1
|
Gaweł-Bęben K, Kukula-Koch W, Szwajgier D, Antosiewicz-Klimczak B, Orihuela-Campos RC, Głowniak K, Meissner HO. Synergism of Specific Maca Phenotypes ( Lepidium peruvianum) in Combination with Saw Palmetto ( Serenoa repens) Extract for Chemoprevention of Prostate Cancer as Determined in In Vitro Cytotoxicity Assays on Human Epithelial and Prostate Cancer Cells. Molecules 2024; 29:5632. [PMID: 39683791 DOI: 10.3390/molecules29235632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Selected phenotypes of dried maca (Lepidium peruvianum) hypocotyls and supercritical CO2 extract (USPlus®) of saw palmetto (Serenoa repens) were used to determine their targeted, cytotoxic action in prostate cancer cells. Fingerprinting by HPLC-MS and PCA analysis showed compositional differences in glucosinolates, amides, macamides, and other alkaloids, which varied based on the color and the size of hypocotyls. These phytochemical differences translated into a higher antioxidant potential of red maca than black maca samples. The greatest COX-2 inhibition was demonstrated with a combination of red maca: saw palmetto (67%:33%) and red maca: saw palmetto: black maca (25%:50%:25%). The LNCaP androgen-dependent prostate cancer cell line was the most sensitive to the three-component mixture of black, red maca, and saw palmetto treatment. This combination provided the most abundant set of high-activity metabolites, and is worthy of consideration in further clinical applications and future in-depth study.
Collapse
Affiliation(s)
- Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Garden of Medicinal Plants, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland
| | - Beata Antosiewicz-Klimczak
- Department of Cosmetology, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Rita Cristina Orihuela-Campos
- Academic Department of Stomatology for Children and Adolescents, Integrated Faculties of Medicine, Stomatology and Nursing, Cayetano Heredia Peruvian University, Av. Honorio Delgado 430, Lima 15102, Peru
| | - Kazimierz Głowniak
- Department of Cosmetology, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Henry O Meissner
- NICM Health Research Institute, Western Sydney University, 158-160 Hawkesbury Road, Sydney, NSW 2145, Australia
| |
Collapse
|
2
|
Szczęśniak-Sięga BM, Zaręba N, Czyżnikowska Ż, Janek T, Kepinska M. Rational Design, Synthesis, Molecular Docking, and Biological Evaluations of New Phenylpiperazine Derivatives of 1,2-Benzothiazine as Potential Anticancer Agents. Molecules 2024; 29:4282. [PMID: 39339277 PMCID: PMC11433925 DOI: 10.3390/molecules29184282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this study was to obtain new, safe, and effective compounds with anticancer activity since cancer is still the leading cause of mortality worldwide. The rational design of new compounds was based on the introduction of differentially substituted phenylpiperazines into the 1,2-benzothiazine scaffold as a reference for the structures of recent topoisomerase II (Topo II) inhibitors such as dexrazoxane and XK-469. The newly designed group of 1,2-benzothiazine derivatives was synthesized and tested on healthy (MCF10A) and cancer (MCF7) cell lines, alone and in combination with doxorubicin (DOX). In addition, molecular docking studies were performed both to the DNA-Topo II complex and to the minor groove of DNA. Most of the tested compounds showed cytotoxic activity comparable to doxorubicin, a well-known anticancer drug. The compound BS230 (3-(4-chlorobenzoyl)-2-{2-[4-(3,4-dichlorophenyl)-1-piperazinyl]-2-oxoethyl}-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxide) showed the best antitumor activity with lower cytotoxicity towards healthy cells and at the same time stronger cytotoxicity towards cancer cells than DOX. Moreover, molecular docking studies showed that BS230 has the ability to bind to both the DNA-Topo II complex and the minor groove of DNA. Binding of the minor groove to DNA was also proven by fluorescence spectroscopy.
Collapse
Affiliation(s)
- Berenika M Szczęśniak-Sięga
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Natalia Zaręba
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| | - Żaneta Czyżnikowska
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
Chung EH, Kim JW, Kim JH, Jeong JS, Lim JH, Boo SY, Ko JW, Kim TW. Ageratum conyzoides Extract Ameliorates Testosterone-Induced Benign Prostatic Hyperplasia via Inhibiting Proliferation, Inflammation of Prostates, and Induction of Apoptosis in Rats. Nutrients 2024; 16:2267. [PMID: 39064710 PMCID: PMC11280401 DOI: 10.3390/nu16142267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Ageratum conyzoides, an annual herbaceous plant that inhabits tropical and subtropical regions, has been traditionally used in Asia, Africa, and South America for phytotherapy to treat infectious and inflammatory conditions. However, the pharmacological effects of standardized ethanolic extract of Ageratum conyzoides (ACE) on benign prostatic hyperplasia (BPH) remain unexplored. The objective of this research is to examine the potential physiological impacts of ACE, a traditionally utilized remedy for inflammatory ailments, in a rat model with BPH induced by testosterone propionate (TP). Rats were subcutaneously administered TP (3 mg/kg) to induce BPH and concurrently orally administered ACE (20, 50, and 100 mg/kg) daily for 42 days. ACE markedly improved BPH characteristics, including prostate weight, prostate index, and epithelial thickness, while also suppressing androgens and related hormones. The findings were supported by a decrease in androgen receptor and downstream signals associated with BPH in the prostate tissues of the ACE groups. Furthermore, increased apoptotic signals were observed in the prostate tissue of the ACE groups, along with heightened detection of the apoptotic nucleus compared to the BPH alone group. These changes seen in the group that received finasteride were similar to those observed in this group. These findings suggest that ACE shows promise as an alternative phytotherapeutic agent for treating BPH.
Collapse
Affiliation(s)
- Eun-Hye Chung
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (E.-H.C.); (J.-W.K.); (J.-H.K.); (J.-S.J.); (S.-Y.B.)
| | - Jeong-Won Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (E.-H.C.); (J.-W.K.); (J.-H.K.); (J.-S.J.); (S.-Y.B.)
| | - Jin-Hwa Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (E.-H.C.); (J.-W.K.); (J.-H.K.); (J.-S.J.); (S.-Y.B.)
| | - Ji-Soo Jeong
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (E.-H.C.); (J.-W.K.); (J.-H.K.); (J.-S.J.); (S.-Y.B.)
| | | | - So-Young Boo
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (E.-H.C.); (J.-W.K.); (J.-H.K.); (J.-S.J.); (S.-Y.B.)
| | - Je-Won Ko
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (E.-H.C.); (J.-W.K.); (J.-H.K.); (J.-S.J.); (S.-Y.B.)
| | - Tae-Won Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (E.-H.C.); (J.-W.K.); (J.-H.K.); (J.-S.J.); (S.-Y.B.)
| |
Collapse
|
4
|
Acito M, Varfaj I, Brighenti V, Cengiz EC, Rondini T, Fatigoni C, Russo C, Pietrella D, Pellati F, Bartolini D, Sardella R, Moretti M, Villarini M. A novel black poplar propolis extract with promising health-promoting properties: focus on its chemical composition, antioxidant, anti-inflammatory, and anti-genotoxic activities. Food Funct 2024; 15:4983-4999. [PMID: 38606532 DOI: 10.1039/d3fo05059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Propolis is a resinous mixture produced by honeybees which has been used since ancient times for its useful properties. However, its chemical composition and bioactivity may vary, depending on the geographical area of origin and the type of tree bees use for collecting pollen. In this context, this research aimed to investigate the total phenolic content (using the Folin-Ciocalteu assay) and the total antioxidant capacity (using the FRAP, DPPH, and ABTS assays) of three black poplar (Populus nigra L.) propolis (BPP) solutions (S1, S2, and S3), as well as the chemical composition (HPLC-ESI-MSn) and biological activities (effect on cell viability, genotoxic/antigenotoxic properties, and anti-inflammatory activity, and effect on ROS production) of the one which showed the highest antioxidant activity (S1). The hydroalcoholic BPP solution S1 was a prototype of an innovative, research-type product by an Italian nutraceutical manufacturer. In contrast, hydroalcoholic BPP solutions S2 and S3 were conventional products purchased from local pharmacy stores. For the three extracts, 50 phenolic compounds, encompassing phenolic acids and flavonoids, were identified. In summary, the results showed an interesting chemical profile and the remarkable antioxidant, antigenotoxic, anti-inflammatory and ROS-modulating activities of the innovative BPP extract S1, paving the way for future research. In vivo investigations will be a possible line to take, which may help corroborate the hypothesis of the potential health benefits of this product, and even stimulate further ameliorations of the new prototype.
