1
|
Guo F, Habre R, Xu Y, Chen X, Howland S, Lurmann F, Pavlovic N, Gauderman WJ, McConnell R, Bastain TM, Breton CV, Farzan SF. Impact of childhood exposure to traffic related air pollution on adult cardiometabolic health: Exploring the role of perceived stress. ENVIRONMENTAL RESEARCH 2024; 263:120130. [PMID: 39419260 PMCID: PMC11608997 DOI: 10.1016/j.envres.2024.120130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Little is known about how childhood exposure to traffic-related air pollution (TRAP) and stress interact to affect adults' cardiometabolic health. We examined this interaction and assessed the impact of over 10 years of childhood TRAP exposure on cardiometabolic health. METHODS From 2018 to 2023, 313 young adults from the Southern California Children's Health Study were enrolled in a follow-up assessment. Using CALINE4 line source dispersion model, average childhood TRAP exposures (from pregnancy to age 13) were estimated for nitrogen oxides (NOx) from all roads. Traffic density was calculated within a 300-m residential buffer. Cardiometabolic health was assessed in adulthood (mean age 24 ± 1.7) based on blood lipids (total cholesterol, high- and low-density lipoprotein [HDL, LDL], triglycerides), glucose metabolism (fasting glucose, fasting insulin, HbA1c), body composition (BMI, android/gynoid ratio [AG ratio], percent body fat), and blood pressure. A PDAY (Pathobiologic Determinants of Atherosclerosis in Youth) score was generated to evaluate overall cardiometabolic health. Participants' perceived stress was assessed in childhood and adulthood (ages 13 and 24 years, respectively). RESULTS Results of mixed effects linear models, adjusted for demographics and smoking status, suggested that each standard deviation increase in childhood exposure to traffic-related total NOx was associated with 0.62 increase in PDAY score (95% Confidence Interval [CI]:0.10,1.14), 0.09% increase in HbA1c (95%CI: 0.04, 0.15), 1.19% increase in percent body fat (95%CI: 0.18, 2.20), and 0.96 kg/m2 increase in BMI (0.11, 1.80) in adulthood. Among participants with higher childhood stress levels, we observed significant associations of traffic-related total NOx with total cholesterol, HDL, LDL, HbA1c, insulin, and BMI. None of these associations were significant among people with lower stress levels. We observed similar statistically significant associations of traffic density. CONCLUSION Long-term childhood exposure to TRAP in childhood may have lasting adverse impacts on cardiometabolic health, especially for children with higher stress levels.
Collapse
Affiliation(s)
- Fangqi Guo
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA; Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Yan Xu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Xinci Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Stephen Howland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | | | | | - W James Gauderman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Carrie V Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA.
| |
Collapse
|
2
|
AlZaabi A, Younus HA, Al-Reasi HA, Al-Hajri R. Could environmental exposure and climate change Be a key factor in the rising incidence of early onset colorectal cancer? Heliyon 2024; 10:e35935. [PMID: 39258208 PMCID: PMC11386049 DOI: 10.1016/j.heliyon.2024.e35935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/12/2024] Open
Abstract
The emergence of early onset colorectal cancer (EOCRC) is believed to result from the complex interplay between external environmental factors and internal molecular processes. This review investigates the potential association between environmental exposure to chemicals and climate change and the increased incidence of EOCRC, focusing on their effects on gut microbiota (GM) dynamics. The manuscript explores the birth cohort effect, suggesting that individuals born after 1950 may be at higher risk of developing EOCRC due to cumulative environmental exposures. Furthermore, we also reviewed the impact of environmental pollution, including particulate matter and endocrine disrupting chemicals (EDCs), as well as global warming, on GM disturbance. Environmental exposures have the potential to disrupt GM composition and diversity, leading to dysbiosis, chronic inflammation, and oxidative stress, which are known risk factors associated with EOCRC. Particulate matter can enter the gastrointestinal tract, modifying GM composition and promoting the proliferation of pathogenic bacteria while diminishing beneficial bacteria. Similarly, EDCs, can induce GM alterations and inflammation, further increasing the risk of EOCRC. Additionally, global warming can influence GM through shifts in gut environmental conditions, affecting the host's immune response and potentially increasing EOCRC risk. To summarize, environmental exposure to chemicals and climate change since 1950 has been implicated as contributing factors to the rising incidence of EOCRC. Disruptions in gut microbiota homeostasis play a crucial role in mediating these associations. Consequently, there is a pressing need for enhanced environmental policies aimed at minimizing exposure to pollutants, safeguarding public health, and mitigating the burden of EOCRC.
Collapse
Affiliation(s)
- Adhari AlZaabi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Hussein A Younus
- Nanotechnology Research Center, Sultan Qaboos University, PO Box 17, Al-Khoud, PC 123 Oman
| | - Hassan A Al-Reasi
- Department of Biology, College of Science, Sultan Qaboos University, PO Box 36, PC 123, Al-Khoud, Muscat, Oman
- Faculty of Education and Arts, Sohar University, PO Box 44, PC 311, Sohar, Oman
| | - Rashid Al-Hajri
- Department of Petrolleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P. O. Box 33, Al Khoud, Muscat, PC 123, Oman
| |
Collapse
|
3
|
Hu Y, Wang Y, Zhao Z, Zhao B. Reconsidering gas as clean energy: Switching to electricity for household cooking to reduce NO 2-attributed disease burden. ECO-ENVIRONMENT & HEALTH 2024; 3:174-182. [PMID: 38638171 PMCID: PMC11021829 DOI: 10.1016/j.eehl.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 04/20/2024]
Abstract
Nitrogen dioxide (NO2) is a prevalent air pollutant in urban areas, originating from outdoor sources, household gas consumption, and secondhand smoke. The limited evaluation of the disease burden attributable to NO2, encompassing different health effects and contributions from various sources, impedes our understanding from a public health perspective. Based on modeled NO2 exposure concentrations, their exposure-response relationships with lung cancer, chronic obstructive pulmonary disease, and diabetes mellitus, and baseline disability-adjusted life years (DALYs), we estimated that 1,675 (655-2,624) thousand DALYs were attributable to NO2 in urban China in 2019 [138 (54-216) billion Chinese yuan (CNY) economic losses]. The transition from gas to electricity for household cooking was estimated to reduce the attributable economic losses by 35%. This reduction falls within the range of reductions achieved when outdoor air meets the World Health Organization interim target 3 and air quality guidelines for annual NO2, highlighting the significance of raising awareness of gas as a polluting household energy for cooking. These findings align with global sustainable development initiatives, providing a sustainable solution to promote public health while potentially mitigating climate change.
Collapse
Affiliation(s)
- Ying Hu
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Ye Wang
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Zhuohui Zhao
- School of Public Health, Fudan University, Shanghai 200433, China
- Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200433, China
- Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai 200433, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Oliveira Ferreira CKD, Campolim CM, Zordão OP, Simabuco FM, Anaruma CP, Pereira RM, Boico VF, Salvino LG, Costa MM, Ruiz NQ, de Moura LP, Saad MJA, Costa SKP, Kim YB, Prada PO. Subchronic exposure to 1,2-naphthoquinone induces adipose tissue inflammation and changes the energy homeostasis of mice, partially due to TNFR1 and TLR4. Toxicol Rep 2023; 11:10-22. [PMID: 37383489 PMCID: PMC10293596 DOI: 10.1016/j.toxrep.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/16/2023] [Accepted: 06/03/2023] [Indexed: 06/30/2023] Open
Abstract
Air pollution affects energy homeostasis detrimentally. Yet, knowledge of how each isolated pollutant can impact energy metabolism remains incomplete. The present study was designed to investigate the distinct effects of 1,2-naphthoquinone (1,2-NQ) on energy metabolism since this pollutant increases at the same rate as diesel combustion. In particular, we aimed to determine in vivo effects of subchronic exposure to 1,2-NQ on metabolic and inflammatory parameters of wild-type mice (WT) and to explore the involvement of tumor necrosis factor receptor 1 (TNFR1) and toll-like receptor 4 (TLR4) in this process. Males WT, TNFR1KO, and TLR4KO mice at eight weeks of age received 1,2-NQ or vehicle via nebulization five days a week for 17 weeks. In WT mice, 1,2-NQ slightly decreased the body mass compared to vehicle-WT. This effect was likely due to a mild food intake reduction and increased energy expenditure (EE) observed after six weeks of exposure. After nine weeks of exposure, we observed higher fasting blood glucose and impaired glucose tolerance, whereas insulin sensitivity was slightly improved compared to vehicle-WT. After 17 weeks of 1,2-NQ exposure, WT mice displayed an increased percentage of M1 and a decreased (p = 0.057) percentage of M2 macrophages in adipose tissue. The deletion of TNFR1 and TLR4 abolished most of the metabolic impacts caused by 1,2-NQ exposure, except for the EE and insulin sensitivity, which remained high in these mice under 1,2-NQ exposure. Our study demonstrates for the first time that subchronic exposure to 1,2-NQ affects energy metabolism in vivo. Although 1,2-NQ increased EE and slightly reduced feeding and body mass, the WT mice displayed higher inflammation in adipose tissue and impaired fasting blood glucose and glucose tolerance. Thus, in vivo subchronic exposure to 1,2-NQ is harmful, and TNFR1 and TLR4 are partially involved in these outcomes.
Collapse
Affiliation(s)
| | - Clara Machado Campolim
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Olívia Pizetta Zordão
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | | | - Chadi Pellegrini Anaruma
- Department of Physical Education, Institute of Biosciences - São Paulo State University, Rio Claro, SP, Brazil
| | | | | | | | - Maíra Maftoum Costa
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
| | | | - Leandro Pereira de Moura
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
- Department of Physical Education, Institute of Biosciences - São Paulo State University, Rio Claro, SP, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Young-Bum Kim
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Patricia Oliveira Prada
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
- Max-Planck Institute for Metabolism Research, Köln, Germany
| |
Collapse
|
5
|
Yang H, Shi P, Li M, Kong L, Liu S, Jiang L, Yang J, Xu B, Yang T, Xi S, Liu W. Mendelian-randomization study reveals causal relationships between nitrogen dioxide and gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115660. [PMID: 37948942 DOI: 10.1016/j.ecoenv.2023.115660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Exposure to nitrogen dioxide might potentially change the makeup and operation of gut microbes. Nitrogen dioxide data was procured from the IEU Open GWAS (N = 456 380). Subsequently, a two-sample Mendelian randomization study was executed, utilizing summary statistics of gut microbiota sourced from the most expansive available genome-wide association study meta-analysis, conducted by the MiBioGen consortium (N = 13 266). The causal relationship between nitrogen dioxide and gut microbiota was determined using inverse variance weighted, maximum likelihood, MR-Egger, Weighted Median, Weighted Model, Mendelian randomization pleiotropy residual sum and outlier, and constrained maximum likelihood and model averaging and Bayesian information criterion. The level of heterogeneity of instrumental variables was quantified by utilizing Cochran's Q statistic. The colocalization analysis was used to examine whether nitrogen dioxide and the identified gut microbiota shared casual variants. Inverse variance weighted estimate suggested that nitrogen dioxide was causally associated with Akkermansia (β = -1.088, 95% CI: -1.909 to -0.267, P = 0.009). In addition, nitrogen dioxide presented a potential association with Bacteroides (β = -0.938, 95% CI: -1.592 to -0.284, P = 0.005), Barnesiella (β = -0.797, 95% CI: -1.538 to -0.055, P = 0.035), Coprococcus 3 (β = 1.108, 95% CI: 0.048-2.167, P = 0.040), Eubacterium hallii group (E. hallii) (β = 0.776, 95% CI: 0.090-1.463, P = 0.027), Holdemania (β = -1.354, 95% CI: -2.336 to -0.372, P = 0.007), Howardella (β = 1.698, 95% CI: 0.257-3.139, P = 0.021), Olsenella (β = 1.599, 95% CI: 0.151-3.048, P = 0.030) and Sellimonas (β = -1.647, 95% CI: -3.209 to -0.086, P = 0.039). No significant heterogeneity of instrumental variables or horizontal pleiotropy was found. The associations of nitrogen dioxide with Akkermansia (PH4 = 0.836) and E. hallii (PH4 = 0.816) were supported by colocalization analysis. This two-sample Mendelian randomization study found that increased exposure to nitrogen dioxide had the potential to impact the human gut microbiota.
Collapse
Affiliation(s)
- Huajie Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Peng Shi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Mingzheng Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Lingxu Kong
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shuailing Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Liujiangshan Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jing Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Bin Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Tianyao Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shuhua Xi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Wei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Kutlar Joss M, Boogaard H, Samoli E, Patton AP, Atkinson R, Brook J, Chang H, Haddad P, Hoek G, Kappeler R, Sagiv S, Smargiassi A, Szpiro A, Vienneau D, Weuve J, Lurmann F, Forastiere F, Hoffmann BH. Long-Term Exposure to Traffic-Related Air Pollution and Diabetes: A Systematic Review and Meta-Analysis. Int J Public Health 2023; 68:1605718. [PMID: 37325174 PMCID: PMC10266340 DOI: 10.3389/ijph.2023.1605718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Objectives: We report results of a systematic review on the health effects of long-term traffic-related air pollution (TRAP) and diabetes in the adult population. Methods: An expert Panel appointed by the Health Effects Institute conducted this systematic review. We searched the PubMed and LUDOK databases for epidemiological studies from 1980 to July 2019. TRAP was defined based on a comprehensive protocol. Random-effects meta-analyses were performed. Confidence assessments were based on a modified Office for Health Assessment and Translation (OHAT) approach, complemented with a broader narrative synthesis. We extended our interpretation to include evidence published up to May 2022. Results: We considered 21 studies on diabetes. All meta-analytic estimates indicated higher diabetes risks with higher exposure. Exposure to NO2 was associated with higher diabetes prevalence (RR 1.09; 95% CI: 1.02; 1.17 per 10 μg/m3), but less pronounced for diabetes incidence (RR 1.04; 95% CI: 0.96; 1.13 per 10 μg/m3). The overall confidence in the evidence was rated moderate, strengthened by the addition of 5 recently published studies. Conclusion: There was moderate evidence for an association of long-term TRAP exposure with diabetes.
