1
|
Tamura T, Yamamoto H, Ogino S, Morioka Y, Tsujino S, Suzuki R, Hiono T, Suzuki S, Isoda N, Sakoda Y, Fukuhara T. A rapid and versatile reverse genetics approach for generating recombinant positive-strand RNA viruses that use IRES-mediated translation. J Virol 2024; 98:e0163823. [PMID: 38353536 PMCID: PMC10949505 DOI: 10.1128/jvi.01638-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024] Open
Abstract
Reverse genetics systems have played a central role in developing recombinant viruses for a wide spectrum of virus research. The circular polymerase extension reaction (CPER) method has been applied to studying positive-strand RNA viruses, allowing researchers to bypass molecular cloning of viral cDNA clones and thus leading to the rapid generation of recombinant viruses. However, thus far, the CPER protocol has only been established using cap-dependent RNA viruses. Here, we demonstrate that a modified version of the CPER method can be successfully applied to positive-strand RNA viruses that use cap-independent, internal ribosomal entry site (IRES)-mediated translation. As a proof-of-concept, we employed mammalian viruses with different types (classes I, II, and III) of IRES to optimize the CPER method. Using the hepatitis C virus (HCV, class III), we found that inclusion in the CPER assembly of an RNA polymerase I promoter and terminator, instead of those from polymerase II, allowed greater viral production. This approach was also successful in generating recombinant bovine viral diarrhea virus (class III) following transfection of MDBK/293T co-cultures to overcome low transfection efficiency. In addition, we successfully generated the recombinant viruses from clinical specimens. Our modified CPER could be used for producing hepatitis A virus (HAV, type I) as well as de novo generation of encephalomyocarditis virus (type II). Finally, we generated recombinant HCV and HAV reporter viruses that exhibited replication comparable to that of the wild-type parental viruses. The recombinant HAV reporter virus helped evaluate antivirals. Taking the findings together, this study offers methodological advances in virology. IMPORTANCE The lack of versatility of reverse genetics systems remains a bottleneck in viral research. Especially when (re-)emerging viruses reach pandemic levels, rapid characterization and establishment of effective countermeasures using recombinant viruses are beneficial in disease control. Indeed, numerous studies have attempted to establish and improve the methods. The circular polymerase extension reaction (CPER) method has overcome major obstacles in generating recombinant viruses. However, this method has not yet been examined for positive-strand RNA viruses that use cap-independent, internal ribosome entry site-mediated translation. Here, we engineered a suitable gene cassette to expand the CPER method for all positive-strand RNA viruses. Furthermore, we overcame the difficulty of generating recombinant viruses because of low transfection efficiency. Using this modified method, we also successfully generated reporter viruses and recombinant viruses from a field sample without virus isolation. Taking these findings together, our adapted methodology is an innovative technology that could help advance virologic research.
Collapse
Affiliation(s)
- Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Hirotaka Yamamoto
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Saho Ogino
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuhei Morioka
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shuhei Tsujino
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Takahiro Hiono
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Saori Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Norikazu Isoda
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
2
|
Cowton VM, Owsianka AM, Fadda V, Ortega-Prieto AM, Cole SJ, Potter JA, Skelton JK, Jeffrey N, Di Lorenzo C, Dorner M, Taylor GL, Patel AH. Development of a structural epitope mimic: an idiotypic approach to HCV vaccine design. NPJ Vaccines 2021; 6:7. [PMID: 33420102 PMCID: PMC7794244 DOI: 10.1038/s41541-020-00269-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
HCV vaccine development is stymied by the high genetic diversity of the virus and the variability of the envelope glycoproteins. One strategy to overcome this is to identify conserved, functionally important regions—such as the epitopes of broadly neutralizing antibodies (bNAbs)—and use these as a basis for structure-based vaccine design. Here, we report an anti-idiotype approach that has generated an antibody that mimics a highly conserved neutralizing epitope on HCV E2. Crucially, a mutagenesis screen was used to identify the antibody, designated B2.1 A, whose binding characteristics to the bNAb AP33 closely resemble those of the original antigen. Protein crystallography confirmed that B2.1 A is a structural mimic of the AP33 epitope. When used as an immunogen B2.1 A induced antibodies that recognized the same epitope and E2 residues as AP33 and most importantly protected against HCV challenge in a mouse model.
Collapse
Affiliation(s)
- Vanessa M Cowton
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Ania M Owsianka
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Valeria Fadda
- Biomedical Sciences Research Complex, University of St. Andrews, Fife, UK
| | | | - Sarah J Cole
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Jane A Potter
- Biomedical Sciences Research Complex, University of St. Andrews, Fife, UK
| | - Jessica K Skelton
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - Nathan Jeffrey
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Caterina Di Lorenzo
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - Garry L Taylor
- Biomedical Sciences Research Complex, University of St. Andrews, Fife, UK
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK.
| |
Collapse
|
3
|
Prentoe J, Bukh J. Hypervariable Region 1 in Envelope Protein 2 of Hepatitis C Virus: A Linchpin in Neutralizing Antibody Evasion and Viral Entry. Front Immunol 2018; 9:2146. [PMID: 30319614 PMCID: PMC6170631 DOI: 10.3389/fimmu.2018.02146] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is the cause of about 400,000 annual liver disease-related deaths. The global spread of this important human pathogen can potentially be prevented through the development of a vaccine, but this challenge has proven difficult, and much remains unknown about the multitude of mechanisms by which this heterogeneous RNA virus evades inactivation by neutralizing antibodies (NAbs). The N-terminal motif of envelope protein 2 (E2), termed hypervariable region 1 (HVR1), changes rapidly in immunoglobulin-competent patients due to antibody-driven antigenic drift. HVR1 contains NAb epitopes and is directly involved in protecting diverse antibody-specific epitopes on E1, E2, and E1/E2 through incompletely understood mechanisms. The ability of HVR1 to protect HCV from NAbs appears linked with modulation of HCV entry co-receptor interactions. Thus, removal of HVR1 increases interaction with CD81, while altering interaction with scavenger receptor class B, type I (SR-BI) in a complex fashion, and decreasing interaction with low-density lipoprotein receptor. Despite intensive efforts this modulation of receptor interactions by HVR1 remains incompletely understood. SR-BI has received the most attention and it appears that HVR1 is involved in a multimodal HCV/SR-BI interaction involving high-density-lipoprotein associated ApoCI, which may prime the virus for later entry events by exposing conserved NAb epitopes, like those in the CD81 binding site. To fully elucidate the multifunctional role of HVR1 in HCV entry and NAb evasion, improved E1/E2 models and comparative studies with other NAb evasion strategies are needed. Derived knowledge may be instrumental in the development of a prophylactic HCV vaccine.
