1
|
Formichi C, Caprio S, Nigi L, Dotta F. The impact of environmental pollution on metabolic health and the risk of non-communicable chronic metabolic diseases in humans. Nutr Metab Cardiovasc Dis 2025; 35:103975. [PMID: 40180824 DOI: 10.1016/j.numecd.2025.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
AIMS This review aims to provide a comprehensive overview to understand the role of pollution in the development of noncommunicable diseases (NCDs), with a focus on metabolic diseases. DATA SYNTHESIS In the context of NCDs, the incidence of metabolic diseases such as obesity and diabetes are increasing at an alarming rate. In addition to the well-known role of the so-called "obesogenic" environment, characterized by unhealthy diet and physical inactivity, great attention has been paid in recent years to the effects of pollution. Indeed, progressive urbanization has been associated with increased exposure to pollutants. The harmful effects of some pollutants on the endocrine system have been known for decades, but data on the metabolic impact of pollution are rather recent. Pollution in its various forms promotes a systemic inflammatory state, insulin resistance, and oxidative stress, which appear to be closely associated with increased risk of NCD, particularly obesity and diabetes. CONCLUSIONS In conclusion, urbanization has so far had a predominantly negative impact on collective health, but a better understanding of the mechanisms linking pollution to metabolic health is crucial to implement preventive strategies, including careful urban planning to improve community health, understood not only as the absence of disease but also as psychological and social well-being, overcoming the risks associated with urbanization.
Collapse
Affiliation(s)
- Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 1-16, 53100, Siena, Italy.
| | - Sonia Caprio
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 1-16, 53100, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 1-16, 53100, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Viale Bracci 1-16, 53100, Siena, Italy
| |
Collapse
|
2
|
Gavzy SJ, Kensiski A, Saxena V, Lakhan R, Hittle L, Wu L, Iyyathurai J, Dhakal H, Lee ZL, Li L, Lee YS, Zhang T, Lwin HW, Shirkey MW, Paluskievicz CM, Piao W, Mongodin EF, Ma B, Bromberg JS. Early Immunomodulatory Program Triggered by Protolerogenic Bifidobacterium pseudolongum Drives Cardiac Transplant Outcomes. Transplantation 2024; 108:e91-e105. [PMID: 38587506 PMCID: PMC11188630 DOI: 10.1097/tp.0000000000004939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 04/09/2024]
Abstract
BACKGROUND Despite ongoing improvements to regimens preventing allograft rejection, most cardiac and other organ grafts eventually succumb to chronic vasculopathy, interstitial fibrosis, or endothelial changes, and eventually graft failure. The events leading to chronic rejection are still poorly understood and the gut microbiota is a known driving force in immune dysfunction. We previously showed that gut microbiota dysbiosis profoundly influences the outcome of vascularized cardiac allografts and subsequently identified biomarker species associated with these differential graft outcomes. METHODS In this study, we further detailed the multifaceted immunomodulatory properties of protolerogenic and proinflammatory bacterial species over time, using our clinically relevant model of allogenic heart transplantation. RESULTS In addition to tracing longitudinal changes in the recipient gut microbiome over time, we observed that Bifidobacterium pseudolongum induced an early anti-inflammatory phenotype within 7 d, whereas Desulfovibrio desulfuricans resulted in a proinflammatory phenotype, defined by alterations in leukocyte distribution and lymph node (LN) structure. Indeed, in vitro results showed that B pseudolongum and D desulfuricans acted directly on primary innate immune cells. However, by 40 d after treatment, these 2 bacterial strains were associated with mixed effects in their impact on LN architecture and immune cell composition and loss of colonization within gut microbiota, despite protection of allografts from inflammation with B pseudolongum treatment. CONCLUSIONS These dynamic effects suggest a critical role for early microbiota-triggered immunologic events such as innate immune cell engagement, T-cell differentiation, and LN architectural changes in the subsequent modulation of protolerant versus proinflammatory immune responses in organ transplant recipients.
Collapse
Affiliation(s)
- Samuel J. Gavzy
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Allison Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
| | - Ram Lakhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
| | - Lauren Hittle
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD
| | - Long Wu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
| | - Jegan Iyyathurai
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
| | - Hima Dhakal
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
| | - Zachariah L. Lee
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
| | - Lushen Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Young S. Lee
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Tianshu Zhang
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Hnin Wai Lwin
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD
| | - Marina W. Shirkey
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
| | - Christina M. Paluskievicz
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Wenji Piao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
| | - Emmanuel F. Mongodin
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD
| | - Bing Ma
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - Jonathan S. Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
3
|
Batdorf HM, de Luna Lawes L, Cassagne GA, Fontenot MS, Harvey IC, Richardson JT, Burk DH, Dupuy SD, Karlstad MD, Salbaum JM, Staszkiewicz J, Beyl R, Ghosh S, Burke SJ, Collier JJ. Accelerated onset of diabetes in non-obese diabetic mice fed a refined high-fat diet. Diabetes Obes Metab 2024; 26:2158-2166. [PMID: 38433703 PMCID: PMC11078605 DOI: 10.1111/dom.15522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/05/2024]
Abstract
AIM Type 1 diabetes results from autoimmune events influenced by environmental variables, including changes in diet. This study investigated how feeding refined versus unrefined (aka 'chow') diets affects the onset and progression of hyperglycaemia in non-obese diabetic (NOD) mice. METHODS Female NOD mice were fed either unrefined diets or matched refined low- and high-fat diets. The onset of hyperglycaemia, glucose tolerance, food intake, energy expenditure, circulating insulin, liver gene expression and microbiome changes were measured for each dietary group. RESULTS NOD mice consuming unrefined (chow) diets developed hyperglycaemia at similar frequencies. By contrast, mice consuming the defined high-fat diet had an accelerated onset of hyperglycaemia compared to the matched low-fat diet. There was no change in food intake, energy expenditure, or physical activity within each respective dietary group. Microbiome changes were driven by diet type, with chow diets clustering similarly, while refined low- and high-fat bacterial diversity also grouped closely. In the defined dietary cohort, liver gene expression changes in high-fat-fed mice were consistent with a greater frequency of hyperglycaemia and impaired glucose tolerance. CONCLUSION Glucose intolerance is associated with an enhanced frequency of hyperglycaemia in female NOD mice fed a defined high-fat diet. Using an appropriate matched control diet is an essential experimental variable when studying changes in microbiome composition and diet as a modifier of disease risk.
Collapse
Affiliation(s)
- Heidi M. Batdorf
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | | | | | | | | | | | - David H. Burk
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Samuel D. Dupuy
- Department of Surgery, University of Tennessee Health Science Center, Graduate School of Medicine, Knoxville, TN 37920
| | - Michael D. Karlstad
- Department of Surgery, University of Tennessee Health Science Center, Graduate School of Medicine, Knoxville, TN 37920
| | | | | | - Robbie Beyl
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Sujoy Ghosh
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Susan J. Burke
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - J. Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
4
|
Kwain S, Dominy BN, Whitehead KJ, Miller BA, Whitehead DC. Exploring the interactive mechanism of acarbose with the amylase SusG in the starch utilization system of the human gut symbiont Bacteroides thetaiotaomicron through molecular modeling. Chem Biol Drug Des 2023; 102:486-499. [PMID: 37062591 DOI: 10.1111/cbdd.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
The α-amylase, SusG, is a principal component of the Bacteroides thetaiotaomicron (Bt) starch utilization system (Sus) used to metabolize complex starch molecules in the human gastrointestinal (GI) tract. We previously reported the non-microbicidal growth inhibition of Bt by the acarbose-mediated arrest of the Sus as a potential therapeutic strategy. Herein, we report a computational approach using density functional theory (DFT), molecular docking, and molecular dynamics (MD) simulation to explore the interactive mechanism between acarbose and SusG at the atomic level in an effort to understand how acarbose shuts down the Bt Sus. The docking analysis reveals that acarbose binds orthosterically to SusG with a binding affinity of -8.3 kcal/mol. The MD simulation provides evidence of conformational variability of acarbose at the active site of SusG and also suggests that acarbose interacts with the main catalytic residues via a general acid-base double-displacement catalytic mechanism. These results suggest that small molecule competitive inhibition against the SusG protein could impact the entire Bt Sus and eliminate or reduce the system's ability to metabolize starch. This computational strategy could serve as a potential avenue for structure-based drug design to discover other small molecules capable of inhibiting the Sus of Bt with high potency, thus providing a holistic approach for selective modulation of the GI microbiota.
Collapse
Affiliation(s)
- Samuel Kwain
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Brian N Dominy
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Kristi J Whitehead
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Brock A Miller
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
5
|
Miura N, Okuda S. Current progress and critical challenges to overcome in the bioinformatics of mass spectrometry-based metaproteomics. Comput Struct Biotechnol J 2023; 21:1140-1150. [PMID: 36817962 PMCID: PMC9925844 DOI: 10.1016/j.csbj.2023.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Metaproteomics is a relatively young field that has only been studied for approximately 15 years. Nevertheless, it has the potential to play a key role in disease research by elucidating the mechanisms of communication between the human host and the microbiome. Although it has been useful in developing an understanding of various diseases, its analytical strategies remain limited to the extended application of proteomics. The sequence databases in metaproteomics must be large because of the presence of thousands of species in a typical sample, which causes problems unique to large databases. In this review, we demonstrate the usefulness of metaproteomics in disease research through examples from several studies. Additionally, we discuss the challenges of applying metaproteomics to conventional proteomics analysis methods and introduce studies that may provide clues to the solutions. We also discuss the need for a standard false discovery rate control method for metaproteomics to replace common target-decoy search approaches in proteomics and a method to ensure the reliability of peptide spectrum match.
