1
|
Taheri R, Mokhtari Y, Yousefi AM, Bashash D. The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): From mechanistic insights into possible therapeutic targets. Cell Biol Int 2024; 48:1049-1068. [PMID: 38812089 DOI: 10.1002/cbin.12189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/03/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is an immensely debilitating chronic disease that progressively undermines the well-being of various bodily organs and, indeed, most patients succumb to the disease due to post-T2DM complications. Although there is evidence supporting the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway by insulin, which is essential in regulating glucose metabolism and insulin resistance, the significance of this pathway in T2DM has only been explored in a few studies. The current review aims to unravel the mechanisms by which different classes of PI3Ks control the metabolism of glucose; and also to discuss the original data obtained from international research laboratories on this topic. We also summarized the role of the PI3K/Akt signaling axis in target tissues spanning from the skeletal muscle to the adipose tissue and liver. Furthermore, inquiries regarding the impact of disrupting this axis on insulin function and the development of insulin resistance have been addressed. We also provide a general overview of the association of impaired PI3K/Akt signaling pathways in the pathogenesis of the most prevalent diabetes-related complications. The last section provides a special focus on the therapeutic potential of this axis by outlining the latest advances in active compounds that alleviate diabetes via modulation of the PI3K/Akt pathway. Finally, we comment on the future research aspects in which the field of T2DM therapies using PI3K modulators might be developed.
Collapse
Affiliation(s)
- Rana Taheri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Mokhtari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Vo N, Zhang Q, Sung HK. From fasting to fat reshaping: exploring the molecular pathways of intermittent fasting-induced adipose tissue remodeling. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13062. [PMID: 39104461 PMCID: PMC11298356 DOI: 10.3389/jpps.2024.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
Obesity, characterised by excessive fat accumulation, is a complex chronic condition that results from dysfunctional adipose tissue expansion due to prolonged calorie surplus. This leads to rapid adipocyte enlargement that exceeds the support capacity of the surrounding neurovascular network, resulting in increased hypoxia, inflammation, and insulin resistance. Intermittent fasting (IF), a dietary regimen that cycles between periods of fasting and eating, has emerged as an effective strategy to combat obesity and improve metabolic homeostasis by promoting healthy adipose tissue remodeling. However, the precise molecular and cellular mechanisms behind the metabolic improvements and remodeling of white adipose tissue (WAT) driven by IF remain elusive. This review aims to summarise and discuss the relationship between IF and adipose tissue remodeling and explore the potential mechanisms through which IF induces alterations in WAT. This includes several key structural changes, including angiogenesis and sympathetic innervation of WAT. We will also discuss the involvement of key signalling pathways, such as PI3K, SIRT, mTOR, and AMPK, which potentially play a crucial role in IF-mediated metabolic adaptations.
Collapse
Affiliation(s)
- Nathaniel Vo
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Qiwei Zhang
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Wang Q, Wang B, Zhang W, Zhang T, Liu Q, Jiao X, Ye J, Hao Y, Gao Q, Ma G, Hao C, Cui B. APLN promotes the proliferation, migration, and glycolysis of cervical cancer through the PI3K/AKT/mTOR pathway. Arch Biochem Biophys 2024; 755:109983. [PMID: 38561035 DOI: 10.1016/j.abb.2024.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/01/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Apelin (APLN) is an endogenous ligand of the G protein-coupled receptor APJ (APLNR). APLN has been implicated in the development of multiple tumours. Herein, we determined the effect of APLN on the biological behaviour and underlying mechanisms of cervical cancer. The expression and survival curves of APLN were determined using Gene Expression Profiling Interactive Analysis. The cellular functions of APLN were detected using CCK-8, clone formation, EdU, Transwell assays, flow cytometry, and seahorse metabolic analysis. The underlying mechanisms were elucidated using gene set enrichment analysis and Western blotting. APLN was upregulated in the samples of patients with cervical cancer and is associated with poor prognosis. APLN knockdown decreased the proliferation, migration, and glycolysis of cervical cancer cells. The opposite results were observed when APLN was overexpressed. Mechanistically, we determined that APLN was critical for activating the PI3K/AKT/mTOR pathway via APLNR. APLN receptor inhibitor ML221 reversed the effect of APLN overexpression on cervical cancer cells. Treatment with LY294002, the PI3K inhibitor, drastically reversed the oncological behaviour of APLN-overexpressing C-33A cells. APLN promoted the proliferation, migration, and glycolysis of cervical cancer cells via the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Qi Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China
| | - Bingyu Wang
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Teng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Qingqing Liu
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xinlin Jiao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jinwen Ye
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yiping Hao
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Qun Gao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Guangzhen Ma
- Department of Pathology, The Second People's Hospital of Liaocheng, Liaocheng, 252600, Shandong, China
| | - Chunyan Hao
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, PR China.
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Phạm TTT, Murza A, Marsault É, Frampton JP, Rainey JK. Localized apelin-17 analogue-bicelle interactions as a facilitator of membrane-catalyzed receptor recognition and binding. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184289. [PMID: 38278504 DOI: 10.1016/j.bbamem.2024.184289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
The apelinergic system encompasses two peptide ligand families, apelin and apela, along with the apelin receptor (AR or APJ), a class A G-protein-coupled receptor. This system has diverse physiological effects, including modulating heart contraction, vasodilation/constriction, glucose regulation, and vascular development, with involvement in a variety of pathological conditions. Apelin peptides have been previously shown to interact with and become structured upon binding to anionic micelles, consistent with a membrane-catalyzed mechanism of ligand-receptor binding. To overcome the challenges of observing nuclear magnetic resonance (NMR) spectroscopy signals of a dilute peptide in biological environments, 19F NMR spectroscopy, including diffusion ordered spectroscopy (DOSY) and saturation transfer difference (STD) experiments, was used herein to explore the membrane-interactive behaviour of apelin. NMR-optimized apelin-17 analogues with 4-trifluoromethyl-phenylalanine at various positions were designed and tested for bioactivity through ERK activation in stably-AR transfected HEK 293 T cells. Far-UV circular dichroism (CD) spectropolarimetry and 19F NMR spectroscopy were used to compare the membrane interactions of these analogues with unlabelled apelin-17 in both zwitterionic/neutral and net-negative bicelle conditions. Each analogue binds to bicelles with relatively weak affinity (i.e., in fast exchange on the NMR timescale), with preferential interactions observed at the cationic residue-rich N-terminal and mid-length regions of the peptide leaving the C-terminal end unencumbered for receptor recognition, enabling a membrane-anchored fly-casting mechanism of peptide search for the receptor. In all, this study provides further insight into the membrane-interactive behaviour of an important bioactive peptide, demonstrating interactions and biophysical behaviour that cannot be neglected in therapeutic design.
Collapse
Affiliation(s)
- Trần Thanh Tâm Phạm
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Alexandre Murza
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Éric Marsault
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - John P Frampton
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
5
|
Mehri K, Hamidian G, Zavvari Oskuye Z, Nayebirad S, Farajdokht F. The role of apelinergic system in metabolism and reproductive system in normal and pathological conditions: an overview. Front Endocrinol (Lausanne) 2023; 14:1193150. [PMID: 37424869 PMCID: PMC10324965 DOI: 10.3389/fendo.2023.1193150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Lifestyle changes have made metabolic disorders as one of the major threats to life. Growing evidence demonstrates that obesity and diabetes disrupt the reproductive system by affecting the gonads and the hypothalamus-pituitary-gonadal (HPG) axis. Apelin, an adipocytokine, and its receptor (APJ) are broadly expressed in the hypothalamus nuclei, such as paraventricular and supraoptic, where gonadotropin-releasing hormone (GnRH) is released, and all three lobes of the pituitary, indicating that apelin is involved in the control of reproductive function. Moreover, apelin affects food intake, insulin sensitivity, fluid homeostasis, and glucose and lipid metabolisms. This review outlined the physiological effects of the apelinergic system, the relationship between apelin and metabolic disorders such as diabetes and obesity, as well as the effect of apelin on the reproductive system in both gender. The apelin-APJ system can be considered a potential therapeutic target in the management of obesity-associated metabolic dysfunction and reproductive disorders.
Collapse
Affiliation(s)
- Keyvan Mehri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | | - Sepehr Nayebirad
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Chauhan S, Singh AP, Rana AC, Kumar S, Kumar R, Singh J, Jangra A, Kumar D. Natural activators of AMPK signaling: potential role in the management of type-2 diabetes. J Diabetes Metab Disord 2023; 22:47-59. [PMID: 37255783 PMCID: PMC10225395 DOI: 10.1007/s40200-022-01155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/30/2022] [Indexed: 06/01/2023]
Abstract
Adenosine 5'-monophosphate-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase involved in the homeostasis of cellular energy. AMPK has developed as an appealing clinical target for the diagnosis of multiple metabolic diseases such as diabetes mellitus, obesity, inflammation, and cancer. Genetic and pharmacological studies indicate that AMPK is needed in response to glucose deficiency, dietary restriction, and increased physical activity for preserving glucose homeostasis. After activation, AMPK influences metabolic mechanisms contributing to enhanced ATP production, thus growing processes that absorb ATP simultaneously. In this review, several natural products have been discussed which enhance the sensitivity of AMPK and alleviate sub complications or different pathways by which such AMPK triggers can be addressed. AMPK Natural products as potential AMPK activators can be developed as alternate pharmacological intervention to reverse metabolic disorders including type 2 diabetes.
Collapse
Affiliation(s)
- Sanyogita Chauhan
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Aakash Partap Singh
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Avtar Chand Rana
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Sunil Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Haryana 122502 Rewari, India
| | - Ravi Kumar
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh, 123031 Haryana India
| | - Jitender Singh
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, P.O. Mianpur, Ropar, 140108 Punjab India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| | - Dinesh Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| |
Collapse
|
7
|
An C, Pipia I, Ruiz AS, Argüelles I, An M, Wase S, Peng G. The molecular link between obesity and genomic instability in cancer development. Cancer Lett 2023; 555:216035. [PMID: 36502927 DOI: 10.1016/j.canlet.2022.216035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Obesity has been known to be a major risk factor for various types of cancers for several decades. More recently, the relationship between dysregulated adipokines and cancer development has been the focus of much research. Adipose tissue is an important endocrine organ that secretes adipokines that affect both autocrine and paracrine signaling. These adipokines modulate inflammation, induce insulin resistance, and regulate their own behavior and production. Adipokine-production dysregulation is due to physiological changes in adipose tissue that prompt molecular modifications, including low-grade inflammation and the stimulatory production of reactive oxygen species. Additionally, studies have linked DNA damage response, genomic instability, and the innate immune response to tumorigenesis. Further investigation of adipokines and their role in the promotion of genomic instability may clarify the link between obesity and cancer, as well as elucidate potential pharmaceutical targets. In this review, we discuss the progress of recent literature, focusing on the impact of adipokines, genomic instability, and the innate immune response on increasing the risk of cancer.
