1
|
Sibthorpe PEM, Fitzgerald DM, Sillence MN, de Laat MA. Studies in vitro of equine intestinal glucagon-like peptide-2 secretion. J Equine Vet Sci 2024; 142:105179. [PMID: 39197558 DOI: 10.1016/j.jevs.2024.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/29/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Equine insulin dysregulation (ID) is a significant metabolic problem because the hyperinsulinaemia that develops increases the animal's risk of developing laminitis, a debilitating foot condition. The role of gastrointestinal factors, such as incretin hormones, in the pathogenesis of ID and hyperinsulinaemia in horses is poorly understood, particularly in comparison to other species. Glucagon-like peptide-2 (GLP-2) is an intestinotrophic peptide released from L cells in the gastrointestinal tract and is implicated in metabolic dysfunction in other species. The aim of this study in vitro was to establish basic physiological understanding about intestinal secretion of GLP-2 in horses. Basal and glucose-stimulated GLP-2 secretion was measured in post-mortem tissue samples from the duodenum, jejunum, and ileum. We observed that GLP-2 secretion was minimal in samples from the duodenum compared to the jejunum and ileum (5-9-fold higher; P < 0.05). Furthermore, GLP-2 secretion was not responsive to glucose stimulation in the ileum or duodenum but was responsive to glucose in the jejunum. This effect in the jejunum was inhibited by 30 % (P = 0.02) using phlorizin, a selective sodium-glucose cotransporter-1 (SGLT-1) inhibitor, and by 38 % (P = 0.04) using phloretin, a non-selective SGLT-1/GLUT-2 inhibitor. The localisation of glucose-responsive GLP-2 secretion in the jejunum might be relevant to the development of post-prandial hyperinsulinaemia. This study has provided data on GLP-2 secretion from the equine small intestine that will enable more complex and dynamic studies on the pathogenesis of ID.
Collapse
Affiliation(s)
- P E M Sibthorpe
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - D M Fitzgerald
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - M N Sillence
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - M A de Laat
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Socha-Banasiak A, Sakowicz A, Gaj Z, Kolejwa M, Gach A, Czkwianianc E. Intestinal fructose transporters GLUT5 and GLUT2 in children and adolescents with obesity and metabolic disorders. Adv Med Sci 2024; 69:349-355. [PMID: 39059468 DOI: 10.1016/j.advms.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE The excessive fructose intake including high-fructose corn syrup (HFCS) may be responsible for increase of obesity occurrence. This study was designed to find potential differences in duodenal fructose transporters on mRNA and protein levels between obese and normal weight children and adolescents. MATERIALS/METHODS We performed a cross-sectional study on a group of 106 hospitalized patients aged 12 to 18. Glucose transporter 2 (GLUT2) and glucose transporter 5 (GLUT5) mRNA as well as protein levels (ELISA and Western blot methods) were assessed in duodenal mucosa biopsies of the patients categorized as obese or normal weight. Additionally, the expression of the aforementioned transporters was analyzed in patients based on the presence of insulin resistance (IR) and metabolic syndrome (MS). RESULTS In children with obesity, increased duodenal protein levels of GLUT5 (Relative protein GLUT5 expression/ACTB) (0.027 ± 0.009 vs. 0.011 ± 0.006, p < 0.05) but not GLUT2 as compared with the normal weight group, were revealed. No significant differences in duodenal relative GLUT2 and GLUT5 genes expression between the studied groups were found. There was no relationship between the presence of IR or MS and intestinal mRNA GLUT2 and GLUT5 as well as GLUT2 protein expression. CONCLUSION The upregulation of the duodenal GLUT5 may contribute to obesity occurrence in children and adolescents.
Collapse
Affiliation(s)
- Anna Socha-Banasiak
- Department of Gastroenterology, Allergology and Pediatrics, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland.
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| | - Zuzanna Gaj
- Center of Medical Laboratory Diagnostics and Screening, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Michał Kolejwa
- Department of Gastroenterology, Allergology and Pediatrics, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Agnieszka Gach
- Department of Genetics, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Elżbieta Czkwianianc
- Department of Gastroenterology, Allergology and Pediatrics, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| |
Collapse
|
3
|
Nomier Y, Asaad GF, Salama A, Shabana ME, Alshahrani S, Firoz Alam M, Anwer T, Sultana S, ur Rehman Z, Khalid A. Explicit mechanistic insights of Prosopis juliflora extract in streptozotocin-induced diabetic rats at the molecular level. Saudi Pharm J 2023; 31:101755. [PMID: 37727228 PMCID: PMC10505680 DOI: 10.1016/j.jsps.2023.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Background The Ancient system of medicine showed the limelight on the use of herbal remedies and was found to possess minimal side effects and acceptable therapeutic outcomes. In this context, Prosopis juliflora gained importance in managing chronic diseases such as cancer, dermatological diseases, and chronic inflammatory disorders. Hence, P. juliflora was selected for further investigation associated with diabetes and inflammation. Aim The present study aimed to evaluate the anti-diabetic activity in chemically induced experimental rats and explore the nature of phytocomponents that may produce this activity. Methods Experimentally, diabetes was induced by a single administration of streptozotocin at 50 mg/kg intraperitoneally in Wistar rats. The animals were treated orally with P. juliflora at low and high doses (200 and 400 mg/kg) for 10 days. Blood collected from the retro-orbital plexus was analyzed for parameters like blood glucose levels, insulin, adiponectin, Keap1 and Nrf2. PPAR-γ, AMPK and GLUT 2 levels were analyzed in the pancreatic tissue. Besides, at the end of the experiment, animals were sacrificed, and the pancreatic tissue sections were subjected for histopathological, morphometrical and immune histochemical exploration. The phytochemical composition of the plant was investigated by GC-MS. Results The administration of P. juliflora higher dose showed a significant decrease (**p< 0.001) in blood glucose levels with a rise in adiponectin, PPARγ, Keap1, Nrf2, Glut 2, and AMPK significantly (**p< 0.001). The inflammatory cytokine TNFα was also estimated and was found to be lowered significantly (**p< 0.001) in test drug-treated animals. Furthermore, in the pancreatic tissue, the number of Islets, the area, and the number of β-cells were improved significantly with the sub-chronic treatment of P. juliflora extract. The structure and function of β-cells were also revamped. Conclusion The study results demonstrated a significant effect of P. juliflora on glycemic status, inflammatory condition, and the architecture of pancreatic tissue. In the identification and isolation process by GC MS, it was noticed that P. juliflora contained few phytochemical constituents from which it might be considered a promising drug for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine, and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Department of Pharmacology and Toxicology, Pharmacy College, Jazan University, P.O. Box 114 45142, Jazan, Saudi Arabia
| | - Gihan F. Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Abeer Salama
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Marwa E. Shabana
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, Pharmacy College, Jazan University, P.O. Box 114 45142, Jazan, Saudi Arabia
| | - Mohammad Firoz Alam
- Department of Pharmacology and Toxicology, Pharmacy College, Jazan University, P.O. Box 114 45142, Jazan, Saudi Arabia
| | - Tarique Anwer
- Department of Pharmacology and Toxicology, Pharmacy College, Jazan University, P.O. Box 114 45142, Jazan, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114 45142, Jazan, Saudi Arabia
| | - Zia ur Rehman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114 45142, Jazan, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, P.O. Box 114 45142, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Centre for Research, P.O. Box: 2424, Khartoum 11111, Sudan
| |
Collapse
|
4
|
Salsinha AS, Socodato R, Rodrigues A, Vale-Silva R, Relvas JB, Pintado M, Rodríguez-Alcalá LM. Potential of omega-3 and conjugated fatty acids to control microglia inflammatory imbalance elicited by obesogenic nutrients. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159331. [PMID: 37172801 DOI: 10.1016/j.bbalip.2023.159331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
High-fat diet-induced obesity detrimentally affects brain function by inducing chronic low-grade inflammation. This neuroinflammation is, at least in part, likely to be mediated by microglia, which are the main immune cell population in the brain. Microglia express a wide range of lipid-sensitive receptors and their activity can be modulated by fatty acids that cross the blood-brain barrier. Here, by combining live cell imaging and FRET technology we assessed how different fatty acids modulate microglia activity. We demonstrate that the combined action of fructose and palmitic acid induce Ikβα degradation and nuclear translocation of the p65 subunit nuclear factor kB (NF-κB) in HCM3 human microglia. Such obesogenic nutrients also lead to reactive oxygen species production and LynSrc activation (critical regulators of microglia inflammation). Importantly, short-time exposure to omega-3 (EPA and DHA), CLA and CLNA are sufficient to abolish NF-κB pathway activation, suggesting a potential neuroprotective role. Omega-3 and CLA also show an antioxidant potential by inhibiting reactive oxygen species production, and the activation of LynSrc in microglia. Furthermore, using chemical agonists (TUG-891) and antagonists (AH7614) of GPR120/FFA4, we demonstrated that omega-3, CLA and CLNA inhibition of the NF-κB pathway is mediated by this receptor, while omega-3 and CLA antioxidant potential occurs through different signaling mechanisms.
Collapse
Affiliation(s)
- A S Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Socodato
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - A Rodrigues
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Vale-Silva
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - J B Relvas
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - L M Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
5
|
Morresi C, Vasarri M, Bellachioma L, Ferretti G, Degl′Innocenti D, Bacchetti T. Glucose Uptake and Oxidative Stress in Caco-2 Cells: Health Benefits from Posidonia oceanica (L.) Delile. Mar Drugs 2022; 20:md20070457. [PMID: 35877750 PMCID: PMC9319946 DOI: 10.3390/md20070457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
Posidonia oceanica (L.) Delile is an endemic Mediterranean marine plant of extreme ecological importance. Previous in vitro and in vivo studies have demonstrated the potential antidiabetic properties of P. oceanica leaf extract. Intestinal glucose transporters play a key role in glucose homeostasis and represent novel targets for the management of diabetes. In this study, the ability of a hydroalcoholic P. oceanica leaf extract (POE) to modulate intestinal glucose transporters was investigated using Caco-2 cells as a model of an intestinal barrier. The incubation of cells with POE significantly decreased glucose uptake by decreasing the GLUT2 glucose transporter levels. Moreover, POE had a positive effect on the barrier integrity by increasing the Zonulin-1 levels. A protective effect exerted by POE against oxidative stress induced by chronic exposure to high glucose concentrations or tert-butyl hydroperoxide was also demonstrated. This study highlights for the first time the effect of POE on glucose transport, intestinal barrier integrity, and its protective antioxidant effect in Caco-2 cells. These findings suggest that the P. oceanica phytocomplex may have a positive impact by preventing the intestinal cell dysfunction involved in the development of inflammation-related disease associated with oxidative stress.