Collapse
Affiliation(s)
- Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
- Medical AI Center, Niigata University School of Medicine, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| |
Collapse
|
6
|
Cabrera SM, Coren AT, Pant T, Ciecko AE, Jia S, Roethle MF, Simpson PM, Atkinson SN, Salzman NH, Chen YG, Hessner MJ. Probiotic normalization of systemic inflammation in siblings of type 1 diabetes patients: an open-label pilot study. Sci Rep 2022; 12:3306. [PMID: 35228584 PMCID: PMC8885673 DOI: 10.1038/s41598-022-07203-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
The incidence of type 1 diabetes (T1D) has increased, coinciding with lifestyle changes that have likely altered the gut microbiota. Dysbiosis, gut barrier dysfunction, and elevated systemic inflammation consistent with microbial antigen exposure, have been associated with T1D susceptibility and progression. A 6-week, single-arm, open-label pilot trial was conducted to investigate whether daily multi-strain probiotic supplementation could reduce this familial inflammation in 25 unaffected siblings of T1D patients. Probiotic supplementation was well-tolerated as reflected by high participant adherence and no adverse events. Community alpha and beta diversity were not altered between the pre- and post-supplement stool samplings. However, LEfSe analyses identified post-supplement enrichment of the family Lachnospiraceae, producers of the anti-inflammatory short chain fatty acid butyrate. Systemic inflammation was measured by plasma-induced transcription and quantified with a gene ontology-based composite inflammatory index (I.I.com). Post-supplement I.I.com was significantly reduced and pathway analysis predicted inhibition of numerous inflammatory mediators and activation of IL10RA. Subjects with the greatest post-supplement reduction in I.I.com exhibited significantly lower CD4+ CD45RO+ (memory):CD4+ CD45RA+ (naïve) T-cell ratios after supplementation. Post-supplement IL-12p40, IL-13, IL-15, IL-18, CCL2, and CCL24 plasma levels were significantly reduced, while post-supplement butyrate levels trended 1.4-fold higher. Probiotic supplementation may modify T1D susceptibility and progression and warrants further study.
Collapse
Affiliation(s)
- Susanne M Cabrera
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Alison T Coren
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Tarun Pant
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Ashley E Ciecko
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Shuang Jia
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Mark F Roethle
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Pippa M Simpson
- Division of Quantitative Health Sciences, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Samantha N Atkinson
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nita H Salzman
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Division of Gastroenterology, Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Martin J Hessner
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA.
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
7
|
Guandalini S, Discepolo V. Celiac Disease. TEXTBOOK OF PEDIATRIC GASTROENTEROLOGY, HEPATOLOGY AND NUTRITION 2022:525-548. [DOI: 10.1007/978-3-030-80068-0_40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Kumar S, Kumar R, Rohilla L, Jacob N, Yadav J, Sachdeva N. A high potency multi-strain probiotic improves glycemic control in children with new-onset type 1 diabetes mellitus: A randomized, double-blind, and placebo-controlled pilot study. Pediatr Diabetes 2021; 22:1014-1022. [PMID: 34174128 DOI: 10.1111/pedi.13244] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Studies in animal models and humans with type 1 diabetes mellitus (T1DM) have shown that probiotic supplementation leads to decreased pro-inflammatory cytokines (responsible for damaging β-cells of the pancreas), improved gut barrier function, and induction of immune tolerance. OBJECTIVE To study the effect of supplementation of probiotics in children with T1DM on glycemic control, insulin dose, and plasma C-peptide levels. METHODS A single-centered, double-blinded, and randomized placebo-controlled pilot trial was conducted in children (2-12 years) with new-onset T1DM. Ninety-six children were randomized and allocated to Placebo or Intervention groups. The intervention included high dose (112.5 billion viable lyophilized bacteria per capsule) multi-strain probiotic De Simone formulation (manufactured by Danisco-Dupont) sold as Visbiome® in India. The probiotic was supplemented for 3 months and HbA1c, fasting C-peptide, blood sugar records, and insulin dose was recorded at baseline and 3 months. RESULTS A total of 90 patients (45 in each group) were analyzed for outcome parameters. We found a significant decrease in HbA1c (5.1 vs. 3.8; p = 0.021) and a significant decline in total and bolus insulin dose (U/kg/day; p = 0.037 and 0.018, respectively) in the intervention group when compared with the placebo group. A significantly higher (p = 0.023) number of children achieved remission in the treatment group. We did not notice adverse effects in either of the study groups. CONCLUSION Children with newly diagnosed T1DM managed with standard treatment along with probiotics showed better glycemic control and a decrease in insulin requirements; however, more extensive studies are further warranted.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Pediatrics, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rakesh Kumar
- Department of Pediatrics, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Latika Rohilla
- Department of Pediatrics, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Neenu Jacob
- Department of Pediatrics, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jaivinder Yadav
- Department of Pediatrics, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
9
|
Zhang XS, Yin YS, Wang J, Battaglia T, Krautkramer K, Li WV, Li J, Brown M, Zhang M, Badri MH, Armstrong AJS, Strauch CM, Wang Z, Nemet I, Altomare N, Devlin JC, He L, Morton JT, Chalk JA, Needles K, Liao V, Mount J, Li H, Ruggles KV, Bonneau RA, Dominguez-Bello MG, Bäckhed F, Hazen SL, Blaser MJ. Maternal cecal microbiota transfer rescues early-life antibiotic-induced enhancement of type 1 diabetes in mice. Cell Host Microbe 2021; 29:1249-1265.e9. [PMID: 34289377 PMCID: PMC8370265 DOI: 10.1016/j.chom.2021.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
Early-life antibiotic exposure perturbs the intestinal microbiota and accelerates type 1 diabetes (T1D) development in the NOD mouse model. Here, we found that maternal cecal microbiota transfer (CMT) to NOD mice after early-life antibiotic perturbation largely rescued the induced T1D enhancement. Restoration of the intestinal microbiome was significant and persistent, remediating the antibiotic-depleted diversity, relative abundance of particular taxa, and metabolic pathways. CMT also protected against perturbed metabolites and normalized innate and adaptive immune effectors. CMT restored major patterns of ileal microRNA and histone regulation of gene expression. Further experiments suggest a gut-microbiota-regulated T1D protection mechanism centered on Reg3γ, in an innate intestinal immune network involving CD44, TLR2, and Reg3γ. This regulation affects downstream immunological tone, which may lead to protection against tissue-specific T1D injury.
Collapse
Affiliation(s)
- Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA.
| | - Yue Sandra Yin
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Jincheng Wang
- Department of Biochemistry and Microbiology, Rutgers University - New Brunswick, New Brunswick, NJ, USA
| | - Thomas Battaglia
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Kimberly Krautkramer
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg 41345, Sweden
| | - Wei Vivian Li
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Jackie Li
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Mark Brown
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Meifan Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Michelle H Badri
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; New York University, Center for Data Science, New York, NY, USA
| | - Abigail J S Armstrong
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Christopher M Strauch
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Zeneng Wang
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Ina Nemet
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Altomare
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Joseph C Devlin
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Linchen He
- Department of Population Health, New York University Langone Medical Center, New York, NY, USA
| | - Jamie T Morton
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - John Alex Chalk
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Kelly Needles
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Viviane Liao
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Julia Mount
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Huilin Li
- Department of Population Health, New York University Langone Medical Center, New York, NY, USA
| | - Kelly V Ruggles
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Richard A Bonneau
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; New York University, Center for Data Science, New York, NY, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University - New Brunswick, New Brunswick, NJ, USA; Institute for Food, Nutrition and Health, Rutgers University - New Brunswick, New Brunswick, NJ, USA
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg 41345, Sweden; Region västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stanley L Hazen
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Boscari F, Avogaro A. Current treatment options and challenges in patients with Type 1 diabetes: Pharmacological, technical advances and future perspectives. Rev Endocr Metab Disord 2021; 22:217-240. [PMID: 33755854 PMCID: PMC7985920 DOI: 10.1007/s11154-021-09635-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes mellitus imposes a significant burden of complications and mortality, despite important advances in treatment: subjects affected by this disease have also a worse quality of life-related to disease management. To overcome these challenges, different new approaches have been proposed, such as new insulin formulations or innovative devices. The introduction of insulin pumps allows a more physiological insulin administration with a reduction of HbA1c level and hypoglycemic risk. New continuous glucose monitoring systems with better accuracy have allowed, not only better glucose control, but also the improvement of the quality of life. Integration of these devices with control algorithms brought to the creation of the first artificial pancreas, able to independently gain metabolic control without the risk of hypo- and hyperglycemic crisis. This approach has revolutionized the management of diabetes both in terms of quality of life and glucose control. However, complete independence from exogenous insulin will be obtained only by biological approaches that foresee the replacement of functional beta cells obtained from stem cells: this will be a major challenge but the biggest hope for the subjects with type 1 diabetes. In this review, we will outline the current scenario of innovative diabetes management both from a technological and biological point of view, and we will also forecast some cutting-edge approaches to reduce the challenges that hamper the definitive cure of diabetes.
Collapse
Affiliation(s)
- Federico Boscari
- Department of Medicine, Unit of Metabolic Diseases, University of Padova, Padova, Italy.
| | - Angelo Avogaro
- Department of Medicine, Unit of Metabolic Diseases, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Gao B, Sun Q. Programming gene expression in multicellular organisms for physiology modulation through engineered bacteria. Nat Commun 2021; 12:2689. [PMID: 33976154 PMCID: PMC8113242 DOI: 10.1038/s41467-021-22894-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
A central goal of synthetic biology is to predictably and efficiently reprogram living systems to perform computations and carry out specific biological tasks. Although there have been many advances in the bio-computational design of living systems, these advances have mainly been applied to microorganisms or cell lines; programming animal physiology remains challenging for synthetic biology because of the system complexity. Here, we present a bacteria-animal symbiont system in which engineered bacteria recognize external signals and modulate animal gene expression, twitching phenotype, and fat metabolism through RNA interference toward gfp, sbp-1, and unc-22 gene in C. elegans. By using genetic circuits in bacteria to control these RNA expressions, we are able to program the physiology of the model animal Caenorhabditis elegans with logic gates. We anticipate that engineered bacteria can be used more extensively to program animal physiology for agricultural, therapeutic, and basic science applications.
Collapse
Affiliation(s)
- Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Walter J, Armet AM, Finlay BB, Shanahan F. Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. Cell 2020; 180:221-232. [PMID: 31978342 DOI: 10.1016/j.cell.2019.12.025] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/31/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Human diseases are increasingly linked with an altered or "dysbiotic" gut microbiota, but whether such changes are causal, consequential, or bystanders to disease is, for the most part, unresolved. Human microbiota-associated (HMA) rodents have become a cornerstone of microbiome science for addressing causal relationships between altered microbiomes and host pathology. In a systematic review, we found that 95% of published studies (36/38) on HMA rodents reported a transfer of pathological phenotypes to recipient animals, and many extrapolated the findings to make causal inferences to human diseases. We posit that this exceedingly high rate of inter-species transferable pathologies is implausible and overstates the role of the gut microbiome in human disease. We advocate for a more rigorous and critical approach for inferring causality to avoid false concepts and prevent unrealistic expectations that may undermine the credibility of microbiome science and delay its translation.