Collapse
Affiliation(s)
- Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Hepacivirus A Infection in Horses Defines Distinct Envelope Hypervariable Regions and Elucidates Potential Roles of Viral Strain and Adaptive Immune Status in Determining Envelope Diversity and Infection Outcome. J Virol 2018; 92:JVI.00314-18. [PMID: 29976666 DOI: 10.1128/jvi.00314-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
Hepacivirus A (also known as nonprimate hepacivirus and equine hepacivirus) is a hepatotropic virus that can cause both transient and persistent infections in horses. The evolution of intrahost viral populations (quasispecies) has not been studied in detail for hepacivirus A, and its roles in immune evasion and persistence are unknown. To address these knowledge gaps, we first evaluated the envelope gene (E1 and E2) diversity of two different hepacivirus A strains (WSU and CU) in longitudinal blood samples from experimentally infected adult horses, juvenile horses (foals), and foals with severe combined immunodeficiency (SCID). Persistent infection with the WSU strain was associated with significantly greater quasispecies diversity than that observed in horses who spontaneously cleared infection (P = 0.0002) or in SCID foals (P < 0.0001). In contrast, the CU strain was able to persist despite significantly lower (P < 0.0001) and relatively static envelope diversity. These findings indicate that envelope diversity is a poor predictor of hepacivirus A infection outcomes and could be dependent on strain-specific factors. Next, entropy analysis was performed on all E1/E2 genes entered into GenBank. This analysis defined three novel hypervariable regions (HVRs) in E2, at residues 391 to 402 (HVR1), 450 to 461 (HVR2), and 550 to 562 (HVR3). For the experimentally infected horses, entropy analysis focusing on the HVRs demonstrated that these regions were under increased selective pressure during persistent infection. Increased diversity in the HVRs was also temporally associated with seroconversion in some horses, suggesting that these regions may be targets of neutralizing antibody and may play a role in immune evasion.IMPORTANCE Hepacivirus C (hepatitis C virus) is estimated to infect 150 million people worldwide and is a leading cause of cirrhosis and hepatocellular carcinoma. In contrast, its closest relative, hepacivirus A, causes relatively mild disease in horses and is frequently cleared. The relationship between quasispecies evolution and infection outcome has not been explored for hepacivirus A. To address this knowledge gap, we examined envelope gene diversity in horses with resolving and persistent infections. Interestingly, two strain-specific patterns of quasispecies diversity emerged. Persistence of the WSU strain was associated with increased quasispecies diversity and the accumulation of amino acid changes within three novel hypervariable regions following seroconversion. These findings provided evidence that envelope gene mutation is influenced by adaptive immune pressure and may contribute to hepacivirus persistence. However, the CU strain persisted despite relative evolutionary stasis, suggesting that some hepacivirus strains may use alternative mechanisms to persist in the host.
Collapse
|
5
|
Cowton VM, Singer JB, Gifford RJ, Patel AH. Predicting the Effectiveness of Hepatitis C Virus Neutralizing Antibodies by Bioinformatic Analysis of Conserved Epitope Residues Using Public Sequence Data. Front Immunol 2018; 9:1470. [PMID: 30013555 PMCID: PMC6036255 DOI: 10.3389/fimmu.2018.01470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a global health issue. Although direct-acting antivirals are available to target HCV, there is currently no vaccine. The diversity of the virus is a major obstacle to HCV vaccine development. One approach toward a vaccine is to utilize a strategy to elicit broadly neutralizing antibodies (bNAbs) that target highly-conserved epitopes. The conserved epitopes of bNAbs have been mapped almost exclusively to the E2 glycoprotein. In this study, we have used HCV-GLUE, a bioinformatics resource for HCV sequence data, to investigate the major epitopes targeted by well-characterized bNAbs. Here, we analyze the level of conservation of each epitope by genotype and subtype and consider the most promising bNAbs identified to date for further study as potential vaccine leads. For the most conserved epitopes, we also identify the most prevalent sequence variants in the circulating HCV population. We examine the distribution of E2 sequence data from across the globe and highlight regions with no coverage. Genotype 1 is the most prevalent genotype worldwide, but in many regions, it is not the dominant genotype. We find that the sequence conservation data is very encouraging; several bNAbs have a high level of conservation across all genotypes suggesting that it may be unnecessary to tailor vaccines according to the geographical distribution of genotypes.
Collapse
Affiliation(s)
| | | | | | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, Scotland, United Kingdom
| |
Collapse
|
6
|
Ströh LJ, Nagarathinam K, Krey T. Conformational Flexibility in the CD81-Binding Site of the Hepatitis C Virus Glycoprotein E2. Front Immunol 2018; 9:1396. [PMID: 29967619 PMCID: PMC6015841 DOI: 10.3389/fimmu.2018.01396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
Numerous antibodies have been described that potently neutralize a broad range of hepatitis C virus (HCV) isolates and the majority of these antibodies target the binding site for the cellular receptor CD81 within the major HCV glycoprotein E2. A detailed understanding of the major antigenic determinants is crucial for the design of an efficient vaccine that elicits high levels of such antibodies. In the past 6 years, structural studies have shed additional light on the way the host’s humoral immune system recognizes neutralization epitopes within the HCV glycoproteins. One of the most striking findings from these studies is that the same segments of the E2 polypeptide chain induce antibodies targeting distinct antigen conformations. This was demonstrated by several crystal structures of identical polypeptide segments bound to different antibodies, highlighting an unanticipated intrinsic structural flexibility that allows binding of antibodies with distinct paratope shapes following an “induced-fit” mechanism. This unprecedented flexibility extends to the entire binding site for the cellular receptor CD81, underlining the importance of dynamic analyses to understand (1) the interplay between HCV and the humoral immune system and (2) the relevance of this structural flexibility for virus entry. This review summarizes the current understanding how neutralizing antibodies target structurally flexible epitopes. We focus on differences and common features of the reported structures and discuss the implications of the observed structural flexibility for the viral replication cycle, the full scope of the interplay between the virus and the host immune system and—most importantly—informed vaccine design.
Collapse
Affiliation(s)
- Luisa J Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Fabrizi F, Locatelli F. Hepatitis C Virus Infection in Dialysis and Clinical Nephrology. Int J Artif Organs 2018. [DOI: 10.1177/039139889501800501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- F. Fabrizi
- Nephrology Department, Hospital, Lecco - Italy
| | | |
Collapse
|
8
|
Tsukiyama-Kohara K, Kohara M. Hepatitis C Virus: Viral Quasispecies and Genotypes. Int J Mol Sci 2017; 19:ijms19010023. [PMID: 29271914 PMCID: PMC5795974 DOI: 10.3390/ijms19010023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) mainly replicates in the cytoplasm, where it easily establishes persistent infection, resulting in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Due to its high rate of mutation, HCV forms viral quasispecies, categorized based on the highly variable regions in the envelope protein and nonstructural 5A protein. HCV possesses seven major genotypes, among which genotype 1 is the most prevalent globally. The distribution of HCV genotypes varies based on geography, and each genotype has a different sensitivity to interferon treatment. Recently-developed direct-acting antivirals (DAAs), which target viral proteases or polymerases, mediate drastically better antiviral effects than previous therapeutics. Although treatment with DAAs has led to the development of drug-resistant HCV mutants, the most recently approved DAAs show improved pan-genomic activity, with a higher barrier to viral resistance.
Collapse
Affiliation(s)
- Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Meedicine, Kagoshima University, 1-21-24 Korimoto Kagoshima-city, Kgoshima 890-0065, Japan.