Collapse
Affiliation(s)
- Camilla Morresi
- Department of Clinical Experimental Science and Odontostomatology-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (C.M.); (G.F.)
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Luisa Bellachioma
- Department of Life and Environmental Sciences-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (L.B.); (T.B.)
| | - Gianna Ferretti
- Department of Clinical Experimental Science and Odontostomatology-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (C.M.); (G.F.)
| | - Donatella Degl′Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
- Interuniversity Center of Marine Biology and Applied Ecology “G. Bacci” (CIBM), Viale N. Sauro 4, 57128 Livorno, Italy
- Correspondence:
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (L.B.); (T.B.)
| |
Collapse
|
6
|
Zapater JL, Wicksteed B, Layden BT. Enterocyte HKDC1 Modulates Intestinal Glucose Absorption in Male Mice Fed a High-fat Diet. Endocrinology 2022; 163:6569855. [PMID: 35435980 PMCID: PMC9078327 DOI: 10.1210/endocr/bqac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/24/2022]
Abstract
Hexokinase domain containing protein-1, or HKDC1, is a widely expressed hexokinase that is genetically associated with elevated 2-hour gestational blood glucose levels during an oral glucose tolerance test, suggesting a role for HKDC1 in postprandial glucose regulation during pregnancy. Our earlier studies utilizing mice containing global HKDC1 knockdown, as well as hepatic HKDC1 overexpression and knockout, indicated that HKDC1 is important for whole-body glucose homeostasis in aging and pregnancy, through modulation of glucose tolerance, peripheral tissue glucose utilization, and hepatic energy storage. However, our knowledge of the precise role(s) of HKDC1 in regulating postprandial glucose homeostasis under normal and diabetic conditions is lacking. Since the intestine is the main entry portal for dietary glucose, here we have developed an intestine-specific HKDC1 knockout mouse model, HKDC1Int-/-, to determine the in vivo role of intestinal HKDC1 in regulating glucose homeostasis. While no overt glycemic phenotype was observed, aged HKDC1Int-/- mice fed a high-fat diet exhibited an increased glucose excursion following an oral glucose load compared with mice expressing intestinal HKDC1. This finding resulted from glucose entry via the intestinal epithelium and is not due to differences in insulin levels, enterocyte glucose utilization, or reduction in peripheral skeletal muscle glucose uptake. Assessment of intestinal glucose transporters in high-fat diet-fed HKDC1Int-/- mice suggested increased apical GLUT2 expression in the fasting state. Taken together, our results indicate that intestinal HKDC1 contributes to the modulation of postprandial dietary glucose transport across the intestinal epithelium under conditions of enhanced metabolic stress, such as high-fat diet.
Collapse
Affiliation(s)
- Joseph L Zapater
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Medical Research Service, Chicago, IL 60612, USA
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Medical Research Service, Chicago, IL 60612, USA
- Correspondence: Brian T. Layden, MD, PhD, 835 South Wolcott Avenue, Suite 625E (M/C 640), Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Afshar N, Safaei S, Nickerson DP, Hunter PJ, Suresh V. Computational Modelling of Glucose Uptake by SGLT1 and Apical GLUT2 in the Enterocyte. Front Physiol 2021; 12:699152. [PMID: 34950044 PMCID: PMC8688934 DOI: 10.3389/fphys.2021.699152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that glucose absorption in the small intestine depends on both constitutively expressed SGLT1 and translocated GLUT2 in the brush border membrane, especially in the presence of high levels of luminal glucose. Here, we present a computational model of non-isotonic glucose uptake by small intestinal epithelial cells. The model incorporates apical uptake via SGLT1 and GLUT2, basolateral efflux into the blood via GLUT2, and cellular volume changes in response to non-isotonic conditions. The dependence of glucose absorption on luminal glucose, blood flow rate, and inlet blood glucose concentration is studied. Uptake via apical GLUT2 is found to be sensitive to all these factors. Under a range of conditions, the maximum apical GLUT2 flux is about half of the SGLT1 flux and is achieved at high luminal glucose (> 50 mM), high blood flow rates, and low inlet blood concentrations. In contrast, SGLT1 flux is less sensitive to these factors. When luminal glucose concentration is less than 10 mM, apical GLUT2 serves as an efflux pathway for glucose to move from the blood to the lumen. The model results indicate that translocation of GLUT2 from the basolateral to the apical membrane increases glucose uptake into the cell; however, the reduction of efflux capacity results in a decrease in net absorption. Recruitment of GLUT2 from a cytosolic pool elicits a 10–20% increase in absorption for luminal glucose levels in the a 20–100 mM range. Increased SGLT1 activity also leads to a roughly 20% increase in absorption. A concomitant increase in blood supply results in a larger increase in absorption. Increases in apical glucose transporter activity help to minimise cell volume changes by reducing the osmotic gradient between the cell and the lumen.
Collapse
Affiliation(s)
- Nima Afshar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Soroush Safaei
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David P Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Vinod Suresh
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Ontawong A, Duangjai A, Srimaroeng C. Coffea arabica bean extract inhibits glucose transport and disaccharidase activity in Caco-2 cells. Biomed Rep 2021; 15:73. [PMID: 34405045 PMCID: PMC8329997 DOI: 10.3892/br.2021.1449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/14/2021] [Indexed: 11/06/2022] Open
Abstract
The major constituents of Coffea arabica (coffee), including caffeine, chlorogenic acid and caffeic acid, exhibit antihyperglycemic properties in in vitro and in vivo models. However, whether Coffea arabica bean extract (CBE) regulates glucose uptake activity and the underlying mechanisms involved remain unclear. The aim of the present study was to examine the effects of CBE on glucose absorption and identify the mechanisms involved using an in vitro model. The uptake of a fluorescent glucose analog into Caco-2 colorectal adenocarcinoma cells was determined. The expression levels of sodium glucose co-transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) were evaluated. In addition, glycoside hydrolase enzyme activity was investigated. It was observed that CBE inhibited disaccharidase enzyme activity. Furthermore, CBE exerted an inhibitory effect on intestinal glucose absorption by downregulating SGLT1- and GLUT2-mediated 5' AMP-activated protein kinase phosphorylation and suppressing hepatocyte nuclear factor 1α expression. These data suggest that CBE may attenuate glucose absorption and may have potentially beneficial antihyperglycemic effects in the body; however, the mechanisms underlying the effects of CBE must be elucidated through further investigation.
Collapse
Affiliation(s)
- Atcharaporn Ontawong
- Division of Physiology, School of Medical Sciences, University of Phayao, Muang Phayao, Phayao 56000, Thailand
| | - Acharaporn Duangjai
- Division of Physiology, School of Medical Sciences, University of Phayao, Muang Phayao, Phayao 56000, Thailand
| | - Chutima Srimaroeng
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Nong Khai 52000, Thailand
| |
Collapse
|
9
|
Gonçalves AS, Andrade N, Martel F. Intestinal fructose absorption: Modulation and relation to human diseases. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Helsley RN, Moreau F, Gupta MK, Radulescu A, DeBosch B, Softic S. Tissue-Specific Fructose Metabolism in Obesity and Diabetes. Curr Diab Rep 2020; 20:64. [PMID: 33057854 DOI: 10.1007/s11892-020-01342-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The objective of this review is to provide up-to-date and comprehensive discussion of tissue-specific fructose metabolism in the context of diabetes, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD). RECENT FINDINGS Increased intake of dietary fructose is a risk factor for a myriad of metabolic complications. Tissue-specific fructose metabolism has not been well delineated in terms of its contribution to detrimental health effects associated with fructose intake. Since inhibitors targeting fructose metabolism are being developed for the management of NAFLD and diabetes, it is essential to recognize how inability of one tissue to metabolize fructose may affect metabolism in the other tissues. The primary sites of fructose metabolism are the liver, intestine, and kidney. Skeletal muscle and adipose tissue can also metabolize a large portion of fructose load, especially in the setting of ketohexokinase deficiency, the rate-limiting enzyme of fructose metabolism. Fructose can also be sensed by the pancreas and the brain, where it can influence essential functions involved in energy homeostasis. Lastly, fructose is metabolized by the testes, red blood cells, and lens of the eye where it may contribute to infertility, advanced glycation end products, and cataracts, respectively. An increase in sugar intake, particularly fructose, has been associated with the development of obesity and its complications. Inhibition of fructose utilization in tissues primary responsible for its metabolism alters consumption in other tissues, which have not been traditionally regarded as important depots of fructose metabolism.
Collapse
Affiliation(s)
- Robert N Helsley
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Francois Moreau
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Manoj K Gupta
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Aurelia Radulescu
- Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY, 40536, USA
| | - Brian DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63131, USA
| | - Samir Softic
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 138 Leader Ave, Lexington, KY, 40506, USA.
| |
Collapse
|
11
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
12
|
Holman GD. Structure, function and regulation of mammalian glucose transporters of the SLC2 family. Pflugers Arch 2020; 472:1155-1175. [PMID: 32591905 PMCID: PMC7462842 DOI: 10.1007/s00424-020-02411-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
The SLC2 genes code for a family of GLUT proteins that are part of the major facilitator superfamily (MFS) of membrane transporters. Crystal structures have recently revealed how the unique protein fold of these proteins enables the catalysis of transport. The proteins have 12 transmembrane spans built from a replicated trimer substructure. This enables 4 trimer substructures to move relative to each other, and thereby alternately opening and closing a cleft to either the internal or the external side of the membrane. The physiological substrate for the GLUTs is usually a hexose but substrates for GLUTs can include urate, dehydro-ascorbate and myo-inositol. The GLUT proteins have varied physiological functions that are related to their principal substrates, the cell type in which the GLUTs are expressed and the extent to which the proteins are associated with subcellular compartments. Some of the GLUT proteins translocate between subcellular compartments and this facilitates the control of their function over long- and short-time scales. The control of GLUT function is necessary for a regulated supply of metabolites (mainly glucose) to tissues. Pathophysiological abnormalities in GLUT proteins are responsible for, or associated with, clinical problems including type 2 diabetes and cancer and a range of tissue disorders, related to tissue-specific GLUT protein profiles. The availability of GLUT crystal structures has facilitated the search for inhibitors and substrates and that are specific for each GLUT and that can be used therapeutically. Recent studies are starting to unravel the drug targetable properties of each of the GLUT proteins.
