainz de Aja
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brigitte Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad, Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad, Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| | - Barry R Stripp
- Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
26
|
Müller L, Ostermann PN, Walker A, Wienemann T, Mertens A, Adams O, Andree M, Hauka S, Lübke N, Keitel V, Drexler I, Di Cristanziano V, Hermsen DF, Kaiser R, Boege F, Klein F, Schaal H, Timm J, Senff T. Sensitivity of anti-SARS-CoV-2 serological assays in a high-prevalence setting. Eur J Clin Microbiol Infect Dis 2021; 40:1063-1071. [PMID: 33534090 PMCID: PMC7856849 DOI: 10.1007/s10096-021-04169-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/17/2021] [Indexed: 12/18/2022]
Abstract
Evaluation and power of seroprevalence studies depend on the performed serological assays. The aim of this study was to assess four commercial serological tests from EUROIMMUN, DiaSorin, Abbott, and Roche as well as an in-house immunofluorescence and neutralization test for their capability to identify SARS-CoV-2 seropositive individuals in a high-prevalence setting. Therefore, 42 social and working contacts of a German super-spreader were tested. Consistent with a high-prevalence setting, 26 of 42 were SARS-CoV-2 seropositive by neutralization test (NT), and immunofluorescence test (IFT) confirmed 23 of these 26 positive test results (NT 61.9% and IFT 54.8% seroprevalence). Four commercial assays detected anti-SARS-CoV-2 antibodies in 33.3-40.5% individuals. Besides an overall discrepancy between the NT and the commercial assays regarding their sensitivity, this study revealed that commercial SARS-CoV-2 spike-based assays are better to predict the neutralization titer than nucleoprotein-based assays are.
Collapse
Affiliation(s)
- Lisa Müller
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Philipp Niklas Ostermann
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Andreas Walker
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Tobias Wienemann
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40255, Düsseldorf, Germany
| | - Alexander Mertens
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40255, Düsseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Marcel Andree
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Sandra Hauka
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Nadine Lübke
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40255, Düsseldorf, Germany
| | - Ingo Drexler
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935, Cologne, Germany
| | - Derik Franz Hermsen
- Institute of Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Düsseldorf, 40255, Düsseldorf, Germany
| | - Rolf Kaiser
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935, Cologne, Germany
| | - Friedrich Boege
- Institute of Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Düsseldorf, 40255, Düsseldorf, Germany
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935, Cologne, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jörg Timm
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Tina Senff
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
27
|
Garcia G, Sharma A, Ramaiah A, Sen C, Purkayastha A, Kohn DB, Parcells MS, Beck S, Kim H, Bakowski MA, Kirkpatrick MG, Riva L, Wolff KC, Han B, Yuen C, Ulmert D, Purbey PK, Scumpia P, Beutler N, Rogers TF, Chatterjee AK, Gabriel G, Bartenschlager R, Gomperts B, Svendsen CN, Betz UAK, Damoiseaux RD, Arumugaswami V. Antiviral drug screen identifies DNA-damage response inhibitor as potent blocker of SARS-CoV-2 replication. Cell Rep 2021; 35:108940. [PMID: 33784499 PMCID: PMC7969873 DOI: 10.1016/j.celrep.2021.108940] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
SARS-CoV-2 has currently precipitated the COVID-19 global health crisis. We developed a medium-throughput drug-screening system and identified a small-molecule library of 34 of 430 protein kinase inhibitors that were capable of inhibiting the SARS-CoV-2 cytopathic effect in human epithelial cells. These drug inhibitors are in various stages of clinical trials. We detected key proteins involved in cellular signaling pathways mTOR-PI3K-AKT, ABL-BCR/MAPK, and DNA-damage response that are critical for SARS-CoV-2 infection. A drug-protein interaction-based secondary screen confirmed compounds, such as the ATR kinase inhibitor berzosertib and torin2 with anti-SARS-CoV-2 activity. Berzosertib exhibited potent antiviral activity against SARS-CoV-2 in multiple cell types and blocked replication at the post-entry step. Berzosertib inhibited replication of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV) as well. Our study highlights key promising kinase inhibitors to constrain coronavirus replication as a host-directed therapy in the treatment of COVID-19 and beyond as well as provides an important mechanism of host-pathogen interactions.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Arunachalam Ramaiah
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA; Section of Cell and Developmental Biology, University of California, San Diego, San Diego, CA 92093, USA
| | - Chandani Sen
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Arunima Purkayastha
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Donald B Kohn
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| | - Mark S Parcells
- Department of Animal and Food Sciences, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Sebastian Beck
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Heeyoung Kim
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Malina A Bakowski
- Calibr, a division of Scripps Research Institute, 11119 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Melanie G Kirkpatrick
- Calibr, a division of Scripps Research Institute, 11119 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Laura Riva
- Calibr, a division of Scripps Research Institute, 11119 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karen C Wolff
