1
|
Lund AM, Hannibal J. Localization of the neuropeptides pituitary adenylate cyclase-activating polypeptide, vasoactive intestinal peptide, and their receptors in the basal brain blood vessels and trigeminal ganglion of the mouse CNS; an immunohistochemical study. Front Neuroanat 2022; 16:991403. [PMID: 36387999 PMCID: PMC9643199 DOI: 10.3389/fnana.2022.991403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are structurally related neuropeptides that are widely expressed in vertebrate tissues. The two neuropeptides are pleiotropic and have been associated with migraine pathology. Three PACAP and VIP receptors have been described: PAC1, VPAC1, and VPAC2. The localization of these receptors in relation to VIP and PACAP in migraine-relevant structures has not previously been shown in mice. In the present study, we used fluorescence immunohistochemistry, well-characterized antibodies, confocal microscopy, and three-dimensional reconstruction to visualize the distribution of PACAP, VIP, and their receptors in the basal blood vessels (circle of Willis), trigeminal ganglion, and brain stem spinal trigeminal nucleus (SP5) of the mouse CNS. We demonstrated a dense network of circularly oriented VIP fibers on the basal blood vessels. PACAP nerve fibers were fewer in numbers compared to VIP fibers and ran along the long axis of the blood vessels, colocalized with calcitonin gene-related peptide (CGRP). The nerve fibers expressing CGRP are believed to be sensorial, with neuronal somas localized in the trigeminal ganglion and PACAP was found in a subpopulation of these CGRP-neurons. Immunostaining of the receptors revealed that only the VPAC1 receptor was present in the basal blood vessels, localized on the surface cell membrane of vascular smooth muscle cells and innervated by VIP fibers. No staining was seen for the PAC1, VPAC1, or VPAC2 receptor in the trigeminal ganglion. However, distinct PAC1 immunoreactivity was found in neurons innervated by PACAP nerve terminals located in the spinal trigeminal nucleus. These findings indicate that the effect of VIP is mediated via the VPAC1 receptor in the basal arteries. The role of PACAP in cerebral arteries is less clear. The localization of PACAP in a subpopulation of CGRP-expressing neurons in the trigeminal ganglion points toward a primary sensory function although a dendritic release cannot be excluded which could stimulate the VPAC1 receptor or the PAC1 and VPAC2 receptors on immune cells in the meninges, initiating neurogenic inflammation relevant for migraine pathology.
Collapse
Affiliation(s)
- Anne Marie Lund
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Jens Hannibal,
| |
Collapse
|
2
|
Abstract
AbstractPituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread occurrence and diverse functions. PACAP binds to specific PAC1 and non-specific VPAC1/2 receptors. PACAP is considered as a growth factor, as it plays important roles during development and participates in reparative processes. Highest concentrations are found in the nervous system and endocrine glands, where several functions are known, including actions in tissue growth, differentiation and tumour development. Therefore, we have investigated expression of PACAP and its receptors in different tumours, including those of endocrine glands. We showed earlier that PACAP and PAC1 receptor staining intensity decreased in pancreatic ductal adenocarcinoma. In the present study we aimed to investigate alterations of PACAP and PAC1 receptor in human insulinoma and compared the immunostaining pattern with samples from chronic pancreatitis patients. We collected perioperative and histological data of patients who underwent operation because of insulinoma or chronic pancreatitis over a five-year-long period. Histology showed chronic pancreatitis with severe scar formation in pancreatitis patients, while tumour samples evidenced Grade 1 or 2 insulinoma. PACAP and PAC1 receptor expression was studied using immunohistochemistry. Staining intensity was very strong in the Langerhans islets of normal tissue and discernible staining was also observed in the exocrine pancreas. Immunostaining intensity for both PACAP and PAC1 receptor was markedly weaker in insulinoma samples, and disappeared from chronic pancreatitis samples except for intact islets. These findings show that PAC1 receptor/PACAP signalling is altered in insulinoma and this suggests a possible involvement of this system in tumour growth or differentiation.
Collapse
|
3
|
Imai J. Regulation of Adaptive Cell Proliferation by Vagal Nerve Signals for Maintenance of Whole-Body Homeostasis: Potential Therapeutic Target for Insulin-Deficient Diabetes. TOHOKU J EXP MED 2021; 254:245-252. [PMID: 34373421 DOI: 10.1620/tjem.254.245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In insulin-resistant states such as obesity, pancreatic β-cells proliferate to prevent blood glucose elevations. Failure of this β-cells proliferative response leads to the development of diabetes. On the other hand, when organs are damaged, cells proliferate to repair the organs. Therefore, these proliferations are compensatory mechanisms aimed at maintaining whole-body homeostasis. We previously discovered vagal signal-mediated systems regulating adaptive proliferation of β-cells and hepatocytes. Neuron-mediated liver-β-cell inter-organ crosstalk is involved in promotion of β-cell proliferation during obesity, and in this system, vagal signals directly stimulate β-cell proliferation. Meanwhile, in the liver, the multi-step mechanisms whereby vagal nerve signals activate hepatic resident macrophages are involved in hepatocyte proliferation after severe injury. Diabetes mellitus develops on the pathological basis of insufficient insulin action. Insulin action insufficiency is attributable to insulin resistance, i.e., the failure of insulin to exert sufficient effects, and/or to impairment of insulin secretion. Impairment of insulin secretion is attributable not only to the β-cell dysfunction but also to functional β-cell mass reduction. In this regard, there are already therapeutic options to increase insulin secretion from residual β-cells, such as sulfonyl urea and incretin-related drugs. In contrast, there are as yet no applicable therapeutic strategies to increase functional β-cell mass in vivo. Therefore, we have conducted the basic investigations to tackle this issue based on the discovery of neuron-mediated liver-β-cell inter-organ crosstalk. This review introduces vagal signal-mediated regulatory systems of adaptive cell proliferation in vivo and efforts to develop cell-increasing therapies based on vagal nerve-mediated cell proliferation.
Collapse
Affiliation(s)
- Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine
| |
Collapse
|
4
|
Imai J. Regulation of compensatory β-cell proliferation by inter-organ networks from the liver to pancreatic β-cells. Endocr J 2018; 65:677-684. [PMID: 29973428 DOI: 10.1507/endocrj.ej18-0241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In insulin-resistant states such as obesity, pancreatic β-cells proliferate to prevent blood glucose elevations. However, the mechanism(s) by which obesity induces compensatory β-cell responses is not fully understood. Recently, several studies have shown that signals from the liver, such as neuronal signals or humoral factors, regulate β-cell proliferation during obesity development. We previously reported a liver-brain-pancreas neuronal relay, consisting of afferent splanchnic nerves, the central nervous system and efferent vagal nerves, to promote this compensatory β-cell proliferation. Furthermore, we recently clarified the molecular mechanisms by which efferent vagal signals induce β-cell proliferation in this inter-organ neuronal network system. Herein, these liver-β-cell inter-organ networks are reviewed, focusing mainly on the neuronal network. The significance of the neuronal network system in the maintenance of glucose homeostasis is also discussed with reference to the relevant literature.
Collapse
Affiliation(s)
- Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine
| |
Collapse
|
5
|
Yamamoto J, Imai J, Izumi T, Takahashi H, Kawana Y, Takahashi K, Kodama S, Kaneko K, Gao J, Uno K, Sawada S, Asano T, Kalinichenko VV, Susaki EA, Kanzaki M, Ueda HR, Ishigaki Y, Yamada T, Katagiri H. Neuronal signals regulate obesity induced β-cell proliferation by FoxM1 dependent mechanism. Nat Commun 2017; 8:1930. [PMID: 29208957 PMCID: PMC5717276 DOI: 10.1038/s41467-017-01869-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022] Open
Abstract
Under insulin-resistant conditions such as obesity, pancreatic β-cells proliferate to prevent blood glucose elevations. A liver–brain–pancreas neuronal relay plays an important role in this process. Here, we show the molecular mechanism underlying this compensatory β-cell proliferation. We identify FoxM1 activation in islets from neuronal relay-stimulated mice. Blockade of this relay, including vagotomy, inhibits obesity-induced activation of the β-cell FoxM1 pathway and suppresses β-cell expansion. Inducible β-cell-specific FoxM1 deficiency also blocks compensatory β-cell proliferation. In isolated islets, carbachol and PACAP/VIP synergistically promote β-cell proliferation through a FoxM1-dependent mechanism. These findings indicate that vagal nerves that release several neurotransmitters may allow simultaneous activation of multiple pathways in β-cells selectively, thereby efficiently promoting β-cell proliferation and maintaining glucose homeostasis during obesity development. This neuronal signal-mediated mechanism holds potential for developing novel approaches to regenerating pancreatic β-cells. Neuronal signals, in particular those transmitted via the vagal nerve, regulate both β-cell function and proliferation. Here, Yamamoto et al. show that the forkhead box M1 pathway is required for vagal signal-mediated induction of β-cell proliferation during obesity.