Collapse
Affiliation(s)
- Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
13
|
Ni D, Ai Z, Munoz-Sandoval D, Suresh R, Ellis PR, Yuqiong C, Sharp PA, Butterworth PJ, Yu Z, Corpe CP. Inhibition of the facilitative sugar transporters (GLUTs) by tea extracts and catechins. FASEB J 2020; 34:9995-10010. [PMID: 32564472 DOI: 10.1096/fj.202000057rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023]
Abstract
Tea polyphenolics have been suggested to possess blood glucose lowering properties by inhibiting sugar transporters in the small intestine and improving insulin sensitivity. In this report, we studied the effects of teas and tea catechins on the small intestinal sugar transporters, SGLT1 and GLUTs (GLUT1, 2 and 5). Green tea extract (GT), oolong tea extract (OT), and black tea extract (BT) inhibited glucose uptake into the intestinal Caco-2 cells with GT being the most potent inhibitor (IC50 : 0.077 mg/mL), followed by OT (IC50 : 0.136 mg/mL) and BT (IC50 : 0.56 mg/mL). GT and OT inhibition of glucose uptake was partial non-competitive, with an inhibitor constant (Ki ) = 0.0317 and 0.0571 mg/mL, respectively, whereas BT was pure non-competitive, Ki = 0.36 mg/mL. Oocytes injected to express small intestinal GLUTs were inhibited by teas, but SGLT1 was not. Furthermore, catechins present in teas were the predominant inhibitor of glucose uptake into Caco-2 cells, and gallated catechins the most potent: CG > ECG > EGCG ≥ GCG when compared to the non-gallated catechins (C, EC, GC, and EGC). In Caco-2 cells, individual tea catechins reduced the SGLT1 gene, but not protein expression levels. In contrast, GLUT2 gene and protein expression levels were reduced after 2 hours exposure to catechins but increased after 24 hours. These in vitro studies suggest teas containing catechins may be useful dietary supplements capable of blunting postprandial glycaemia in humans, including those with or at risk to Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China.,Faculty of Life Sciences and Medicine, Departments of Biochemistry and Nutrition, King's College London, London, UK
| | - Zeyi Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China.,Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing City, China
| | - Diana Munoz-Sandoval
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| | - Reshma Suresh
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| | - Peter R Ellis
- Faculty of Life Sciences and Medicine, Departments of Biochemistry and Nutrition, King's College London, London, UK
| | - Chen Yuqiong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China
| | - Paul A Sharp
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| | - Peter J Butterworth
- Faculty of Life Sciences and Medicine, Departments of Biochemistry and Nutrition, King's College London, London, UK
| | - Zhi Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan City, China
| | - Christopher P Corpe
- Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
14
|
Thomas AM, Dong Y, Beskid NM, García AJ, Adams AB, Babensee JE. Brief exposure to hyperglycemia activates dendritic cells in vitro and in vivo. J Cell Physiol 2020; 235:5120-5129. [PMID: 31674663 PMCID: PMC7056598 DOI: 10.1002/jcp.29380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
Dendritic cells are key players in regulating immunity. These cells both activate and inhibit the immune response depending on their cellular environment. Their response to hyperglycemia, a condition common amongst diabetics wherein glucose is abnormally elevated, remains to be elucidated. In this study, the phenotype and immune response of dendritic cells exposed to hyperglycemia were characterized in vitro and in vivo using the streptozotocin-induced diabetes model. Dendritic cells were shown to be sensitive to hyperglycemia both during and after differentiation from bone marrow precursor cells. Dendritic cell behavior under hyperglycemic conditions was found to vary by phenotype, among which, tolerogenic dendritic cells were particularly sensitive. Expression of the costimulatory molecule CD86 was found to reliably increase when dendritic cells were exposed to hyperglycemia. Additionally, hydrogel-based delivery of the anti-inflammatory molecule interleukin-10 was shown to partially inhibit these effects in vivo.
Collapse
Affiliation(s)
- Aline M Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Ying Dong
- Department of Surgery, Emory University, Atlanta, Georgia
| | - Nicholas M Beskid
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrew B Adams
- Department of Surgery, Emory University, Atlanta, Georgia
| | - Julia E Babensee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
15
|
In vitro anti-hyperglycemic, antioxidant activities and intestinal glucose uptake evaluation of Endiandra kingiana extracts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Merino B, Fernández-Díaz CM, Cózar-Castellano I, Perdomo G. Intestinal Fructose and Glucose Metabolism in Health and Disease. Nutrients 2019; 12:E94. [PMID: 31905727 PMCID: PMC7019254 DOI: 10.3390/nu12010094] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide epidemics of obesity and diabetes have been linked to increased sugar consumption in humans. Here, we review fructose and glucose metabolism, as well as potential molecular mechanisms by which excessive sugar consumption is associated to metabolic diseases and insulin resistance in humans. To this end, we focus on understanding molecular and cellular mechanisms of fructose and glucose transport and sensing in the intestine, the intracellular signaling effects of dietary sugar metabolism, and its impact on glucose homeostasis in health and disease. Finally, the peripheral and central effects of dietary sugars on the gut-brain axis will be reviewed.
Collapse
Affiliation(s)
- Beatriz Merino
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
| | - Cristina M. Fernández-Díaz
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
| | - Irene Cózar-Castellano
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain
| | - German Perdomo
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
- Departamento de Ciencias de la Salud, Universidad de Burgos, Burgos 09001, Spain
| |
Collapse
|
17
|
Liu R, Liu J, Zhao G, Li W, Zheng M, Wang J, Li Q, Cui H, Wen J. Relevance of the intestinal health-related pathways to broiler residual feed intake revealed by duodenal transcriptome profiling. Poult Sci 2019; 98:1102-1110. [DOI: 10.3382/ps/pey506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/13/2018] [Indexed: 12/13/2022] Open
|
18
|
Loureiro G, Martel F. The effect of dietary polyphenols on intestinal absorption of glucose and fructose: Relation with obesity and type 2 diabetes. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1573432] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Guilherme Loureiro
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Fátima Martel
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Chemical biology probes of mammalian GLUT structure and function. Biochem J 2018; 475:3511-3534. [PMID: 30459202 PMCID: PMC6243331 DOI: 10.1042/bcj20170677] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022]
Abstract
The structure and function of glucose transporters of the mammalian GLUT family of proteins has been studied over many decades, and the proteins have fascinated numerous research groups over this time. This interest is related to the importance of the GLUTs as archetypical membrane transport facilitators, as key limiters of the supply of glucose to cell metabolism, as targets of cell insulin and exercise signalling and of regulated membrane traffic, and as potential drug targets to combat cancer and metabolic diseases such as type 2 diabetes and obesity. This review focusses on the use of chemical biology approaches and sugar analogue probes to study these important proteins.
Collapse
|
20
|
Intestinal Saturated Long-Chain Fatty Acid, Glucose and Fructose Transporters and Their Inhibition by Natural Plant Extracts in Caco-2 Cells. Molecules 2018; 23:molecules23102544. [PMID: 30301205 PMCID: PMC6222386 DOI: 10.3390/molecules23102544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
The intestinal absorption of fatty acids, glucose and fructose is part of the basic requirements for the provision of energy in the body. High access of saturated long-chain fatty acids (LCFA), glucose and fructose can facilitate the development of metabolic diseases, particularly the metabolic syndrome and type-2 diabetes mellitus (T2DM). Research has been done to find substances which decelerate or inhibit intestinal resorption of these specific food components. Promising targets are the inhibition of intestinal long-chain fatty acid (FATP2, FATP4), glucose (SGLT1, GLUT2) and fructose (GLUT2, GLUT5) transporters by plant extracts and by pure substances. The largest part of active components in plant extracts belongs to the group of polyphenols. This review summarizes the knowledge about binding sites of named transporters and lists the plant extracts which were tested in Caco-2 cells regarding uptake inhibition.
Collapse
|
21
|
Müller U, Stübl F, Schwarzinger B, Sandner G, Iken M, Himmelsbach M, Schwarzinger C, Ollinger N, Stadlbauer V, Höglinger O, Kühne T, Lanzerstorfer P, Weghuber J. In Vitro and In Vivo Inhibition of Intestinal Glucose Transport by Guava (Psidium Guajava) Extracts. Mol Nutr Food Res 2018; 62:e1701012. [PMID: 29688623 PMCID: PMC6001447 DOI: 10.1002/mnfr.201701012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/15/2018] [Indexed: 12/21/2022]
Abstract
SCOPE Known pharmacological activities of guava (Psidium guajava) include modulation of blood glucose levels. However, mechanistic details remain unclear in many cases. METHODS AND RESULTS This study investigated the effects of different guava leaf and fruit extracts on intestinal glucose transport in vitro and on postprandial glucose levels in vivo. Substantial dose- and time-dependent glucose transport inhibition (up to 80%) was observed for both guava fruit and leaf extracts, at conceivable physiological concentrations in Caco-2 cells. Using sodium-containing (both glucose transporters, sodium-dependent glucose transporter 1 [SGLT1] and glucose transporter 2 [GLUT2], are active) and sodium-free (only GLUT2 is active) conditions, we show that inhibition of GLUT2 was greater than that of SGLT1. Inhibitory properties of guava extracts also remained stable after digestive juice treatment, indicating a good chemical stability of the active substances. Furthermore, we could unequivocally show that guava extracts significantly reduced blood glucose levels (≈fourfold reduction) in a time-dependent manner in vivo (C57BL/6N mice). Extracts were characterized with respect to their main putative bioactive compounds (polyphenols) using HPLC and LC-MS. CONCLUSION The data demonstrated that guava leaf and fruit extracts can potentially contribute to the regulation of blood glucose levels.