Collapse
Affiliation(s)
- Meltem Kutlar Joss
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | | | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Richard Atkinson
- Population Health Research Institute, St. George’s University of London, London, United Kingdom
| | - Jeff Brook
- Occupational and Environmental Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Howard Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Pascale Haddad
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Ron Kappeler
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sharon Sagiv
- Center for Environmental Research and Children’s Health, Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, CA, United States
| | - Francesco Forastiere
- Faculty of Medicine, School of Public Health, Imperial College, London, United Kingdom
| | - Barbara H. Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Yitshak Sade M, Shi L, Colicino E, Amini H, Schwartz JD, Di Q, Wright RO. Long-term air pollution exposure and diabetes risk in American older adults: A national secondary data-based cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121056. [PMID: 36634862 PMCID: PMC9905312 DOI: 10.1016/j.envpol.2023.121056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 05/18/2023]
Abstract
Type 2 diabetes is a major public health concern. Several studies have found an increased diabetes risk associated with long-term air pollution exposure. However, most current studies are limited in their generalizability, exposure assessment, or the ability to differentiate incidence and prevalence cases. We assessed the association between air pollution and first documented diabetes occurrence in a national U.S. cohort of older adults to estimate diabetes risk. We included all Medicare enrollees 65 years and older in the fee-for-service program, part A and part B, in the contiguous United States (2000-2016). Participants were followed annually until the first recorded diabetes diagnosis, end of enrollment, or death (264, 869, 458 person-years). We obtained annual estimates of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and warm-months ozone (O3) exposures from highly spatiotemporally resolved prediction models. We assessed the simultaneous effects of the pollutants on diabetes risk using survival analyses. We repeated the models in cohorts restricted to ZIP codes with air pollution levels not exceeding the national ambient air quality standards (NAAQS) during the study period. We identified 10, 024, 879 diabetes cases of 41, 780, 637 people (3.8% of person-years). The hazard ratio (HR) for first diabetes occurrence was 1.074 (95% CI 1.058; 1.089) for 5 μg/m3 increase in PM2.5, 1.055 (95% CI 1.050; 1.060) for 5 ppb increase in NO2, and 0.999 (95% CI 0.993; 1.004) for 5 ppb increase in O3. Both for NO2 and PM2.5 there was evidence of non-linear exposure-response curves with stronger associations at lower levels (NO2 ≤ 36 ppb, PM2.5 ≤ 8.2 μg/m3). Furthermore, associations remained in the restricted low-level cohorts. The O3-diabetes exposure-response relationship differed greatly between models and require further investigation. In conclusion, exposures to PM2.5 and NO2 are associated with increased diabetes risk, even when restricting the exposure to levels below the NAAQS set by the U.S. EPA.
Collapse
Affiliation(s)
- Maayan Yitshak Sade
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA.
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elena Colicino
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Joel D Schwartz
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Robert O Wright
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| |
Collapse
|
8
|
Yitshak Sade M, Shi L, Colicino E, Amini H, Schwartz JD, Di Q, Wright RO. Long-term air pollution exposure and diabetes risk in American older adults: A national secondary data-based cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121056. [PMID: 36634862 DOI: 10.1101/2021.09.09.21263282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 05/27/2023]
Abstract
Type 2 diabetes is a major public health concern. Several studies have found an increased diabetes risk associated with long-term air pollution exposure. However, most current studies are limited in their generalizability, exposure assessment, or the ability to differentiate incidence and prevalence cases. We assessed the association between air pollution and first documented diabetes occurrence in a national U.S. cohort of older adults to estimate diabetes risk. We included all Medicare enrollees 65 years and older in the fee-for-service program, part A and part B, in the contiguous United States (2000-2016). Participants were followed annually until the first recorded diabetes diagnosis, end of enrollment, or death (264, 869, 458 person-years). We obtained annual estimates of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and warm-months ozone (O3) exposures from highly spatiotemporally resolved prediction models. We assessed the simultaneous effects of the pollutants on diabetes risk using survival analyses. We repeated the models in cohorts restricted to ZIP codes with air pollution levels not exceeding the national ambient air quality standards (NAAQS) during the study period. We identified 10, 024, 879 diabetes cases of 41, 780, 637 people (3.8% of person-years). The hazard ratio (HR) for first diabetes occurrence was 1.074 (95% CI 1.058; 1.089) for 5 μg/m3 increase in PM2.5, 1.055 (95% CI 1.050; 1.060) for 5 ppb increase in NO2, and 0.999 (95% CI 0.993; 1.004) for 5 ppb increase in O3. Both for NO2 and PM2.5 there was evidence of non-linear exposure-response curves with stronger associations at lower levels (NO2 ≤ 36 ppb, PM2.5 ≤ 8.2 μg/m3). Furthermore, associations remained in the restricted low-level cohorts. The O3-diabetes exposure-response relationship differed greatly between models and require further investigation. In conclusion, exposures to PM2.5 and NO2 are associated with increased diabetes risk, even when restricting the exposure to levels below the NAAQS set by the U.S. EPA.
Collapse
Affiliation(s)
- Maayan Yitshak Sade
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA.
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elena Colicino
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Joel D Schwartz
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Robert O Wright
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| |
Collapse
|
9
|
Sommar JN, Segersson D, Flanagan E, Oudin A. Long-term residential exposure to source-specific particulate matter and incidence of diabetes mellitus - A cohort study in northern Sweden. ENVIRONMENTAL RESEARCH 2023; 217:114833. [PMID: 36402182 DOI: 10.1016/j.envres.2022.114833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Diabetes mellitus (DM) incidence have been assessed in connection with air pollution exposure in several studies; however, few have investigated associations with source-specific local emissions. This study aims to estimate the risk of DM incidence associated with source-specific air pollution in a Swedish cohort with relatively low exposure. Individuals in the Västerbotten intervention programme cohort were followed until either a DM diagnosis or initiation of treatment with glucose-lowering medication occurred. Dispersion models with high spatial resolution were used to estimate annual mean concentrations of particulate matter (PM) with aerodynamic diameter ≤10 μm (PM10) and ≤2.5 μm (PM2.5) at individual addresses. Hazard ratios were estimated using Cox regression models in relation to moving averages 1-5 years preceding the outcome. During the study period, 1479 incident cases of DM were observed during 261,703 person-years of follow-up. Increased incidence of DM was observed in association with PM10 (4% [95% CI: -54-137%] per 10 μg/m3), PM10-traffic (2% [95% CI: -6-11%] per 1 μg/m3) and PM2.5-exhaust (11% [95% CI: -39-103%] per 1 μg/m3). A negative association was found for both PM2.5 (-18% [95% CI: -99-66%] per 5 μg/m3), but only in the 2nd exposure tertile (-10% [95% CI: -25-9%] compared to the first tertile), and PM2.5-woodburning (-30% [95% CI: -49-4%] per 1 μg/m3). In two-pollutant models including PM2.5-woodburning, there was an 11% [95% CI: -11-38%], 6% [95% CI: -16-34%], 13% [95% CI: -7-36%] and 17% [95% CI: 4-41%] higher risk in the 3rd tertile of PM10, PM2.5, PM10-traffic and PM2.5-exhaust, respectively, compared to the 1st. Although the results lacked in precision they are generally in line with the current evidence detailing particulate matter air pollution from traffic as an environmental risk factor for DM.
Collapse
Affiliation(s)
- Johan N Sommar
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
| | - Erin Flanagan
- Division for Occupational and Environmental Medicine, Department for Laboratory Medicine, Lund University, Lund, Sweden
| | - Anna Oudin
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden; Division for Occupational and Environmental Medicine, Department for Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Liu W, Zhang Q, Liu W, Qiu C. Association between air pollution exposure and gestational diabetes mellitus in pregnant women: a retrospective cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2891-2903. [PMID: 35941503 DOI: 10.1007/s11356-022-22379-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The global prevalence of gestational diabetes mellitus (GDM) is increasing annually, and previous research reports on the relationship between exposure to air pollutants and GDM are not completely consistent. We investigated the association between air pollutant exposure and GDM in pregnant women in a retrospective cohort study in Guangzhou. We found that in the first trimester, exposure to PM2.5 and CO showed a significant association with GDM. In the second trimester, exposure to PM10 was significantly associated with GDM. In the third trimester, exposure to PM2.5, PM10, NO2, SO2, and CO at IQR4 (odds ratio [OR] = 1.271, 95% confidence interval [CI]: 1.179-1.370; OR = 1.283, 95% CI: 1.191-1.383; OR = 1.230, 95% CI: 1.145-1.322; OR = 1.408, 95% CI: 1.303-1.522; OR = 1.150, 95% CI: 1.067-1.240, respectively) compared with IQR1 was positively associated with GDM. However, exposure to NO2 was negatively associated with GDM in the first and second trimesters, and O3 was negatively associated with GDM in the second and third trimesters. We found that the correlation between air pollutants and GDM in different trimesters of pregnancy was not completely consistent in this retrospective cohort study. During pregnancy, there may be an interaction between air pollutant exposure and other factors, such as pregnant women's age, occupation, anemia status, pregnancy-induced hypertension status, and pregnancy season.
Collapse
Affiliation(s)
- Weiqi Liu
- Department of Clinical Laboratory, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, Guangdong, 510800, People's Republic of China.
| | - Qingui Zhang
- Department of Clinical Laboratory, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, 528000, People's Republic of China
| | - Weiling Liu
- Department of Clinical Laboratory, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, 528000, People's Republic of China
| | - Cuiqing Qiu
- Medical Information Office, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, Guangdong, 510800, People's Republic of China
| |
Collapse
|
11
|
Delclòs-Alió X, Rodríguez DA, Olmedo NL, Ferrer CP, Moore K, Stern D, de Menezes MC, de Oliveira Cardoso L, Wang X, Guimaraes JM, Miranda JJ, Sarmiento OL. Is city-level travel time by car associated with individual obesity or diabetes in Latin American cities? Evidence from 178 cities in the SALURBAL project. CITIES (LONDON, ENGLAND) 2022; 131:103899. [PMID: 36277810 PMCID: PMC7613723 DOI: 10.1016/j.cities.2022.103899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
There is growing evidence that longer travel time by private car poses physical and mental risks. Individual-level obesity and diabetes, two of the main public health challenges in low- and middle-income contexts, could be associated to city-level travel times by car. We used individual obesity and diabetes data from national health surveys from individuals in 178 Latin American cities, compiled and harmonized by the SALURBAL project. We calculated city-level travel times by car using the Google Maps Distance Matrix API. We estimated associations between peak hour city-level travel time by car and obesity and diabetes using multilevel logistic regression models, while adjusting for individual characteristics and other city-level covariates. In our study we did not observe a relationship between city-level peak-hour travel time by car and individual obesity and diabetes, as reported in previous research for individual time spent in vehicles in high-income settings. Our results suggest that this relationship may be more complex in Latin America compared to other settings, especially considering that cities in the region are characterized by high degrees of population density and compactness and by a higher prevalence of walking and public transportation use.
Collapse
Affiliation(s)
- Xavier Delclòs-Alió
- Institute of Urban and Regional Development, University of California, Berkeley, CA, USA
- Research Group on Territorial Analysis and Tourism Studies (GRATET), Department of Geography, Universitat Rovira i Virgili, Spain
| | - Daniel A. Rodríguez
- Department of City and Regional Planning & Institute for Transportation Studies, University of California, Berkeley, 228 Wurster Hall, Berkeley, CA 94720, USA
| | - Nancy López Olmedo
- Instituto Nacional de Salud Pública, Mexico, Avenida Universidad 655, 62100 Cuernavaca, Morelos, Mexico
| | - Carolina Pérez Ferrer
- CONACyT-Instituto Nacional de Salud Pública, Cerrada de Fray Pedro de Gante 50, 14080 Mexico City, Mexico
| | - Kari Moore
- Dornsife School of Public Health, Drexel University, 3600 Market Street, Philadelphia, PA 19104, USA
| | - Dalia Stern
- CONACyT-Instituto Nacional de Salud Pública, Cerrada de Fray Pedro de Gante 50, 14080 Mexico City, Mexico
| | - Mariana Carvalho de Menezes
- Department of Clinical and Social Nutrition, Federal University of Ouro Preto, Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Letícia de Oliveira Cardoso
- Oswaldo Cruz Foundation, National School of Public Health, Av. Brasil 4365, Rio de Janeiro, 21040-900, Rio de Janeiro, Brazil
| | - Xize Wang
- Department of Real Estate, National University of Singapore, 4 Architecture Dr, 117566, Singapore
| | - Joanna M.N. Guimaraes
- Oswaldo Cruz Foundation, National School of Public Health, Av. Brasil 4365, Rio de Janeiro, 21040-900, Rio de Janeiro, Brazil
| | - J. Jaime Miranda
- CRONICAS Centre of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Av. Armendariz 445, 15074 Lima, Peru
| | - Olga L. Sarmiento
- School of Medicine, Universidad de Los Andes, Carrera 1, 111711 Bogotá, Colombia
| |
Collapse
|
12
|
Reynoso-García J, Miranda-Santiago AE, Meléndez-Vázquez NM, Acosta-Pagán K, Sánchez-Rosado M, Díaz-Rivera J, Rosado-Quiñones AM, Acevedo-Márquez L, Cruz-Roldán L, Tosado-Rodríguez EL, Figueroa-Gispert MDM, Godoy-Vitorino F. A complete guide to human microbiomes: Body niches, transmission, development, dysbiosis, and restoration. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:951403. [PMID: 38993286 PMCID: PMC11238057 DOI: 10.3389/fsysb.2022.951403] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Humans are supra-organisms co-evolved with microbial communities (Prokaryotic and Eukaryotic), named the microbiome. These microbiomes supply essential ecosystem services that play critical roles in human health. A loss of indigenous microbes through modern lifestyles leads to microbial extinctions, associated with many diseases and epidemics. This narrative review conforms a complete guide to the human holobiont-comprising the host and all its symbiont populations- summarizes the latest and most significant research findings in human microbiome. It pretends to be a comprehensive resource in the field, describing all human body niches and their dominant microbial taxa while discussing common perturbations on microbial homeostasis, impacts of urbanization and restoration and humanitarian efforts to preserve good microbes from extinction.
Collapse
Affiliation(s)
| | | | | | - Kimil Acosta-Pagán
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Mitchell Sánchez-Rosado
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Jennifer Díaz-Rivera
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Angélica M. Rosado-Quiñones
- Department of Biology, UPR Rio Piedras Campus, San Juan, PR, United States
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Luis Acevedo-Márquez
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Lorna Cruz-Roldán
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | | | | | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| |
Collapse
|
13
|
McAlexander TP, De Silva SSA, Meeker MA, Long DL, McClure LA. Evaluation of associations between estimates of particulate matter exposure and new onset type 2 diabetes in the REGARDS cohort. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:563-570. [PMID: 34657127 PMCID: PMC9012798 DOI: 10.1038/s41370-021-00391-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Studies of PM2.5 and type 2 diabetes employ differing methods for exposure assignment, which could explain inconsistencies in this growing literature. We hypothesized associations between PM2.5 and new onset type 2 diabetes would differ by PM2.5 exposure data source, duration, and community type. METHODS We identified participants of the US-based REasons for Geographic and Racial Differences in Stroke (REGARDS) cohort who were free of diabetes at baseline (2003-2007); were geocoded at their residence; and had follow-up diabetes information. We assigned PM2.5 exposure estimates to participants for periods of 1 year prior to baseline using three data sources, and 2 years prior to baseline for two of these data sources. We evaluated adjusted odds of new onset diabetes per 5 µg/m3 increases in PM2.5 using generalized estimating equations with a binomial distribution and logit link, stratified by community type. RESULTS Among 11,208 participants, 1,409 (12.6%) had diabetes at follow-up. We observed no associations between PM2.5 and diabetes in higher and lower density urban communities, but within suburban/small town and rural communities, increases of 5 µg/m3 PM2.5 for 2 years (Downscaler model) were associated with diabetes (OR [95% CI] = 1.65 [1.09, 2.51], 1.56 [1.03, 2.36], respectively). Associations were consistent in direction and magnitude for all three PM2.5 sources evaluated. SIGNIFICANCE 1- and 2-year durations of PM2.5 exposure estimates were associated with higher odds of incident diabetes in suburban/small town and rural communities, regardless of exposure data source. Associations within urban communities might be obfuscated by place-based confounding.