Collapse
Affiliation(s)
- Junpei Yamamoto
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hironori Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yohei Kawana
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Junhong Gao
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kenji Uno
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shojiro Sawada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, University of Hiroshima, Hiroshima, 734-8553, Japan
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Etsuo A Susaki
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Osaka, 565-0871, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, 332-0012, Japan
| | - Makoto Kanzaki
- Tohoku University Graduate School of Biomedical Engineering, Sendai, 980-8579, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Osaka, 565-0871, Japan
| | - Yasushi Ishigaki
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.,Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University, Morioka, 020-8505, Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.,Japan Agency for Medical Research and Development, Project for Elucidating and Controlling Mechanisms of Aging and Longevity, Tokyo, 100-0004, Japan.,Japan Agency for Medical Research and Development, CREST, Tokyo, 100-1004, Japan
| |
Collapse
|
6
|
Matthews D, Diskin MG, Kenny DA, Creevey CJ, Keogh K, Waters SM. Effect of short term diet restriction on gene expression in the bovine hypothalamus using next generation RNA sequencing technology. BMC Genomics 2017; 18:857. [PMID: 29121875 PMCID: PMC5680758 DOI: 10.1186/s12864-017-4265-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Negative energy balance (NEB) is an imbalance between energy intake and energy requirements for lactation and body maintenance affecting high-yielding dairy cows and is of considerable economic importance due to its negative impact on fertility and health in dairy herds. It is anticipated that the cow hypothalamus experiences extensive biochemical changes during the early post partum period in an effort to re-establish metabolic homeostasis. However, there is variation in the tolerance to NEB between individual cows. In order to understand the genomic regulation of ovulation in hypothalamic tissue during NEB, mRNA transcriptional patterns between tolerant and sensitive animals were examined. A short term dietary restriction heifer model was developed which induced abrupt onset of anoestrus in some animals (Restricted Anovulatory; RA) while others maintained oestrous cyclicity (Restricted Ovulatory; RO). A third control group (C) received a higher level of normal feeding. RESULTS A total of 15,295 genes were expressed in hypothalamic tissue. Between RA and C groups 137 genes were differentially expressed, whereas between RO and C, 32 genes were differentially expressed. Differentially expressed genes were involved in the immune response and cellular motility in RA and RO groups, respectively, compared to C group. The largest difference between groups was observed in the comparison between RA and RO heifers, with 1094 genes shown to be significantly differentially expressed (SDE). Pathway analysis showed that these SDE genes were associated with 6 canonical pathways (P < 0.01), of which neuroactive ligand-receptor interaction was the most significant. Within the comparisons the main over-represented pathway functions were immune response including neuroprotection (CXCL10, Q1KLR3, IFIH1, IL1 and IL8; RA v C and RA v RO); energy homeostasis (AgRP and NPY; RA v RO); cell motility (CADH1, DSP and TSP4; RO v C) and prevention of GnRH release (NTSR1 IL1α, IL1β, NPY and PACA; RA v RO). CONCLUSIONS This information will assist in understanding the genomic factors regulating the influence of diet restriction on fertility and may assist in optimising nutritional and management systems for the improvement in reproductive performance.
Collapse
Affiliation(s)
- Daragh Matthews
- Animal and Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland.,School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael G Diskin
- Animal and Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Christopher J Creevey
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Sinead M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
7
|
|
8
|
Vu JP, Goyal D, Luong L, Oh S, Sandhu R, Norris J, Parsons W, Pisegna JR, Germano PM. PACAP intraperitoneal treatment suppresses appetite and food intake via PAC1 receptor in mice by inhibiting ghrelin and increasing GLP-1 and leptin. Am J Physiol Gastrointest Liver Physiol 2015; 309:G816-G825. [PMID: 26336928 PMCID: PMC4652141 DOI: 10.1152/ajpgi.00190.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/31/2015] [Indexed: 01/31/2023]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is expressed within the gastroenteric system, where it has profound physiological effects. PACAP was shown to regulate food intake and thermogenesis centrally; however, PACAP peripheral regulation of appetite and feeding behavior is unknown. Therefore, we studied PACAP's effect on appetite and food intake control by analyzing feeding behavior and metabolic hormones in PAC1-deficient (PAC1-/-) and age-matched wild-type (WT) mice intraperitoneally injected with PACAP1-38 or PACAP1-27 before the dark phase of feeding. Food intake and feeding behavior were analyzed using the BioDAQ system. Active ghrelin, glucagon-like peptide-1 (GLP-1), leptin, peptide YY, pancreatic polypeptide, and insulin were measured following PACAP1-38 administration in fasted WT mice. PACAP1-38/PACAP1-27 injected into WT mice significantly decreased in a dose-dependent manner cumulative food intake and reduced bout and meal feeding parameters. Conversely, PACAP1-38 injected into PAC1-/- mice failed to significantly change food intake. Importantly, PACAP1-38 reduced plasma levels of active ghrelin compared with vehicle in WT mice. In PAC1-/- mice, fasting levels of active ghrelin, GLP-1, insulin, and leptin and postprandial levels of active ghrelin and insulin were significantly altered compared with levels in WT mice. Therefore, PAC1 is a novel regulator of appetite/satiety. PACAP1-38/PACAP1-27 significantly reduced appetite and food intake through PAC1. In PAC1-/- mice, the regulation of anorexigenic/orexigenic hormones was abolished, whereas active ghrelin remained elevated even postprandially. PACAP significantly reduced active ghrelin in fasting conditions. These results establish a role for PACAP via PAC1 in the peripheral regulation of appetite/satiety and suggest future studies to explore a therapeutic use of PACAP or PAC1 agonists for obesity treatment.
Collapse
Affiliation(s)
- John P Vu
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Deepinder Goyal
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Leon Luong
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California
| | - Suwan Oh
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Ravneet Sandhu
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Joshua Norris
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - William Parsons
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California
| | - Joseph R Pisegna
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California; Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, California; and
| | - Patrizia M Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, California; and Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
9
|
Janiuk I, Młynek K. Immunodetection of cocaine- and amphetamine-regulated transcript in bovine pancreas. Acta Histochem 2015; 117:545-50. [PMID: 25953739 DOI: 10.1016/j.acthis.2015.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/02/2023]
Abstract
This study was aimed at identifying and determining the configuration of structures which contain the cocaine- and amphetamine-regulated transcript peptide (CART) in the bovine pancreas. The study material was collected from 20 animals. The distribution of CART in the bovine pancreas was investigated, by an immunohistochemical evaluation. CART peptide in the normal pancreas has been identified in intrapancreatic ganglia, nerve fibres and in endocrine cells of Langerhans islets and exocrine pancreas. CART immunoreactive nerve fibres innervate the exocrine and endocrine regions and the intrapancreatic ganglia, where they form a moderate number of networks, encircling the cell bodies. The few CART-immunoreactive endocrine cells, that appear in the bovine pancreas, are not limited to the islet cells, where they form a subpopulation of CART-containing cells, but are also individually distributed in the exocrine region. Furthermore, CART has been visualized in nerve fibres, innervating pancreatic outlet ducts and blood vessels. CART plays a physiological role in the integrated mechanisms that regulate both endocrine and exocrine pancreatic secretion. These results are consistent with the hypothesis that CART expression in nerve fibres and intrapancreatic ganglia is a common feature of the mammalian pancreas, whereas its expression in endocrine cells appears to be restricted to single cells of the bovine pancreas.
Collapse
|
10
|
Omar BA, Liehua L, Yamada Y, Seino Y, Marchetti P, Ahrén B. Dipeptidyl peptidase 4 (DPP-4) is expressed in mouse and human islets and its activity is decreased in human islets from individuals with type 2 diabetes. Diabetologia 2014; 57:1876-83. [PMID: 24939431 DOI: 10.1007/s00125-014-3299-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/28/2014] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS Inhibition of the enzyme dipeptidyl peptidase 4 (DPP-4), which cleaves and inactivates glucagon-like peptide 1 (GLP-1), is a glucose-lowering strategy in type 2 diabetes. Since DPP-4 is a ubiquitously distributed enzyme, we examined whether it is expressed in islets and whether an islet effect to inhibit DPP-4 may result in stimulated insulin secretion. METHODS We investigated DPP-4 expression and activity in the islets of mouse models of obesity as well as human islets from non-diabetic and type 2 diabetic donors. We further investigated whether inhibition with DPP-4 inhibitors could promote insulin secretion via islet GLP-1 in isolated islets. RESULTS DPP-4 was readily detected in mouse and human islets with species-specific cellular localisation. In mice, DPP-4 was expressed predominantly in beta cells, whereas in humans it was expressed nearly exclusively in alpha cells. DPP-4 activity was significantly increased in islets from diet-induced obese mice compared with mice fed a control diet. In humans, DPP-4 activity was significantly lower in islets from type 2 diabetic donors than in non-diabetic donors. In human islets, there was a significant positive correlation between DPP-4 activity and insulin secretory response to 16.7 mmol/l glucose. Treatment of mouse islets with the DPP-4 inhibitors, NVPDPP728 and vildagliptin, resulted in a significant potentiation of insulin secretion in a GLP-1-dependent manner, as this was inhibited by the GLP-1 receptor antagonist, Exendin (9-39), and was retained in glucose-dependent insulinotropic polypeptide (GIP) receptor-deficient mice but lost in mice lacking GLP-1 receptors or both incretin receptors. Human islets treated with the DPP-4 inhibitor, vildagliptin, showed increased secretion of insulin and intact GLP-1. CONCLUSIONS/INTERPRETATION We conclude that DPP-4 is present and active in mouse and human islets, is regulated by the disease state, and that inhibition of islet DPP-4 activity can have direct effects on islet function. Inhibiting islet DPP-4 activity may therefore contribute to the insulin-secretory and glucose-lowering action of DPP-4 inhibition.