- Calibr, a division of Scripps Research Institute, 11119 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Brandon Han
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Constance Yuen
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David Ulmert
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Prabhat K Purbey
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Philip Scumpia
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas F Rogers
- Department of Immunology and Microbiology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; UC San Diego Division of Infectious Diseases and Global Public Health, UC San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Arnab K Chatterjee
- Calibr, a division of Scripps Research Institute, 11119 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gülsah Gabriel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Center for Infection Research, Heidelberg partner site, Heidelberg, Germany; Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Brigitte Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Robert D Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Vaccines That Reduce Viral Shedding Do Not Prevent Transmission of H1N1 Pandemic 2009 Swine Influenza A Virus Infection to Unvaccinated Pigs. J Virol 2021; 95:JVI.01787-20. [PMID: 33268518 PMCID: PMC7851569 DOI: 10.1128/jvi.01787-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/15/2020] [Indexed: 01/19/2023] Open
Abstract
Swine influenza A virus (swIAV) infection causes substantial economic loss and disease burden in humans and animals. The 2009 pandemic H1N1 (pH1N1) influenza A virus is now endemic in both populations. In this study, we evaluated the efficacy of different vaccines in reducing nasal shedding in pigs following pH1N1 virus challenge. We also assessed transmission from immunized and challenged pigs to naive, directly in-contact pigs. Pigs were immunized with either adjuvanted, whole inactivated virus (WIV) vaccines or virus-vectored (ChAdOx1 and MVA) vaccines expressing either the homologous or heterologous influenza A virus hemagglutinin (HA) glycoprotein, as well as an influenza virus pseudotype (S-FLU) vaccine expressing heterologous HA. Only two vaccines containing homologous HA, which also induced high hemagglutination inhibitory antibody titers, significantly reduced virus shedding in challenged animals. Nevertheless, virus transmission from challenged to naive, in-contact animals occurred in all groups, although it was delayed in groups of vaccinated animals with reduced virus shedding.IMPORTANCE This study was designed to determine whether vaccination of pigs with conventional WIV or virus-vectored vaccines reduces pH1N1 swine influenza A virus shedding following challenge and can prevent transmission to naive in-contact animals. Even when viral shedding was significantly reduced following challenge, infection was transmissible to susceptible cohoused recipients. This knowledge is important to inform disease surveillance and control strategies and to determine the vaccine coverage required in a population, thereby defining disease moderation or herd protection. WIV or virus-vectored vaccines homologous to the challenge strain significantly reduced virus shedding from directly infected pigs, but vaccination did not completely prevent transmission to cohoused naive pigs.
Collapse
|
29
|
Purkayastha A, Sen C, Garcia G, Langerman J, Shia DW, Meneses LK, Vijayaraj P, Durra A, Koloff CR, Freund DR, Chi J, Rickabaugh TM, Mulay A, Konda B, Sim MS, Stripp BR, Plath K, Arumugaswami V, Gomperts BN. Direct Exposure to SARS-CoV-2 and Cigarette Smoke Increases Infection Severity and Alters the Stem Cell-Derived Airway Repair Response. Cell Stem Cell 2020; 27:869-875.e4. [PMID: 33259798 PMCID: PMC7670932 DOI: 10.1016/j.stem.2020.11.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/31/2020] [Accepted: 11/13/2020] [Indexed: 01/09/2023]
Abstract
Current smoking is associated with increased risk of severe COVID-19, but it is not clear how cigarette smoke (CS) exposure affects SARS-CoV-2 airway cell infection. We directly exposed air-liquid interface (ALI) cultures derived from primary human nonsmoker airway basal stem cells (ABSCs) to short term CS and then infected them with SARS-CoV-2. We found an increase in the number of infected airway cells after CS exposure with a lack of ABSC proliferation. Single-cell profiling of the cultures showed that the normal interferon response was reduced after CS exposure with infection. Treatment of CS-exposed ALI cultures with interferon β-1 abrogated the viral infection, suggesting one potential mechanism for more severe viral infection. Our data show that acute CS exposure allows for more severe airway epithelial disease from SARS-CoV-2 by reducing the innate immune response and ABSC proliferation and has implications for disease spread and severity in people exposed to CS.
Collapse
Affiliation(s)
- Arunima Purkayastha
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Chandani Sen
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | - Justin Langerman
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, CA, USA
| | - David W Shia
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; UCLA Medical Scientist Training Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Luisa K Meneses
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Preethi Vijayaraj
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Abdo Durra
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Caroline R Koloff
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Delilah R Freund
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Justin Chi
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Tammy M Rickabaugh
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Apoorva Mulay
- Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bindu Konda
- Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Myung S Sim
- UCLA Department of Medicine, Statistics Core, UCLA, Los Angeles, CA, USA
| | - Barry R Stripp
- Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA.