Collapse
Affiliation(s)
- Ulrike Müller
- University of Applied Sciences Upper Austria4600WelsAustria
| | - Flora Stübl
- University of Applied Sciences Upper Austria4600WelsAustria
| | - Bettina Schwarzinger
- University of Applied Sciences Upper Austria4600WelsAustria
- Austrian Competence Center for Feed and Food QualitySafety and Innovation4600WelsAustria
| | - Georg Sandner
- University of Applied Sciences Upper Austria4600WelsAustria
| | | | - Markus Himmelsbach
- Johannes Kepler UniversityInstitute for Analytical Chemistry4040LinzAustria
| | - Clemens Schwarzinger
- Johannes Kepler UniversityInstitute for Chemical Technology of Organic Materials4040LinzAustria
| | - Nicole Ollinger
- University of Applied Sciences Upper Austria4600WelsAustria
- Austrian Competence Center for Feed and Food QualitySafety and Innovation4600WelsAustria
| | - Verena Stadlbauer
- University of Applied Sciences Upper Austria4600WelsAustria
- Austrian Competence Center for Feed and Food QualitySafety and Innovation4600WelsAustria
| | | | | | | | - Julian Weghuber
- University of Applied Sciences Upper Austria4600WelsAustria
- Austrian Competence Center for Feed and Food QualitySafety and Innovation4600WelsAustria
| |
Collapse
|
22
|
McKeown NM, Dashti HS, Ma J, Haslam DE, Kiefte-de Jong JC, Smith CE, Tanaka T, Graff M, Lemaitre RN, Rybin D, Sonestedt E, Frazier-Wood AC, Mook-Kanamori DO, Li Y, Wang CA, Leermakers ETM, Mikkilä V, Young KL, Mukamal KJ, Cupples LA, Schulz CA, Chen TA, Li-Gao R, Huang T, Oddy WH, Raitakari O, Rice K, Meigs JB, Ericson U, Steffen LM, Rosendaal FR, Hofman A, Kähönen M, Psaty BM, Brunkwall L, Uitterlinden AG, Viikari J, Siscovick DS, Seppälä I, North KE, Mozaffarian D, Dupuis J, Orho-Melander M, Rich SS, de Mutsert R, Qi L, Pennell CE, Franco OH, Lehtimäki T, Herman MA. Sugar-sweetened beverage intake associations with fasting glucose and insulin concentrations are not modified by selected genetic variants in a ChREBP-FGF21 pathway: a meta-analysis. Diabetologia 2018; 61:317-330. [PMID: 29098321 PMCID: PMC5826559 DOI: 10.1007/s00125-017-4475-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 08/29/2017] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Sugar-sweetened beverages (SSBs) are a major dietary contributor to fructose intake. A molecular pathway involving the carbohydrate responsive element-binding protein (ChREBP) and the metabolic hormone fibroblast growth factor 21 (FGF21) may influence sugar metabolism and, thereby, contribute to fructose-induced metabolic disease. We hypothesise that common variants in 11 genes involved in fructose metabolism and the ChREBP-FGF21 pathway may interact with SSB intake to exacerbate positive associations between higher SSB intake and glycaemic traits. METHODS Data from 11 cohorts (six discovery and five replication) in the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided association and interaction results from 34,748 adults of European descent. SSB intake (soft drinks, fruit punches, lemonades or other fruit drinks) was derived from food-frequency questionnaires and food diaries. In fixed-effects meta-analyses, we quantified: (1) the associations between SSBs and glycaemic traits (fasting glucose and fasting insulin); and (2) the interactions between SSBs and 18 independent SNPs related to the ChREBP-FGF21 pathway. RESULTS In our combined meta-analyses of discovery and replication cohorts, after adjustment for age, sex, energy intake, BMI and other dietary covariates, each additional serving of SSB intake was associated with higher fasting glucose (β ± SE 0.014 ± 0.004 [mmol/l], p = 1.5 × 10-3) and higher fasting insulin (0.030 ± 0.005 [log e pmol/l], p = 2.0 × 10-10). No significant interactions on glycaemic traits were observed between SSB intake and selected SNPs. While a suggestive interaction was observed in the discovery cohorts with a SNP (rs1542423) in the β-Klotho (KLB) locus on fasting insulin (0.030 ± 0.011 log e pmol/l, uncorrected p = 0.006), results in the replication cohorts and combined meta-analyses were non-significant. CONCLUSIONS/INTERPRETATION In this large meta-analysis, we observed that SSB intake was associated with higher fasting glucose and insulin. Although a suggestive interaction with a genetic variant in the ChREBP-FGF21 pathway was observed in the discovery cohorts, this observation was not confirmed in the replication analysis. TRIAL REGISTRATION Trials related to this study were registered at clinicaltrials.gov as NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005121 (Framingham Offspring Study), NCT00005487 (Multi-Ethnic Study of Atherosclerosis) and NCT00005152 (Nurses' Health Study).
Collapse
Affiliation(s)
- Nicola M McKeown
- Nutritional Epidemiology Program, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, 02111, USA.
| | - Hassan S Dashti
- Nutrition & Genomics Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
| | - Jiantao Ma
- National Heart, Lung, and Blood Institute's Framingham Heart Study and Population Sciences Branch, Framingham, MA, USA
| | - Danielle E Haslam
- Nutritional Epidemiology Program, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, 02111, USA
| | - Jessica C Kiefte-de Jong
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Global Public Health, Leiden University College, The Hague, the Netherlands
| | - Caren E Smith
- Nutrition & Genomics Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Denis Rybin
- Boston University Data Coordinating Center, Boston University, Boston, MA, USA
| | - Emily Sonestedt
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Alexis C Frazier-Wood
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Yanping Li
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Carol A Wang
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| | | | - Vera Mikkilä
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Kenneth J Mukamal
- Division of General Medicine and Primary Care, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - L Adrienne Cupples
- National Heart, Lung, and Blood Institute's Framingham Heart Study and Population Sciences Branch, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | | | - Tzu-An Chen
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tao Huang
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Wendy H Oddy
- Telethon Kids Institute, Subiaco, WA, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ulrika Ericson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Bruce M Psaty
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Louise Brunkwall
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | | | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Josée Dupuis
- National Heart, Lung, and Blood Institute's Framingham Heart Study and Population Sciences Branch, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lu Qi
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Craig E Pennell
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Terho Lehtimäki
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Mark A Herman
- Division Of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
23
|
George Thompson AM, Ursu O, Babkin P, Iancu CV, Whang A, Oprea TI, Choe JY. Discovery of a specific inhibitor of human GLUT5 by virtual screening and in vitro transport evaluation. Sci Rep 2016; 6:24240. [PMID: 27074918 PMCID: PMC4831007 DOI: 10.1038/srep24240] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/23/2016] [Indexed: 02/07/2023] Open
Abstract
GLUT5, a fructose-transporting member of the facilitative glucose transporter (GLUT, SLC2) family, is a therapeutic target for diabetes and cancer but has no potent inhibitors. We virtually screened a library of 6 million chemicals onto a GLUT5 model and identified N-[4-(methylsulfonyl)-2-nitrophenyl]-1,3-benzodioxol-5-amine (MSNBA) as an inhibitor of GLUT5 fructose transport in proteoliposomes. MSNBA inhibition was specific to GLUT5; this inhibitor did not affect the fructose transport of human GLUT2 or the glucose transport of human GLUT1-4 or bacterial GlcPSe. In MCF7 cells, a human breast cancer cell line, MSNBA competitively inhibited GLUT5 fructose uptake with a KI of 3.2 ± 0.4 μM. Ligand docking, mutagenesis and functional studies indicate that MSNBA binds near the active site and inhibitor discrimination involves H387 of GLUT5. Thus, MSNBA is a selective and potent inhibitor of fructose transport via GLUT5, and the first chemical probe for this transporter. Our data indicate that active site differences in GLUT members could be exploited to further enhance ligand specificity.
Collapse
Affiliation(s)
- Alayna M George Thompson
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Oleg Ursu
- Department of Internal Medicine, Translational Informatics Division, MSC09 5025, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Petr Babkin
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Cristina V Iancu
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Alex Whang
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Tudor I Oprea
- Department of Internal Medicine, Translational Informatics Division, MSC09 5025, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Jun-yong Choe
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| |
Collapse
|
24
|
Stringer DM, Zahradka P, Taylor CG. Glucose transporters: cellular links to hyperglycemia in insulin resistance and diabetes. Nutr Rev 2016; 73:140-54. [PMID: 26024537 DOI: 10.1093/nutrit/nuu012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Abnormal expression and/or function of mammalian hexose transporters contribute to the hallmark hyperglycemia of diabetes. Due to different roles in glucose handling, various organ systems possess specific transporters that may be affected during the diabetic state. Diabetes has been associated with higher rates of intestinal glucose transport, paralleled by increased expression of both active and facilitative transporters and a shift in the location of transporters within the enterocyte, events that occur independent of intestinal hyperplasia and hyperglycemia. Peripheral tissues also exhibit deregulated glucose transport in the diabetic state, most notably defective translocation of transporters to the plasma membrane and reduced capacity to clear glucose from the bloodstream. Expression of renal active and facilitative glucose transporters increases as a result of diabetes, leading to elevated rates of glucose reabsorption. However, this may be a natural response designed to combat elevated blood glucose concentrations and not necessarily a direct effect of insulin deficiency. Functional foods and nutraceuticals, by modulation of glucose transporter activity, represent a potential dietary tool to aid in the management of hyperglycemia and diabetes.
