1
|
Dusacre E, Le Picard C, Hausard V, Rigolet C, Ekoja F, Jean M, Clérandeau C, Villette S, Lagarde F, Lecomte S, Morin B, Cajaraville MP, Cachot J. Distinct toxicity profiles of conventional and biodegradable fishing nets' leachates after artificial aging. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137609. [PMID: 39954430 DOI: 10.1016/j.jhazmat.2025.137609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Fishing nets (FNs) represent a significant source of plastic waste, but their contribution to pollution by micro- and nanoplastics (MNPs) and associated additives is poorly understood. We studied the degradation of a high-performance-polyethylene-polypropylene (HPPE-PP) trawl net and two trammel nets made of polyamide 6 (PA6) or biodegradable polybutylene-succinate-polybutyrate-adipate-terephthalate (PBS-PBAT). Accelerated artificial ageing (AA) was performed using UV irradiation under environmental or extreme conditions followed by abrasion in water with glass microbeads. FN degradation and organic compound release were studied as well as the toxicity of leachates on the marine bacteria Allivibrio fischeri and larvae of the fish Oryzias latipes. AA of FNs under environmental conditions caused slight polymer degradation and did not produce significant MNPs. However, under extreme conditions, PA6 and PBS-PBAT FNs produced 9.1 × 104 MP/mL and 2.0 × 104 MP/mL, respectively. FNs released a total of 27 organic compounds in the leachates from which 7 were quantified at concentrations between 0.35 µg/L (Phthalimide) to 200 µg/L (Succinic-acid 2-methylallyl-undecyl-ester). Only the PBS-PBAT FN leachates induced significant toxicity on bacteria, bioluminescence inhibition ranging from 26 % to 56 %. Exposure of fish larvae to leachates of AA FNs disrupted their behavior. PBS-PBAT FN leachates caused the highest behavior stress indicator at day 12 (8.5), followed by PA6 at day 25 (8) and HPPE-PP at day 12 (7). We concluded that the toxicity of FN leachates was related more to the release of organic compounds than to the release of MPs. The toxicity of bio-based and biodegradable FNs should be further evaluated before their wider implementation in the fishing sector.
Collapse
Affiliation(s)
- Edgar Dusacre
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France; Faculty of Science and Technology and Research Center for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Coralie Le Picard
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France
| | - Valerian Hausard
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France
| | - Camille Rigolet
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France
| | - Faith Ekoja
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France; IMMM UMR 6283, CNRS-Le Mans University, Le Mans 72085, France
| | - Morgane Jean
- IMMM UMR 6283, CNRS-Le Mans University, Le Mans 72085, France
| | | | - Sandrine Villette
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac F-33600, France
| | | | - Sophie Lecomte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac F-33600, France
| | - Bénédicte Morin
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France
| | - Miren P Cajaraville
- Faculty of Science and Technology and Research Center for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Basque Country, Spain
| | - Jérôme Cachot
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France.
| |
Collapse
|
2
|
Matos B, Bramatti I, Santos CD, Branco V, Martins M. Multi-biomarker analysis of sub-chronic PAH mixture effects in fish at environmentally relevant levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107350. [PMID: 40179774 DOI: 10.1016/j.aquatox.2025.107350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/16/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are persistent pollutants in aquatic ecosystems, occurring as complex mixtures with unpredictable toxicity. Although PAHs are procarcinogenic, their harmful effects require metabolic activation, leading to reactive metabolites and reactive oxygen species (ROS) that can cause DNA damage. This study assessed the toxic effects of individual PAHs (Phenanthrene and Benzo[a]pyrene) and their mixtures (1:2 and 2:1 ratios) on juvenile seabream (Sparus aurata) after 42 days of exposure at 0.2nmol.L-1 . Biomarkers related to oxidative stress, detoxification, and lipid peroxidation were analysed in the liver and gills (e.g., glutathione (GSH), glutathione peroxidase (GPx), glutathione-S-transferase (GST), catalase (CAT), lipoperoxidation (LPO). Liver gene expression (Cytochromes P450 (CYP1A), GST3, tumour protein p53 (TP53) and blood cell DNA damage were also studied. Correlation analyses and Non-Metric Multidimensional Scaling (NMDS) were used to relate treatments and biomarkers. Results suggested differences in organ responses, with the gills generally showing the most significant changes in GSH levels, GST activity, and LPO compared to the control group. DNA repair mechanisms appeared to prevent significant genotoxicity as assessed by the comet assay. However, erythrocytic nuclear anomalies (ENAs) were notably higher in fish exposed to Phe, B[a]P, and the 2:1 B[a]P:Phe mixture compared to the control group. Interestingly, the 2:1 Phe:B[a]P mixture appeared to have an enhanced effect, showing a marked upregulation of GST3 mRNA (up to 7-fold), possibly influenced by the higher proportion of Phe. MDS analysis proved to be a valuable tool in identifying patterns among biological responses, offering insight into how fish cope with PAH exposure and helping to uncover the unpredictable effects of chemical mixtures. This study highlights the need for further research into the interactions of PAH mixtures, employing multi-analysis approach and underscores the importance of revising environmental guidelines to account for their effects.
Collapse
Affiliation(s)
- B Matos
- Marine and Environmental Sciences Centre (MARE) & Aquatic Research Network Associated Laboratory (ARNET), Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon (FCT NOVA), 2829-516 Caparica, Portugal.
| | - I Bramatti
- Marine and Environmental Sciences Centre (MARE) & Aquatic Research Network Associated Laboratory (ARNET), Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon (FCT NOVA), 2829-516 Caparica, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - C D Santos
- Marine and Environmental Sciences Centre (MARE) & Aquatic Research Network Associated Laboratory (ARNET), Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon (FCT NOVA), 2829-516 Caparica, Portugal
| | - V Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - M Martins
- Marine and Environmental Sciences Centre (MARE) & Aquatic Research Network Associated Laboratory (ARNET), Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon (FCT NOVA), 2829-516 Caparica, Portugal.
| |
Collapse
|
3
|
Fukugami S, Yamasaki M, Kokushi E, Uno S. Influence of CYP1A and AhR modulation on polycyclic aromatic hydrocarbon-induced developmental defects in Japanese medaka. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 280:107267. [PMID: 39933340 DOI: 10.1016/j.aquatox.2025.107267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known to induce developmental malformations in fish embryos. However, the interaction between aryl hydrocarbon receptor (AhR) and cytochrome P450 (CYP) in PAH-induced development defects remains unclear. Therefore, we investigated the effects of the CYP1A inhibitor piperonylbutoxide (PBO) and the AhR antagonist CH223191 (CH) on the development of Japanese medaka (Oryzias Latipes) embryos exposed to different PAHs. Japanese medaka embryos were exposed to three conditions: PAH alone, PAH and PBO, and PAH and CH. Microscopic observations were performed to examine the presence of developmental defects. Although neither phenanthrene (Phe) nor fluoranthene (Flu) induced morphological malformations in larvae, benzo(a)anthracene (BaA) exposure induced craniofacial deformities in the larvae. Additionally, BaA and PBO co-exposure significantly increased the rate and severity of malformations. Pyrene (Pyr) exposure induced craniofacial defects, cardiac hypertrophy, pericardial edema, and spinal curvature, which were attenuated by exposure to either CH or PBO. Collectively, these findings suggest that structurally different PAHs exert their toxic effects via distinct mechanisms during fish development.
Collapse
Affiliation(s)
- Shusaku Fukugami
- The United Graduate School of Agricultural Science, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan
| | - Masatoshi Yamasaki
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan
| | - Emiko Kokushi
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan
| | - Seiichi Uno
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan.
| |
Collapse
|
4
|
La CGB, Huff Hartz KE, Arkles M, Grim ME, Acuña S, Sadro S, Lydy MJ. A baseline assessment of contamination in the Sacramento deep water ship channel. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124606. [PMID: 39053801 DOI: 10.1016/j.envpol.2024.124606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
The Sacramento Deep Water Ship Channel (SDWSC) in the San Francisco Estuary, which is an active commercial port, is critical habitat for pelagic fish species including delta smelt (Hypomesus transpacificus), longfin smelt (Spirinchus thaleichthys), and Sacramento perch (Archoplites interruptus). Pelagic organism decline has been attributed to covarying factors such as manipulation of habitat, introduction of invasive species, decrease in food production, and contaminant exposure. Quantification of bioavailable toxicant loads in the SDWSC is limited despite previous surveys that have detected elevated contaminant concentrations in the sediments. Therefore, the focus of the present study was to characterize the bioavailability of the contaminants in the SDWSC from six sites along the channel. At each site, organochlorine pesticides (OCPs), pyrethroid insecticides, polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) were quantified in sediment, zooplankton, and suspended solids. In addition, Tenax extraction was used to measure the bioaccessible fraction of sediment-associated contaminants freely dissolved in the water. Bioaccessible contaminants in the sediment provided an uptake route for these stressors into invertebrates and fish with bioaccessible OCPs being found at all sites, particularly 4,4'-dichlorodiphenyldichloroethylene (DDE). Bifenthrin was the only pyrethroid detected in the chosen matrices and it was found at concentrations below levels of concern. Bioaccessible PAHs were found at all sites, with highest detections for phenanthrene and pyrene. No PCBs were detected in sediments, but were detected in both suspended solids and zooplankton. Contaminant concentrations overall were significantly higher in suspended solids, followed by zooplankton and sediments. The highest sediment concentrations of DDE, fluoranthene, pyrene, and dibenzo[a,h]anthracene exceeded sediment quality benchmarks indicating potential risk to sediment-dwelling species. Finally, elevated contaminant levels were found in both suspended solids and zooplankton, suggesting additional risk to pelagic species in the SDWSC.
Collapse
Affiliation(s)
- Cristina G B La
- Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Mia Arkles
- Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Melissa E Grim
- Department of Environmental Science and Policy, University of California Davis, Davis, CA, 95616, USA
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, USA
| | - Steven Sadro
- Department of Environmental Science and Policy, University of California Davis, Davis, CA, 95616, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
5
|
Monteiro FC, da Silva Carreira R, Gramlich KC, de Pinho JV, de Almeida RF, Vianna M, Massone CG, Hauser-Davis RA. Baseline polycyclic aromatic hydrocarbon maternal transfer data in Lesser Numbfish Narcine brasiliensis (Elasmobranchii: Batoidea) from an impacted estuary in Southeastern Brazil. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104531. [PMID: 39117250 DOI: 10.1016/j.etap.2024.104531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
Maternal offloading of polycyclic aromatic hydrocarbons (PAHs) poses a significant exposure route for developing embryos, with implications for subsequent generations. Despite known developmental effects regarding fish physiology and behavior, maternal PAH transfer assessments in elasmobranchii are still lacking. This study investigated PAH contamination and maternal transfer in one female Lesser Numbfish (Narcine brasiliensis) electric ray and seven embryos for the first time. Naphthalene was identified as the predominant low molecular weight PAH, and dibenzo[a,h]anthracene was the most abundant high molecular weight compound. Most embryos exhibited some level of PAH exposure, with varying accumulation patterns potentially influenced by size, developmental stage, and yolk absorption rates. Further investigation is warranted to understand the impacts of PAH maternal offloading on elasmobranchii uterine contents and embryos.
Collapse
Affiliation(s)
- Francielli Casanova Monteiro
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente Street, 225, Gávea, Rio de Janeiro 22453-900, Brazil
| | - Renato da Silva Carreira
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente Street, 225, Gávea, Rio de Janeiro 22453-900, Brazil.
| | - Kamila Cezar Gramlich
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente Street, 225, Gávea, Rio de Janeiro 22453-900, Brazil
| | - Júlia Vianna de Pinho
- Instituto de Química, Departmento de Bioquímica, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil; Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil; Programa de Pós-Graduação em Vigilância Sanitária, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil
| | - Regina Fonseca de Almeida
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente Street, 225, Gávea, Rio de Janeiro 22453-900, Brazil
| | - Marcelo Vianna
- Laboratório de Biologia e Tecnologia Pesqueira, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, CCS, Bl. A., Rio de Janeiro, Rio de Janeiro 21941-541, Brazil; Instituto Museu Aquário Marinho do Rio de Janeiro (IMAM), Centro de Pesquisas do Aquário do Rio de Janeiro, AquaRio, Rio de Janeiro, Brazil
| | - Carlos German Massone
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente Street, 225, Gávea, Rio de Janeiro 22453-900, Brazil.
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil.
| |
Collapse
|
6
|
Yang Y, Zhang X, Han J, Li W, Chang X, He Y, Yee Leung KM. Nanoplastics enhanced the developmental toxicity of aromatic disinfection byproducts to a marine polychaete at non-feeding early life stage. CHEMOSPHERE 2024; 364:143062. [PMID: 39127188 DOI: 10.1016/j.chemosphere.2024.143062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Micro/nanoplastics can act as vectors for organic pollutants and enhance their toxicity, which has been attributed to the ingestion by organisms and the "Trojan horse effect". In this study, we disclosed a non-ingestion pathway for the toxicity enhancement effect of nanoplastics. Initially, the combined toxicity of polystyrene microplastics (40 μm) or nanoplastics (50 nm) with three disinfection byproducts (DBPs) to a marine polychaete, Platynereis dumerilii, was investigated. No toxic effect was observed for the micro/nanoplastics alone. The microplastics showed no effect on the toxicity of the three DBPs, whereas the nanoplastics significantly enhanced the toxicity of two aromatic DBPs when the polychaete was in its non-feeding early life stage throughout the exposure period. The microplastics showed no interaction with the P. dumerilii embryos, whereas the nanoplastics agglomerated strongly on the embryonic chorion and fully encapsulated the embryos. This could contribute to higher actual exposure concentrations in the microenvironment around the embryos, as the concentrations of the two aromatic DBPs on the nanoplastics were 1200 and 120 times higher than those in bulk solution. Our findings highlight an important and previously overlooked mechanism by which nanoplastics and organic pollutants, such as DBPs, pose a higher risk to marine species at their vulnerable early life stages. This study may contribute to a broader understanding of the environmental impacts of plastic pollution and underscore the necessity to mitigate their risks associated with DBPs.