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA.
| | - Brigitte N Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Deciphering the Role of Bovine Viral Diarrhea Virus Non-Structural NS4B Protein in Viral Pathogenesis. Vet Sci 2020; 7:vetsci7040169. [PMID: 33142856 PMCID: PMC7712251 DOI: 10.3390/vetsci7040169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a (+) ssRNA virus that belongs to the family Flaviviridae. BVDV is a significant animal pathogen causing substantial economic losses to the cattle industry worldwide through respiratory and gastrointestinal infections and abortion or birth of persistently infected calves. While the immunogenic profile of some of the BVDV proteins (i.e., Erns, E2 and NS3) is well established during viral pathogenesis, very little information is available about most of BVDV's non-structural proteins in this regard. In recent times, the NS4B protein has emerged as an interesting target of diagnostic, vaccination and therapeutic value in viral infections of other members of the family Flaviviridae due to its key scaffold-like contribution in the viral replication complex. Although, BVDV-NS4B has a membrane topology alongside its role in induction of autophagosomes in vitro. However, information on its immunogenicity during BVDV pathogenesis and vaccination is scarce. To characterize the immunogenic profile of the NS4B, five cows were vaccinated with the live attenuated BVDV vaccine Bovela® and blood samples were taken pre- and post-immunization for serum isolation. Virus neutralization assay (VNA) confirmed the presence of anti-BVDV antibodies in the sera of vaccinated cows. VNA also revealed pre-existing antibodies against BVDV in the pre-immunization sera of two cows. To identify BVDV-NS4B specific antibodies, the NS4B protein was expressed in mammalian cells by using the pCI-neo vector system. The sera from BVDV vaccinated cows were evaluated for the presence of BVDV-NS4B specific antibodies through western blot and indirect ELISA. Interestingly, t sera from cows with pre-existing immunity against BVDV were able to detect NS4B in western blot and ELISA, suggesting the presence of NS4B-specific antibodies. The obtained results provide the first indication of the immunogenic nature of BVDV-NS4B protein in sero-converted animals. These findings are consistent with the observation made for NS4B in other Flaviviridae members and confirm this protein as an interesting target with diagnostic, vaccination and therapeutic value.
Collapse
|
31
|
Henritzi D, Petric PP, Lewis NS, Graaf A, Pessia A, Starick E, Breithaupt A, Strebelow G, Luttermann C, Parker LMK, Schröder C, Hammerschmidt B, Herrler G, Beilage EG, Stadlbauer D, Simon V, Krammer F, Wacheck S, Pesch S, Schwemmle M, Beer M, Harder TC. Surveillance of European Domestic Pig Populations Identifies an Emerging Reservoir of Potentially Zoonotic Swine Influenza A Viruses. Cell Host Microbe 2020; 28:614-627.e6. [PMID: 32721380 DOI: 10.1016/j.chom.2020.07.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Swine influenza A viruses (swIAVs) can play a crucial role in the generation of new human pandemic viruses. In this study, in-depth passive surveillance comprising nearly 2,500 European swine holdings and more than 18,000 individual samples identified a year-round presence of up to four major swIAV lineages on more than 50% of farms surveilled. Phylogenetic analyses show that intensive reassortment with human pandemic A(H1N1)/2009 (H1pdm) virus produced an expanding and novel repertoire of at least 31 distinct swIAV genotypes and 12 distinct hemagglutinin/neuraminidase combinations with largely unknown consequences for virulence and host tropism. Several viral isolates were resistant to the human antiviral MxA protein, a prerequisite for zoonotic transmission and stable introduction into human populations. A pronounced antigenic variation was noted in swIAV, and several H1pdm lineages antigenically distinct from current seasonal human H1pdm co-circulate in swine. Thus, European swine populations represent reservoirs for emerging IAV strains with zoonotic and, possibly, pre-pandemic potential.
Collapse
Affiliation(s)
- Dinah Henritzi
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Philipp Peter Petric
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nicola Sarah Lewis
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, UK; OIE/FAO International Reference Laboratory for avian influenza, swine influenza and Newcastle Disease, Animal and Plant Health Agency (APHA) - Weybridge, Addlestone, Surrey KT15 3NB, UK
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Alberto Pessia
- Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Elke Starick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Günter Strebelow
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christine Luttermann
- Institute of Immunology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Larissa Mareike Kristin Parker
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Bärbel Hammerschmidt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Georg Herrler
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Bünteweg 2, 30559 Hannover, Germany
| | - Elisabeth Große Beilage
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Büscheler Str. 9, 49456 Bakum, Germany
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silke Wacheck
- Ceva Santé Animale (former IDT Biologika GmbH), 06861 Dessau-Rosslau, Germany
| | - Stefan Pesch
- Ceva Santé Animale (former IDT Biologika GmbH), 06861 Dessau-Rosslau, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Timm Clemens Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
32
|
Younes N, Al-Sadeq DW, AL-Jighefee H, Younes S, Al-Jamal O, Daas HI, Yassine HM, Nasrallah GK. Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2. Viruses 2020; 12:582. [PMID: 32466458 PMCID: PMC7354519 DOI: 10.3390/v12060582] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