Collapse
Affiliation(s)
- Clemens An
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Robert Larner, M.D. College of Medicine at The University of Vermont, Burlington, VT, USA.
| | - Ilissa Pipia
- Department of Biological Sciences, Cornell University, Ithaca, NY, USA
| | - Ana-Sofia Ruiz
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ivonne Argüelles
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martino An
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saima Wase
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Otolaryngology - Head & Neck Surgery, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreas-Liver-Adipose Axis: Target of Environmental Cadmium Exposure Linked to Metabolic Diseases. TOXICS 2023; 11:223. [PMID: 36976988 PMCID: PMC10059892 DOI: 10.3390/toxics11030223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation. However, in the last few years, this metal has been linked to metabolic diseases. The pancreas-liver-adipose axis is largely affected by cadmium accumulation. Therefore, this review aims to collect bibliographic information that establishes the basis for understanding the molecular and cellular mechanisms linked to cadmium with carbohydrate, lipids, and endocrine impairments that contribute to developing insulin resistance, metabolic syndrome, prediabetes, and diabetes.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, Puebla 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| |
Collapse
|
9
|
Li B, Li W, Liu T, Zha L. Extracellular vesicles regulate the transmission of insulin resistance and redefine noncommunicable diseases. Front Mol Biosci 2023; 9:1024786. [PMID: 36699697 PMCID: PMC9868246 DOI: 10.3389/fmolb.2022.1024786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Noncommunicable diseases (NCDs), such as diabetes and related neurological disorders, are considered to not be directly transmissible from one person to another. However, NCDs may be transmissible in vivo through extracellular vesicles (EVs). A long-term high-fat diet (HFD) can induce a series of health issues like hyperlipidemia, type 2 diabetes mellitus (T2DM), and diabetic peripheral neuropathy (DPN) due to insulin resistance. Multiple molecular signaling changes can stimulate insulin resistance, especially blocking insulin signaling by increased insulin resistance inducer (phosphorylation of negative regulatory sites of insulin receptor substrate (IRS) proteins) and decreased tyrosine phosphorylation of insulin receptor substrate (phosphorylation of positive regulatory sites of IRS), thus leading to reduced phosphorylation of AKT enzymes. Current efforts to treat T2DM and prevent its complications mainly focus on improving insulin sensitivity, enhancing insulin secretion, or supplementing exogenous insulin based on a common assumption that insulin resistance is noncommunicable. However, insulin resistance is transmissible within multiple tissues or organs throughout the body. Exploring the regulatory roles of EVs in developing insulin resistance may provide novel and effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Biao Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration Key Laboratory of Cosmetic Safety Evaluation, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wan Li
- School of Physical Education, Hubei Minzu University, Enshi, China
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration Key Laboratory of Cosmetic Safety Evaluation, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Olive Leaves Extract and Oleuropein Improve Insulin Sensitivity in 3T3-L1 Cells and in High-Fat Diet-Treated Rats via PI3K/AkT Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6828230. [PMID: 36647430 PMCID: PMC9840553 DOI: 10.1155/2023/6828230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Olive leaves extracts are known to exert potential pharmacological activities especially, antidiabetic and antiobesity. This study explores the anti-insulin resistant effect of olive leaves extracts and oleuropein in 3 T3-L1 cells and in high-fat diet fed rats. Our results showed that ethanol extract (EE) suppressed significantly (P < 0.01) triacylglycerol accumulation. In preadipocytes cells, EE 1/100 decreased cell viability and induced apoptosis. Real-time PCR analysis showed that EE reduced the mRNA levels of adipogenesis (CEBP-α, PPARγ, SREBP-1c, and FAS) and proinflammatory (TNF-α and IL-6) genes. Moreover, the cotreatment of EE 1/1000 or oleuropein with insulin increased considerably the expression of p-IRS, p85-pI3K, and p-AKT. In vivo model, the oral administration of oleuropein at 50 mg/kg in rats fed with high fat diet for 8 weeks reduced inflammation in liver and adipose tissues (WAT), improved glucose intolerance, and decreased hyperinsulinemia. Furthermore, the immunohistochemistry revealed that the expression level of p-Akt, IRS1, and Glut-4 were significantly enhanced in liver and WAT tissues after oleuropein supplementation comparing with that in HFD group. Additionally, the expression of IRS1 was markedly ameliorated in pancreas. Our obtained results can be adopted as an approach to used olive leaves as complement to prevent insulin-resistance disease.
Collapse
|
11
|
Construction and functional enrichment analysis of the competitive endogenous RNA regulatory network for nonarteritic anterior ischemic optic neuropathy based on high-throughput sequencing. Funct Integr Genomics 2022; 22:1253-1267. [DOI: 10.1007/s10142-022-00914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
12
|
Fuentes-Carrasco M, Ruíz-Román R, Savirón-Cornudella R, Pérez-Roncero G, López-Baena MT, Pérez-López FR. Systematic review and meta-analysis regarding maternal apelin in pregnant women with and without preeclampsia. Gynecol Endocrinol 2022; 38:918-927. [PMID: 36097365 DOI: 10.1080/09513590.2022.2122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aims: To investigate maternal circulating apelin levels in pregnancies with and without preeclampsia.Design and Method: Systematic review and meta-analysis of observational studies reporting circulating apelin in women who develop preeclampsia. We searched databases for appropriate studies published through December 2021, without language restriction. The quality of studies was evaluated using the Newcastle-Ottawa-Scale. Data were pooled as mean difference (MDs) or standardized MDs (SMDs) and 95% confidence interval (95% CI). A random-effects model enabled reporting of differences between groups, minimizing the effects of uncertainty associated with inter-study variability on the effects of different endpoints.Results: We identified a total of 122 studies, and ten of them reported circulating apelin in women with and without preeclampsia. Maternal apelin did not show a difference in preeclamptic compared to normotensive women (SMD: -0.38, 95%CI -0.91 to 0.15), although there was high heterogeneity between the included studies (I2 = 95%). Participants with preeclampsia had higher body mass index, lower gestational age at delivery, and birth weight. Preeclamptic pregnant women with higher BMI showed significantly lower apelin levels in the subgroup analysis. There was no significant apelin difference in the preeclampsia severity sub-analysis.Conclusion: There was no significant difference in apelin levels in pregnant women with and without preeclampsia.
Collapse
Affiliation(s)
- Marta Fuentes-Carrasco
- Department of Obstetrics and Gynecology, Facultad de Medicina, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Rebeca Ruíz-Román
- Department of Obstetrics and Gynecology, Facultad de Medicina, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ricardo Savirón-Cornudella
- Department of Obstetrics and Gynecology, Facultad de Medicina, Hospital Clínico San Carlos, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | | | | | - Faustino R Pérez-López
- Aragón Health Research Institute, Zaragoza, Spain
- Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
13
|
Sarmiento-Ortega VE, Moroni-González D, Díaz A, Eduardo B, Samuel T. Oral Subacute Exposure to Cadmium LOAEL Dose Induces Insulin Resistance and Impairment of the Hormonal and Metabolic Liver-Adipose Axis in Wistar Rats. Biol Trace Elem Res 2022; 200:4370-4384. [PMID: 34846673 DOI: 10.1007/s12011-021-03027-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Cadmium is a nonessential transition metal considered one of the more hazardous environmental contaminants. The population is chronically exposed to this metal at low concentrations, designated as the LOAEL (lowest observable adverse effect level) dose. We aimed to investigate whether oral subacute exposure to cadmium LOAEL disrupts hormonal and metabolic effects of the liver-adipose axis in Wistar rats. Fifty male Wistar rats were separated into two groups: control (standard normocalorie diet + water free of cadmium) and cadmium (standard normocalorie diet + drinking water with 32.5 ppm CdCl2). After 1 month, zoometry, a serum lipid panel, adipokines, and proinflammatory cytokines were evaluated. Tests of glucose and insulin tolerance (ITT) and insulin resistance were performed. Histological studies on structure, triglyceride distribution, and protein expression of the insulin pathway were performed in the liver and retroperitoneal adipose tissue. In both tissues, the cadmium, triglyceride, glycogen, and proinflammatory cytokine contents were also quantified. The cadmium group developed dyslipidemia, glucose intolerance, hyperinsulinemia, hyperleptinemia, inflammation, and selective insulin resistance in the liver and adipose tissue. In the liver, glycogen synthesis was diminished, while de novo lipogenesis increased, which was associated with low GSK3β-pS9 and strong expression of SREBP-1c. Dysfunctional adipose tissue was observed with hypertrophy and lipolysis, without changes in SREBP-1c expression and low glycogen synthesis. Both tissues accumulated cadmium and developed inflammation. In conclusion, oral subacute cadmium LOAEL dose exposure induces inflammation, insulin signaling modifications, an early insulin resistance stage (insensibility), and impairment of the hormonal and metabolic liver-adipose axis in Wistar rats.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Alfonso Díaz
- Department of Pharmacy, Faculty of Chemistry Science, Autonomous University of Puebla, 22 South, FC91, University City, C.P. 72560, Puebla, Mexico
| | - Brambila Eduardo
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Treviño Samuel
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico.
| |
Collapse
|
14
|
Alizadeh Pahlavani H. Possible roles of exercise and apelin against pregnancy complications. Front Endocrinol (Lausanne) 2022; 13:965167. [PMID: 36093083 PMCID: PMC9452694 DOI: 10.3389/fendo.2022.965167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
The prevalence of maternal obesity during pregnancy is associated with the risk of gestational diabetes, preeclampsia, and cardiomyopathy. Environmental factors such as active lifestyles and apelin may lead to beneficial changes. In rats, apelin and exercise (45 to 65% VO2max for 6 to 9 weeks) during pregnancy increase brown adipose tissue (BAT) proteins such as Cidea, Elovl3, UCP1, PRDM16, and PGC-1α in males and females fetuses, while white adipose tissue (WAT) is reduced. In humans and animals, apelin and exercise stimulate the expression of the glucose transporters (GLUT1/2/4) in the muscle and adipose tissue through the PI3K/Akt and AMPK pathways. Hence, exercise and apelin may are known as regulators of energy metabolism and be anti-obesity and anti-diabetic properties. In mice, exercise also creates a short-term hypoxic environment in the pregnant mother, activating HIF-1, VEGF, and VEGFR, and increasing angiogenesis. Exercise and apelin also increase vasodilation, angiogenesis, and suppression of inflammation through the L-arginine/eNOS/NO pathway in humans. Exercise can stimulate the ACE2-Ang-(1-7)-Mas axis in parallel with inhibiting the ACE-Ang II-AT1 pathway. Exercise and apelin seem to prevent preeclampsia through these processes. In rats, moderate-intensity exercise (60 to 70% VO2max for 8 weeks) and apelin/APJ also may prevent pathological hypertrophy in pregnancy by activating the PI3K/Akt/mTOR/p70S6K pathway, PI3k-Akt-ERK1/2-p70S6K pathway, and the anti-inflammatory cytokine IL-10. Since pre-clinical studies have been more on animal models, future research with scientific guidelines should pay more attention to human specimens. In future research, time factors such as the first, second, and third trimesters of pregnancy and the intensity and duration of exercise are important variables that should be considered to determine the optimal intensity and duration of exercise.