Collapse
Affiliation(s)
- Bilal A Omar
- Department of Clinical Sciences, Biomedical Center, C11, Lund University, SE22184, Lund, Sweden,
| | | | | | | | | | | |
Collapse
|
11
|
Arsenijevic T, Gregoire F, Chiadak J, Courtequisse E, Bolaky N, Perret J, Delporte C. Pituitary adenylate cyclase activating peptide (PACAP) participates in adipogenesis by activating ERK signaling pathway. PLoS One 2013; 8:e72607. [PMID: 24039785 PMCID: PMC3767812 DOI: 10.1371/journal.pone.0072607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
Pituitary adenylate cyclase activating peptide (PACAP) belongs to the secretin/glucagon/vasoactive intestinal peptide (VIP) family. Its action can be mediated by three different receptor subtypes: PAC1, which has exclusive affinity for PACAP, and VPAC1 and VPAC2 which have equal affinity for PACAP and VIP. We showed that all three receptors are expressed in 3T3-L1 cells throughout their differentiation into adipocytes. We established the activity of these receptors by cAMP accumulation upon induction by PACAP. Together with insulin and dexamethasone, PACAP induced adipogenesis in 3T3-L1 cell line. PACAP increased cAMP production within 15 min upon stimulation and targeted the expression and phosphorylation of MAPK (ERK1/2), strengthened by the ERK1/2 phosphorylation being partially or completely abolished by different combinations of PACAP receptors antagonists. We therefore speculate that ERK1/2 activation is crucial for the activation of CCAAT/enhancer- binding protein β (C/EBPβ).
Collapse
Affiliation(s)
- Tatjana Arsenijevic
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Françoise Gregoire
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Jeanne Chiadak
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Elodie Courtequisse
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Nargis Bolaky
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
12
|
Hewage CM, Venneti KC. Structural aspects of gut peptides with therapeutic potential for type 2 diabetes. ChemMedChem 2013; 8:560-7. [PMID: 23292985 DOI: 10.1002/cmdc.201200445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Indexed: 12/25/2022]
Abstract
Gut hormones represent a niche subset of pharmacologically active agents that are rapidly gaining importance in medicine. Due to their exceptional specificity for their receptors, these hormones along with their analogues have attracted considerable pharmaceutical interest for the treatment of human disorders including type 2 diabetes. With the recent advances in the structural biology, a significant amount of structural information for these hormones is now available. This Minireview presents an overview of the structural aspects of these hormones, which have roles in physiological processes such as insulin secretion, as well as a discussion on the relevant structural modifications used to improve these hormones for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Chandralal M Hewage
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
13
|
Dalle S, Ravier MA, Bertrand G. Emerging roles for β-arrestin-1 in the control of the pancreatic β-cell function and mass: New therapeutic strategies and consequences for drug screening. Cell Signal 2011; 23:522-8. [DOI: 10.1016/j.cellsig.2010.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/06/2010] [Indexed: 01/09/2023]
|
14
|
Sakurai Y, Shintani N, Hayata A, Hashimoto H, Baba A. Trophic effects of PACAP on pancreatic islets: a mini-review. J Mol Neurosci 2010; 43:3-7. [PMID: 20645023 DOI: 10.1007/s12031-010-9424-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/01/2010] [Indexed: 01/05/2023]
Abstract
Progressive beta-cell insufficiency in the pancreas is a hallmark of both types I and II diabetes, and agents that protect against beta-cell dysfunction are potential drug targets for diabetes mellitus. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a strong secretagogue of insulin from pancreatic islets and is suggested to be involved in physiological blood glucose homeostasis and the pathology of diabetes. Recent studies in genetically engineered animal models have shown that PACAP stimulates pancreatic functions, especially in cooperation with other regulatory factors including glucose. Furthermore, chronic activation of PACAP signaling regulates pancreatic islet mass in a context-dependent manner. Accumulating in vivo and in vitro evidence suggest that PACAP has trophic effects and regulates both proliferation and cell viability of beta-cells and thereby contributes to protection against diabetes. This review focuses on such trophic actions of PACAP on pancreatic beta-cells and discusses the pathophysiological significance of pancreatic PACAP, with the aim to provide information for future development of treatment for diabetes.
Collapse
Affiliation(s)
- Yusuke Sakurai
- Department of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
15
|
Nakata M, Shintani N, Hashimoto H, Baba A, Yada T. Intra-islet PACAP protects pancreatic β-cells against glucotoxicity and lipotoxicity. J Mol Neurosci 2010; 42:404-10. [PMID: 20461496 DOI: 10.1007/s12031-010-9383-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/21/2010] [Indexed: 01/11/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP), a potent insulinotropin, is localized in pancreatic islets. Hyperglycemia and hyperlipidemia impair islet β-cell functions, being recognized as glucotoxicity and lipotoxicity. In this study, we examined whether endogenous PACAP protects islet β-cells against the toxicities. Pancreatic islets were prepared from wild-type and PACAP-null mice, and cultured for 2 days in control conditions containing 5.6 mM glucose, those with elevated 25 mM glucose and those supplemented with 0.4 mM palmitate. After culture in control conditions, a rise in the superfusate glucose concentration from 2.8 mM to a physiologic 8.3 mM increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in both wild-type and PACAP-null mouse islets. In contrast, after culture with high glucose or palmitate, the glucose-induced first phase [Ca(2+)](i) increases were severely impaired in islets of PACAP-null mice while they were preserved in islets of wild-type mice. Treatment with high glucose or palmitate also impaired glucose-induced insulin secretion in islets and increased mRNA expression of uncoupling protein 2 (UCP2) in islets of PACAP-null, but not wild-type, mice. These data indicate that islet-produced PACAP protects β-cells from deteriorating action of high glucose and palmitate at least partly by blocking the elevation of UCP2, suggesting an anti-diabetic role for PACAP.
Collapse
Affiliation(s)
- Masanori Nakata
- Department of Physiology, Division of Integrative Physiology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | | | | | | | | |
Collapse
|
16
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009; 61:283-357. [PMID: 19805477 DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 858] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.
Collapse
Affiliation(s)
- David Vaudry
- Institut National de la Santé et de la Recherche Médicale U413, European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinaires sur les Peptides 23), Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yavropoulou MP, Kotsa K, Anastasiou O, O’Dorisio TM, Pappas TN, Yovos JG. Effect of intracerebroventricular infusion of insulin on glucose-dependent insulinotropic peptide in dogs. Neurosci Lett 2009; 460:148-51. [DOI: 10.1016/j.neulet.2009.05.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/23/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
18
|
Abstract
This review article has for major objective to summarize the old and latest developments on the hormonal controls of pancreatic growth. The article deals with hormonal controls during the fetal, neonatal and adult periods of pancreas development, growth and regeneration. During the fetal period, comparisons were made between studies performed with pancreatic explants and those designed in vivo. After birth, the effects of glucocorticoids, thyroxine, gastrin, bombesin, secretin, cholecystokinin alone or with secretin are reported. In the adults, similar studies were reported on hormones with addition of the effects of neuropeptides, the cell types targeted by hormones and the hormonal control after pancreatectomy and pancreatitis.
Collapse
|
19
|
Ahrén B. Role of pituitary adenylate cyclase-activating polypeptide in the pancreatic endocrine system. Ann N Y Acad Sci 2009; 1144:28-35. [PMID: 19076360 DOI: 10.1196/annals.1418.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the pancreatic islets, pituitary adenylate cyclase-activating polypeptide (PACAP) is expressed in beta cells and autonomic nerve terminals; the majority of these nerve terminals are parasympathetic. PACAP binds to three types of G protein-coupled receptors (GPCRs): VPAC1 receptors, VPAC2 receptors, and PAC1 receptors. All these receptor types are expressed in pancreatic islets. PACAP stimulates insulin and glucagon secretion. These actions are achieved in part through increased formation of cAMP after activation of adenylate cyclase and in part through increase in cytosolic calcium, achieved through increase in calcium uptake and release from intracellular calcium stores. Deletion of PAC1 receptors or VPAC2 receptors results in impaired insulin secretion and glucose intolerance. Studies in PAC1 receptor gene deleted mice have suggested that PACAP may be of physiological importance in mediating prandial insulin secretion and in contributing to the glucagon response to hypoglycemia. Animal studies have also suggested that activation of the receptors, in particular VPAC2 receptors, may be used as a therapeutic approach for the treatment of type 2 diabetes. Hence, PACAP is an islet neuropeptide with a potential role in islet physiology and as a basis for development of islet-promoting therapy in type 2 diabetes.
Collapse
Affiliation(s)
- Bo Ahrén
- Department of Clinical Sciences, Division of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
20
|
Immunohistochemical Study on the Innervation of the Chicken Pancreas by Pituitary Adenylate Cyclase-Activating Polypeptides (PACAPs)-Containing Nerves. J Poult Sci 2009. [DOI: 10.2141/jpsa.46.234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Broca C, Quoyer J, Costes S, Linck N, Varrault A, Deffayet PM, Bockaert J, Dalle S, Bertrand G. beta-Arrestin 1 is required for PAC1 receptor-mediated potentiation of long-lasting ERK1/2 activation by glucose in pancreatic beta-cells. J Biol Chem 2008; 284:4332-42. [PMID: 19074139 DOI: 10.1074/jbc.m807595200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In pancreatic beta-cells, the pituitary adenylate cyclase-activating polypeptide (PACAP) exerts a potent insulin secretory effect via PAC(1) and VPAC receptors (Rs) through the Galpha(s)/cAMP/protein kinase A pathway. Here, we investigated the mechanisms linking PAC(1)R to ERK1/2 activation in INS-1E beta-cells and pancreatic islets. PACAP caused a transient (5 min) increase in ERK1/2 phosphorylation via PAC(1)Rs and promoted nuclear translocation of a fraction of cytosolic p-ERK1/2. Both protein kinase A- and Src-dependent pathways mediated this transient ERK1/2 activation. Moreover, PACAP potentiated glucose-induced long-lasting ERK1/2 activation. Blocking Ca(2+) influx abolished glucose-induced ERK1/2 activation and PACAP potentiating effect. Glucose stimulation during KCl depolarization showed that, in addition to the triggering signal (rise in cytosolic [Ca(2+)]), the amplifying pathway was also involved in glucose-induced sustained ERK1/2 activation and was required for PACAP potentiation. The finding that at 30 min glucose-induced p-ERK1/2 was detected in both cytosol and nucleus while the potentiating effect of PACAP was only observed in the cytosol, suggested the involvement of the scaffold protein beta-arrestin. Indeed, beta-arrestin 1 (beta-arr1) depletion (in beta-arr1 knockout mouse islets or in INS-1E cells by siRNA) completely abolished PACAP potentiation of long-lasting ERK1/2 activation by glucose. Finally, PACAP potentiated glucose-induced CREB transcriptional activity and IRS-2 mRNA expression mainly via the ERK1/2 signaling pathway, and likewise, beta-arr1 depletion reduced the PACAP potentiating effect on IRS-2 expression. These results establish for the first time that PACAP potentiates glucose-induced long-lasting ERK1/2 activation via a beta-arr1-dependent pathway and thus provide new insights concerning the mechanisms of PACAP and glucose actions in pancreatic beta-cells.