The recent outbreak of the Coronavirus disease 2019 (COVID-19) has quickly spread worldwide since its discovery in Wuhan city, China in December 2019. A comprehensive strategy, including surveillance, diagnostics, research, clinical treatment, and development of vaccines, is urgently needed to win the battle against COVID-19. The past three unprecedented outbreaks of emerging human coronavirus infections at the beginning of the 21st century have highlighted the importance of readily available, accurate, and rapid diagnostic technologies to contain emerging and re-emerging pandemics. Real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) based assays performed on respiratory specimens remain the gold standard for COVID-19 diagnostics. However, point-of-care technologies and serologic immunoassays are rapidly emerging with high sensitivity and specificity as well. Even though excellent techniques are available for the diagnosis of symptomatic patients with COVID-19 in well-equipped laboratories; critical gaps still remain in screening asymptomatic people who are in the incubation phase of the virus, as well as in the accurate determination of live viral shedding during convalescence to inform decisions for ending isolation. This review article aims to discuss the currently available laboratory methods and surveillance technologies available for the detection of COVID-19, their performance characteristics and highlight the gaps in current diagnostic capacity, and finally, propose potential solutions. We also summarize the specifications of the majority of the available commercial kits (PCR, EIA, and POC) for laboratory diagnosis of COVID-19.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
| | - Duaa W. Al-Sadeq
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
- College of Medicine, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Hadeel AL-Jighefee
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
| | - Salma Younes
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| | - Ola Al-Jamal
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
| | - Hanin I. Daas
- College of Dental Medicine, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| | - Hadi. M. Yassine
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| |
Collapse
|
33
|
Haach V, Gava D, Cantão ME, Schaefer R. Evaluation of two multiplex RT-PCR assays for detection and subtype differentiation of Brazilian swine influenza viruses. Braz J Microbiol 2020; 51:1447-1451. [PMID: 32125678 DOI: 10.1007/s42770-020-00250-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/20/2020] [Indexed: 11/27/2022] Open
Abstract
Influenza A virus (IAV) subtypes H1N1, H1N2, and H3N2 are endemic in swine herds in most pork producing countries; however, the viruses circulating in different geographic regions are antigenically and genetically distinct. In this sense, the availability of a rapid diagnostic assay to detect locally adapted IAVs and discriminate the virus subtype in clinical samples from swine is extremely important for monitoring and control of the disease. This study describes the development and validation of a multiplex RT-PCR assay for detection and subtyping of IAV from pigs. The analytical and diagnostic specificity of the assays was 100% (94.3-100.0, CI 95%), and the limit of detection was 10-3 TCID50/mL. A total of 100 samples (IAV isolates and clinical specimens) were tested, and the virus subtype was determined for 80 samples (80%; 71.1-86.7, CI 95%). From these, 50% were H1N1, 22.5% were H1N2, and 7.5% were H3N2. Partial subtyping was determined for 8.75% samples (H1pdmNx and HxN2). Additionally, mixed infections with two virus subtypes (H1N2 + H3N2 and H1N1pdm + H1pdmN2; 2.5%) and reassortant viruses (H1pdmN2, 6.25%; and H1N1hu, 2.5%) were detected by the assay. A rapid detection of the most prevalent IAV subtypes and lineages in swine is provided by the assays developed here, improving the IAV diagnosis in Brazilian laboratories, and contributing to the IAV monitoring.
Collapse
Affiliation(s)
- Vanessa Haach
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Danielle Gava
- Embrapa Suínos e Aves, BR-153, Km 110, Distrito de Tamanduá, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves, BR-153, Km 110, Distrito de Tamanduá, Concórdia, Santa Catarina, CEP 89715-899, Brazil
| | - Rejane Schaefer
- Embrapa Suínos e Aves, BR-153, Km 110, Distrito de Tamanduá, Concórdia, Santa Catarina, CEP 89715-899, Brazil.
| |
Collapse
|
34
|
Islam S, Zhou F, Lartey S, Mohn KGI, Krammer F, Cox RJ, Brokstad KA. Functional immune response to influenza H1N1 in children and adults after live attenuated influenza virus vaccination. Scand J Immunol 2019; 90:e12801. [PMID: 31269273 DOI: 10.1111/sji.12801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 02/02/2023]
Abstract
Influenza virus is a major respiratory pathogen, and vaccination is the main method of prophylaxis. In 2012, the trivalent live attenuated influenza vaccine (LAIV) was licensed in Europe for use in children. Vaccine-induced antibodies directed against the main viral surface glycoproteins, haemagglutinin (HA) and neuraminidase (NA) play important roles in limiting virus infection. The objective of this study was to dissect the influenza-specific antibody responses in children and adults, and T cell responses in children induced after LAIV immunization to the A/H1N1 virus. Blood samples were collected pre- and at 28 and 56 days post-vaccination from 20 children and 20 adults. No increase in micro-neutralization (MN) antibodies against A/H1N1 was observed after vaccination. A/H1N1 stalk-specific neutralizing and NA-inhibiting (NI) antibodies were boosted in children after LAIV. Interferon γ-producing T cells increased significantly in children, and antibody-dependent cellular-mediated cytotoxic (ADCC) cell activity increased slightly in children after vaccination, although this change was not significant. The results indicate that the NI assay is more sensitive to qualitative changes in serum antibodies after LAIV. There was a considerable difference in the immune response in children and adults after vaccination, which may be related to priming and previous influenza history. Our findings warrant further studies for evaluating LAIV vaccination immunogenicity.