Collapse
|
15
|
Çalişkan P, Çağlar TR, Seyit H, Çağlar HG, Vural M, Kural A. Effect of Laparoscopic Sleeve Gastrectomy on Serum Levels of Resistin, Visfatin, and Apelin. Bariatr Surg Pract Patient Care 2022. [DOI: 10.1089/bari.2021.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pınar Çalişkan
- Department of Medical Biochemistry, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Tuba Rana Çağlar
- Department of Medical Biochemistry, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Hakan Seyit
- Department of General Surgery, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Hifa Gülru Çağlar
- Department of Medical Biochemistry, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Meltem Vural
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Alev Kural
- Department of Medical Biochemistry, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
16
|
Sinha K, Kumar S, Rawat B, Singh R, Purohit R, Kumar D, Padwad Y. Kutkin, iridoid glycosides enriched fraction of Picrorrhiza kurroa promotes insulin sensitivity and enhances glucose uptake by activating PI3K/Akt signaling in 3T3-L1 adipocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154204. [PMID: 35671635 DOI: 10.1016/j.phymed.2022.154204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Therapeutic failure and drug resistance are common sequelae to insulin resistance associated with type 2 diabetes mellitus (T2DM). Consequently, there is an unmet need of alternative strategies to overcome insulin resistance associated complications. PURPOSE To demonstrate whether Kutkin (KT), iridoid glycoside enriched fraction of Picrorhiza kurroa extract (PKE) has potential to increase the insulin sensitivity vis à vis glucose uptake in differentiated adipocytes. METHODS Molecular interaction of KT phytoconstituents, picroside-I (P-I) & picroside- II (P-II) with peroxisome proliferator-activated receptor gamma (PPARγ), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) were analyzed in silico. Cellular viability and adipogenesis were determined by following 3-(4, 5-Dimethylthiazol-2-Yl)-2, 5-Diphenyltetrazolium bromide (MTT) assay and Oil Red-O staining. Further, ELISA kit based triglycerides and diacylglycerol-O-Acyltransferase-1 (DGAT1) were assessed in differentiated adipocytes. ELISA based determination were performed to check the levels of adiponectin and tumor necrosis factor alpha (TNF-α). However, Flow cytometry and immunofluorescence based assays were employed to measure the glucose uptake and glucose transporter 4 (glut4) expression in differentiated adipocytes, respectively. Further to explore the targeted signaling axis, mRNA expression levels of PPARγ, CCAAT/enhancer binding protein α (CEBPα), and glut4 were determined using qRT-PCR and insulin receptor substrate-1 (IRS-1), Insulin receptor substrate-2 (IRS-2), PI3K/Akt, AS160, glut4 followed by protein validation using immunoblotting in differentiated adipocytes. RESULTS In silico analysis revealed the binding affinities of major constituents of KT (P-I& P-II) with PPARγ/PI3K/Akt. The enhanced intracellular accumulation of triglycerides with concomitant activation of PPARγ and C/EBPα in KT treated differentiated adipocytes indicates augmentation of adipogenesis in a concentration-dependent manner. Additionally, at cellular level, KT upregulated the expression of DAGT1, and decreases fatty acid synthase (FAS), and lipoprotein lipase (LPL), further affirmed improvement in lipid milieu. It was also observed that KT upregulated the levels of adiponectin and reduced TNFα expression, thus improving the secretory functions of adipocytes along with enhanced insulin sensitivity. Furthermore, KT significantly promoted insulin mediated glucose uptake by increasing glut4 translocation to the membrane via PI3/Akt signaling cascade. The results were further validated using PI3K specific inhibitor, wortmannin and findings revealed that KT treatment significantly enhanced the expression and activation of p-PI3K/PI3K and p-Akt/Akt even in case of treatment with PI3K inhibitor wortmannin alone and co-treatment with KT in differentiated adipocytes and affirmed that KT as activator of PI3K/Akt axis in the presence of inhibitor as well. CONCLUSION Collectively, KT fraction of PKE showed anti-diabetic effects by enhancing glucose uptake in differentiated adipocytes via activation of PI3K/Akt signaling cascade. Therefore, KT may be used as a promising novel natural therapeutic agent for managing T2DMand to the best of our knowledge, this is the first report, showing the efficacy and potential molecular mechanism of KT in enhancing insulin sensitivity and glucose uptake in differentiated adipocytes.
Collapse
Affiliation(s)
- Kajal Sinha
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Shiv Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Bindu Rawat
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 HP., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rahul Singh
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 HP., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Yogendra Padwad
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
17
|
Balakrishnan R, Thurmond DC. Mechanisms by Which Skeletal Muscle Myokines Ameliorate Insulin Resistance. Int J Mol Sci 2022; 23:4636. [PMID: 35563026 PMCID: PMC9102915 DOI: 10.3390/ijms23094636] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
The skeletal muscle is the largest organ in the body and secretes circulating factors, including myokines, which are involved in various cellular signaling processes. Skeletal muscle is vital for metabolism and physiology and plays a crucial role in insulin-mediated glucose disposal. Myokines have autocrine, paracrine, and endocrine functions, serving as critical regulators of myogenic differentiation, fiber-type switching, and maintaining muscle mass. Myokines have profound effects on energy metabolism and inflammation, contributing to the pathophysiology of type 2 diabetes (T2D) and other metabolic diseases. Myokines have been shown to increase insulin sensitivity, thereby improving glucose disposal and regulating glucose and lipid metabolism. Many myokines have now been identified, and research on myokine signaling mechanisms and functions is rapidly emerging. This review summarizes the current state of the field regarding the role of myokines in tissue cross-talk, including their molecular mechanisms, and their potential as therapeutic targets for T2D.
Collapse
Affiliation(s)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA;
| |
Collapse
|
18
|
Babaei P, Hoseini R. Exercise training modulates adipokine dysregulations in metabolic syndrome. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 4:18-28. [PMID: 35782776 PMCID: PMC9219261 DOI: 10.1016/j.smhs.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of risk factors for various metabolic diseases, and it is characterized by central obesity, dyslipidemia, hypertension, and insulin resistance. The core component for MetS is adipose tissue, which releases adipokines and influences physical health. Adipokines consist of pro and anti-inflammatory cytokines and contribute to various physiological functions. Generally, a sedentary lifestyle promotes fat accumulation and secretion of pro-inflammatory adipokines. However, regular exercise has been known to exert various beneficial effects on metabolic and cognitive disorders. Although the mechanisms underlying exercise beneficial effects in MetS are not fully understood, changes in energy expenditure, fat accumulation, circulatory level of myokines, and adipokines might be involved. This review article focuses on some of the selected adipokines in MetS, and their responses to exercise training considering possible mechanisms.
Collapse
Affiliation(s)
- Parvin Babaei
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rastegar Hoseini
- Department of Sports Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
19
|
de Oliveira AA, Vergara A, Wang X, Vederas JC, Oudit GY. Apelin pathway in cardiovascular, kidney, and metabolic diseases: Therapeutic role of apelin analogs and apelin receptor agonists. Peptides 2022; 147:170697. [PMID: 34801627 DOI: 10.1016/j.peptides.2021.170697] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The apelin/apelin receptor (ApelinR) signal transduction pathway exerts essential biological roles, particularly in the cardiovascular system. Disturbances in the apelin/ApelinR axis are linked to vascular, heart, kidney, and metabolic disorders. Therefore, the apelinergic system has surfaced as a critical therapeutic strategy for cardiovascular diseases (including pulmonary arterial hypertension), kidney disease, insulin resistance, hyponatremia, preeclampsia, and erectile dysfunction. However, apelin peptides are susceptible to rapid degradation through endogenous peptidases, limiting their use as therapeutic tools and translational potential. These proteases include angiotensin converting enzyme 2, neutral endopeptidase, and kallikrein thereby linking the apelin pathway with other peptide systems. In this context, apelin analogs with enhanced proteolytic stability and synthetic ApelinR agonists emerged as promising pharmacological alternatives. In this review, we focus on discussing the putative roles of the apelin pathway in various physiological systems from function to dysfunction, and emphasizing the therapeutic potential of newly generated metabolically stable apelin analogs and non-peptide ApelinR agonists.
Collapse
Affiliation(s)
- Amanda A de Oliveira
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ander Vergara
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaopu Wang
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
20
|
Meng W, Pi Z, Brigance R, Rossi KA, Schumacher WA, Bostwick JS, Gargalovic PS, Onorato JM, Luk CE, Generaux CN, Wang T, Wexler RR, Finlay HJ. Identification of a Hydroxypyrimidinone Compound ( 21) as a Potent APJ Receptor Agonist for the Potential Treatment of Heart Failure. J Med Chem 2021; 64:18102-18113. [PMID: 34855405 DOI: 10.1021/acs.jmedchem.1c01504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper describes our continued efforts in the area of small-molecule apelin receptor agonists. Recently disclosed compound 2 showed an acceptable metabolic stability but demonstrated monodemethylation of the dimethoxyphenyl group to generate atropisomer metabolites in vitro. In this article, we extended the structure-activity relationship at the C2 position that led to the identification of potent pyrazole analogues with excellent metabolic stability. Due to the increased polarity at C2, the permeability for these compounds decreased. Further adjustment of the polarity by replacing the N1 2,6-dimethoxyphenyl group with a 2,6-diethylphenyl group and reoptimization for the potency of the C5 pyrroloamides resulted in potent compounds with improved permeability. Compound 21 displayed excellent pharmacokinetic profiles in rat, monkey, and dog models and robust pharmacodynamic efficacy in the rodent heart failure model. Compound 21 also showed an acceptable safety profile in preclinical toxicology studies and was selected as a backup development candidate for the program.