Collapse
Affiliation(s)
- Christophe Broca
- Institut de Génomique Fonctionnelle, CNRS, Unité Mixte de Recherche 5203, INSERM, U661, Université Montpellier I, and Université Montpellier II, 34094 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yoshiyama M, de Groat WC. Effects of intrathecal administration of pituitary adenylate cyclase activating polypeptide on lower urinary tract functions in rats with intact or transected spinal cords. Exp Neurol 2008; 211:449-55. [PMID: 18410926 DOI: 10.1016/j.expneurol.2008.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Revised: 01/31/2008] [Accepted: 02/20/2008] [Indexed: 11/24/2022]
Abstract
Effects of intrathecally administered pituitary adenylate cyclase activating polypeptide-38 (PACAP-38, 0.1-30 microg) on lower urinary tract function were examined in unanesthetized, decerebrate rats with an intact spinal cord and after chronic spinal cord transection (SCT). PACAP-38 was also studied in rats with intact or bilaterally transected hypogastric nerves (HGNs), to determine if sympathetic pathways to the bladder influenced responses. In SCT rats with intact HGNs under isovolumetric conditions, 30 mug of PACAP-38 but not lower doses (0.1-10 microg) increased (mean 194%) bladder contraction amplitude (BCA). In SCT rats with sectioned HGNs, 10 microg and 30 microg of PACAP-38 increased BCA by 62% and 195%, respectively. On the other hand, during continuous infusion cystometrograms (CMGs) in SCT rats with intact or sectioned HGNs, PACAP-38 (10 microg and 30 microg) markedly reduced or completely suppressed BCA (60% and 90%, respectively) and reduced external urethral sphincter (EUS) EMG activity (58% and 91%, respectively). During CMGs in spinal cord intact rats, with intact HGNs PACAP-38 30 microg increased BCA (26%) but after HGN section PACAP-38 10 microg and 30 microg increased BCA by 21% and 35%. These results suggest that after SCT, PACAP-38 activates spinal circuitry to facilitate the parasympathetic outflow to the urinary bladder and that the elimination of sympathetic pathways enhances this effect. The decrease in BCA by PACAP-38 during CMGs in SCT rats is most reasonably attributed to a reduction in urethral outlet resistance due to suppression of excitatory EUS reflexes.
Collapse
Affiliation(s)
- Mitsuharu Yoshiyama
- Yamanashi Rehabilitation Hospital, 855 Komatsu, Kasugai-Cho, Fuefuki, Yamanashi, 406-0004, Japan.
| | | |
Collapse
|
23
|
Winzell MS, Ahrén B. Role of VIP and PACAP in islet function. Peptides 2007; 28:1805-13. [PMID: 17559974 DOI: 10.1016/j.peptides.2007.04.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/16/2007] [Accepted: 04/24/2007] [Indexed: 01/09/2023]
Abstract
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two closely related neuropeptides that are expressed in islets and in islet parasympathetic nerves. Both peptides bind to their common G-protein-coupled receptors, VPAC1 and VPAC2, and PACAP, in addition to the specific receptor PAC1, all three of which are expressed in islets. VIP and PACAP stimulate insulin secretion in a glucose-dependent manner and they both also stimulate glucagon secretion. This action is achieved through increased formation of cAMP after activation of adenylate cyclase and stimulation of extracellular calcium uptake. Deletion of PAC1 receptors or VPAC2 receptors results in glucose intolerance. These peptides may be of importance in mediating prandial insulin secretion and the glucagon response to hypoglycemia. Animal studies have also suggested that activation of the receptors, in particular VPAC2 receptors, may be used as a therapeutic approach for the treatment of type 2 diabetes. This review summarizes the current knowledge of the potential role of VIP and PACAP in islet function.
Collapse
Affiliation(s)
- Maria Sörhede Winzell
- Department of Clinical Sciences, Division of Medicine, Lund University, BMC, B11, SE-221 84 Lund, Sweden.
| | | |
Collapse
|
24
|
Green BD, Irwin N, Flatt PR. Pituitary adenylate cyclase-activating peptide (PACAP): assessment of dipeptidyl peptidase IV degradation, insulin-releasing activity and antidiabetic potential. Peptides 2006; 27:1349-58. [PMID: 16406202 DOI: 10.1016/j.peptides.2005.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 11/14/2005] [Accepted: 11/14/2005] [Indexed: 12/16/2022]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a member of the glucagon family of peptides. Like other members, most notably glucagon-like peptide-1 (GLP-1), PACAP is rapidly degraded by dipeptidylpeptidase IV (DPP IV). This study investigated how degradation by DPP IV affected the insulinotropic activity of PACAP, and whether PACAP exerted acute antihyperglycemic properties in normal or ob/ob mice. DPP IV degradation of PACAP(1-27) over 18 h led to the formation of PACAP(3-27), PACAP(5-27) and ultimately PACAP(6-27). In contrast to 1.4-1.8-fold concentration-dependent stimulation of insulin secretion by PACAP(1-27), these peptide fragments lacked insulinotropic activity. While PACAP(1-27) and PACAP(1-38) generated significant insulin responses when given alone or together with glucose in ob/ob and normal mice, they also elevated plasma glucose. These actions were eliminated following degradation of the peptide by incubation with DPP IV. The hyperglycemic effects may be explained at least partly by a potent glucagon-releasing action in ob/ob and normal mice. In conclusion, PACAP is inactivated by DPP IV and despite insulin-releasing effects, its actions on glucagon secretion and glucose homeostasis do not make it a good therapeutic tool for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- B D Green
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, United Kingdom.
| | | | | |
Collapse
|
25
|
Tsunekawa S, Miura Y, Yamamoto N, Itoh Y, Ariyoshi Y, Senda T, Oiso Y, Niki I. Systemic administration of pituitary adenylate cyclase-activating polypeptide maintains beta-cell mass and retards onset of hyperglycaemia in beta-cell-specific calmodulin-overexpressing transgenic mice. Eur J Endocrinol 2005; 152:805-11. [PMID: 15879367 DOI: 10.1530/eje.1.01909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to play an important role in the regulation of islet function. We investigated its effects in beta-cell-specific calmodulin-overexpressing diabetic (CaMTg) mice, in which we consider that apoptosis of beta cells is the primary defect leading to basal hyperglycaemia. METHODS CaMTg mice were treated with continuous s.c. infusions of PACAP from 2 to 4 weeks after birth, and were evaluated against littermate non-transgenic (nTg) and saline-treated CaMTg mice as to plasma glucose levels, insulin content, islet function and morphological features. RESULTS Remarkable and progressive hyperglycaemia was observed in CaMTg mice, and PACAP treatment blunted this elevation. Insulin secretion from isolated islets demonstrated an impaired response to glucose in CaMTg mice, and PACAP treatment did not cause any improvement. The total pancreatic insulin content in CaMTg mice decreased significantly to 19.1% of that in nTg mice. PACAP treatment of CaMTg mice increased the content to 158% of the value in saline-treated CaMTg mice. The insulin content in isolated islets from CaMTg mice also decreased to 15.9% of that in nTg mice, while PACAP treatment caused a doubling of the value. Immunohistochemical investigation revealed that the insulin-positive islet area was markedly smaller in CaMTg mice and that PACAP treatment significantly expanded the insulin-positive islet area. CONCLUSIONS These findings indicate that PACAP treatment retards the onset of hyperglycaemia in CaMTg mice by maintaining beta-cell mass and PACAP treatment may potentially be a therapeutic measure for preventing beta-cell exhaustion during hyperglycaemia.