Collapse
Affiliation(s)
- Jens Walter
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Medicine and APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; School of Microbiology, University College Cork, Cork T12 YT20, Ireland.
| | - Anissa M Armet
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Fergus Shanahan
- Department of Medicine and APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
13
|
Predieri B, Bruzzi P, Bigi E, Ciancia S, Madeo SF, Lucaccioni L, Iughetti L. Endocrine Disrupting Chemicals and Type 1 Diabetes. Int J Mol Sci 2020; 21:ijms21082937. [PMID: 32331412 PMCID: PMC7215452 DOI: 10.3390/ijms21082937] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is the most common chronic metabolic disease in children and adolescents. The etiology of T1D is not fully understood but it seems multifactorial. The genetic background determines the predisposition to develop T1D, while the autoimmune process against β-cells seems to be also determined by environmental triggers, such as endocrine disrupting chemicals (EDCs). Environmental EDCs may act throughout different temporal windows as single chemical agent or as chemical mixtures. They could affect the development and the function of the immune system or of the β-cells function, promoting autoimmunity and increasing the susceptibility to autoimmune attack. Human studies evaluating the potential role of exposure to EDCs on the pathogenesis of T1D are few and demonstrated contradictory results. The aim of this narrative review is to summarize experimental and epidemiological studies on the potential role of exposure to EDCs in the development of T1D. We highlight what we know by animals about EDCs’ effects on mechanisms leading to T1D development and progression. Studies evaluating the EDC levels in patients with T1D were also reported. Moreover, we discussed why further studies are needed and how they should be designed to better understand the causal mechanisms and the next prevention interventions.
Collapse
Affiliation(s)
- Barbara Predieri
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults-University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy; (E.B.); (L.I.)
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults—University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy;
- Correspondence: ; Tel.: +39-059-422-5217
| | - Patrizia Bruzzi
- Pediatric Unit, Department of Pediatrics—AOU Policlinic of Modena, Largo del Pozzo, 71-41124 Modena, Italy; (P.B.); (S.F.M.)
| | - Elena Bigi
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults-University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy; (E.B.); (L.I.)
| | - Silvia Ciancia
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults—University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy;
| | - Simona F. Madeo
- Pediatric Unit, Department of Pediatrics—AOU Policlinic of Modena, Largo del Pozzo, 71-41124 Modena, Italy; (P.B.); (S.F.M.)
| | - Laura Lucaccioni
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults-University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy;
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults-University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy; (E.B.); (L.I.)
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults—University of Modena and Reggio Emilia, Largo del Pozzo, 71-41124 Modena, Italy;
| |
Collapse
|
14
|
The DNA Sensor AIM2 Protects against Streptozotocin-Induced Type 1 Diabetes by Regulating Intestinal Homeostasis via the IL-18 Pathway. Cells 2020; 9:cells9040959. [PMID: 32295112 PMCID: PMC7227011 DOI: 10.3390/cells9040959] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Pattern recognition receptors (PRRs), such as Nod2, Nlrp3, Tlr2, Trl4, and Tlr9, are directly involved in type 1 diabetes (T1D) susceptibility. However, the role of the cytosolic DNA sensor, AIM2, in T1D pathogenesis is still unknown. Here, we demonstrate that C57BL/6 mice lacking AIM2 (AIM2−/−) are prone to streptozotocin (STZ)-induced T1D, compared to WT C57BL/6 mice. The AIM2−/− mice phenotype is associated with a greater proinflammatory response in pancreatic tissues, alterations in gut microbiota and bacterial translocation to pancreatic lymph nodes (PLNs). These alterations are related to an increased intestinal permeability mediated by tight-junction disruption. Notably, AIM2−/− mice treated with broad-spectrum antibiotics (ABX) are protected from STZ-induced T1D and display a lower pancreatic proinflammatory response. Mechanistically, the AIM2 inflammasome is activated in vivo, leading to an IL-18 release in the ileum at 15 days after an STZ injection. IL-18 favors RegIIIγ production, thus mitigating gut microbiota alterations and reinforcing the intestinal barrier function. Together, our findings show a regulatory role of AIM2, mediated by IL-18, in shaping gut microbiota and reducing bacterial translocation and proinflammatory response against insulin-producing β cells, which ultimately results in protection against T1D onset in an STZ-induced diabetes model.
Collapse
|
15
|
Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. Evaluating the Causal Role of Gut Microbiota in Type 1 Diabetes and Its Possible Pathogenic Mechanisms. Front Endocrinol (Lausanne) 2020; 11:125. [PMID: 32265832 PMCID: PMC7105744 DOI: 10.3389/fendo.2020.00125] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial autoimmune disease mediated by genetic, epigenetic, and environmental factors. In recent years, the emergence of high-throughput sequencing has allowed us to investigate the role of gut microbiota in the development of T1D. Significant changes in the composition of gut microbiome, also termed dysbiosis, have been found in subjects with clinical or preclinical T1D. However, whether the dysbiosis is a cause or an effect of the disease remains unclear. Currently, increasing evidence has supported a causal link between intestine microflora and T1D development. The current review will focus on recent research regarding the associations between intestine microbiome and T1D progression with an intention to evaluate the causality. We will also discuss the possible mechanisms by which imbalanced gut microbiota leads to the development of T1D.
Collapse
|
16
|
Xie Z, Chang C, Huang G, Zhou Z. The Role of Epigenetics in Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:223-257. [PMID: 32445098 DOI: 10.1007/978-981-15-3449-2_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the interaction between genetic alterations and environmental factors. More than 60 susceptible genes or loci of T1D have been identified. Among them, HLA regions are reported to contribute about 50% of genetic susceptibility in Caucasians. There are many environmental factors involved in the pathogenesis of T1D. Environmental factors may change the expression of genes through epigenetic mechanisms, thus inducing individuals with susceptible genes to develop T1D; however, the underlying mechanisms remain poorly understood. The major epigenetic modifications include DNA methylation, histone modification, and non-coding RNA. There has been extensive research on the role of epigenetic mechanisms including aberrant DNA methylation, histone modification, and microRNA in the pathogenesis of T1D. DNA methylation and microRNA have been proposed as biomarkers to predict islet β cell death, which needs further confirmation before any clinical application can be developed. Small molecule inhibitors of histone deacetylases, histone methylation, and DNA methylation are potentially important for preventing T1D or in the reprogramming of insulin-producing cells. This chapter mainly focuses on T1D-related DNA methylation, histone modification, and non-coding RNA, as well as their possible translational potential in the early diagnosis and treatment of T1D.
Collapse
Affiliation(s)
- Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China.
| |
Collapse
|
17
|
Ho J, Nicolucci AC, Virtanen H, Schick A, Meddings J, Reimer RA, Huang C. Effect of Prebiotic on Microbiota, Intestinal Permeability, and Glycemic Control in Children With Type 1 Diabetes. J Clin Endocrinol Metab 2019; 104:4427-4440. [PMID: 31188437 DOI: 10.1210/jc.2019-00481] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
CONTEXT Patients with type 1 diabetes (T1D) have lower microbiota diversity and distinct gut microbial profiles that have been linked to changes in intestinal permeability. Prebiotics are nondigestible carbohydrates that alter gut microbiota and could potentially improve glycemic control and reduce intestinal permeability and thereby insulin sensitivity. OBJECTIVE To determine the effect of prebiotics on glycemic control, gut microbiota, and intestinal permeability in children with T1D. DESIGN A randomized, placebo-controlled trial in children 8 to 17 years of age with T1D using placebo or prebiotic oligofructose-enriched inulin for 12 weeks. Baseline, 3-month, and 6-month assessments included HbA1c, C-peptide, gut microbiota, intestinal permeability, frequency of diabetic ketoacidosis (DKA), and severe hypoglycemia. RESULTS Forty-three subjects were randomized and 38 completed the study. The groups were similar at baseline: prebiotic (N = 17), age 12.5 years (SD of 2.8), HbA1c 8.02% (SD of 0.82); placebo (N = 21), age 12.0 years (SD of 2.6), HbA1c 8.08% (SD of 0.91). No significant differences were found in the frequency of DKA or severe hypoglycemia. At 3-months, C-peptide was significantly higher (P = 0.029) in the group who received prebiotics, which was accompanied by a modest improvement in intestinal permeability (P = 0.076). There was a significant increase in the relative abundance of Bifidobacterium within the prebiotic group at 3 months that was no longer present after the 3-month washout. The placebo group had significantly higher relative abundance of Streptococcus, Roseburia inulinivorans, Terrisporobacter, and Faecalitalea compared with the prebiotic group at 3 months. CONCLUSION Prebiotics are a potentially novel, inexpensive, low-risk treatment addition for T1D that may improve glycemic control. Further larger-scale trials are needed.
Collapse
Affiliation(s)
- Josephine Ho
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alissa C Nicolucci
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Heidi Virtanen
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alana Schick
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jon Meddings
- Department of Internal Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A Reimer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Carol Huang
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Vallianou NG, Stratigou T, Tsagarakis S. Microbiome and diabetes: Where are we now? Diabetes Res Clin Pract 2018; 146:111-118. [PMID: 30342053 DOI: 10.1016/j.diabres.2018.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/23/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023]
Abstract
Alterations in the diversity or structure of gut microbiota known as dysbiosis, may affect metabolic activities, resulting in metabolic disorders, such as obesity and diabetes. The development of more sophisticated methods, such as metagenomics sequencing, PCR-denaturing gradient gel electrophoresis, microarrays and fluorescence in situ hybridization, has expanded our knowledge on gut microbiome. Dysbiosis has been related to increased plasma concentrations of gut microbiota-derived lipopolysaccharide (LPS), which triggers the production of a variety of cytokines and the recruitment of inflammatory cells. Metabolomics have demonstrated that butyrate and propionate suppress weight gain in mice with high fat diet-induced obesity, and acetate has been proven to reduce food intake in healthy mice. The role of prebiotics, probiotics, genetically modified bacteria and fecal microbiota transplantation, as potential therapeutic challenges for type 2 diabetes will be discussed in this review.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Evangelismos General Hospital, Department of Endocrinology, Diabetes and Metabolism, Athens, Greece.
| | - Theodora Stratigou
- Evangelismos General Hospital, Department of Endocrinology, Diabetes and Metabolism, Athens, Greece
| | - Stylianos Tsagarakis
- Evangelismos General Hospital, Department of Endocrinology, Diabetes and Metabolism, Athens, Greece
| |
Collapse
|
19
|
Bromberg JS, Hittle L, Xiong Y, Saxena V, Smyth EM, Li L, Zhang T, Wagner C, Fricke WF, Simon T, Brinkman CC, Mongodin EF. Gut microbiota-dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes. JCI Insight 2018; 3:121045. [PMID: 30282817 DOI: 10.1172/jci.insight.121045] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
We hypothesized that the gut microbiota influences survival of murine cardiac allografts through modulation of immunity. Antibiotic pretreated mice received vascularized cardiac allografts and fecal microbiota transfer (FMT), along with tacrolimus immunosuppression. FMT source samples were from normal, pregnant (immune suppressed), or spontaneously colitic (inflammation) mice. Bifidobacterium pseudolongum (B. pseudolongum) in pregnant FMT recipients was associated with prolonged allograft survival and lower inflammation and fibrosis, while normal or colitic FMT resulted in inferior survival and worse histology. Transfer of B. pseudolongum alone resulted in reduced inflammation and fibrosis. Stimulation of DC and macrophage lines with B. pseudolongum induced the antiinflammatory cytokine IL-10 and homeostatic chemokine CCL19 but induced lesser amounts of the proinflammatory cytokines TNFα and IL-6. In contrast, LPS and Desulfovibrio desulfuricans (D. desulfuricans), more abundant in colitic FMT, induced a more inflammatory cytokine response. Analysis of mesenteric and peripheral lymph node structure showed that B. pseudolongum gavage resulted in a higher laminin α4/α5 ratio in the lymph node cortical ridge, indicative of a suppressive environment, while D. desulfuricans resulted in a lower laminin α4/α5 ratio, supportive of inflammation. Discrete gut bacterial species alter immunity and may predict graft outcomes through stimulation of myeloid cells and shifts in lymph node structure and permissiveness.