Collapse
Affiliation(s)
- Yun Yang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Jiarui Han
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xinyi Chang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yuhe He
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Pannetier P, Morin B, Cabon J, Danion M, Morin T, Clérandeau C, Le Floch S, Cachot J. Water-accommodated fractions of heavy and light oils impact DNA integrity, embryonic development, and immune system of Japanese medaka at early life stages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50916-50928. [PMID: 39106018 DOI: 10.1007/s11356-024-34604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants generally found in complex mixtures. PAHs are known to cause pleiotropic effects on living organisms, including developmental defects, mutagenicity, carcinogenicity and immunotoxicity, and endocrine disruptions. The main goal of this study is to evaluate the toxicity of water-accommodated fractions (WAFs) of oils in two life stages of the Japanese medaka, larvae and juveniles. The deleterious effects of an acute exposure of 48 h to two WAFs from Arabian light crude oil (LO) and refined oil from Erika (HO) were analyzed in both stages. Relevant endpoints, including ethoxy resorufin-O-deethylase (EROD) activity, DNA damage (Comet assay), photomotor response, and sensitivity to nervous necrosis virus (NNV) infection, were investigated. Larvae exposed to both oil WAFs displayed a significant induction of EROD activity, DNA damage, and developmental anomalies, but no behavioral changes. Deleterious effects were significantly increased following exposure to 1 and 10 μg/L of LO WAFs and 10 μg/L of HO WAFs. Larval infection to NNV induced fish mortality and sharply reduced reaction to light stimulation. Co-exposure to WAFs and NNV increased the mortality rate, suggesting an impact of WAFs on fish defense capacities. WAF toxicity on juveniles was only observed following the NNV challenge, with a higher sensitivity to HO WAFs than to LO WAFs. This study highlighted that environmentally realistic exposure to oil WAFs containing different compositions and concentrations of oil generated high adverse effects, especially in the larval stage. This kind of multi-marker approach is particularly relevant to characterize the toxicity fingerprint of environmental mixtures of hydrocarbons and PAHs.
Collapse
Affiliation(s)
- Pauline Pannetier
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France.
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France.
| | - Bénédicte Morin
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France
| | - Joëlle Cabon
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Morgane Danion
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Thierry Morin
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | | | - Stéphane Le Floch
- Centre de Documentation, de Recherche Et d'Expérimentations Sur Les Pollutions Accidentelles Des Eaux, CEDRE, 29200, Brest, France
| | - Jérôme Cachot
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France
| |
Collapse
|
8
|
Pannetier P, Clérandeau C, Le Floch S, Cachot J, Morin B. Toxicity evaluation of water-accommodated fraction of heavy and light oils on the rainbow trout fish cell line RTL-W1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49715-49726. [PMID: 39080162 DOI: 10.1007/s11356-024-34458-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
Fish are currently used models for the toxicity assessment of chemicals, including polycyclic aromatic hydrocarbons (PAHs). Alternative methods including fish cell lines are currently used to provide fast and reliable results on the toxic properties of chemicals while respecting ethical concerns about animal testing. The Rainbow trout liver cell line RTLW1 was used to analyze the effects of two water-accommodated fractions from two crude oils: Arabian Light crude oil (LO) and refined oil from Erika (HO). Several toxicity endpoints were assessed in this study, including cytotoxicity, EROD activity, DNA damage (comet and micronucleus assays), and ROS production. RTL-W1 cells were exposed for 24 h at two or three dilutions of WAF at 1000 µg/L (0.1% (1 μg/L), 1% (10 μg/L), and 10% (100 μg/L)) for cytotoxicity and EROD activity and 1% and 10% for ROS production and genotoxicity). Exposure of RTL-W1 cells to LO WAF induced a significant increase of EROD activity and ROS production and altered DNA integrity as revealed by both the comet assay and the micronucleus test for 10 µg/L of LO. On the other hand, HO WAF exhibited limited toxic effects except for an EROD induction for 1% WAF dilution. These results confirmed the usefulness of RTL-W1 cells for in vitro toxicological assessment of chemical mixtures.
Collapse
Affiliation(s)
- Pauline Pannetier
- CNRS, Bordeaux INP, EPOC, Univ. Bordeaux, UMR 5805, 33600, Pessac, France.
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Unit Virology, Immunology and Ecotoxicology of Fish, Technopôle Brest-Iroise, 29280, Plouzané, France.
| | | | - Stéphane Le Floch
- Centre de Documentation, de Recherche Et d'Expérimentations Sur Les Pollutions Accidentelles Des Eaux, CEDRE, 29200, Brest, France
| | - Jérôme Cachot
- CNRS, Bordeaux INP, EPOC, Univ. Bordeaux, UMR 5805, 33600, Pessac, France
| | - Bénédicte Morin
- CNRS, Bordeaux INP, EPOC, Univ. Bordeaux, UMR 5805, 33600, Pessac, France
| |
Collapse
|
9
|
Filatova TS, Kuzmin VS, Dzhumaniiazova I, Pustovit OB, Abramochkin DV, Shiels HA. 3-Methyl-phenanthrene (3-MP) disrupts the electrical and contractile activity of the heart of the polar fish, navaga cod (Eleginus nawaga). CHEMOSPHERE 2024; 357:142089. [PMID: 38643846 DOI: 10.1016/j.chemosphere.2024.142089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Alkylated polycyclic aromatic hydrocarbons are abundant in crude oil and are enriched during petroleum refinement but knowledge of their cardiotoxicity remains limited. Polycyclic aromatic hydrocarbons (PAHs) are considered the main hazardous components in crude oil and the tricyclic PAH phenanthrene has been singled out for its direct effects on cardiac tissue in mammals and fish. Here we test the impact of the monomethylated phenanthrene, 3-methylphenanthrene (3-MP), on the contractile and electrical function of the atrium and ventricle of a polar fish, the navaga cod (Eleginus nawaga). Using patch-clamp electrophysiology in atrial and ventricular cardiomyocytes we show that 3-MP is a potent inhibitor of the delayed rectifier current IKr (IC50 = 0.25 μM) and prolongs ventricular action potential duration. Unlike the parent compound phenanthrene, 3-MP did not reduce the amplitude of the L-type Ca2+ current (ICa) but it accelerated current inactivation thus reducing charge transfer across the myocyte membrane and compromising pressure development of the whole heart. 3-MP was a potent inhibitor (IC50 = 4.7 μM) of the sodium current (INa), slowing the upstroke of the action potential in isolated cells, slowing conduction velocity across the atrium measured with optical mapping, and increasing atrio-ventricular delay in a working whole heart preparation. Together, these findings reveal the strong cardiotoxic potential of this phenanthrene derivative on the fish heart. As 3-MP and other alkylated phenanthrenes comprise a large fraction of the PAHs in crude oil mixtures, these findings are worrisome for Arctic species facing increasing incidence of spills and leaks from the petroleum industry. 3-MP is also a major component of polluted air but is not routinely measured. This is also of concern if the hearts of humans and other terrestrial animals respond to this PAH in a similar manner to fish.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Irina Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Oksana B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Laboratory of Cardiac Electrophysiology, Chazov National Medical Research Center for Cardiology, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester, M13 9NT, UK.
| |
Collapse
|
10
|
Bedrossiantz J, Goyenechea J, Prats E, Gómez-Canela C, Barata C, Raldúa D, Cachot J. Cardiac and neurobehavioral impairments in three phylogenetically distant aquatic model organisms exposed to environmentally relevant concentrations of boscalid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123685. [PMID: 38460591 DOI: 10.1016/j.envpol.2024.123685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Boscalid (2-Chloro-N-(4'-chlorobiphenyl-2-yl) nicotinamide), a pyridine carboxamide fungicide, is an inhibitor of the complex II of the respiration chain in fungal mitochondria. As boscalid is only moderately toxic for aquatic organisms (LC50 > 1-10 mg/L), current environmental levels of this compound in aquatic ecosystems, in the range of ng/L-μg/L, are considered safe for aquatic organisms. In this study, we have exposed zebrafish (Danio rerio), Japanese medaka (Oryzias latipes) and Daphnia magna to a range of concentrations of boscalid (1-1000 μg/L) for 24 h, and the effects on heart rate (HR), basal locomotor activity (BLA), visual motor response (VMR), startle response (SR), and habituation (HB) to a series of vibrational or light stimuli have been evaluated. Moreover, changes in the profile of the main neurotransmitters have been determined. Boscalid altered HR in a concentration-dependent manner, leading to a positive or negative chronotropic effect in fish and D. magna, respectively. While boscalid decreased BLA and increased VMR in Daphnia, these behaviors were not altered in fish. For SR and HB, the response was more species- and concentration-specific, with Daphnia exhibiting the highest sensitivity. At the neurotransmission level, boscalid exposure decreased the levels of L-aspartic acid in fish larvae and increased the levels of dopaminergic metabolites in D. magna. Our study demonstrates that exposure to environmental levels of boscalid alters cardiac activity, impairs ecologically relevant behaviors, and leads to changes in different neurotransmitter systems in phylogenetically distinct vertebrate and invertebrate models. Thus, the results presented emphasize the need to review the current regulation of this fungicide.
Collapse
Affiliation(s)
- Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain.
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), IQS School of Engineering, Ramon Llull University, Via Augusta 390, 08017, Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Cristián Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), IQS School of Engineering, Ramon Llull University, Via Augusta 390, 08017, Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Jérôme Cachot
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| |
Collapse
|
11
|
Stickler A, Hawkey AB, Gondal A, Natarajan S, Mead M, Levin ED. Embryonic exposures to cadmium and PAHs cause long-term and interacting neurobehavioral effects in zebrafish. Neurotoxicol Teratol 2024; 102:107339. [PMID: 38452988 PMCID: PMC10990771 DOI: 10.1016/j.ntt.2024.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Developmental exposure to either polycyclic aromatic hydrocarbons (PAHs) or heavy metals has been shown to cause persisting and overlapping neurobehavioral effects in animal models. However, interactions between these compounds have not been well characterized, despite their co-occurrence in a variety of environmental media. In two companion studies, we examined the effects of developmental exposure to cadmium (Cd) with or without co-exposure to prototypic PAHs benzo[a]pyrene (BaP, Exp. 1) or fluoranthene (FA, Exp. 2) using a developing zebrafish model. Zebrafish embryos were exposed to Cd (0-0.3 μM), BaP (0-3 μM), FA (0-1.0 μM), or binary Cd-PAH mixtures from 5 to 122 h post fertilization (hpf). In Exp. 1, Cd and BaP produced independent effects on an array of outcomes and interacting effects on specific outcomes. Notably, Cd-induced deficits in dark-induced locomotor stimulation were attenuated by BaP co-exposure in the larval motility test and BaP-induced hyperactivity was attenuated by Cd co-exposure in the adolescent novel tank test. Likewise, in Exp. 2, Cd and FA produced both independent and interacting effects. FA-induced increases on adult post-tap activity in the tap startle test were attenuated by co-exposure with Cd. On the predator avoidance test, FA- and 0.3 μM Cd-induced hyperactivity effects were attenuated by their co-exposure. Taken together, these data indicate that while the effects of Cd and these representative PAHs on zebrafish behavior were largely independent of one another, binary mixtures can produce sub-additive effects for some neurobehavioral outcomes and at certain ages. This research emphasizes the need for detailed risk assessments of mixtures containing contaminants of differing classes, and for clarity on the mechanisms which allow cross-class toxicant interactions to occur.
Collapse
Affiliation(s)
- Alexandra Stickler
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Sciences, Midwestern University, Downers Grove, IL 60515, USA
| | - Anas Gondal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarabesh Natarajan
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Mikayla Mead
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Bourdon C, Couture P, Gourves PY, Clérandeau C, Gonzalez P, Cachot J. Comparison of the accumulation and effects of copper pyrithione and copper sulphate on rainbow trout larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104308. [PMID: 37926371 DOI: 10.1016/j.etap.2023.104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Copper pyrithione (CuPT) is used as a co-biocide in new antifouling paints but its toxicity remains little known. To compare the toxicity of copper-based compounds, rainbow trout (Oncorhynchus mykiss) larvae were exposed for 8-day to CuPT and CuSO4 at equivalent copper concentrations. CuPT exposure led to the greatest accumulation of Cu in larvae. Exposure to 10 µg.L-1 CuPT induced 99% larval mortality but only 4% for CuSO4-exposed larvae. The larval development and growth were affected by CuPT (from 0.5 µg.L-1 Cu) but not by CuSO4. Lipid peroxidation was not induced by either contaminant. The expression of genes involved in oxidative stress defence, detoxification and copper transport was induced in larvae exposed to CuSO4 and CuPT but at higher concentrations for CuPT. This study highlights the marked toxicity of CuPT for early life stages of fish and raises the question of the possible environmental risks of this antifouling compound.