Collapse
Affiliation(s)
- Shin Tsunekawa
- Department of Endocrinology and Diabetology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jakab B, Reglodi D, Józsa R, Hollósy T, Tamás A, Lubics A, Lengvári I, Oroszi G, Szilvássy Z, Szolcsányi J, Németh J. Distribution of PACAP-38 in the central nervous system of various species determined by a novel radioimmunoassay. ACTA ACUST UNITED AC 2004; 61:189-98. [PMID: 15560935 DOI: 10.1016/j.jbbm.2004.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 03/01/2004] [Accepted: 03/01/2004] [Indexed: 12/01/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) occurs in two molecular forms: PACAP-38 and PACAP-27. Soon after the isolation and chemical characterization of PACAP, the first radioimmunoassay (RIA) methods have been developed, but it is a still rarely used laboratory technique in the field of PACAP research. The aim of the present study was to develop a novel, highly specific PACAP-38 assay to investigate the quantitative distribution of PACAP-38 in the central nervous system of various vertebrate species under the same technical and experimental conditions. Different areas of the brain and the spinal cord were removed from rats, chickens and fishes and the tissue samples were processed for PACAP-38 RIA. Our results indicate that the antiserum used in the RIA is C-terminal specific, without affinity for other members of the vasoactive intestinal polypeptide (VIP)/secretin/glucagon peptide family. The average ID50 value was 48.6+/-3.4 fmol/ml determined in 10 consecutive assays. Detection limit for PACAP-38 proved to be 2 fmol/ml. PACAP-38 immunoreactivity was present in the examined brain areas of each species studied, with highest concentration in the rat diencephalons. High levels of PACAP-38 were also detected in the rat telencephalon, followed by spinal cord and brainstem. The central nervous system of the fish also contained considerable concentrations of PACAP-38, whereas lowest concentrations were measured in the central nervous system of the chicken.
Collapse
Affiliation(s)
- Balázs Jakab
- Neuropharmacology Research Group of the Hungarian Academy of Sciences, Department of Pharmacology and Pharmacotherapy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nakata M, Yada T. [Physiological and therapeutic roles of PACAP in glucose metabolism and diabetes]. Nihon Yakurigaku Zasshi 2004; 123:267-73. [PMID: 15056942 DOI: 10.1254/fpj.123.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a ubiquitous neuropeptide in the central and peripheral nervous systems. Previously we reported that PACAP38 is localized in pancreatic islets and serves as an endogenous amplifier of glucose-induced insulin secretion. PACAP activates Gs-cAMP system, stimulates voltage-dependent Ca(2+) channels, and increases cytosolic Ca(2+) concentration in beta-cells. On the other hand, PAC1 receptor is expressed in adipocytes. PACAP enhances insulin-stimulated glucose uptake in an adipocyte cell-line, 3T3-L1 cells. PACAP does not alter the tyrosine phosphorylation of insulin receptor and IRS-1, but increases the activity of PI-3 kinase, a distal site of insulin signaling. PACAP also promotes differentiation of 3T3-L1 cells from fibroblasts to adipocytes. In GK rats, an animal model of type 2 diabetes, daily i.p. injection of PACAP38 (6 pmol/kg) from the age of 3 weeks prevents development of hyperglycemia between 3 to 8 weeks. These results demonstrate that PACAP enhances glucose-stimulated insulin secretion in islets, enhances insulin action inadipocytes, and prevents hyperglycemia in diabetic animals. This finding presents a possible therapeutic use of PACAP in the treatment of diabetes.
Collapse
Affiliation(s)
- Masanori Nakata
- Department of Physiology, Jichi Medical School, School of Medicine, Kawachi, Japan.
| | | |
Collapse
|
28
|
Tomimoto S, Hashimoto H, Shintani N, Yamamoto K, Kawabata Y, Hamagami KI, Yamagata K, Miyagawa JI, Baba A. Overexpression of pituitary adenylate cyclase-activating polypeptide in islets inhibits hyperinsulinemia and islet hyperplasia in agouti yellow mice. J Pharmacol Exp Ther 2004; 309:796-803. [PMID: 14742740 DOI: 10.1124/jpet.103.062919] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an intraislet neuropeptide and shares insulinotropic and insulin-sensitizing properties with glucagon-like peptide-1 (GLP-1); however, the pathophysiological significance of PACAP in diabetes remains largely unknown. To assess this, we crossed our recently developed transgenic mice overexpressing PACAP in pancreatic beta-cells (Tg/+), with lethal yellow agouti (KKA(y)) mice (A(y)/+), a genetic model for obesity-diabetes, and examined the metabolic and morphological phenotypes of F(1) animals. Tg/+ mice with the A(y) allele (Tg/+:A(y)/+) developed maturity-onset obesity and diabetes associated with hyperglycemia, hyperlipidemia, and hyperphagia, similar to those of A(y)/+ mice, but hyperinsulinemia was significantly ameliorated in Tg/+:A(y)/+ mice. Although A(y)/+ mice exhibited a marked increase in islet mass resulting from hyperplasia and hypertrophy, this increase was significantly attenuated in Tg/+:A(y)/+ mice. Size frequency distribution analysis revealed that the very large islets comprising one-fourth of islets of A(y)/+ mice were selectively reduced in Tg/+:A(y)/+ mice. Because functional defects have been demonstrated in the large islets of obese animal models, together these findings suggest that PACAP regulates hyperinsulinemia and the abnormal increase in islet mass that occurs during the diabetic process.
Collapse
Affiliation(s)
- Shuhei Tomimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xiao R, Cui ZJ. Mutual dependence of VIP/PACAP and CCK receptor signaling for a physiological role in duck exocrine pancreatic secretion. Am J Physiol Regul Integr Comp Physiol 2004; 286:R189-R198. [PMID: 12947031 DOI: 10.1152/ajpregu.00265.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unlike in rodents, CCK has not been established as a physiological regulator in avian exocrine pancreatic secretion. In the isolated duck pancreatic acini, 1 nM CCK was required for stimulation of amylase secretion, maximal effect being achieved at 10 nM; picomolar CCK was without effect. Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating peptide (PACAP) receptor (VPAC) agonists PACAP-38 and PACAP-27 (10(-12)-10(-7) M) alone had no effect, but made picomolar CCK effective. VPAC agonist VIP 10(-10)-10(-7) M stimulated amylase secretion marginally, but made CCK 10(-12)-10(-10) M effective also. PACAP-27 and VIP both shifted the maximal CCK concentration from 10(-8) to 10(-9) M. This sensitizing effect was mimicked by forskolin. CCK dose dependently induced intracellular Ca2+ concentration ([Ca2+]i) oscillations. PACAP-38 (1 nM), PACAP-27 (1 nM), VIP (10 nM), or forskolin (10 microM) alone did not stimulate [Ca2+]i increase, neither did they modulate CCK (1 nM)-induced oscillations; but when they were added to cells simultaneously exposed to subthreshold CCK (10 pM), calcium spikes emerged. Amylase secretion induced by the simultaneous presence of 10 pM CCK and VPAC agonists was completely blocked by removing extracellular calcium, but the protein kinase C inhibitor staurosporine (1 microM) was without effect. CCK (10 nM)-induced secretion was inhibited by CCK1 receptor antagonist FK480 (1 microM). Gastrin from 10(-12) to 10(-6) M did not stimulate amylase secretion nor did it (100 nM) induce [Ca2+]i increase. The above data suggest that duck pancreatic acini possess both CCK1 and VPAC receptors; simultaneous activation of both is required for each to play a physiological role.
Collapse
Affiliation(s)
- Rui Xiao
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| | | |
Collapse
|
30
|
Akesson L, Ahrén B, Manganiello VC, Holst LS, Edgren G, Degerman E. Dual effects of pituitary adenylate cyclase-activating polypeptide and isoproterenol on lipid metabolism and signaling in primary rat adipocytes. Endocrinology 2003; 144:5293-9. [PMID: 12960103 DOI: 10.1210/en.2003-0364] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide that exerts its effects throughout the body by elevating the intracellular amounts of cAMP. In adipocytes, an increased amount of cAMP is associated with increased lipolysis. In this work we evaluated the effects of PACAP38 on triglyceride metabolism in primary rat adipocytes. Stimulation of adipocytes with PACAP (0.1-100 nm) resulted in stimulation of lipolysis to the same extent as isoproterenol. Lipolysis was blocked by 25 microm of the protein kinase A inhibitor H-89 and potentiated in the presence of 10 microm OPC3911, a phosphodiesterase 3 inhibitor. In addition, PACAP38 induced activation of protein kinase A. Insulin efficiently inhibited PACAP38-induced lipolysis in a phosphatidyl inositol 3-kinase and phosphodiesterase 3-dependent manner. Interestingly, we also found that PACAP38, as well as isoproterenol, induced potentiation of lipogenesis in the presence of insulin. These results show that PACAP38 and isoproterenol mediate catabolic as well as anabolic effects in adipocytes, depending on the concentration of insulin present. We speculate that in the early postprandial state and during fasting, when insulin levels are low, PACAP and beta-adrenergic catecholamines induce lipolysis, whereas when higher levels of insulin are present, these agents potentiate the anabolic effect of insulin, i.e. storage of triglycerides.
Collapse
Affiliation(s)
- Lina Akesson
- Section for Molecular Signaling, Department of Cell and Molecualar Biology, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
31
|
Yamaguchi N, Minassian TR, Yamaguchi S. Effects of PACAP(1-27) on the canine endocrine pancreas in vivo: interaction with cholinergic mechanism. Can J Physiol Pharmacol 2003; 81:720-9. [PMID: 12897820 DOI: 10.1139/y03-067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to characterize the effects of pituitary adenylate cyclase activating polypeptide (PACAP) on the endocrine pancreas in anesthetized dogs. PACAP(1-27) and a PACAP receptor (PAC(1)) blocker, PACAP(6-27), were locally administered to the pancreas. PACAP(1-27) (0.005-5 microg) increased basal insulin and glucagon secretion in a dose-dependent manner. PACAP(6-27) (200 microg) blocked the glucagon response to PACAP(1-27) (0.5 microg) by about 80%, while the insulin response remained unchanged. With a higher dose of PACAP(6-27) (500 microg), both responses to PACAP(1-27) were inhibited by more than 80%. In the presence of atropine with an equivalent dose (128.2 microg) of PACAP(6-27) (500 microg) on a molar basis, the insulin response to PACAP(1-27) was diminished by about 20%, while the glucagon response was enhanced by about 80%. The PACAP(1-27)-induced increase in pancreatic venous blood flow was blocked by PACAP(6-27) but not by atropine. The study suggests that the endocrine secretagogue effect of PACAP(1-27) is primarily mediated by the PAC(1) receptor, and that PACAP(1-27) may interact with muscarinic receptor function in PACAP-induced insulin and glucagon secretion in the canine pancreas in vivo.