Collapse
Affiliation(s)
- Shahinul Islam
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Department of Clinical Science, K.G. Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
| | - Fan Zhou
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Department of Clinical Science, K.G. Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
| | - Sarah Lartey
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Department of Clinical Science, K.G. Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
| | - Kristin G I Mohn
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca Jane Cox
- Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Norway.,Department of Clinical Science, K.G. Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway.,Department of Research & Development, Haukeland University Hospital, Bergen, Norway
| | - Karl Albert Brokstad
- Department of Clinical Science, Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| |
Collapse
|
35
|
Gianchecchi E, Torelli A, Montomoli E. The use of cell-mediated immunity for the evaluation of influenza vaccines: an upcoming necessity. Hum Vaccin Immunother 2019; 15:1021-1030. [PMID: 30614754 PMCID: PMC6605831 DOI: 10.1080/21645515.2019.1565269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Influenza vaccines are a fundamental tool for preventing the disease and reducing its consequences, particularly in specific high-risk groups. In order to be licensed, influenza vaccines have to meet strict criteria established by European Medicines Agency. Although the licensure of influenza vaccines started 65 years ago, Hemagglutination Inhibition and Single Radial Hemolysis are the only serological assays that can ascertain correlates of protection. However, they present evident limitations. The present review focuses on the evaluation of cell-mediated immunity (CMI), which plays an important role in the host immune response in protecting against virus-related illness and in the establishment of long-term immunological memory. Although correlates of protection are not currently available for CMI, it would be advisable to investigate this kind of immunological response for the evaluation of next-generation vaccines.
Collapse
Affiliation(s)
| | - A Torelli
- a VisMederi srl , Siena , Italy.,b Department of Life Sciences , University of Siena , Siena , Italy
| | - E Montomoli
- a VisMederi srl , Siena , Italy.,c Department of Molecular and Developmental Medicine , University of Siena , Siena , Italy
| |
Collapse
|
36
|
Abente EJ, Rajao DS, Gauger PC, Vincent AL. Alphavirus-vectored hemagglutinin subunit vaccine provides partial protection against heterologous challenge in pigs. Vaccine 2019; 37:1533-1539. [PMID: 30723064 DOI: 10.1016/j.vaccine.2018.12.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
Abstract
Influenza A virus in swine (IAV-S) is an important pathogen in pigs in the United States, in addition to posing a potential risk to humans through zoonotic events. Intervention strategies continue to be explored to better control virus circulation. Improved surveillance efforts has led to significantly increased sequence data available on circulating strains, vastly improving our understanding of the genetic and antigenic diversity of IAV-S. IAV-S in North America is characterized by repeated spillover events of human viruses into pigs followed by genetic and antigenic diversification. An important gap that needs to be addressed is our understanding of the role that various vaccine platforms have on efficacy against antigenically heterologous challenge. Currently licensed vaccines often update their components to adapt to a dynamic antigenic landscape and newly developed technologies continue to be approved. Hence, it remains critical to test the performance of vaccines against challenge with antigenically distinct viruses. We tested the level of protection conferred by an alphavirus-vectored hemagglutinin (HA) subunit vaccine, delivered as a monovalent or bivalent formulation, against challenge with IAV-S. Monovalent alphavirus-vectored HA vaccines provided efficient protection against challenge with viruses with matched and mismatched HA, although in one mismatched HA challenge group there was a trend for reduced protection. A bivalent vaccine, in which two HA's were simultaneously delivered, was effective in producing antibody response against both antigens and provided protection against challenge. The alphavirus platform is a promising new technology available to swine producers to help reduce the burden of disease caused by IAV-S.
Collapse
Affiliation(s)
- Eugenio J Abente
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, United States
| | - Daniela S Rajao
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, United States.
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, United States.
| |
Collapse
|
37
|
Comparison of Adjuvanted-Whole Inactivated Virus and Live-Attenuated Virus Vaccines against Challenge with Contemporary, Antigenically Distinct H3N2 Influenza A Viruses. J Virol 2018; 92:JVI.01323-18. [PMID: 30185589 DOI: 10.1128/jvi.01323-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/31/2018] [Indexed: 12/25/2022] Open
Abstract
Influenza A viruses in swine (IAV-S) circulating in the United States of America are phylogenetically and antigenically distinct. A human H3 hemagglutinin (HA) was introduced into the IAV-S gene pool in the late 1990s, sustained continued circulation, and evolved into five monophyletic genetic clades, H3 clades IV-A to -E, after 2009. Across these phylogenetic clades, distinct antigenic clusters were identified, with three clusters (cyan, red, and green antigenic cluster) among the most frequently detected antigenic phenotypes (Abente EJ, Santos J, Lewis NS, Gauger PC, Stratton J, et al. J Virol 90:8266-8280, 2016, https://doi.org/10.1128/JVI.01002-16). Although it was demonstrated that antigenic diversity of H3N2 IAV-S was associated with changes at a few amino acid positions in the head of the HA, the implications of this diversity for vaccine efficacy were not tested. Using antigenically representative H3N2 viruses, we compared whole inactivated virus (WIV) and live-attenuated influenza virus (LAIV) vaccines for protection against challenge with antigenically distinct H3N2 viruses in pigs. WIV provided partial protection against antigenically distinct viruses but did not prevent virus replication in the upper respiratory tract. In contrast, LAIV provided complete protection from disease and virus was not detected after challenge with antigenically distinct viruses.IMPORTANCE Due to the rapid evolution of the influenza A virus, vaccines require continuous strain updates. Additionally, the platform used to deliver the vaccine can have an impact on the breadth of protection. Currently, there are various vaccine platforms available to prevent influenza A virus infection in swine, and we experimentally tested two: adjuvanted-whole inactivated virus and live-attenuated virus. When challenged with an antigenically distinct virus, adjuvanted-whole inactivated virus provided partial protection, while live-attenuated virus provided effective protection. Additional strategies are required to broaden the protective properties of inactivated virus vaccines, given the dynamic antigenic landscape of cocirculating strains in North America, whereas live-attenuated vaccines may require less frequent strain updates, based on demonstrated cross-protection. Enhancing vaccine efficacy to control influenza infections in swine will help reduce the impact they have on swine production and reduce the risk of swine-to-human transmission.