Collapse
Affiliation(s)
- Jonathan S Bromberg
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, Maryland, USA
| | - Lauren Hittle
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, Maryland, USA
| | - Yanbao Xiong
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, Maryland, USA
| | - Vikas Saxena
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, Maryland, USA
| | - Eoghan M Smyth
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, Maryland, USA
| | - Lushen Li
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, Maryland, USA
| | - Tianshu Zhang
- University of Maryland School of Medicine, Department of Surgery, Baltimore, Maryland, USA
| | - Chelsea Wagner
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, Maryland, USA
| | - W Florian Fricke
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Thomas Simon
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Colin C Brinkman
- University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, Departments of Surgery, Microbiology and Immunology, Baltimore, Maryland, USA
| | - Emmanuel F Mongodin
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Gavin PG, Mullaney JA, Loo D, Cao KAL, Gottlieb PA, Hill MM, Zipris D, Hamilton-Williams EE. Intestinal Metaproteomics Reveals Host-Microbiota Interactions in Subjects at Risk for Type 1 Diabetes. Diabetes Care 2018; 41:2178-2186. [PMID: 30100563 PMCID: PMC6150433 DOI: 10.2337/dc18-0777] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/16/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Dysbiosis of the gut microbiota has been linked to disease pathogenesis in type 1 diabetes, yet the functional consequences to the host of this dysbiosis are unknown. We investigated the functional interactions between the microbiota and the host associated with type 1 diabetes disease risk. RESEARCH DESIGN AND METHODS We performed a cross-sectional analysis of stool samples from subjects with recent-onset type 1 diabetes (n = 33), islet autoantibody-positive subjects (n = 17), low-risk autoantibody-negative subjects (n = 29), and healthy subjects (n = 22). Metaproteomic analysis was used to identify gut- and pancreas-derived host and microbial proteins, and these data were integrated with sequencing-based microbiota profiling. RESULTS Both human (host-derived) proteins and microbial-derived proteins could be used to differentiate new-onset and islet autoantibody-positive subjects from low-risk subjects. Significant alterations were identified in the prevalence of host proteins associated with exocrine pancreas output, inflammation, and mucosal function. Integrative analysis showed that microbial taxa associated with host proteins involved in maintaining function of the mucous barrier, microvilli adhesion, and exocrine pancreas were depleted in patients with new-onset type 1 diabetes. CONCLUSIONS These data support that patients with type 1 diabetes have increased intestinal inflammation and decreased barrier function. They also confirmed that pancreatic exocrine dysfunction occurs in new-onset type 1 diabetes and show for the first time that this dysfunction is present in high-risk individuals before disease onset. The data identify a unique type 1 diabetes-associated signature in stool that may be useful as a means to monitor disease progression or response to therapies aimed at restoring a healthy microbiota.
Collapse
Affiliation(s)
- Patrick G Gavin
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jane A Mullaney
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Dorothy Loo
- Translational Research Institute, Brisbane, Queensland, Australia
| | - Kim-Anh Lê Cao
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Michelle M Hill
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Danny Zipris
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Higuchi BS, Rodrigues N, Gonzaga MI, Paiolo JCC, Stefanutto N, Omori WP, Pinheiro DG, Brisotti JL, Matheucci E, Mariano VS, de Oliveira GLV. Intestinal Dysbiosis in Autoimmune Diabetes Is Correlated With Poor Glycemic Control and Increased Interleukin-6: A Pilot Study. Front Immunol 2018; 9:1689. [PMID: 30090100 PMCID: PMC6068285 DOI: 10.3389/fimmu.2018.01689] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Intestinal dysbiosis associated with immunological deregulation, leaky gut, bacterial translocation, and systemic inflammation has been associated with autoimmune diseases, such as type 1 diabetes (T1D). The aim of this study was to investigate the intestinal dysbiosis in T1D patients and correlate these results with clinical parameters and cytokines. The present study was approved by the Barretos Cancer Hospital (Process number 903/2014), and all participants have signed the informed consent in accordance with the Declaration of Helsinki, and answered a questionnaire about dietary habits. Stool samples were used for bacterial 16S sequencing by MiSeq Illumina platform. IL-2, IL-4, IL-6, IL-10, IL-17A, TNF, and IFN-γ plasma concentrations were determined by cytometric bead arrays. The Pearson’s chi-square, Mann–Whitney and Spearman correlation were used for statistical analyses. Alpha and beta diversities were conducted by using an annotated observed taxonomic units table. This study included 20 patients and 28 controls, and we found significant differences (P < 0.05) among consumption of vegetables, proteins, milk and derivatives, spicy food, and canned food when we compare patients and controls. We detected intestinal dysbiosis in T1D patients when we performed the beta diversity analysis (P = 0.01). The prevalent species found in patients’ stool were the Gram-negatives Bacteroides vulgatus, Bacteroides rodentium, Prevotella copri, and Bacteroides xylanisolvens. The inflammatory interleukin-6 was significantly increased (P = 0.017) in patients’ plasma. Furthermore, we showed correlation among patients with poor glycemic control, represented by high levels of HbA1C percentages and Bacteroidetes, Lactobacillales, and Bacteroides dorei relative abundances. We concluded that there are different gut microbiota profiles between T1D patients and healthy controls. The prevalent Gram-negative species in T1D patients could be involved in the leaky gut, bacterial translocation, and poor glycemic control. However, additional studies, with larger cohorts, are required to determine a “signature” of the intestinal microbiota in T1D patients in the Brazilian population.
Collapse
Affiliation(s)
- Bruna Stevanato Higuchi
- Microbiome Study Group, School of Health Sciences Dr. Paulo Prata (FACISB), Barretos, Brazil
| | | | - Marina Ignácio Gonzaga
- Microbiome Study Group, School of Health Sciences Dr. Paulo Prata (FACISB), Barretos, Brazil
| | | | | | - Wellington Pine Omori
- Department of Technology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, Brazil
| | - Daniel Guariz Pinheiro
- Department of Technology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, Brazil
| | - João Luiz Brisotti
- Microbiome Study Group, School of Health Sciences Dr. Paulo Prata (FACISB), Barretos, Brazil
| | - Euclides Matheucci
- DNA Consult Genetics and Biotechnology, Sao Carlos, Brazil.,Biotechnology Department, Sao Carlos Federal University, UFSCAR, Sao Carlos, Brazil
| | | | - Gislane Lelis Vilela de Oliveira
- Microbiome Study Group, School of Health Sciences Dr. Paulo Prata (FACISB), Barretos, Brazil.,Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), Sao Jose do Rio Preto, Sao Paulo, Brazil
| |
Collapse
|
22
|
Santilli AD, Dawson EM, Whitehead KJ, Whitehead DC. Nonmicrobicidal Small Molecule Inhibition of Polysaccharide Metabolism in Human Gut Microbes: A Potential Therapeutic Avenue. ACS Chem Biol 2018; 13:1165-1172. [PMID: 29660284 DOI: 10.1021/acschembio.8b00309] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new approach for the nonmicrobicidal phenotypic manipulation of prominent gastrointestinal microbes is presented. Low micromolar concentrations of a chemical probe, acarbose, can selectively inhibit the Starch Utilization System and ablate the ability of Bacteroides thetaiotaomicron and B. fragilis strains to metabolize potato starch and pullulan. This strategy has potential therapeutic relevance for the selective modulation of the GI microbiota in a nonmicrobicidal manner.
Collapse
Affiliation(s)
- Anthony D. Santilli
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Elizabeth M. Dawson
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Kristi J. Whitehead
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Daniel C. Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
23
|
Henschel AM, Cabrera SM, Kaldunski ML, Jia S, Geoffrey R, Roethle MF, Lam V, Chen YG, Wang X, Salzman NH, Hessner MJ. Modulation of the diet and gastrointestinal microbiota normalizes systemic inflammation and β-cell chemokine expression associated with autoimmune diabetes susceptibility. PLoS One 2018; 13:e0190351. [PMID: 29293587 PMCID: PMC5749787 DOI: 10.1371/journal.pone.0190351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Environmental changes associated with modern lifestyles may underlie the rising incidence of Type 1 diabetes (T1D). Our previous studies of T1D families and the BioBreeding (BB) rat model have identified a peripheral inflammatory state that is associated with diabetes susceptibility, consistent with pattern recognition receptor ligation, but is independent of disease progression. Here, compared to control strains, islets of spontaneously diabetic BB DRlyp/lyp and diabetes inducible BB DR+/+ weanlings provided a standard cereal diet expressed a robust proinflammatory transcriptional program consistent with microbial antigen exposure that included numerous cytokines/chemokines. The dependence of this phenotype on diet and gastrointestinal microbiota was investigated by transitioning DR+/+ weanlings to a gluten-free hydrolyzed casein diet (HCD) or treating them with antibiotics to alter/reduce pattern recognition receptor ligand exposure. Bacterial 16S rRNA gene sequencing revealed that these treatments altered the ileal and cecal microbiota, increasing the Firmicutes:Bacteriodetes ratio and the relative abundances of lactobacilli and butyrate producing taxa. While these conditions did not normalize the inherent hyper-responsiveness of DR+/+ rat leukocytes to ex vivo TLR stimulation, they normalized plasma cytokine levels, plasma TLR4 activity levels, the proinflammatory islet transcriptome, and β-cell chemokine expression. In lymphopenic DRlyp/lyp rats, HCD reduced T1D incidence, and the introduction of gluten to this diet induced islet chemokine expression and abrogated protection from diabetes. Overall, these studies link BB rat islet-level immunocyte recruiting potential, as measured by β-cell chemokine expression, to a genetically controlled immune hyper-responsiveness and innate inflammatory state that can be modulated by diet and the intestinal microbiota.