Collapse
Affiliation(s)
- Wei Meng
- Departments of Discovery Chemistry, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Zulan Pi
- Departments of Discovery Chemistry, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Robert Brigance
- Departments of Discovery Chemistry, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Karen A Rossi
- Computer-Assisted Drug Design, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - William A Schumacher
- Cardiovascular Drug Discovery Biology, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Jeffrey S Bostwick
- Cardiovascular Drug Discovery Biology, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Peter S Gargalovic
- Cardiovascular Drug Discovery Biology, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Joelle M Onorato
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Chiuwa E Luk
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Claudia N Generaux
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Tao Wang
- Leads Discovery and Optimization, Research and Development, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Ruth R Wexler
- Departments of Discovery Chemistry, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| | - Heather J Finlay
- Departments of Discovery Chemistry, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-5400, United States
| |
Collapse
|
21
|
Yaribeygi H, Maleki M, Atkin SL, Jamialahmadi T, Sahebkar A. Impact of Incretin-Based Therapies on Adipokines and Adiponectin. J Diabetes Res 2021; 2021:3331865. [PMID: 34660808 PMCID: PMC8516550 DOI: 10.1155/2021/3331865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Adipokines are a family of hormones and cytokines with both pro- and anti-inflammatory effects released into the circulation to exert their hormonal effects. Adipokines are closely involved in most metabolic pathways and play an important modulatory role in lipid and carbohydrate homeostasis as they are involved in the pathophysiology of most metabolic disorders. Incretin-based therapy is a newly introduced class of antidiabetic drugs that restores euglycemia through several cellular processes; however, its effect on adipokines expression/secretion is not fully understood. In this review, we propose that incretin-based therapy may function through adipokine modulation that may result in pharmacologic properties beyond their direct antidiabetic effects, resulting in better management of diabetes and diabetes-related complications.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Kolan Ska-Dams E, Boinska J, Socha MW. Adipokine levels and carbohydrate metabolism in patients diagnosed de novo with polycystic ovary syndrome. Qatar Med J 2021; 2021:34. [PMID: 34604014 PMCID: PMC8474077 DOI: 10.5339/qmj.2021.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/07/2021] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Central obesity appears to play a major role in the pathogenesis of metabolic disorders in polycystic ovary syndrome. Insulin resistance and carbohydrate disorders are associated with dysfunctional secretion of various adipokines by the adipose tissue. OBJECTIVES This study aimed to evaluate leptin, apelin, and visfatin against a background of carbohydrate metabolism parameters in patients diagnosed de novo with polycystic ovary syndrome (PCOS). MATERIAL AND METHODS The study group consisted of 40 patients with PCOS (mean age, 29 years) diagnosed in accordance with the American Society for Reproductive Medicine criteria from 2003. The control group consisted of 37 clinically healthy women (mean age, 26 years). All controls had regular menses and no clinical or biochemical signs of hyperandrogenism. Concentrations of leptin, apelin, visfatin, and insulin were measured by immunoenzymatic methods. Glucose concentrations were determined using spectrophotometry. RESULTS Significantly higher concentrations of leptin, insulin, homeostatic model assessment for insulin resistance (HOMA-IR) index, and the immunoreactive insulin (IRI)/glucose index were found in the PCOS group than in the control group. Notably, the concentration of apelin was over five times lower in the PCOS group than in the control group. In patients with PCOS, a positive correlation was found between the concentrations of insulin and leptin and concentrations of leptin and IRI/glucose. Patients of the PCOS group with body mass index (BMI) ≥ 25 had significantly higher values of leptin, insulin, HOMA-IR index, and IRI/glucose index than patients of the PCOS group with normal BMI. In the PCOS group, a positive correlation was found between BMI and leptin concentration (r = 0.7176; p < 0.0001) and carbohydrate metabolism, such as insulin (r = 0.5524; p = 0.0003), glucose (r = 0.3843; p = 0.0157), HOMA-IR (r = 0.5895; p < 0.0001), and IRI/glucose (r = 0.3872; p = 0.0163). These findings were not observed in the control group. CONCLUSIONS (1) Increased leptin concentration observed in women diagnosed de novo with PCOS as well as positive correlations between leptin and HOMA-IR, and IRI/glucose and BMI may indicate a potential role of leptin in the reduction of tissue sensitivity to insulin. (2) Significantly lower apelin concentration in the PCOS group (>5 fold) than in the control group, associated with a concomitant increase in leptin, may also contribute to carbohydrate metabolism disorders occurring in the course of PCOS.
Collapse
Affiliation(s)
- Ewelina Kolan Ska-Dams
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University In Torun', Poland E-mail:
| | - Joanna Boinska
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University In Torun', Poland E-mail:
| | - Maciej W Socha
- Department of Obstetrics, Gynecology and Gynecological Oncology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Poland
| |
Collapse
|
23
|
Chi X, Sartor MA, Lee S, Anurag M, Patil S, Hall P, Wexler M, Wang XS. Universal concept signature analysis: genome-wide quantification of new biological and pathological functions of genes and pathways. Brief Bioinform 2021; 21:1717-1732. [PMID: 31631213 DOI: 10.1093/bib/bbz093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/23/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Identifying new gene functions and pathways underlying diseases and biological processes are major challenges in genomics research. Particularly, most methods for interpreting the pathways characteristic of an experimental gene list defined by genomic data are limited by their dependence on assessing the overlapping genes or their interactome topology, which cannot account for the variety of functional relations. This is particularly problematic for pathway discovery from single-cell genomics with low gene coverage or interpreting complex pathway changes such as during change of cell states. Here, we exploited the comprehensive sets of molecular concepts that combine ontologies, pathways, interactions and domains to help inform the functional relations. We first developed a universal concept signature (uniConSig) analysis for genome-wide quantification of new gene functions underlying biological or pathological processes based on the signature molecular concepts computed from known functional gene lists. We then further developed a novel concept signature enrichment analysis (CSEA) for deep functional assessment of the pathways enriched in an experimental gene list. This method is grounded on the framework of shared concept signatures between gene sets at multiple functional levels, thus overcoming the limitations of the current methods. Through meta-analysis of transcriptomic data sets of cancer cell line models and single hematopoietic stem cells, we demonstrate the broad applications of CSEA on pathway discovery from gene expression and single-cell transcriptomic data sets for genetic perturbations and change of cell states, which complements the current modalities. The R modules for uniConSig analysis and CSEA are available through https://github.com/wangxlab/uniConSig.
Collapse
Affiliation(s)
- Xu Chi
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, U.S.A.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Maureen A Sartor
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, U.S.A
| | - Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, U.S.A
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, U.S.A
| | - Snehal Patil
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, U.S.A
| | - Pelle Hall
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, U.S.A
| | - Matthew Wexler
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, U.S.A
| | - Xiao-Song Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, U.S.A.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, U.S.A
| |
Collapse
|
24
|
Role of Brown and Beige Adipose Tissues in Seasonal Adaptation in the Raccoon Dog ( Nyctereutes procyonoides). Int J Mol Sci 2021; 22:ijms22179623. [PMID: 34502532 PMCID: PMC8431801 DOI: 10.3390/ijms22179623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Brown adipose tissue (BAT) expresses uncoupling protein-1 (UCP1), which enables energy to be exerted towards needed thermogenesis. Beige adipocytes are precursor cells interspersed among white adipose tissue (WAT) that possess similar UCP1 activity and capacity for thermogenesis. The raccoon dog (Nyctereutes procyonoides) is a canid species that utilizes seasonal obesity to survive periods of food shortage in climate zones with cold winters. The potential to recruit a part of the abundant WAT storages as beige adipocytes for UCP1-dependent thermogenesis was investigated in vitro by treating raccoon dog adipocytes with different browning inducing factors. In vivo positron emission tomography/computed tomography (PET/CT) imaging with the glucose analog 18F-FDG showed that BAT was not detected in the adult raccoon dog during the winter season. In addition, UCP1 expression was not changed in response to chronic treatments with browning inducing factors in adipocyte cultures. Our results demonstrated that most likely the raccoon dog endures cold weather without the induction of BAT or recruitment of beige adipocytes for heat production. Its thick fur coat, insulating fat, and muscle shivering seem to provide the adequate heat needed for surviving the winter.
Collapse
|
25
|
Obesity-induced changes in human islet G protein-coupled receptor expression: Implications for metabolic regulation. Pharmacol Ther 2021; 228:107928. [PMID: 34174278 DOI: 10.1016/j.pharmthera.2021.107928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that are the targets for many different classes of pharmacotherapy. The islets of Langerhans are central to appropriate glucose homeostasis through their secretion of insulin, and islet function can be modified by ligands acting at the large number of GPCRs that islets express. The human islet GPCRome is not a static entity, but one that is altered under pathophysiological conditions and, in this review, we have compared expression of GPCR mRNAs in human islets obtained from normal weight range donors, and those with a weight range classified as obese. We have also considered the likely outcomes on islet function that the altered GPCR expression status confers and the possible impact that adipokines, secreted from expanded fat depots, could have at those GPCRs showing altered expression in obesity.