Collapse
Affiliation(s)
- Charlotte Bourdon
- .Environnements et Paléoenvironnements Océaniques et Continentaux, Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France; . Institut National de la Recherche Scientifique - Centre Eau Terre Environnement, Québec, Canada
| | - Patrice Couture
- . Institut National de la Recherche Scientifique - Centre Eau Terre Environnement, Québec, Canada
| | - Pierre-Yves Gourves
- .Environnements et Paléoenvironnements Océaniques et Continentaux, Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Christelle Clérandeau
- .Environnements et Paléoenvironnements Océaniques et Continentaux, Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Patrice Gonzalez
- .Environnements et Paléoenvironnements Océaniques et Continentaux, Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Jérôme Cachot
- .Environnements et Paléoenvironnements Océaniques et Continentaux, Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| |
Collapse
|
13
|
Shankar P, Villeneuve DL. AOP Report: Aryl Hydrocarbon Receptor Activation Leads to Early-Life Stage Mortality via Sox9 Repression-Induced Craniofacial and Cardiac Malformations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2063-2077. [PMID: 37341548 PMCID: PMC10772968 DOI: 10.1002/etc.5699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
The aryl hydrocarbon receptors (Ahrs) are evolutionarily conserved ligand-dependent transcription factors that are activated by structurally diverse endogenous compounds as well as environmental chemicals such as polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons. Activation of the Ahr leads to several transcriptional changes that can cause developmental toxicity resulting in mortality. Evidence was assembled and evaluated for two novel adverse outcome pathways (AOPs) which describe how Ahr activation (molecular initiating event) can lead to early-life stage mortality (adverse outcome), via either SOX9-mediated craniofacial malformations (AOP 455) or cardiovascular toxicity (AOP 456). Using a key event relationship (KER)-by-KER approach, we collected evidence using both a narrative search and a systematic review based on detailed search terms. Weight of evidence for each KER was assessed to inform overall confidence of the AOPs. The AOPs link to previous descriptions of Ahr activation and connect them to two novel key events (KEs), increase in slincR expression, a newly characterized long noncoding RNA with regulatory functions, and suppression of SOX9, a critical transcription factor implicated in chondrogenesis and cardiac development. In general, confidence levels for KERs ranged between medium and strong, with few inconsistencies, as well as several opportunities for future research identified. While the majority of KEs have only been demonstrated in zebrafish with 2,3,7,8-tetrachlorodibenzo-p-dioxin as an Ahr activator, evidence suggests that the two AOPs likely apply to most vertebrates and many Ahr-activating chemicals. Addition of the AOPs into the AOP-Wiki (https://aopwiki.org/) helps expand the growing Ahr-related AOP network to 19 individual AOPs, of which six are endorsed or in progress and the remaining 13 relatively underdeveloped. Environ Toxicol Chem 2023;42:2063-2077. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Prarthana Shankar
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
- University of Wisconsin Madison Sea Grant Fellow at Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Daniel L. Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| |
Collapse
|
14
|
DeMiguel-Jiménez L, Bilbao D, Prieto A, Reinardy HC, Lekube X, Izagirre U, Marigómez I. The influence of temperature in sea urchin embryo toxicity of crude and bunker oils alone and mixed with dispersant. MARINE POLLUTION BULLETIN 2023; 189:114786. [PMID: 36893648 DOI: 10.1016/j.marpolbul.2023.114786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
This investigation deals with how temperature influences oil toxicity, alone or combined with dispersant (D). Larval lengthening, abnormalities, developmental disruption, and genotoxicity were determined in sea urchin embryos for assessing toxicity of low-energy water accommodated fractions (LEWAF) of three oils (NNA crude oil, marine gas oil -MGO-, and IFO 180 fuel oil) produced at 5-25 °C. PAH levels were similar amongst LEWAFs but PAH profiles varied with oil and production temperature. The sum of PAHs was higher in oil-dispersant LEWAFs than in oil LEWAFs, most remarkably at low production temperatures in the cases of NNA and MGO. Genotoxicity, enhanced after dispersant application, varied depending on the LEWAF production temperature in a different way for each oil. Impaired lengthening, abnormalities and developmental disruption were recorded, the severity of the effects varying with oil, dispersant application and LEWAF production temperature. Toxicity, only partially attributed to individual PAHs, was higher at lower LEWAF production temperatures.
Collapse
Affiliation(s)
- Laura DeMiguel-Jiménez
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa, Bizkaia (Basque Country), Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Bizkaia (Basque Country), Spain
| | - Dennis Bilbao
- IBeA Research Group, Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Bizkaia (Basque Country), Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Bizkaia (Basque Country), Spain
| | - Ailette Prieto
- IBeA Research Group, Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Bizkaia (Basque Country), Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Bizkaia (Basque Country), Spain
| | - Helena C Reinardy
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Dunbeg, Oban, Argyll, PA37 1QA Scotland, United Kingdom; Department of Arctic Technology, The University Centre in Svalbard (UNIS), PO Box 156, N-9171 Longyearbyen, Svalbard, Norway
| | - Xabier Lekube
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa, Bizkaia (Basque Country), Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Bizkaia (Basque Country), Spain
| | - Urtzi Izagirre
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa, Bizkaia (Basque Country), Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Bizkaia (Basque Country), Spain
| | - Ionan Marigómez
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa, Bizkaia (Basque Country), Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Bizkaia (Basque Country), Spain.
| |
Collapse
|
15
|
Filatova TS, Mikhailova VB, Guskova VO, Abramochkin DV. The Effects of Phenanthrene on the Electrical Activity in the Heart of Shorthorn Sculpin (Myoxocephalus scorpio). J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
16
|
Yamamoto FY, Souza ATC, Paula VDCSD, Beverari I, Garcia JRE, Padial AA, de Souza Abessa DM. From molecular endpoints to modeling longer-term effects in fish embryos exposed to the elutriate from Doce River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157332. [PMID: 35870591 DOI: 10.1016/j.scitotenv.2022.157332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/31/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Sediments represent a major sink and also a main source of contaminants to aquatic environments. An environmental disaster from a mining dam breakage in 2015 in South-East Brazil re-suspended complex mixtures of chemicals deposited in the sediment, spreading contaminants along the Doce River Basin (DRB) major river course. While high levels of contaminants in sediment were well described, toxicological effects in aquatic organisms were poorly investigated. Thus, the effects of these potentially toxic chemicals were assessed in the present study through different endpoints (biochemical to populational levels) in fish embryos of the South-American silver catfish exposed to elutriates from different sites of the DRB. Despite no significant mortality observed, our results showed that exposure to the elutriates, especially those from the closest site to the dam collapse, caused higher deformities rates and DNA damage in the fish embryos than in the control group. Multivariate analysis showed that these sublethal effects may be related to the high levels of metals introduced by mining activities, compromising long-term survival and reproduction success. In addition, it was possible to observe the influence of other sources of pollutants along the river. According to our data, the mathematical model simulated a significant impact on the population density at longer-term exposure, for the sites that showed the most prominent toxicity responses. The fish embryo toxicity test proved to be an effective assay to assess the ecotoxicological effects of the pollutants from a major river contaminated by a mining dam collapse and showed that the survival rate per se was not a suitable endpoint to assess the toxicity of the pollutants. As a consequence, we contributed to shed a light on a potential underestimated impact of pollutants in sediments of the DRB on the native organisms at distinct biological levels of organizations.
Collapse
Affiliation(s)
| | | | | | - Isabella Beverari
- Institute of Biosciences, São Paulo State University, São Vicente, Brazil
| | | | - André Andian Padial
- Graduation Program in Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil; Analyses and Synthesis in Biodiversity Lab, Botany Department, Federal University Curitiba, Brazil.
| | | |
Collapse
|
17
|
Hawkey AB, Piatos P, Holloway Z, Boyda J, Koburov R, Fleming E, Di Giulio RT, Levin ED. Embryonic exposure to benzo[a]pyrene causes age-dependent behavioral alterations and long-term metabolic dysfunction in zebrafish. Neurotoxicol Teratol 2022; 93:107121. [PMID: 36089172 PMCID: PMC9679953 DOI: 10.1016/j.ntt.2022.107121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAH) are products of incomplete combustion which are ubiquitous pollutants and constituents of harmful mixtures such as tobacco smoke, petroleum and creosote. Animal studies have shown that these compounds exert developmental toxicity in multiple organ systems, including the nervous system. The relative persistence of or recovery from these effects across the lifespan remain poorly characterized. These studies tested for persistence of neurobehavioral effects in AB* zebrafish exposed 5-120 h post-fertilization to a typical PAH, benzo[a]pyrene (BAP). Study 1 evaluated the neurobehavioral effects of a wide concentration range of BAP (0.02-10 μM) exposures from 5 to 120 hpf during larval (6 days) and adult (6 months) stages of development, while study 2 evaluated neurobehavioral effects of BAP (0.3-3 μM) from 5 to 120 hpf across four stages of development: larval (6 days), adolescence (2.5 months), adulthood (8 months) and late adulthood (14 months). Embryonic BAP exposure caused minimal effects on larval motility, but did cause neurobehavioral changes at later points in life. Embryonic BAP exposure led to nonmonotonic effects on adolescent activity (0.3 μM hyperactive, Study 2), which attenuated with age, as well as startle responses (0.2 μM enhanced, Study 1) at 6 months of age. Similar startle changes were also detected in Study 2 (1.0 μM), though it was observed that the phenotype shifted from reduced pretap activity to enhanced posttap activity from 8 to 14 months of age. Changes in the avoidance (0.02-10 μM, Study 1) and approach (reduced, 0.3 μM, Study 2) of aversive/social cues were also detected, with the latter attenuating from 8 to 14 months of age. Fish from study 2 were maintained into aging (18 months) and evaluated for overall and tissue-specific oxygen consumption to determine whether metabolic processes in the brain and other target organs show altered function in late life based on embryonic PAH toxicity. BAP reduced whole animal oxygen consumption, and overall reductions in total basal, mitochondrial basal, and mitochondrial maximum respiration in target organs, including the brain, liver and heart. The present data show that embryonic BAP exposure can lead to neurobehavioral impairment across the life-span, but that these long-term risks differentially emerge or attenuate as development progresses.
Collapse
Affiliation(s)
- Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Perry Piatos
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Zade Holloway
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jonna Boyda
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Reese Koburov
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth Fleming
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA.
| |
Collapse
|
18
|
Cormier B, Cachot J, Blanc M, Cabar M, Clérandeau C, Dubocq F, Le Bihanic F, Morin B, Zapata S, Bégout ML, Cousin X. Environmental microplastics disrupt swimming activity in acute exposure in Danio rerio larvae and reduce growth and reproduction success in chronic exposure in D. rerio and Oryzias melastigma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119721. [PMID: 35809711 DOI: 10.1016/j.envpol.2022.119721] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs), widely present in aquatic ecosystems, can be ingested by numerous organisms, but their toxicity remains poorly understood. Toxicity of environmental MPs from 2 beaches located on the Guadeloupe archipelago, Marie Galante (MG) and Petit-Bourg (PB) located near the North Atlantic gyre, was evaluated. A first experiment consisted in exposing early life stages of zebrafish (Danio rerio) to MPs at 1 or 10 mg/L. The exposure of early life stages to particles in water induced no toxic effects except a decrease in larval swimming activity for both MPs exposures (MG or PB). Then, a second experiment was performed as a chronic feeding exposure over 4 months, using a freshwater fish species, zebrafish, and a marine fish species, marine medaka (Oryzias melastigma). Fish were fed with food supplemented with environmentally relevant concentrations (1% wet weight of MPs in food) of environmental MPs from both sites. Chronic feeding exposure led to growth alterations in both species exposed to either MG or PB MPs but were more pronounced in marine medaka. Ethoxyresorufin-O-deethylase (EROD) and acetylcholinesterase (AChE) activities were only altered for marine medaka. Reproductive outputs were modified following PB exposure with a 70 and 42% decrease for zebrafish and marine medaka, respectively. Offspring of both species (F1 generation) were reared to evaluate toxicity following parental exposure on unexposed larvae. For zebrafish offspring, it revealed premature mortality after parental MG exposure and parental PB exposure produced behavioural disruptions with hyperactivity of F1 unexposed larvae. This was not observed in marine medaka offspring. This study highlights the ecotoxicological consequences of short and long-term exposures to environmental microplastics relevant to coastal marine areas, which represent essential habitats for a wide range of aquatic organisms.