Collapse
Affiliation(s)
- Nobuharu Yamaguchi
- Groupe de recherche sur le système nerveux autonome (GRSNA), Faculté de pharmacie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | | | | |
Collapse
|
32
|
Yamamoto K, Hashimoto H, Tomimoto S, Shintani N, Miyazaki JI, Tashiro F, Aihara H, Nammo T, Li M, Yamagata K, Miyagawa JI, Matsuzawa Y, Kawabata Y, Fukuyama Y, Koga K, Mori W, Tanaka K, Matsuda T, Baba A. Overexpression of PACAP in transgenic mouse pancreatic beta-cells enhances insulin secretion and ameliorates streptozotocin-induced diabetes. Diabetes 2003; 52:1155-62. [PMID: 12716746 DOI: 10.2337/diabetes.52.5.1155] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the vasoactive intestinal peptide/secretin/glucagon family, stimulates insulin secretion from islets in a glucose-dependent manner at femtomolar concentrations. To assess PACAP's pancreatic function in vivo, we generated transgenic mice overexpressing PACAP in the pancreas under the control of human insulin promoter. Northern blot and immunohistochemical analyses showed that PACAP is overexpressed in pancreatic islets, specifically in transgenic mice. Plasma glucose and glucagon levels during a glucose tolerance test were not different between PACAP transgenic mice and nontransgenic littermates. However, plasma insulin levels in transgenic mice were higher after glucose loading. Also, increases of streptozotocin-induced plasma glucose were attenuated in transgenic compared with nontransgenic mice. Notably, an increase in 5-bromo-2-deoxyuridine-positive beta-cells in the streptozotocin-treated transgenic mice was observed but without differences in the staining patterns by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. Morphometric analysis revealed that total islet mass tends to increase in 12-month-old transgenic mice but showed no difference between 12-week-old transgenic and nontransgenic littermates. This is the first time that PACAP has been observed to play an important role in the proliferation of beta-cells.
Collapse
Affiliation(s)
- Kyohei Yamamoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hannibal J. Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J Comp Neurol 2002; 453:389-417. [PMID: 12389210 DOI: 10.1002/cne.10418] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study the localization of pituitary adenylate cyclase-activating peptide (PACAP)-expressing cell bodies and PACAP projections were mapped in the adult rat brain and spinal cord by using immunohistochemistry and in situ hybridization histochemistry. A widespread occurrence of PACAP-containing cell bodies was found, with the greatest accumulation in several hypothalamic nuclei and in several brainstem nuclei, especially the habenular nuclei, the pontine nucleus, the lateral parabrachial nucleus (LPB), and the vagal complex. PACAP was also present in cell bodies in the olfactory areas, in neocortical areas, in the hippocampus, in the vestibulo- and cochlear nuclei, in cell bodies of the intermediolateral cell column of the spinal cord and in Purkinje cells of the cerebellum, in the subfornical organ, and in the organum vasculosum of the lamina terminalis. An intense accumulation of PACAP-immunoreactive (-IR) nerve fibers was observed throughout the hypothalamus, in the amydaloid and extended amygdaloid complex, in the anterior and paraventricular thalamic nuclei, in the intergeniculate leaflet, in the pretectum, and in several brainstem nuclei, such as the parabrachial nucleus, the sensory trigeminal nucleus, and the nucleus of the solitary tract. PACAP-IR nerve fibers were also found in the area postrema, the posterior pituitary and the choroid plexus, and the dorsal and ventral horn of the spinal cord. The widespread distribution of PACAP in the brain and spinal cord suggests that PACAP is involved in the control of many autonomic and sensory functions as well as higher cortical processes.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen NV, Denmark.
| |
Collapse
|
34
|
Persson K, Ahrén B. The neuropeptide PACAP contributes to the glucagon response to insulin-induced hypoglycaemia in mice. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 175:25-8. [PMID: 11982501 DOI: 10.1046/j.1365-201x.2002.00977.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide in the autonomic nerves innervating the pancreatic islets and previous studies have shown that it stimulates insulin and glucagon secretion. It is known that autonomic nerve activation contributes to the glucagon response to hypoglycaemia. In the present study, we evaluated whether PACAP is involved in this glucagon response by examining the glucagon response to insulin-induced hypoglycaemia in mice genetically deleted of the specific PACAP receptor, the PAC1 receptor. We found that insulin (1 U kg-1 ip) reduced circulating glucose to a hypoglycaemic level of approximately 2.5 mmol L-1 in PAC1R-/- mice and their wild-type counterparts with no difference between the groups. However, the glucagon response to this hypoglycaemia was markedly impaired in the PAC1R-/- mice. Thus, after 120 min, plasma glucagon was 437 +/- 79 ng L-1 in wild-type mice vs. only 140 +/- 36 ng L-1 in PAC1R-/- mice (P=0.004). In contrast, the glucagon response to intravenously administered arginine (0.25 g kg-1) was the same in the two groups of mice. We conclude that PACAP through activation of PAC1 receptors contribute to the glucagon response to insulin-induced hypoglycaemia. Therefore, the glucagon response to hypoglycaemia is dependent not only on the classical neurotransmitters but also on the neuropeptide PACAP.
Collapse
Affiliation(s)
- K Persson
- Department of Medicine, Lund University, Lund, Sweden
| | | |
Collapse
|
35
|
Yanagida K, Yaekura K, Arima T, Yada T. Glucose-insensitivity induced by Ca(2+) toxicity in islet beta-cells and its prevention by PACAP. Peptides 2002; 23:135-42. [PMID: 11814628 DOI: 10.1016/s0196-9781(01)00589-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study examined whether a sustained increase in cytosolic Ca(2+) concentration ([Ca(2+)](i)) causes glucose-insensitivity in beta-cells and whether it could be modulated by pituitary adenylate cyclase-activating polypeptide (PACAP), a pancreatic insulinotropin. Rat single beta-cells were cultured for 2 days with sustained increases in [Ca(2+)](i), followed by determination of the [Ca(2+)](i) response to glucose (8.3 mM) as monitored with fura-2. High K(+) (25 mM) produced sustained increases in [Ca(2+)](i) in beta-cells, which were inhibited by nifedipine, a Ca(2+) channel blocker. After culture with high K(+), the incidence and amplitude of [Ca(2+)](i) responses to glucose were markedly reduced. This glucose-insensitivity was prevented by the presence of nifedipine or PACAP-38 (10(-13) M and 10-9) M) in high K(+) culture. PACAP-38 attenuated high K(+)-induced [Ca(2+)](i) increases. In conclusion, sustained increases in [Ca(2+)](i) induce glucose-insensitivity (Ca(2+) toxicity in beta-cells) and it is prevented by PACAP possibly in part due to its Ca(2+)-reducing capacity.
Collapse
Affiliation(s)
- Kazuhiro Yanagida
- Department of Physiology, Kagoshima University School of Medicine, 8-35-1 Sakuragaoka, 890-8520, Kagoshima, Japan
| | | | | | | |
Collapse
|
36
|
Kieffer TJ, Hussain MA, Habener JF. Glucagon and Glucagon‐like Peptide Production and Degradation. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Gray SL, Cummings KJ, Jirik FR, Sherwood NM. Targeted disruption of the pituitary adenylate cyclase-activating polypeptide gene results in early postnatal death associated with dysfunction of lipid and carbohydrate metabolism. Mol Endocrinol 2001; 15:1739-47. [PMID: 11579206 DOI: 10.1210/mend.15.10.0705] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hormone belonging to the glucagon superfamily of hormones. These hormones are known to play important roles in metabolism and growth. PACAP is a neuropeptide that causes accumulation of cAMP in a number of tissues and affects the secretion of other hormones, vasodilation, neural and immune functions, as well as the cell cycle. To determine whether PACAP is essential for survival and to evaluate its function(s), we have generated mice lacking the PACAP gene via homologous recombination. We found that most PACAP null mice died in the second postnatal week in a wasted state with microvesicular fat accumulation in liver, skeletal muscle, and heart. Gas chromatography-mass spectrometry showed that fatty acid beta-oxidation in liver mitochondria of PACAP(-/-) mice was not blocked based on the distribution of 3-hydroxy-fatty acids (C6-16) in the plasma. Instead, increased metabolic flux through the beta-oxidation pathway was suggested by the presence of ketosis. Also, serum triglycerides and cholesterol were significantly higher (2- to 3-fold) in PACAP null mice than littermates. In the fed state, both serum insulin and blood glucose were normal in 5-d-old null mice compared with their littermates. In contrast, fasted PACAP null pups had a significant increase in insulin, but a decrease in blood glucose compared with littermates. Glycogen in the liver was reduced. These results suggest PACAP is a critical hormonal regulator of lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- S L Gray
- Department of Biology, University of Victoria, Victoria, British Columbia, V8W 3N5 Canada
| | | | | | | |
Collapse
|
38
|
Filipsson K, Kvist-Reimer M, Ahrén B. The neuropeptide pituitary adenylate cyclase-activating polypeptide and islet function. Diabetes 2001; 50:1959-69. [PMID: 11522660 DOI: 10.2337/diabetes.50.9.1959] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is ubiquitously distributed in both the central and peripheral nervous systems and exerts a variety of effects. PACAP is a neuropeptide in pancreatic islets, where it has been suggested as a parasympathetic and sensory neurotransmitter. PACAP stimulates insulin secretion in a glucose-dependent manner, by an effect executed mainly through augmenting the formation of cAMP and stimulating the uptake of calcium. Accumulating evidence in animal studies points to a physiological importance of PACAP in the regulation of the insulin response to feeding. This review summarizes the current knowledge of islet actions and mechanisms and the function of PACAP.