Collapse
|
26
|
Polysaccharide Derived from Nelumbo nucifera Lotus Plumule Shows Potential Prebiotic Activity and Ameliorates Insulin Resistance in HepG2 Cells. Polymers (Basel) 2021; 13:polym13111780. [PMID: 34071638 PMCID: PMC8199337 DOI: 10.3390/polym13111780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides are key bioactive compounds in lotus plumule tea, but their anti-diabetes activities remain unclear. The purpose of this study was to investigate the prebiotic activities of a novel polysaccharide fraction from the Nelumbo nucifera lotus plumule, and to examine its regulation of glucose metabolism in insulin-resistant HepG2 cells. The N. nucifera polysaccharide (NNP) was purified after discoloration, hot water extraction, ethanol precipitation, and DEAE-cellulose chromatography to obtain purified polysaccharide fractions (NNP-2). Fourier transform infrared spectroscopy was used to analyze the main structural characteristics and functional group of NNP-2. Physicochemical characterization indicated that NNP-2 had a molecular weight of 110.47 kDa and consisted of xylose, glucose, fructose, galactose, and fucose in a molar ratio of 33.4:25.7:22.0:10.5:8.1. The prebiotic activity of NNP-2 was demonstrated in vitro using Lactobacillus and Bifidobacterium. Furthermore, NNP-2 showed bioactivity against α-glucosidase (IC50 = 97.32 µg/mL). High glucose-induced insulin-resistant HepG2 cells were used to study the effect of NNP-2 on glucose consumption, and the molecular mechanism of the insulin transduction pathway was studied using RT-qPCR. NNP-2 could improve insulin resistance by modulating the IRS1/PI3K/Akt pathway in insulin-resistant HepG2 cells. Our data demonstrated that the Nelumbo nucifera polysaccharides are potential sources for nutraceuticals, and we propose functional food developments from the bioactive polysaccharides of N. nucifera for the management of diabetes.
Collapse
|
27
|
The Role of Peptide Hormones Discovered in the 21st Century in the Regulation of Adipose Tissue Functions. Genes (Basel) 2021; 12:genes12050756. [PMID: 34067710 PMCID: PMC8155905 DOI: 10.3390/genes12050756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Peptide hormones play a prominent role in controlling energy homeostasis and metabolism. They have been implicated in controlling appetite, the function of the gastrointestinal and cardiovascular systems, energy expenditure, and reproduction. Furthermore, there is growing evidence indicating that peptide hormones and their receptors contribute to energy homeostasis regulation by interacting with white and brown adipose tissue. In this article, we review and discuss the literature addressing the role of selected peptide hormones discovered in the 21st century (adropin, apelin, elabela, irisin, kisspeptin, MOTS-c, phoenixin, spexin, and neuropeptides B and W) in controlling white and brown adipogenesis. Furthermore, we elaborate how these hormones control adipose tissue functions in vitro and in vivo.
Collapse
|
28
|
Xu H, Wang Q, Wang Q, Che XQ, Liu X, Zhao S, Wang S. Clinical significance of apelin in the treatment of type 2 diabetic peripheral neuropathy. Medicine (Baltimore) 2021; 100:e25710. [PMID: 33907154 PMCID: PMC8084081 DOI: 10.1097/md.0000000000025710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is one of the most common chronic complications of diabetes. As apelin is an adipocytokine closely associated with diabetes, this study explored the clinical significance of serum apelin levels in patients with type 2 DPN before and after treatment. METHODS In total, 44 patients with T2DM without DPN (non-DPN group), 41 patients with DPN who received antihyperglycemic treatment (DPN-A group), 44 patients with DPN who received antihyperglycemic treatment combined with nutritional neurotherapy (DPN-B group), and 40 healthy control individuals (NC group) were selected continuously enrolled in the present study. Enzyme-linked immunosorbent assays (ELISA) were performed to determine serum levels of apelin and tumor necrosis factor-α (TNF-α). Related apelin, fasting blood glucose (FBG), glycosylated hemoglobin A1c, TNF-α, body mass index, fasting C peptide, and nerve conduction velocity (NCV) were recorded in each group before and after treatment. RESULTS Serum levels of apelin and TNF-α were higher in patients with diabetes than those in the NC group, as well as in the DPN group as compared to the non-DPN group; furthermore, some NCV values were significantly reduced in the DPN group. After treatment, the serum levels of apelin, TNF-α, and FBG reduced in patients with diabetes; moreover, apelin levels were found significantly lower in the DPN-B group as compared to the DPN-A group, while some NCV values significantly increased in the DPN-B group. Apelin was negatively correlated with part of NCV values and positively correlated with TNF-α and FBG (P < .01). CONCLUSION Our results show that the increase in serum apelin levels is an important clinical reference index for DPN, while a decrease indicates that the DPN treatment is effective.
Collapse
Affiliation(s)
- Hua Xu
- Department of Endocrinology
| | - Qi Wang
- Department of Pharmacy, The Fifth People's Hospital of Jinan
| | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital, Jinan, Shandong Province, China
| | | | | | | | | |
Collapse
|
29
|
Zhang Y, Wu X, Zhao C, Li K, Zheng Y, Zhao J, Ge P. Integrative Analysis of Whole-genome Expression Profiling and Regulatory Network Identifies Novel Biomarkers for Insulin Resistance in Leptin Receptor-deficient Mice. Med Chem 2021; 16:635-642. [PMID: 31584376 DOI: 10.2174/1573406415666191004135450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/11/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Molecular characterization of insulin resistance, a growing health issue worldwide, will help to develop novel strategies and accurate biomarkers for disease diagnosis and treatment. OBJECTIVE Integrative analysis of gene expression profiling and gene regulatory network was exploited to identify potential biomarkers early in the development of insulin resistance. METHODS RNA was isolated from livers of animals at three weeks of age, and whole-genome expression profiling was performed and analyzed with Agilent mouse 4×44K microarrays. Differentially expressed genes were subsequently validated by qRT-PCR. Functional characterizations of genes and their interactions were performed by Gene Ontology (GO) analysis and gene regulatory network (GRN) analysis. RESULTS A total of 197 genes were found to be differentially expressed by fold change ≥2 and P < 0.05 in BKS-db +/+ mice relative to sex and age-matched controls. Functional analysis suggested that these differentially expressed genes were enriched in the regulation of phosphorylation and generation of precursor metabolites which are closely associated with insulin resistance. Then a gene regulatory network associated with insulin resistance (IRGRN) was constructed by integration of these differentially expressed genes and known human protein-protein interaction network. The principal component analysis demonstrated that 67 genes in IRGRN could clearly distinguish insulin resistance from the non-disease state. Some of these candidate genes were further experimentally validated by qRT-PCR, highlighting the predictive role as biomarkers in insulin resistance. CONCLUSION Our study provides new insight into the pathogenesis and treatment of insulin resistance and also reveals potential novel molecular targets and diagnostic biomarkers for insulin resistance.
Collapse
Affiliation(s)
- Yuchi Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xinyu Wu
- Department of Traditional Chinese Medicine, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Cong Zhao
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang 157011, China
| | - Kai Li
- Harbin Food and Drug Administration, Harbin 150016, China
| | - Yi Zheng
- Chinese People 's Liberation Army Military Economics Institute, Wuhan 430035, China
| | - Jing Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Pengling Ge
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
30
|
Hu G, Wang Z, Zhang R, Sun W, Chen X. The Role of Apelin/Apelin Receptor in Energy Metabolism and Water Homeostasis: A Comprehensive Narrative Review. Front Physiol 2021; 12:632886. [PMID: 33679444 PMCID: PMC7928310 DOI: 10.3389/fphys.2021.632886] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The apelin receptor (APJ) is a member of the family A of G-protein-coupled receptors (GPCRs) and is involved in range of physiological and pathological functions, including fluid homeostasis, anxiety, and depression, as well as cardiovascular and metabolic disorders. APJ was classically described as a monomeric transmembrane receptor that forms a ternary complex together with its ligand and associated G proteins. More recently, increasing evidence indicates that APJ may interact with other GPCRs to form heterodimers, which may selectively modulate distinct intracellular signal transduction pathways. Besides, the apelin/APJ system plays important roles in the physiology and pathophysiology of several organs, including regulation of blood pressure, cardiac contractility, angiogenesis, metabolic balance, and cell proliferation, apoptosis, or inflammation. Additionally, the apelin/APJ system is widely expressed in the central nervous system, especially in neurons and oligodendrocytes. This article reviews the role of apelin/APJ in energy metabolism and water homeostasis. Compared with the traditional diuretics, apelin exerts a positive inotropic effect on the heart, while increases water excretion. Therefore, drugs targeting apelin/APJ system undoubtedly provide more therapeutic options for patients with congestive heart failure accompanied with hyponatremia. To provide more precise guidance for the development of clinical drugs, further in-depth studies are warranted on the metabolism and signaling pathways associated with apelin/APJ system.
Collapse
Affiliation(s)
- Gonghui Hu
- Department of Physiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Zhen Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Wenping Sun
- Department of Pathology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Xiaoyu Chen
- Department of Physiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| |
Collapse
|
31
|
Yoshikawa M, Asaba K, Nakayama T. The APLNR gene polymorphism rs7119375 is associated with an increased risk of development of essential hypertension in the Chinese population: A meta-analysis. Medicine (Baltimore) 2020; 99:e22418. [PMID: 33327224 PMCID: PMC7738041 DOI: 10.1097/md.0000000000022418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hypertension (HT) has recently been defined as a systolic blood pressure (BP) of ≥130 mm Hg and/or a diastolic BP of ≥80 mm Hg. It is important to further understand the pathophysiology of essential HT as its proportion is larger among most of the diagnosed HT cases. The apelin and apelin receptor (APLNR) are known to play roles in regulating BP, but the putative associations of single nucleotide polymorphisms in the APLNR gene with the risk of development of essential HT have not yet been fully investigated. Herein, we conducted a meta-analysis to investigate the relationship between single nucleotide polymorphisms in the APLNR gene and the risk of essential HT.We conducted a search in the PubMed and Web of Science databases for eligible studies. The pooled odds ratios (ORs) with their 95% confidence intervals (CI) were calculated using random-effects models when heterogeneity was expected across the studies. Otherwise, fixed-effect models were used.Regarding the SNP rs7119375, 5 studies were analyzed, which included a total of 3567 essential HT patients and 3256 healthy controls. Four of the 5 studies were from China and 1 was from Mexico. The meta-analysis showed the existence of a significant association between the AA genotype of rs7119375 and the risk of developing essential HT in the Chinese population, as determined using additive and recessive models (OR, 2.11; 95% CI, 1.12-3.96; I = 86% for AA vs GG. OR, 1.53; 95% CI, 1.21-1.94; I = 28% for AA vs AG. OR, 1.88; 95% CI, 1.13-3.12; I = 79% for AA vs AG + GG).Our study showed, for the first time, the existence of an association between rs7119375 and the risk of development of essential HT in the Chinese population, although the sample size was small and there was considerable population heterogeneity. The apelin/APLNR system could be a novel therapeutic target for the treatment of essential HT, and more studies are warranted to further investigate the association.