Collapse
Affiliation(s)
- Bettie Cormier
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400, Talence, France; Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden.
| | - Jérôme Cachot
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400, Talence, France
| | - Mélanie Blanc
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden; MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-les-flots, France
| | - Mathieu Cabar
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-les-flots, France
| | - Christelle Clérandeau
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400, Talence, France
| | - Florian Dubocq
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| | - Florane Le Bihanic
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400, Talence, France
| | - Bénédicte Morin
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400, Talence, France
| | - Sarah Zapata
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400, Talence, France
| | - Marie-Laure Bégout
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-les-flots, France
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-les-flots, France
| |
Collapse
|
19
|
Picone M, Distefano GG, Marchetto D, Russo M, Volpi Ghirardini A. Spiking organic chemicals onto sediments for ecotoxicological analyses: an overview of methods and procedures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31002-31024. [PMID: 35113376 DOI: 10.1007/s11356-022-18987-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Laboratory testing with spiked sediments with organic contaminants is a valuable tool for ecotoxicologists to study specific processes such as effects of known concentrations of toxicants, interactions of the toxicants with sediment and biota, and uptake kinetics. Since spiking of the sediment may be performed by using different strategies, a plethora of procedures was proposed in the literature for spiking organic chemicals onto sediments to perform ecotoxicological analyses. In this paper, we reviewed the scientific literature intending to characterise the kind of substrates that were used for spiking (i.e. artificial or field-collected sediment), how the substrates were handled before spiking and amended with the organic chemical, how the spiked sediment was mixed to allow the homogenisation of the chemical on the substrate and finally how long the spiked sediment was allowed to equilibrate before testing. What emerged from this review is that the choice of the test species, the testing procedures and the physicochemical properties of the organic contaminant are the primary driving factors affecting the selection of substrate type, sediment handling procedures, solvent carrier and mixing method. Finally, we provide recommendations concerning storage and characterization of the substrate, equilibrium times and verification of both equilibration and homogeneity.
Collapse
Affiliation(s)
- Marco Picone
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy
| | - Gabriele Giuseppe Distefano
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy
| | - Davide Marchetto
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy
| | - Martina Russo
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy.
| | - Annamaria Volpi Ghirardini
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy
| |
Collapse
|
20
|
Wu M, Luo J, Huang T, Lian L, Chen T, Song S, Wang Z, Ma S, Xie C, Zhao Y, Mao X, Gao H, Ma J. Effects of African BaP emission from wildfire biomass burning on regional and global environment and human health. ENVIRONMENT INTERNATIONAL 2022; 162:107162. [PMID: 35247686 DOI: 10.1016/j.envint.2022.107162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The vegetation burning caused by wildfires can release significant quantities of aerosols and toxic chemicals into the atmosphere and result in health risk. Among these emitted pollutants, Benzo(a)pyrene (BaP), the most toxic congener of 16 parent PAHs (polycyclic aromatic hydrocarbons), has received widespread concerns because of its carcinogenicity to human health. Efforts have been made to investigate the environmental and health consequences of wildfire-induced BaP emissions in Africa. Still, uncertainties remain due to knowledge and data gaps in wildfire incidences and biomass burning emissions. Based on a newly-developed BaP emission inventory, the present study assesses quantitatively the BaP environment cycling in Africa and its effects on other continents from 2001 to 2014. The new inventory reveals the increasing contribution of BaP emission from African wildfires to the global total primarily from anthropogenic sources, accounting for 48% since the 2000 s. We identify significantly higher BaP emissions and concentrations across sub-Saharan Africa, where the annual averaged BaP concentrations were as high as 5-8 ng/m3. The modeled BaP concentrations were implemented to estimate the lifetime cancer risk (LCR) from the inhalation exposure to BaP concentrations. The results reveal that the LCR values in many African countries exceeded the acceptable risk level at 1 × 10-6, some of which suffer from very high exposure risk with the LCR>1 × 10-4. We show that the African BaP emission from wildfires contributed, to some extent, BaP contamination to Europe as well as other regions, depending on source proximity and atmospheric pathways under favorable atmospheric circulation patterns.
Collapse
Affiliation(s)
- Min Wu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinmu Luo
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lulu Lian
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tianlei Chen
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shijie Song
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhanxiang Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuxin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chaoran Xie
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoxuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianmin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
21
|
Gyasi H, Curry J, Browning J, Ha K, Thomas PJ, O'Brien JM. Microsatellite mutation frequencies in river otters (Lontra Canadensis) from the Athabasca Oil Sands region are correlated to polycyclic aromatic compound tissue burden. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:172-183. [PMID: 35452555 DOI: 10.1002/em.22482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Mining activities in the Athabasca oil sands region (AOSR) have contributed to an increase of polycyclic aromatic compounds (PACs) locally. However, many PACs found in the AOSR, and the combined effects of PAC mixtures have not been evaluated for genotoxicity in wildlife. Here, we examine whether mutation frequencies in AOSR river otters are correlated to PAC tissue burdens. We used single-molecule polymerase chain reaction (SM-PCR) to measure the mutant frequency of unstable DNA microsatellite loci in the bone marrow of wild river otters (n = 11) from the AOSR. Microsatellite mutation frequencies were regressed against liver PAC burden (total, low/high molecular weight [LMW/HMW], and parent/alkylated PACs), and to the distances from where the samples were collected to nearby bitumen upgraders. We found that microsatellite mutation frequency was positively correlated with total liver PAC burden. LMW and alkylated PACs were detected at higher levels and had a stronger positive relationship with mutation frequency than HMW (alkylated and parent) PACs. There were no significant relationships detected between mutation frequency and LMW parent PACs or the distance from bitumen upgraders. Furthermore, pyrogenic and petrogenic signatures suggest PACs in animals with high mutation frequencies were associated with combustion processes; although further investigation is warranted, due to limitations of diagnostic ratio determination with biotic models. Our findings support the hypothesis that PACs found in the AOSR increase mutation frequency in wildlife. Further investigation is required to determine if the elevated PAC levels associated with higher mutation frequency are due to natural exposure or elevated human activity.
Collapse
Affiliation(s)
- Helina Gyasi
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Jory Curry
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jared Browning
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Kelsey Ha
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Philippe J Thomas
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Fang J, Dong S, Boogaard PJ, Rietjens IMCM, Kamelia L. Developmental toxicity testing of unsubstituted and methylated 4- and 5-ring polycyclic aromatic hydrocarbons using the zebrafish embryotoxicity test. Toxicol In Vitro 2022; 80:105312. [PMID: 35033653 DOI: 10.1016/j.tiv.2022.105312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 01/29/2023]
Abstract
The present study evaluates the in vitro developmental toxicity of 4- and 5-ring PAHs including benz[a]anthracene and benzo[a]pyrene and six of their monomethylated congeners, and dibenz[a,h]anthracene using the zebrafish embryotoxicity test (ZET). In general, the tested PAHs induced various developmental effects in the zebrafish embryos including unhatched embryos, no movement and circulation, yolk sac and pericardial edemas, deformed body shape, and cumulative mortality at 96 h post fertilization (hpf). The alkyl substituent on different positions of the aromatic ring of the PAHs appeared to change their in vitro developmental toxicity. Comparison to a previously reported molecular docking study showed that the methyl substituents may affect the interaction of the PAHs with the aryl hydrocarbon receptor (AhR) which is known to play a role in the developmental toxicity of some PAHs. Taken together, our results show that methylation can either increase or decrease the developmental toxicity of PAHs and suggest this may relate to effects on the molecular dimensions and resulting consequences for interactions with the AhR.
Collapse
Affiliation(s)
- Jing Fang
- Division of Toxicology, Wageningen University and Research, 6708, WE, Wageningen, the Netherlands.
| | - Shutong Dong
- Division of Toxicology, Wageningen University and Research, 6708, WE, Wageningen, the Netherlands
| | - Peter J Boogaard
- Division of Toxicology, Wageningen University and Research, 6708, WE, Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, 6708, WE, Wageningen, the Netherlands
| | - Lenny Kamelia
- Shell Health, Shell International B.V., 2596, HR, The Hague, the Netherlands
| |
Collapse
|
23
|
Lille-Langøy R, Jørgensen KB, Goksøyr A, Pampanin DM, Sydnes MO, Karlsen OA. Substituted Two- to Five-Ring Polycyclic Aromatic Compounds Are Potent Agonists of Atlantic Cod ( Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15123-15135. [PMID: 34739213 PMCID: PMC8600679 DOI: 10.1021/acs.est.1c02946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most toxic and bioavailable components found in petroleum and represent a high risk to aquatic organisms. The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other planar aromatic hydrocarbons, including certain PAHs. Ahr acts as a xenosensor and modulates the transcription of biotransformation genes in vertebrates, such as cytochrome P450 1A (cyp1a). Atlantic cod (Gadus morhua) possesses two Ahr proteins, Ahr1a and Ahr2a, which diverge in their primary structure, tissue-specific expression, ligand affinities, and transactivation profiles. Here, a luciferase reporter gene assay was used to assess the sensitivity of the Atlantic cod Ahrs to 31 polycyclic aromatic compounds (PACs), including two- to five-ring native PAHs, a sulfur-containing heterocyclic PAC, as well as several methylated, methoxylated, and hydroxylated congeners. Notably, most parent compounds, including naphthalene, phenanthrene, and partly, chrysene, did not act as agonists for the Ahrs, while hydroxylated and/or alkylated versions of these PAHs were potent agonists. Importantly, the greater potencies of substituted PAH derivatives and their ubiquitous occurrence in nature emphasize that more knowledge on the toxicity of these environmentally and toxicologically relevant compounds is imperative.
Collapse
Affiliation(s)
- Roger Lille-Langøy
- Department
of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| | - Kåre Bredeli Jørgensen
- Department
of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, N-4036 Stavanger, Norway
| | - Anders Goksøyr
- Department
of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| | - Daniela M. Pampanin
- Department
of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, N-4036 Stavanger, Norway
| | - Magne O. Sydnes
- Department
of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, N-4036 Stavanger, Norway
| | - Odd André Karlsen
- Department
of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
24
|
Dellali M, Hedfi A, Ali MB, Noureldeen A, Darwish H, Beyrem H, Gyedu-Ababio T, Dervishi A, Karachle PK, Boufahja F. Multi-biomarker approach in Mytilus galloprovincialis and Ruditapes decussatus as a predictor of pelago-benthic responses after exposure to Benzo[a]Pyrene. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109141. [PMID: 34271163 DOI: 10.1016/j.cbpc.2021.109141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
This study evaluated the biomarker responses indicative of exposure to Benzo[a] Pyrene (B[a]P) in Mytilus galloprovincialis and Ruditapes decussatus. A significant increase of the total oxyradical scavenging capacity (TOSC) was observed after seven days of exposure to two concentrations of B[a]P (100 and 300 μg.L-1), in the digestive gland with the lowest concentration tested. The TOSC in the gills increased notably only after the exposure to 300 μg.L-1 of B[a]P. Interestingly, the superoxide dismutase (SOD) and catalase (CAT) activities in gills and digestive gland on one hand and glutathione S-transferase (GST) in gills in the other, were positively correlated with the concentration of B[a]P with a significant induction noticed at the highest concentration. In contrast, a significant increase of the GST activity was observed in the digestive gland following the exposure of bivalves to 100 μg.L-1. In pelagic (M. galloprovincialis) or benthic (R. decussatus) bivalves, the AChE activity decreased discernibly in digestive glands and gills with the increase of B[a]P concentrations as evidence of neurotoxic effects. In clams, the exposure to B[a]P was followed by a significant increase of Malondialdehyde level (MDA) in gills and digestive gland, this does not occur in gills of Mytilus galloprovincialis at the concentration of 100 μg.L-1. Overall, the results found seems to indicate that the mussel was more suitable as a predictor tool of toxicity of B[a]P.
Collapse
Affiliation(s)
- Mohamed Dellali
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Manel Ben Ali
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hamouda Beyrem
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | | | - Aida Dervishi
- Department of Biotechnology, Faculty of Natural Sciences, University of Tirana, Zog I, 25/1, 1001 Tirana, Albania
| | - Paraskevi K Karachle
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland waters, 46.7 Athens-Sounio Ave., P.O. Box 712, 19013 Anavyssos Attika, Greece
| | - Fehmi Boufahja
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia.
| |
Collapse
|
25
|
DeMiguel-Jiménez L, Etxebarria N, Lekube X, Izagirre U, Marigómez I. Influence of dispersant application on the toxicity to sea urchin embryos of crude and bunker oils representative of prospective oil spill threats in Arctic and Sub-Arctic seas. MARINE POLLUTION BULLETIN 2021; 172:112922. [PMID: 34523425 DOI: 10.1016/j.marpolbul.2021.112922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
This study deals with the toxicity assessment of crude and bunker oils representative of prospective oil spill threats in Arctic and Sub-Arctic seas (NNA: Naphthenic North-Atlantic crude oil; MGO: Marine Gas Oil; IFO: Intermediate Fuel Oil 180), alone or in combination with a third-generation dispersant (Finasol OSR52®). Early life stages of sea urchin, Paracentrotus lividus, were selected for toxicity testing of oil low-energy water accommodated fractions. A multi-index approach, including larval size increase and malformation, and developmental disruption as endpoints, was sensitive to discriminate from slight to severe toxicity caused by the tested aqueous fractions. IFO (heavy bunker oil) was more toxic than NNA (light crude oil), with MGO (light bunker oil) in between. The dispersant was toxic and further on it enhanced oil toxicity. Toxic units revealed that identified PAHs were not the main cause for toxicity, most likely exerted by individual or combined toxic action of non-measured compounds.