Collapse
|
38
|
Abo-EL-Sooud K, Hashem MM, Abd ElHakim YM, Kamel GM, Gab-Allaha AQ. Effect of butylated hydroxyl toluene on the immune response of Rift Valley fever vaccine in a murine model. Int Immunopharmacol 2018; 62:165-169. [DOI: 10.1016/j.intimp.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/23/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022]
|
39
|
Maternally-derived antibodies do not inhibit swine influenza virus replication in piglets but decrease excreted virus infectivity and impair post-infectious immune responses. Vet Microbiol 2018. [PMID: 29519509 DOI: 10.1016/j.vetmic.2018.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Maternally-derived antibodies (MDA) reduce piglet susceptibility to swine influenza A virus, but interfere with post-infectious immune responses, raising questions about protection after waning of passive immunity. We therefore analysed the impact of different levels of residual MDA on virus excretion and immune responses in piglets born to vaccinated sows (MDA+) and infected with H1N1 at 5, 7 or 11 weeks of age, in comparison to piglets born to unvaccinated sows (MDA-). Subsequent protection against a second homologous infection occurring 4 weeks after the primo-infection was also investigated. MDA- pigs showed clinical signs, shed the virus, and developed specific immune responses despite some age-dependent differences: 7-week-old pigs were less affected clinically, showed a 2-day delayed excretion peak and excreted less virus than younger pigs. In MDA+ animals, clinical signs increased together with the decrease of MDA levels related to the age at infection-time. Virus shedding was not prevented and genome quantification profiles were similar to those obtained in MDA- piglets. However, viral particles excreted by 5-week-old MDA+ piglets appeared to be less infectious than those shed by MDA- piglets at the same age. Humoral response was affected by MDA as illustrated by the absence of HI and neutralizing response regardless the infection age, but anti-NP/M responses were less affected. Proliferative T cell responses were slightly delayed by high MDA levels. Nevertheless, MDA+ animals were all protected from a second infection, like MDA- piglets. In conclusion, responses of pigs to H1N1 were affected by both the physiological development of animals at infection and the MDA level.
Collapse
|
40
|
Farrag MA, Amer HM, Öhlschläger P, Hamad ME, Almajhdi FN. Novel recombinant DNA vaccine candidates for human respiratory syncytial virus: Preclinical evaluation of immunogenicity and protection efficiency. Hum Vaccin Immunother 2017; 13:1586-1597. [PMID: 28272978 DOI: 10.1080/21645515.2017.1295190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The development of safe and potent vaccines for human respiratory syncytial virus (HRSV) is still a challenge for researchers worldwide. DNA-based immunization is currently a promising approach that has been used to generate human vaccines for different age groups. In this study, novel HRSV DNA vaccine candidates were generated and preclinically tested in BALB/c mice. Three different versions of the codon-optimized HRSV fusion (F) gene were individually cloned into the pPOE vector. The new recombinant vectors either express full-length (pPOE-F), secretory (pPOE-TF), or M282-90 linked (pPOE-FM2) forms of the F protein. Distinctive expression of the F protein was identified in HEp-2 cells transfected with the different recombinant vectors using ELISA and immunofluorescence. Mice immunization verified the potential for recombinant vectors to elicit significant levels of neutralizing antibodies and CD8+ T-cell lymphocytes. pPOE-TF showed higher levels of gene expression in cell culture and better induction of the humoral and cellular immune responses. Following virus challenge, mice that had been immunized with the recombinant vectors were able to control virus replication and displayed lower inflammation compared with mice immunized with empty pPOE vector or formalin-inactivated HRSV vaccine. Moreover, pulmonary cytokine profiles of mice immunized with the 3 recombinant vectors were similar to those of the mock infected group. In conclusion, recombinant pPOE vectors are promising HRSV vaccine candidates in terms of their safety, immunogenicity and protective efficiency. These data encourage further evaluation in phase I clinical trials.