Collapse
Affiliation(s)
- Mattia Acito
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Ina Varfaj
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Emine Ceren Cengiz
- Department of Toxicology, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Tommaso Rondini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Carla Russo
- Department of Medicine and Surgery, University of Perugia, Piazzale S. Gambuli 1, 06132 Perugia, Italy
| | - Donatella Pietrella
- Department of Medicine and Surgery, University of Perugia, Piazzale S. Gambuli 1, 06132 Perugia, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Milena Villarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| |
Collapse
|
5
|
Van der Eecken H, Joniau S, Berghen C, Rans K, De Meerleer G. The Use of Soy Isoflavones in the Treatment of Prostate Cancer: A Focus on the Cellular Effects. Nutrients 2023; 15:4856. [PMID: 38068715 PMCID: PMC10708402 DOI: 10.3390/nu15234856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
A possible link between diet and cancer has long been considered, with growing interest in phytochemicals. Soy isoflavones have been associated with a reduced risk of prostate cancer in Asian populations. Of the soy isoflavones, genistein and daidzein, in particular, have been studied, but recently, equol as a derivative has gained interest because it is more biologically potent. Different mechanisms of action have already been studied for the different isoflavones in multiple conditions, such as breast, gastrointestinal, and urogenital cancers. Many of these mechanisms of action could also be demonstrated in the prostate, both in vitro and in vivo. This review focuses on the known mechanisms of action at the cellular level and compares them between genistein, daidzein, and equol. These include androgen- and estrogen-mediated pathways, regulation of the cell cycle and cell proliferation, apoptosis, angiogenesis, and metastasis. In addition, antioxidant and anti-inflammatory effects and epigenetics are addressed.
Collapse
Affiliation(s)
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Charlien Berghen
- Department of Radiation Oncology, University Hospitals Leuven, 3000 Leuven, Belgium; (C.B.); (K.R.); (G.D.M.)
| | - Kato Rans
- Department of Radiation Oncology, University Hospitals Leuven, 3000 Leuven, Belgium; (C.B.); (K.R.); (G.D.M.)
| | - Gert De Meerleer
- Department of Radiation Oncology, University Hospitals Leuven, 3000 Leuven, Belgium; (C.B.); (K.R.); (G.D.M.)
| |
Collapse
|
6
|
Yasir M, Park J, Han ET, Park WS, Han JH, Kwon YS, Lee HJ, Chun W. Vismodegib Identified as a Novel COX-2 Inhibitor via Deep-Learning-Based Drug Repositioning and Molecular Docking Analysis. ACS OMEGA 2023; 8:34160-34170. [PMID: 37744812 PMCID: PMC10515398 DOI: 10.1021/acsomega.3c05425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Artificial intelligence algorithms have been increasingly applied in drug development due to their efficiency and effectiveness. Deep-learning-based drug repurposing can contribute to the identification of novel therapeutic applications for drugs with other indications. The current study used a trained deep-learning model to screen an FDA-approved drug library for novel COX-2 inhibitors. Reference COX-2 data sets, composed of active and decoy compounds, were obtained from the DUD-E database. To extract molecular features, compounds were subjected to RDKit, a cheminformatic toolkit. GraphConvMol, a graph convolutional network model from DeepChem, was applied to obtain a predictive model from the DUD-E data sets. Then, the COX-2 inhibitory potential of the FDA-approved drugs was predicted using the trained deep-learning model. Vismodegib, an anticancer agent that inhibits the hedgehog signaling pathway by binding to smoothened, was predicted to inhibit COX-2. Noticeably, some compounds that exhibit high potential from the prediction were known to be COX-2 inhibitors, indicating the prediction model's liability. To confirm the COX-2 inhibition activity of vismodegib, molecular docking was carried out with the reference compounds of the COX-2 inhibitor, celecoxib, and ibuprofen. Furthermore, the experimental examination of COX-2 inhibition was also carried out using a cell culture study. Results showed that vismodegib exhibited a highly comparable COX-2 inhibitory activity compared to celecoxib and ibuprofen. In conclusion, the deep-learning model can efficiently improve the virtual screening of drugs, and vismodegib can be used as a novel COX-2 inhibitor.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department
of Pharmacology, Kangwon National University
School of Medicine, Chuncheon24341, Republic
of Korea
| | - Jinyoung Park
- Department
of Pharmacology, Kangwon National University
School of Medicine, Chuncheon24341, Republic
of Korea
| | - Eun-Taek Han
- Department
of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Won Sun Park
- Department
of Physiology, Kangwon National University
School of Medicine, Chuncheon24341, Republic
of Korea
| | - Jin-Hee Han
- Department
of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Yong-Soo Kwon
- College
of Pharmacy, Kangwon National University
School of Medicine, Chuncheon24341, Republic
of Korea
| | - Hee-Jae Lee
- Department
of Pharmacology, Kangwon National University
School of Medicine, Chuncheon24341, Republic
of Korea
| | - Wanjoo Chun
- Department
of Pharmacology, Kangwon National University
School of Medicine, Chuncheon24341, Republic
of Korea
| |
Collapse
|
7
|
Esparcia-Pinedo L, Romero-Laorden N, Alfranca A. Tertiary lymphoid structures and B lymphocytes: a promising therapeutic strategy to fight cancer. Front Immunol 2023; 14:1231315. [PMID: 37622111 PMCID: PMC10445545 DOI: 10.3389/fimmu.2023.1231315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are clusters of lymphoid cells with an organization that resembles that of secondary lymphoid organs. Both structures share common developmental characteristics, although TLSs usually appear in chronically inflamed non-lymphoid tissues, such as tumors. TLSs contain diverse types of immune cells, with varying degrees of spatial organization that represent different stages of maturation. These structures support both humoral and cellular immune responses, thus the correlation between the existence of TLS and clinical outcomes in cancer patients has been extensively studied. The finding that TLSs are associated with better prognosis in some types of cancer has led to the design of therapeutic strategies based on promoting the formation of these structures. Agents such as chemokines, cytokines, antibodies and cancer vaccines have been used in combination with traditional antitumor treatments to enhance TLS generation, with good results. The induction of TLS formation therefore represents a novel and promising avenue for the treatment of a number of tumor types.
Collapse
Affiliation(s)
- Laura Esparcia-Pinedo
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Romero-Laorden
- Medical Oncology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Cátedra Universidad Autónoma de Madrid (UAM)-Fundación Instituto Roche de Medicina Personalizada de Precisión, Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Cátedra Universidad Autónoma de Madrid (UAM)-Fundación Instituto Roche de Medicina Personalizada de Precisión, Madrid, Spain
- Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, Madrid, Spain
| |
Collapse
|
8
|
Acito M, Palomba M, Fatigoni C, Villarini M, Sancineto L, Santi C, Moretti M. Fagiolina del Trasimeno, an Italian cowpea landrace: Effect of different cooking techniques and domestic storage on chemical and biological features. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mattia Acito
- Department of Pharmaceutical Sciences (Unit of Public Health) University of Perugia Via del Giochetto 06122 Perugia Italy
| | - Martina Palomba
- Department of Pharmaceutical Sciences (Group of Catalysis Synthesis and Organic Green Chemistry) University of Perugia Via del Liceo 06123 Perugia Italy
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences (Unit of Public Health) University of Perugia Via del Giochetto 06122 Perugia Italy
| | - Milena Villarini
- Department of Pharmaceutical Sciences (Unit of Public Health) University of Perugia Via del Giochetto 06122 Perugia Italy
| | - Luca Sancineto
- Department of Pharmaceutical Sciences (Group of Catalysis Synthesis and Organic Green Chemistry) University of Perugia Via del Liceo 06123 Perugia Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences (Group of Catalysis Synthesis and Organic Green Chemistry) University of Perugia Via del Liceo 06123 Perugia Italy
| | - Massimo Moretti
- Department of Pharmaceutical Sciences (Unit of Public Health) University of Perugia Via del Giochetto 06122 Perugia Italy
| |
Collapse
|
9
|
Chen T, Huang Y, Hong J, Wei X, Zeng F, Li J, Ye G, Yuan J, Long Y. Preparation, COX-2 Inhibition and Anticancer Activity of Sclerotiorin Derivatives. Mar Drugs 2020; 19:md19010012. [PMID: 33383842 PMCID: PMC7823724 DOI: 10.3390/md19010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
The latest research has indicated that anti-tumor agents with COX-2 inhibitory activity may benefit their anti-tumor efficiency. A series of sclerotiorin derivatives have been synthesized and screened for their cytotoxic activity against human lung cancer cells A549, breast cancer cells MDA-MB-435 using the MTT method. Among them, compounds 3, 7, 12, 13, 15, 17 showed good cytotoxic activity with IC50 values of 6.39, 9.20, 9.76, 7.75, 9.08, and 8.18 μM, respectively. In addition, all compounds were tested in vitro the COX-2 inhibitory activity. The results disclosed compounds 7, 13, 25 and sclerotiorin showed moderate to good COX-2 inhibition with the inhibitory ratios of 58.7%, 51.1%, 66.1% and 56.1%, respectively. Notably, compound 3 displayed a comparable inhibition ratio (70.6%) to the positive control indomethacin (78.9%). Furthermore, molecular docking was used to rationalize the potential of the sclerotiorin derivatives as COX2 inhibitory agents by predicting their binding energy, binding modes and optimal orientation at the active site of the COX-2. Additionally, the structure-activity relationships (SARS) have been addressed.