Collapse
Affiliation(s)
- Tara P McAlexander
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA.
| | - S Shanika A De Silva
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA
| | - Melissa A Meeker
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA
| | - D Leann Long
- Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Leslie A McClure
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA
| |
Collapse
|
14
|
Li S, Ma Y, Ye S, Guo R, Su Y, Du Q, Yin S, Xiao F. Ambient NO 2 exposure induced cardiotoxicity associated with gut microbiome dysregulation and glycerophospholipid metabolism disruption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113583. [PMID: 35561545 DOI: 10.1016/j.ecoenv.2022.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
An average daily increase of 10 μg/m3 in NO2 concentrations could lead to an increased mortality in cardiovascular, cerebrovascular of 1.89%, 2.07%, but the mechanism by which NO2 contributes to cardiotoxicity is rarely reported. In order to assess the cardiotoxicity of NO2 inhalation (5 ppm), we firstly investigate the change of gut microbiota, serum metabonomics and cardiac proteome. Non-targeted LC-MS/MS metabonomics showed that NO2 stress could perturb the glycerophospholipid metabolism in the serum, which might destabilize the bilayer configuration of cardiac lipid membranes. Furthermore, we observed that NO2 inhalation caused augmented intercellular gap and inflammatory infiltration in the heart. Although 16 S rRNA gene amplification sequencing demonstrated that NO2 exposure did not influence the intestinal microbial abundance and diversity, but glycerophospholipid metabolism disruption might be finally reflected in gut microbiom dysregulation, such as Sphingomonas, Koribacter, Actinomarina and Bradyrhizobium Turicibacter, Rothia, Globicatella and Aerococcus. Proteome mining revealed that differentially expressed genes (DEGs) in the heart after NO2 stress were involved in necroptosis, mitophagy and ferroptosis. We further revealed that NO2 increased the number of cardiac mitochondria with depletion of cristae by regulating the expression of Mfn2 and Hsp70. This study indicating Mfn2-meidcated imbalanced mitochondrial dynamics as a potential mechanism after NO2-induced heart injury and suggesting microbiome dysregulation/glycerophospholipid metabolism exerts critical roles in cardiotoxicity caused by NO2.
Collapse
Affiliation(s)
- Siwen Li
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| | - Yu Ma
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Shuzi Ye
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Rong Guo
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Ying Su
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Qiaoyun Du
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Siyu Yin
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Fang Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
15
|
Zhai Y, Wang B, Qin L, Luo B, Xie Y, Hu H, Du H, Li Z. Smog and risk of maternal and fetal birth outcomes: A retrospective study in Baoding, China. Open Med (Wars) 2022; 17:1007-1018. [PMID: 35733622 PMCID: PMC9164291 DOI: 10.1515/med-2022-0489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Pregnant women are more susceptible to smog pollution than the general population. This study focused on the association between smog and birth outcomes, considering both pregnant mothers and their offspring. In this retrospective study, conducted in Baoding between 2013 and 2016, we enrolled 842 participants. Birth outcomes were low birth weight (LBW), pregnancy-induced hypertension (PIH), gestational diabetes mellitus (GDM), and premature rupture of membranes (PROM). The overall prevalence of LBW, PIH, GDM, and PROM was 8.2%, 14.8%, 16.5%, and 12.1%, respectively. Compared with lower pollution level, higher pollution level of fine particulate matter (particulate matter with aerodynamics diameter <2.5 μm) (PM2.5), inhalable particle (particulate matter with aerodynamics diameter <10 μm) (PM10), and CO increased the risk of term with LBW. PM2.5, PM10, and NO2 increased the risk of PIH during different trimesters, while PM10 increased the risk of PROM during trimester 3. In conclusion, smog significantly affects the risk of adverse birth outcomes by different exposure time windows.
Collapse
Affiliation(s)
- Yijing Zhai
- Department of Nutrition, Hebei Key Laboratory of Nutrition and Health, The First Hospital of Hebei Medical University , Shijiazhuang , 050031 , China
| | - Bei Wang
- Department of Nutrition, Hebei Key Laboratory of Nutrition and Health, The First Hospital of Hebei Medical University , Shijiazhuang , 050031 , China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University , Suzhou , 215000 , China
| | - Bin Luo
- Department of Nutrition, Hebei Key Laboratory of Nutrition and Health, The First Hospital of Hebei Medical University , Shijiazhuang , 050031 , China
| | - Ying Xie
- Department of Nutrition, Hebei Key Laboratory of Nutrition and Health, The First Hospital of Hebei Medical University , Shijiazhuang , 050031 , China
| | - Huanyu Hu
- Department of Nutrition, Hebei Key Laboratory of Nutrition and Health, The First Hospital of Hebei Medical University , Shijiazhuang , 050031 , China
| | - Hongzhen Du
- Department of Nutrition, Hebei Key Laboratory of Nutrition and Health, The First Hospital of Hebei Medical University , Shijiazhuang , 050031 , China
| | - Zengning Li
- Department of Nutrition, Hebei Key Laboratory of Nutrition and Health, The First Hospital of Hebei Medical University , Shijiazhuang , 050031 , China
| |
Collapse
|
16
|
Zang ST, Luan J, Li L, Yu HX, Wu QJ, Chang Q, Zhao YH. Ambient air pollution and COVID-19 risk: Evidence from 35 observational studies. ENVIRONMENTAL RESEARCH 2022; 204:112065. [PMID: 34534520 PMCID: PMC8440008 DOI: 10.1016/j.envres.2021.112065] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/28/2021] [Accepted: 09/12/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS The coronavirus disease 2019 (COVID-19) pandemic is severely threatening and challenging public health worldwide. Epidemiological studies focused on the influence of outdoor air pollution (AP) on COVID-19 risk have produced inconsistent conclusions. We aimed to quantitatively explore this association using a meta-analysis. METHODS We searched for studies related to outdoor AP and COVID-19 risk in the Embase, PubMed, and Web of Science databases. No language restriction was utilized. The search date entries were up to August 13, 2021. Pooled estimates and 95% confidence intervals (CIs) were obtained with random-/fixed-effects models. PROSPERO registration number: CRD42021244656. RESULTS A total of 35 articles were eligible for the meta-analysis. For long-term exposure to AP, COVID-19 incidence was positively associated with 1 μg/m3 increase in nitrogen dioxide (NO2; effect size = 1.042, 95% CI 1.017-1.068), particulate matter with diameter <2.5 μm (PM2.5; effect size = 1.056, 95% CI 1.039-1.072), and sulfur dioxide (SO2; effect size = 1.071, 95% CI 1.002-1.145). The COVID-19 mortality was positively associated with 1 μg/m3 increase in nitrogen dioxide (NO2; effect size = 1.034, 95% CI 1.006-1.063), PM2.5 (effect size = 1.047, 95% CI 1.025-1.1071). For short-term exposure to air pollutants, COVID-19 incidence was positively associated with 1 unit increase in air quality index (effect size = 1.001, 95% CI 1.001-1.002), 1 μg/m3 increase NO2 (effect size = 1.014, 95% CI 1.011-1.016), particulate matter with diameter <10 μm (PM10; effect size = 1.005, 95% CI 1.003-1.008), PM2.5 (effect size = 1.003, 95% CI 1.002-1.004), and SO2 (effect size = 1.015, 95% CI 1.007-1.023). CONCLUSIONS Outdoor air pollutants are detrimental factors to COVID-19 outcomes. Measurements beneficial to reducing pollutant levels might also reduce the burden of the pandemic.
Collapse
Affiliation(s)
- Si-Tian Zang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Jie Luan
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Ling Li
- Center for Precision Medicine Research and Training, University of Macau, Avenida da Universidade Taipa, Macau, 999078, China.
| | - Hui-Xin Yu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
17
|
Cruz R, Pasqua L, Silveira A, Damasceno M, Matsuda M, Martins M, Marquezini MV, Lima-Silva AE, Saldiva P, Bertuzzi R. Traffic-related air pollution and endurance exercise: Characterizing non-targeted serum metabolomics profiling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118204. [PMID: 34560574 DOI: 10.1016/j.envpol.2021.118204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Although the exposure to traffic-related air pollution (TRAP) has emerged as one of main problem worldwide to inhabitants' health in urban centers, its impact on metabolic responses during exercise is poorly understood. The aim of study was to characterize the profile of non-target serum metabolomics during prolonged exercise performed under TRAP conditions. Ten healthy men completed two 90 min constant-load cycling trials under conditions of either TRAP or filtered air. Experimental trials were performed in a chamber located on an avenue with a high volume of vehicle traffic. Blood samples were taken at 30 min, 60 min, and 90 min of exercise. Based on Nuclear Magnetic Resonance metabolomics, the non-target analysis was used to assess the metabolic profile. Twelve, 16 and 18 metabolites were identified as discriminants. These were: at 30 min of exercise, the coefficient of determination (R2) 0.98, the predictive relevance, (Q2) 0.12, and the area under the curve (AUC) 0.91. After 60 min of exercise: (R2: 0.99, Q2: 0.09, AUC: 0.94); and at 90 min of exercise (R2: 0.91, Q2: <0.01, AUC: 0.89), respectively. The discriminant metabolites were then considered for the target analysis, which demonstrated that the metabolic pathways of glycine and serine metabolism (p = 0.03) had been altered under TRAP conditions at 30 min of exercise; arginine and proline metabolism (p = 0.04) at 60 min of exercise; and glycolysis (p = 0.05) at 90 min of exercise. The present results suggest that exposure to TRAP during prolonged exercise leads to a significant change in metabolomics, characterized by a transitional pattern and lastly, impairs the glucose metabolism.
Collapse
Affiliation(s)
- Ramon Cruz
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil; Sports Center, Department of Physical Education, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Leonardo Pasqua
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil; Faculty of Medicine, Federal University of Alagoas, Maceió, Brazil
| | - André Silveira
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Mayara Damasceno
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil; CESMAC University Center, Maceió, Brazil
| | - Monique Matsuda
- Laboratory of Investigation in Ophthalmology (LIM-33), Division of Ophthalmology, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Marco Martins
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mônica V Marquezini
- Pro-Sangue Foundation, São Paulo and Pathology Department, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Adriano Eduardo Lima-Silva
- Human Performance Research Group, Academic Department of Physical Education (DAEFI), Federal University of Technology Parana, Curitiba, PR, Brazil
| | - Paulo Saldiva
- Institute of Advanced Studies, University of São Paulo, São Paulo, SP, Brazil
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Zang ST, Luan J, Li L, Wu QJ, Chang Q, Dai HX, Zhao YH. Air pollution and metabolic syndrome risk: Evidence from nine observational studies. ENVIRONMENTAL RESEARCH 2021; 202:111546. [PMID: 34265350 DOI: 10.1016/j.envres.2021.111546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/05/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Globally, the number of metabolic syndrome (MetS) cases has increased substantially over time. However, the association between air pollution (AP) and MetS risk has been contradictory in observational studies. This is the first reported meta-analysis quantitatively exploring the aforementioned association. METHODS We searched PubMed, Embase, and Web of Science database entries up to September 14, 2020, and searches were updated up to December 6, 2020 to identify eligible articles on the AP-MetS risk association. No language restriction was imposed. Random-effects models were applied to estimate summary and subgroup effect sizes with 95% confidence intervals (CIs). PROSPERO registration number: CRD42020210431. RESULTS Eight articles (nine studies) were eligible for the meta-analysis. Increased MetS prevalence was not found to be associated with particulate matter less than 1 μm (PM1), 2.5 μm (PM2.5), and 10 μm (PM10) in diameter or nitrogen dioxide (NO2), and the summary effect sizes were 1.33 (95% CI: 0.95-1.85), 1.34 (95% CI: 0.96-1.89), 1.18 (95% CI: 0.98-1.19), and 1.28 (95% CI: 0.89-1.82), respectively, based on cross-sectional studies. The summary results indicated no association between each 10 μg/m3 increase in PM2.5 and MetS incidence (effect size 2.78 [95% CI: 0.70-11.02]), based on cohort studies. Subgroup analysis demonstrated that MetS incidence in older men increased dramatically by 992% with each 10 μg/m3 increase in PM2.5. CONCLUSIONS The evidence presented here suggests that although exposure to PM1, PM2.5, PM10, or NO2 was not found to have a significant association with the occurrence of MetS, the statistical significance of the relationship between exposure to PM1, PM2.5, or PM10 and MetS prevalence was approximately borderline. More studies on AP-MetS risk association in low-/middle-income countries, as well as on the association between other air pollutants and MetS risk, are warranted. A sufficient number of high-quality studies is required to perform a meaningful meta-analysis of the relationship between air pollutants and MetS.