Collapse
Affiliation(s)
- Angela M. Henschel
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Susanne M. Cabrera
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mary L. Kaldunski
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Shuang Jia
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Rhonda Geoffrey
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mark F. Roethle
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Vy Lam
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Yi-Guang Chen
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Xujing Wang
- National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nita H. Salzman
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Martin J. Hessner
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
24
|
Groele L, Szajewska H, Szypowska A. Effects of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12 on beta-cell function in children with newly diagnosed type 1 diabetes: protocol of a randomised controlled trial. BMJ Open 2017; 7:e017178. [PMID: 29025837 PMCID: PMC5652563 DOI: 10.1136/bmjopen-2017-017178] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/13/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Recent evidence has demonstrated that, among other factors, dysbiosis (imbalances in the composition and function of the gut microbiota) may be relevant in the development of type 1 diabetes (T1D). Thus, gut microbiota may be a target for improving outcomes in subjects with T1D. The aim of the study is to examine the effects of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12 on beta-cell function in children with newly diagnosed T1D. METHODS AND ANALYSIS A total of 96 children aged 8 to 17 years with newly diagnosed T1D, confirmed by clinical history and the presence of at least one positive autoantibody, will be enrolled in a double-blind, randomised, placebo-controlled trial in which they will receive L. rhamnosus GG and B. lactis Bb12 at a dose of 109 colony-forming units or an identically appearing placebo, orally, once daily, for 6 months. The follow-up will be for 12 months. The primary outcome measures will be the area under the curve of the C-peptide level during 2-hour responses to a mixed meal. ETHICS AND DISSEMINATION The Bioethics Committee approved the study protocol. The findings of this trial will be submitted to a peer-reviewed paediatric journal. Abstracts will be submitted to relevant national and international conferences. TRIAL REGISTRATION NUMBER NCT03032354; Pre-results.
Collapse
Affiliation(s)
- Lidia Groele
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
25
|
de Oliveira GLV, Leite AZ, Higuchi BS, Gonzaga MI, Mariano VS. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology 2017; 152. [PMID: 28556916 PMCID: PMC5543467 DOI: 10.1111/imm.12765 10.1111/imm.12765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In humans, a complex interaction between the host immune system and commensal microbiota is required to maintain gut homeostasis. In this symbiotic relationship, the microbiota provides carbohydrate fermentation and digestion, vitamin synthesis and gut-associated lymphoid tissue development, as well as preventing colonization by pathobionts, whereas the host offers a niche and nutrients for the survival of the microbiota. However, when this mutualistic relationship is compromised and an altered interaction between immune cells and microorganisms occurs, the gut microbiota may cause or contribute to the establishment of infectious diseases and trigger autoimmune diseases. Researchers have made efforts to clarify the role of the microbiota in autoimmune disease development and find new therapeutic approaches to treat immune-mediated diseases. However, the exact mechanisms involved in the dysbiosis and breakdown of the gut epithelial barrier are currently unknown. Here, we provide a general overview of studies describing gut microbiota perturbations in animal models of autoimmune diseases, such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus. Moreover, we include the main studies concerning dysbiosis in humans and a critical discussion of the existing data on the use of probiotics in these autoimmune diseases.
Collapse
Affiliation(s)
| | - Aline Zazeri Leite
- Microbiome Study GroupSchool of Health Sciences Dr Paulo PrataBarretosSão PauloBrazil
| | | | - Marina Ignácio Gonzaga
- Microbiome Study GroupSchool of Health Sciences Dr Paulo PrataBarretosSão PauloBrazil,Barretos Cancer HospitalBarretosSão PauloBrazil
| | | |
Collapse
|
26
|
de Oliveira GLV, Leite AZ, Higuchi BS, Gonzaga MI, Mariano VS. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology 2017; 152:1-12. [PMID: 28556916 DOI: 10.1111/imm.12765] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
In humans, a complex interaction between the host immune system and commensal microbiota is required to maintain gut homeostasis. In this symbiotic relationship, the microbiota provides carbohydrate fermentation and digestion, vitamin synthesis and gut-associated lymphoid tissue development, as well as preventing colonization by pathobionts, whereas the host offers a niche and nutrients for the survival of the microbiota. However, when this mutualistic relationship is compromised and an altered interaction between immune cells and microorganisms occurs, the gut microbiota may cause or contribute to the establishment of infectious diseases and trigger autoimmune diseases. Researchers have made efforts to clarify the role of the microbiota in autoimmune disease development and find new therapeutic approaches to treat immune-mediated diseases. However, the exact mechanisms involved in the dysbiosis and breakdown of the gut epithelial barrier are currently unknown. Here, we provide a general overview of studies describing gut microbiota perturbations in animal models of autoimmune diseases, such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus. Moreover, we include the main studies concerning dysbiosis in humans and a critical discussion of the existing data on the use of probiotics in these autoimmune diseases.
Collapse
Affiliation(s)
| | - Aline Zazeri Leite
- Microbiome Study Group, School of Health Sciences Dr Paulo Prata, Barretos, São Paulo, Brazil
| | - Bruna Stevanato Higuchi
- Microbiome Study Group, School of Health Sciences Dr Paulo Prata, Barretos, São Paulo, Brazil
| | - Marina Ignácio Gonzaga
- Microbiome Study Group, School of Health Sciences Dr Paulo Prata, Barretos, São Paulo, Brazil.,Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | |
Collapse
|
27
|
Gianchecchi E, Fierabracci A. On the pathogenesis of insulin-dependent diabetes mellitus: the role of microbiota. Immunol Res 2017; 65:242-256. [PMID: 27421719 DOI: 10.1007/s12026-016-8832-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the selective destruction of insulin-producing β cells as result of a complex interplay between genetic, stochastic and environmental factors in genetically susceptible individuals. An increasing amount of experimental data from animal models and humans has supported the role played by imbalanced gut microbiome in T1D pathogenesis. The commensal intestinal microbiota is fundamental for several physiologic mechanisms, including the establishment of immune homeostasis. Alterations in its composition have been correlated to changes in the gut immune system, including defective tolerance to food antigens, intestinal inflammation and enhanced gut permeability. Early findings reported differences in the intestinal microbiome of subjects affected by prediabetes or overt disease compared to healthy individuals. The present review focuses on microbiota-host homeostasis, its alterations, factors that influence microbiome composition and discusses their putative correlation with T1D development. Further studies are necessary to clarify the role played by microbiota modifications in the processes that cause enhanced permeability and the autoimmune mechanisms responsible for T1D onset.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Vismederi Srl, Siena, Italy
- Infectivology and Clinical Trials Area, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo 15, 00146, Rome, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Area, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo 15, 00146, Rome, Italy.
| |
Collapse
|
28
|
Stewart CJ, Nelson A, Campbell MD, Walker M, Stevenson EJ, Shaw JA, Cummings SP, West DJ. Gut microbiota of Type 1 diabetes patients with good glycaemic control and high physical fitness is similar to people without diabetes: an observational study. Diabet Med 2017; 34:127-134. [PMID: 27100052 DOI: 10.1111/dme.13140] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/07/2016] [Accepted: 04/19/2016] [Indexed: 01/21/2023]
Abstract
AIM Type 1 diabetes is the product of a complex interplay between genetic susceptibility and exposure to environmental factors. Existing bacterial profiling studies focus on people who are most at risk at the time of diagnosis; there are limited data on the gut microbiota of people with long-standing Type 1 diabetes. This study compared the gut microbiota of patients with Type 1 diabetes and good glycaemic control and high levels of physical-fitness with that of matched controls without diabetes. METHODS Ten males with Type 1 diabetes and ten matched controls without diabetes were recruited; groups were matched for gender, age, BMI, peak oxygen uptake (VO2max ), and exercise habits. Stool samples were analysed using next-generation sequencing of the 16S rRNA gene to obtain bacterial profiles from each individual. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) was implemented to predict the functional content of the bacterial operational taxonomic units. RESULTS Faecalibacterium sp., Roseburia sp. and Bacteroides sp. were typically the most abundant members of the community in both patients with Type 1 diabetes and controls, and were present in every sample in the cohort. Each bacterial profile was relatively individual and no significant difference was reported between the bacterial profiles or the Shannon diversity indices of Type 1 diabetes compared with controls. The functional profiles were more conserved and the Type 1 diabetes group were comparable with the control group. CONCLUSIONS We show that both gut microbiota and resulting functional bacterial profiles from patients with long-standing Type 1 diabetes in good glycaemic control and high physical fitness levels are comparable with those of matched people without diabetes.
Collapse
Affiliation(s)
- C J Stewart
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - A Nelson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - M D Campbell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
- Carnegie Research Institute, Leeds Beckett University, Leeds
| | - M Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - E J Stevenson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - J A Shaw
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - S P Cummings
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - D J West
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
29
|
Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat Microbiol 2016; 2:16180. [PMID: 27723761 DOI: 10.1038/nmicrobiol.2016.180] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022]
Abstract
The gastrointestinal microbiome is a complex ecosystem with functions that shape human health. Studying the relationship between taxonomic alterations and functional repercussions linked to disease remains challenging. Here, we present an integrative approach to resolve the taxonomic and functional attributes of gastrointestinal microbiota at the metagenomic, metatranscriptomic and metaproteomic levels. We apply our methods to samples from four families with multiple cases of type 1 diabetes mellitus (T1DM). Analysis of intra- and inter-individual variation demonstrates that family membership has a pronounced effect on the structural and functional composition of the gastrointestinal microbiome. In the context of T1DM, consistent taxonomic differences were absent across families, but certain human exocrine pancreatic proteins were found at lower levels. The associated microbial functional signatures were linked to metabolic traits in distinct taxa. The methodologies and results provide a foundation for future large-scale integrated multi-omic analyses of the gastrointestinal microbiome in the context of host-microbe interactions in human health and disease.