Collapse
Affiliation(s)
- Laura DeMiguel-Jiménez
- BCTA Research Group. Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group. Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Nestor Etxebarria
- IBeA Research Group, Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group. Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Xabier Lekube
- BCTA Research Group. Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group. Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Urtzi Izagirre
- BCTA Research Group. Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group. Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Ionan Marigómez
- BCTA Research Group. Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group. Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain.
| |
Collapse
|
26
|
Schiano Di Lombo M, Weeks-Santos S, Clérandeau C, Triffault-Bouchet G, Langlois Valérie S, Couture P, Cachot J. Comparative developmental toxicity of conventional oils and diluted bitumen on early life stages of the rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105937. [PMID: 34450521 DOI: 10.1016/j.aquatox.2021.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Petroleum hydrocarbons are widely used and transported, increasing the risks of spills to the environment. Although conventional oils are the most commonly produced, the production of unconventional oils (i.e. diluted bitumen or dilbit) is increasing. In this study, we compared the effects of conventional oils (Arabian Light and Lloydminster) and dilbits (Bluesky and Clearwater) on early life stages of a salmonid. To this end, aqueous fractions (WAF: water accommodated fraction) of these oils were extracted using mountain spring water. Rainbow trout (Oncorhynchus mykiss) larvae were exposed to 10 and 50% dilutions of these WAFs from hatching (340 DD; degree days) until yolk sac resorption (541 DD). Exposure to WAFs increased skeletal malformations (both dilbits) and hemorrhage (both conventional oils and Bluesky) and decreased head growth (Arabian Light). In addition, increases in EROD activity and DNA damage were measured for all oils and an increase in cyp1a gene expression was measured for Arabian Light, Bluesky and Clearwater. The PAH and C10C50 concentrations were positively correlated to total larval EROD activity, whereas concentrations of total hydrocarbons, VOCs, PAHs, and C10C50 were positively correlated to cyp1a expression. Total hydrocarbon, VOC, and C10C50 concentrations were also negatively correlated to larval growth. This study supports that petroleum hydrocarbons are toxic to early developmental stages of rainbow trout and show that their degree and spectrum of toxicity depends on their chemical composition.
Collapse
Affiliation(s)
- Magali Schiano Di Lombo
- Université de Bordeaux, CNRS, EPHE EPOC UMR 5805, F-33600 Pessac, France; Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, Canada
| | | | | | - Gaëlle Triffault-Bouchet
- Centre d'expertise en analyse environnementale du Québec, Ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, QC, Canada
| | - S Langlois Valérie
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, Canada
| | - Patrice Couture
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, Canada.
| | - Jérôme Cachot
- Université de Bordeaux, CNRS, EPHE EPOC UMR 5805, F-33600 Pessac, France.
| |
Collapse
|
27
|
Abramochkin DV, Kompella SN, Shiels HA. Phenanthrene alters the electrical activity of atrial and ventricular myocytes of a polar fish, the Navaga cod. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105823. [PMID: 33906022 PMCID: PMC8121755 DOI: 10.1016/j.aquatox.2021.105823] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 05/03/2023]
Abstract
Oil and gas exploration in the Arctic can result in the release of polycyclic aromatic hydrocarbons (PAHs) into relatively pristine environments. Following the recent spill of approximately 17 500 tonnes of diesel fuel in Norilsk, Russia, May 2020, our study focussed on the effects of phenanthrene, a low molecular weight PAH found in diesel and crude oil, on the isolated atrial and ventricular myocytes from the heart of the polar teleost, the Navaga cod (Eleginus nawaga). Acute exposure to phenanthrene in navaga cardiomyocytes caused significant action potential (AP) prolongation, confirming the proarrhythmic effects of this pollutant. We show AP prolongation was due to potent inhibition of the main repolarising current, IKr, with an IC50 value of ~2 µM. We also show a potent inhibitory effect (~55%) of 1 µM phenanthrene on the transient IKr currents that protects the heart from early-after-depolarizations and arrhythmias. These data, along with more minor effects on inward sodium (INa) (~17% inhibition at 10 µM) and calcium (ICa) (~17% inhibition at 30 µM) currents, and no effects on inward rectifier (IK1 and IKAch) currents, demonstrate the cardiotoxic effects exerted by phenanthrene on the atrium and ventricle of navaga cod. Moreover, we report the first data that we are aware of on the impact of phenanthrene on atrial myocyte function in any fish species.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow, 119234, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3rd Cherepkovskaya, 15a, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia; Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| | - Shiva N Kompella
- Faculty of Biology, Medicine and Health, Core Technology Facility, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, Core Technology Facility, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK.
| |
Collapse
|
28
|
Johann S, Goßen M, Mueller L, Selja V, Gustavson K, Fritt-Rasmussen J, Wegeberg S, Ciesielski TM, Jenssen BM, Hollert H, Seiler TB. Comparative toxicity assessment of in situ burn residues to initial and dispersed heavy fuel oil using zebrafish embryos as test organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16198-16213. [PMID: 33269444 PMCID: PMC7969557 DOI: 10.1007/s11356-020-11729-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/17/2020] [Indexed: 04/16/2023]
Abstract
In situ burning (ISB) is discussed to be one of the most suitable response strategies to combat oil spills in extreme conditions. After burning, a highly viscous and sticky residue is left and may over time pose a risk of exposing aquatic biota to toxic oil compounds. Scientific information about the impact of burn residues on the environment is scarce. In this context, a comprehensive ISB field experiment with approx. 1000L IFO 180 was conducted in a fjord in Greenland. The present study investigated the toxicity of collected ISB residues to early life stages of zebrafish (Danio rerio) as a model for potentially exposed pelagic organisms. The toxicity of ISB residues on zebrafish embryos was compared with the toxicity of the initial (unweathered) IFO 180 and chemically dispersed IFO 180. Morphological malformations, hatching success, swimming behavior, and biomarkers for exposure (CYP1A activity, AChE inhibition) were evaluated in order to cover the toxic response on different biological organization levels. Across all endpoints, ISB residues did not induce greater toxicity in zebrafish embryos compared with the initial oil. The application of a chemical dispersant increased the acute toxicity most likely due to a higher bioavailability of dissolved and particulate oil components. The results provide insight into the adverse effects of ISB residues on sensitive life stages of fish in comparison with chemical dispersant application.
Collapse
Affiliation(s)
- Sarah Johann
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Mira Goßen
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Leonie Mueller
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Valentina Selja
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Kim Gustavson
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Janne Fritt-Rasmussen
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Susse Wegeberg
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | | | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Thomas-Benjamin Seiler
- Ruhr District Institute of Hygiene, Rotthauser Straße 21, 45879, Gelsenkirchen, Germany.
| |
Collapse
|
29
|
Cormier B, Gambardella C, Tato T, Perdriat Q, Costa E, Veclin C, Le Bihanic F, Grassl B, Dubocq F, Kärrman A, Van Arkel K, Lemoine S, Lagarde F, Morin B, Garaventa F, Faimali M, Cousin X, Bégout ML, Beiras R, Cachot J. Chemicals sorbed to environmental microplastics are toxic to early life stages of aquatic organisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111665. [PMID: 33396175 DOI: 10.1016/j.ecoenv.2020.111665] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 05/24/2023]
Abstract
Microplastics are ubiquitous in aquatic ecosystems, but little information is currently available on the dangers and risks to living organisms. In order to assess the ecotoxicity of environmental microplastics (MPs), samples were collected from the beaches of two islands in the Guadeloupe archipelago, Petit-Bourg (PB) located on the main island of Guadeloupe and Marie-Galante (MG) on the second island of the archipelago. These samples have a similar polymer composition with mainly polyethylene (PE) and polypropylene (PP). However, these two samples are very dissimilar with regard to their contamination profile and their toxicity. MPs from MG contain more lead, cadmium and organochlorine compounds while those from PB have higher levels of copper, zinc and hydrocarbons. The leachates of these two samples of MPs induced sublethal effects on the growth of sea urchins and on the pulsation frequency of jellyfish ephyrae but not on the development of zebrafish embryos. The toxic effects are much more marked for samples from the PB site than those from the MG site. This work demonstrates that MPs can contain high levels of potentially bioavailable toxic substances that may represent a significant ecotoxicological risk, particularly for the early life stages of aquatic animals.
Collapse
Affiliation(s)
- Bettie Cormier
- Bordeaux University, EPOC, UMR CNRS University of Bordeaux EPHE 5805, Avenue des Facultés, 33400 Talence, France; Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden.
| | - Chiara Gambardella
- Institute for the study of Anthropic Impacts and Sustainability in Marine Environment - National Research Council (CNR-IAS), Genova, Italy
| | - Tania Tato
- Faculty of Marine Sciences, University of Vigo, E-36310 Vigo, Galicia, Spain
| | - Quentin Perdriat
- Bordeaux University, EPOC, UMR CNRS University of Bordeaux EPHE 5805, Avenue des Facultés, 33400 Talence, France
| | - Elisa Costa
- Institute for the study of Anthropic Impacts and Sustainability in Marine Environment - National Research Council (CNR-IAS), Genova, Italy
| | - Cloé Veclin
- CNRS/University of Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR 5254, 64000, Pau, France
| | - Florane Le Bihanic
- Bordeaux University, EPOC, UMR CNRS University of Bordeaux EPHE 5805, Avenue des Facultés, 33400 Talence, France
| | - Bruno Grassl
- CNRS/University of Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR 5254, 64000, Pau, France
| | - Florian Dubocq
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| | - Anna Kärrman
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82 Örebro, Sweden
| | - Kim Van Arkel
- Race for Water Foundation, Lausanne 1007, Switzerland
| | - Soazig Lemoine
- Laboratoire de biologie marine, Université des Antilles, French West Indies, Campus de Fouillole, BP 592, 97117, Pointe-à-Pitre, France
| | - Fabienne Lagarde
- Institut des Molécules et Matériaux du Mans (IMMM, UMR CNRS 6283), Université du Maine, Avenu Olivier Messiaen, F-72085 Le Mans, France
| | - Bénédicte Morin
- Bordeaux University, EPOC, UMR CNRS University of Bordeaux EPHE 5805, Avenue des Facultés, 33400 Talence, France
| | - Francesca Garaventa
- Institute for the study of Anthropic Impacts and Sustainability in Marine Environment - National Research Council (CNR-IAS), Genova, Italy
| | - Marco Faimali
- Institute for the study of Anthropic Impacts and Sustainability in Marine Environment - National Research Council (CNR-IAS), Genova, Italy
| | - Xavier Cousin
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, 34250 Palavas-les-Flots, France; University of Paris-Saclay, AgroParisTech, INRAE, GABI, 78350 Jouy-en-Josas, France
| | - Marie-Laure Bégout
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, 34250 Palavas-les-Flots, France
| | - Ricardo Beiras
- Faculty of Marine Sciences, University of Vigo, E-36310 Vigo, Galicia, Spain
| | - Jérôme Cachot
- Bordeaux University, EPOC, UMR CNRS University of Bordeaux EPHE 5805, Avenue des Facultés, 33400 Talence, France.
| |
Collapse
|
30
|
Price ER, Mager EM. The effects of exposure to crude oil or PAHs on fish swim bladder development and function. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108853. [PMID: 32777466 DOI: 10.1016/j.cbpc.2020.108853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 11/17/2022]
Abstract
The failure of the swim bladder to inflate during fish development is a common and sensitive response to exposure to petrochemicals. Here, we review potential mechanisms by which petrochemicals or their toxic components (polycyclic aromatic hydrocarbons; PAHs) may affect swim bladder inflation, particularly during early life stages. Surface films formed by oil can cause a physical barrier to primary inflation by air gulping, and are likely important during oil spills. The act of swimming to the surface for primary inflation can be arduous for some species, and may prevent inflation if this behavior is limited by toxic effects on vision or musculature. Some studies have noted altered gene expression in the swim bladder in response to PAHs, and Cytochrome P450 1A (CYP1A) can be induced in swim bladder or rete mirabile tissue, suggesting that PAHs can have direct effects on swim bladder development. Swim bladder inflation failure can also occur secondarily to the failure of other systems; cardiovascular impairment is the best elucidated of these mechanisms, but other mechanisms might include non-inflation as a sequela of disruption to thyroid signaling or cholesterol metabolism. Failed swim bladder inflation has the potential to lead to chronic sublethal effects that are as yet unstudied.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, TX 76203, United States of America.
| | - Edward M Mager
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, TX 76203, United States of America
| |
Collapse
|
31
|
Rodgers ML, Serafin J, Sepúlveda MS, Griffitt RJ. The impact of salinity and dissolved oxygen regimes on transcriptomic immune responses to oil in early life stage Fundulus grandis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100753. [PMID: 33249265 DOI: 10.1016/j.cbd.2020.100753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Understanding the effects of oil exposure on early life stage fish species is critical to fully assessing the environmental impacts of oil spills. Oil released from the 2010 Deepwater Horizon spill reached habitats where estuarine fish routinely spawn. In addition, estuaries are highly dynamic environments, therefore, fish in these areas are routinely exposed to varying salinity and dissolved oxygen (DO) levels, each of which are known to modulate transcriptional responses. Fish exposed to oil often display altered immune competence, and several studies have shown that Deepwater Horizon oil in particular causes modulation of various immune functions. However, few studies have directly examined how environmental parameters may affect oil-induced immunomodulation, particularly in early life stage fishes when the immune system is still developing. To this end, we examined transcriptional patterns of immune genes and pathways in Fundulus grandis larvae to various oil (0, 15 μg/L), salinity (3, 30 ppt), and DO (2.5, 6 mg/L) regimes in a fully factorial design. Our results suggest that immune pathways are generally activated in all treatment groups with the exception of the Low Salinity/No Oil/Hypoxia treatment where immune pathways are largely suppressed, and the High Salinity/No Oil/Hypoxia treatment where pathways are unchanged. The High Salinity/Oil/Hypoxia treatment had the largest number of enriched immune pathways (44 as defined by IPA and 43 as defined by ConsensusPathDB), indicating that oil under certain environmental conditions has the potential to further modulate immune-related genes, pathways, and responses in fish.