Collapse
Affiliation(s)
- Si-Tian Zang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Jie Luan
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Ling Li
- Center for Precision Medicine Research and Training, University of Macau, Avenida da Universidade Taipa, Macau, 999078, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Hui-Xu Dai
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
19
|
Taha-Khalde A, Haim A, Karakis I, Shashar S, Biederko R, Shtein A, Hershkovitz E, Novack L. Air pollution and meteorological conditions during gestation and type 1 diabetes in offspring. ENVIRONMENT INTERNATIONAL 2021; 154:106546. [PMID: 33866061 DOI: 10.1016/j.envint.2021.106546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Growing evidence indicates that air pollution is capable of disrupting the immune system and therefore, might be associated with an onset of Type 1 diabetes (T1D). OBJECTIVES We explored possible links of T1D with ambient exposures in the population of southern Israel, characterized by hot and dry climate and frequent dust storms. METHODS We conducted a matched nested case-control study where exposure to environmental pollutants during gestation in T1D cases was compared to that of healthy children. Up to 10 controls were matched to every case by age, gender and ethnicity, in all 362 cases and 3512 controls. Measurements of pollutants' concentrations, nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3) and particulate matter of size less than 10 and 2.5 μm in diameter (PM10 and PM2.5), as well as the mean daily measurements of meteorological conditions were obtained from the local monitoring stations. The association between T1D and pollution, solar radiation (SR), temperature and relative humidity was adjusted for socioeconomic status, temperature, maternal age and pre-gestational maternal DM, using conditional logistic regression. The environmental exposures were presented as indicators of quartiles averaged over whole pregnancy and by trimesters. RESULTS Exposure to ozone and solar radiation during gestation were both associated with the T1D in offspring, although at borderline significance. Compared to the lowest quartile, the odds ratio (OR) for exposure to 3rd and 4th quartile of O3 was equal 1.61 (95%CI: 0.95; 2.73) and 1.45 (95%CI: 0.83; 2.53), respectively. Likewise, the ORs for exposure to SR were equal 1.83 (95%CI: 0.92; 3.64), 2.54 (95%CI: 1.21; 5.29) and 2.06 (95%CI: 0.95; 4.45) for to 2nd, 3rd and 4th quartiles, respectively. Exposure to SO2 followed a dose-response pattern, but was not statistically significant. Other environmental factors were not independently related to T1D. Analysis of exposures one year prior to the disease onset indicated a positive association between T1D and SR. CONCLUSIONS We showed that exposure to high ozone levels and solar radiation during gestation might be related to the T1D. More scientific evidence needs to accumulate to support the study findings.
Collapse
Affiliation(s)
- Alaa Taha-Khalde
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Haim
- Division of Pediatric Medicine, Pediatric Endocrinology and Diabetes Clinic, Soroka University Medical Center, Beer-Sheva, Israel
| | | | - Sagi Shashar
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - Ron Biederko
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - Alexandra Shtein
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eli Hershkovitz
- Division of Pediatric Medicine, Pediatric Endocrinology and Diabetes Clinic, Soroka University Medical Center, Beer-Sheva, Israel
| | - Lena Novack
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Negev Environmental Health Research Institute, Soroka University Medical Center, Beer-Sheva, Israel.
| |
Collapse
|
20
|
Soltan-Abad RM, Kheirouri S, Abbasi MM, Alizadeh M, Khordadmehr M. Effect of sulfur dioxide exposure on histopathology and morphometry of pancreatic islet cells and glycemic indices in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45739-45744. [PMID: 33880698 DOI: 10.1007/s11356-021-12672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Sulfur dioxide (SO2) is a ubiquitous air pollutant. Recent studies suggest that SO2 is a momentous risk factor for diabetes mellitus (DM). The present investigation aimed to evaluate the effects of SO2 exposure on histopathology and morphometry of pancreatic islet cells and serum glycemic indices in rats. Sixteen male Wistar rats were divided equally into SO2 and control groups. SO2 group was exposed to 10 parts per million (ppm) SO2 for 5 weeks (6 days a week, 3 h/day) and control group to filtered air for the same time as SO2 group. Blood serums were collected and pancreatic tissue isolated. Glycemic indices were measured. Pathological and morphometric changes were studied in the pancreatic tissues. Exposure to SO2 caused a significant increase in blood glucose but did not significantly change insulin and HbA1c serum levels and HOMA-IR. There were significant differences in vascular congestion (p= 0.02) and insulitis (p= 0.04) between the groups. SO2 inhalation significantly reduced beta cell number and beta-alpha cell ratio compared with the control group (p=0.03 and p<0.0001, respectively). These findings suggest that SO2 exposure damages pancreatic tissue which subsequently influences either the incidence of DM or the trend of diabetic complications.
Collapse
Affiliation(s)
- Razieh Musapour Soltan-Abad
- Department of Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Attar Nishabouri St., 14711, Tabriz, 5166614711, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Attar Nishabouri St., 14711, Tabriz, 5166614711, Iran.
| | | | - Mohammad Alizadeh
- Department of Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Attar Nishabouri St., 14711, Tabriz, 5166614711, Iran
| | - Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
21
|
Song WM, Liu Y, Zhang QY, Liu SQ, Xu TT, Li SJ, An QQ, Liu JY, Tao NN, Liu Y, Yu CB, Yu CX, Li YF, Li HC. Ambient air pollutants, diabetes and risk of newly diagnosed drug-resistant tuberculosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112352. [PMID: 34044311 DOI: 10.1016/j.ecoenv.2021.112352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/08/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Drug-resistant tuberculosis (DR-TB), diabetes and exposure to air pollution are thought to be important threat to human health, but no studies have explored the effects of ambient air pollutants on DR-TB when adjusting diabetes status so far. METHODS We performed a study among 3759 newly diagnosed TB cases with drug-susceptibility testing results, diabetes status, and individual air pollution data in Shandong from 2015 to 2019. Generalized linear mixed models (GLMM) including three models (Model 1: without covariates, Model 2: adjusted by diabetes status only, Model 3: with all covariates) were applied. RESULTS Of 3759 TB patients enrolled, 716 (19.05%) were DR-TB, and 333 (8.86%) had diabetes. High exposure to O3 was associated with an increased risk of RFP-resistance (Model 2 or 3: odds ratio (OR) = 1.008, 95% confidence intervals (CI): 1.002-1.014), ethambutol-resistance (Model 3: OR = 1.015, 95%CI: 1.004-1.027) and any rifampicin+streptomycin resistance (Model 1,2,3: OR = 1.01, 95%CI: 1.002-1.018) at 90 days. In contrast, NO2 was associated with a reduced risk of DR-TB (Model 3: OR = 0.99, 95%CI: 0.981-0.999) and multidrug-resistant TB (MDR-TB) (Model 3: OR = 0.977, 95%CI: 0.96-0.994) at 360 days. Additionally, SO2 (Model 1, 2, 3: OR = 0.987, 95%CI: 0.977-0.998) showed a protective effect on MDR-TB at 90 days. PM2.5 (90 days, Model 2: OR = 0.991, 95%CI: 0.983-0.999), PM10 (360 days, Model 2: OR = 0.992, 95%CI: 0.985-0.999) had protective effects on any RFP+SM resistance. CONCLUSIONS O3 contributed to an elevated risk of TB resistance but PM2.5, PM10, SO2, NO2 showed an inverse effect. Air pollutants may affect the development of drug resistance among TB cases by adjusting the status of diabetes.
Collapse
Affiliation(s)
- Wan-Mei Song
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 250021 Jinan, Shandong, People's Republic of China; Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Yi Liu
- Department of Biostatistics, School of Public Health, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Qian-Yun Zhang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 250021 Jinan, Shandong, People's Republic of China; Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Si-Qi Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 250021 Jinan, Shandong, People's Republic of China; Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Ting-Ting Xu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, People's Republic of China
| | - Shi-Jin Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 250021 Jinan, Shandong, People's Republic of China; Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Qi-Qi An
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 250021 Jinan, Shandong, People's Republic of China; Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, People's Republic of China
| | - Jin-Yue Liu
- Department of Critical Care Medicine, Shandong Provincial Third Hospital, 100191 Jinan, Shandong, People's Republic of China
| | - Ning-Ning Tao
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, 100730 Beijing, People's Republic of China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, People's Republic of China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 250021 Jinan, Shandong, People's Republic of China; Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, People's Republic of China
| | - Chun-Bao Yu
- Katharine Hsu International Research Center of Human Infectious Diseases, Shandong Provincial Chest Hospital, 250013 Jinan, Shandong, People's Republic of China
| | - Cui-Xiang Yu
- Department of Respiratory Medicine, Shandong Qianfoshan Hospital Affiliated to Shandong University, 250014 Jinan, Shandong, People's Republic of China
| | - Yi-Fan Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 250021 Jinan, Shandong, People's Republic of China; Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, People's Republic of China.
| | - Huai-Chen Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, 250021 Jinan, Shandong, People's Republic of China; Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, People's Republic of China; College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 250355 Jinan, Shandong, People's Republic of China.
| |
Collapse
|
22
|
Patterson WB, Glasson J, Naik N, Jones RB, Berger PK, Plows JF, Minor HA, Lurmann F, Goran MI, Alderete TL. Prenatal exposure to ambient air pollutants and early infant growth and adiposity in the Southern California Mother's Milk Study. Environ Health 2021; 20:67. [PMID: 34090448 PMCID: PMC8180163 DOI: 10.1186/s12940-021-00753-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/25/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Prior epidemiological and animal work has linked in utero exposure to ambient air pollutants (AAP) with accelerated postnatal weight gain, which is predictive of increased cardiometabolic risk factors in childhood and adolescence. However, few studies have assessed changes in infant body composition or multiple pollutant exposures. Therefore, the objective of this study was to examine relationships between prenatal residential AAP exposure with infant growth and adiposity. METHODS Residential exposure to AAP (particulate matter < 2.5 and 10 microns in aerodynamic diameter [PM2.5, PM10]; nitrogen dioxide [NO2]; ozone [O3]; oxidative capacity [Oxwt: redox-weighted oxidative potential of O3 and NO2]) was modeled by spatial interpolation of monitoring stations via an inverse distance-squared weighting (IDW2) algorithm for 123 participants from the longitudinal Mother's Milk Study, an ongoing cohort of Hispanic mother-infant dyads from Southern California. Outcomes included changes in infant growth (weight, length), total subcutaneous fat (TSF; calculated via infant skinfold thickness measures) and fat distribution (umbilical circumference, central to total subcutaneous fat [CTSF]) and were calculated by subtracting 1-month measures from 6-month measures. Multivariable linear regression was performed to examine relationships between prenatal AAP exposure and infant outcomes. Models adjusted for maternal age, pre-pregnancy body mass index, socioeconomic status, infant age, sex, and breastfeeding frequency. Sex interactions were tested, and effects are reported for each standard deviation increase in exposure. RESULTS NO2 was associated with greater infant weight gain (β = 0.14, p = 0.02) and TSF (β = 1.69, p = 0.02). PM10 and PM2.5 were associated with change in umbilical circumference (β = 0.73, p = 0.003) and TSF (β = 1.53, p = 0.04), respectively. Associations of Oxwt (pinteractions < 0.10) with infant length change, umbilical circumference, and CTSF were modified by infant sex. Oxwt was associated with attenuated infant length change among males (β = -0.60, p = 0.01), but not females (β = 0.16, p = 0.49); umbilical circumference among females (β = 0.92, p = 0.009), but not males (β = -0.00, p = 0.99); and CTSF among males (β = 0.01, p = 0.03), but not females (β = 0.00, p = 0.51). CONCLUSION Prenatal AAP exposure was associated with increased weight gain and anthropometric measures from 1-to-6 months of life among Hispanic infants. Sex-specific associations suggest differential consequences of in utero oxidative stress. These results indicate that prenatal AAP exposure may alter infant growth, which has potential to increase childhood obesity risk.
Collapse
Affiliation(s)
- William B. Patterson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | - Jessica Glasson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | - Noopur Naik
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | - Roshonda B. Jones
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital of Los Angeles, University of Southern California, Los Angeles, CA USA
| | - Paige K. Berger
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital of Los Angeles, University of Southern California, Los Angeles, CA USA
| | - Jasmine F. Plows
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital of Los Angeles, University of Southern California, Los Angeles, CA USA
| | | | | | - Michael I. Goran
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital of Los Angeles, University of Southern California, Los Angeles, CA USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
23
|
Martenies SE, Hoskovec L, Wilson A, Allshouse WB, Adgate JL, Dabelea D, Jathar S, Magzamen S. Assessing the Impact of Wildfires on the Use of Black Carbon as an Indicator of Traffic Exposures in Environmental Epidemiology Studies. GEOHEALTH 2021; 5:e2020GH000347. [PMID: 34124496 PMCID: PMC8173457 DOI: 10.1029/2020gh000347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 05/21/2023]
Abstract
Epidemiological studies frequently use black carbon (BC) as a proxy for traffic-related air pollution (TRAP). However, wildfire smoke (WFS) represents an important source of BC not often considered when using BC as a proxy for TRAP. Here, we examined the potential for WFS to bias TRAP exposure assessments based on BC measurements. Weekly integrated BC samples were collected across the Denver, CO region from May to November 2018. We collected 609 filters during our sampling campaigns, 35% of which were WFS-impacted. For each filter we calculated an average BC concentration. We assessed three GIS-based indicators of TRAP for each sampling location: annual average daily traffic within a 300 m buffer, the minimum distance to a highway, and the sum of the lengths of roadways within 300 m. Median BC concentrations were 9% higher for WFS-impacted filters (median = 1.14 μg/m3, IQR = 0.23 μg/m3) than nonimpacted filters (median = 1.04 μg/m3, IQR = 0.48 μg/m3). During WFS events, BC concentrations were elevated and expected spatial gradients in BC were reduced. We conducted a simulation study to estimate TRAP exposure misclassification as the result of regional WFS. Our results suggest that linear health effect estimates were biased away from the null when WFS was present. Thus, exposure assessments relying on BC as a proxy for TRAP may be biased by wildfire events. Alternative metrics that account for the influence of "brown" carbon associated with biomass burning may better isolate the effects of traffic emissions from those of other black carbon sources.
Collapse
Affiliation(s)
- S. E. Martenies
- Kinesiology and Community HealikthUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Environmental and Radiological Health SciencesColorado State UniversityFort CollinsCOUSA
| | - L. Hoskovec
- Department of Statistics, Colorado State UniversityFort CollinsCOUSA
| | - A. Wilson
- Department of Statistics, Colorado State UniversityFort CollinsCOUSA
| | - W. B. Allshouse
- Environmental and Occupational Health, Colorado School of Public HealthUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - J. L. Adgate
- Environmental and Occupational Health, Colorado School of Public HealthUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - D. Dabelea
- Department of EpidemiologyColorado School of Public HealthUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD Center)University of Colorado Anschutz Medical CampusAuroraCOUSA
- School of MedicineDepartment of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - S. Jathar
- Department of Mechanical EngineeringColorado State UniversityFort CollinsCOUSA
| | - S. Magzamen
- Environmental and Radiological Health SciencesColorado State UniversityFort CollinsCOUSA
- Department of EpidemiologyColorado School of Public HealthUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| |
Collapse
|
24
|
Snow SJ, Henriquez AR, Fisher A, Vallanat B, House JS, Schladweiler MC, Wood CE, Kodavanti UP. Peripheral metabolic effects of ozone exposure in healthy and diabetic rats on normal or high-cholesterol diet. Toxicol Appl Pharmacol 2021; 415:115427. [PMID: 33524448 PMCID: PMC8086744 DOI: 10.1016/j.taap.2021.115427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
Epidemiological studies show that individuals with underlying diabetes and diet-associated ailments are more susceptible than healthy individuals to adverse health effects of air pollution. Exposure to air pollutants can induce metabolic stress and increase cardiometabolic disease risk. Using male Wistar and Wistar-derived Goto-Kakizaki (GK) rats, which exhibit a non-obese type-2 diabetes phenotype, we investigated whether two key metabolic stressors, type-2 diabetes and a high-cholesterol atherogenic diet, exacerbate ozone-induced metabolic effects. Rats were fed a normal control diet (ND) or high-cholesterol diet (HCD) for 12 weeks and then exposed to filtered air or 1.0-ppm ozone (6 h/day) for 1 or 2 days. Metabolic responses were analyzed at the end of each day and after an 18-h recovery period following the 2-day exposure. In GK rats, baseline hyperglycemia and glucose intolerance were exacerbated by HCD vs. ND and by ozone vs. air. HCD also resulted in higher insulin in ozone-exposed GK rats and circulating lipase, aspartate transaminase, and alanine transaminase in all groups (Wistar>GK). Histopathological effects induced by HCD in the liver, which included macrovesicular vacuolation and hepatocellular necrosis, were more severe in Wistar vs. GK rats. Liver gene expression in Wistar and GK rats fed ND showed numerous strain differences, including evidence of increased lipid metabolizing activity and ozone-induced alterations in glucose and lipid transporters, specifically in GK rats. Collectively, these findings indicate that peripheral metabolic alterations induced by diabetes and high-cholesterol diet can enhance susceptibility to the metabolic effects of inhaled pollutants.