Collapse
Affiliation(s)
- Mohamed A Farrag
- a Department of Botany and Microbiology , College of Science, King Saud University , Riyadh , Saudi Arabia
| | - Haitham M Amer
- a Department of Botany and Microbiology , College of Science, King Saud University , Riyadh , Saudi Arabia.,b Department of Virology , Faculty of Veterinary Medicine, Cairo University , Giza , Egypt
| | - Peter Öhlschläger
- c Institute of Nano- and Biotechnology, Department of Chemistry and Biotechnology , Aachen University of Applied Sciences , Juelich , Germany
| | - Maaweya E Hamad
- a Department of Botany and Microbiology , College of Science, King Saud University , Riyadh , Saudi Arabia
| | - Fahad N Almajhdi
- a Department of Botany and Microbiology , College of Science, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
41
|
Rajão DS, Walia RR, Campbell B, Gauger PC, Janas-Martindale A, Killian ML, Vincent AL. Reassortment between Swine H3N2 and 2009 Pandemic H1N1 in the United States Resulted in Influenza A Viruses with Diverse Genetic Constellations with Variable Virulence in Pigs. J Virol 2017; 91:e01763-16. [PMID: 27928015 PMCID: PMC5286888 DOI: 10.1128/jvi.01763-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022] Open
Abstract
Repeated spillovers of the H1N1 pandemic virus (H1N1pdm09) from humans to pigs resulted in substantial evolution of influenza A viruses infecting swine, contributing to the genetic and antigenic diversity of influenza A viruses (IAV) currently circulating in swine. The reassortment with endemic swine viruses and maintenance of some of the H1N1pdm09 internal genes resulted in the circulation of different genomic constellations in pigs. Here, we performed a whole-genome phylogenetic analysis of 368 IAV circulating in swine from 2009 to 2016 in the United States. We identified 44 different genotypes, with the most common genotype (32.33%) containing a clade IV-A HA gene, a 2002-lineage NA gene, an M-pdm09 gene, and remaining gene segments of triple reassortant internal gene (TRIG) origin. To understand how different genetic constellations may relate to viral fitness, we compared the pathogenesis and transmission in pigs of six representative genotypes. Although all six genotypes efficiently infected pigs, they resulted in different degrees of pathology and viral shedding. These results highlight the vast H3N2 genetic diversity circulating in U.S. swine after 2009. This diversity has important implications in the control of this disease by the swine industry, as well as a potential risk for public health if swine-adapted viruses with H1N1pdm09 genes have an increased risk to humans, as occurred in the 2011-2012 and 2016 human variant H3N2v cases associated with exhibition swine. IMPORTANCE People continue to spread the 2009 H1N1 pandemic (H1N1pdm09) IAV to pigs, allowing H1N1pdm09 to reassort with endemic swine IAV. In this study, we determined the 8 gene combinations of swine H3N2 IAV detected from 2009 to 2016. We identified 44 different genotypes of H3N2, the majority of which contained at least one H1N1pdm09 gene segment. We compared six representative genotypes of H3N2 in pigs. All six genotypes efficiently infected pigs, but they resulted in different degrees of lung damage and viral shedding. These results highlight the vast genetic diversity of H3N2 circulating in U.S. swine after 2009, with important implications for the control of IAV for the swine industry. Because H1N1pdm09 is also highly adapted to humans, these swine viruses pose a potential risk to public health if swine-adapted viruses with H1N1pdm09 genes also have an increased risk for human infection.
Collapse
Affiliation(s)
- Daniela S Rajão
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Rasna R Walia
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Brian Campbell
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Alicia Janas-Martindale
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, Science, Technology and Analysis Services, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Mary Lea Killian
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, Science, Technology and Analysis Services, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Amy L Vincent
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| |
Collapse
|
42
|
Rajão DS, Chen H, Perez DR, Sandbulte MR, Gauger PC, Loving CL, Shanks GD, Vincent A. Vaccine-associated enhanced respiratory disease is influenced by haemagglutinin and neuraminidase in whole inactivated influenza virus vaccines. J Gen Virol 2016; 97:1489-1499. [DOI: 10.1099/jgv.0.000468] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Daniela S. Rajão
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Hongjun Chen
- Department of Veterinary Medicine, University of Maryland, College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD, USA
| | - Daniel R. Perez
- Department of Veterinary Medicine, University of Maryland, College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD, USA
| | - Matthew R. Sandbulte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Crystal L. Loving
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | | | - Amy Vincent
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| |
Collapse
|
43
|
Rajao DS, Sandbulte MR, Gauger PC, Kitikoon P, Platt R, Roth JA, Perez DR, Loving CL, Vincent AL. Heterologous challenge in the presence of maternally-derived antibodies results in vaccine-associated enhanced respiratory disease in weaned piglets. Virology 2016; 491:79-88. [PMID: 26874588 DOI: 10.1016/j.virol.2016.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 12/19/2022]
Abstract
Control of influenza A virus (IAV) in pigs is done by vaccination of females to provide maternally-derived antibodies (MDA) through colostrum. Our aim was to evaluate if MDA interfere with IAV infection, clinical disease, and transmission in non-vaccinated piglets. In the first study, naïve sows were vaccinated with H1N2-δ1 whole inactivated virus (WIV) vaccine. In a follow-up study seropositive sows to 2009 pandemic H1N1 (H1N1pdm09) were boosted with H1N1pdm09 WIV or secondary experimental infection (EXP). MDA-positive pigs were challenged with homologous or heterologous virus, and MDA-negative control groups were included. WIV-MDA piglets were protected from homologous infection. However, piglets with WIV-derived MDA subsequently challenged with heterologous virus developed vaccine associated enhanced respiratory disease (VAERD), regardless of history of natural exposure in the sows. Our data indicates that although high titers of vaccine-derived MDA reduced homologous virus infection, transmission, and disease, MDA alone was sufficient to induce VAERD upon heterologous infection.