Collapse
Affiliation(s)
- Danielle M Stringer
- D.M. Stringer was with the Department of Human Nutritional Sciences, University of Manitoba, and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada at the time of manuscript preparation. C.G. Taylor is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada. P. Zahradka is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada.
| | - Peter Zahradka
- D.M. Stringer was with the Department of Human Nutritional Sciences, University of Manitoba, and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada at the time of manuscript preparation. C.G. Taylor is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada. P. Zahradka is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Carla G Taylor
- D.M. Stringer was with the Department of Human Nutritional Sciences, University of Manitoba, and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada at the time of manuscript preparation. C.G. Taylor is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada. P. Zahradka is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
25
|
Abstract
It has been proposed that the non-saturable component of intestinal glucose absorption, apparent following prolonged exposure to high intraluminal glucose concentrations, is mediated via the low affinity glucose and fructose transporter, GLUT2, upregulated within the small intestinal apical border. The evidence that the non-saturable transport component is mediated via an apical membrane sugar transporter is that it is inhibited by phloretin, after exposure to phloridzin. Since the other apical membrane sugar transporter, GLUT5, is insensitive to inhibition by either cytochalasin B, or phloretin, GLUT2 was deduced to be the low affinity sugar transport route. As in its uninhibited state, polarized intestinal glucose absorption depends both on coupled entry of glucose and sodium across the brush border membrane and on the enterocyte cytosolic glucose concentration exceeding that in both luminal and submucosal interstitial fluids, upregulation of GLUT2 within the intestinal brush border will usually stimulate downhill glucose reflux to the intestinal lumen from the enterocytes; thereby reducing, rather than enhancing net glucose absorption across the luminal surface. These states are simulated with a computer model generating solutions to the differential equations for glucose, Na and water flows between luminal, cell, interstitial and capillary compartments. The model demonstrates that uphill glucose transport via SGLT1 into enterocytes, when short-circuited by any passive glucose carrier in the apical membrane, such as GLUT2, will reduce transcellular glucose absorption and thereby lead to increased paracellular flow. The model also illustrates that apical GLUT2 may usefully act as an osmoregulator to prevent excessive enterocyte volume change with altered luminal glucose concentrations.
Collapse
Affiliation(s)
- Richard J Naftalin
- Department of Physiology and BHF Centre of Research Excellence, King's College London, School of Medicine, London, SE1 9HN, UK
| |
Collapse
|
26
|
Cohen M, Kitsberg D, Tsytkin S, Shulman M, Aroeti B, Nahmias Y. Live imaging of GLUT2 glucose-dependent trafficking and its inhibition in polarized epithelial cysts. Open Biol 2014; 4:140091. [PMID: 25056286 PMCID: PMC4118605 DOI: 10.1098/rsob.140091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/02/2014] [Indexed: 01/20/2023] Open
Abstract
GLUT2 is a facilitative glucose transporter, expressed in polarized epithelial cells of the liver, intestine, kidney and pancreas, where it plays a critical role in glucose homeostasis. Together with SGLT1/2, it mediates glucose absorption in metabolic epithelial tissues, where it can be translocated apically upon high glucose exposure. To track the subcellular localization and dynamics of GLUT2, we created an mCherry-hGLUT2 fusion protein and expressed it in multicellular kidney cysts, a major site of glucose reabsorption. Live imaging of GLUT2 enabled us to avoid the artefactual localization of GLUT2 in fixed cells and to confirm the apical GLUT2 model. Live cell imaging showed a rapid 15 ± 3 min PKC-dependent basal-to-apical translocation of GLUT2 in response to glucose stimulation and a fourfold slower basolateral translocation under starvation. These results mark the physiological importance of responding quickly to rising glucose levels. Importantly, we show that phloretin, an apple polyphenol, inhibits GLUT2 translocation in both directions, suggesting that it exerts its effect by PKC inhibition. Subcellular localization studies demonstrated that GLUT2 is endocytosed through a caveolae-dependent mechanism, and that it is at least partly recovered in Rab11A-positive recycling endosome. Our work illuminates GLUT2 dynamics, providing a platform for drug development for diabetes and hyperglycaemia.
Collapse
Affiliation(s)
- Merav Cohen
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel Alexander Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Kitsberg
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel Alexander Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sabina Tsytkin
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Shulman
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel Alexander Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaakov Nahmias
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel Alexander Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Notari L, Riera DC, Sun R, Bohl JA, McLean LP, Madden KB, van Rooijen N, Vanuytsel T, Urban JF, Zhao A, Shea-Donohue T. Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection. PLoS One 2014; 9:e84763. [PMID: 24465430 PMCID: PMC3900397 DOI: 10.1371/journal.pone.0084763] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/18/2013] [Indexed: 01/10/2023] Open
Abstract
Parasitic enteric nematodes induce a type 2 immune response characterized by increased production of Th2 cytokines, IL-4 and IL-13, and recruitment of alternatively activated macrophages (M2) to the site of infection. Nematode infection is associated with changes in epithelial permeability and inhibition of sodium-linked glucose absorption, but the role of M2 in these effects is unknown. Clodronate-containing liposomes were administered prior to and during nematode infection to deplete macrophages and prevent the development of M2 in response to infection with Nippostrongylus brasiliensis. The inhibition of epithelial glucose absorption that is associated with nematode infection involved a macrophage-dependent reduction in SGLT1 activity, with no change in receptor expression, and a macrophage-independent down-regulation of GLUT2 expression. The reduced transport of glucose into the enterocyte is compensated partially by an up-regulation of the constitutive GLUT1 transporter consistent with stress-induced activation of HIF-1α. Thus, nematode infection results in a “lean” epithelial phenotype that features decreased SGLT1 activity, decreased expression of GLUT2 and an emergent dependence on GLUT1 for glucose uptake into the enterocyte. Macrophages do not play a role in enteric nematode infection-induced changes in epithelial barrier function. There is a greater contribution, however, of paracellular absorption of glucose to supply the energy demands of host resistance. These data provide further evidence of the ability of macrophages to alter glucose metabolism of neighboring cells.
Collapse
Affiliation(s)
- Luigi Notari
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Diana C. Riera
- Department of Pediatrics, Walter Reed Army Medical Center, Washington, DC, United States of America
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Rex Sun
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer A. Bohl
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Leon P. McLean
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kathleen B. Madden
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Nico van Rooijen
- Vrije Universiteit, VUMC, Department of Molecular Cell Biology, Amsterdam, The Netherlands
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, University Hospital Gasthuisberg, University of Leuven, Leuven, Belgium
| | - Joseph F. Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, & Immunology Laboratory, Beltsville, Maryland, United States of America
| | - Aiping Zhao
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Terez Shea-Donohue
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Regulation of glucose transporter expression in human intestinal Caco-2 cells following exposure to an anthocyanin-rich berry extract. PLoS One 2013; 8:e78932. [PMID: 24236070 PMCID: PMC3827299 DOI: 10.1371/journal.pone.0078932] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023] Open
Abstract
Polyphenols contained within plant tissues are consumed in significant amounts in the human diet and are known to influence a number of biological processes. This study investigated the effects of an anthocyanin-rich berry-extract on glucose uptake by human intestinal Caco-2 cells. Acute exposure (15 min) to berry extract (0.125%, w/v) significantly decreased both sodium-dependent (Total uptake) and sodium-independent (facilitated uptake) ³H-D-glucose uptake. In longer-term studies, SGLT1 mRNA and GLUT2 mRNA expression were reduced significantly. Polyphenols are known to interact directly with glucose transporters to regulate the rate of glucose absorption. Our in vitro data support this mechanism and also suggest that berry flavonoids may modulate post-prandial glycaemia by decreasing glucose transporter expression. Further studies are warranted to investigate the longer term effects of berry flavonoids on the management of glycaemia in human volunteers.
Collapse
|
29
|
Hishiike T, Ogawa M, Hayakawa S, Nakajima D, O'Charoen S, Ooshima H, Sun Y. Transepithelial transports of rare sugar D-psicose in human intestine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7381-7386. [PMID: 23844903 DOI: 10.1021/jf401449m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
D-Psicose (Psi), the C3-epimer of D-fructose (Fru), is a noncalorie sugar with a lower glycemic response. The trans-cellular pathway of Psi in human enterocytes was investigated using a Caco-2 cell monolayer. The permeation rate of Psi across the monolayer was not affected by the addition of phlorizin, an inhibitor of sugar transporter SGLT1, whereas it was accelerated by treatment with forskolin, a GLUT5-gene inducer, clearly showing that GLUT5 is involved in the transport of Psi. The permeability of Psi was suppressed in the presence of D-glucose (Glc) and Fru, suggesting that the three monosaccharides are transported via the same transporter. Since GLUT2, the predominant sugar transporter on the basolateral membrane of enterocytes, mediates the transport of Glc and Fru, Psi might be mediated by GLUT2. The present study shows that Psi is incorporated from the intestinal lumen into enterocytes via GLUT5 and is released to the lamina propria via GLUT2.
Collapse
Affiliation(s)
- Takashi Hishiike
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Cai Z, Huang J, Luo H, Lei X, Yang Z, Mai Y, Liu Z. Role of glucose transporters in the intestinal absorption of gastrodin, a highly water-soluble drug with good oral bioavailability. J Drug Target 2013; 21:574-80. [DOI: 10.3109/1061186x.2013.778263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Insulin effect on lipogenesis and fat distribution in three genotypes of ducks during overfeeding. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:499-505. [DOI: 10.1016/j.cbpa.2012.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 11/21/2022]
|
32
|
Ait-Omar A, Monteiro-Sepulveda M, Poitou C, Le Gall M, Cotillard A, Gilet J, Garbin K, Houllier A, Château D, Lacombe A, Veyrie N, Hugol D, Tordjman J, Magnan C, Serradas P, Clément K, Leturque A, Brot-Laroche E. GLUT2 accumulation in enterocyte apical and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat-fed mice. Diabetes 2011; 60:2598-607. [PMID: 21852673 PMCID: PMC3178286 DOI: 10.2337/db10-1740] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE In healthy rodents, intestinal sugar absorption in response to sugar-rich meals and insulin is regulated by GLUT2 in enterocyte plasma membranes. Loss of insulin action maintains apical GLUT2 location. In human enterocytes, apical GLUT2 location has not been reported but may be revealed under conditions of insulin resistance. RESEARCH DESIGN AND METHODS Subcellular location of GLUT2 in jejunal enterocytes was analyzed by confocal and electron microscopy imaging and Western blot in 62 well-phenotyped morbidly obese subjects and 7 lean human subjects. GLUT2 locations were assayed in ob/ob and ob/+ mice receiving oral metformin or in high-fat low-carbohydrate diet-fed C57Bl/6 mice. Glucose absorption and secretion were respectively estimated by oral glucose tolerance test and secretion of [U-(14)C]-3-O-methyl glucose into lumen. RESULTS In human enterocytes, GLUT2 was consistently located in basolateral membranes. Apical GLUT2 location was absent in lean subjects but was observed in 76% of obese subjects and correlated with insulin resistance and glycemia. In addition, intracellular accumulation of GLUT2 with early endosome antigen 1 (EEA1) was associated with reduced MGAT4a activity (glycosylation) in 39% of obese subjects on a low-carbohydrate/high-fat diet. Mice on a low-carbohydrate/high-fat diet for 12 months also exhibited endosomal GLUT2 accumulation and reduced glucose absorption. In ob/ob mice, metformin promoted apical GLUT2 and improved glucose homeostasis. Apical GLUT2 in fasting hyperglycemic ob/ob mice tripled glucose release into intestinal lumen. CONCLUSIONS In morbidly obese insulin-resistant subjects, GLUT2 was accumulated in apical and/or endosomal membranes of enterocytes. Functionally, apical GLUT2 favored and endosomal GLUT2 reduced glucose transepithelial exchanges. Thus, altered GLUT2 locations in enterocytes are a sign of intestinal adaptations to human metabolic pathology.