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute, 2-1-6 Kamikitazawa, Setagaya-Ku 156-8506, Japan.
| |
Collapse
|
9
|
Vertical Transmission of Hepatitis C Virus: Variable Transmission Bottleneck and Evidence of Midgestation In Utero Infection. J Virol 2017; 91:JVI.01372-17. [PMID: 28931691 DOI: 10.1128/jvi.01372-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) can be transmitted from mother to child during pregnancy and childbirth. However, the timing and precise biological mechanisms that are involved in this process are incompletely understood, as are the determinants that influence transmission of particular HCV variants. Here we report results of a longitudinal assessment of HCV quasispecies diversity and composition in 5 cases of vertical HCV transmission, including 3 women coinfected with human immunodeficiency virus type 1 (HIV-1). The population structure of HCV variant spectra based on E2 envelope gene sequences (nucleotide positions 1491 to 1787), including hypervariable regions 1 and 2, was characterized using next-generation sequencing and median-joining network analysis. Compatible with a loose transmission bottleneck, larger numbers of shared HCV variants were observed in the presence of maternal coinfection. Coalescent Bayesian Markov chain Monte Carlo simulations revealed median times of transmission between 24.9 weeks and 36.1 weeks of gestation, with some confidence intervals ranging into the 1st trimester, considerably earlier than previously thought. Using recombinant autologous HCV pseudoparticles, differences were uncovered in HCV-specific antibody responses between coinfected mothers and mothers infected with HCV alone, in whom generalized absence of neutralization was observed. Finally, shifts in HCV quasispecies composition were seen in children around 1 year of age, compatible with the disappearance of passively transferred maternal immunoglobulins and/or the development of HCV-specific humoral immunity. Taken together, these results provide insights into the timing, dynamics, and biologic mechanisms involved in vertical HCV transmission and inform preventative strategies.IMPORTANCE Although it is well established that hepatitis C virus (HCV) can be transmitted from mother to child, the manner and the moment at which transmission operates have been the subject of conjecture. By carrying out a detailed examination of viral sequences, we showed that transmission could take place comparatively early in pregnancy. In addition, we showed that when the mother also carried human immunodeficiency virus type 1 (HIV-1), many more HCV variants were shared between her and her child, suggesting that the mechanism and/or the route of transmission of HCV differed in the presence of coinfection with HIV-1. These results could explain why cesarean section is ineffective in preventing vertical HCV transmission and guide the development of interventions to avert pediatric HCV infection.
Collapse
|
10
|
Feng Y, Feng YM, Lu C, Han Y, Liu L, Sun X, Dai J, Xia X. Tree shrew, a potential animal model for hepatitis C, supports the infection and replication of HCV in vitro and in vivo. J Gen Virol 2017; 98:2069-2078. [PMID: 28758632 PMCID: PMC5656785 DOI: 10.1099/jgv.0.000869] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tree shrew (Tupaia belangeri chinensis), a small animal widely distributed in Southeast Asia and southwest China, has the potential to be developed as an animal model for hepatitis C. To determine the susceptibility of the tree shrew to hepatitis C virus (HCV) infection in vitro and in vivo, a well-established HCV, produced from the J6/JFH1-Huh7.5.1 culture system, was used to infect cultured primary tupaia hepatocytes (PTHs) and tree shrews. The in vitro results showed that HCV genomic RNA and HCV-specific nonstructural protein 5A (NS5A) could be detected in the PTH cell culture from days 3-15 post-infection, although the viral load was lower than that observed in Huh7.5.1 cell culture. The occurrence of five sense mutations [S391A, G397A, L402F and M405T in the hypervariable region 1 (HVR1) of envelope glycoprotein 2 and I2750M in NS5B] suggested that HCV undergoes genetic evolution during culture. Fourteen of the 30 experimental tree shrews (46.7 %) were found to be infected, although the HCV viremia was intermittent in vivo. A positive test for HCV RNA in liver tissue provided stronger evidence for HCV infection and replication in tree shrews. The results of an immunohistochemistry assay also demonstrated the presence of four HCV-specific proteins (Core, E2, NS3/4 and NS5A) in the hepatocytes of infected tree shrews. The pathological changes observed in the liver tissue of infected tree shrews could be considered to be representative symptoms of mild hepatitis. These results revealed that the tree shrew can be used as an animal model supporting the infection and replication of HCV in vitro and in vivo.
Collapse
Affiliation(s)
- Yue Feng
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Yue-Mei Feng
- Academy of Public Health, Kunming Medical University, Kunming, Yunnan 650500, PR China
| | - Caixia Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Li Liu
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Xiaomei Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Jiejie Dai
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| |
Collapse
|
11
|
Freedman H, Logan MR, Law JLM, Houghton M. Structure and Function of the Hepatitis C Virus Envelope Glycoproteins E1 and E2: Antiviral and Vaccine Targets. ACS Infect Dis 2016; 2:749-762. [PMID: 27933781 DOI: 10.1021/acsinfecdis.6b00110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The hepatitis C virus (HCV) envelope glycoproteins E1 and E2 are critical in viral attachment and cell fusion, and studies of these proteins may provide valuable insights into their potential uses in vaccines and antiviral strategies. Progress has included elucidating the crystal structures of portions of their ectodomains, as well as many other studies of hypervariable regions, stem regions, glycosylation sites, and the participation of E1/E2 in viral fusion with the endosomal membrane. The available structural data have shed light on the binding sites of cross-neutralizing antibodies. A large amount of information has been discovered concerning heterodimerization, including the roles of transmembrane domains, disulfide bonding, and heptad repeat regions. The possible organization of higher order oligomers within the HCV virion has also been evaluated on the basis of experimental data. In this review, E1/E2 structure and function is discussed, and some important issues requiring further study are highlighted.