Collapse
Affiliation(s)
- Maria L Rodgers
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA.
| | - Jennifer Serafin
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| |
Collapse
|
32
|
Rigaud C, Eriksson A, Krasnov A, Wincent E, Pakkanen H, Lehtivuori H, Ihalainen J, Vehniäinen ER. Retene, pyrene and phenanthrene cause distinct molecular-level changes in the cardiac tissue of rainbow trout (Oncorhynchus mykiss) larvae, part 1 - Transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141031. [PMID: 32738692 DOI: 10.1016/j.scitotenv.2020.141031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are contaminants of concern that impact every sphere of the environment. Despite several decades of research, their mechanisms of toxicity are still poorly understood. This study explores the mechanisms of cardiotoxicity of the three widespread model PAHs retene, pyrene and phenanthrene in the rainbow trout (Oncorhynchus mykiss) early life stages. Newly hatched larvae were exposed to each individual compound at sublethal doses causing no significant increase in the prevalence of deformities. Changes in the cardiac transcriptome were assessed after 1, 3, 7 and 14 days of exposure using custom Salmo salar microarrays. The highest number of differentially expressed genes was observed after 1 or 3 days of exposure, and retene was the most potent compound in that regard. Over-representation analyses suggested that genes related to cardiac ion channels, calcium homeostasis and muscle contraction (actin binding, troponin and myosin complexes) were especially targeted by retene. Pyrene was also able to alter similar myosin-related genes, but at a different timing and in an opposite direction, suggesting compound-specific mechanisms of toxicity. Pyrene and to a lesser extent phenanthrene were altering key genes linked to the respiratory electron transport chain and to oxygen and iron metabolism. Overall, phenanthrene was not very potent in inducing changes in the cardiac transcriptome despite being apparently metabolized at a slower rate than retene and pyrene. The present study shows that exposure to different PAHs during the first few days of the swim-up stage can alter the expression of key genes involved into the cardiac development and function, which could potentially affect negatively the fitness of the larvae in the long term.
Collapse
Affiliation(s)
- Cyril Rigaud
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Andreas Eriksson
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Aleksei Krasnov
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hannu Pakkanen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Heli Lehtivuori
- Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Janne Ihalainen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
33
|
Zheng Y, Li Y, Yue Z, Li Z, Li X, Wang J. Teratogenic effects of environmentally relevant concentrations of phenanthrene on the early development of marine medaka (Oryzia melastigma). CHEMOSPHERE 2020; 254:126900. [PMID: 32957295 DOI: 10.1016/j.chemosphere.2020.126900] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in marine environments and have arouse great concern since they pose adverse effects to marine ecosystem. To determine the potential impacts of environmentally relevant PAHs on early life stages of marine fish, this study exposed embryos of marine medaka (Oryzias melastigma) to 0, 2, 10, 50, and 250 μg/L of phenanthrene (Phe), one of the most abundant PAHs. The results demonstrated that Phe exposure decreased hatching rates, delayed hatching time of embryos, and increased deformity rate of newly-hatched larvae. Exposure to 10 and 50 μg/L Phe decreased the survival rate of marine medaka larvae at 28 days post-fertilization (dpf), and no embryo successfully hatched in 250 μg/L Phe exposure group. Morphology results showed that 10, 50, and 250 μg/L Phe exposure significantly retarded the development of embryos, and 2, 10, and 50 μg/L caused yolk sac edema and pericardial edema in newly-hatched larvae, indicating that low concentrations of Phe could induce developmental cardiac toxicity. Furthermore, the changes in the expression of heart development-related genes were determined, and the results showed that Phe-induced cardiac malformation might be related with fgf8, bmp4, smyd1, ATPase and gata4 genes. Overall, environmentally relevant PAHs could disrupt heart morphogenesis and hatching process of marine medaka, which might have profound consequences for sustainability of fish population.
Collapse
Affiliation(s)
- Yuqi Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zonghao Yue
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, 466001, China
| | - Zuwei Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xuan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
34
|
Le Bihanic F, Clérandeau C, Cormier B, Crebassa JC, Keiter SH, Beiras R, Morin B, Bégout ML, Cousin X, Cachot J. Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development. MARINE POLLUTION BULLETIN 2020; 154:111059. [PMID: 32319895 DOI: 10.1016/j.marpolbul.2020.111059] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 05/27/2023]
Abstract
The role of polyethylene microplastics 4-6 μm size (MPs) in the toxicity of environmental compounds to fish early life stages (ELS) was investigated. Marine medaka Oryzias melastigma embryos and larvae were exposed to suspended MPs spiked with three model contaminants: benzo(a)pyrene (MP-BaP), perfluorooctanesulfonic acid (MP-PFOS) and benzophenone-3 (MP-BP3) for 12 days. There was no evidence of MPs ingestion but MPs agglomerated on the surface of the chorion. Fish ELS exposed to virgin MPs did not show toxic effects. Exposure to MP-PFOS decreased embryonic survival and prevented hatching. Larvae exposed to MP-BaP or MP-BP3 exhibited reduced growth, increased developmental anomalies and abnormal behavior. Compared to equivalent waterborne concentrations, BaP and PFOS appeared to be more embryotoxic when spiked on MPs than when alone in seawater. These results suggest a relevant pollutant transfer by direct contact of MPs to fish ELS that should be included in the ecotoxicological risk assessment of MPs.
Collapse
Affiliation(s)
| | | | - Bettie Cormier
- Bordeaux University, EPOC, UMR CNRS 5805, 33405 Talence, France; Örebro University, Man-Technology Environment Research Center, Örebro, Sweden
| | | | - Steffen H Keiter
- Örebro University, Man-Technology Environment Research Center, Örebro, Sweden
| | | | - Bénédicte Morin
- Bordeaux University, EPOC, UMR CNRS 5805, 33405 Talence, France
| | | | - Xavier Cousin
- Ifremer, Laboratoire Ressources Halieutiques, 17137 L'Houmeau, France; MARBEC, Univ. Montpellier, CNRS, IRD, Ifremer, 34250 Palavas, France; Univ. Paris-Saclay, AgroParisTech, INRAE, GABI, 78350 Jouy-en-Josas, France
| | - Jérôme Cachot
- Bordeaux University, EPOC, UMR CNRS 5805, 33405 Talence, France
| |
Collapse
|
35
|
Barreto LS, Souza ATDC, Martins CC, Araujo SBL, Oliveira Ribeiro CAD. Urban effluents affect the early development stages of Brazilian fish species with implications for their population dynamics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109907. [PMID: 31732269 DOI: 10.1016/j.ecoenv.2019.109907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
The pollution from urban effluents discharged into natural waters is a major cause of aquatic biodiversity loss. Ecotoxicological testing contributes significantly to understand the risk of exposure to the biota and to establish conservation policies. The objective of the current study was to assess the toxicity of a river highly influenced by urban effluents (Atuba River, Curitiba city, Southern Brazil) to the early stages of development in four South American native fish species, investigating the consequences at the population level through mathematical modelling. The species chosen were Salminus brasiliensis, Prochilodus lineatus, Rhamdia quelen, and Pseudoplatystoma corruscans, ecologically important species encompassing different conservation statuses and vulnerability. The embryos were exposed from 8 to 96 h post fertilization to the Atuba River water, collected downstream of the largest wastewater treatment plant in the Metropolitan Region of Curitiba, and their survival rates and deformities were registered. The species S. brasiliensis and P. lineatus presented the highest mortality rates, showing high sensitivity to the pollutants present in the water. According to the individual-based mathematical model, these species showed high vulnerability and risk of extinction under the tested experimental conditions, even when different sensitivity scenarios of juveniles and adults were considered. The other two species, R. quelen and P. corruscans, showed a more resistant condition to mortality, but also presented high frequency and severity of deformities. These results emphasize the importance of testing the sensitivity of different Brazilian native species for the conservation of biodiversity and the application of models to predict the effects of pollutants at the population level.
Collapse
Affiliation(s)
- Luiza Santos Barreto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-970, Curitiba, PR, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil.
| | - Angie Thaisa da Costa Souza
- Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - César C Martins
- Centro de Estudos do Mar, Universidade Federal do Paraná, CEP, 83255-976, Pontal do Paraná, PR, Brazil
| | | | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|
36
|
Pannetier P, Morin B, Le Bihanic F, Dubreil L, Clérandeau C, Chouvellon F, Van Arkel K, Danion M, Cachot J. Environmental samples of microplastics induce significant toxic effects in fish larvae. ENVIRONMENT INTERNATIONAL 2020; 134:105047. [PMID: 31731002 DOI: 10.1016/j.envint.2019.105047] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 05/20/2023]
Abstract
Microplastics (MPs) are present throughout aquatic ecosystems, and can be ingested by a wide variety of organisms. At present, the physical and chemical effects of environmental MPs on aquatic organisms are poorly documented. This study aims to examine the physiological and behavioral effects caused by fish consuming environmental microplastics at different life stages. MP samples were collected from beaches on three islands (Easter Island, Guam and Hawaii) located near the North and South gyres of the Pacific Ocean. Larvae and juveniles of Japanese Medaka were fed for 30days with three doses of MPs (0.01, 0.1 and 1% w/w in fish food) approximate to the concentrations measured in moderately and heavily contaminated ocean areas. Ingestion of MPs by medaka larvae caused (variously) death, decreased head/body ratios, increased EROD activity and DNA breaks and, alterations to swimming behavior. A diet of 0.1% MPs was the most toxic. Two-month-old juveniles fed with 0.01% MPs did not exhibit any symptoms except an increase in DNA breaks. Our results demonstrate ingestion and mainly sublethal effects of environmental MPs in early life stages of fish at realistic MP concentrations. The toxicity of microplastics varies from one sample to another, depending on polymer composition, weathering and pollutant content. This study examines the ecological consequences microplastic build-up in aquatic ecosystems, more particularly in coastal marine areas, which serve as breeding and growing grounds for a number of aquatic species.
Collapse
Affiliation(s)
| | - Bénédicte Morin
- Université de Bordeaux, UMR 5805 EPOC, 33400 Talence, France
| | | | - Laurence Dubreil
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes 44307, France
| | | | | | - Kim Van Arkel
- Race For Water Foundation, Lausanne 1007, Switzerland
| | - Morgane Danion
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Laboratoire de Ploufragan-Plouzané, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jérôme Cachot
- Université de Bordeaux, UMR 5805 EPOC, 33400 Talence, France.
| |
Collapse
|
37
|
Ainerua MO, Tinwell J, Kompella SN, Sørhus E, White KN, van Dongen BE, Shiels HA. Understanding the cardiac toxicity of the anthropogenic pollutant phenanthrene on the freshwater indicator species, the brown trout (Salmo trutta): From whole heart to cardiomyocytes. CHEMOSPHERE 2020; 239:124608. [PMID: 31499312 PMCID: PMC6857438 DOI: 10.1016/j.chemosphere.2019.124608] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 05/05/2023]
Abstract
Freshwater systems are faced with a myriad of stressors including geomorphological alterations, nutrient overloading and pollution. Previous studies in marine fish showed polyaromatic hydrocarbons (PAHs) to be cardiotoxic. However, the cardiotoxicity of anthropogenic pollutants in freshwater fishes is unclear and has not been examined across multiple levels of cardiac organization. Here we investigated the effect of phenanthrene (Phe), a pervasive anthropogenic pollutant on a sentinel freshwater species, the brown trout (Salmo trutta). We first examined the electrical activity of the whole heart and found prolongation (∼8.6%) of the QT interval (time between ventricular depolarization and repolarization) of the electrocardiogram (ECG) and prolongation (∼13.2%) of the monophasic action potential duration (MAPD) following ascending doses of Phe. At the tissue level, Phe significantly reduced trabecular force generation by ∼24% at concentration 15 μM and above, suggesting Phe reduces cellular calcium cycling. This finding was supported by florescent microscopy showing a reduction (∼39%) in the intracellular calcium transient amplitude following Phe exposure in isolated brown trout ventricular myocytes. Single-cell electrophysiology was used to reveal the mechanism underlying contractile and electrical dysfunction following Phe exposure. A Phe-dependent reduction (∼38%) in the L-type Ca2+ current accounts, at least in part, for the lowered Ca2+ transient and force production. Prolongation of the MAPD and QT interval was explained by a reduction (∼70%) in the repolarising delayed rectifier K+ current following Phe exposure. Taken together, our study shows a direct impact of Phe across multiple levels of cardiac organization in a key freshwater salmonid.