Collapse
Affiliation(s)
- Amal Ait-Omar
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Milena Monteiro-Sepulveda
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Christine Poitou
- INSERM, U872, Team 7 Nutriomique, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
- Nutrition and Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France; Centre Recherche en Nutrition Humaine (CRNH) Ile de France, Paris, France
| | - Maude Le Gall
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Aurélie Cotillard
- INSERM, U872, Team 7 Nutriomique, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Jules Gilet
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Kevin Garbin
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Anne Houllier
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Danièle Château
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Amélie Lacombe
- Centre National de la Recherche Scientifique (EAC4413), Université Paris-Diderot, Paris, France
| | - Nicolas Veyrie
- INSERM, U872, Team 7 Nutriomique, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
- Surgery Department, Assistance Publique-Hôpitaux de Paris, Hôtel-Dieu Hospital, Paris, France
| | - Danielle Hugol
- Pathology Department, Assistance Publique-Hôpitaux de Paris, Hôtel-Dieu Hospital, Paris, France
| | - Joan Tordjman
- INSERM, U872, Team 7 Nutriomique, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Christophe Magnan
- Centre National de la Recherche Scientifique (EAC4413), Université Paris-Diderot, Paris, France
| | - Patricia Serradas
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Karine Clément
- INSERM, U872, Team 7 Nutriomique, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
- Nutrition and Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France; Centre Recherche en Nutrition Humaine (CRNH) Ile de France, Paris, France
| | - Armelle Leturque
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | - Edith Brot-Laroche
- INSERM, U872, Team 9, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
- Corresponding author: Edith Brot-Laroche,
| |
Collapse
|
33
|
Soleimani M, Alborzi P. The role of salt in the pathogenesis of fructose-induced hypertension. Int J Nephrol 2011; 2011:392708. [PMID: 21789281 PMCID: PMC3140039 DOI: 10.4061/2011/392708] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/14/2011] [Accepted: 04/30/2011] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome, as manifested by visceral obesity, hypertension, insulin resistance, and dyslipidemia, is reaching epidemic proportions in the Western World, specifically the United States. Epidemiologic studies suggest that the increased prevalence of metabolic syndrome directly correlates with an increase in the consumption of fructose, mainly in the form of high-fructose corn syrup. This inexpensive alternative to traditional sugar has been increasingly utilized by the food industry as a sweetener since the 1960s. While augmented caloric intake and sedentary lifestyles play important roles in the increasing prevalence of obesity, the pathogenesis of hypertension in metabolic syndrome remains controversial. One intriguing observation points to the role of salt in fructose-induced hypertension. Recent studies in rodents demonstrate that increased dietary fructose intake stimulates salt absorption in the small intestine and kidney tubules, resulting in a state of salt overload, thus setting in motion a cascade of events that will lead to hypertension. These studies point to a novel interaction between the fructose-absorbing transporter, Glut5, and the salt transporters, NHE3 and PAT1, in the intestine and kidney proximal tubule. This paper will focus on synergistic roles of fructose and salt in the pathogenesis of hypertension resulting from salt overload.
Collapse
Affiliation(s)
- Manoocher Soleimani
- The Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, 231 Albert Sabin Way, MSB 6312, Cincinnati, OH 45267-0585, USA
| | | |
Collapse
|
34
|
Kellett GL. Alternative perspective on intestinal calcium absorption: proposed complementary actions of Ca(v)1.3 and TRPV6. Nutr Rev 2011; 69:347-70. [PMID: 21729089 DOI: 10.1111/j.1753-4887.2011.00395.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcellular models of dietary Ca(2+) absorption by the intestine assign essential roles to TRPV6 and calbindin-D(9K) . However, studies with gene-knockout mice challenge this view. Something fundamental is missing. The L-type channel Ca(v) 1.3 is located in the apical membrane from the duodenum to the ileum. In perfused rat jejunum in vivo and in Caco-2 cells, Ca(v) 1.3 mediates sodium glucose transporter 1 (SGLT1)-dependent and prolactin-induced active, transcellular Ca(2+) absorption, respectively. TRPV6 is activated by hyperpolarization and is vitamin D dependent; in contrast, Ca(v) 1.3 is activated by depolarization and is independent of calbindin-D(9K) and vitamin D. This review considers evidence supporting the idea that Ca(v) 1.3 and TRPV6 have complementary roles in the regulation of intestinal Ca(2+) absorption as depolarization and repolarization of the apical membrane occur during and between digestive periods, respectively, and as chyme moves from one intestinal segment to another and food transit times increase. Reassessment of current arguments for paracellular flow reveals that key phenomena have alternative explanations within the integrated Ca(v) 1.3/TRPV6 view of transcellular Ca(2+) absorption.
Collapse
Affiliation(s)
- George L Kellett
- Department of Biology, University of York, Heslington, United Kingdom.
| |
Collapse
|
35
|
Scow JS, Iqbal CW, Jones TW, Qandeel HG, Zheng Y, Duenes JA, Nagao M, Madhavan S, Sarr MG. Absence of evidence of translocation of GLUT2 to the apical membrane of enterocytes in everted intestinal sleeves. J Surg Res 2011; 167:56-61. [PMID: 20739033 PMCID: PMC3065950 DOI: 10.1016/j.jss.2010.04.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/05/2010] [Accepted: 04/15/2010] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Traditional models of intestinal glucose absorption confine GLUT2 to the basolateral membrane. Evidence suggests that GLUT2 is translocated to the apical membrane when the enterocyte is exposed to high luminal glucose concentrations. HYPOTHESIS GLUT2 translocates to the apical membrane by a PKC signaling mechanism dependent on activity of SGLT1 and the cellular cytostructure. METHODS Transporter-mediated glucose uptake was studied in rat jejunum using everted sleeves under seven conditions: Control, SGLT1 inhibition (phlorizin), GLUT2 inhibition (phloretin), both SGLT1 and GLUT2 inhibition, PKC inhibition (calphostin C or chelerythrine), and disruption of cellular cytostructure (nocodazole). Each condition was tested in iso-osmotic solutions of 1, 20, or 50 mM glucose for 1 or 5 min incubations (n = 6 rats each). RESULTS Control rats exhibited a saturable pattern of uptake at both durations of incubation. Phlorizin (P ≤ 0.006 each) inhibited markedly and phloretin (P ≤ 0.01 each) inhibited partially glucose uptake in all concentrations and time. Phloretin and phlorizin together completely inhibited uptake (P = 0.004 each). Calphostin C, chelerythrine, and nocodazole had little effect on glucose uptake at either 1 or 5 min. Inhibition of SGLT1 led to near complete cessation of transporter-mediated glucose uptake, while GLUT2 inhibition led to partial inhibition, suggesting some constitutive expression of GLUT2 in the apical membrane. Disruption of PKC signaling or cytoskeletal integrity partially inhibited transporter-mediated glucose uptake only in 1 mM glucose, suggesting a non-specific effect. CONCLUSIONS Under these conditions, it does not appear that GLUT2 is translocated to the apical membrane on the cellular cytostructure in response to PKC signaling.
Collapse
Affiliation(s)
- Jeffrey S Scow
- Mayo Clinic Department of Surgery, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The worldwide increase in the incidence of metabolic syndrome correlates with marked increase in total fructose intake in the form of high-fructose corn syrup, beverage and table sugar. Increased dietary fructose intake in rodents has been shown to recapitulate many aspects of metabolic syndrome by causing hypertension, insulin resistance and hyperlipidaemia. Recent studies demonstrated that increased dietary fructose intake stimulates salt absorption in the small intestine and kidney tubules, resulting in a state of salt overload and thus causing hypertension. The absorption of salt (sodium and chloride) in the small intestine is predominantly mediated via the chloride/base exchangers DRA (Down Regulated in Adenoma) (SLC26A3) and PAT1 (Putative Anion Transporter 1) (SLC26A6), and the Na(+) /H(+) exchanger NHE3 (Sodium Hydrogen Exchanger3) (SLC9A3). PAT1 and NHE3 also co-localize on the apical membrane of kidney proximal tubule. Luminal fructose stimulated salt absorption in the jejunum and kidney tubules, responses that were significantly diminished in PAT1 null mice. These studies further demonstrated that Glut5 (SLC2A5) is the major fructose-absorbing transporter in the small intestine (and kidney proximal tubule) and plays an essential role in the systemic homeostasis of fructose. Increased dietary fructose intake for several weeks upregulated the expression of NHE3, PAT1 and Glut5 in the intestine and resulted in hypertension in wild-type mice, a response that was almost abolished in PAT1 null mice and abrogated in Glut5 null mice. This article will discuss the interaction of Glut5 with salt-absorbing transporters and review the role of dietary fructose in enhanced salt absorption in intestine and kidney as it relates to the pathogenesis of hypertension in metabolic syndrome.