Collapse
Affiliation(s)
- Masahiro Yoshikawa
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine
| | - Kensuke Asaba
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomohiro Nakayama
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine
| |
Collapse
|
32
|
Benchoula K, Arya A, Parhar IS, Hwa WE. FoxO1 signaling as a therapeutic target for type 2 diabetes and obesity. Eur J Pharmacol 2020; 891:173758. [PMID: 33249079 DOI: 10.1016/j.ejphar.2020.173758] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/12/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Glucose production and the consumption of high levels of carbohydrate increase the chance of insulin resistance, especially in cases of obesity. Therefore, maintaining a balanced glucose homeostasis might form a strategy to prevent or cure diabetes and obesity. The activation and inhibition of glucose production is complicated due to the presence of many interfering pathways. These pathways can be viewed at the downstream level because they activate certain transcription factors, which include the Forkhead-O1 (FoxO1). This has been identified as a significant agent in the pancreas, liver, and adipose tissue, which is significant in the regulation of lipids and glucose. The objective of this review is to discuss the intersecting portrayal of FoxO1 and its parallel cross-talk which highlights obesity-induced insulin susceptibility in the discovery of a targeted remedy. The review also analyses current progress and provides a blueprint on therapeutics, small molecules, and extracts/phytochemicals which are explored at the pre-clinical level.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia; Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia; Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), Bukit Gambir, Gelugor, Pulau Pinang, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine & Health Sciences, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia.
| |
Collapse
|
33
|
Maresin 1 regulates insulin signaling in human adipocytes as well as in adipose tissue and muscle of lean and obese mice. J Physiol Biochem 2020; 77:167-173. [PMID: 33206345 DOI: 10.1007/s13105-020-00775-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
Maresin 1 (MaR1) is a DHA-derived pro-resolving lipid mediator. The present study aimed to characterize the ability of MaR1 to prevent the alterations induced by TNF-α on insulin actions in glucose uptake and Akt phosphorylation in cultured human adipocytes from overweight/obese subjects, as well as to investigate the effects of MaR1 acute and chronic administration on Akt phosphorylation in absence/presence of insulin in white adipose tissue (WAT) and skeletal muscle from lean and diet-induced obese (DIO) mice. MaR1 (0.1 nM) prevented the inhibitory effect of TNF-α on insulin-stimulated 2-Deoxy-D-glucose uptake and Akt phosphorylation in human adipocytes. Acute treatment with MaR1 (50 μg/kg, 3 h, i.p.) induced Akt phosphorylation in WAT and skeletal muscle of lean mice. However, MaR1 did not further increase the stimulatory effect of insulin on Akt activation. Interestingly, intragastric chronic treatment with MaR1 (50 μg/kg, 10 days) in DIO mice reduced the hyperglycemia induced by the high fat diet (HFD) and improved systemic insulin sensitivity. In parallel, MaR1 partially restored the impaired insulin response in skeletal muscle of DIO mice and reversed HFD-induced lower Akt phosphorylation in WAT in non-insulin-stimulated DIO mice while did not restore the defective Akt activation in response to acute insulin observed in DIO mice. Our results suggest that MaR1 attenuates the impaired insulin signaling and glucose uptake induced by proinflammatory cytokines. Moreover, the current data support that MaR1 treatment could be useful to reduce the hyperglycemia and the insulin resistance associated to obesity, at least in part by improving Akt signaling.
Collapse
|
34
|
Kim DY, Choi MJ, Ko TK, Lee NH, Kim OH, Cheon HG. Angiotensin AT 1 receptor antagonism by losartan stimulates adipocyte browning via induction of apelin. J Biol Chem 2020; 295:14878-14892. [PMID: 32839272 DOI: 10.1074/jbc.ra120.013834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Adipocyte browning appears to be a potential therapeutic strategy to combat obesity and related metabolic disorders. Recent studies have shown that apelin, an adipokine, stimulates adipocyte browning and has negative cross-talk with angiotensin II receptor type 1 (AT1 receptor) signaling. Here, we report that losartan, a selective AT1 receptor antagonist, induces browning, as evidenced by an increase in browning marker expression, mitochondrial biogenesis, and oxygen consumption in murine adipocytes. In parallel, losartan up-regulated apelin expression, concomitant with increased phosphorylation of protein kinase B and AMP-activated protein kinase. However, the siRNA-mediated knockdown of apelin expression attenuated losartan-induced browning. Angiotensin II cotreatment also inhibited losartan-induced browning, suggesting that AT1 receptor antagonism-induced activation of apelin signaling may be responsible for adipocyte browning induced by losartan. The in vivo browning effects of losartan were confirmed using both C57BL/6J and ob/ob mice. Furthermore, in vivo apelin knockdown by adeno-associated virus carrying-apelin shRNA significantly inhibited losartan-induced adipocyte browning. In summary, these data suggested that AT1 receptor antagonism by losartan promotes the browning of white adipocytes via the induction of apelin expression. Therefore, apelin modulation may be an effective strategy for the treatment of obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Dong Young Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Mi Jin Choi
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Tae Kyung Ko
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Na Hyun Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Ok-Hee Kim
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
35
|
Butaphosphan Effects on Glucose Metabolism Involve Insulin Signaling and Depends on Nutritional Plan. Nutrients 2020; 12:nu12061856. [PMID: 32580324 PMCID: PMC7353219 DOI: 10.3390/nu12061856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
Butaphosphan is an organic phosphorus compound used in several species for the prevention of rapid catabolic states, however, the mechanism of action remains unclear. This study aimed at determining the effects of butaphosphan on energy metabolism of mice receiving a normal or hypercaloric diet (HCD) and submitted or not to food restriction. Two experiments were conducted: (1) during nine weeks, animals were fed with HCD (n = 28) ad libitum, and at the 10th week, were submitted to food restriction and received butaphosphan (n = 14) or saline injections (n = 14) (twice a day, for seven days) and; (2) during nine weeks, animals were fed with a control diet (n = 14) or HCD (n = 14) ad libitum, and at the 10th week, all animals were submitted to food restriction and received butaphosphan or saline injections (twice a day, for seven days). In food restriction, butaphosphan preserved epididymal white adipose tissue (WAT) mass, increased glucose, NEFA, and the HOMA index. In mice fed HCD and submitted to food restriction, the butaphosphan preserved epididymal WAT mass. Control diet influences on PI3K, GCK, and Irs1 mRNA expression. In conclusion, butaphosphan increased blood glucose and reduced fat mobilization in overweight mice submitted to caloric restriction, and these effects are influenced by diet.
Collapse
|
36
|
Semaphorin 3 C is a Novel Adipokine Representing Exercise-Induced Improvements of Metabolism in Metabolically Healthy Obese Young Males. Sci Rep 2020; 10:10005. [PMID: 32561824 PMCID: PMC7305109 DOI: 10.1038/s41598-020-67004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/25/2020] [Indexed: 01/02/2023] Open
Abstract
This study investigated the endurance exercise-induced changes in lesser known adipokines (visfatin, chemerin, apelin, semaphorin 3 C) related to obesity and metabolism, and their correlations with the changes in the parameters of obesity and glucose homeostasis. Forty metabolically healthy obese young males were randomly assigned to control group (C, n = 12) or exercise group (Ex, n = 28). The subjects in Ex participated in a 8-week supervised endurance exercise training program, comprised of four sessions of treadmill running at 65–70% of VO2max per week. Serum levels of visfatin, chemerin, apelin, and semaphorin 3 C were significantly decreased in Ex. At baseline, apelin and semaphorin 3 C appeared to be correlated with obesity measures, including body mass index, % total fat and trunk fat, and waist circumference. Exercise-induced changes in these obesity measures significantly correlated with the changes in chemerin and semaphorin 3 C. Basal chemerin, apelin and semaphorin 3 C correlated with glucose homeostasis parameters, including fasting plasma glucose, fasting plasma insulin, homeostasis model assessment of insulin resistance and β-cell function, and quantitative insulin-sensitivity check index to different extents. Furthermore, the changes in apelin and semaphorin 3 C well predicted the improvements in glycemic parameters. We suggest that semaphorin 3 C is a novel adipokine involved in pathophysiology of obesity and metabolism, and that it is a biomarker representing an exercise-induced improvement in metabolically healthy obese young males.
Collapse
|
37
|
Ma D, Wang Y, Zhou G, Wang Y, Li X. Review: the Roles and Mechanisms of Glycoprotein 130 Cytokines in the Regulation of Adipocyte Biological Function. Inflammation 2019; 42:790-798. [PMID: 30661143 DOI: 10.1007/s10753-019-00959-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic low-grade inflammation is now widely accepted as one of the most important contributors to metabolic disorders. Glycoprotein 130 (gp130) cytokines are involved in the regulation of metabolic activity. Studies have shown that several gp130 cytokines, such as interleukin-6 (IL-6), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), have divergent effects on adipogenesis, lipolysis, and insulin sensitivity as well as food intake. In this review, we will summarize the present knowledge about gp130 cytokines, including IL-6, LIF, CNTF, CT-1, and OSM, in adipocyte biology and metabolic activities in conditions such as obesity, cachexia, and type 2 diabetes. It is valuable to explore the diverse actions of these gp130 cytokines on the regulation of the biological functions of adipocytes, which will provide potential therapeutic targets for the treatment of obesity and cachexia.
Collapse
Affiliation(s)
- Dufang Ma
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Wang
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guofeng Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongcheng Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
38
|
Jang JH, Park JE, Han JS. Scopoletin increases glucose uptake through activation of PI3K and AMPK signaling pathway and improves insulin sensitivity in 3T3-L1 cells. Nutr Res 2019; 74:52-61. [PMID: 31945607 DOI: 10.1016/j.nutres.2019.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Coumarins have been shown to reduce blood glucose levels and improve insulin sensitivity in other studies. The purpose of this study was to investigate the effects of scopoletin, which is a type of coumarin family, on glucose uptake in 3T3-L1 cells to test the hypothesis that scopoletin exerts an antidiabetic function on adipocytes. Scopoletin significantly increased glucose uptake, which was associated with increased expression of the plasma membrane glucose transporter type 4 (PM-GLUT4) in 3T3-L1 adipocytes. This increase in PM-GLUT4 expression was promoted by phosphorylation of protein kinase B, activation of phosphatidylinositol-3-kinase (PI3K), and enhanced intracellular glucose uptake. Scopoletin also promoted phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and enhanced PM-GLUT4 expression. Scopoletin-induced glucose uptake in 3T3-L1 adipocytes was inhibited by treatment with the PI3K inhibitor wortmannin and the AMPK inhibitor compound C. These results suggest that scopoletin has an antidiabetic effect by stimulating GLUT4 translocation to the PM through activation of the PI3K and AMPK pathways in 3T3-L1 adipocytes, thereby upregulating glucose uptake.