Collapse
|
30
|
Insel R, Dunne JL. JDRF's vision and strategy for prevention of type 1 diabetes. Pediatr Diabetes 2016; 17 Suppl 22:87-92. [PMID: 27411442 DOI: 10.1111/pedi.12326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/28/2015] [Accepted: 09/17/2015] [Indexed: 01/13/2023] Open
Abstract
The increasing incidence and lower threshold of developing type 1 diabetes (T1D) increases the urgency of its prevention. Insights from past and current natural history studies have provided the framework for a compelling strategy for primary and secondary prevention. Primary prevention of T1D should target the general childhood population with vaccines (viral or tolerogenic) or by altering microbiota-induced immunoregulation. Secondary prevention will likely require combination therapies (anti-inflammatories, immunomodulatory agents, beta cell survival agents, and/or agents improving glucose control) used sequentially or simultaneously to preserve residual beta cell function and prevent symptomatic disease. Critical gaps and challenges for prevention of T1D include an incomplete understanding of disease pathogenesis and heterogeneity, the lack of cost-effective risk screening and validated biomarkers for precise staging of disease and optimizing design of shorter and smaller prevention clinical trials, and the lack of appreciation of the impact and burden of T1D and the potential for its prevention. A comprehensive and concerted effort of funders, academia, industry, regulatory authorities, payers, government bodies, health care providers, and the T1D community will be required to deliver on JDRF's vision and strategy for prevention of T1D.
Collapse
|
31
|
Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M. The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis 2016; 15:108. [PMID: 27317359 PMCID: PMC4912704 DOI: 10.1186/s12944-016-0278-4] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023] Open
Abstract
Obesity and its associated complications like type 2 diabetes (T2D) are reaching epidemic stages. Increased food intake and lack of exercise are two main contributing factors. Recent work has been highlighting an increasingly more important role of gut microbiota in metabolic disorders. It’s well known that gut microbiota plays a major role in the development of food absorption and low grade inflammation, two key processes in obesity and diabetes. This review summarizes key discoveries during the past decade that established the role of gut microbiota in the development of obesity and diabetes. It will look at the role of key metabolites mainly the short chain fatty acids (SCFA) that are produced by gut microbiota and how they impact key metabolic pathways such as insulin signalling, incretin production as well as inflammation. It will further look at the possible ways to harness the beneficial aspects of the gut microbiota to combat these metabolic disorders and reduce their impact.
Collapse
Affiliation(s)
- Othman A Baothman
- Department of Biochemistry, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Ibrahim Taher
- Faculty of Medicine, Aljouf University, Aljouf, Saudi Arabia
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Dasman, P.O. Box 1180, 15462, Kuwait City, Kuwait.
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Dasman, P.O. Box 1180, 15462, Kuwait City, Kuwait.
| |
Collapse
|
32
|
Accounting for reciprocal host–microbiome interactions in experimental science. Nature 2016; 534:191-9. [DOI: 10.1038/nature18285] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/26/2016] [Indexed: 12/13/2022]
|
33
|
Gill RG, Pagni PP, Kupfer T, Wasserfall CH, Deng S, Posgai A, Manenkova Y, Bel Hani A, Straub L, Bernstein P, Atkinson MA, Herold KC, von Herrath M, Staeva T, Ehlers MR, Nepom GT. A Preclinical Consortium Approach for Assessing the Efficacy of Combined Anti-CD3 Plus IL-1 Blockade in Reversing New-Onset Autoimmune Diabetes in NOD Mice. Diabetes 2016; 65:1310-6. [PMID: 26718498 PMCID: PMC5860426 DOI: 10.2337/db15-0492] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
There is an ongoing need to develop strategic combinations of therapeutic agents to prevent type 1 diabetes (T1D) or to preserve islet β-cell mass in new-onset disease. Although clinical trials using candidate therapeutics are commonly based on preclinical studies, concern is growing regarding the reproducibility as well as the potential clinical translation of reported results using animal models of human disorders. In response, the National Institutes of Health Immune Tolerance Network and JDRF established a multicenter consortium of academic institutions designed to assess the efficacy and intergroup reproducibility of clinically applicable immunotherapies for reversing new-onset disease in the NOD mouse model of T1D. Predicated on prior studies, this consortium conducted coordinated, prospective studies, using joint standard operating procedures, fixed criteria for study entry, and common reagents, to optimize combined anti-CD3 treatment plus interleukin-1 (IL-1) blockade to reverse new-onset disease in NOD mice. We did not find that IL-1 blockade with anti-IL-1β monoclonal antibody or IL-1trap provided additional benefit for reversing new-onset disease compared with anti-CD3 treatment alone. These results demonstrate the value of larger, multicenter preclinical studies for vetting and prioritizing therapeutics for future clinical use.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/therapeutic use
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Biomedical Research/methods
- CD3 Complex/chemistry
- CD3 Complex/metabolism
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Drug Administration Schedule
- Drug Therapy, Combination
- Female
- Immunoglobulin Fab Fragments/administration & dosage
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/therapeutic use
- Immunotherapy/methods
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Interleukin-1 Receptor Accessory Protein/antagonists & inhibitors
- Interleukin-1 Receptor Accessory Protein/metabolism
- Interleukin-1beta/antagonists & inhibitors
- Interleukin-1beta/metabolism
- Mice, Inbred NOD
- Multicenter Studies as Topic
- Pilot Projects
- Receptors, Interleukin-1 Type I/antagonists & inhibitors
- Receptors, Interleukin-1 Type I/metabolism
- Recombinant Fusion Proteins/therapeutic use
- Reproducibility of Results
- Research Design
- Specific Pathogen-Free Organisms
- United States
Collapse
Affiliation(s)
- Ronald G Gill
- Departments of Surgery and Immunology, University of Colorado Denver, Aurora, CO
| | | | - Tinalyn Kupfer
- Departments of Surgery and Immunology, University of Colorado Denver, Aurora, CO
| | | | - Songyan Deng
- Yale University School of Medicine, New Haven, CT
| | - Amanda Posgai
- Department of Pathology, University of Florida, Gainesville, FL
| | | | - Amira Bel Hani
- La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Laura Straub
- Immune Tolerance Network, University of California, San Francisco, San Francisco, CA
| | | | - Mark A Atkinson
- Department of Pathology, University of Florida, Gainesville, FL
| | | | | | | | - Mario R Ehlers
- Immune Tolerance Network, University of California, San Francisco, San Francisco, CA
| | | |
Collapse
|
34
|
Endesfelder D, Engel M, Davis-Richardson AG, Ardissone AN, Achenbach P, Hummel S, Winkler C, Atkinson M, Schatz D, Triplett E, Ziegler AG, zu Castell W. Towards a functional hypothesis relating anti-islet cell autoimmunity to the dietary impact on microbial communities and butyrate production. MICROBIOME 2016; 4:17. [PMID: 27114075 PMCID: PMC4845316 DOI: 10.1186/s40168-016-0163-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/22/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND The development of anti-islet cell autoimmunity precedes clinical type 1 diabetes and occurs very early in life. During this early period, dietary factors strongly impact on the composition of the gut microbiome. At the same time, the gut microbiome plays a central role in the development of the infant immune system. A functional model of the association between diet, microbial communities, and the development of anti-islet cell autoimmunity can provide important new insights regarding the role of the gut microbiome in the pathogenesis of type 1 diabetes. RESULTS A novel approach was developed to enable the analysis of the microbiome on an aggregation level between a single microbial taxon and classical ecological measures analyzing the whole microbial population. Microbial co-occurrence networks were estimated at age 6 months to identify candidates for functional microbial communities prior to islet autoantibody development. Stratification of children based on these communities revealed functional associations between diet, gut microbiome, and islet autoantibody development. Two communities were strongly associated with breast-feeding and solid food introduction, respectively. The third community revealed a subgroup of children that was dominated by Bacteroides abundances compared to two subgroups with low Bacteroides and increased Akkermansia abundances. The Bacteroides-dominated subgroup was characterized by early introduction of non-milk diet, increased risk for early autoantibody development, and by lower abundances of genes for the production of butyrate via co-fermentation of acetate. By combining our results with information from the literature, we provide a refined functional hypothesis for a protective role of butyrate in the pathogenesis of type 1 diabetes. CONCLUSIONS Based on functional traits of microbial communities estimated from co-occurrence networks, we provide evidence that alterations in the composition of mucin degrading bacteria associate with early development of anti-islet cell autoimmunity. We hypothesize that lower levels of Bacteroides in favor of increased levels of Akkermansia lead to a competitive advantage of acetogens compared to sulfate reducing bacteria, resulting in increased butyrate production via co-fermentation of acetate. This hypothesis suggests that butyrate has a protective effect on the development of anti-islet cell autoantibodies.
Collapse
Affiliation(s)
- David Endesfelder
- />Scientific Computing Research Unit, Helmholtz Zentrum München, Munich, Germany
| | - Marion Engel
- />Scientific Computing Research Unit, Helmholtz Zentrum München, Munich, Germany
| | - Austin G. Davis-Richardson
- />Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Munich, USA
| | - Alexandria N. Ardissone
- />Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Munich, USA
| | - Peter Achenbach
- />Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sandra Hummel
- />Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christiane Winkler
- />Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mark Atkinson
- />Department of Pediatrics, University of Florida, Gainesville, FL USA
| | - Desmond Schatz
- />Department of Pediatrics, University of Florida, Gainesville, FL USA
| | - Eric Triplett
- />Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Munich, USA
| | - Anette-Gabriele Ziegler
- />Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Wolfgang zu Castell
- />Scientific Computing Research Unit, Helmholtz Zentrum München, Munich, Germany
- />Department of Mathematics, Technische Universität München, Munich, Germany
| |
Collapse
|
35
|
Cabrera SM, Chen YG, Hagopian WA, Hessner MJ. Blood-based signatures in type 1 diabetes. Diabetologia 2016; 59:414-25. [PMID: 26699650 PMCID: PMC4744128 DOI: 10.1007/s00125-015-3843-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/18/2015] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes mellitus is one of the most common chronic diseases in childhood. It develops through autoimmune destruction of the pancreatic beta cells and results in lifelong dependence on exogenous insulin. The pathogenesis of type 1 diabetes involves a complex interplay of genetic and environmental factors and has historically been attributed to aberrant adaptive immunity; however, there is increasing evidence for a role of innate inflammation. Over the past decade new methodologies for the analysis of nucleic acid and protein signals have been applied to type 1 diabetes. These studies are providing a new understanding of type 1 diabetes pathogenesis and have the potential to inform the development of new biomarkers for predicting diabetes onset and monitoring therapeutic interventions. In this review we will focus on blood-based signatures in type 1 diabetes, with special attention to both direct transcriptomic analyses of whole blood and immunocyte subsets, as well as plasma/serum-induced transcriptional signatures. Attention will also be given to proteomics, microRNA assays and markers of beta cell death. We will also discuss the results of blood-based profiling in type 1 diabetes within the context of the genetic and environmental factors implicated in the natural history of autoimmune diabetes.