Collapse
Affiliation(s)
- M Soleimani
- Center on Genetics of Transport and Epithelial Biology, Department of Medicine, University of Cincinnati, OH 45267-0585, USA.
| |
Collapse
|
37
|
Kuo P, Wishart JM, Bellon M, Smout AJ, Holloway RH, Fraser RJL, Horowitz M, Jones KL, Rayner CK. Effects of physiological hyperglycemia on duodenal motility and flow events, glucose absorption, and incretin secretion in healthy humans. J Clin Endocrinol Metab 2010; 95:3893-3900. [PMID: 20501683 DOI: 10.1210/jc.2009-2514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Acute hyperglycemia slows gastric emptying, but its effects on small intestinal motor activity and glucose absorption are unknown. In type 2 diabetes, the postprandial secretion of glucose-dependent insulinotropic polypeptide (GIP) is preserved, but that of glucagon-like peptide-1 (GLP-1) is possibly reduced; whether the latter is secondary to hyperglycemia or diabetes per se is unknown. AIM The aim was to investigate the effects of acute hyperglycemia on duodenal motility and flow events, glucose absorption, and incretin hormone secretion. METHODS Nine healthy volunteers were studied on two occasions. A combined manometry/impedance catheter was positioned in the duodenum. Blood glucose was clamped at either 9 mmol/liter (hyperglycemia) or 5 mmol/liter (euglycemia) throughout the study. Manometry and impedance recordings continued between T=-10 min and T=180 min. Between T=0 and 60 min, an intraduodenal glucose infusion was given (approximately 3 kcal/min), together with 14C-labeled 3-O-methylglucose (3-OMG) to evaluate glucose absorption. RESULTS Hyperglycemia had no effect on duodenal pressure waves or flow events during the 60 min of intraduodenal glucose infusion, when compared to euglycemia. During hyperglycemia, there was an increase in plasma GIP (P<0.05) and 14C-3-OMG (P<0.05) but no effect on GLP-1 concentrations in response to the intraduodenal infusion, compared to euglycemia. CONCLUSION Acute hyperglycemia in the physiological range has no effect on duodenal pressure waves and flow events but is associated with increased GIP secretion and rate of glucose absorption in response to intraduodenal glucose.
Collapse
Affiliation(s)
- Paul Kuo
- Discipline of Medicine, University of Adelaide, Level 6, Eleanor Harrald Building, Royal Adelaide Hospital, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shea-Donohue T, Urban JF, Notari L, Zhao A. Immune regulation of epithelial cell function: Implications for GI pathologies. Int Dairy J 2010. [DOI: 10.1016/j.idairyj.2009.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Drozdowski LA, Iordache C, Clandinin MT, Todd Z, Gonnet M, Wild G, Uwiera RR, Thomson AB. Maternal dexamethasone and GLP-2 have early effects on intestinal sugar transport in their suckling rat offspring. J Nutr Biochem 2009; 20:771-82. [DOI: 10.1016/j.jnutbio.2008.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 06/24/2008] [Accepted: 07/09/2008] [Indexed: 01/30/2023]
|
40
|
Long-term oral administration of cows' milk improves insulin sensitivity in rats fed a high-sucrose diet. Br J Nutr 2009; 102:1324-33. [PMID: 19566967 DOI: 10.1017/s0007114509990365] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We evaluated the effects of long-term daily cows' milk (CM) administration on insulin resistance induced by a high-sucrose diet. F344 rats, aged 3 weeks, were divided into two groups according to diet (dextrin-fed v. sucrose-fed). These groups were further divided into two groups receiving either CM or artificial milk (AM; isoenergetic emulsion of egg white protein, maltose, lard and minerals). Rats were fed a sucrose- or dextrin-based diet for 7 weeks and orally administered CM or AM at 25 ml/kg following an 8 h fast on a daily basis. Insulin sensitivity was evaluated via postprandial changes in serum glucose and insulin, oral glucose tolerance tests, and fasting serum insulin and fructosamine concentrations. The sucrose-fed rats showed an overall decrease in insulin sensitivity, but postprandial insulin levels were lower in the CM-treated subgroup than in the AM-treated subgroup. Peak serum glucose and insulin concentrations were highest in the sucrose-fed rats, but CM administration reduced peak glucose and insulin values in comparison with AM administration. By area under the curve analysis, insulin levels after feeding and glucose loads were significantly lower in the CM-treated groups than in the AM-treated groups. The CM-treated groups also demonstrated lower fasting insulin and fructosamine levels than the AM-treated groups. Improved insulin sensitivity due to CM administration seemed to be associated with reduced duodenal GLUT2 mRNA levels and increased propionate production within the caecum.
Collapse
|
41
|
Wong TP, Debnam ES, Leung PS. Diabetes mellitus and expression of the enterocyte renin-angiotensin system: implications for control of glucose transport across the brush border membrane. Am J Physiol Cell Physiol 2009; 297:C601-10. [PMID: 19535516 DOI: 10.1152/ajpcell.00135.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Streptozotocin-induced (Type 1) diabetes mellitus (T1DM) in rats promotes jejunal glucose transport, but the trigger for this response remains unclear. Our recent work using euglycemic rats has implicated the enterocyte renin-angiotensin system (RAS) in control of sodium-dependent glucose transporter (SGLT1)-mediated glucose uptake across the jejunal brush border membrane (BBM). The aim of the present study was to examine whether expression of enterocyte RAS components is influenced by T1DM. The effects of mucosal addition of angiotensin II (AII) on [(14)C]-D-glucose uptake by everted diabetic jejunum was also determined. Two-week diabetes caused a fivefold increase in blood glucose level and reduced mRNA and protein expression of AII type 1 (AT(1)) and AT(2) receptors and angiotensin-converting enzyme in isolated jejunal enterocytes. Angiotensinogen expression was, however, stimulated by diabetes while renin was not detected in either control or diabetic enterocytes. Diabetes stimulated glucose uptake into everted jejunum by 58% and increased the BBM expression of SGLT1 and facilitated glucose transporter 2 (GLUT2) proteins, determined by Western blotting by 25% and 135%, respectively. Immunohistochemistry confirmed an enhanced BBM expression of GLUT2 in diabetes and also showed that this was due to translocation of the transporter from the basolateral membrane to BBM. AII (5 microM) or L-162313 (1 microM), a nonpeptide AII analog, decreased glucose uptake by 18% and 24%, respectively, in diabetic jejunum. This inhibitory action was fully accountable by an action on SGLT1-mediated transport and was abolished by the AT(1) receptor antagonist losartan (1 microM). The decreased inhibitory action of AII on in vitro jejunal glucose uptake in diabetes compared with that noted previously in jejunum from normal animals is likely to be due to reduced RAS expression in diabetic enterocytes, together with a disproportionate increase in GLUT2, compared with SGLT1 expression at the BBM.
Collapse
Affiliation(s)
- Tung Po Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese Univ. of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | |
Collapse
|
42
|
Drozdowski LA, Clandinin MT, Thomson ABR. Morphological, kinetic, membrane biochemical and genetic aspects of intestinal enteroplasticity. World J Gastroenterol 2009; 15:774-87. [PMID: 19230039 PMCID: PMC2653378 DOI: 10.3748/wjg.15.774] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The process of intestinal adaptation (“enteroplasticity”) is complex and multifaceted. Although a number of trophic nutrients and non-nutritive factors have been identified in animal studies, successful, reproducible clinical trials in humans are awaited. Understanding mechanisms underlying this adaptive process may direct research toward strategies that maximize intestinal function and impart a true clinical benefit to patients with short bowel syndrome, or to persons in whom nutrient absorption needs to be maximized. In this review, we consider the morphological, kinetic and membrane biochemical aspects of enteroplasticity, focus on the importance of nutritional factors, provide an overview of the many hormones that may alter the adaptive process, and consider some of the possible molecular profiles. While most of the data is derived from rodent studies, wherever possible, the results of human studies of intestinal enteroplasticity are provided.
Collapse
|
43
|
Mattes RD, Popkin BM. Nonnutritive sweetener consumption in humans: effects on appetite and food intake and their putative mechanisms. Am J Clin Nutr 2009; 89:1-14. [PMID: 19056571 PMCID: PMC2650084 DOI: 10.3945/ajcn.2008.26792] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 10/22/2008] [Indexed: 12/30/2022] Open
Abstract
Nonnutritive sweeteners (NNS) are ecologically novel chemosensory signaling compounds that influence ingestive processes and behavior. Only about 15% of the US population aged >2 y ingest NNS, but the incidence is increasing. These sweeteners have the potential to moderate sugar and energy intakes while maintaining diet palatability, but their use has increased in concert with BMI in the population. This association may be coincidental or causal, and either mode of directionality is plausible. A critical review of the literature suggests that the addition of NNS to non-energy-yielding products may heighten appetite, but this is not observed under the more common condition in which NNS is ingested in conjunction with other energy sources. Substitution of NNS for a nutritive sweetener generally elicits incomplete energy compensation, but evidence of long-term efficacy for weight management is not available. The addition of NNS to diets poses no benefit for weight loss or reduced weight gain without energy restriction. There are long-standing and recent concerns that inclusion of NNS in the diet promotes energy intake and contributes to obesity. Most of the purported mechanisms by which this occurs are not supported by the available evidence, although some warrant further consideration. Resolution of this important issue will require long-term randomized controlled trials.
Collapse
Affiliation(s)
- Richard D Mattes
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
44
|
Kwon S, Kim YJ, Kim MK. Effect of fructose or sucrose feeding with different levels on oral glucose tolerance test in normal and type 2 diabetic rats. Nutr Res Pract 2008; 2:252-8. [PMID: 20016727 PMCID: PMC2788191 DOI: 10.4162/nrp.2008.2.4.252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 11/24/2008] [Accepted: 12/08/2008] [Indexed: 01/09/2023] Open
Abstract
This study was designed to determine whether acute fructose or sucrose administration at different levels (0.05 g/kg, 0.1 g/kg or 0.4 g/kg body weight) might affect oral glucose tolerance test (OGTT) in normal and type 2 diabetic rats. In OGTT, there were no significant differences in glucose responses between acute fructose- and sucrose-administered groups. However, in normal rats, the AUCs of the blood glucose response for the fructose-administered groups tended to be lower than those of the control and sucrose-administered groups. The AUCs of the lower levels fructoseor sucrose-administered groups tended to be smaller than those of higher levels fructose- or sucrose-administered groups. In type 2 diabetic rats, only the AUC of the lowest level of fructose-administered (0.05 g/kg body weight) group was slightly smaller than that of the control group. The AUCs of fructose-administered groups tended to be smaller than those of the sucrose-administered groups, and the AUCs of lower levels fructose-administered groups tended to be smaller than those fed higher levels of fructose. We concluded from this experiment that fructose has tendency to be more effective in blood glucose regulation than sucrose, and moreover, that smaller amount of fructose is preferred to larger amount. Specifically, our experiments indicated that the fructose level of 0.05 g/kg body weight as dietary supplement was the most effective amount for blood glucose regulation from the pool of 0.05 g/kg, 0.1 g/kg and 0.4 g/kg body weights. Therefore, our results suggest the use of fructose as the substitute sweetener for sucrose, which may be beneficial for blood glucose regulation.