Collapse
Affiliation(s)
- Tao Chen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Yun Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junxian Hong
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Xikang Wei
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Fang Zeng
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Jialin Li
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Geting Ye
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
| | - Jie Yuan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
- Correspondence: (J.Y.); (Y.L.)
| | - Yuhua Long
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; (T.C.); (J.H.); (X.W.); (F.Z.); (J.L.); (G.Y.)
- Correspondence: (J.Y.); (Y.L.)
| |
Collapse
|
10
|
Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A, Moshtaghian J. C-phycocyanin: a natural product with radiosensitizing property for enhancement of colon cancer radiation therapy efficacy through inhibition of COX-2 expression. Sci Rep 2019; 9:19161. [PMID: 31844085 PMCID: PMC6915779 DOI: 10.1038/s41598-019-55605-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Different chemical and nanomaterial agents have been introduced for radiosensitizing purposes. However, many researchers believe these agents are far away from clinical application due to side effects and limited knowledge about their behavior in the human body. In this study, C-phycocyanin (C-PC) was used as a natural radiosensitizer for enhancement of radiation therapy (RT) efficacy. C-PC treatment's effect on the COX-2 expression of cancer cells was investigated by flow cytometry, western blot, qRT-PCR analyses in vitro and in vivo. Subsequently, the radiosensitizing effect of C-PC treatment was investigated by MTT and clonogenic cell survival assays for CT-26, DLD-1, HT-29 colon cancer cell lines and the CRL-1831 as normal colonic cells. In addition, the C-PC treatment effect on the radiation therapy efficacy was evaluated according to CT-26 tumor's growth progression and immunohistochemistry analyses of Ki-67 labeling index. C-PC treatment (200 µg/mL) could significantly enhance the radiation therapy efficacy in vitro and in vivo. Synergistic interaction was detected at C-PC and radiation beams co-treatment based on Chou and Talalay formula (combination index <1), especially at 200 µg/mL C-PC and 6 Gy radiation dosages. The acquired DEF of C-PC treatment was 1.39, 1.4, 1.63, and 1.05 for CT-26, DLD-1, HT-29, and CRL-1831 cells, respectively. Also, C-PC + RT treated mice exhibited 35.2% lower mean tumors' volume and about 6 days more survival time in comparison with the RT group (P < 0.05). In addition, C-PC + RT group exhibited 54% lower Ki-67 index in comparison with the RT group. Therefore, C-PC can exhibit high radiosensitizing effects. However, the potential cardiovascular risks of C-PC as a COX-2 inhibitor should be evaluated with extensive preclinical testing before developing this agent for clinical trials.
Collapse
Affiliation(s)
- Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Fatemeh Ghahremani
- Department of Medical Physics and Radiotherapy, Arak University of Medical Sciences, Arak, 38481-76941, Iran.
| | - Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Jamal Moshtaghian
- Division of Cell and Molecular Biology, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| |
Collapse
|
11
|
Mulvaney EP, O'Sullivan ÁG, Eivers SB, Reid HM, Kinsella BT. Differential expression of the TPα and TPβ isoforms of the human T Prostanoid receptor during chronic inflammation of the prostate: Role for FOXP1 in the transcriptional regulation of TPβ during monocyte-macrophage differentiation. Exp Mol Pathol 2019; 110:104277. [PMID: 31271729 DOI: 10.1016/j.yexmp.2019.104277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/21/2019] [Accepted: 06/22/2019] [Indexed: 11/16/2022]
Abstract
Inflammation is linked to prostate cancer (PCa) and to other diseases of the prostate. The prostanoid thromboxane (TX)A2 is a pro-inflammatory mediator implicated in several prostatic diseases, including PCa. TXA2 signals through the TPα and TPβ isoforms of the T Prostanoid receptor (TP) which exhibit several functional differences and transcriptionally regulated by distinct promoters Prm1 and Prm3, respectively, within the TBXA2R gene. This study examined the expression of TPα and TPβ in inflammatory infiltrates within human prostate tissue. Strikingly, TPβ expression was detected in 94% of infiltrates, including in B- and T-lymphocytes and macrophages. In contrast, TPα was more variably expressed and, where present, expression was mainly confined to macrophages. To gain molecular insight into these findings, expression of TPα and TPβ was evaluated as a function of monocyte-to-macrophage differentiation in THP-1 cells. Expression of both TPα and TPβ was upregulated following phorbol-12-myristate-13-acetate (PMA)-induced differentiation of monocytic THP-1 to their macrophage lineage. Furthermore, FOXP1, an essential transcriptional regulator down-regulated during monocyte-to-macrophage differentiation, was identified as a key trans-acting factor regulating TPβ expression through Prm3 in THP-1 cells. Knockdown of FOXP1 increased TPβ, but not TPα, expression in THP-1 cells, while genetic reporter and chromatin immunoprecipitation (ChIP) analyses established that FOXP1 exerts its repressive effect on TPβ through binding to four cis-elements within Prm3. Collectively, FOXP1 functions as a transcriptional repressor of TPβ in monocytes. This repression is lifted in differentiated macrophages, allowing for upregulation of TPβ expression and possibly accounting for the prominent expression of TPβ in prostate tissue-resident macrophages.
Collapse
Affiliation(s)
- Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Áine G O'Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sarah B Eivers
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helen M Reid
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
12
|
Chien CT, Chen YC, Liu YC, Liang SH, Lin HH, Lin CH. The antimicrobial photodynamic inactivation resistance of Candida albicans is modulated by the Hog1 pathway and the Cap1 transcription factor. Med Mycol 2019; 57:618-627. [PMID: 30289464 DOI: 10.1093/mmy/myy079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/02/2018] [Accepted: 09/23/2018] [Indexed: 12/22/2022] Open
Abstract
Candida albicans is the most important fungal pathogen afflicting humans, particularly immunocompromised patients. However, currently available antifungal drugs are limited and ineffective against drug-resistant strains. The development of new drugs or alternative therapeutic approaches to control fungal infections is urgent and necessary. Photodynamic inactivation (PDI) is a new promising therapy for eradicating microorganism infections through combining visible light, photosensitizers, and oxygen to generate reactive oxygen species (ROS). Although cytoprotective responses induced by photodynamic therapy (PDT) have been well studied in cancer cells, the mechanisms by which C. albicans responds to PDI are largely unknown. In this study, we first demonstrated that PDI induces C. albicans Hog1p activation. Deletion of any of the SSK2, PBS2, and HOG1 genes significantly decreased the survival rate after photochemical reactions, indicating that the Hog1 SAPK pathway is required for tolerance to PDI. Furthermore, the basic leucine zipper transcription factor Cap1 that regulates several downstream antioxidant genes was highly expressed during the response to PDI, and loss of CAP1 also resulted in decreased C. albicans survival rates. This study demonstrates the importance of the Hog1 SAPK and the Cap1 transcription factor, which regulates in resistance to PDI-mediated oxidative stress in C. albicans. Understanding the mechanisms by which C. albicans responds to PDI and consequently scavenges ROS will be very useful for the further development of therapeutics to control fungal infectious diseases, particularly those of the skin and mucosal infections.