Collapse
Affiliation(s)
- Holly Freedman
- Li Ka Shing Institute of Virology, Department of Medical Microbiology
and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael R. Logan
- Li Ka Shing Institute of Virology, Department of Medical Microbiology
and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - John Lok Man Law
- Li Ka Shing Institute of Virology, Department of Medical Microbiology
and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology, Department of Medical Microbiology
and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Roopngam P, Liu K, Mei L, Zheng Y, Zhu X, Tsai HI, Huang L. Hepatitis C virus E2 protein encapsulation into poly d, l-lactic- co-glycolide microspheres could induce mice cytotoxic T-cell response. Int J Nanomedicine 2016; 11:5361-5370. [PMID: 27789948 PMCID: PMC5072560 DOI: 10.2147/ijn.s109081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is known to cause hepatitis and hepatocellular carcinoma. E2 envelope glycoprotein of HCV type (HCV-E2) has been reported to bind human host cells and is a major target for developing anti-HCV vaccines. However, the therapeutic vaccine for infected patients still needs further development. The vaccine aims to provide cytotoxic T-cells to eliminate infected cells and hepatocellular carcinoma. Currently, there is no effective HCV therapeutic vaccine because most chronically infected patients rarely generate cytotoxic T-cells, even though they have high levels of neutralizing antibodies. Therefore, the adjuvant must be applied to enhance the efficacy of the therapeutic vaccine. In this study, we constructed HCV1b-E2 recombinant protein, a truncated form of peptide, to combine with an effective vaccine adjuvant and delivery system by using poly d,l-lactic-co-glycolide (PLGA) microspheres. HCV1b-E2 protein was effectively encapsulated into PLGA microspheres (HCV1b-E2-PLGA) as a strategy to deliver an insoluble form of HCV1b-E2 protein. The size and shape of PLGA microspheres were generated properly to carry an insoluble form of viral peptide in vivo. The encapsulated viral protein was slowly and continuously released from PLGA microspheres, which indicated the property of the adjuvant. HCV1b-E2-PLGA can trigger a cell-mediated immune response by inducing an expression of mice CD8+ T-cells. Our results demonstrated that HCV1b-E2-PLGA-immunized mice have a significantly increased CD8+ T-cell number, whereas HCV1b-E2-immunized mice have a lower number of CD8+ T-cells. Moreover, HCV1b-E2-PLGA could induce a specific antibody to viral protein, and the immune cells could secrete IFN-γ, which is a significant cytokine for viral response. Thus, HCV1b-E2-PLGA is shown to have adjuvant property and efficacy in the murine model, which is a good strategy to develop HCV prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Piyachat Roopngam
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China; The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Kewei Liu
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China; The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Lin Mei
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Yi Zheng
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Xianbing Zhu
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China; The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Hsiang-I Tsai
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China; The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Laiqiang Huang
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China; The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Health Sciences and Technology, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| |
Collapse
|
13
|
Abstract
Hepatitis C virus (HCV) is the major cause of transfusion-associated hepatitis and accounts for a significant proportion of hepatitis cases worldwide. Most, if not all, infections become persistent and about 60% of cases develop chronic liver disease with various outcomes ranging from an asymptomatic carrier state to chronic active hepatitis and liver cirrhosis, which is strongly associated with the development of hepatocellular carcinoma. Since the initial cloning of the viral genome in 1989, our knowledge of the molecular biology of HCV has increased rapidly and led to the identification of several potential targets for antiviral intervention. In contrast, the low replication of the virus in cell culture, the lack of convenient animal models and the high genome variability present major challenges for drug development. This review will describe candidate drug targets and summarize ‘classical’ and ‘novel’ approaches currently being pursued to develop efficient HCV-specific therapies.
Collapse
Affiliation(s)
- R Bartenschlager
- Institute for Virology, Johannes-Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany
| |
Collapse
|
14
|
Network Analysis of the Chronic Hepatitis C Virome Defines Hypervariable Region 1 Evolutionary Phenotypes in the Context of Humoral Immune Responses. J Virol 2015; 90:3318-29. [PMID: 26719263 DOI: 10.1128/jvi.02995-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Hypervariable region 1 (HVR1) of hepatitis C virus (HCV) comprises the first 27 N-terminal amino acid residues of E2. It is classically seen as the most heterogeneous region of the HCV genome. In this study, we assessed HVR1 evolution by using ultradeep pyrosequencing for a cohort of treatment-naive, chronically infected patients over a short, 16-week period. Organization of the sequence set into connected components that represented single nucleotide substitution events revealed a network dominated by highly connected, centrally positioned master sequences. HVR1 phenotypes were observed to be under strong purifying (stationary) and strong positive (antigenic drift) selection pressures, which were coincident with advancing patient age and cirrhosis of the liver. It followed that stationary viromes were dominated by a single HVR1 variant surrounded by minor variants comprised from conservative single amino acid substitution events. We present evidence to suggest that neutralization antibody efficacy was diminished for stationary-virome HVR1 variants. Our results identify the HVR1 network structure during chronic infection as the preferential dominance of a single variant within a narrow sequence space. IMPORTANCE HCV infection is often asymptomatic, and chronic infection is generally well established in advance of initial diagnosis and subsequent treatment. HVR1 can undergo rapid sequence evolution during acute infection, and the variant pool is typically seen to diverge away from ancestral sequences as infection progresses from the acute to the chronic phase. In this report, we describe HVR1 viromes in chronically infected patients that are defined by a dominant epitope located centrally within a narrow variant pool. Our findings suggest that weakened humoral immune activity, as a consequence of persistent chronic infection, allows for the acquisition and maintenance of host-specific adaptive mutations at HVR1 that reflect virus fitness.
Collapse
|
15
|
Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding. Sci Rep 2015; 5:12501. [PMID: 26238798 PMCID: PMC4533164 DOI: 10.1038/srep12501] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/18/2015] [Indexed: 02/06/2023] Open
Abstract
Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314–324) and E2 (residues 412–423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a “scaffolding meta-server” to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a “multivalent scaffolding” approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo.
Collapse
|
16
|
El-Attar LMR, Mitchell JA, Brooks Brownlie H, Priestnall SL, Brownlie J. Detection of non-primate hepaciviruses in UK dogs. Virology 2015; 484:93-102. [PMID: 26086431 PMCID: PMC7111718 DOI: 10.1016/j.virol.2015.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/01/2015] [Accepted: 05/10/2015] [Indexed: 01/29/2023]
Abstract
Non-primate hepacivirus (NPHV) has been identified in dogs, horses, bats and wild rodents. The presence of NPHV in dogs outside of the USA however is yet to be established. Here we describe for the first time the detection of NPHV in the UK dog population (described throughout the manuscript as CnNPHV). We examined tissues collected from dogs housed in a rehoming kennel where respiratory disease was endemic. CnNPHV RNA was detected in the tracheal tissues of 48/210 dogs by RT-PCR, and in the liver, lung and/or tracheal tissues of 12/20 dogs. The presence of CnNPHV RNA, and its tropism was confirmed by in situ hybridisation. Histopathological examination demonstrated a trend toward higher histopathological scores in CnNPHV RNA positive respiratory tissues, although, this was not statistically significant. Our findings broaden the geographic distribution and our understanding of CnNPHV. Further evidence of CnNPHV replication in canids warrants investigation. Non-primate hepacivirus (NPHV) has been detected in UK dog population. NPHV has dual respiratory and hepatic tropism. This is the first time NPHV RNA was detected in lower respiratory tract. This study broaden the geographical distribution and our understanding of NPHV.