Collapse
Affiliation(s)
- Sanghee Kwon
- Department of Food and Nutritional Sciences, Ewha Womans University, 11-1 Daehyung-dong, Seodaemun-gu, Seoul 120-750, Korea
| | | | | |
Collapse
|
45
|
Barone S, Fussell SL, Singh AK, Lucas F, Xu J, Kim C, Wu X, Yu Y, Amlal H, Seidler U, Zuo J, Soleimani M. Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J Biol Chem 2008; 284:5056-66. [PMID: 19091748 DOI: 10.1074/jbc.m808128200] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The identity of the transporter responsible for fructose absorption in the intestine in vivo and its potential role in fructose-induced hypertension remain speculative. Here we demonstrate that Glut5 (Slc2a5) deletion reduced fructose absorption by approximately 75% in the jejunum and decreased the concentration of serum fructose by approximately 90% relative to wild-type mice on increased dietary fructose. When fed a control (60% starch) diet, Glut5(-/-) mice had normal blood pressure and displayed normal weight gain. However, whereas Glut5(+/+) mice showed enhanced salt absorption in their jejuna in response to luminal fructose and developed systemic hypertension when fed a high fructose (60% fructose) diet for 14 weeks, Glut5(-/-) mice did not display fructose-stimulated salt absorption in their jejuna, and they experienced a significant impairment of nutrient absorption in their intestine with accompanying hypotension as early as 3-5 days after the start of a high fructose diet. Examination of the intestinal tract of Glut5(-/-) mice fed a high fructose diet revealed massive dilatation of the caecum and colon, consistent with severe malabsorption, along with a unique adaptive up-regulation of ion transporters. In contrast to the malabsorption of fructose, Glut5(-/-) mice did not exhibit an absorption defect when fed a high glucose (60% glucose) diet. We conclude that Glut5 is essential for the absorption of fructose in the intestine and plays a fundamental role in the generation of fructose-induced hypertension. Deletion of Glut5 results in a serious nutrient-absorptive defect and volume depletion only when the animals are fed a high fructose diet and is associated with compensatory adaptive up-regulation of ion-absorbing transporters in the colon.
Collapse
Affiliation(s)
- Sharon Barone
- Center on Genetics of Transport and Epithelial Biology and the Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mace OJ, Lister N, Morgan E, Shepherd E, Affleck J, Helliwell P, Bronk JR, Kellett GL, Meredith D, Boyd R, Pieri M, Bailey PD, Pettcrew R, Foley D. An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J Physiol 2008; 587:195-210. [PMID: 19001049 DOI: 10.1113/jphysiol.2008.159616] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
T1R taste receptors are present throughout the gastrointestinal tract. Glucose absorption comprises active absorption via SGLT1 and facilitated absorption via GLUT2 in the apical membrane. Trafficking of apical GLUT2 is rapidly up-regulated by glucose and artificial sweeteners, which act through T1R2 + T1R3/alpha-gustducin to activate PLC beta2 and PKC betaII. We therefore investigated whether non-sugar nutrients are regulated by taste receptors using perfused rat jejunum in vivo. Under different conditions, we observed a Ca(2+)-dependent reciprocal relationship between the H(+)/oligopeptide transporter PepT1 and apical GLUT2, reflecting the fact that trafficking of PepT1 and GLUT2 to the apical membrane is inhibited and activated by PKC betaII, respectively. Addition of L-glutamate or sucralose to a perfusate containing low glucose (20 mM) each activated PKC betaII and decreased apical PepT1 levels and absorption of the hydrolysis-resistant dipeptide L-Phe(PsiS)-L-Ala (1 mM), while increasing apical GLUT2 and glucose absorption within minutes. Switching perfusion from mannitol to glucose (75 mM) exerted similar effects. c-glutamate induced rapid GPCR internalization of T1R1, T1R3 and transducin, whereas sucralose internalized T1R2, T1R3 and alpha-gustducin. We conclude that L-glutamate acts via amino acid and glucose via sweet taste receptors to coordinate regulation of PepT1 and apical GLUT2 reciprocally through a common enterocytic pool of PKC betaII. These data suggest the existence of a wider Ca(2+) and taste receptor-coordinated transport network incorporating other nutrients and/or other stimuli capable of activating PKC betaII and additional transporters, such as the aspartate/glutamate transporter, EAAC1, whose level was doubled by L-glutamate. The network may control energy supply.
Collapse
Affiliation(s)
- Oliver J Mace
- Department of Biology (Area 3), The University of York, Heslington, York YO10 5YW, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kellett GL, Brot-Laroche E, Mace OJ, Leturque A. Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr 2008; 28:35-54. [PMID: 18393659 DOI: 10.1146/annurev.nutr.28.061807.155518] [Citation(s) in RCA: 330] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intestinal glucose absorption comprises two components. One is classical active absorption mediated by the Na+/glucose cotransporter. The other is a diffusive component, formerly attributed to paracellular flow. Recent evidence, however, indicates that the diffusive component is mediated by the transient insertion of glucose transporter type 2 (GLUT2) into the apical membrane. This apical GLUT2 pathway of intestinal sugar absorption is present in species from insect to human, providing a major route at high sugar concentrations. The pathway is regulated by rapid trafficking of GLUT2 to the apical membrane induced by glucose during assimilation of a meal. Apical GLUT2 is therefore a target for multiple short-term and long-term nutrient-sensing mechanisms. These include regulation by a newly recognized pathway of calcium absorption through the nonclassical neuroendocrine l-type channel Cav1.3 operating during digestion, activation of intestinal sweet taste receptors by natural sugars and artificial sweeteners, paracrine and endocrine hormones, especially insulin and GLP-2, and stress. Permanent apical GLUT2, resulting in increased sugar absorption, is a characteristic of experimental diabetes and of insulin-resistant states induced by fructose and fat. The nutritional consequences of apical and basolateral GLUT2 regulation are discussed in the context of Western diet, processed foods containing artificial sweeteners, obesity, and diabetes.
Collapse
Affiliation(s)
- George L Kellett
- Department of Biology (Area 3), The University of York, York YO10 5YW, United Kingdom.
| | | | | | | |
Collapse
|
48
|
Douard V, Ferraris RP. Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab 2008; 295:E227-37. [PMID: 18398011 PMCID: PMC2652499 DOI: 10.1152/ajpendo.90245.2008] [Citation(s) in RCA: 325] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/27/2008] [Indexed: 12/11/2022]
Abstract
Fructose is now such an important component of human diets that increasing attention is being focused on the fructose transporter GLUT5. In this review, we describe the regulation of GLUT5 not only in the intestine and testis, where it was first discovered, but also in the kidney, skeletal muscle, fat tissue, and brain where increasing numbers of cell types have been found to have GLUT5. GLUT5 expression levels and fructose uptake rates are also significantly affected by diabetes, hypertension, obesity, and inflammation and seem to be induced during carcinogenesis, particularly in the mammary glands. We end by highlighting research areas that should yield information needed to better understand the role of GLUT5 during normal development, metabolic disturbances, and cancer.
Collapse
Affiliation(s)
- Veronique Douard
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101, USA
| | | |
Collapse
|
49
|
Tobin V, Le Gall M, Fioramonti X, Stolarczyk E, Blazquez AG, Klein C, Prigent M, Serradas P, Cuif MH, Magnan C, Leturque A, Brot-Laroche E. Insulin internalizes GLUT2 in the enterocytes of healthy but not insulin-resistant mice. Diabetes 2008; 57:555-62. [PMID: 18057092 DOI: 10.2337/db07-0928] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES A physiological adaptation to a sugar-rich meal is achieved by increased sugar uptake to match dietary load, resulting from a rapid transient translocation of the fructose/glucose GLUT2 transporter to the brush border membrane (BBM) of enterocytes. The aim of this study was to define the contributors and physiological mechanisms controlling intestinal sugar absorption, focusing on the action of insulin and the contribution of GLUT2-mediated transport. RESEARCH DESIGN AND METHODS The studies were performed in the human enterocytic colon carcinoma TC7 subclone (Caco-2/TC7) cells and in vivo during hyperinsulinemic-euglycemic clamp experiments in conscious mice. Chronic high-fructose or high-fat diets were used to induce glucose intolerance and insulin resistance in mice. RESULTS AND CONCLUSIONS In Caco-2/TC7 cells, insulin action diminished the transepithelial transfer of sugar and reduced BBM and basolateral membrane (BLM) GLUT2 levels, demonstrating that insulin can target sugar absorption by controlling the membrane localization of GLUT2 in enterocytes. Similarly, in hyperinsulinemic-euglycemic clamp experiments in sensitive mice, insulin abolished GLUT2 (i.e., the cytochalasin B-sensitive component of fructose absorption), decreased BBM GLUT2, and concomitantly increased intracellular GLUT2. Acute insulin treatment before sugar intake prevented the insertion of GLUT2 into the BBM. Insulin resistance in mice provoked a loss of GLUT2 trafficking, and GLUT2 levels remained permanently high in the BBM and low in the BLM. We propose that, in addition to its peripheral effects, insulin inhibits intestinal sugar absorption to prevent excessive blood glucose excursion after a sugar meal. This protective mechanism is lost in the insulin-resistant state induced by high-fat or high-fructose feeding.
Collapse
Affiliation(s)
- Vanessa Tobin
- Université Pierre et Marie Curie-Paris 6, Unité Mixte de Recherche S 872, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Drozdowski LA, Iordache C, Clandinin MT, Todd ZS, Gonnet M, Wild G, Uwiera RR, Thomson AB. Dexamethasone and GLP-2 administered to rat dams during pregnancy and lactation have late effects on intestinal sugar transport in their postweanling offspring. J Nutr Biochem 2008; 19:49-60. [DOI: 10.1016/j.jnutbio.2007.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 01/11/2007] [Accepted: 01/11/2007] [Indexed: 01/31/2023]
|