Collapse
Affiliation(s)
- Chih-Ting Chien
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chia Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yun-Chun Liu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | | | - Hsien-Hen Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Madrigal‐Martínez A, Constâncio V, Lucio‐Cazaña FJ, Fernández‐Martínez AB. PROSTAGLANDIN E
2
stimulates cancer‐related phenotypes in prostate cancer PC3 cells through cyclooxygenase‐2. J Cell Physiol 2018; 234:7548-7559. [DOI: 10.1002/jcp.27515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 09/10/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Vera Constâncio
- Departamento de Biología de Sistemas Universidad de Alcalá Madrid Spain
| | | | | |
Collapse
|
14
|
Setty Balakrishnan A, Nathan AA, Kumar M, Ramamoorthy S, Ramia Mothilal SK. Withania somnifera targets interleukin-8 and cyclooxygenase-2 in human prostate cancer progression. Prostate Int 2017; 5:75-83. [PMID: 28593171 PMCID: PMC5448731 DOI: 10.1016/j.prnil.2017.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Prostate cancer (PC) is a common noncutaneous malignancy in men. The incidence of PC is increasing at an alarming rate across the globe. Progression of PC is associated with elevated levels of interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2) in malignant cells. Overexpression of these players is accompanied by chronic inflammation, increased angiogenesis, proliferation, migration, and inhibition of apoptosis. Moreover, their elevated circulating levels promote the disease progression from androgen-dependent to androgen-independent state. Thus, inhibiting the expression of IL-8 and COX-2 would be a promising target in the development of PC therapeutics. In this study, we investigated the inhibitory effects of Withania somnifera extract on highly metastatic, androgen-independent prostate cancer cell line (PC3). Additionally, we compared the real-time expression of IL-8 and COX-2 in prostate tissue samples. MATERIALS AND METHODS The cell viability and cytotoxicity of W. somnifera extract in PC3 cells was quantified colorimetrically by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase leakage assay, respectively. Hematoxylin and eosin staining for histological examination, trypan blue, and acridine orange dyes to enumerate apoptotic and live cells, quantitative real-time polymerase chain reaction to determine the expression and flow cytometry to study the cell cycle analysis were used. RESULTS We observed a significant decrease in the cell viability with a half-maximal inhibitory concentration (IC50) of 10 μg/mL. The expression levels of IL-8 and COX-2 in prostate tissue samples and in PC3 cells were predominantly high; however, the lowest dose of W. somnifera significantly inhibited the enhanced expression of IL-8 and COX-2 in PC3 cells in 24 hours. Furthermore, W. somnifera extract (10 μg/mL) irreversibly arrested the cell cycle in G2/M phase, which was evident from the rapid accumulation of PC3 cells significantly. CONCLUSION Our results indicate that inherent metastatic and selective inhibitory potential of W. somnifera against PC. W. somnifera may be a good therapeutic agent in addition to the existing drugs for PC. Further studies with more prostate tissue samples are warranted.
Collapse
Affiliation(s)
- Anand Setty Balakrishnan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Abel Arul Nathan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Mukesh Kumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Sudhakar Ramamoorthy
- Department of Pathology, Velammal Medical College Hospital & Research Institute, Madurai, India
| | | |
Collapse
|
15
|
García-Hernández MDLL, Uribe-Uribe NO, Espinosa-González R, Kast WM, Khader SA, Rangel-Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol 2017; 8:563. [PMID: 28567040 PMCID: PMC5434117 DOI: 10.3389/fimmu.2017.00563] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Multiple solid cancers contain tertiary lymphoid organs (TLO). However, it is unclear whether they promote tumor rejection, facilitate tumor evasion, or simply whether they are a byproduct of chronic inflammation. We hypothesize that although chronic inflammation induces TLO formation, the tumor milieu can modulate TLO organization and functions in prostate cancer. Therefore, our study seeks to elucidate the cellular and molecular signatures in unique prostatectomy specimens from evanescent carcinoma patients to identify markers of cancer regression, which could be harnessed to modulate local immunosuppression or potentially enhance TLO function. METHODS We used multicolor immunofluorescence to stain prostate tissues, collected at different stages of cancer progression (prostatic intraepithelial neoplasia, intermediate and advanced cancer) or from patients with evanescent prostate carcinoma. Tissues were stained with antibodies specific for pro-inflammatory molecules (cyclooxygenase 2, CXCL10, IL17), tumor-infiltrating immune cells (mature DC-LAMP+ dendritic cells, CD3+ T cells, CD3+Foxp3+ regulatory T cells (Treg), T bet+ Th1 cells, granzyme B+ cytotoxic cells), and stromal cell populations (lymphatic vessels, tumor neovessels, high endothelial venules (HEV), stromal cells), which promote prostate tumor growth or are critical components of tumor-associated TLO. RESULTS Generally, inflammatory cells are located at the margins of tumors. Unexpectedly, we found TLO within prostate tumors from patients at different stages of cancer and in unique samples from patients with spontaneous cancer remission. In evanescent prostate carcinomas, accumulation of Treg was compromised, while Tbet+ T cells and CD8 T cells were abundant in tumor-associated TLO. In addition, we found a global decrease in tumor neovascularization and the coverage by cells positive for cyclooxygenase 2 (COX2). Finally, consistent with tumor regression, prostate stem cell antigen was considerably reduced in TLO and tumor areas from evanescent carcinoma patients. CONCLUSION Collectively, our results suggest that COX2 and Treg are attractive therapeutic targets that can be harnessed to enhance TLO-driven tumor immunity against prostate cancer. Specially, the presence of HEV and lymphatics indicate that TLO can be used as a platform for delivery of cell-based and/or COX2 blocking therapies to improve control of tumor growth in prostate cancer.
Collapse
Affiliation(s)
| | - Norma Ofelia Uribe-Uribe
- Department of Anatomy and Anatomical Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Ricardo Espinosa-González
- Department of Anatomy and Anatomical Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO, USA
| | | |
Collapse
|
16
|
Zhu X, Zhou M, Liu G, Huang X, He W, Gou X, Jiang T. Autophagy activated by the c-Jun N-terminal kinase-mediated pathway protects human prostate cancer PC3 cells from celecoxib-induced apoptosis. Exp Ther Med 2017; 13:2348-2354. [PMID: 28565848 PMCID: PMC5443255 DOI: 10.3892/etm.2017.4287] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/03/2017] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to investigate the role of autophagy in celecoxib-induced apoptosis in human hormone-insensitive prostate cancer cell line PC3 cells and to explore the underlying molecular mechanism leading to autophagic activation. A cell viability assay was applied to investigate the effect of various concentrations of celecoxib (0, 40, 60, 80, 100 and 120 µmol/l) on PC3 cells for 24 and 48 h, respectively. The 50% inhibitory concentration of celecoxib for 24 h was chosen for subsequent experiments. Annexin V-fluorescein isothiocyanate/propidium iodide double staining flow cytometry, as well as caspase 3 and poly (ADP-ribose) polymerase proteins detected by western blotting, were applied to analyze cellular apoptosis induced by celecoxib. Ultrastructural cellular changes observed by transmission electron microscopy and the level of LC-3 II and P62 detected by western blotting were used to determine the activation of autophagy. It was demonstrated that celecoxib induced apoptosis and activated autophagy in PC3 cells in a dose- and time-dependent manner. Furthermore, flow cytometry and western blotting were applied to elucidate whether the role of autophagy in celecoxib-induced apoptosis is protective or destructive. Blockade of autophagy markedly increased apoptosis, suggesting that celecoxib-activated autophagy was cytoprotective. Additionally, c-jun-N-terminal kinase (JNK) was demonstrated to have a role in autophagic activation, and suppression of JNK was able to reduce autophagy and increase apoptosis. In conclusion, the results of the present study indicate that celecoxib induces apoptosis in PC3 cells; however, celecoxib also activates JNK-mediated autophagy, which exerts cytoprotective effects in prostate cancer PC3 cells. Blockade of autophagy via the JNK-mediated pathway may provide a promising strategy for prostate cancer therapy.
Collapse
Affiliation(s)
- Xin Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mi Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guanyu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Department of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaolong Huang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Department of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tao Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
17
|
Arya M, Tiwari P, Tripathi CB, Parashar P, Singh M, Sinha P, Yadav NP, Kaithwas G, Gupta KP, Saraf SA. Colloidal Vesicular System of Inositol Hexaphosphate to Counteract DMBA Induced Dysregulation of Markers Pertaining to Cellular Proliferation/Differentiation and Inflammation of Epidermal Layer in Mouse Model. Mol Pharm 2017; 14:928-939. [DOI: 10.1021/acs.molpharmaceut.6b01147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Malti Arya
- Department
of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, U.P., India
| | - Prakash Tiwari
- Environmental
Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Post Box No.