Collapse
MESH Headings
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Air Pollutants/toxicity
- Animals
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Body Composition/drug effects
- Cholesterol, Dietary/metabolism
- Cholesterol, Dietary/toxicity
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Energy Metabolism/drug effects
- Gene Expression Regulation
- Inhalation Exposure
- Insulin/blood
- Lipids/blood
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Ozone/toxicity
- Rats, Wistar
- Species Specificity
- Rats
Collapse
Affiliation(s)
- Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Anna Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Beena Vallanat
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - John S House
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Charles E Wood
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States; Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States.
| |
Collapse
|
25
|
Snow SJ, Henriquez AR, Thompson LC, Fisher C, Schladweiler MC, Wood CE, Kodavanti UP. Pulmonary and vascular effects of acute ozone exposure in diabetic rats fed an atherogenic diet. Toxicol Appl Pharmacol 2021; 415:115430. [PMID: 33524446 PMCID: PMC8086743 DOI: 10.1016/j.taap.2021.115430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/06/2023]
Abstract
Air pollutants may increase risk for cardiopulmonary disease, particularly in susceptible populations with metabolic stressors such as diabetes and unhealthy diet. We investigated effects of inhaled ozone exposure and high-cholesterol diet (HCD) in healthy Wistar and Wistar-derived Goto-Kakizaki (GK) rats, a non-obese model of type 2 diabetes. Male rats (4-week old) were fed normal diet (ND) or HCD for 12 weeks and then exposed to filtered air or 1.0 ppm ozone (6 h/day) for 1 or 2 days. We examined pulmonary, vascular, hematology, and inflammatory responses after each exposure plus an 18-h recovery period. In both strains, ozone induced acute bronchiolar epithelial necrosis and inflammation on histopathology and pulmonary protein leakage and neutrophilia; the protein leakage was more rapid and persistent in GK compared to Wistar rats. Ozone also decreased lymphocytes after day 1 in both strains consuming ND (~50%), while HCD increased circulating leukocytes. Ozone increased plasma thrombin/antithrombin complexes and platelet disaggregation in Wistar rats on HCD and exacerbated diet effects on serum IFN-γ, IL-6, KC-GRO, IL-13, and TNF-α, which were higher with HCD (Wistar>GK). Ex vivo aortic contractility to phenylephrine was lower in GK versus Wistar rats at baseline(~30%); ozone enhanced this effect in Wistar rats on ND. GK rats on HCD had higher aortic e-NOS and tPA expression compared to Wistar rats. Ozone increased e-NOS in GK rats on ND (~3-fold) and Wistar rats on HCD (~2-fold). These findings demonstrate ways in which underlying diabetes and HCD may exacerbate pulmonary, systemic, and vascular effects of inhaled pollutants.
Collapse
MESH Headings
- Air Pollutants/toxicity
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Biomarkers/blood
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Cholesterol, Dietary/metabolism
- Cholesterol, Dietary/toxicity
- Cytokines/blood
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diet, Atherogenic/adverse effects
- Disease Models, Animal
- Inflammation Mediators/blood
- Inhalation Exposure
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Lung Injury/blood
- Lung Injury/chemically induced
- Lung Injury/pathology
- Male
- Necrosis
- Ozone/toxicity
- Pulmonary Edema/blood
- Pulmonary Edema/chemically induced
- Pulmonary Edema/pathology
- Rats, Wistar
- Vascular Diseases/blood
- Vascular Diseases/chemically induced
- Vascular Diseases/physiopathology
- Vasoconstriction/drug effects
- Rats
Collapse
Affiliation(s)
- Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Leslie C Thompson
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Cynthia Fisher
- School of Public Health, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Charles E Wood
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States.
| |
Collapse
|
26
|
Martenies SE, Keller JP, WeMott S, Kuiper G, Ross Z, Allshouse WB, Adgate JL, Starling AP, Dabelea D, Magzamen S. A Spatiotemporal Prediction Model for Black Carbon in the Denver Metropolitan Area, 2009-2020. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3112-3123. [PMID: 33596061 PMCID: PMC8313050 DOI: 10.1021/acs.est.0c06451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Studies on health effects of air pollution from local sources require exposure assessments that capture spatial and temporal trends. To facilitate intraurban studies in Denver, Colorado, we developed a spatiotemporal prediction model for black carbon (BC). To inform our model, we collected more than 700 weekly BC samples using personal air samplers from 2018 to 2020. The model incorporated spatial and spatiotemporal predictors and smoothed time trends to generate point-level weekly predictions of BC concentrations for the years 2009-2020. Our results indicate that our model reliably predicted weekly BC concentrations across the region during the year in which we collected data. We achieved a 10-fold cross-validation R2 of 0.83 and a root-mean-square error of 0.15 μg/m3 for weekly BC concentrations predicted at our sampling locations. Predicted concentrations displayed expected temporal trends, with the highest concentrations predicted during winter months. Thus, our prediction model improves on typical land use regression models that generally only capture spatial gradients. However, our model is limited by a lack of long-term BC monitoring data for full validation of historical predictions. BC predictions from the weekly spatiotemporal model will be used in traffic-related air pollution exposure-disease associations more precisely than previous models for the region have allowed.
Collapse
Affiliation(s)
- Sheena E Martenies
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3028, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523-1019, United States
| | - Joshua P Keller
- Department of Statistics, Colorado State University, Fort Collins, Colorado 80523-1019, United States
| | - Sherry WeMott
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523-1019, United States
| | - Grace Kuiper
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523-1019, United States
| | - Zev Ross
- ZevRoss Spatial Analysis, Ithaca, New York 14850, United States
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523-1019, United States
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
27
|
Predictive and Preventive Mucosal Communications in Particulate Matter Exposure-Linked Renal Distress. J Pers Med 2021; 11:jpm11020118. [PMID: 33670188 PMCID: PMC7916923 DOI: 10.3390/jpm11020118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
Despite research into the epidemiological link between exposure to particulate matter (PM) and renal disorder, there is limited information available on the etiological complexity and molecular mechanisms. Among the early responsive tissues to PM exposure, the mucosal barrier of the airway and alimentary tract may be a crucial source of pathologic mediators leading to inflammatory renal diseases, including chronic kidney disease (CKD). Given that harmful responses and products in mucosa exposed to PM may enter the circulation and cause adverse outcomes in the kidney, the aim of the present review was to address the impact of PM exposure on the mucosal barrier and the vicious feedback cycle in the mucosal environment. In addition to the PM-induced alteration of mucosal barrier integrity, the microbial community has a pivotal role in the xenobiotic metabolism and individual susceptibility to PM toxicity. The dysbiosis-induced deleterious metabolites of PM and nutrients are introduced systemically via a disrupted mucosal barrier, contributing to renal injuries and pathologic severity. In contrast, the progress of mucosa-associated renal disease is counteracted by endogenous protective responses in the mucosa. Along with direct elimination of the toxic mediators, modulators of the mucosal microbial community should provide a promising platform for mucosa-based personalized interventions against renal disorders caused by air pollution.
Collapse
|
28
|
Snow SJ, Henriquez AR, Fenton JI, Goeden T, Fisher A, Vallanat B, Angrish M, Richards JE, Schladweiler MC, Cheng WY, Wood CE, Tong H, Kodavanti UP. Diets enriched with coconut, fish, or olive oil modify peripheral metabolic effects of ozone in rats. Toxicol Appl Pharmacol 2020; 410:115337. [PMID: 33217375 DOI: 10.1016/j.taap.2020.115337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Dietary factors may modulate metabolic effects of air pollutant exposures. We hypothesized that diets enriched with coconut oil (CO), fish oil (FO), or olive oil (OO) would alter ozone-induced metabolic responses. Male Wistar-Kyoto rats (1-month-old) were fed normal diet (ND), or CO-, FO-, or OO-enriched diets. After eight weeks, animals were exposed to air or 0.8 ppm ozone, 4 h/day for 2 days. Relative to ND, CO- and OO-enriched diet increased body fat, serum triglycerides, cholesterols, and leptin, while all supplements increased liver lipid staining (OO > FO > CO). FO increased n-3, OO increased n-6/n-9, and all supplements increased saturated fatty-acids. Ozone increased total cholesterol, low-density lipoprotein, branched-chain amino acids (BCAA), induced hyperglycemia, glucose intolerance, and changed gene expression involved in energy metabolism in adipose and muscle tissue in rats fed ND. Ozone-induced glucose intolerance was exacerbated by OO-enriched diet. Ozone increased leptin in CO- and FO-enriched groups; however, BCAA increases were blunted by FO and OO. Ozone-induced inhibition of liver cholesterol biosynthesis genes in ND-fed rats was not evident in enriched dietary groups; however, genes involved in energy metabolism and glucose transport were increased in rats fed FO and OO-enriched diet. FO- and OO-enriched diets blunted ozone-induced inhibition of genes involved in adipose tissue glucose uptake and cholesterol synthesis, but exacerbated genes involved in adipose lipolysis. Ozone-induced decreases in muscle energy metabolism genes were similar in all dietary groups. In conclusion, CO-, FO-, and OO-enriched diets modified ozone-induced metabolic changes in a diet-specific manner, which could contribute to altered peripheral energy homeostasis.
Collapse
Affiliation(s)
- Samantha J Snow
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States
| | - Travis Goeden
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States
| | - Anna Fisher
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Beena Vallanat
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Michelle Angrish
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Judy E Richards
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Wan-Yun Cheng
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Charles E Wood
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Haiyan Tong
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
29
|
Liu X, Zhou M, Yu C, Zhang ZJ. Age-Period-Cohort Analysis of Type 2 Diabetes Mortality Attributable to Particulate Matter Pollution in China and the U.S. J Diabetes Res 2020; 2020:1243947. [PMID: 32626775 PMCID: PMC7306083 DOI: 10.1155/2020/1243947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 12/02/2022] Open
Abstract
AIM We aimed to assess and compare secular trends in type 2 diabetes mortality attributable to particulate matter pollution in China and U.S. METHODS We performed an age-period-cohort (APC) analysis to estimate the independent effects of age, period, and cohort on mortality of type 2 diabetes attributable to particulate matter pollution. We collected age-standardized and age-specific mortality rates (1990-2017) from the Global Burden of Disease 2017 Study for China and the U.S. RESULTS During the period 1990-2017, the age-standardized mortality rates of type 2 diabetes attributable to particulate matter pollution in China showed a general increasing trend, while that in U.S. showed an increase before 2002 and subsequently a decrease. The age effect increased markedly in China compared with the U.S. The period effect showed a substantially increase in China while that in the U.S. increased during 1990-2007 and tended to be stable during 2007-2017. The cohort effect peaked in birth cohort born in 1902-1906 in both China and U.S. and declined consistently in the cohort born in 1992-1996. CONCLUSIONS The age-standardized mortality rates of type 2 diabetes attributable to particulate matter pollution, the age, and period effect in China have been increasing in both sexes from 1990 to 2017. The overall mortality in the U.S. began to decrease since 2003, and the period effect showed a tendency to stabilize. Consequently, it is necessary to educate the nation with the correct knowledge and adopting policies on pollutant emission and techniques to reduce air pollution in China.
Collapse
Affiliation(s)
- Xiaoxue Liu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Nanwei Road 27, Xicheng District, Beijing 100050, China
| | - Chuanhua Yu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Zhi-Jiang Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
30
|
Shenassa ED, Williams AD. Concomitant exposure to area-level poverty, ambient air volatile organic compounds, and cardiometabolic dysfunction: a cross-sectional study of U.S. adolescents. Ann Epidemiol 2020; 48:15-22. [PMID: 32778227 DOI: 10.1016/j.annepidem.2020.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/09/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE A key to better understanding the influence of the place of residence on cardiometabolic function is the effect of concomitant exposure to both air pollution and residence in economically marginalized areas. We hypothesized that, among adolescents, the association between air pollution and cardiometabolic function is exacerbated among residents of economically marginalized areas. METHODS In this cross-sectional study, individual-level data on cardiometabolic function collected from a representative sample of U.S. adolescents in the National Health and Nutrition Examination Survey (n = 10,415) were merged with data on area-level poverty (U.S. decennial survey and American Community Survey) and air pollution levels (National-Scale Air Toxics Assessment ) using contemporary census-tract identifiers. We excluded respondents who were pregnant, had hypertension or diabetes or using medication for hypertension or diabetes, or with missing data on outcome variables. RESULTS We observed a significant interaction between area-level poverty and air pollution. Among residents of high-poverty areas, exposure to high levels of air pollution predicted a 30% elevated odds of cardiometabolic dysfunction (OR = 1.30; 95% CI: 1.04, 1.61), whereas in low-poverty areas, exposure to high levels of air pollution was not associated with elevated odds of cardiometabolic dysfunction (OR = 1.04; 95% CI: 0.85, 1.28). CONCLUSIONS Our findings suggest that the cardiometabolic consequences of air pollution are more readily realized among residents of economically marginalized areas. Structural remedies are discussed.