Collapse
Affiliation(s)
- June Hyuk Jang
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jae Eun Park
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea; Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
39
|
Esmaeili S, Bandarian F, Esmaeili B, Nasli-Esfahani E. Apelin and stem cells: the role played in the cardiovascular system and energy metabolism. Cell Biol Int 2019; 43:1332-1345. [PMID: 31166051 DOI: 10.1002/cbin.11191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/02/2019] [Indexed: 01/24/2023]
Abstract
Apelin, a member of the adipokine family, is widely distributed in the body and exerts cytoprotective effects on many organs. Apelin isoforms are involved in different physiological processes, including regulation of the cardiovascular system, cardiac contractility, angiogenesis, and energy metabolism. Several investigations have been performed to study the effect of apelin on stem cell therapy. This review aims to summarize the literature representing the effects of apelin on stem cell properties. Furthermore, this review discusses the therapeutic potential of apelin-treated stem cells for cardiovascular diseases and demonstrates the effect of stem cells overexpressing apelin on energy metabolism. Stem cells with their unique characteristics play a crucial role in the maintenance of tissue integrity. These cells participate in tissue regeneration via multiple mechanisms. Although preclinical and clinical studies have demonstrated the therapeutic potential of stem cells in various diseases, their application in regenerative medicine has not been efficient. A number of strategies such as genetic modification or treatment of stem cells with different factors have been used to improve the efficacy of cell therapy and to increase their survival after transplantation. This article reviews the effect of apelin treatment on the efficacy of cell therapy.
Collapse
Affiliation(s)
- Shahnaz Esmaeili
- Diabetic Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Fatemeh Bandarian
- Diabetic Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Behnaz Esmaeili
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Ensieh Nasli-Esfahani
- Diabetic Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| |
Collapse
|
40
|
Catalina MOS, Redondo PC, Granados MP, Cantonero C, Sanchez-Collado J, Albarran L, Lopez JJ. New Insights into Adipokines as Potential Biomarkers for Type-2 Diabetes Mellitus. Curr Med Chem 2019; 26:4119-4144. [PMID: 29210636 DOI: 10.2174/0929867325666171205162248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
A large number of studies have been focused on investigating serum biomarkers associated with risk or diagnosis of type-2 diabetes mellitus. In the last decade, promising studies have shown that circulating levels of adipokines could be used as a relevant biomarker for diabetes mellitus progression as well as therapeutic future targets. Here, we discuss the possible use of recently described adipokines, including apelin, omentin-1, resistin, FGF-21, neuregulin-4 and visfatin, as early biomarkers for diabetes. In addition, we also include recent findings of other well known adipokines such as leptin and adiponectin. In conclusion, further studies are needed to clarify the pathophysiological significance and clinical value of these biological factors as potential biomarkers in type-2 diabetes and related dysfunctions.
Collapse
Affiliation(s)
| | - Pedro C Redondo
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Maria P Granados
- Aldea Moret's Medical Center, Extremadura Health Service, 10195-Caceres, Spain
| | - Carlos Cantonero
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Jose Sanchez-Collado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Letizia Albarran
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| |
Collapse
|
41
|
The Novel Perspectives of Adipokines on Brain Health. Int J Mol Sci 2019; 20:ijms20225638. [PMID: 31718027 PMCID: PMC6887733 DOI: 10.3390/ijms20225638] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
First seen as a fat-storage tissue, the adipose tissue is considered as a critical player in the endocrine system. Precisely, adipose tissue can produce an array of bioactive factors, including cytokines, lipids, and extracellular vesicles, which target various systemic organ systems to regulate metabolism, homeostasis, and immune response. The global effects of adipokines on metabolic events are well defined, but their impacts on brain function and pathology remain poorly defined. Receptors of adipokines are widely expressed in the brain. Mounting evidence has shown that leptin and adiponectin can cross the blood–brain barrier, while evidence for newly identified adipokines is limited. Significantly, adipocyte secretion is liable to nutritional and metabolic states, where defective circuitry, impaired neuroplasticity, and elevated neuroinflammation are symptomatic. Essentially, neurotrophic and anti-inflammatory properties of adipokines underlie their neuroprotective roles in neurodegenerative diseases. Besides, adipocyte-secreted lipids in the bloodstream can act endocrine on the distant organs. In this article, we have reviewed five adipokines (leptin, adiponectin, chemerin, apelin, visfatin) and two lipokines (palmitoleic acid and lysophosphatidic acid) on their roles involving in eating behavior, neurotrophic and neuroprotective factors in the brain. Understanding and regulating these adipokines can lead to novel therapeutic strategies to counteract metabolic associated eating disorders and neurodegenerative diseases, thus promote brain health.
Collapse
|
42
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
43
|
Chen T, Zhang Y, Liu Y, Zhu D, Yu J, Li G, Sun Z, Wang W, Jiang H, Hong Z. MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging (Albany NY) 2019; 11:7510-7524. [PMID: 31562809 PMCID: PMC6781997 DOI: 10.18632/aging.102263] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/02/2019] [Indexed: 04/18/2023]
Abstract
This study aimed to establish a high-fat diet (HFD)-fed obese mouse model and a cell culture model of insulin resistance (IR) in mature 3T3-L1 adipocytes. A dual-luciferase reporter assay (DLRA) was confirmed interaction between miR-27a and the 3'-untranslated region (UTR) of Peroxisome proliferator-activated receptor (PPAR)-γ. The inhibition of PPAR-γ expression by microRNA (miR)-27a in IR cells at both the protein and mRNA levels was confirmed by a mechanistic investigation. Moreover, the 3'-UTR of PPAR-γ was found to be a direct target of miR-27a, based on the DLRA. Furthermore, antagomiR-27a upregulated the activation of PI3K/Akt signaling and glucose transporter type 4 (GLUT4) expression at the protein and mRNA levels. Additionally, the PPAR inhibitor T0070907 repressed the insulin sensitivity upregulated by antagomiR-27a, which was accompanied by the inhibition of PPAR-γ expression and increased levels of AKT phosphorylation and GLUT4. The PI3K inhibitor wortmannin reduced miR-27a-induced increases in AKT phosphorylation, glucose uptake, and GLUT4. miR-27a is considered to be involved in the PPAR-γ-PI3K/AKT-GLUT4 signaling axis, thus leading to increased glucose uptake and decreased IR in HFD-fed mice and 3T3-L1 adipocytes. Therefore, miR-27a is a novel target for the treatment of IR in obesity and diabetes.
Collapse
Affiliation(s)
- Tianbao Chen
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Yi Zhang
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Yilan Liu
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Dexiao Zhu
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Jing Yu
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Guoqian Li
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Zhichun Sun
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Wanru Wang
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Hongwei Jiang
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhenzhen Hong
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
44
|
The Mechanism of Phillyrin from the Leaves of Forsythia suspensa for Improving Insulin Resistance. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3176483. [PMID: 31355254 PMCID: PMC6634060 DOI: 10.1155/2019/3176483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 06/09/2019] [Indexed: 12/26/2022]
Abstract
Three lignans, phillyrin, forsythia ester A, and rosin-β-D-furan glucose, were isolated from Forsythia suspensa which is a famous Traditional Chinese Medicine used for clearing heat and detoxifying, reducing swelling and dispersing knot, and dispersing wind heat. In this study, the effects of phillyrin, forsythia ester A, and rosin-β-D-furan glucose on insulin resistance of 3T3-L1 adipocytes were investigated by the method of glucose oxidase-peroxidase (GOD-POD) and the mechanism was assayed by the method of western blot. The results indicated that phillyrin, forsythia ester A, and rosin-β-D-furan glucose could improve the glucose uptake in 3T3-L1 adipocytes under insulin resistance (IR). Among them, phillyrin showed significant activity in increasing glucose consumption at the concentrations of 100 μM and 200 μM (P < 0.001). The mechanism of improving insulin resistance may be that phillyrin could raise the protein phosphorylation of IRS-1 and Akt and the expression levels of GLUT4 protein.
Collapse
|
45
|
Eshaghi FS, Ghazizadeh H, Kazami-Nooreini S, Timar A, Esmaeily H, Mehramiz M, Avan A, Ghayour-Mobarhan M. Association of a genetic variant in AKT1 gene with features of the metabolic syndrome. Genes Dis 2019; 6:290-295. [PMID: 32042868 PMCID: PMC6997569 DOI: 10.1016/j.gendis.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 11/30/2022] Open
Abstract
Metabolic syndrome (MetS) is a clustering of metabolic abnormalities that is associated with increased risk of developing cardiovascular disease and type 2 diabetes. There is growing body of data showing the associations of genetic variants of the genes involved in the PI3K/AKT/mTOR pathway with diabetes and obesity. We aimed to investigate the association between MetS and its components with the genetic polymorphism in AKT1, rs1130233 (T > C). Total of 618 participants, recruited from Mashhad stroke and heart atherosclerosis disorder cohort (MASHAD study). Patients with MetS were defined by using international diabetes federation (IDF) criteria (n = 326) and those without MetS (n = 261) were recruited. Anthropometric and biochemical parameters were measured in all subjects. Genetic analysis for the rs1130233 polymorphism was performed, using the ABI-StepOne instruments with SDS version-2.0 software. Individuals with MetS had a significantly higher levels of BMI, waist-circumference, total cholesterol, triglyceride, high sensitivity-c reactive protein (hs-CRP) and blood-pressure, and lower concentrations of high density lipoprotein (HDL-C), compared to non-MetS individuals (P < 0.05). The association between the rs1130233 and MetS was not significant. Subjects with a CC or CT genotypes had a significantly higher serum hs-CRP-level (OR: 1.5; 95% CI (1.05–2.1), P = 0.02). Additionally, subjects who carried the TC genotype had a higher BMI compared to the CC genotype (p value = 0.045). Our findings demonstrated that AKT1, rs1130233 (T > C) polymorphism was associated with major components of MetS such as hs-CRP, and BMI, indicating further investigation in a multi-center setting to explore its value as an emerging biomarker of risk stratification marker.