Collapse
Affiliation(s)
- L M R El-Attar
- Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK.
| | - J A Mitchell
- Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - H Brooks Brownlie
- Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - S L Priestnall
- Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - J Brownlie
- Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| |
Collapse
|
17
|
Manickam C, Reeves RK. Modeling HCV disease in animals: virology, immunology and pathogenesis of HCV and GBV-B infections. Front Microbiol 2014; 5:690. [PMID: 25538700 PMCID: PMC4259104 DOI: 10.3389/fmicb.2014.00690] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/21/2014] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) infection has become a global public health burden costing billions of dollars in health care annually. Even with rapidly advancing scientific technologies this disease still poses a significant threat due to a lack of vaccines and affordable treatment options. The immune correlates of protection and predisposing factors toward chronicity remain major obstacles to development of HCV vaccines and immunotherapeutics due, at least in part, to lack of a tangible infection animal model. This review discusses the currently available animal models for HCV disease with a primary focus on GB virus B (GBV-B) infection of New World primates that recapitulates the dual Hepacivirus phenotypes of acute viral clearance and chronic pathologic disease. HCV and GBV-B are also closely phylogenetically related and advances in characterization of the immune systems of New World primates have already led to the use of this model for drug testing and vaccine trials. Herein, we discuss the benefits and caveats of the GBV-B infection model and discuss potential avenues for future development of novel vaccines and immunotherapies.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center - Harvard Medical School Boston, MA, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center - Harvard Medical School Boston, MA, USA
| |
Collapse
|
18
|
Sede M, Jones LR, Moretti F, Laufer N, Quarleri J. Inter and intra-host variability of hepatitis C virus genotype 1a hypervariable envelope coding domains followed for a 4-11 year of human immunodeficiency virus coinfection and highly active antiretroviral therapy. Virology 2014; 471-473:19-28. [PMID: 25461527 DOI: 10.1016/j.virol.2014.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/13/2014] [Accepted: 09/13/2014] [Indexed: 01/25/2023]
Abstract
The evolution of hepatitis C virus (HCV) quasispecies in patients with HIV-1 coinfection is not fully understood. The HCV-1a quasispecies heterogeneity was analyzed at inter and intra-host levels along 7.6 years in 21 coinfected patients that showed different virological and immunological responses to highly active antiretroviral therapy (HAART). Two to nine serial samples were subjected to direct and clonal sequence analyses of the envelope glycoprotein 2 (E2) gene. E2-based phylogenies, intra-host HCV evolution and evolutionary rates, as well as dynamics of the quasispecies heterogeneity parameters were evaluated. Bayesian coalescent phylogenies indicated complex evolutionary histories, revealing some viral lineages that persisted along the follow up and others that were detectable at a single or some sampling times, suggesting the occurrence of emergence-extinction cycles. HCV quasispecies underwent very rapid evolution in HAART-treated patients (~3.1 × 10(-2) sub/site/year) following the recovery of the host immunocompetence irrespectively of the virological response to HAART.
Collapse
Affiliation(s)
- Mariano Sede
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Leandro Roberto Jones
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Virología y Genética Molecular, Facultad de Ciencias Naturales sede Trelew, Universidad Nacional de la Patagonia San Juan Bosco, Chubut, Argentina
| | - Franco Moretti
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Argentina
| | - Natalia Laufer
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
19
|
Drummer HE. Challenges to the development of vaccines to hepatitis C virus that elicit neutralizing antibodies. Front Microbiol 2014; 5:329. [PMID: 25071742 PMCID: PMC4080681 DOI: 10.3389/fmicb.2014.00329] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/16/2014] [Indexed: 12/24/2022] Open
Abstract
Despite 20 years of research, a vaccine to prevent hepatitis C virus (HCV) infection has not been developed. A vaccine to prevent HCV will need to induce broadly reactive immunity able to prevent infection by the 7 genetically and antigenically distinct genotypes circulating world-wide. HCV encodes two surface exposed glycoproteins, E1 and E2 that function as a heterodimer to mediate viral entry. Neutralizing antibodies (NAbs) to both E1 and E2 have been described with the major NAb target being E2. The function of E2 is to attach virions to host cells via cell surface receptors that include, but is not limited to, the tetraspanin CD81 and scavenger receptor class B type 1. However, E2 has developed a number of immune evasion strategies to limit the effectiveness of the NAb response and possibly limit the ability of the immune system to generate potent NAbs in natural infection. Hypervariable regions that shield the underlying core domain, subdominant neutralization epitopes and glycan shielding combine to make E2 a difficult target for the immune system. This review summarizes recent information on the role of NAbs to prevent HCV infection, the targets of the NAb response and structural information on glycoprotein E2 in complex with neutralizing antibodies. This new information should provide a framework for the rational design of new vaccine candidates that elicit highly potent broadly reactive NAbs to prevent HCV infection.
Collapse
Affiliation(s)
- Heidi E Drummer
- Viral Fusion Laboratory, Centre for Biomedical Research, Burnet Institute Melbourne, VIC, Australia. ; Department of Microbiology, Monash University Clayton, VIC, Australia ; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
20
|
Colombatto P, Brunetto MR, Maina AM, Romagnoli V, Almasio P, Rumi MG, Ascione A, Pinzello G, Mondelli M, Muratori L, Rappuoli R, Rosa D, Houghton M, Abrignani S, Bonino F. HCV E1E2-MF59 vaccine in chronic hepatitis C patients treated with PEG-IFNα2a and Ribavirin: a randomized controlled trial. J Viral Hepat 2014; 21:458-465. [PMID: 24750327 PMCID: PMC4166695 DOI: 10.1111/jvh.12163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 06/27/2013] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) vaccines may be able to increase viral clearance in combination with antiviral therapy. We analysed viral dynamics and HCV-specific immune response during retreatment for experienced patients in a phase Ib study with E1E2MF59 vaccine. Seventy-eight genotype 1a/1b patients [relapsers (30), partial responders (16) and nonresponders (32) to interferon-(IFN)/ribavirin-(RBV)] were randomly assigned to vaccine (V:23), Peg-IFNα2a-180-ug/qw and ribavirin 1000-1200-mg/qd for 48 weeks (P/R:25), or their combination (P/R + V:30). Vaccine (100 μg/0.5 mL) was administered intramuscularly at week 0-4-8-12-24-28-32-36. Neutralizing of binding (NOB) antibodies and lymphocyte proliferation assay (LPA) for E1E2-specific-CD4 + T cells were performed at week 0-12-16-48. Viral kinetics were analysed up to week 16. The vaccine was safe, and a sustained virological response (SVR) was achieved in 4 P/R + V and 2 P/R patients. Higher SVR rates were observed in prior relapsers (P/R + V = 27.3%; P/R = 12.5%). Higher NOB titres and LPA indexes were found at week 12 and 16 in P/R + V as compared to P/R patients (P = 0.023 and 0.025, P = 0.019 and <0.001, respectively). Among the 22 patients with the strongest direct antiviral effects of IFN (ε ≥ 0.800), those treated with P/R + V (10) reached lower HCV-RNA levels (P = 0.026) at week 16. HCV E1E2MF59 vaccine in combination with Peg-IFNα2a + RBV was safe and elicited E1E2 neutralizing antibodies and specific CD4 + T cell proliferation. Upon early response to IFN, vaccinations were associated with an enhanced second phase viral load decline. These results prompt phase II trials in combination with new antiviral therapies.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/adverse effects
- Antibodies, Neutralizing/blood
- Antiviral Agents/therapeutic use
- CD4-Positive T-Lymphocytes/immunology
- Cell Proliferation
- Combined Modality Therapy/adverse effects
- Combined Modality Therapy/methods
- Drug-Related Side Effects and Adverse Reactions/epidemiology
- Hepatitis C Antibodies/blood
- Hepatitis C, Chronic/therapy
- Humans
- Injections, Intramuscular
- Interferon-alpha/therapeutic use
- Polyethylene Glycols/therapeutic use
- Polysorbates/administration & dosage
- Polysorbates/adverse effects