Collapse
Affiliation(s)
- Susanne M Cabrera
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Section of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yi-Guang Chen
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Section of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | | | - Martin J Hessner
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA.
- Section of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
36
|
Cabrera SM, Henschel AM, Hessner MJ. Innate inflammation in type 1 diabetes. Transl Res 2016; 167:214-27. [PMID: 25980926 PMCID: PMC4626442 DOI: 10.1016/j.trsl.2015.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/02/2015] [Accepted: 04/21/2015] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune disease often diagnosed in childhood that results in pancreatic β-cell destruction and life-long insulin dependence. T1D susceptibility involves a complex interplay between genetic and environmental factors and has historically been attributed to adaptive immunity, although there is now increasing evidence for a role of innate inflammation. Here, we review studies that define a heightened age-dependent innate inflammatory state in T1D families that is paralleled with high fidelity by the T1D-susceptible biobreeding rat. Innate inflammation may be driven by changes in interactions between the host and environment, such as through an altered microbiome, intestinal hyperpermeability, or viral exposures. Special focus is put on the temporal measurement of plasma-induced transcriptional signatures of recent-onset T1D patients and their siblings as well as in the biobreeding rat as it defines the natural history of innate inflammation. These sensitive and comprehensive analyses have also revealed that those who successfully managed T1D risk develop an age-dependent immunoregulatory state, providing a possible mechanism for the juvenile nature of T1D. Therapeutic targeting of innate inflammation has been proven effective in preventing and delaying T1D in rat models. Clinical trials of agents that suppress innate inflammation have had more modest success, but efficacy may be improved by the addition of combinatorial approaches that target other aspects of T1D pathogenesis. An understanding of innate inflammation and mechanisms by which this susceptibility is both potentiated and mitigated offers important insight into T1D progression and avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Susanne M. Cabrera
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Angela M. Henschel
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Martin J. Hessner
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
37
|
Li X, Atkinson MA. The role for gut permeability in the pathogenesis of type 1 diabetes--a solid or leaky concept? Pediatr Diabetes 2015; 16:485-92. [PMID: 26269193 PMCID: PMC4638168 DOI: 10.1111/pedi.12305] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence, both functional and morphological, supports the concept of increased intestinal permeability as an intrinsic characteristic of type 1 diabetes (T1D) in both humans and animal models of the disease. Often referred to as a 'leaky gut', its mechanistic impact on the pathogenesis of T1D remains unclear. Hypotheses that this defect influences immune responses against antigens (both self and non-self) predominate, yet others argue hyperglycemia and insulitis may contribute to increased gut permeability in T1D. To address these complicated issues, we herein review the many conceptual role(s) for a leaky gut in the pathogenesis of T1D and suggest ways that if true, therapeutic interventions aimed at the gut-pancreas axis may prove promising for future therapeutic interventions.
Collapse
Affiliation(s)
- Xia Li
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States 32610,Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States 32610
| |
Collapse
|
38
|
Diamanti A, Capriati T, Bizzarri C, Ferretti F, Ancinelli M, Romano F, Perilli A, Laureti F, Locatelli M. Autoimmune diseases and celiac disease which came first: genotype or gluten? Expert Rev Clin Immunol 2015; 12:67-77. [DOI: 10.1586/1744666x.2016.1095091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Wei SH, Chen YP, Chen MJ. Selecting probiotics with the abilities of enhancing GLP-1 to mitigate the progression of type 1 diabetes in vitro and in vivo. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
40
|
Hu Y, Peng J, Tai N, Hu C, Zhang X, Wong FS, Wen L. Maternal Antibiotic Treatment Protects Offspring from Diabetes Development in Nonobese Diabetic Mice by Generation of Tolerogenic APCs. THE JOURNAL OF IMMUNOLOGY 2015; 195:4176-84. [PMID: 26401004 DOI: 10.4049/jimmunol.1500884] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/28/2015] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that involves the slow, progressive destruction of islet β cells and loss of insulin production, as a result of interaction with environmental factors, in genetically susceptible individuals. The gut microbiome is established very early in life. Commensal microbiota establish mutualism with the host and form an important part of the environment to which individuals are exposed in the gut, providing nutrients and shaping immune responses. In this study, we studied the impact of targeting most Gram-negative bacteria in the gut of NOD mice at different time points in their life, using a combination of three antibiotics--neomycin, polymyxin B, and streptomycin--on diabetes development. We found that the prenatal period is a critical time for shaping the immune tolerance in the progeny, influencing development of autoimmune diabetes. Prenatal neomycin, polymyxin B, and streptomycin treatment protected NOD mice from diabetes development through alterations in the gut microbiota, as well as induction of tolerogenic APCs, which led to reduced activation of diabetogenic CD8 T cells. Most importantly, we found that the protective effect was age dependent, and the most profound protection was found when the mice were treated before birth. This indicates the importance of the prenatal environment and early exposure to commensal bacteria in shaping the host immune system and health.
Collapse
Affiliation(s)
- Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| | - Ningwen Tai
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| | - Changyun Hu
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| | - Xiaojun Zhang
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| | - F Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| |
Collapse
|
41
|
Hatton GB, Yadav V, Basit AW, Merchant HA. Animal Farm: Considerations in Animal Gastrointestinal Physiology and Relevance to Drug Delivery in Humans. J Pharm Sci 2015; 104:2747-76. [DOI: 10.1002/jps.24365] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 12/30/2022]
|
42
|
Daft JG, Lorenz RG. Role of the gastrointestinal ecosystem in the development of type 1 diabetes. Pediatr Diabetes 2015; 16:407-18. [PMID: 25952017 PMCID: PMC4534320 DOI: 10.1111/pedi.12282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/15/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
A new emphasis has been put on the role of the gastrointestinal (GI) ecosystem in autoimmune diseases; however, there is limited knowledge about its role in type 1 diabetes (T1D). Distinct differences have been observed in intestinal permeability, epithelial barrier function, commensal microbiota, and mucosal innate and adaptive immunity of patients and animals with T1D, when compared with healthy controls. The non-obese diabetic (NOD) mouse and the BioBreeding diabetes prone (BBdp) rat are the most commonly used models to study T1D pathogenesis. With the increasing awareness of the importance of the GI ecosystem in systemic disease, it is critical to understand the basics, as well as the similarities and differences between rat and mouse models and human patients. This review examines the current knowledge of the role of the GI ecosystem in T1D and indicates the extensive opportunities for further investigation that could lead to biomarkers and therapeutic interventions for disease prevention and/or modulation.
Collapse
Affiliation(s)
| | - Robin G. Lorenz
- Corresponding Author: Dr. Robin G. Lorenz, Department of Pathology, University of Alabama at Birmingham, 1825 University Blvd., SHEL 602, Birmingham, AL 35294-2182. Phone: 205-934-0676. Fax. 205-996-9113.
| |
Collapse
|
43
|
Kristensen MB, Metzdorff SB, Bergström A, Damlund DSM, Fink LN, Licht TR, Frøkiær H. Neonatal microbial colonization in mice promotes prolonged dominance of CD11b(+)Gr-1(+) cells and accelerated establishment of the CD4(+) T cell population in the spleen. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:309-20. [PMID: 26417445 PMCID: PMC4578529 DOI: 10.1002/iid3.70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/30/2022]
Abstract
To assess the microbial influence on postnatal hematopoiesis, we examined the role of early life microbial colonization on the composition of leukocyte subsets in the neonatal spleen. A high number of CD11b+Gr-1+ splenocytes present perinatally was sustained for a longer period in conventionally colonized (CONV) mice than in mono-colonized (MC) and germfree (GF) mice, and the CD4+ T cell population established faster in CONV mice. At the day of birth, compared to GF mice, the expression of Cxcl2 was up-regulated and Arg1 down-regulated in livers of CONV mice. This coincided with lower abundance of polylobed cells in the liver of CONV mice. An earlier peak in the expression of the genes Tjp1, Cdh1, and JamA in intestinal epithelial cells of CONV mice indicated an accelerated closure of the epithelial barrier. In conclusion, we have identified an important microbiota-dependent neonatal hematopoietic event, which we suggest impacts the subsequent development of the T cell population in the murine spleen.
Collapse
Affiliation(s)
- Matilde B Kristensen
- Department of Veterinary Disease Biology, Faculty of Health Medical Sciences, Section of Experimental Animal Models, University of Copenhagen 1870 Frederiksberg C, Denmark ; Department of Food Microbiology, National Food Institute, Technical University of Denmark 2860 Søborg, Denmark
| | - Stine B Metzdorff
- Department of Veterinary Disease Biology, Faculty of Health Medical Sciences, Section of Experimental Animal Models, University of Copenhagen 1870 Frederiksberg C, Denmark
| | - Anders Bergström
- Department of Food Microbiology, National Food Institute, Technical University of Denmark 2860 Søborg, Denmark
| | - Dina S M Damlund
- Department of Veterinary Disease Biology, Faculty of Health Medical Sciences, Section of Experimental Animal Models, University of Copenhagen 1870 Frederiksberg C, Denmark
| | | | - Tine R Licht
- Department of Food Microbiology, National Food Institute, Technical University of Denmark 2860 Søborg, Denmark
| | - Hanne Frøkiær
- Department of Veterinary Disease Biology, Faculty of Health Medical Sciences, Section of Experimental Animal Models, University of Copenhagen 1870 Frederiksberg C, Denmark
| |
Collapse
|
44
|
Can exposure to environmental chemicals increase the risk of diabetes type 1 development? BIOMED RESEARCH INTERNATIONAL 2015; 2015:208947. [PMID: 25883945 PMCID: PMC4391693 DOI: 10.1155/2015/208947] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/14/2014] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged.
Collapse
|
45
|
Abstract
The microbiota of the human metaorganism is not a mere bystander. These microbes have coevolved with us and are pivotal to normal development and homoeostasis. Dysbiosis of the GI microbiota is associated with many disease susceptibilities, including obesity, malignancy, liver disease and GI pathology such as IBD. It is clear that there is direct and indirect crosstalk between this microbial community and host immune response. However, the precise mechanism of this microbial influence in disease pathogenesis remains elusive and is now a major research focus. There is emerging literature on the role of the microbiota in the pathogenesis of autoimmune disease, with clear and increasing evidence that changes in the microbiota are associated with some of these diseases. Examples include type 1 diabetes, coeliac disease and rheumatoid arthritis, and these contribute significantly to global morbidity and mortality. Understanding the role of the microbiota in autoimmune diseases may offer novel insight into factors that initiate and drive disease progression, stratify patient risk for complications and ultimately deliver new therapeutic strategies. This review summarises the current status on the role of the microbiota in autoimmune diseases.