80, Mahatma Gandhi Marg, Lucknow-226001, U.P., India
| | - Chandra Bhushan Tripathi
- Department
of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, U.P., India
| | - Poonam Parashar
- Department
of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, U.P., India
| | - Mahendra Singh
- Department
of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, U.P., India
| | - Priyam Sinha
- CSIR-Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow-226015, U. P., India
| | - Narayan P. Yadav
- CSIR-Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow-226015, U. P., India
| | - Gaurav Kaithwas
- Department
of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, U.P., India
| | - Krishna P. Gupta
- Environmental
Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Post Box No.
80, Mahatma Gandhi Marg, Lucknow-226001, U.P., India
| | - Shubhini A. Saraf
- Department
of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226025, U.P., India
| |
Collapse
|
18
|
Khoogar R, Kim BC, Morris J, Wargovich MJ. Chemoprevention in gastrointestinal physiology and disease. Targeting the progression of cancer with natural products: a focus on gastrointestinal cancer. Am J Physiol Gastrointest Liver Physiol 2016; 310:G629-44. [PMID: 26893159 PMCID: PMC4867331 DOI: 10.1152/ajpgi.00201.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/11/2016] [Indexed: 01/31/2023]
Abstract
The last decade has witnessed remarkable progress in the utilization of natural products for the prevention and treatment of human cancer. Many agents now in the pipeline for clinical trial testing have evolved from our understanding of how human nutritional patterns account for widespread differences in cancer risk. In this review, we have focused on many of these promising agents arguing that they may provide a new strategy for cancer control: natural products once thought to be only preventive in their mode of action now are being explored for efficacy in tandem with cancer therapeutics. Natural products may reduce off-target toxicity of therapeutics while making cancers more amenable to therapy. On the horizon is the use of certain natural products, in their own right, as mitigants of late-stage cancer, a new frontier for small-molecule natural product drug discovery.
Collapse
Affiliation(s)
- Roxane Khoogar
- 1Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Byung-Chang Kim
- 2Center for Colorectal Center, Center for Cancer Prevention and Detection, Research Institute and Hospital, National Cancer Center, Ilsan-ro, Illsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| | - Jay Morris
- 1Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Michael J. Wargovich
- 1Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| |
Collapse
|
19
|
Emam MA. Expression of androgen receptor and cyclooxygenase-2 in the vesicular glands of castrated and intact goat. Acta Histochem 2016; 118:129-36. [PMID: 26791785 DOI: 10.1016/j.acthis.2015.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 11/30/2022]
Abstract
This study was conducted to demonstrate the effect of castration on the structure of vesicular glands of the Egyptian Nubian (Zaraibi) goat. Vesicular glands of castrated (n=4) and intact (n=6) goat were used for histological and immunohistochemical evaluations. In this study, we report the difference in cell specific expression of androgen receptor (AR) and cyclooxygenase-2 (COX-2) in the vesicular glands of castrated and intact goats. In both castrated and intact goats, the present study revealed no immunopositive cells for AR or COX-2 in the fibromuscular stroma meanwhile, AR and COX-2 containing immunoreactive cells were restricted only to the epithelium of the secretory acini of the vesicular gland. Such finding suggests androgen and COX-2 as important regulators for the growth and secretory activity of epithelial cells in the vesicular gland of goats. Overall, the vesicular gland of castrated goats showed significantly (P<0.05) lower AR and COX-2 immuno-expression than intact goats indicating that both AR and COX-2 are androgen dependent.
Collapse
|
20
|
|
21
|
Ferruelo A, de las Heras M, Redondo C, Ramón de Fata F, Romero I, Angulo J. Wine polyphenols exert antineoplasic effect on androgen resistant PC-3 cell line through the inhibition of the transcriptional activity of COX-2 promoter mediated by NF-kβ. Actas Urol Esp 2014; 38:429-37. [PMID: 24836925 DOI: 10.1016/j.acuro.2014.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Mediterranean diet may play a role in the prevention of prostate cancer (PCa) development and progression. Cyclooxygenase-2 (COX-2) expression is associated with increased cellular proliferation, prevents apoptosis and favors tumor invasion. We intend to clarify whether resveratrol and other polyphenols effectively inhibit COX-2 activity and induce apoptosis in hormone-resistant PC-3 cell line. MATERIAL AND METHOD PC-3 cells were cultured and treated with different concentrations of gallic acid, tannic acid, quercetin, and resveratrol in presence of phorbol myristate acetate (PMA; 50 μg/ml) that induces COX-2 expression. Total RNA was extracted and COX-2 expression was analyzed by relative quantification real-time PCR (ΔΔCt method). COX-2 activity was determined by PGE-2 detection using ELISA. Caspase 3/7 luminescence assay was used to disclose apoptosis. Transitory transfection with short human COX-2 (phPES2 -327/+59) and p5xNF-kβ-Luc plasmids determined COX-2 promoter activity and specifically that dependant of NF-kβ. RESULTS COX-2 expression was not modified in media devoid of PMA. However, under PMA induction tannic acid (2.08 ±.21), gallic acid (2.46 ±.16), quercetin (1.78 ±.14) and resveratrol (1.15 ±.16) significantly inhibited COX-2 mRNA with respect to control (3.14 ±.07), what means a 34%, 23%, 46% and 61% reduction, respectively. The inhibition in the levels of PGE-2 followed a similar pattern. All compounds studied induced apoptosis at 48 h, although at a different rate. PMA caused a rise in activity 7.4 ±.23 times phPES2 -327/+59 and 2.0 ±.1 times p5xNF-kβ-Luc at 6h compared to basal. Resveratrol suppressed these effects 17.1 ±.21 and 32.4 ±.18 times, respectively. Similarly, but to a lesser extent, the rest of evaluated polyphenols diminished PMA inductor effect on the activity of both promoters. CONCLUSIONS Polyphenols inhibit transcriptional activity of COX-2 promoter mediated by NF-kβ. This effect could explain, at least in part, the induction of apoptosis in vitro by these substances in castration resistant PCa.
Collapse
|
22
|
Rodríguez-Blanco G, Burgers PC, Dekker LJM, Ijzermans JJN, Wildhagen MF, Schenk-Braat EAM, Bangma CH, Jenster G, Luider TM. Serum levels of arachidonic acid metabolites change during prostate cancer progression. Prostate 2014; 74:618-27. [PMID: 24435810 DOI: 10.1002/pros.22779] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/27/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Arachidonic acid (AA) pathway has been shown to play a role in the development and progression of prostate cancer (PCa). In this study we aimed to assess the changes in concentrations of hydroxyeicosatetraenoic acids (HETEs) in serum samples from patients diagnosed with PCa compared to controls. METHODS HETEs were determined using ultrahigh pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). RESULTS Elevated concentrations of 5-HETE, 8-HETE, 11-HETE and 15-HETE were observed in 6 out of 20 patients diagnosed with PCa; no statistical differences with controls were observed for 12-HETE and AA in the discovery set. An independent validation set composed of 222 samples divided in five groups ranging from subjects with low PSA and no PCa, to patients with advanced PCa was included. In 30% of the patients in the advanced PCa group, up to ten times higher concentrations of the same set of HETEs were observed with a significant concomitant decrease of the concentration of AA. Logistic regression and Kaplan-Meier curves illustrate that a decreased concentration of AA is a predictor of PCa biochemical recurrence after radical prostatectomy (RP). CONCLUSIONS From the present study we conclude that a significant association between AA and AA metabolites in serum and PCa progression exists, although serum concentrations of HETEs exhibited low sensitivity toward the diagnosis of PCa.