- RNA, Viral/blood
- Recombinant Proteins/therapeutic use
- Ribavirin/therapeutic use
- Squalene/administration & dosage
- Squalene/adverse effects
- Treatment Outcome
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Hepatitis Vaccines/administration & dosage
- Viral Hepatitis Vaccines/adverse effects
- Viral Hepatitis Vaccines/genetics
- Viral Hepatitis Vaccines/immunology
- Viral Load
Collapse
Affiliation(s)
- P Colombatto
- Hepatology Unit, University Hospital of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Irshad M, Mankotia DS, Irshad K. An insight into the diagnosis and pathogenesis of hepatitis C virus infection. World J Gastroenterol 2013; 19:7896-7909. [PMID: 24307784 PMCID: PMC3848138 DOI: 10.3748/wjg.v19.i44.7896] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/11/2013] [Accepted: 10/13/2013] [Indexed: 02/06/2023] Open
Abstract
This review focuses on research findings in the area of diagnosis and pathogenesis of hepatitis C virus (HCV) infection over the last few decades. The information based on published literature provides an update on these two aspects of HCV. HCV infection, previously called blood transmitted non-A, non-B infection, is prevalent globally and poses a serious public health problem worldwide. The diagnosis of HCV infection has evolved from serodetection of non-specific and low avidity anti-HCV antibodies to detection of viral nucleic acid in serum using the polymerase chain reaction (PCR) technique. Current PCR assays detect viral nucleic acid with high accuracy and the exact copy number of viral particles. Moreover, multiplex assays using real-time PCR are available for identification of HCV-genotypes and their isotypes. In contrast to previous methods, the newly developed assays are not only fast and economic, but also resolve the problem of the window period as well as differentiate present from past infection. HCV is a non-cytopathic virus, thus, its pathogenesis is regulated by host immunity and metabolic changes including oxidative stress, insulin resistance and hepatic steatosis. Both innate and adaptive immunity play an important role in HCV pathogenesis. Cytotoxic lymphocytes demonstrate crucial activity during viral eradication or viral persistence and are influenced by viral proteins, HCV-quasispecies and several metabolic factors regulating liver metabolism. HCV pathogenesis is a very complex phenomenon and requires further study to determine the other factors involved.
Collapse
|
22
|
Khaliq S, Latief N, Jahan S. Role of different regions of the hepatitis C virus genome in the therapeutic response to interferon-based treatment. Arch Virol 2013; 159:1-15. [PMID: 23851652 DOI: 10.1007/s00705-013-1780-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) is considered a significant risk factor in HCV-induced liver diseases and development of hepatocellular carcinoma (HCC). Nucleotide substitutions in the viral genome result in its diversification into quasispecies, subtypes and distinct genotypes. Different genotypes vary in their infectivity and immune response due to these nucleotide/amino acid variations. The current combination treatment for HCV infection is pegylated interferon α (PEG-IFN-α) with ribavirin, with a highly variable response rate mainly depending upon the HCV genotype. Genotypes 2 and 3 are found to respond better than genotypes 1 and 4, which are more resistant to IFN-based therapies. Different studies have been conducted worldwide to explore the basis of this difference in therapy response, which identified some putative regions in the HCV genome, especially in Core and NS5a, and to some extent in the E2 region, containing specific sequences in different genotypes that act differently with respect to the IFN response. In the review, we try to summarize the role of HCV proteins and their nucleotide sequences in association with treatment outcome in IFN-based therapy.
Collapse
Affiliation(s)
- Saba Khaliq
- Department of Immunology, University of Health Sciences, Lahore, Pakistan,
| | | | | |
Collapse
|
23
|
Jacka B, Lamoury F, Simmonds P, Dore GJ, Grebely J, Applegate T. Sequencing of the Hepatitis C Virus: A Systematic Review. PLoS One 2013; 8:e67073. [PMID: 23826196 PMCID: PMC3694929 DOI: 10.1371/journal.pone.0067073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/14/2013] [Indexed: 12/14/2022] Open
Abstract
Since the identification of hepatitis C virus (HCV), viral sequencing has been important in understanding HCV classification, epidemiology, evolution, transmission clustering, treatment response and natural history. The length and diversity of the HCV genome has resulted in analysis of certain regions of the virus, however there has been little standardisation of protocols. This systematic review was undertaken to map the location and frequency of sequencing on the HCV genome in peer reviewed publications, with the aim to produce a database of sequencing primers and amplicons to inform future research. Medline and Scopus databases were searched for English language publications based on keyword/MeSH terms related to sequence analysis (9 terms) or HCV (3 terms), plus “primer” as a general search term. Exclusion criteria included non-HCV research, review articles, duplicate records, and incomplete description of HCV sequencing methods. The PCR primer locations of accepted publications were noted, and purpose of sequencing was determined. A total of 450 studies were accepted from the 2099 identified, with 629 HCV sequencing amplicons identified and mapped on the HCV genome. The most commonly sequenced region was the HVR-1 region, often utilised for studies of natural history, clustering/transmission, evolution and treatment response. Studies related to genotyping/classification or epidemiology of HCV genotype generally targeted the 5′UTR, Core and NS5B regions, while treatment response/resistance was assessed mainly in the NS3–NS5B region with emphasis on the Interferon sensitivity determining region (ISDR) region of NS5A. While the sequencing of HCV is generally constricted to certain regions of the HCV genome there is little consistency in the positioning of sequencing primers, with the exception of a few highly referenced manuscripts. This study demonstrates the heterogeneity of HCV sequencing, providing a comprehensive database of previously published primer sets to be utilised in future sequencing studies.
Collapse
Affiliation(s)
- Brendan Jacka
- Viral Hepatitis Clinical Research Program, The Kirby Institute, University of New South Wales, Sydney, Australia
- * E-mail: (BJ); (TA)
| | - Francois Lamoury
- Viral Hepatitis Clinical Research Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Peter Simmonds
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Gregory J. Dore
- Viral Hepatitis Clinical Research Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Jason Grebely
- Viral Hepatitis Clinical Research Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Tanya Applegate
- Viral Hepatitis Clinical Research Program, The Kirby Institute, University of New South Wales, Sydney, Australia
- * E-mail: (BJ); (TA)
| |
Collapse
|
24
|
Regulation of hepatitis C virus replication by nuclear translocation of nonstructural 5A protein and transcriptional activation of host genes. J Virol 2013; 87:5523-39. [PMID: 23468497 DOI: 10.1128/jvi.00585-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is involved in regulating viral replication through its direct interaction with the HCV RNA-dependent RNA polymerase. NS5A also alters infected cell metabolism through complex interactions with numerous host cell proteins. NS5A has furthermore been suggested to act as a transcriptional activator, although the impact on viral replication is unclear. To study this, HCV NS5A variants were amplified from hepatic tissue from an HCV-infected patient, and their abilities to activate gene transcription were analyzed in a single-hybrid yeast (Saccharomyces cerevisiae) model. Different variants isolated from the same patient displayed different transactivational activities. When these variants were inserted into the HCV subgenomic replicon system, they demonstrated various levels of RNA replication, which correlated with their transactivational activities. We showed that the C-terminal fragment of NS5A was localized to the nucleus and that a functional NS5A nuclear localization signal and cellular caspase activity were required for this process. Furthermore, nuclear localization of NS5A was necessary for viral replication. Finally, we demonstrate that nuclear NS5A binds to host cell promoters of several genes previously identified as important for efficient HCV RNA replication, inducing their transcription. Taken together, these results demonstrate a new mechanism by which HCV modulates its cellular environment, thereby enhancing viral replication.