Collapse
Affiliation(s)
- K Filipsson
- Department of Medicine, Lund University, Lund, Sweden
| | | | | |
Collapse
|
39
|
Yon L, Alexandre D, Montéro M, Chartrel N, Jeandel L, Vallarino M, Conlon JM, Kikuyama S, Fournier A, Gracia-Navarro F, Roubos E, Chow B, Arimura A, Anouar Y, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors in amphibians. Microsc Res Tech 2001; 54:137-57. [PMID: 11458398 DOI: 10.1002/jemt.1129] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP), a novel peptide of the secretin/glucagon/vasoactive intestinal polypeptide superfamily, has been initially characterized in mammals in 1989 and, only 2 years later, its counterpart has been isolated in amphibians. A number of studies conducted in the frog Rana ridibunda have demonstrated that PACAP is widely distributed in the central nervous system (particularly in the hypothalamus and the median eminence) and in peripheral organs including the adrenal gland. The cDNAs encoding the PACAP precursor and 3 types of PACAP receptors have been cloned in amphibians and their distribution has been determined by in situ hybridization histochemistry. Ontogenetic studies have revealed that PACAP is expressed early in the brain of tadpoles, soon after hatching. In the frog Rana ridibunda, PACAP exerts a large array of biological effects in the brain, pituitary, adrenal gland, and ovary, suggesting that, in amphibians as in mammals, PACAP may act as neurotrophic factor, a neurotransmitter and a neurohormone.
Collapse
Affiliation(s)
- L Yon
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U-413, UA CNRS, University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Petruzzo P, Cappai A, Spiga S, Picciau S, Serra G, Fattore L, Onali P, Brotzu G. Evidence of pituitary adenylate cyclase activating polypeptide (PACAP) in pancreatic islet cells by confocal microscopy. Pancreas 2001; 23:68-71. [PMID: 11451150 DOI: 10.1097/00006676-200107000-00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Several studies have shown that pituitary adenylate cyclase activating polypeptide (PACAP) stimulates at very low concentration insulin release from pancreatic beta cells. In addition, PACAP has been evidenced in pancreatic nervous fibers surrounding the islets, the core of the islet, and the capillaries. The aim of the present study was to demonstrate internalization of PACAP in pancreatic islet cells. Pancreatic islets were obtained from Wistar rat pancreata by modified Lacy's isolation method. The isolated islets were incubated in the presence of Fluo-PACAP 27, a fluorescent ligand specific for PACAP receptors. At the end of incubation the islets were fixed in paraformaldehyde and then observed by confocal microscope. Fluo-PACAP 27 was internalized into pancreatic islet cells, and this process was time- and temperature-dependent (37 degrees C). The fluorescent molecules converged toward the nucleus where an intense fluorescence was evidenced after 60 minutes. Incubation with phenyl arsine oxide as well as with PACAP 6-38, a receptor antagonist, prevented the internalization process. Further studies are required to explain the internalization process of PACAP 27 into the nucleus of pancreatic islet cells.
Collapse
Affiliation(s)
- P Petruzzo
- Department of Surgical Sciences, University of Cagliari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Miura A, Kawatani M, de Groat WC. Effects of pituitary adenylate cyclase activating polypeptide on lumbosacral preganglionic neurons in the neonatal rat spinal cord. Brain Res 2001; 895:223-32. [PMID: 11259781 DOI: 10.1016/s0006-8993(01)02112-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of PACAP-38 on phasic and tonic preganglionic neurons (PGN) in L6 and S1 spinal cord slices from neonatal rats (5--11 days old) were studied using the whole-cell patch clamp technique. PGN were identified by retrograde axonal transport of a fluorescent dye (Fast Blue, 5 microl of 4% solution) injected into the intraperitoneal space 3--7 days prior to the study. Bath application of pituitary adenylate cyclase activating polypeptide (PACAP) (20 nM) increased the frequency of spontaneous excitatory postsynaptic potentials (EPSPs) and spontaneous firing in both types of PGN. PACAP markedly increased the number (200--800%) and frequency of action potentials elicited by depolarizing current pulses in phasic PGN, but had a smaller effect on tonic PGN. PACAP decreased the threshold for action potential generation by approximately 25% in both types of neurons (e.g. -34.0+/-1.5 to -38.4+/-1.7 mV from a holding potential of -50 mV in phasic PGN, P<0.005). PACAP did not affect the duration of the action potential. The amplitude of the spike after hyperpolarization was not changed but the duration was significantly reduced by PACAP from 204.4+/-12.2 to 106.2+/-8.1 ms in tonic but not in phasic PGN. PACAP suppressed a transient outward current that was also suppressed by 4-aminopyridine (0.5 mM). These results coupled with the immunohistochemical identification of a dense collection of PACAP fibers in the region of the PGN, raises the possibility that PACAP may function as an excitatory transmitter in lumbosacral parasympathetic reflex pathways in the neonatal rat.
Collapse
Affiliation(s)
- A Miura
- Department of Pharmacology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
42
|
Yada T, Sakurada M, Filipsson K, Kikuchi M, Ahrén B. Intraperitoneal PACAP administration decreases blood glucose in GK rats, and in normal and high fat diet mice. Ann N Y Acad Sci 2001; 921:259-63. [PMID: 11193831 DOI: 10.1111/j.1749-6632.2000.tb06974.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PACAP is an islet peptide that serves as an endogenous amplifier of glucose induced insulin secretion. Furthermore, we has recently found that PACAP also potentiates insulin stimulated glucose uptake in adipocytes. Therefore, an antidiabetic action of PACAP is possible. In the present study, we examined the effect of PACAP treatment of the hyperglycemia in GK rats, an animal model of type 2 diabetes, and in high fat fed C47BL/6J mice, an animal model for glucose intolerance. GK rats housed with normal diet exhibited a normal level of blood glucose until three weeks old but significant hyperglycemia at eight weeks. When GK rats were treated with daily PACAP38 (i.p. injection, 6 pmol/kg) from age three weeks, development of hyperglycemia was prevented. In high fat fed mice, i.p. administration of PACAP27 for five (25 nmol/kg twice daily) reduced plasma glucose levels to 6.9 +/- 0.2 mmol/l compared to 8.1 +/- 0.2 mmol/l in saline injected animals (p < 0.001) without altering baseline insulin levels. We conclude that PACAP reduces circulating glucose in animal models of type 2 diabetes and glucose intolerance. The mechanism of this action needs to be established.
Collapse
Affiliation(s)
- T Yada
- Department of Physiology, Jichi Medical School, Tochigi, Japan.
| | | | | | | | | |
Collapse
|
43
|
Ahrén B, Filipsson K. The effects of PACAP on insulin secretion and glucose disposal are altered by adrenalectomy in mice. Ann N Y Acad Sci 2001; 921:251-8. [PMID: 11193830 DOI: 10.1111/j.1749-6632.2000.tb06973.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously showed that pituitary adenylate cyclase-activating polypeptide (PACAP) potently stimulates insulin secretion in vivo in mice without altering glucose disposal. Such a combination of results would be explained if epinephrine released by PACAP counteracts the action of insulin and, therefore, that the glucose disposal after PACAP administration is altered by adrenalectomy. In the study reported in this paper, we examined the influence of PACAP27 (1.3 nmol/kg i.v.) on insulin secretion and glucose disposal during an intravenous glucose (1 g/kg) tolerance test in mice subjected to bilateral adrenalectomy 48 h prior to the tolerance test. We found that in control mice, PACAP potentiated glucose-stimulated insulin secretion threefold without affecting glucose disposal. Adrenalectomy potentiated the augmentation by PACAP27 of glucose-stimulated insulin secretion, and in adrenalectomized mice, PACAP27 simultaneously augmented glucose disposal (elimination rate 2.30 +/- 0.07%/min vs. 2.56 +/- 0.05%/min; p = 0.011). Furthermore, PACAP27 augmented glucose elimination stimulated by i.v. insulin administration only in adrenalectomized, but not in control mice. We, therefore, conclude that under in vivo conditions, epinephrine released by PACAP from the adrenals prevents the marked insulinotropic action of the peptide from augmenting glucose disposal.