Collapse
Affiliation(s)
- Edmond D Shenassa
- Maternal and Child Health Program, Department of Family Science, University of Maryland, College Park; Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD; Department of Epidemiology and Biostatistics, School of Public Health, Brown University, Providence, RI; Department of Epidemiology and Biostatistics, School of Medicine, University of Maryland Baltimore, Baltimore, MD.
| | - Andrew D Williams
- Public Health Program, School of Medicine & Health Sciences, University of North Dakota, Grand Forks
| |
Collapse
|
31
|
Wang C, Zhu G, Zhang L, Chen K. Particulate matter pollution and hospital outpatient visits for endocrine, digestive, urological, and dermatological diseases in Nanjing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114205. [PMID: 32113107 DOI: 10.1016/j.envpol.2020.114205] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Clinical or pathological evidence demonstrated that air pollution could undermine other organ systems of human body besides respiratory and circulation systems. Investigations that directly relate hospital outpatient visits for endocrine (ENDO), digestive (DIGE), urological (UROL), and dermatological (DERM) diseases categories with ambient particulate matter (PM) are still lacking, particularly in heavily polluted cities. Here, we conducted a time-series analysis using 812,624, 1,111,342, 539,803, and 741,662 hospital visits for ENDO, DIGE, UROL, and DERM, respectively, in Nanjing, China from 2013 to 2019. A generalized additive model was applied to estimate the exposure-response associations. Results showed that a 10 μg/m3 increase in PM2.5 concentration on lag 0 day was significantly associated with 0.59% (95% CI: 0.30%, 0.88%), 0.43% (0.15%, 0.70%), 0.36% (0.06%, 0.66%), and 0.65% (0.42%, 0.87%) increase for ENDO, DIGE, UROL, and DERM hospital visits, respectively. The estimated effects of PM10 were slightly smaller but still statistically significant. The magnitude and significance of the associations between PM and four health outcomes were sensitive to additional adjustment for co-pollutants. Exposure-response relationships were linear for PM concentrations lower than 100 μg/m3 but the curves became nonlinear across the full range of exposures due to a flatten slope at higher concentrations. We also explored the effect modifications by season (cold or warm), age (5-18, 18-64, 65-74, or 75+ years), and sex (male or female). Results showed that the DERM-related population aged 65 years or older was more vulnerable to PM exposure, compared with the 5 to 17-year age group; the DERM-related population aged 75 years or older and 65 years or older was more vulnerable to PM2.5 and PM10 exposure, respectively, compared with the 18 to 64-year age group. Our study provided suggestive evidence that ambient PM pollution was associated with ENDO, DIGE, UROL, and DERM outpatient hospital visits in Nanjing, China.
Collapse
Affiliation(s)
- Ce Wang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, PR China.
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, PR China.
| | - Lei Zhang
- Outpatient Department, Zhongda Hospital of Southeast University, Nanjing, 210096, PR China.
| | - Kai Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06520-8034, USA.
| |
Collapse
|
32
|
Fouladi F, Bailey MJ, Patterson WB, Sioda M, Blakley IC, Fodor AA, Jones RB, Chen Z, Kim JS, Lurmann F, Martino C, Knight R, Gilliland FD, Alderete TL. Air pollution exposure is associated with the gut microbiome as revealed by shotgun metagenomic sequencing. ENVIRONMENT INTERNATIONAL 2020; 138:105604. [PMID: 32135388 PMCID: PMC7181344 DOI: 10.1016/j.envint.2020.105604] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 05/17/2023]
Abstract
Animal work indicates exposure to air pollutants may alter the composition of the gut microbiota. This study examined relationships between air pollutants and the gut microbiome in young adults residing in Southern California. Our results demonstrate significant associations between exposure to air pollutants and the composition of the gut microbiome using whole-genome sequencing. Higher exposure to 24-hour O3 was associated with lower Shannon diversity index, higher Bacteroides caecimuris, and multiple gene pathways, including L-ornithine de novo biosynthesis as well as pantothenate and coenzyme A biosynthesis I. Among other pollutants, higher NO2 exposure was associated with fewer taxa, including higher Firmicutes. The percent variation in gut bacterial composition that was explained by air pollution exposure was up to 11.2% for O3 concentrations, which is large compared to the effect size for many other covariates reported in healthy populations. This study provides the first evidence of significant associations between exposure to air pollutants and the compositional and functional profile of the human gut microbiome. These results identify O3 as an important pollutant that may alter the human gut microbiome.
Collapse
Affiliation(s)
- Farnaz Fouladi
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | | | - Michael Sioda
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ivory C Blakley
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anthony A Fodor
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | - Zhanghua Chen
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Cameron Martino
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
33
|
Fossati S, Valvi D, Martinez D, Cirach M, Estarlich M, Fernández-Somoano A, Guxens M, Iñiguez C, Irizar A, Lertxundi A, Nieuwenhuijsen M, Tamayo I, Vioque J, Tardón A, Sunyer J, Vrijheid M. Prenatal air pollution exposure and growth and cardio-metabolic risk in preschoolers. ENVIRONMENT INTERNATIONAL 2020; 138:105619. [PMID: 32193046 DOI: 10.1016/j.envint.2020.105619] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/26/2020] [Accepted: 02/27/2020] [Indexed: 05/06/2023]
Abstract
OBJECTIVES We investigated the association between outdoor air pollutants exposure in the first trimester of pregnancy, and growth and cardio-metabolic risk at four years of age, and evaluated the mediating role of birth weight. METHODS We included mother-child pairs (N = 1,724) from the Spanish INMA birth cohort established in 2003-2008. First trimester of pregnancy nitrogen dioxide (NO2) and fine particles (PM2.5) exposure levels were estimated. Height, weight, waist circumference, blood pressure, and lipids were measured at four years of age. Body mass index (BMI) trajectories from birth to four years were identified. RESULTS Increased PM2.5 exposure in the first trimester of pregnancy was associated with decreased z-scores of weight (zWeight) and BMI (zBMI) (zWeight change per interquartile range increase in PM2.5 exposure = -0.12; 95% CI: -0.23, -0.01; zBMI change = -0.12; 95% CI: -0.23, -0.01). Higher NO2 and PM2.5 exposure was associated to a reduced risk of being in a trajectory with accelerated BMI gain, compared to children with the average trajectory. Birth weight partially mediated the association between PM2.5 and zWeight and zBMI. PM2.5 and NO2 were not associated with the other cardio-metabolic risk factors. CONCLUSIONS This comprehensive study of many growth and cardio-metabolic risk related outcomes suggests that air pollution exposure during pregnancy may be associated with delays in physical growth in the early years after birth. These findings imply that pregnancy exposure to air pollutants has a lasting effect on growth after birth and require follow-up at later child ages.
Collapse
Affiliation(s)
- Serena Fossati
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David Martinez
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marta Cirach
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marisa Estarlich
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, 46020, Spain
| | - Ana Fernández-Somoano
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; IUOPA-Departamento de Medicina, University of Oviedo, Oviedo, Spain; Institute of Health Research of the Principality of Asturias - Foundation for Biosanitary Research of Asturias (ISPA-FINBA), Oviedo, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Carmen Iñiguez
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Department of Statistics and Computational Research, Universitat de València, Valencia, Spain
| | - Amaia Irizar
- Biodonostia Health Research Institute, Donostia, Spain
| | - Aitana Lertxundi
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Biodonostia Health Research Institute, Donostia, Spain; Faculty of Medicine and Nursing of the University of the Basque Country, Bilbao, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Ibon Tamayo
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Division of Immunology and Immunotherapy, Cima, Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Jesus Vioque
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Universidad Miguel Hernandez, ISABIAL-FISABIO, Alicante, Spain
| | - Adonina Tardón
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain; IUOPA-Departamento de Medicina, University of Oviedo, Oviedo, Spain; Institute of Health Research of the Principality of Asturias - Foundation for Biosanitary Research of Asturias (ISPA-FINBA), Oviedo, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
34
|
Wong SF, Yap PS, Mak JW, Chan WLE, Khor GL, Ambu S, Chu WL, Mohamad MS, Ibrahim Wong N, Ab. Majid NL, Abd. Hamid HA, Rodzlan Hasani WS, Mohd Yussoff MFB, Aris HTB, Ab. Rahman EB, M. Rashid ZB. Association between long-term exposure to ambient air pollution and prevalence of diabetes mellitus among Malaysian adults. Environ Health 2020; 19:37. [PMID: 32245482 PMCID: PMC7119016 DOI: 10.1186/s12940-020-00579-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/18/2020] [Indexed: 02/16/2023]
Abstract
BACKGROUND Malaysia has the highest rate of diabetes mellitus (DM) in the Southeast Asian region, and has ongoing air pollution and periodic haze exposure. METHODS Diabetes data were derived from the Malaysian National Health and Morbidity Surveys conducted in 2006, 2011 and 2015. The air pollution data (NOx, NO2, SO2, O3 and PM10) were obtained from the Department of Environment Malaysia. Using multiple logistic and linear regression models, the association between long-term exposure to these pollutants and prevalence of diabetes among Malaysian adults was evaluated. RESULTS The PM10 concentration decreased from 2006 to 2014, followed by an increase in 2015. Levels of NOx decreased while O3 increased annually. The air pollutant levels based on individual modelled air pollution exposure as measured by the nearest monitoring station were higher than the annual averages of the five pollutants present in the ambient air. The prevalence of overall diabetes increased from 11.4% in 2006 to 21.2% in 2015. The prevalence of known diabetes, underdiagnosed diabetes, overweight and obesity also increased over these years. There were significant positive effect estimates of known diabetes at 1.125 (95% CI, 1.042, 1.213) for PM10, 1.553 (95% CI, 1.328, 1.816) for O3, 1.271 (95% CI, 1.088, 1.486) for SO2, 1.124 (95% CI, 1.048, 1.207) for NO2, and 1.087 (95% CI, 1.024, 1.153) for NOx for NHMS 2006. The adjusted annual average levels of PM10 [1.187 (95% CI, 1.088, 1.294)], O3 [1.701 (95% CI, 1.387, 2.086)], NO2 [1.120 (95% CI, 1.026, 1.222)] and NOx [1.110 (95% CI, 1.028, 1.199)] increased significantly from NHMS 2006 to NHMS 2011 for overall diabetes. This was followed by a significant decreasing trend from NHMS 2011 to 2015 [0.911 for NO2, and 0.910 for NOx]. CONCLUSION The findings of this study suggest that long-term exposure to O3 is an important associated factor of underdiagnosed DM risk in Malaysia. PM10, NO2 and NOx may have mixed effect estimates towards the risk of DM, and their roles should be further investigated with other interaction models. Policy and intervention measures should be taken to reduce air pollution in Malaysia.
Collapse
Affiliation(s)
- Shew Fung Wong
- Institute for Research, Development and Innovation (IRDI), International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Medicine, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Poh Sin Yap
- Institute for Research, Development and Innovation (IRDI), International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Postgraduate Studies, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Joon Wah Mak
- Institute for Research, Development and Innovation (IRDI), International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Medicine, International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Postgraduate Studies, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Wan Ling Elaine Chan
- Institute for Research, Development and Innovation (IRDI), International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Geok Lin Khor
- School of Postgraduate Studies, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Stephen Ambu
- Institute for Research, Development and Innovation (IRDI), International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Medicine, International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Postgraduate Studies, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Wan Loy Chu
- Institute for Research, Development and Innovation (IRDI), International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Medicine, International Medical University, 57000 Kuala Lumpur, Malaysia
- School of Postgraduate Studies, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Maria Safura Mohamad
- Institute for Public Health, Ministry of Health, 40170 Shah Alam, Selangor Malaysia
| | | | - Nur Liana Ab. Majid
- Institute for Public Health, Ministry of Health, 40170 Shah Alam, Selangor Malaysia
| | | | | | | | - Hj. Tahir bin Aris
- Institute for Public Health, Ministry of Health, 40170 Shah Alam, Selangor Malaysia
| | - Ezahtulsyahreen Bt. Ab. Rahman
- Department of Environment, Ministry of Energy, Technology, Science, Environment and Climate Change, 62662 Putrajaya, Malaysia
| | - Zaleha Bt. M. Rashid
- Department of Environment, Ministry of Energy, Technology, Science, Environment and Climate Change, 62662 Putrajaya, Malaysia
| |
Collapse
|
35
|
Lucht S, Hennig F, Moebus S, Ohlwein S, Herder C, Kowall B, Jöckel KH, Hoffmann B. All-source and source-specific air pollution and 10-year diabetes Incidence: Total effect and mediation analyses in the Heinz Nixdorf recall study. ENVIRONMENT INTERNATIONAL 2020; 136:105493. [PMID: 31991234 DOI: 10.1016/j.envint.2020.105493] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND An increasing number of studies have been published recently on the association between ambient air pollution (AP) and incident diabetes mellitus (DM), but studies investigating source-specific AP toxicity and potential mediating pathways are rare. We investigated the associations of all-source, traffic-specific, and industry-specific outdoor AP exposure with 10-year incidence of DM and potential mediation via inflammation-associated biomarkers. METHODS Data from participants of the prospective Heinz Nixdorf Recall cohort study who attended the baseline (t0; 2000-2003), 5-year follow-up (t1; 2006-2008), and 10-year follow-up (t2; 2011-2015) examinations was used. For participants without DM at baseline (determined using information on physician diagnosis and glucose-lowering medication), residential long-term exposure (total, traffic-specific, and industry-specific) to particulate matter (PM2.5, PM10), nitrogen dioxide (NO2), and accumulation mode particle number concentration (PNAM) were estimated using a chemistry transport model. Covariate-adjusted modified Poisson regression models with robust standard errors were applied to estimate relative risks (RR) for the associations between baseline AP and incident DM at t2. Mediation analyses for adiponectin, high-sensitivity C-reactive protein (hsCRP), and interleukin-1 receptor antagonist (IL-1RA) were conducted to estimate natural direct and indirect effects. RESULTS Of the 4,814 participants at t0, 2,451 participants (mean baseline age: 58.2 years) were included in the main analysis. Interquartile range (IQR) increases in total PM10 and PNAM were associated with increased risk of DM (e.g., RR: 1.25 [95% Confidence Interval (CI): 1.02, 1.53] per 3.8 µg/m3 PM10). Whereas traffic-specific exposures were associated with DM risk for all air pollutants (e.g., RR: 1.24 [95% CI: 1.06, 1.46] per 0.3 µg/m3 PM10), significant associations for industry exposures were limited to NO2 and PNAM (e.g., RR: 1.24 [95% CI: 1.03, 1.49] per 230 particles/mL PNAM). Potential mediation of the association between AP and DM was observed for adiponectin but not for hsCRP and IL-1RA. CONCLUSION Our study shows that long-term exposure to total and source-specific ambient AP may increase DM risk, with consistent results observed across traffic-specific exposures. Decreases in adiponectin may play a potential role along the causal pathway.