Collapse
Affiliation(s)
- Mairi H McLean
- Laboratory of Molecular Immunoregulation, Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Dario Dieguez
- Society for Women’s Health Research, Scientific Affairs, Washington, DC, USA
| | - Lindsey M Miller
- Society for Women’s Health Research, Scientific Affairs, Washington, DC, USA
| | - Howard A Young
- Laboratory of Molecular Immunoregulation, Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
46
|
Patterson E, Marques TM, O'Sullivan O, Fitzgerald P, Fitzgerald GF, Cotter PD, Dinan TG, Cryan JF, Stanton C, Ross RP. Streptozotocin-induced type-1-diabetes disease onset in Sprague-Dawley rats is associated with an altered intestinal microbiota composition and decreased diversity. MICROBIOLOGY-SGM 2014; 161:182-193. [PMID: 25370749 DOI: 10.1099/mic.0.082610-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a growing appreciation that microbiota composition can significantly affect host health and play a role in disease onset and progression. This study assessed the impact of streptozotocin (STZ)-induced type-1-diabetes (T1D) on intestinal microbiota composition and diversity in Sprague-Dawley rats, compared with healthy controls over time. T1D was induced by injection of a single dose (60 mg STZ kg(-1)) of STZ, administered via the intraperitoneal cavity. Total DNA was isolated from faecal pellets at weeks 0 (pre-STZ injection), 1, 2 and 4 and from caecal content at week 5 from both healthy and T1D groups. High-throughput 16S rRNA sequencing was employed to investigate intestinal microbiota composition. The data revealed that although intestinal microbiota composition between the groups was similar at week 0, a dramatic impact of T1D development on the microbiota was apparent post-STZ injection and for up to 5 weeks. Most notably, T1D onset was associated with a shift in the Bacteroidetes : Firmicutes ratio (P<0.05), while at the genus level, increased proportions of lactic acid producing bacteria such as Lactobacillus and Bifidobacterium were associated with the later stages of T1D progression (P<0.05). Coincidently, T1D increased caecal lactate levels (P<0.05). Microbial diversity was also reduced following T1D (P<0.05). Principle co-ordinate analyses demonstrated temporal clustering in T1D and control groups with distinct separation between groups. The results provide a comprehensive account of how T1D is associated with an altered intestinal microbiota composition and reduced microbial diversity over time.
Collapse
Affiliation(s)
- Elaine Patterson
- Department of Microbiology, University College Cork, Co. Cork, Ireland.,Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Co. Cork, Ireland.,Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - Tatiana M Marques
- Department of Microbiology, University College Cork, Co. Cork, Ireland.,Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Co. Cork, Ireland.,Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Co. Cork, Ireland.,Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - Patrick Fitzgerald
- Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - Gerald F Fitzgerald
- Department of Microbiology, University College Cork, Co. Cork, Ireland.,Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Co. Cork, Ireland.,Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - Timothy G Dinan
- Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - John F Cryan
- Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Co. Cork, Ireland.,Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - R Paul Ross
- Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Co. Cork, Ireland.,Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| |
Collapse
|
47
|
Chen YG, Cabrera SM, Jia S, Kaldunski ML, Kramer J, Cheong S, Geoffrey R, Roethle MF, Woodliff JE, Greenbaum CJ, Wang X, Hessner MJ. Molecular signatures differentiate immune states in type 1 diabetic families. Diabetes 2014; 63:3960-73. [PMID: 24760139 PMCID: PMC4207392 DOI: 10.2337/db14-0214] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanisms associated with type 1 diabetes (T1D) development remain incompletely defined. Using a sensitive array-based bioassay where patient plasma is used to induce transcriptional responses in healthy leukocytes, we previously reported disease-specific, partially interleukin (IL)-1-dependent signatures associated with preonset and recent onset (RO) T1D relative to unrelated healthy control subjects (uHC). To better understand inherited susceptibility in T1D families, we conducted cross-sectional and longitudinal analyses of healthy autoantibody-negative (AA(-)) high HLA-risk siblings (HRS) (DR3 and/or DR4) and AA(-) low HLA-risk siblings (LRS) (non-DR3/non-DR4). Signatures, scored with a novel ontology-based algorithm, and confirmatory studies differentiated the RO T1D, uHC, HRS, and LRS plasma milieus. Relative to uHC, T1D family members exhibited an elevated inflammatory state, consistent with innate receptor ligation that was independent of HLA, AA, or disease status and included elevated plasma IL-1α, IL-12p40, CCL2, CCL3, and CCL4 levels. Longitudinally, signatures of T1D progressors exhibited increasing inflammatory bias. Conversely, HRS possessing decreasing AA titers revealed emergence of an IL-10/transforming growth factor-β-mediated regulatory state that paralleled temporal increases in peripheral activated CD4(+)/CD45RA(-)/FoxP3(high) regulatory T-cell frequencies. In AA(-) HRS, the familial innate inflammatory state also was temporally supplanted by immunoregulatory processes, suggesting a mechanism underlying the decline in T1D susceptibility with age.
Collapse
Affiliation(s)
- Yi-Guang Chen
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI
| | - Susanne M Cabrera
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI
| | - Shuang Jia
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI
| | - Mary L Kaldunski
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI
| | - Joanna Kramer
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI
| | - Sami Cheong
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Rhonda Geoffrey
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI
| | - Mark F Roethle
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI
| | - Jeffrey E Woodliff
- Flow Cytometry and Cell Separation Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN
| | | | - Xujing Wang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Martin J Hessner
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
48
|
Agrawal NK, Kant S. Targeting inflammation in diabetes: Newer therapeutic options. World J Diabetes 2014; 5:697-710. [PMID: 25317247 PMCID: PMC4138593 DOI: 10.4239/wjd.v5.i5.697] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/24/2014] [Accepted: 05/29/2014] [Indexed: 02/05/2023] Open
Abstract
Inflammation has been recognised to both decrease beta cell insulin secretion and increase insulin resistance. Circulating cytokines can affect beta cell function directly leading to secretory dysfunction and increased apoptosis. These cytokines can also indirectly affect beta cell function by increasing adipocyte inflammation.The resulting glucotoxicity and lipotoxicity further enhance the inflammatory process resulting in a vicious cycle. Weight reduction and drugs such as metformin have been shown to decrease the levels of C-Reactive Protein by 31% and 13%, respectively. Pioglitazone, insulin and statins have anti-inflammatory effects. Interleukin 1 and tumor necrosis factor-α antagonists are in trials and NSAIDs such as salsalate have shown an improvement in insulin sensitivity. Inhibition of 12-lipo-oxygenase, histone de-acetylases, and activation of sirtuin-1 are upcoming molecular targets to reduce inflammation. These therapies have also been shown to decrease the conversion of pre-diabetes state to diabetes. Drugs like glicazide, troglitazone, N-acetylcysteine and selective COX-2 inhibitors have shown benefit in diabetic neuropathy by decreasing inflammatory markers. Retinopathy drugs are used to target vascular endothelial growth factor, angiopoietin-2, various proteinases and chemokines. Drugs targeting the proteinases and various chemokines are pentoxifylline, inhibitors of nuclear factor-kappa B and mammalian target of rapamycin and are in clinical trials for diabetic nephropathy. Commonly used drugs such as insulin, metformin, peroxisome proliferator-activated receptors, glucagon like peptide-1 agonists and dipeptidyl peptidase-4 inhibitors also decrease inflammation. Anti-inflammatory therapies represent a potential approach for the therapy of diabetes and its complications.
Collapse
|
49
|
Peng J, Narasimhan S, Marchesi JR, Benson A, Wong FS, Wen L. Long term effect of gut microbiota transfer on diabetes development. J Autoimmun 2014; 53:85-94. [PMID: 24767831 PMCID: PMC4361177 DOI: 10.1016/j.jaut.2014.03.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/23/2014] [Accepted: 03/30/2014] [Indexed: 12/12/2022]
Abstract
The composition of the gut microbiome represents a very important environmental factor that influences the development of type 1 diabetes (T1D). We have previously shown that MyD88-deficient non-obese diabetic (MyD88-/-NOD) mice, that were protected from T1D development, had a different composition of gut microbiota compared to wild type NOD mice. The aim of our study was to investigate whether this protection could be transferred. We demonstrate that transfer of gut microbiota from diabetes-protected MyD88-deficient NOD mice, reduced insulitis and significantly delayed the onset of diabetes. Gut bacteria from MyD88-deficient mice, administered over a 3-week period, starting at 4 weeks of age, stably altered the family composition of the gut microbiome, with principally Lachnospiraceae and Clostridiaceae increased and Lactobacillaceae decreased. The transferred mice had a higher concentration of IgA and TGFβ in the lumen that was accompanied by an increase in CD8(+)CD103(+) and CD8αβ T cells in the lamina propria of the large intestine. These data indicate not only that gut bacterial composition can be altered after the neonatal/weaning period, but that the composition of the microbiome affects the mucosal immune system and can delay the development of autoimmune diabetes. This result has important implications for the development of probiotic treatment for T1D.
Collapse
Affiliation(s)
- Jian Peng
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sukanya Narasimhan
- Section of Infectious Disease, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julian R Marchesi
- Cardiff School of Biosciences, Main Building, Museum Avenue, Cardiff University, Cardiff, UK; Centre for Digestive and Gut Health, Imperial College London, London, UK
| | - Andrew Benson
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - F Susan Wong
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
50
|
Abstract
Type 1 diabetes (T1D) and celiac disease (CD) are autoimmune diseases with clinical and pathogenic overlap. The mean prevalence of CD in patients with T1D is about 8 %. Classic intestinal symptoms of CD may not be present in T1D leading to the recommendation for active case finding in this higher risk group. Screening is done with sensitive and specific serologies including tissue transglutaminase (tTG) IgA and deaminated gliadin peptide (DGP) IgA and IgG. Positive serologies are confirmed by the presence of villous atrophy and increased intraepithelial lymphocytes on duodenal biopsy. A strict gluten free diet is recommended, although this can pose challenges for T1D patients who already have dietary restrictions. In aggregate, it appears as if the gluten free diet may help T1D management. T1D and CD have overlapping genetic and environmental risk factors. Among these, non-HLA genetic factors and the gut microbiome are among recent developments that will be discussed in this review.
Collapse
Affiliation(s)
- Aaron Cohn
- Department of Medicine, University of Chicago, 900 East 57th Street, MB#9, Chicago, IL, 60637, USA
| | | | | |
Collapse
|