Collapse
|
25
|
Hepatitis C vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Saludes V, González-Candelas F, Planas R, Solà R, Ausina V, Martró E. Evolutionary dynamics of the E1–E2 viral populations during combination therapy in non-responder patients chronically infected with hepatitis C virus subtype 1b. INFECTION GENETICS AND EVOLUTION 2013; 13:1-10. [DOI: 10.1016/j.meegid.2012.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 12/28/2022]
|
27
|
Koutsoudakis G, Dragun J, Pérez-Del-Pulgar S, Coto-Llerena M, Mensa L, Crespo G, González P, Navasa M, Forns X. Interplay between basic residues of hepatitis C virus glycoprotein E2 with viral receptors, neutralizing antibodies and lipoproteins. PLoS One 2012; 7:e52651. [PMID: 23300734 PMCID: PMC3531341 DOI: 10.1371/journal.pone.0052651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 11/19/2012] [Indexed: 12/30/2022] Open
Abstract
Positively-charged amino acids are located at specific positions in the envelope glycoprotein E2 of the hepatitis C virus (HCV): two histidines (H) and four arginines (R) in two conserved WHY and one RGERCDLEDRDR motifs, respectively. Additionally, the E2 hypervariable region 1 (HVR1) is rich in basic amino acids. To investigate the role(s) of these residues in HCV entry, we subjected to comparative infection and sedimentation analysis cell culture-produced (HCVcc, genotype 2a) wild type virus, a panel of alanine single-site mutants and a HVR1-deletion variant. Initially, we analyzed the effects of these mutations on E2-heparan sulfate (HS) interactions. The positive milieu of the HVR1, formulated by its basic amino acids (key residues the conserved H³⁸⁶ and R⁴⁰⁸), and the two highly conserved basic residues H⁴⁸⁸ and R⁶⁴⁸ contributed to E2-HS interactions. Mutations in these residues did not alter the HCVcc-CD81 entry, but they modified the HCVcc-scavenger receptor class B type I (SR-BI) dependent entry and the neutralization by anti-E2 or patients IgG. Finally, separation by density gradients revealed that mutant viruses abolished partially or completely the infectivity of low density particles, which are believed to be associated with lipoproteins. This study shows that there exists a complex interplay between the basic amino acids located in HVR1 and other conserved E2 motifs with the HS, the SR-BI, and neutralizing antibodies and suggests that HCV-associated lipoproteins are implicated in these interactions.
Collapse
Affiliation(s)
- George Koutsoudakis
- Liver Unit, Hospital Clínic, Institut D'Investigacions Biomèdics August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Guan M, Wang W, Liu X, Tong Y, Liu Y, Ren H, Zhu S, Dubuisson J, Baumert TF, Zhu Y, Peng H, Aurelian L, Zhao P, Qi Z. Three different functional microdomains in the hepatitis C virus hypervariable region 1 (HVR1) mediate entry and immune evasion. J Biol Chem 2012; 287:35631-35645. [PMID: 22927442 PMCID: PMC3471721 DOI: 10.1074/jbc.m112.382341] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/22/2012] [Indexed: 12/29/2022] Open
Abstract
High genetic heterogeneity is an important characteristic of hepatitis C virus (HCV) that contributes to its ability to establish persistent infection. The hypervariable region 1 (HVR1) that includes the first 27 amino acid residues of the E2 envelope glycoprotein is the most variable region within the HCV polyprotein. HVR1 plays a major role in both HCV cell entry and immune evasion, but the respective contribution of specific amino acid residues is still unclear. Our mutagenesis analyses of HCV pseudoparticles and cell culture-derived HCV using the H77 isolate indicate that five residues at positions 14, 15, and 25-27 mediate binding of the E2 protein to the scavenger receptor class B, type I receptor, and any residue herein is indispensable for HCV cell entry. The region spanning positions 16-24 contains the sole neutralizing epitope and is dispensable for HCV entry, but it is involved in heparan binding. More importantly, this region is necessary for the enhancement of HCV entry by high density lipoprotein and interferes with virus neutralization by E2-neutralizing antibodies. Residues at positions 1-13 are also dispensable for HCV entry, but they can affect HCV infectivity by modulating binding of the envelope protein to scavenger receptor class B, type I. Mutations occurring at this site may confer resistance to HVR1 antibodies. These findings further our understanding about the mechanisms of HCV cell entry and the significance of HVR1 variation in HCV immune evasion. They have major implications for the development of HCV entry inhibitors and prophylactic vaccines.
Collapse
Affiliation(s)
- Mo Guan
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Wenbo Wang
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Xiaoqing Liu
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Yimin Tong
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Yuan Liu
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Hao Ren
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Shiying Zhu
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Jean Dubuisson
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université Lille Nord de France, F-59021 Lille, France
| | - Thomas F Baumert
- Unité Inserm U.748, Université de Strasbourg, Nouvel Hôpital Civil, 3 Rue Koeberlé, F-67000 Strasbourg, France
| | - Yongzhe Zhu
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Haoran Peng
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Laure Aurelian
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Ping Zhao
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China.
| | - Zhongtian Qi
- Department of Microbiology, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
29
|
Abstract
Chronic hepatitis C infection remains a major global public health burden associated with substantial morbidity and mortality. Recent advances in antiviral therapy with the US Food and Drug Administration (FDA) approval of the oral protease inhibitors boceprevir and telaprevir introduce a new era of treatment for hepatitis C based on directly acting antiviral agents, which are associated with significant improvements in viral eradication rates in combination with pegylated interferon plus ribavirin. Newer classes targeting the hepatitis C virus (HCV) protease, polymerase, NS5A, and other components of the viral genome demonstrate great promise to further enhance viral eradication with superior efficacy, improved tolerability, shorter duration of therapy, and diminished requirement for interferon. Current and future strategies for HCV pharmacotherapy are reviewed.