Collapse
Affiliation(s)
- Sarah Lucht
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Institute for Medical Statistics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Frauke Hennig
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Moebus
- Institute of Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Ohlwein
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, Germany
| | - Bernd Kowall
- Institute of Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Barbara Hoffmann
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
36
|
Clark H, Coll-Seck AM, Banerjee A, Peterson S, Dalglish SL, Ameratunga S, Balabanova D, Bhan MK, Bhutta ZA, Borrazzo J, Claeson M, Doherty T, El-Jardali F, George AS, Gichaga A, Gram L, Hipgrave DB, Kwamie A, Meng Q, Mercer R, Narain S, Nsungwa-Sabiiti J, Olumide AO, Osrin D, Powell-Jackson T, Rasanathan K, Rasul I, Reid P, Requejo J, Rohde SS, Rollins N, Romedenne M, Singh Sachdev H, Saleh R, Shawar YR, Shiffman J, Simon J, Sly PD, Stenberg K, Tomlinson M, Ved RR, Costello A. A future for the world's children? A WHO-UNICEF-Lancet Commission. Lancet 2020; 395:605-658. [PMID: 32085821 DOI: 10.1016/s0140-6736(19)32540-1] [Citation(s) in RCA: 479] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Helen Clark
- The Helen Clark Foundation, Auckland, New Zealand; Partnership for Maternal Newborn & Child Health, Geneva, Switzerland
| | | | - Anshu Banerjee
- Department of Maternal Newborn Child and Adolescent Health, Geneva, Switzerland
| | - Stefan Peterson
- UNICEF Headquarters, Programme Division, Health Section, New York, USA
| | - Sarah L Dalglish
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Shanthi Ameratunga
- School of Population Health, University of Auckland, Auckland, New Zealand
| | - Dina Balabanova
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Zulfiqar A Bhutta
- Centre for Global Child Health, Hospital for Sick Children, Toronto, OT, Canada; Center of Excellence in Women and Child Health, the Aga Khan University, Karachi, Pakistan
| | - John Borrazzo
- Global Financing Facility, World Bank, Washington, DC, USA
| | - Mariam Claeson
- Global Financing Facility, World Bank, Washington, DC, USA
| | - Tanya Doherty
- Health Systems Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Fadi El-Jardali
- Department of Health Management and Policy, Beirut, Lebanon; Knowledge to Policy Center American University of Beirut, Beirut, Lebanon
| | - Asha S George
- School of Public Health, University of Western Cape, Bellville, South Africa
| | | | - Lu Gram
- Institute for Global Health, London, UK
| | - David B Hipgrave
- UNICEF Headquarters, Programme Division, Health Section, New York, USA
| | - Aku Kwamie
- Health Policy and Systems Research Consultant, Accra, Ghana
| | - Qingyue Meng
- China Center for Health Development Studies, Peking University, Beijing, China
| | - Raúl Mercer
- Program of Social Sciences and Health, Latin American School of Social Sciences, Buenos Aires, Argentina
| | - Sunita Narain
- Centre for Science and Environment, New Delhi, India
| | | | | | | | - Timothy Powell-Jackson
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | - Papaarangi Reid
- School of Population Health, University of Auckland, Auckland, New Zealand
| | - Jennifer Requejo
- Division of Data, Analysis, Planning and Monitoring, Data and Analytics Section, New York, USA
| | - Sarah S Rohde
- Center of Excellence in Women and Child Health, the Aga Khan University, Karachi, Pakistan
| | - Nigel Rollins
- Department of Maternal Newborn Child and Adolescent Health, Geneva, Switzerland
| | | | - Harshpal Singh Sachdev
- Pediatrics and Clinical Epidemiology, Sitaram Bhartia Institute of Science and Research, New Delhi, India
| | - Rana Saleh
- Knowledge to Policy Center American University of Beirut, Beirut, Lebanon
| | - Yusra R Shawar
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Jeremy Shiffman
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Jonathon Simon
- Department of Maternal Newborn Child and Adolescent Health, Geneva, Switzerland
| | - Peter D Sly
- Children's Health and Environment Program, The University of Queensland, Brisbane, QLD, Australia
| | - Karin Stenberg
- Department of Health Systems Governance and Financing, WHO, Geneva, Switzerland
| | - Mark Tomlinson
- Institute for Life Course Health Research, Department of Global Health, Stellenbosch University, Stellenbosch, South Africa
| | - Rajani R Ved
- National Health Systems Resource Centre, New Delhi, India
| | | |
Collapse
|
37
|
Jabbari F, Mohseni Bandpei A, Daneshpour MS, Shahsavani A, Hashemi Nazari SS, Faraji Sabokbar H, Momenan AA, Azizi F. Role of Air Pollution and rs10830963 Polymorphism on the Incidence of Type 2 Diabetes: Tehran Cardiometabolic Genetic Study. J Diabetes Res 2020; 2020:2928618. [PMID: 32964052 PMCID: PMC7502123 DOI: 10.1155/2020/2928618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022] Open
Abstract
Diabetes mellitus (DM) is considered one of the leading health issues that are egregiously threatening human life throughout the world. Several epidemiological studies have examined the relationship of a particular matter < 10 μm (PM10) exposure and with type 2 diabetes mellitus (T2DM) prevalence and incidence. Accordingly, the current study is a study investigating the independent influence of air pollution (AP) and rs10830963 on the incidence of T2DM. A total number of 2428 adults over 20 years of age participated in a prospective cohort (TCGS) during a 9-year follow-up phase. The concentration of AP was measured, and the obtained values were considered the mean level in three previous years since the exposure concentration took the people living in that location. The COX regression model was employed to determine the influence of AP and rs10830963 on the incidence of T2DM in adjustment with covariate factors. Among the 392 T2DM, 230 cases (58.7%) were female diabetics, and 162 (41.3%) were male diabetics. According to the multivariable-adjusted model, exposure to PM10 (per 10 μm/m3), associated with the risk of T2DM, although just a borderline (p = 0.07) was found in the multivariable model (HR; 1.50, 95% CI; 1-2.32). The rs10830963 was directly associated with the incidence of diabetes, and the GG genotype increased the T2DM rate by 113% (more than two times) (HR; 2.134, 95% CI; 1.42-3.21, p ≤ 0.001) and GC increased it by 65% (HR; 1.65, 95% CI; 1.24-2.21, p ≤ 0.001). Long-term exposure to PM10 was associated with an increased risk of diabetes. Thus, it is suggested that the individuals with variant rs10830963 genotypes fall within a group susceptible to an increased risk of T2DM arising from AP.
Collapse
Affiliation(s)
- Fatemeh Jabbari
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anoushiravan Mohseni Bandpei
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S. Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Saeed Hashemi Nazari
- Prevention of Cardiovascular Disease Research Center, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Amir abbas Momenan
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Moody EC, Cantoral A, Tamayo-Ortiz M, Pizano-Zárate ML, Schnaas L, Kloog I, Oken E, Coull B, Baccarelli A, Téllez-Rojo MM, Wright RO, Just AC. Association of Prenatal and Perinatal Exposures to Particulate Matter With Changes in Hemoglobin A1c Levels in Children Aged 4 to 6 Years. JAMA Netw Open 2019; 2:e1917643. [PMID: 31851346 PMCID: PMC6991256 DOI: 10.1001/jamanetworkopen.2019.17643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE Environmental risk factors for childhood type 2 diabetes, an increasing global problem, are understudied. Air pollution exposure has been reported to be a risk factor for this condition. OBJECTIVE To examine the association between prenatal and perinatal exposures to fine particulate matter with a diameter less than 2.5 μm (PM2.5) and changes in hemoglobin A1c (HbA1c), a measure of glycated hemoglobin and marker of glucose dysregulation, in children aged 4 to 7 years. DESIGN, SETTING, AND PARTICIPANTS The Programming Research in Obesity, Growth, Environment, and Social Stressors (PROGRESS) study, a birth cohort study conducted in Mexico City, Mexico, recruited pregnant women from July 3, 2007, to February 21, 2011, through public health maternity clinics. The present analysis includes 365 mother-child pairs followed up until the child was approximately 7 years of age. This study included data from only study visits at approximately 4 to 5 years (visit 1) and 6 to 7 years (visit 2) post partum because HbA1c levels were not measured in earlier visits. The data were analyzed from March 11, 2018, to May 3, 2019. EXPOSURES Daily PM2.5 exposure estimates at participants' home addresses from 4 weeks prior to mothers' date of last menstrual period (LMP), a marker of the beginning of pregnancy, to 12 weeks after the due date. Exposure was estimated from satellite measurements and calibrated against ground PM2.5 measurements, land use, and meteorological variables. MAIN OUTCOMES AND MEASURES Outcomes included HbA1c levels at 4 to 5 years and 6 to 7 years of age, and the change in the level from the former age group to the latter. RESULTS The sample included 365 children, of whom 184 (50.4%) were girls. The mean (range) age of the children was 4.8 (4.0-6.4) years at visit 1, and 6.7 (6.0-9.7) years at visit 2. At the time of delivery, the mean (range) age of the mothers was 27.7 (18.3-44.4) years, with a mean (range) prepregnancy body mass index of 26.4 (18.5-43.5). The mean (SD) prenatal PM2.5 exposure (22.4 μg/m3 [2.7 μg/m3]) was associated with an annual increase in HbA1c levels of 0.25% (95% CI, 0.004%-0.50%) from age 4 to 5 years to 6 to 7 years compared with exposure at 12 μg/m3, the national regulatory standard in Mexico. Sex-specific effect estimates were statistically significant for girls (β = 0.21%; 95% CI, 0.10% to 0.32%) but not for boys (β = 0.31%; 95% CI, -0.09% to 0.72%). The statistically significant windows of exposure were from week 28 to 50.6 after the mother's LMP for the overall cohort and from week 11 to the end of the study period for girls. Lower HbA1c levels were observed at age 4 to 5 years in girls (β = -0.72%; 95% CI, -1.31% to -0.13%, exposure window from week 16 to 37.3) and boys (β = -0.98%; 95% CI, -1.70% to -0.26%, exposure window from the beginning of the study period to week 32.7), but no significant association was found in the overall cohort (β = -0.13%; 95% CI, -1.27% to 1.01%). There was no significant association between PM2.5 exposure and HbA1c level at age 6 to 7 years in any group. CONCLUSIONS AND RELEVANCE The findings of this study suggest that prenatal and perinatal exposures to PM2.5 are associated with changes in HbA1c, which are indicative of glucose dysregulation, in early childhood. Further research is needed because this finding may represent a risk factor for childhood or adolescent diabetes.
Collapse
Affiliation(s)
- Emily C. Moody
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alejandra Cantoral
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
- National Council of Science and Technology, Mexico City, Mexico
| | - Marcela Tamayo-Ortiz
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
- National Council of Science and Technology, Mexico City, Mexico
| | - Ma. Luisa Pizano-Zárate
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Lourdes Schnaas
- Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Geography & Human Environment, Ben Gurion University of the Negev, Be’er Sheva, Israel
| | - Emily Oken
- Harvard Medical School and Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts
| | - Brent Coull
- Department of Biostatistics and Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Martha M. Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
39
|
Jo H, Eckel SP, Chen JC, Cockburn M, Martinez MP, Chow T, Lurmann FW, Funk WE, Xiang AH, McConnell R. Gestational diabetes mellitus, prenatal air pollution exposure, and autism spectrum disorder. ENVIRONMENT INTERNATIONAL 2019; 133:105110. [PMID: 31610366 PMCID: PMC7250244 DOI: 10.1016/j.envint.2019.105110] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/10/2019] [Accepted: 08/19/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Ambient air pollution and maternal diabetes may affect common biological pathways underlying adverse neurodevelopmental effects. However, joint effects of maternal diabetes and air pollution on autism spectrum disorder (ASD) have not been studied. OBJECTIVE We evaluated whether prenatal and early-life air pollution exposure interacts with maternal diabetes status to affect ASD risk. METHODS This retrospective cohort study included 246,420 singleton children born in Kaiser Permanente Southern California hospitals in 1999-2009. Children were followed from birth until age 5, during which 2471 ASD cases were diagnosed. Ozone (O3), particulate matter < 2.5 μm (PM2.5) and <10 μm in aerodynamic diameter, and nitrogen dioxide measured at regulatory air monitoring stations were interpolated to estimate exposures during preconception and each pregnancy trimester, and first year of life at each child's birth address. Hazard ratios (HRs) for ASD were estimated adjusting for birth year, KPSC service areas, and relevant maternal and child characteristics. For each exposure window, interactions were tested between pollutants and a 4-category maternal diabetes variable (none, GDM ≥ 24 and <24 weeks' gestation, and pre-existing type 2 diabetes). For an exposure window with statistically significant global interaction between pollutant and diabetes (p < 0.05), pollutant-associated HRs were estimated separately for each category of maternal diabetes. RESULTS There were associations of ASD with preconception, first and third trimesters, and first year of life PM2.5, but not with other pollutants. There were, however, interactions of maternal diabetes with first trimester and first year of life O3. Increased ASD risk was associated with first trimester O3 among mothers with GDM < 24 weeks' gestation [adjusted HR 1.50 per 15.7 ppb O3 (95% CI: 1.08-2.09)]. No O3 associations with ASD were observed in other categories of maternal diabetes. CONCLUSIONS GDM onset early in pregnancy may increase children's susceptibility to prenatal O3-associated ASD risk. These novel findings merit further investigation.