Collapse
Affiliation(s)
- Daniela S Rajao
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, 1920 Dayton Ave, Ames, IA 50010, United States
| | - Matthew R Sandbulte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 2180 Veterinary Medicine, Ames, IA 50011, United States
| | - Phillip C Gauger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 2630 Veterinary Medicine, Ames, IA 50011, United States
| | - Pravina Kitikoon
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, 1920 Dayton Ave, Ames, IA 50010, United States
| | - Ratree Platt
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 2180 Veterinary Medicine, Ames, IA 50011, United States
| | - James A Roth
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 2180 Veterinary Medicine, Ames, IA 50011, United States
| | - Daniel R Perez
- Poultry Diagnostic and Research Center, University of Georgia, 953 College Station Rd, Athens, GA 30602, United States
| | - Crystal L Loving
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, 1920 Dayton Ave, Ames, IA 50010, United States
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, 1920 Dayton Ave, Ames, IA 50010, United States.
| |
Collapse
|
44
|
Novel Reassortant Human-Like H3N2 and H3N1 Influenza A Viruses Detected in Pigs Are Virulent and Antigenically Distinct from Swine Viruses Endemic to the United States. J Virol 2015; 89:11213-22. [PMID: 26311895 DOI: 10.1128/jvi.01675-15] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/19/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Human-like swine H3 influenza A viruses (IAV) were detected by the USDA surveillance system. We characterized two novel swine human-like H3N2 and H3N1 viruses with hemagglutinin (HA) genes similar to those in human seasonal H3 strains and internal genes closely related to those of 2009 H1N1 pandemic viruses. The H3N2 neuraminidase (NA) was of the contemporary human N2 lineage, while the H3N1 NA was of the classical swine N1 lineage. Both viruses were antigenically distant from swine H3 viruses that circulate in the United States and from swine vaccine strains and also showed antigenic drift from human seasonal H3N2 viruses. Their pathogenicity and transmission in pigs were compared to those of a human H3N2 virus with a common HA ancestry. Both swine human-like H3 viruses efficiently infected pigs and were transmitted to indirect contacts, whereas the human H3N2 virus did so much less efficiently. To evaluate the role of genes from the swine isolates in their pathogenesis, reverse genetics-generated reassortants between the swine human-like H3N1 virus and the seasonal human H3N2 virus were tested in pigs. The contribution of the gene segments to virulence was complex, with the swine HA and internal genes showing effects in vivo. The experimental infections indicate that these novel H3 viruses are virulent and can sustain onward transmission in pigs, and the naturally occurring mutations in the HA were associated with antigenic divergence from H3 IAV from humans and swine. Consequently, these viruses could have a significant impact on the swine industry if they were to cause more widespread outbreaks, and the potential risk of these emerging swine IAV to humans should be considered. IMPORTANCE Pigs are important hosts in the evolution of influenza A viruses (IAV). Human-to-swine transmissions of IAV have resulted in the circulation of reassortant viruses containing human-origin genes in pigs, greatly contributing to the diversity of IAV in swine worldwide. New human-like H3N2 and H3N1 viruses that contain a mix of human and swine gene segments were recently detected by the USDA surveillance system. The human-like viruses efficiently infected pigs and resulted in onward airborne transmission, likely due to the multiple changes identified between human and swine H3 viruses. The human-like swine viruses are distinct from contemporary U.S. H3 swine viruses and from the strains used in swine vaccines, which could have a significant impact on the swine industry due to a lack of population immunity. Additionally, public health experts should consider an appropriate assessment of the risk of these emerging swine H3 viruses for the human population.
Collapse
|
45
|
Sandbulte MR, Spickler AR, Zaabel PK, Roth JA. Optimal Use of Vaccines for Control of Influenza A Virus in Swine. Vaccines (Basel) 2015; 3:22-73. [PMID: 26344946 PMCID: PMC4494241 DOI: 10.3390/vaccines3010022] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/09/2015] [Accepted: 01/19/2015] [Indexed: 12/29/2022] Open
Abstract
Influenza A virus in swine (IAV-S) is one of the most important infectious disease agents of swine in North America. In addition to the economic burden of IAV-S to the swine industry, the zoonotic potential of IAV-S sometimes leads to serious public health concerns. Adjuvanted, inactivated vaccines have been licensed in the United States for over 20 years, and there is also widespread usage of autogenous/custom IAV-S vaccines. Vaccination induces neutralizing antibodies and protection against infection with very similar strains. However, IAV-S strains are so diverse and prone to mutation that these vaccines often have disappointing efficacy in the field. This scientific review was developed to help veterinarians and others to identify the best available IAV-S vaccine for a particular infected herd. We describe key principles of IAV-S structure and replication, protective immunity, currently available vaccines, and vaccine technologies that show promise for the future. We discuss strategies to optimize the use of available IAV-S vaccines, based on information gathered from modern diagnostics and surveillance programs. Improvements in IAV-S immunization strategies, in both the short term and long term, will benefit swine health and productivity and potentially reduce risks to public health.
Collapse
Affiliation(s)
- Matthew R Sandbulte
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Anna R Spickler
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Pamela K Zaabel
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - James A Roth
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|