Collapse
|
23
|
Mahmoud AM, Yang W, Bosland MC. Soy isoflavones and prostate cancer: a review of molecular mechanisms. J Steroid Biochem Mol Biol 2014; 140:116-32. [PMID: 24373791 PMCID: PMC3962012 DOI: 10.1016/j.jsbmb.2013.12.010] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 02/08/2023]
Abstract
Soy isoflavones are dietary components for which an association has been demonstrated with reduced risk of prostate cancer (PCa) in Asian populations. However, the exact mechanism by which these isoflavones may prevent the development or progression of PCa is not completely understood. There are a growing number of animal and in vitro studies that have attempted to elucidate these mechanisms. The predominant and most biologically active isoflavones in soy products, genistein, daidzein, equol, and glycetin, inhibit prostate carcinogenesis in some animal models. Cell-based studies show that soy isoflavones regulate genes that control cell cycle and apoptosis. In this review, we discuss the literature relevant to the molecular events that may account for the benefit of soy isoflavones in PCa prevention or treatment. These reports show that although soy isoflavone-induced growth arrest and apoptosis of PCa cells are plausible mechanisms, other chemo protective mechanisms are also worthy of consideration. These possible mechanisms include antioxidant defense, DNA repair, inhibition of angiogenesis and metastasis, potentiation of radio- and chemotherapeutic agents, and antagonism of estrogen- and androgen-mediated signaling pathways. Moreover, other cells in the cancer milieu, such as the fibroblastic stromal cells, endothelial cells, and immune cells, may be targeted by soy isoflavones, which may contribute to soy-mediated prostate cancer prevention. In this review, these mechanisms are discussed along with considerations about the doses and the preclinical models that have been used.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Wancai Yang
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA; Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Jian SF, Hsiao CC, Chen SY, Weng CC, Kuo TL, Wu DC, Hung WC, Cheng KH. Utilization of liquid chromatography mass spectrometry analyses to identify LKB1-APC interaction in modulating Wnt/β-catenin pathway of lung cancer cells. Mol Cancer Res 2014; 12:622-35. [PMID: 24448687 DOI: 10.1158/1541-7786.mcr-13-0487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED STK11/LKB1, a serine/threonine protein kinase and tumor suppressor, is a key upstream kinase of adenine monophosphate-activated protein kinase, which is a kinase involved in controlling cell polarity and maintaining cellular energy homeostasis. LKB1 is mutated in a significant number of Peutz-Jeghers syndrome (PJS) cases and sporadic cancers, and is most frequently mutated in lung adenocarcinomas; however, little is known about how LKB1 is involved in lung cancer progression. In this study, immunoprecipitation-HPLC tandem mass spectrometry (IP-LC-MS/MS) was performed to identify novel proteins interacting with LKB1 in lung cancer. Interestingly, many LKB1-interacting proteins acquired from the LC-MS/MS approach were mapped, using MetaCore pathway analysis, to the cystic fibrosis transmembrane conductance regulator activation pathway. Moreover, it was determined that LKB1 directly interacts with APC, and this LKB1-APC interaction was further confirmed by reverse immunoprecipitation assays, but GSK3β was dispensable for the association of LKB1 and APC. Importantly, LKB1 binds to APC to suppress the Wnt/β-catenin signaling pathway, which is known to be involved in cell proliferation and migration. Subsequent analysis of the downstream targets of the Wnt/TCF pathway led to the identification of several Wnt-regulated genes, such as CD44, COX-2, survivin, and c-Myc, whose expression levels are downregulated by LKB1. In summary, these results demonstrate that LKB1 regulates the Wnt pathway through a direct interaction with APC to suppress the tumorigenic/metastatic potential of lung tumors. IMPLICATIONS LKB1 status influences the molecular circuitry (Wnt/β-catenin pathway), cellular biology, and may serve as a potential therapeutic node in genetically defined subsets of lung cancer.
Collapse
Affiliation(s)
- Shu-Fang Jian
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lai CS, Li S, Miyauchi Y, Suzawa M, Ho CT, Pan MH. Potent anti-cancer effects of citrus peel flavonoids in human prostate xenograft tumors. Food Funct 2013; 4:944-9. [PMID: 23673480 DOI: 10.1039/c3fo60037h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prostate cancer is one of the most prevalent malignancies and is the second leading cause of cancer-related deaths in men. Fruit and vegetable consumption is a novel, non-toxic therapeutic approach that can be used to prevent and treat prostate cancer. Citrus peels and their extracts have been reported to have potent pharmacological activities and health benefits due to the abundance of flavonoids in citrus fruits, particularly in the peels. Our previous studies demonstrated that oral administration of Gold Lotion (GL), an extract of multiple varieties of citrus peels containing abundant flavonoids, including a large percentage of polymethoxyflavones (PMFs), effectively suppressed azoxymethane (AOM)-induced colonic tumorigenesis. However, the efficacy of GL against prostate cancer has not yet been investigated. Here, we explored the anti-tumor effects of GL using a human prostate tumor xenograft mouse model. Our data demonstrated that treatment with GL by both intraperitoneal (i.p.) injection and oral administration dramatically reduced both the weights (57%-100% inhibition) and volumes (78%-94% inhibition) of the tumors without any observed toxicity. These inhibitory effects were accompanied by mechanistic down-regulation of the protein levels of inflammatory enzymes (inducible nitric oxide synthase, iNOS and cyclooxygenase-2, COX-2), metastasis (matrix metallopeptidase-2, MMP-2 and MMP-9), angiogenesis (vascular endothelial growth factor, VEGF), and proliferative molecules, as well as by the induction of apoptosis in prostate tumors. Our findings suggest that GL is an effective anti-cancer agent that may potentially serve as a novel therapeutic option for prostate cancer treatment.
Collapse
Affiliation(s)
- Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung Marine University, No.142, Haijhuan Rd., Nanzih District, Kaohsiung 81143, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
Elkahwaji JE. The role of inflammatory mediators in the development of prostatic hyperplasia and prostate cancer. Res Rep Urol 2012; 5:1-10. [PMID: 24400229 PMCID: PMC3826944 DOI: 10.2147/rru.s23386] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Benign prostatic hyperplasia and prostate cancer remain the most prevalent urologic health concerns affecting elderly men in their lifetime. Only 20% of benign prostatic hyperplasia and prostate cancer cases coexist in the same zone of the prostate and require a long time for initiation and progression. While the pathogenesis of both diseases is not fully understood, benign prostatic hyperplasia and prostate cancer are thought to have a multifactorial etiology, their incidence and prevalence are indeed affected by age and hormones, and they are associated with chronic prostatic inflammation. At least 20% of all human malignancies arise in a tissue microenvironment dominated by chronic or recurrent inflammation. In prostate malignancy, chronic inflammation is an extremely common histopathologic finding; its origin remains a subject of debate and may in fact be multifactorial. Emerging insights suggest that prostate epithelium damage potentially inflicted by multiple environmental factors such as infectious agents, dietary carcinogens, and hormones triggers procarcinogenic inflammatory processes and promotes cell transformation and disease development. Also, the coincidence of chronic inflammation and tumorigenesis in the peripheral zone has recently been linked by studies identifying so-called proliferative inflammatory atrophy as a possible precursor of prostatic intraepithelial neoplasia and prostate cancer. This paper will discuss the available evidence suggesting that chronic inflammation may be involved in the development and progression of chronic prostatic disease, although a direct causal role for chronic inflammation or infection in prostatic carcinogenesis has yet to be established in humans. Further basic and clinical research in the area, trying to understand the etiology of prostatic inflammation and its signaling pathway may help to identify new therapeutic targets and novel preventive strategies for reducing the risk of developing benign and malignant tumors of the prostate.
Collapse
Affiliation(s)
- Johny E Elkahwaji
- Section of Urologic Surgery, University of Nebraska Medical Center, Omaha, NE, USA ; Section of Medical Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, USA ; Genitourinary Oncology Research Laboratory, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
27
|
Cocaine reverses the naltrexone-induced reduction in operant ethanol self-administration: The effects on immediate-early gene expression in the rat prefrontal cortex. Neuropharmacology 2012; 63:927-35. [DOI: 10.1016/j.neuropharm.2012.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/19/2012] [Accepted: 06/07/2012] [Indexed: 12/20/2022]
|
28
|
Shao N, Feng N, Wang Y, Mi Y, Li T, Hua L. Systematic review and meta-analysis of COX-2 expression and polymorphisms in prostate cancer. Mol Biol Rep 2012; 39:10997-1004. [PMID: 23053989 DOI: 10.1007/s11033-012-2001-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 10/01/2012] [Indexed: 12/18/2022]
Abstract
Evidence is accumulating that cyclooxygenase-2 (COX-2) may play an important role in prostate cancer (PCa). Recently, gene polymorphisms in COX-2 have been implicated to alter the risk of PCa and overexpression of COX-2 may be associated with clinical and prognostic significance in PCa. However, the results of these studies are inconclusive or controversial. To derive a more precise estimation of the relationships, we performed an updated meta-analysis. A comprehensive search was conducted to examine all the eligible studies of COX-2 polymorphism and expression in PCa. We used odds ratios (ORs) to assess the strength of the association and the 95 % confidence intervals (CIs) give a sense of the precision of the estimate. Overall, no significant associations between COX-2 polymorphism and PCa risk were found. However, high expression of COX-2 was significantly higher in T3-T4 stages of PCa than in T1-T2 stages of PCa (OR = 2.33, 95 %CI: 1.54-3.53, P < 0.0001). COX-2 might play an important role in the progress of PCa, overexpression of COX-2 correlates with T3-T4 stages of PCa. COX-2 might be a potential therapy target for PCa and work as a prognostic factor for PCa patients.