Collapse
Affiliation(s)
- Martins Oshioriamhe Ainerua
- Cardiovascular Division, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility Building, Manchester, M13 9NT, United Kingdom; Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria
| | - Jake Tinwell
- Cardiovascular Division, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility Building, Manchester, M13 9NT, United Kingdom
| | - Shiva Nag Kompella
- Cardiovascular Division, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility Building, Manchester, M13 9NT, United Kingdom
| | - Elin Sørhus
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Keith N White
- School of Earth Atmospheric and Environmental Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9GB, United Kingdom
| | - Bart E van Dongen
- School of Earth Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Science, University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Holly A Shiels
- Cardiovascular Division, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Core Technology Facility Building, Manchester, M13 9NT, United Kingdom.
| |
Collapse
|
38
|
Pérez-Coyotl I, Galar-Martínez M, García-Medina S, Gómez-Oliván LM, Gasca-Pérez E, Martínez-Galero E, Islas-Flores H, Pérez-Pastén BR, Barceló D, López de Alda M, Pérez-Solsona S, Serra-Roig MP, Montemurro N, Peña-Herrera JM, Sánchez-Aceves LM. Polluted water from an urban reservoir (Madín dam, México) induces toxicity and oxidative stress in Cyprinus carpio embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:510-521. [PMID: 31103011 DOI: 10.1016/j.envpol.2019.04.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The Madín Dam is a reservoir located in the municipalities of Naucalpan and Atizapán, in the metropolitan area adjacent to Mexico City. The reservoir supplies drinking water to nearby communities and provides an area for various recreational activities, including kayaking, sailing and carp fishing. Over time, the number of specimens of common carp has notably diminished in the reservoir, which receives direct domestic drainage from two towns as well as numerous neighborhoods along the Tlalnepantla River. Diverse studies have demonstrated that the pollutants in the water of the reservoir produce oxidative stress, genotoxicity and cytotoxicity in juvenile Cyprinus carpio, possibly explaining the reduction in the population of this species; however, it is necessary to assess whether these effects may also be occurring directly in the embryos. Hence, surface water samples were taken at five sites and pharmaceutical drugs, personal care products (especially sunscreens), organophosphate and organochlorine pesticides, and other persistent organic pollutants (e.g., polychlorinated biphenyls and polycyclic aromatic hydrocarbons) were identified. Embryos of C. carpio were exposed to the water samples to evaluate embryolethality, modifications in embryonic development, lipoperoxidation, the quantity of hydroperoxide and oxidized proteins, and antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase). It was found that the polluted water of the Madín Dam gave rise to embryolethality, embryotoxicity, congenital abnormalities, and oxidative stress on the common carp embryos.
Collapse
Affiliation(s)
- I Pérez-Coyotl
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - M Galar-Martínez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico.
| | - S García-Medina
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico.
| | - L M Gómez-Oliván
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - E Gasca-Pérez
- Cátedra CONACYT. Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - E Martínez-Galero
- Laboratory of Reproductive Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - H Islas-Flores
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Borja R Pérez-Pastén
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - D Barceló
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M López de Alda
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Pérez-Solsona
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M P Serra-Roig
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - N Montemurro
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - J M Peña-Herrera
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - L M Sánchez-Aceves
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| |
Collapse
|
39
|
Vignet C, Cappello T, Fu Q, Lajoie K, De Marco G, Clérandeau C, Mottaz H, Maisano M, Hollender J, Schirmer K, Cachot J. Imidacloprid induces adverse effects on fish early life stages that are more severe in Japanese medaka (Oryzias latipes) than in zebrafish (Danio rerio). CHEMOSPHERE 2019; 225:470-478. [PMID: 30897470 DOI: 10.1016/j.chemosphere.2019.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 05/20/2023]
Abstract
Neonicotinoids are widely used insecticides that have frequently been found in freshwater with concentrations ranging from ng to μg/L. It is known that these compounds impact non-target invertebrates, such as bees and gammaridae, in terms of toxicity and behavior, but impacts and species differences on vertebrates such as fish are little explored. The aim of this study was to investigate and compare the effects of one widely used neonicotinoid, imidacloprid, on development and behavior of two fish model species: Zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes). Fish were exposed for 5 (zebrafish) and 14 (medaka) days from 0.2 to 2000 μg/L imidacloprid by aqueous exposure. Survival, development, behavior and histological features were monitored and organism-internal concentrations and biotransformation products measured. Imidacloprid caused sublethal effects in both species but the effects were much stronger in medaka with deformities, lesions and reduced growth being the most prominent impacts. Due to the overall longer time of development, time-integrated exposure of medaka was about 2-fold higher compared to zebrafish, potentially accounting for parts of the sensitivity differences. Our results underline the importance of taking species sensitivity differences into account especially when considering that medaka responded at imidacloprid concentrations that have been measured in the environment.
Collapse
Affiliation(s)
- Caroline Vignet
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
| | - Tiziana Cappello
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, 98166, Italy
| | - Qiuguo Fu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Kévin Lajoie
- Université de Bordeaux, Laboratoire EPOC, UMR CNRS 5805, 33615, Pessac Cedex, France
| | - Giuseppe De Marco
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, 98166, Italy
| | - Christelle Clérandeau
- Université de Bordeaux, Laboratoire EPOC, UMR CNRS 5805, 33615, Pessac Cedex, France
| | - Hélène Mottaz
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Maria Maisano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, 98166, Italy
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zurich, Institute of Biogeochemistry and Pollutant Dynamics, 8092, Zürich, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zurich, Institute of Biogeochemistry and Pollutant Dynamics, 8092, Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Jérôme Cachot
- Université de Bordeaux, Laboratoire EPOC, UMR CNRS 5805, 33615, Pessac Cedex, France
| |
Collapse
|
40
|
Pannetier P, Morin B, Clérandeau C, Laurent J, Chapelle C, Cachot J. Toxicity assessment of pollutants sorbed on environmental microplastics collected on beaches: Part II-adverse effects on Japanese medaka early life stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:1098-1107. [PMID: 31091641 DOI: 10.1016/j.envpol.2018.10.129] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/09/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
While microplastics are present in great abundance across all seas and oceans, little is known about their effects on marine life. In the aquatic environment, they can accumulate a variety of chemicals and can be ingested by many marine organisms including fish, with chronic physical and chemical effects. The purpose of this paper is to evaluate the toxic effects of pollutants sorbed at the surface of environmental microplastics (MPs), collected on various beaches from three islands of the Pacific Ocean. Developmental toxicity of virgin MPs or artificially coated with B[a]P and environmental MPs from Easter Island, Guam and Hawaii was evaluated on embryos and prolarvae of Japanese medaka. Mortality, hatching success, biometry, malformations, EROD activity and DNA damage were analyzed after exposure to DMSO extracts. No toxicity was observed for extracts of virgin MPs whatever the endpoint considered. Extracts of virgin MPs coated with 250 µg.g-1 of B(a)P induced lethal effects with high embryo mortality (+81%) and low hatching rate (-28%) and sublethal effects including biometry and swimming behavior changes, increase of EROD activity (+94%) and DNA damage (+60%). Environmental MPs collected on the three selected islands exhibited different polymer, pollutant and toxicity patterns. The highest toxicity was detected for MPs extract from Hawaï with head/body length and swimming speed decreases and induction of EROD activity and DNA stand breaks. This study reports the possible sublethal toxicity of organic pollutants sorbed on MPs to fish early life stages.
Collapse
Affiliation(s)
| | | | | | | | | | - Jérôme Cachot
- Univ. Bordeaux, EPOC, UMR 5805, F-33400, Talence, France
| |
Collapse
|
41
|
Boulanger E, Barst BD, Alloy MM, Blais S, Houde M, Head JA. Assessment of environmentally contaminated sediment using a contact assay with early life stage zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:950-962. [PMID: 31096425 DOI: 10.1016/j.scitotenv.2018.12.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Lake Saint-Louis, a shallow fluvial lake near the western tip of the island of Montreal, QC, Canada is an important spawning ground for many species of fish. Sediments in certain areas of the lake are known to be contaminated with high levels of metals and legacy organic chemicals. To improve our understanding of risk to native fish populations, we conducted a study evaluating levels of sediment contamination and potential effects on early life stage fish. Concentrations of PAHs, PCBs, PCDDs and PCDFs were several orders of magnitude higher at two industrial sites (B1 and B2) than at a nearby reference site (IP). Concentrations of 32 metals and metalloids were at least 5-fold higher at B1 and B2 than at IP. Moreover, all available interim sediment quality guidelines (ISQGs) were exceeded at the two contaminated sites, while none were exceeded at the reference site. Biological effects were evaluated using a sediment contact assay. Zebrafish (Danio rerio) embryos were exposed to clean water (control), or to sediment from IP, B1, and B2 until 120 h post fertilization (hpf). Mortality was significantly elevated in fish exposed to the B1, but not the B2 sediment. The frequency of deformities increased with increasing contamination, but this trend was not statistically significant (p > 0.05). Genes that are implicated in the response to PAHs, PCBs, dioxins and furans (cyp1a, cyp1b1, ahr2) were significantly elevated in the 120 hpf larvae exposed to the B1 and B2 sediments. Global DNA methylation, and mRNA expression of genes related to oxidative stress (maft, cat, hmox1, sod2), embryonic development (bmp2b, baf60c), metal exposure (mt2), and DNA repair (gadd45b) were unaffected. Our results suggest that the Beauharnois sector of Lake Saint-Louis is poor quality spawning habitat due to high levels of contamination, and the potential for harmful effects on early life stage fish.
Collapse
Affiliation(s)
- Emily Boulanger
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Benjamin D Barst
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Matthew M Alloy
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Simon Blais
- Saint-Lawrence Action Plan, Environmental Protection Operations Directorate, Environment and Climate Change Canada, 1550 Avenue d'Estimauville, Québec, Québec G1J 0C3, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Science and Water Technology Directorate, Environment and Climate Change Canada, 105 McGill Street, Montréal, Québec H2Y 2E7, Canada
| | - Jessica A Head
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
42
|
Pannetier P, Morin B, Clérandeau C, Lacroix C, Cabon J, Cachot J, Danion M. Comparative biomarker responses in Japanese medaka (Oryzias latipes) exposed to benzo[a]pyrene and challenged with betanodavirus at three different life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:964-976. [PMID: 30380501 DOI: 10.1016/j.scitotenv.2018.10.256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
It is now well documented that several contaminants can modulate the fish immune system, leading to disrupted host resistance against pathogens and increased incidence of disease. Since fish are usually co-exposed to chemicals and pathogens in the natural environment, analysis of the immunotoxic effects of pollutants is particularly relevant. The authorities in the European Union have recommended the development of toxicity assays on cell cultures and embryos, as an alternative to testing in vertebrates. This is why in our study, a fish immune challenge assay was developed for the early life stages of Japanese medaka to evaluate and compare the relevance of new biomarkers. Fish were exposed to benzo[a]pyrene (BaP), a model pollutant, for 8days at the embryonic stage, or for 48h at the larvae and juvenile stages, and fish were infected with betanodavirus by bath-challenge of 106TCID50/mL. Biometric changes and induction of malformations were observed after embryonic exposure. DNA damage and induction of EROD activity were recorded at the end of all chemical exposures. Viral infection increased the mortality rate significantly and disturbed the behavior of fish after light stimulation. While BaP exposure increased swimming speed, betanodavirus infection slowed swimming activity. In larvae co-exposed to BaP and the virus, the viral titer in the whole body was higher than in fish infected only with the virus. This study highlighted the sensitivity and usefulness of the immune challenge assay on the early life stages of Japanese medaka to evaluate the toxic effects of pollutants.
Collapse
Affiliation(s)
- Pauline Pannetier
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | - Bénédicte Morin
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | | | - Camille Lacroix
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (CEDRE), 715 Rue Alain Colas, 29200 Brest, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jérôme Cachot
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
43
|
Mauduit F, Farrell AP, Domenici P, Lacroix C, Le Floch S, Lemaire P, Nicolas-Kopec A, Whittington M, Le Bayon N, Zambonino-Infante JL, Claireaux G. Assessing the long-term effect of exposure to dispersant-treated oil on fish health using hypoxia tolerance and temperature susceptibility as ecologically relevant biomarkers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:210-221. [PMID: 30206986 DOI: 10.1002/etc.4271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/04/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
The ecological and economic importance of fish act as a brake on the development of chemical dispersants as operational instruments following oil spills. Although a valuable and consistent body of knowledge exists, its use in spill response is limited. The objective of the present study was to increase current knowledge base to facilitate the translation of published data into information of operational value. Thus we investigated the dose-response relationship between dispersant-treated oil exposure and ecologically relevant consequences by combining laboratory and field experiments. Effects were examined over almost a year using juveniles of the slowly growing, commercially important European sea bass (Dicentrarchus labrax). A reliable interpretation of biomarker responses requires a complete knowledge of the factors likely to affect them. Interpopulational variability is of particular importance in environmental impact assessment because biomarker responses from a population collected in an impacted area are classically compared with those collected in a clean site. Our study revealed no effect of the exposure to dispersant-treated oil on fish hypoxia tolerance and temperature susceptibility at 1 and 11 mo post exposure. Similarly, no effect of the exposure was observed on the ability of the fish to cope with environmental contingencies in the field, regardless of the dose tested. Thus we feel confident to suggest that a 48-h exposure to chemically treated oil does not affect the ability of sea bass to cope with mild environmental contingencies. Finally, investigation of interpopulation variability revealed large differences in both hypoxia tolerance and temperature susceptibility among the 2 populations tested, suggesting that this variability may blur the interpretation of population comparisons as classically practiced in impact assessment. Environ Toxicol Chem 2019;38:210-221. © 2018 SETAC.