Collapse
Affiliation(s)
- B Ahrén
- Department of Medicine, Lund University, SE-205 02 Malmö, Sweden.
| | | |
Collapse
|
44
|
Arahira S, Kusao M, Shioda S, Yada T. PACAP activates pancreatic alpha-cells in a glucose independent manner. Ann N Y Acad Sci 2001; 921:438-42. [PMID: 11193872 DOI: 10.1111/j.1749-6632.2000.tb07012.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S Arahira
- Department of Physiology, Faculty of Medicine, Kagoshima University, Kagoshima 890-8520, Japan
| | | | | | | |
Collapse
|
45
|
Yada T, Nakata M, Shioda S. Insulinotropin PACAP potentiates insulin action. Stimulation of glucose uptake in 3T3-LI adipocytes. Ann N Y Acad Sci 2001; 921:473-7. [PMID: 11193879 DOI: 10.1111/j.1749-6632.2000.tb07018.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PAC1 receptor was expressed in the rat fat tissue and 3T3-L1 adipocytes. PACAP-38 (10 nM) significantly enhanced insulin induced 2-deoxyglucose uptake by 3T3-L1 adipocytes. GLP-1 has a similar effect. PACAP-38 further increased insulin stimulated phosphatidylinositol (PI) 3-kinase activity, but has not effect on tyrosine phosphorylation of insulin receptor beta-subunit or IRS-1. These results reveal that PACAP-38 enhances insulin induced glucose uptake, an effect probably mediated by PI 3-kinase. In conclusion, PACAP potentiates not only insulin secretion but also insulin action in adipocytes, thereby exhibiting antidiabetic actions at two important steps of glucose metabolism (Fig. 2).
Collapse
Affiliation(s)
- T Yada
- Jichi Medical School, Minamikawachi, Kawachi, Tochigi 329-0498, Japan.
| | | | | |
Collapse
|
46
|
Kirchgessner AL, Liu MT. Pituitary adenylate cyclase activating peptide (PACAP) in the enteropancreatic innervation. THE ANATOMICAL RECORD 2001; 262:91-100. [PMID: 11146432 DOI: 10.1002/1097-0185(20010101)262:1<91::aid-ar1014>3.0.co;2-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pancreatic ganglia are innervated by neurons in the gut and are formed by precursor cells that migrate into the pancreas from the bowel. The innervation of the pancreas, therefore, may be considered an extension of the enteric nervous system. Pituitary adenylate cyclase-activating polypeptide (PACAP) is present in a subset of enteric neurons. We investigated the presence of PACAP in the enteropancreatic innervation in guinea pigs, and the response of pancreatic neurons to PACAP-related peptides. PACAP immunoreactivity was found in nerve fibers in both enteric and pancreatic ganglia and in nerve bundles that travelled between the duodenum and pancreas. PACAP-immunoreactive nerve fibers were densely distributed in the pancreatic ganglia, where they surrounded a subset of cholinergic cell bodies. Pancreatic ganglia did not contain PACAP-immunoreactive cell bodies; however, neuronal perikarya with PACAP immunoreactivity were found in the myenteric plexus of the duodenum. These cells co-stored vasoactive intestinal peptide (VIP). PACAP depolarized pancreatic neurons. Pancreatic neurons were also depolarized by VIP; however, PACAP was more efficacious at depolarizing pancreatic cells than VIP. These findings are consistent with the view that the PACAP effects were mediated through PACAP-selective (PAC1) receptors. PACAP-responsive neurons displayed PAC1 receptor immunoreactivity, which was also found in islet cells and enteric neurons. These results provide support for the hypothesis that PACAP modulates reflex activity between the gut and pancreas. The excitatory effect of PACAP would be expected to potentiate pancreatic secretion.
Collapse
Affiliation(s)
- A L Kirchgessner
- Department of Physiology and Pharmacology, State University of New York, Health Science Center at Brooklyn, Brooklyn, New York 11203, USA.
| | | |
Collapse
|
47
|
Sherwood NM, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 2000; 21:619-70. [PMID: 11133067 DOI: 10.1210/edrv.21.6.0414] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP)/ glucagon superfamily includes nine hormones in humans that are related by structure, distribution (especially the brain and gut), function (often by activation of cAMP), and receptors (a subset of seven-transmembrane receptors). The nine hormones include glucagon, glucagon-like peptide-1 (GLP-1), GLP-2, glucose-dependent insulinotropic polypeptide (GIP), GH-releasing hormone (GRF), peptide histidine-methionine (PHM), PACAP, secretin, and vasoactive intestinal polypeptide (VIP). The origin of the ancestral superfamily members is at least as old as the invertebrates; the most ancient and tightly conserved members are PACAP and glucagon. Evidence to date suggests the superfamily began with a gene or exon duplication and then continued to diverge with some gene duplications in vertebrates. The function of PACAP is considered in detail because it is newly (1989) discovered; it is tightly conserved (96% over 700 million years); and it is probably the ancestral molecule. The diverse functions of PACAP include regulation of proliferation, differentiation, and apoptosis in some cell populations. In addition, PACAP regulates metabolism and the cardiovascular, endocrine, and immune systems, although the physiological event(s) that coordinates PACAP responses remains to be identified.
Collapse
Affiliation(s)
- N M Sherwood
- Department of Biology, University of Victoria, British Columbia, Canada.
| | | | | |
Collapse
|
48
|
Sekiya K, Nagasaki H, Ozaki N, Suzuki A, Miura Y, Oiso Y. Pituitary adenylate cyclase-activating polypeptide prevents cytokine-induced cytotoxicity via inhibition of inducible nitric oxide synthase expression in beta TC cells. Biochem Biophys Res Commun 2000; 278:211-6. [PMID: 11071874 DOI: 10.1006/bbrc.2000.3784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes mellitus is an autoimmune disease resulting from apoptotic destruction of pancreatic beta-cells. The activation of inducible nitric oxide synthase (iNOS) by inflammatory cytokines is considered a mediator of destruction in beta-cells. Recent findings showed that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP), whose distribution was identified in pancreatic neurons, inhibited nitric oxide (NO) production in cytokine-activated macrophages. In the present study, we investigated the cytoprotective effect of PACAP in the cytokine-exposed mice beta-cell line, beta TC cells. 1 x 10(-8) M PACAP inhibited the reduction of cell viability, NO production, expression of iNOS mRNA, and iNOS promoter activity caused by the combination of three proinflammatory cytokines. Selective iNOS inhibitor also showed the cytoprotective effect in beta TC cells. These data suggested that PACAP has a cytoprotective effect in cytokine-treated beta-cells through inhibition of iNOS transcription.
Collapse
Affiliation(s)
- K Sekiya
- First Department of Internal Medicine, Nagoya University School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Filipsson K, Holst JJ, Ahrén B. PACAP contributes to insulin secretion after gastric glucose gavage in mice. Am J Physiol Regul Integr Comp Physiol 2000; 279:R424-32. [PMID: 10938228 DOI: 10.1152/ajpregu.2000.279.2.r424] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is localized to pancreatic ganglia governing the parasympathetic nerves, which contribute to prandial insulin secretion. We hypothesized that this contribution involves PACAP and show here that the PACAP receptor antagonist PACAP-(6---27) (1.5 nmol/kg iv) reduces the 15-min insulin response to gastric glucose (150 mg/mouse) by 18% in anesthetized mice (P = 0.041). The reduced insulinemia was not due to inhibited release of the incretin factor glucagon-like peptide 1 (GLP-1) because PACAP-(6---27) enhanced the GLP-1 response to gastric glucose. Furthermore, the GLP-1 antagonist exendin-3-(9---39) (30 nmol/kg) exerted additive inhibitory effect on the insulin response when combined with PACAP-(6---27). The PACAP antagonism was specific because intravenous PACAP-(6---27) inhibited the insulin response to intravenous PACAP-27 plus glucose without affecting the insulin response to intravenous glucose alone (1 g/kg) or glucose together with other insulin secretagogues of potential incretin relevance of intestinal (GLP-1, gastric inhibitory polypeptide, cholecystokinin) and neural (vasoactive intestinal peptide, gastrin-releasing peptide, cholinergic agonism) origin. We conclude that PACAP contributes to the insulin response to gastric glucose in mice and suggest that PACAP is involved in the regulation of prandial insulin secretion.
Collapse
Affiliation(s)
- K Filipsson
- Department of Medicine, Lund University, Malmö, Sweden.
| | | | | |
Collapse
|
50
|
Jamen F, Persson K, Bertrand G, Rodriguez-Henche N, Puech R, Bockaert J, Ahrén B, Brabet P. PAC1 receptor-deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance. J Clin Invest 2000; 105:1307-15. [PMID: 10792006 PMCID: PMC315446 DOI: 10.1172/jci9387] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2000] [Accepted: 03/28/2000] [Indexed: 01/11/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a ubiquitous neuropeptide of the vasoactive intestinal peptide (VIP) family that potentiates glucose-stimulated insulin secretion. Pancreatic beta cells express two PACAP receptor subtypes, a PACAP-preferring (PAC1) and a VIP-shared (VPAC2) receptor. We have applied a gene targeting approach to create a mouse lacking the PAC1 receptor (PAC1(-/-)). These mice were viable and normoglycemic, but exhibited a slight feeding hyperinsulinemia. In vitro, in the isolated perfused pancreas, the insulin secretory response to PACAP was reduced by 50% in PAC1(-/-) mice, whereas the response to VIP was unaffected. In vivo, the insulinotropic action of PACAP was also acutely reduced, and the peptide induced impairment of glucose tolerance after an intravenous glucose injection. This demonstrates that PAC1 receptor is involved in the insulinotropic action of the peptide. Moreover, PAC1(-/-) mice exhibited reduced glucose-stimulated insulin secretion in vitro and in vivo, showing that the PAC1 receptor is required to maintain normal insulin secretory responsiveness to glucose. The defective insulinotropic action of glucose was associated with marked glucose intolerance after both intravenous and gastric glucose administration. Thus, these results are consistent with a physiological role for the PAC1 receptor in glucose homeostasis, notably during food intake.
Collapse
Affiliation(s)
- F Jamen
- Unité Propre de Recherche (UPR9023) Centre National de la Recherche Scientifique, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|