Collapse
Affiliation(s)
- Ning Shao
- Department of Urology, Jiangsu Province Geriatric Hospital, 65 Jiangsu Road, Nanjing, 210024, China
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
High-grade prostatic intraepithelial neoplasia (PIN) is the only accepted precursor of prostatic adenocarcinoma, according to numerous studies of animal models and man; other proposed precursors include atrophy and malignancy-associated changes (with no morphologic changes). PIN is characterized by progressive abnormalities of phenotype and genotype that are intermediate between benign prostatic epithelium and cancer, indicating impairment of cell differentiation and regulatory control with advancing stages of prostatic carcinogenesis. The only method of detection of PIN is biopsy because it does not significantly elevate serum prostate-specific antigen concentration and cannot be detected by ultrasonography. The mean incidence of PIN in biopsies is 9% (range, 4%-16%), representing about 115,000 new cases of isolated PIN diagnosed each year in the United States. The clinical importance of PIN is its high predictive value as a marker for adenocarcinoma, and its identification warrants repeat biopsy for concurrent or subsequent carcinoma, especially when multifocal or observed in association with atypical small acinar proliferation (ASAP). Carcinoma develops in most patients with PIN within 10 years. Androgen deprivation therapy and radiation therapy decrease the prevalence and extent of PIN, suggesting that these forms of treatment may play a role in prevention of subsequent cancer. Multiple clinical trials to date of men with PIN have had modest success in delaying or preventing subsequent cancer.
Collapse
|
30
|
Bae JS, Kim TH. Enzymatic transformation of caffeic acid with enhanced cyclooxygenase-2 inhibitory activity. Bioorg Med Chem Lett 2012; 22:793-6. [DOI: 10.1016/j.bmcl.2011.12.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 11/16/2022]
|
31
|
Deenen MJ, Cats A, Beijnen JH, Schellens JHM. Part 2: pharmacogenetic variability in drug transport and phase I anticancer drug metabolism. Oncologist 2011; 16:820-34. [PMID: 21632461 DOI: 10.1634/theoncologist.2010-0259] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Equivalent drug doses in anticancer chemotherapy may lead to wide interpatient variability in drug response reflected by differences in treatment response or in severity of adverse drug reactions. Differences in the pharmacokinetic (PK) and pharmacodynamic (PD) behavior of a drug contribute to variation in treatment outcome among patients. An important factor responsible for this variability is genetic polymorphism in genes that are involved in PK/PD processes, including drug transporters, phase I and II metabolizing enzymes, and drug targets, and other genes that interfere with drug response. In order to achieve personalized pharmacotherapy, drug dosing and treatment selection based on genotype might help to increase treatment efficacy while reducing unnecessary toxicity. We present a series of four reviews about pharmacogenetic variability in anticancer drug treatment. This is the second review in the series and is focused on genetic variability in genes encoding drug transporters (ABCB1 and ABCG2) and phase I drug-metabolizing enzymes (CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, DPYD, CDA and BLMH) and their associations with anticancer drug treatment outcome. Based on the literature reviewed, opportunities for patient-tailored anticancer therapy are presented.
Collapse
Affiliation(s)
- Maarten J Deenen
- Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
32
|
Abstract
Cyclooxygenase (COX; also known as prostaglandin endoperoxide synthase) is a key enzyme in the biochemical pathway leading to the synthesis of prostaglandins. A large amount of epidemiological and experimental evidence supports a role for COX-2, the inducible form of the enzyme, in human tumorigenesis, notably in colorectal cancer. COX-2 mediates this role through the production of PGE(2) that acts to inhibit apoptosis, promote cell proliferation, stimulate angiogenesis, and decrease immunity. Similarly, COX-2 is believed to be involved in the oncogenesis of some cancers in domestic animals. Here, the author reviews the current knowledge on COX-2 expression and role in cancers of dogs, cats, and horses. Data indicate that COX-2 upregulation is present in many animal cancers, but there is presently not enough information to clearly define the prognostic significance of COX-2 expression. To date, only few reports document an association between COX-2 expression and survival, notably in canine mammary cancers and osteosarcomas. Some evidence suggests that COX inhibitors could be useful in the prevention and/or treatment of certain cancers in domestic animals, the best example being urinary transitional cell carcinomas in dogs. However, determination of the levels of COX-2 in a tumor does not appear to be a good prognostic factor or a good indicator for the response to nonsteroidal anti-inflammatory drug therapy. Clearly, additional research, including the development of in vitro cell systems, is needed to determine if COX-2 expression can be used as a reliable prognostic factor and as a definite therapeutic target in animal cancers.
Collapse
Affiliation(s)
- M Doré
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada.
| |
Collapse
|
33
|
Mhidia R, Bézière N, Blanpain A, Pommery N, Melnyk O. Assembly/Disassembly of Drug Conjugates Using Imide Ligation. Org Lett 2010; 12:3982-5. [DOI: 10.1021/ol101049g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Reda Mhidia
- UMR CNRS 8161, Université de Lille Nord de France, IFR 142, Institut Pasteur de Lille, 1 rue du Pr Calmette 59021 Lille, France, and Université de Lille Nord de France, 3 rue du Professeur Laguesse BP83, 59006 Lille Cedex, France
| | - Nicolas Bézière
- UMR CNRS 8161, Université de Lille Nord de France, IFR 142, Institut Pasteur de Lille, 1 rue du Pr Calmette 59021 Lille, France, and Université de Lille Nord de France, 3 rue du Professeur Laguesse BP83, 59006 Lille Cedex, France
| | - Annick Blanpain
- UMR CNRS 8161, Université de Lille Nord de France, IFR 142, Institut Pasteur de Lille, 1 rue du Pr Calmette 59021 Lille, France, and Université de Lille Nord de France, 3 rue du Professeur Laguesse BP83, 59006 Lille Cedex, France
| | - Nicole Pommery
- UMR CNRS 8161, Université de Lille Nord de France, IFR 142, Institut Pasteur de Lille, 1 rue du Pr Calmette 59021 Lille, France, and Université de Lille Nord de France, 3 rue du Professeur Laguesse BP83, 59006 Lille Cedex, France
| | - Oleg Melnyk
- UMR CNRS 8161, Université de Lille Nord de France, IFR 142, Institut Pasteur de Lille, 1 rue du Pr Calmette 59021 Lille, France, and Université de Lille Nord de France, 3 rue du Professeur Laguesse BP83, 59006 Lille Cedex, France
| |
Collapse
|
34
|
Targeting COX-2 expression by natural compounds: a promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochem Pharmacol 2010; 80:1801-15. [PMID: 20615394 DOI: 10.1016/j.bcp.2010.06.050] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/26/2010] [Accepted: 06/28/2010] [Indexed: 02/07/2023]
Abstract
Cyclooxygenase (COX)-2 is a pro-inflammatory immediate early response protein, chronically up-regulated in many pathological conditions. In autoimmune diseases, it is responsible for degenerative effects whereas in cancer, it correlates with poor prognosis. A constitutive expression of COX-2 is triggered since the earliest steps of carcinogenesis. Consequently, strategies aimed at inhibiting COX-2 enzymatic activity have been clinically applied for the treatment of autoimmune disorders; in addition, the same approaches are currently investigated for anti-cancer purposes. However, COX-2 protein inhibitors (i.e., NSAIDs and COXIBs) are not amenable to prolonged administration since they may cause severe side effects, and efforts are underway to identify alternative approaches for chemoprevention/therapy. COX-2 expression is a multi-step process, highly regulated at transcriptional and post-transcriptional levels. Defects in the modulation of one or both of these steps may be found in pathological conditions. Targeting COX-2 expression may therefore represent a promising strategy, by which the same preventive and therapeutic benefits may be gained while avoiding the severe side effects of COX-2 enzymatic inhibition. Naturally occurring compounds derived from plants/organisms represent a huge source of biologically active molecules, that remains largely unexplored. Derived from plants/organisms used in traditional forms of medicine or as dietary supplements, these compounds have been experimentally investigated for their anti-inflammatory and anti-cancer potential. In this review, we will analyze how natural compounds may modulate the multistep regulation of COX-2 gene expression and discuss their potential as a new generation of COX-2 targeting agents alternative to the synthetic COX-2 inhibitors.