Collapse
Affiliation(s)
- Florian Mauduit
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Centre Ifremer de Bretagne, Plouzané, France
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paolo Domenici
- Istituto per lo studio degli Impatti Antropici e Sostenibilità in ambiente marino, Consiglio Nazionale delle Ricerche, Località Sa Mardini, Oristano, Italy
| | - Camille Lacroix
- Departement de Recherche, Centre de Documentation, de Recherche, et d'Expérimentations sur les Pollutions Accidentelles des Eaux, Brest, France
| | - Stéphane Le Floch
- Departement de Recherche, Centre de Documentation, de Recherche, et d'Expérimentations sur les Pollutions Accidentelles des Eaux, Brest, France
| | | | | | | | - Nicolas Le Bayon
- Institut Français de Recherche pour l'Exploitation de la Mer, LEMAR (UMR 6539), Centre Ifremer de Bretagne, Plouzané, France
| | - José-Luis Zambonino-Infante
- Institut Français de Recherche pour l'Exploitation de la Mer, LEMAR (UMR 6539), Centre Ifremer de Bretagne, Plouzané, France
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Centre Ifremer de Bretagne, Plouzané, France
| |
Collapse
|
44
|
Uno S, Kokushi E, Kawano M, McElroy AE, Koyama J. Toxic evaluations of sediments in Tokyo Bay, Japan, using Japanese medaka embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27702-27709. [PMID: 27623855 DOI: 10.1007/s11356-016-7581-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Toxic risks of sediments collected from seven sites in Tokyo Bay were evaluated using Japanese medaka embryos. Those sediments with slight pore water were placed in grass petri dishes without overlying water. The most remarkable effect in the field sediment was to cause hatching delay in embryos, and the longest time until hatching took was 12.5 ± 1.6 days post-fertilization (dpf), although that in control group was 10.1 ± 0.7 dpf. A significant delay in hatching was observed at four sites. Because total carbon concentrations were relatively high in sediments at three of these four sites, several chemicals were expected to be residues in these sites and could cause their delay. Although extreme mortality was not observed at all sites, sediments collected from the site close to Kawasaki city induced 10 % mortality. Polycyclic aromatic hydrocarbon (PAH) concentrations were remarkably high at this site compared with other sites, and thus PAH toxicities could be causing the mortality. Concentration of heavy metals such as cadmium, copper, lead, and zinc in sediments were also determined, but no clear relationship was found between toxicities to embryos and the distribution of their concentrations.
Collapse
Affiliation(s)
- Seiichi Uno
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan.
| | - Emiko Kokushi
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan
| | - Machi Kawano
- The United Graduate School of Agricultural Sciences, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| | - Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| | - Jiro Koyama
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan
| |
Collapse
|
45
|
Lee S, Hong S, Liu X, Kim C, Jung D, Yim UH, Shim WJ, Khim JS, Giesy JP, Choi K. Endocrine disrupting potential of PAHs and their alkylated analogues associated with oil spills. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1117-1125. [PMID: 28783190 DOI: 10.1039/c7em00125h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs are known to be major toxic contaminants in spills of petroleum hydrocarbons (oil). Spilled oil undergoes weathering and over time, PAHs go through a series of compositional changes. PAHs can disrupt endocrine functions, and the type of functions affected and associated potencies vary with the type and alkylation status of PAH. In this study, the potential of five major PAHs of crude oil, i.e., naphthalene, fluorene, dibenzothiophene, phenanthrene, and chrysene, and their alkylated analogues (n = 25), to disrupt endocrine functions was evaluated by use of MVLN-luc and H295R cell lines. In the MVLN-luc bioassay, seven estrogen receptor (ER) agonists were detected among 30 tested PAHs. The greatest ER-mediated potency was observed for 1-methylchrysene (101.4%), followed by phenanthrene and its alkylated analogues (range of %-E2max from 1.6% to 47.3%). In the H295R bioassay, significantly greater syntheses of steroid hormones were observed for 20 PAHs. For major PAHs and their alkylated analogues, disruption of steroidogenesis appeared to be more significant than ER-mediated effects. The number and locations of alkyl-moieties alone could not explain differences in the types or the potencies of toxicities. This observation shows that disruption of endocrine functions by some constituents of oil spills could be underestimated if only parent compounds are considered in assessments of hazard and risk.
Collapse
Affiliation(s)
- Sangwoo Lee
- School of Public Health, Seoul National University, Gwanak, Seoul, 08826, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mu J, Chernick M, Dong W, Di Giulio RT, Hinton DE. Early life co-exposures to a real-world PAH mixture and hypoxia result in later life and next generation consequences in medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:162-173. [PMID: 28728047 PMCID: PMC5584607 DOI: 10.1016/j.aquatox.2017.06.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 05/12/2023]
Abstract
Acute effects of individual and complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are well documented in vertebrate species. Hypoxia in fish reduces metabolic rate and reproduction. However, less is known about the later life consequences stemming from early-life exposure to PAHs or hypoxia, particularly their co-exposure. To address this, medaka (Oryzias latipes) embryos were exposed to a complex PAH mixture sediment extract from the Elizabeth River, VA (ERSE) at concentrations of 0.1, 0.5, or 1.0% or to one of three different hypoxia scenarios: continuous, nocturnal, or late stage embryogenesis hypoxia. Co-exposures with 0.1% ERSE and each of the hypoxia scenarios were conducted. Results included decreased survival with ERSE, hatching delays with hypoxia, and higher occurrences of deformities with each. The continuous hypoxia scenario caused the most significant changes in all endpoints. These early-life exposures altered later-life growth, impaired reproductive capacity, and reduced the quality of their offspring. ERSE alone resulted in a female-biased sex ratio while continuous or nocturnal hypoxia produced significantly greater numbers of males; and co-exposure produced an equal sex ratio. Exposure to a PAH mixture and hypoxia during early life stages has meaningful later-life and next generational consequences.
Collapse
Affiliation(s)
- Jingli Mu
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Wu Dong
- Nicholas School of the Environment, Duke University, Durham, NC, USA; College of Animal Science and Technology, Inner Mongolia University for the Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao, China
| | | | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| |
Collapse
|
47
|
Diamante G, do Amaral E Silva Müller G, Menjivar-Cervantes N, Xu EG, Volz DC, Dias Bainy AC, Schlenk D. Developmental toxicity of hydroxylated chrysene metabolites in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:77-86. [PMID: 28601011 DOI: 10.1016/j.aquatox.2017.05.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 06/07/2023]
Abstract
One of the primary sources of polycyclic aromatic hydrocarbons (PAHs) in marine environments is oil. Photochemical oxidation and microbial transformation of PAH-containing oils can result in the formation of oxygenated products. Among the PAHs in crude oil, chrysene is one of the most persistent within the water column and may be transformed to 2- and 6-hydroxychrysene (OHCHR). Both of these compounds have been shown to activate (2-OHCHR) and antagonize (6-OHCHR) the estrogen receptor (ER). Previous studies in our lab have shown that estrogen can significantly alter zebrafish development. However, little is known about the developmental toxicity of hydroxylated PAHs. Zebrafish embryos were exposed to 0.5-10μM of 2- or 6-OHCHR from 2h post-fertilization (hpf) until 76hpf. A significant decrease in survival was observed following exposure to 6-OHCHR - but not 2-OHCHR. Both OHCHRs significantly increased the percentage of overall deformities after treatment. In addition to cardiac malformations, ocular and circulatory defects were also observed in embryos exposed to both compounds, while 2-OHCHR generally resulted in a higher prevalence of effect. Moreover, treatment with 2-OHCHR resulted in a significant decrease in hemoglobin levels. ER nor G-Protein coupled estrogen receptor (GPER) antagonists and agonists did not rescue the observed defects. We also analyzed the expression of cardiac-, eye- and circulation-related genes previously shown to be affected by oil. Rhodopsin mRNA expresssion was significantly decreased by both compounds equally. However, exposure to 2-OHCHR significantly increased the expression of the hematopoietic regulator, runx1 (runt related transcription factor 1). These results indicate the toxicity of oxygenated photoproducts of PAHs and suggest that other targets and signaling pathways may contribute to developmental toxicity of weathered oil. Our findings also demonstrate the regio-selective toxicity of hydroxy-PAHs in the effects on eye and circulatory development and raise the need to identify mechanisms and ecological risks of oxy-PAHs to fish populations.
Collapse
Affiliation(s)
- Graciel Diamante
- Department of Environmental Sciences, University of California, 900 University Ave., Riverside, CA 92521, USA
| | | | - Norma Menjivar-Cervantes
- Department of Environmental Sciences, University of California, 900 University Ave., Riverside, CA 92521, USA
| | - Elvis Genbo Xu
- Department of Environmental Sciences, University of California, 900 University Ave., Riverside, CA 92521, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, 900 University Ave., Riverside, CA 92521, USA
| | - Afonso Celso Dias Bainy
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900, Brazil
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, 900 University Ave., Riverside, CA 92521, USA.
| |
Collapse
|
48
|
Hodson PV. The Toxicity to Fish Embryos of PAH in Crude and Refined Oils. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:12-18. [PMID: 28695262 DOI: 10.1007/s00244-016-0357-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/19/2016] [Indexed: 05/25/2023]
Abstract
Oil spills are a potential threat to the recruitment and production of fish. Polycyclic aromatic hydrocarbons (PAH), particularly 3-5-ringed alkyl PAH, are components of oil that cause chronic embryotoxicity. Toxicity is related to molecular size and octanol-water partition coefficients (Kow), indicating that water-lipid partitioning controls exposure and tissue dose. Nevertheless, more than 25% of the variation in toxicity among congeners is unexplained. Congeners with the same number of rings, alkyl carbon atoms, and Kow, but different molecular shapes, have markedly different toxicities, likely due to differences in interactions with cellular receptors. The potentiation and antagonism of metabolism and toxicity in PAH mixtures suggest that measured effect concentrations for individual PAH are conservative. Because mixture interactions are not well understood, total PAH concentrations >0.1 µg/L following oil spills should be considered hazardous.
Collapse
|
49
|
Khursigara AJ, Perrichon P, Martinez Bautista N, Burggren WW, Esbaugh AJ. Cardiac function and survival are affected by crude oil in larval red drum, Sciaenops ocellatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:797-804. [PMID: 27865530 DOI: 10.1016/j.scitotenv.2016.11.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
Following exposure to weathered and non-weathered oil, lethal and sub-lethal impacts on red drum larvae were assessed using survival, morphological, and cardiotoxicity assays. The LC50 for red drum ranged from 14.6 (10.3-20.9) to 21.3 (19.1-23.8) μgl-1 ΣPAH with no effect of exposure timing during the pre-hatch window or oil weathering. Similarly, morphological deformities showed dose responses in the low ppb range. Cardiac output showed similar sensitivity resulting in a major 70% reduction after exposure to 2.6μgl-1 ΣPAH. This cardiac failure was driven by reduced stroke volume rather than bradycardia, meaning that in some species, cardiac function is more sensitive than previously thought. After the Deepwater Horizon oil spill, much of this type of work has primarily focused on pelagic species with little known about fast developing estuarine species. These results demonstrate similarity sensitivity of the red drum as their pelagic counter parts, and more importantly, that cardiac function is dramatically reduced in concert with pericardial edema.
Collapse
Affiliation(s)
- Alexis J Khursigara
- University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Prescilla Perrichon
- University of North Texas, Department of Biological Sciences, 1155 Union Cir, Denton, TX 76203, USA
| | - Naim Martinez Bautista
- University of North Texas, Department of Biological Sciences, 1155 Union Cir, Denton, TX 76203, USA
| | - Warren W Burggren
- University of North Texas, Department of Biological Sciences, 1155 Union Cir, Denton, TX 76203, USA
| | - Andrew J Esbaugh
- University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|
50
|
Chen K, Tsutsumi Y, Yoshitake S, Qiu X, Xu H, Hashiguchi Y, Honda M, Tashiro K, Nakayama K, Hano T, Suzuki N, Hayakawa K, Shimasaki Y, Oshima Y. Alteration of development and gene expression induced by in ovo-nanoinjection of 3-hydroxybenzo[c]phenanthrene into Japanese medaka (Oryzias latipes) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:194-204. [PMID: 27930992 DOI: 10.1016/j.aquatox.2016.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/04/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Benzo[c]phenanthrene (BcP) is a highly toxic polycyclic aromatic hydrocarbon (PAHs) found throughout the environment. In fish, it is metabolized to 3-hydroxybenzo[c]phenanthrene (3-OHBcP). In the present study, we observed the effects of 1nM 3-OHBcP on the development and gene expression of Japanese medaka (Oryzias latipes) embryos. Embryos were nanoinjected with the chemical after fertilization. Survival, developmental stage, and heart rate of the embryos were observed, and gene expression differences were quantified by messenger RNA sequencing (mRNA-Seq). The exposure to 1nM 3-OHBcP accelerated the development of medaka embryos on the 1st, 4th, and 6th days post fertilization (dpf), and increased heart rates significantly on the 5th dpf. Physical development differences of exposed medaka embryos were consistent with the gene expression profiles of the mRNA-Seq results for the 3rd dpf, which show that the expression of 780 genes differed significantly between the solvent control and 1nM 3-OHBcP exposure groups. The obvious expression changes in the exposure group were found for genes involved in organ formation (eye, muscle, heart), energy supply (ATPase and ATP synthase), and stress-response (heat shock protein genes). The acceleration of development and increased heart rate, which were consistent with the changes in mRNA expression, suggested that 3-OHBcP affects the development of medaka embryos. The observation on the developmental stages and heart beat, in ovo-nanoinjection and mRNA-Seq may be efficient tools to evaluate the effects of chemicals on embryos.
Collapse
Affiliation(s)
- Kun Chen
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yuki Tsutsumi
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Shuhei Yoshitake
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Xuchun Qiu
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Hai Xu
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | | - Masato Honda
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Takeshi Hano
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, Maruishi 2-17-5, Hatsukaichi-shi, Hiroshima 739-0452, Japan
| | - Nobuo Suzuki
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuichi Hayakawa
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|