Collapse
Affiliation(s)
- Heejoo Jo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America; Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States of America
| | - Sandrah P Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Myles Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America; Department of Epidemiology, University of Colorado School of Public Health, United States of America
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States of America
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States of America
| | | | - William E Funk
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States of America
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America.
| |
Collapse
|
40
|
Ghassabian A, Pierotti L, Basterrechea M, Chatzi L, Estarlich M, Fernández-Somoano A, Fleisch AF, Gold DR, Julvez J, Karakosta P, Lertxundi A, Lopez-Espinosa MJ, Mulder TA, Korevaar TIM, Oken E, Peeters RP, Rifas-Shiman S, Stephanou E, Tardón A, Tiemeier H, Vrijheid M, Vrijkotte TGM, Sunyer J, Guxens M. Association of Exposure to Ambient Air Pollution With Thyroid Function During Pregnancy. JAMA Netw Open 2019; 2:e1912902. [PMID: 31617922 PMCID: PMC6806433 DOI: 10.1001/jamanetworkopen.2019.12902] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
IMPORTANCE Air pollutants interact with estrogen nuclear receptors, but their effect on thyroid signaling is less clear. Thyroid function is of particular importance for pregnant women because of the thyroid's role in fetal brain development. OBJECTIVE To determine the short-term association of exposure to air pollution in the first trimester with thyroid function throughout pregnancy. DESIGN, SETTING, AND PARTICIPANTS In this cohort study, 9931 pregnant women from 4 European cohorts (the Amsterdam Born Children and Their Development Study, the Generation R Study, Infancia y Medio Ambiente, and Rhea) and 1 US cohort (Project Viva) with data on air pollution exposure and thyroid function during pregnancy were included. The recruitment period for the Amsterdam Born Children and Their Development Study was January 2003 to March 2004; for Generation R, April 2002 to January 2006; for Infancia y Medio Ambiente, November 2003 to January 2008; for Rhea, February 2007 to February 2008; and for Project Viva, April 1999 to November 2002. Statistical analyses were conducted from January 2018 to April 2019. MAIN OUTCOMES AND MEASURES Residential air pollution concentrations (ie, nitrogen oxide and particulate matter [PM]) during the first trimester of pregnancy were estimated using land-use regression and satellite-derived aerosol optical depth models. Free thyroxine, thyrotropin, and thyroid peroxidase antibody levels were measured across gestation. Hypothyroxinemia was defined as free thyroxine below the fifth percentile of the cohort distribution with normal thyrotropin levels, following the American Thyroid Association guidelines. RESULTS Among 9931 participants, the mean (SD) age was 31.2 (4.8) years, 4853 (48.9%) had more than secondary educational levels, 5616 (56.6%) were nulliparous, 404 (4.2%) had hypothyroxinemia, and 506 (6.7%) tested positive for thyroid peroxidase antibodies. Concentrations of nitrogen dioxide and PM with an aerodynamic diameter of 2.5 μm or less (PM2.5) were lower and had less variation in women in the US cohort than those in European cohorts. No associations of nitrogen oxide with thyroid function were found. Higher exposures to PM2.5 were associated with higher odds of hypothyroxinemia in pregnant women (odds ratio per 5-μg/m3 change, 1.21; 95% CI, 1.00-1.47). Although exposure to PM with an aerodynamic diameter of 10 μm or less was not significantly associated with hypothyroxinemia, the coefficient was similar to that for the association of PM2.5 with hypothyroxinemia (odds ratio per 10-μg/m3 change, 1.18; 95% CI, 0.93-1.48). Absorbances of PM2.5 and PM with aerodynamic diameter from 2.5 to 10 μg and were not associated with hypothyroxinemia. There was substantial heterogeneity among cohorts with respect to thyroid peroxidase antibodies (P for heterogeneity, <.001), showing associations of nitrogen oxide and PM with thyroid autoimmunity only in the women in the Generation R Study. CONCLUSIONS AND RELEVANCE The findings of this study suggest that first-trimester exposures to PM2.5 were associated with mild thyroid dysfunction throughout pregnancy. The association of PM2.5 exposure with thyroid function during pregnancy is of global health importance because air pollution exposure is widespread and hypothyroxinemia may adversely influence the brain development of offspring.
Collapse
Affiliation(s)
- Akhgar Ghassabian
- Departments of Pediatrics, Environmental Medicine, and Population Health, School of Medicine, New York University, New York
| | - Livia Pierotti
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Mikel Basterrechea
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Biodonostia Health Research Institute, San Sebastian, Spain
- Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Leda Chatzi
- Department of Social Medicine, University of Crete, Heraklion, Greece
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Marisa Estarlich
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Instituto Universaitario de Oncología del Principado de Asturias, Departament of Medicine, University of Oviedo, Oviedo, Spain
| | - Abby F Fleisch
- Department of Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland
| | - Diane R Gold
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jordi Julvez
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Polyxeni Karakosta
- Department of Social Medicine, University of Crete, Heraklion, Greece
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Biodonostia Health Research Institute, San Sebastian, Spain
- Department of Public Health and Preventive Medicine, University of Basque Country, Bilbao, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Tessa A Mulder
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Tim I M Korevaar
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institution, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Robin P Peeters
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sheryl Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institution, Boston, Massachusetts
| | | | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Instituto Universaitario de Oncología del Principado de Asturias, Departament of Medicine, University of Oviedo, Oviedo, Spain
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Tanja G M Vrijkotte
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
41
|
Curto A, Ranzani O, Milà C, Sanchez M, Marshall JD, Kulkarni B, Bhogadi S, Kinra S, Wellenius GA, Tonne C. Lack of association between particulate air pollution and blood glucose levels and diabetic status in peri-urban India. ENVIRONMENT INTERNATIONAL 2019; 131:105033. [PMID: 31376594 PMCID: PMC6718580 DOI: 10.1016/j.envint.2019.105033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/27/2019] [Accepted: 07/16/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Limited evidence exists on the effect of particulate air pollution on blood glucose levels. We evaluated the associations of residential and personal levels of fine particulate matter (PM2.5) and black carbon (BC) with blood glucose and diabetic status among residents of 28 peri-urban villages in South India. METHODS We used cross-sectional data from 5065 adults (≥18 years, 54% men) included in the Andhra Pradesh Children and Parents Study. Fasting plasma glucose was measured once in 2010-2012 and prevalent prediabetes and diabetes were defined following the American Diabetes Association criteria. We estimated annual ambient PM2.5 and BC levels at residence using land-use regression models and annual personal exposure to PM2.5 and BC using prediction models based on direct measurements from a subsample of 402 participants. We used linear and logistic nested mixed-effect models to assess the association between exposure metrics and health outcomes. For personal exposures, we stratified analyses by sex. RESULTS Mean (SD) residential PM2.5 and BC were 32.9 (2.6) μg/m3 and 2.5 (2.6) μg/m3, respectively; personal exposures to PM2.5 and BC were 54.5 (11.5) μg/m3 and 5.8 (2.5) μg/m3, respectively. Average (SD) fasting blood glucose was 5.3 (1.3) mmol/l, 16% of participants had prediabetes, and 5.5% had diabetes. Residential PM2.5 and BC were not associated with higher blood glucose levels. Personal PM2.5 (20 μg/m3 increase) and BC (1 μg/m3 increase) were negatively associated with blood glucose levels in women (PM2.5: -1.93, 95%CI: -3.12, -0.73; BC: -0.63, 95%CI: -0.90, -0.37). In men, associations were negative for personal PM2.5 (-1.99, 95%CI: -3.56, -0.39) and positive for personal BC (0.49, 95%CI: -0.44, 1.43). We observed no evidence of associations between any exposure and prevalence of prediabetes/diabetes. CONCLUSIONS Our results do not provide evidence that residential exposures to PM2.5 or BC are associated with blood glucose or prevalence of prediabetes/diabetes in this population. Associations with personal exposure may have been affected by unmeasured confounding, highlighting a challenge in using personal exposure estimates in air pollution epidemiology. These associations should be further examined in longitudinal studies.
Collapse
Affiliation(s)
- Ariadna Curto
- ISGlobal, Universitat Pompeu Fabra, CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Otavio Ranzani
- ISGlobal, Universitat Pompeu Fabra, CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Carles Milà
- ISGlobal, Universitat Pompeu Fabra, CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Margaux Sanchez
- ISGlobal, Universitat Pompeu Fabra, CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Julian D Marshall
- Department of Civil and Environmental Engineering, University of Washington, WA, USA
| | - Bharati Kulkarni
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Santhi Bhogadi
- Public Health Foundation of India, Indian Institute for Public Health, Hyderabad, India
| | - Sanjay Kinra
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Gregory A Wellenius
- Department of Epidemiology, Brown University School of Public Health, RI, USA
| | - Cathryn Tonne
- ISGlobal, Universitat Pompeu Fabra, CIBER Epidemiología y Salud Pública, Barcelona, Spain.
| |
Collapse
|
42
|
Liu F, Chen G, Huo W, Wang C, Liu S, Li N, Mao S, Hou Y, Lu Y, Xiang H. Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1235-1245. [PMID: 31252121 DOI: 10.1016/j.envpol.2019.06.033] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 05/21/2023]
Abstract
Previous meta-analyses on associations between air pollution (AP) and type 2 diabetes mellitus (T2DM) were mainly focused on studies conducted in high-income countries. Evidence should be updated by including more recent studies, especially those conducted in low- and middle-income countries. We therefore conducted a systematic review and meta-analysis of epidemiological studies to conclude an updated pooled effect estimates between long-term AP exposure and the prevalence and incidence of T2DM. We searched PubMed, Embase, and Web of Science to identify studies regarding associations of AP with T2DM prevalence and incidence prior to January 2019. A random-effects model was employed to analyze the overall effects. A total of 30 articles were finally included in this meta-analysis. The pooled results showed that higher levels of AP exposure were significantly associated with higher prevalence of T2DM (per 10 μg/m3 increase in concentrations of particles with aerodynamic diameter < 2.5 μm (PM2.5): odds ratio (OR) = 1.09, 95% confidence interval (95%CI): 1.05, 1.13; particles with aerodynamic diameter < 10 μm (PM10): OR = 1.12, 95%CI: 1.06, 1.19; nitrogen dioxide (NO2): OR = 1.05, 95%CI:1.03, 1.08). Besides, higher level of PM2.5 exposure was associated with higher T2DM incidence (per 10 μg/m3 increase in concentration of PM2.5: hazard ratio (HR) = 1.10, 95%CI:1.04, 1.16), while the associations between PM10, NO2 and T2DM incidence were not statistically significant. The associations between AP exposure and T2DM prevalence showed no significant difference between high-income countries and low- and middle-incomes countries. However, different associations were identified between PM2.5 exposure and T2DM prevalence in different geographic areas. No significant differences were found in associations of AP and T2DM prevalence/incidence between females and males, except for the effect of NO2 on T2DM incidence. Overall, AP exposure was positively associated with T2DM. There still remains a need for evidence from low- and middle-income countries on the relationships between AP and T2DM.
Collapse
Affiliation(s)
- Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Suyang Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Shuyuan Mao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yitan Hou
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health Sciences, University Hawaii at Manoa, 1960 East West Rd, Biomed Bldg, D105, Honolulu, USA
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Ambient air pollution is strongly linked to cardiovascular and respiratory diseases. We summarize available published evidence regarding similar associations with diabetes across the life course. RECENT FINDINGS We performed a life-course survey of the recent literature, including prenatal, gestational, childhood/adolescence, and adult exposures to air pollution. Oxidative stress is identified as a key factor in both metabolic dysfunction and the effects of air pollution exposure, especially from fossil fuel combustion products, providing a plausible mechanism for air pollution-diabetes associations. The global burden of diabetes attributed to air pollution exposure is substantial, with a recent estimate that ambient fine particulate matter (PM2.5) exposure contributes to more than 200,000 deaths from diabetes annually. There is a growing body of literature linking air pollution exposure during childhood and adulthood with diabetes etiology and related cardiometabolic biomarkers. A small number of studies found that exposure to air pollution during pregnancy is associated with elevated gestational diabetes risk among mothers. Studies examining prenatal air pollution exposure and diabetes risk among the offspring, as well as potential transgenerational effects of air pollution exposure, are very limited thus far. This review provides insight into how air pollutants affect diabetes and other metabolic dysfunction-related diseases across the different life stages.
Collapse
Affiliation(s)
- Chris C Lim
- School of Forestry and Environmental Sciences, Yale University, 195 Prospect Street, New Haven, CT, USA
| | - George D Thurston
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25th Street, New York, NY, USA.
| |
Collapse
|
44
|
Decreased Insulin Secretion but Unchanged Glucose Homeostasis in Cadmium-Exposed Male C57BL/6 Mice. J Toxicol 2019; 2019:8121834. [PMID: 31320898 PMCID: PMC6610724 DOI: 10.1155/2019/8121834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/30/2019] [Accepted: 05/26/2019] [Indexed: 12/16/2022] Open
Abstract
Cadmium (Cd) is a well-known toxic metal element that is largely distributed in the environment. Cd causes toxicity to most organs. Accumulating evidence suggests that Cd exposure is associated with islet dysfunction and development of diabetes, but the association remains controversial. The aim of this study is to evaluate the possible effects of chronic Cd exposure on glucose metabolism in male C57BL/6 mice. Mice were intraperitoneally injected with CdCl2 solution (1 mg.kg−1) twice a week for 24 weeks. Fasting blood glucose (FBG) levels and body weights were measured weekly. After 24 weeks, the intraperitoneal glucose tolerance test (IPGTT), intraperitoneal insulin tolerance test (IPITT), and fasting serum insulin (FSI) level test were performed. The insulin resistance index (HOMA-IR) and pancreatic β cell function index (HOMA-β) were calculated and analyzed. The expression of insulin receptor (IR) in mouse liver was detected by real-time PCR. Pancreatic tissue was collected for histological examination. The results demonstrated that FBG, IPGTT, HOMA-IR, and HOMA-β were identical between Cd exposure and control mice. In contract, mean fasting serum insulin level, area under the curve (AUC) of IPITT, and IR expression in livers of Cd-exposed mice decreased significantly compared with control mice. Cd administration induced islet atrophy and decreased islet area. The results suggested that Cd exposure decreased insulin secretion and maintained glucose homeostasis in male C57BL/6 mice and that pancreatic functions should be monitored in populations chronically exposed to Cd.
Collapse
|
45
|
Kim H, Kim W, Choi JE, Kim C, Sohn J. Short-term Effect of Ambient Air Pollution on Emergency Department Visits for Diabetic Coma in Seoul, Korea. J Prev Med Public Health 2018; 51:265-274. [PMID: 30514056 PMCID: PMC6283743 DOI: 10.3961/jpmph.18.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022] Open
Abstract
Objectives A positive association between air pollution and both the incidence and prevalence of diabetes mellitus (DM) has been reported in some epidemiologic and animal studies, but little research has evaluated the relationship between air pollution and diabetic coma. Diabetic coma is an acute complication of DM caused by diabetic ketoacidosis or hyperosmolar hyperglycemic state, which is characterized by extreme hyperglycemia accompanied by coma. We conducted a time-series study with a generalized additive model using a distributed-lag non-linear model to assess the association between ambient air pollution (particulate matter less than 10 μm in aerodynamic diameter, nitrogen dioxide [NO2], sulfur dioxide, carbon monoxide, and ozone) and emergency department (ED) visits for DM with coma in Seoul, Korea from 2005 to 2009. Methods The ED data and medical records from the 3 years previous to each diabetic coma event were obtained from the Health Insurance Review and Assessment Service to examine the relationship with air pollutants. Results Overall, the adjusted relative risks (RRs) for an interquartile range (IQR) increment of NO2 was statistically significant at lag 1 (RR, 1.125; 95% confidence interval [CI], 1.039 to 1.219) in a single-lag model and both lag 0-1 (RR, 1.120; 95% CI, 1.028 to 1.219) and lag 0-3 (RR, 1.092; 95% CI, 1.005 to 1.186) in a cumulative-lag model. In a subgroup analysis, significant positive RRs were found for females for per-IQR increments of NO2 at cumulative lag 0-3 (RR, 1.149; 95% CI, 1.022 to 1.291). Conclusions The results of our study suggest that ambient air pollution, specifically NO2, is associated with ED visits for diabetic coma.
Collapse
Affiliation(s)
- Hyunmee Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Woojin Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Eun Choi
- Department of Public Health, Yonsei University Graduate School, Seoul, Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.,Department of Public Health, Yonsei University Graduate School, Seoul, Korea.,Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Korea
| | - Jungwoo Sohn
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Korea
| |
Collapse
|