Collapse
|
35
|
Prado SMD, Cedrún JLL, Rey RL, Villaamil VM, García AA, Ayerbes MV, Aparicio LA. Evaluation of COX-2, EGFR, and p53 as biomarkers of non-dysplastic oral leukoplakias. Exp Mol Pathol 2010; 89:197-203. [PMID: 20599939 DOI: 10.1016/j.yexmp.2010.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 06/12/2010] [Accepted: 06/12/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Identify candidate SEBs (surrogate endpoint biomarkers) for premalignant trends in head and neck mucosa. STUDY DESIGN Study, by qPCR (quantitative real-time polymerase chain reaction), the expression of COX-2, EGFR and p53 in 24 biopsies of non-dysplastic oral leukoplakia and contra-lateral normal-appearing mucosa. RESULTS COX-2 was up-regulated in leukoplakia (79.2%); whereas EGFR and p53 were up-regulated (p>0.05) in oral contra-lateral normal-appearing mucosa (60% and 46% respectively). Also, p53 expression was correlated with tobacco smoke habits and Spearman's rank correlation coefficient showed a positive linear correlation between p53 and EGFR mRNA expression levels. CONCLUSIONS COX-2 would serve as SEB of oral leukoplakia. The results suggest that p53 appears to be one of the molecular targets of tobacco-related carcinogens in leukoplakia and that the co-expression of p53 and EGFR may play a role in this kind of oral pre-cancerous lesion. More detailed studies of EGFR and p53 should be continued in the future.
Collapse
|
36
|
TGF-β1 Reverses Inhibition of COX-2 With NS398 and Increases Invasion in Prostate Cancer Cells. Am J Med Sci 2010; 339:425-32. [DOI: 10.1097/maj.0b013e3181d7c9db] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
Johnson JJ, Bailey HH, Mukhtar H. Green tea polyphenols for prostate cancer chemoprevention: a translational perspective. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:3-13. [PMID: 19959000 PMCID: PMC2789276 DOI: 10.1016/j.phymed.2009.09.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/26/2009] [Accepted: 09/22/2009] [Indexed: 05/28/2023]
Abstract
Every year nearly 200,000 men in the United States are diagnosed with prostate cancer (PCa), and another 29,000 men succumb to the disease. Within certain regions of the world population based studies have identified a possible role for green tea in the prevention of certain cancers, especially PCa. One constituent in particular, epigallocatechin-3-gallate also known as EGCG has been shown in cell culture models to decrease cell viability and promote apoptosis in multiple cancer cell lines including PCa with no effect on non-cancerous cell lines. In addition, animal models have consistently shown that standardized green tea polyphenols when administered in drinking water delay the development and progression of PCa. Altogether, three clinical trials have been performed in PCa patients and suggest that green tea may have a distinct role as a chemopreventive agent. This review will present the available data for standardized green tea polyphenols in regard to PCa chemoprevention that will include epidemiological, mechanism based studies, safety, pharmacokinetics, and applicable clinical trials. The data that has been collected so far suggests that green tea may be a promising agent for PCa chemoprevention and further clinical trials of participants at risk of PCa or early stage PCa are warranted.
Collapse
Affiliation(s)
- J J Johnson
- University of Wisconsin School of Pharmacy, Division of Pharmacy Practice, 1031 Rennebohm Hall, Madison, WI, USA.
| | | | | |
Collapse
|
38
|
A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs 2009; 20:757-69. [PMID: 19704371 DOI: 10.1097/cad.0b013e328330d95b] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural products represent a rich reservoir of potential small chemical molecules exhibiting antiproliferation and anticancer properties. An example is berberine, a protoberberine alkaloid widely distributed in medical plants used in traditional Chinese prescriptions. Recent advances have shown that berberine exerts anticancer activities both in vitro and in vivo through different mechanisms. Berberine shows inhibitory effects on the proliferation and reproduction of certain tumorigenic microorganisms and viruses, such as Heliobacter pylori and hepatitis B virus. Transcriptional regulation of some oncogene and carcinogenesis-related gene expression and interaction with both DNA and RNA are also well documented. Besides, berberine is a broad spectrum enzyme inhibitor, which affects N-acetyltransferase, cyclooxygenase-2, and topoisomerase activities and gene/protein expression. These actions, together with the regulation of reactive oxygen species production, mitochondrial transmembrane potential, and nuclear factor-kappaB activation might underlie its antiproliferative and proapoptotic effects. More importantly, the suppression of tumor growth and metastasis, the beneficial application in combined medication, and the improvement of multidrug resistance both in vivo and in vitro clearly show its potential as an alternative medicine for tumor chemotherapy.
Collapse
|
39
|
Caruso C, Balistreri CR, Candore G, Carruba G, Colonna-Romano G, Di Bona D, Forte GI, Lio D, Listì F, Scola L, Vasto S. Polymorphisms of pro-inflammatory genes and prostate cancer risk: a pharmacogenomic approach. Cancer Immunol Immunother 2009; 58:1919-33. [PMID: 19221747 PMCID: PMC11030552 DOI: 10.1007/s00262-009-0658-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 01/06/2009] [Indexed: 02/02/2023]
Abstract
In this paper, we consider the role of the genetics of inflammation in the pathophysiology of prostate cancer (PCa). This paper is not an extensive review of the literature, rather it is an expert opinion based on data from authors' laboratories on age-related diseases and inflammation. The aim is the detection of a risk profile that potentially allows both the early identification of individuals at risk for disease and the possible discovery of potential targets for medication. In fact, a major goal of clinical research is to improve early detection of age-related diseases, cancer included, by developing tools to move diagnosis backward in disease temporal course, i.e., before the clinical manifestation of the malady, where treatment might play a decisive role in preventing or significantly retarding the manifestation of the disease. The better understanding of the function and the regulation of inflammatory pathway in PCa may help to know the mechanisms of its formation and progression, as well as to identify new targets for the refinement of new treatment such as the pharmacogenomics approach.
Collapse
Affiliation(s)
- Calogero Caruso
- Gruppo di Studio sull'Immunosenescenza, Dipartimento di Biopatologia e Metodologie Biomediche, Università di Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zarghi A, Ghodsi R, Azizi E, Daraie B, Hedayati M, Dadrass OG. Synthesis and biological evaluation of new 4-carboxyl quinoline derivatives as cyclooxygenase-2 inhibitors. Bioorg Med Chem 2009; 17:5312-7. [DOI: 10.1016/j.bmc.2009.05.084] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 05/03/2009] [Accepted: 05/05/2009] [Indexed: 02/02/2023]
|
41
|
Fraser CC. G protein-coupled receptor connectivity to NF-kappaB in inflammation and cancer. Int Rev Immunol 2009; 27:320-50. [PMID: 18853342 DOI: 10.1080/08830180802262765] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complex intracellular network interactions regulate gene expression and cellular behavior. Whether at the site of inflammation or within a tumor, individual cells are exposed to a plethora of signals. The transcription factor nuclear factor-kappaB (NF-kappaB) regulates genes that control key cellular activities involved in inflammatory diseases and cancer. NF-kappaB is regulated by several distinct signaling pathways that may be activated individually or simultaneously. Multiple ligands and heterologous cell-cell interactions have an impact on NF-kappaB activity. The G protein-coupled receptor (GPCR) superfamily makes up the largest class of transmembrane receptors in the human genome and has multiple molecularly distinct natural ligands. GPCRs regulate proliferation, differentiation, and chemotaxis and play a major role in inflammatory diseases and cancer. Both GPCRs and NF-kappaB have been, and continue to be, major targets for drug discovery. A clear understanding of network interactions between GPCR signaling pathways and those that control NF-kB may be valuable for the development of better drugs and drug combinations.
Collapse
|
42
|
Ge JH, Zhu YY, Liu YR, Jiang JJ, Dong J. siRNA-mediated downregulation of COX-2 gene expression alters the proliferation of hepatocellular carcinoma HepG2 cells. Shijie Huaren Xiaohua Zazhi 2009; 17:2244. [DOI: 10.11569/wcjd.v17.i22.2244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
43
|
Abstract
Eicosanoids, the metabolites of arachidonic acid, have diverse functions in the regulation of cancer including prostate cancer. This review will provide an overview of the roles of eicosanoids and endocannabinoids and their potential as therapeutic targets for prostate cancer treatment.
Collapse
Affiliation(s)
- Kasem Nithipatikom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - William B Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|