Collapse
Affiliation(s)
- Fateme Sadat Eshaghi
- Department of Biochemistry, Faculty of Basic Sciences, Hakim Sabzevary University, Sabzevar, Iran
| | - Hamideh Ghazizadeh
- Metabolic Syndrome and Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sakine Kazami-Nooreini
- Department of Biochemistry, Faculty of Basic Sciences, Hakim Sabzevary University, Sabzevar, Iran
| | - Ameneh Timar
- Department of Biochemistry, Faculty of Basic Sciences, Hakim Sabzevary University, Sabzevar, Iran
| | - Habibollah Esmaeily
- Social Department of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrane Mehramiz
- Metabolic Syndrome and Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome and Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome and Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Tang W, Fan Y. SIRT6 as a potential target for treating insulin resistance. Life Sci 2019; 231:116558. [PMID: 31194993 DOI: 10.1016/j.lfs.2019.116558] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022]
Abstract
AIMS We aimed to explore the role of SIRT6 in Insulin resistance (IR). We are the first to investigate on this crucial relationship in an obese mouse model fed on a high-fat diet (HFD) and an IR model based on the mature 3T3-L1-derived adipocytes. MAIN METHODS Western blotting (WB) and qPCR analysis were performed to evaluate the SIRT6 protein and mRNA expressions in HFD mice as well as IR cells. Injection of adenovirus encoding SIRT6 gene in HFD mice and transfection of pcDNA3-SIRT6 in IR cells increased the glucose uptake levels and insulin sensitivity. KEY FINDINGS The positive regulatory effects of SIRT6 on transient receptor potential vallinoid 1 (TRPV1) in IR cells were confirmed by a mechanistic investigation at both protein and mRNA levels. Further, the overexpression of SIRT6 was found to activate the TRPV1/Calcitonin gene-related peptide (CGRP) signaling and upregulate the glucose transporter (GLUT) expression at protein and mRNA levels. Additionally, administration of the TRPV1 antagonist, SB-705498 repressed the insulin sensitivity upregulated by SIRT6 overexpression accompanied with the inhibition of CGRP and decrease in GLUT proportions. The results also showed that TRPV1 agonist, Capsaicin boosted the SIRT6-induced glucose uptake, CGRP production, and GLUT4 levels. SIGNIFICANCE Overall, SIRT6 was concluded to be involved in the TRPV1-CGRP-GLUT4 signaling axis thus leading to increased glucose uptake and decreased IR in HFD mice and 3T3-L1 adipocytes. Therefore, in terms of obesity and diabetes, SIRT6 is a novel candidate for treating IR.
Collapse
Affiliation(s)
- Wei Tang
- Department of Endocrinology, Zhoukou Central Hospital, Zhoukou, Henan, China.
| | - Yingying Fan
- Department of Endocrinology, Zhoukou Central Hospital, Zhoukou, Henan, China
| |
Collapse
|
47
|
Feng J, Zhao H, Du M, Wu X. The effect of apelin-13 on pancreatic islet beta cell mass and myocardial fatty acid and glucose metabolism of experimental type 2 diabetic rats. Peptides 2019; 114:1-7. [PMID: 30954534 DOI: 10.1016/j.peptides.2019.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Apelin, a new identified adipokine, and its G protein-coupled receptor named APJ are widely expressed in various tissues. Apelin has been found to play important roles in the physiopathology of multiple diseases. Our aim is to assess the effect of long-term apelin treatment on serum insulin level and pancreatic islet beta-cell mass in the late stage of type 2 diabetes without hyperinsulinemia and to investigate the role of apelin in myocardial fatty acid and glucose metabolism. In the present study, the high-fat diet fed-streptozotocin-induced experimental type 2 diabetic rats were given once daily intraperitoneal injection of apelin-13 (0.1 μmol/kg) for 10 weeks. We observed that apelin significantly improved serum insulin reduction and reduced hyperglycemia. Histologic analysis showed that long-term apelin treatment significantly increased pancreatic islet beta cell mass. Exogenous apelin failed to change dyslipidaemia of type 2 diabetic rats. Apelin treatment markedly decreased elevated myocardial FFA and glycogen content. Treatment of type 2 diabetic rats with apelin markedly reduced increased gene expressions of the cardiac fatty acid transporter CD36, CPT-1, and Peroxisome proliferator-activated receptor (PPAR)-α. Whereas the gene levels of citrate synthase and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α), a transcriptional coactivator, mediating mitochondrial biogenesis in heart were unaltered in response to exogenous apelin. Taken together, longer-term apelin treatment prevented pancreatic beta-cell loss or failure in experimental type 2 diabetic rats. Apelin can regulate myocardial metabolism. Apelin reduced myocadial fatty acid uptake and oxidation through inhibiting PPAR-α but did not affect myocardial mitochondrial biogenesis in type 2 diabetic rats.
Collapse
Affiliation(s)
- Jinghui Feng
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Hang Zhao
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Mengze Du
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Xiuping Wu
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
48
|
Alizarin increase glucose uptake through PI3K/Akt signaling and improve alloxan-induced diabetic mice. Future Med Chem 2019; 11:395-406. [DOI: 10.4155/fmc-2018-0515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: Alizarin (AZ), that can be isolated from Rubia cordifolia, has biological activities such as antioxidation and anti-inflammatory. This study aimed to investigate the effect of AZ on glucose and lipid metabolism disorders in alloxan-induced diabetic mice and also explored the effect of AZ on insulin resistance in 3T3-L1 adipocytes. Results: The research showed that AZ could decrease fasting and postprandial blood glucose, TG, TC and MDA, and it could also increase liver glycogen levels and SOD activity in diabetic mice. AZ could significantly improve the glucose uptake of 3T3-L1 adipocytes under insulin resistance, and could also increase GLUT4 protein expression levels, IRS-1 and Akt protein phosphorylation. Conclusion: These results showed that AZ has the potential to reduce blood sugar and improve insulin resistance.
Collapse
|
49
|
Jang SH, Paik IY, Ryu JH, Lee TH, Kim DE. Effects of aerobic and resistance exercises on circulating apelin-12 and apelin-36 concentrations in obese middle-aged women: a randomized controlled trial. BMC Womens Health 2019; 19:23. [PMID: 30696454 PMCID: PMC6352322 DOI: 10.1186/s12905-019-0722-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/22/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The risk for obesity-related diseases increases with the prevalence of obesity. In obesity, adipokines secreted from adipose tissue induce inflammation, causing adverse effects. Recently, adipokines such as apelin, visfatin, and chemerin have been studied. Long-term resistance training improves health in middle-aged women by improving metabolic risk factors, body composition, and muscle strength. However, there is still a lack of evidence on the association of apelin concentration with different exercise types in middle-aged obese women This study aimed to investigate the effects of 8 weeks of aerobic and resistance exercises on apelin-12 and apelin-36 levels and thereby verify the effects of different exercise types in obese, middle-aged women. METHODS Participants were middle-aged women aged 50-61 years, with no experience of systematic exercise in the last 6 months, and met the WHO obesity criteria for the Asia-Pacific region of waist circumference ≥ 80 cm and body fat percentage ≥ 30%. Subjects were selected and allocated to the aerobic exercise, resistance exercise, or no exercise group by block randomization. Body weight, body fat, and body mass index were measured by bioelectrical impedance analysis. Analysis of variance, the t-test, and Tukey's post-hoc test were performed. RESULTS A total of 24 participants were selected with eight participants in each group. Both aerobic and resistance exercises were effective in altering the physical composition, showing significant decreases in weight, waist circumference, BMI, and body fat. The aerobic and resistance exercise group showed a significant, positive change in apelin-12 levels. CONCLUSIONS In obese individuals, aerobic and resistance exercise were effective in improving obesity and reducing blood apelin-12 concentration, which is closely correlated with indicators of metabolic syndrome. Future research should focus on comparing the response of apelin to exercise in obese subjects treated with only dietary control and the response in the obese subjects of different ages and sex. TRIAL REGISTRATION No. 1040917-201,506-BR-153-04 , Clinical Research Information Service (CRIS), Republic of Korea (05 October 2018, retrospectively registered).
Collapse
Affiliation(s)
- Sun-Hwa Jang
- Exercise Physiology Laboratory, Department of Physical Education, Yonsei University, Seoul, 03722 South Korea
| | - Il-Young Paik
- Exercise Physiology Laboratory, Department of Physical Education, Yonsei University, Seoul, 03722 South Korea
| | - Jae-Hoon Ryu
- Exercise Physiology Laboratory, Department of Physical Education, Yonsei University, Seoul, 03722 South Korea
| | - Tae-Hyung Lee
- Exercise Physiology Laboratory, Department of Physical Education, Yonsei University, Seoul, 03722 South Korea
| | - Dae-Eun Kim
- Exercise Physiology Laboratory, Department of Physical Education, Yonsei University, Seoul, 03722 South Korea
| |
Collapse
|
50
|
Castan-Laurell I, Masri B, Valet P. The apelin/APJ system as a therapeutic target in metabolic diseases. Expert Opin Ther Targets 2019; 23:215-225. [PMID: 30570369 DOI: 10.1080/14728222.2019.1561871] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Apelin, a bioactive peptide, is the endogenous ligand of APJ, a G protein-coupled receptor which is widely expressed in peripheral tissues and in the central nervous system. The apelin/APJ system is involved in the regulation of various physiological functions and is a therapeutic target in different pathologies; the development of APJ agonists and antagonists has thus increased. Area covered: This review focuses on the in vitro and in vivo metabolic effects of apelin in physiological conditions and in the context of metabolic diseases. Expert opinion: In experimental models, novel APJ agonists are efficient in vivo, to treat metabolic diseases and associated complications. However, more clinical trials are necessary to determine whether molecules that target APJ could become an alternative therapeutic strategy in the treatment of metabolic diseases and associated complications.
Collapse
Affiliation(s)
- Isabelle Castan-Laurell
- a Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM U1048 , Université de Toulouse , Toulouse , France
| | - Bernard Masri
- a Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM U1048 , Université de Toulouse , Toulouse , France
| | - Philippe Valet
- a Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM U1048 , Université de Toulouse , Toulouse , France
| |
Collapse
|