Collapse
Affiliation(s)
- D N Assis
- Department of Internal Medicine, Yale Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
30
|
Clementi N, Mancini N, Solforosi L, Castelli M, Clementi M, Burioni R. Phage display-based strategies for cloning and optimization of monoclonal antibodies directed against human pathogens. Int J Mol Sci 2012; 13:8273-8292. [PMID: 22942702 PMCID: PMC3430233 DOI: 10.3390/ijms13078273] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 11/16/2022] Open
Abstract
In the last two decades, several phage display-selected monoclonal antibodies (mAbs) have been described in the literature and a few of them have managed to reach the clinics. Among these, the anti-respiratory syncytial virus (RSV) Palivizumab, a phage-display optimized mAb, is the only marketed mAb directed against microbial pathogens. Palivizumab is a clear example of the importance of choosing the most appropriate strategy when selecting or optimizing an anti-infectious mAb. From this perspective, the extreme versatility of phage-display technology makes it a useful tool when setting up different strategies for the selection of mAbs directed against human pathogens, especially when their possible clinical use is considered. In this paper, we review the principal phage display strategies used to select anti-infectious mAbs, with particular attention focused on those used against hypervariable pathogens, such as HCV and influenza viruses.
Collapse
Affiliation(s)
- Nicola Clementi
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-2-2643-5082; Fax: +39-2-2643-4288
| | | | | | | | | | | |
Collapse
|
31
|
El-Sherif A, Elbahrawy A, Aboelfotoh A, Abdelkarim M, Saied Mohammad AG, Abdallah AM, Mostafa S, Elmestikawy A, Elwassief A, Salah M, Abdelbaseer MA, Abdelwahab KS. High false-negative rate of anti-HCV among Egyptian patients on regular hemodialysis. Hemodial Int 2012; 16:420-427. [PMID: 22360424 DOI: 10.1111/j.1542-4758.2011.00662.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Routine serological testing for hepatitis C virus (HCV) infection among hemodialysis (HD) patients is currently recommended. A dilemma existed on the value of serology because some investigators reported a high rate of false-negative serologic testing. In this study, we aimed to detect the false-negative rate of anti-HCV among Egyptian HD patients. Seventy-eight HD patients, negative for anti-HCV, anti-HIV, and hepatitis B surface antigen, were tested for HCV RNA by reverse transcriptase polymerase chain reaction (RT-PCR). In the next step, the viral load was quantified by real-time PCR in RT-PCR-positive patients. Risk factors for HCV infection, as well as clinical and biochemical indicators of liver disease, were compared between false-negative and true-negative anti-HCV HD patients. The frequency of false-negative anti-HCV was 17.9%. Frequency of blood transfusion, duration of HD, dialysis at multiple centers, and diabetes mellitus were not identified as risk factors for HCV infection. The frequency of false-negative results had a linear relation to the prevalence of HCV infection in the HD units. Timely identification of HCV within dialysis units is needed in order to lower the risk of HCV spread within the HD units. The high false-negative rate of anti-HCV among HD patients in our study justifies testing of a large scale of patients for precious assessment of effectiveness of nucleic acid amplification technology testing in screening HD patient.
Collapse
Affiliation(s)
- Assem El-Sherif
- Department of Internal Medicine, Al-Azhar University, Cairo, Egypt
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
A meta-analysis of the existing knowledge of immunoreactivity against hepatitis C virus (HCV). PLoS One 2012; 7:e38028. [PMID: 22675428 PMCID: PMC3364976 DOI: 10.1371/journal.pone.0038028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/29/2012] [Indexed: 02/06/2023] Open
Abstract
Approximately 3% of the world population is infected by HCV, which represents a major global health challenge. Almost 400 different scientific reports present immunological data related to T cell and antibody epitopes derived from HCV literature. Analysis of all HCV-related epitope hosted in the Immune Epitope Database (IEDB), a repository of freely accessible immune epitope data, revealed more than 1500 and 1900 distinct T cell and antibody epitopes, respectively. The inventory of all data revealed specific trends in terms of the host and the HCV genotypes from which sequences were derived. Upon further analysis we found that this large number of epitopes reflects overlapping structures, and homologous sequences derived from different HCV isolates. To access and visualize this information we developed a novel strategy that assembles large sets of epitope data, maps them onto reference genomes and displays the frequency of positive responses. Compilation of the HCV immune reactivity from hundreds of different studies, revealed a complex and thorough picture of HCV immune epitope data to date. The results pinpoint areas of more intense reactivity or research activities at the level of antibody, CD4 and CD8 responses for each of the individual HCV proteins. In general, the areas targeted by the different effector immune functions were distinct and antibody reactivity was positively correlated with hydrophilicity, while T cell reactivity correlated with hydrophobicity. At the sequence level, epitopes frequently recognized by both T cell and B cell correlated with low variability, and our analysis thus highlighted areas of potential interest for practical applications. The human reactivity was further analyzed to pinpoint differential patterns of reactivity associated with acute versus chronic infection, to reveal the apparent impact of glycosylation on T cell, but not antibody responses, and to highlight a paucity of studies involved antibody epitopes associated with virus neutralization.
Collapse
|
33
|
McCaffrey K, Boo I, Tewierek K, Edmunds ML, Poumbourios P, Drummer HE. Role of conserved cysteine residues in hepatitis C virus glycoprotein e2 folding and function. J Virol 2012; 86:3961-74. [PMID: 22278231 PMCID: PMC3302498 DOI: 10.1128/jvi.05396-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 01/11/2012] [Indexed: 01/22/2023] Open
Abstract
Hepatitis C virus glycoprotein E2 contains 18 conserved cysteines predicted to form nine disulfide pairs. In this study, a comprehensive cysteine-alanine mutagenesis scan of all 18 cysteine residues was performed in E1E2-pseudotyped retroviruses (HCVpp) and recombinant E2 receptor-binding domain (E2 residues 384 to 661 [E2(661)]). All 18 cysteine residues were absolutely required for HCVpp entry competence. The phenotypes of individual cysteines and pairwise mutation of disulfides were largely the same for retrovirion-incorporated E2 and E2(661), suggesting their disulfide arrangements are similar. However, the contributions of each cysteine residue and the nine disulfides to E2 structure and function varied. Individual Cys-to-Ala mutations revealed discordant effects, where removal of one Cys within a pair had minimal effect on H53 recognition and CD81 binding (C486 and C569) while mutation of its partner abolished these functions (C494 and C564). Removal of disulfides at C581-C585 and C452-C459 significantly reduced the amount of E1 coprecipitated with E2, while all other disulfides were absolutely required for E1E2 heterodimerization. Remarkably, E2(661) tolerates the presence of four free cysteines, as simultaneous mutation of C452A, C486A, C569A, C581A, C585A, C597A, and C652A (M+C597A) retained wild-type CD81 binding. Thus, only one disulfide from each of the three predicted domains, C429-C552 (DI), C503-C508 (DII), and C607-C644 (DIII), is essential for the assembly of the E2(661) CD81-binding site. Furthermore, the yield of total monomeric E2 increased to 70% in M+C597A. These studies reveal the contribution of each cysteine residue and the nine disulfide pairs to E2 structure and function.
Collapse
Affiliation(s)
- Kathleen McCaffrey
- Burnet Institute, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Irene Boo
- Burnet Institute, Melbourne, Australia
| | | | | | - Pantelis Poumbourios
- Burnet Institute, Melbourne, Australia
- Department of Microbiology, Monash University, Clayton, Australia
| | - Heidi E. Drummer
- Burnet Institute, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
- Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
34
|
Gupte GM, Arankalle VA. Evaluation of the immunogenicity of liposome encapsulated HVR1 and NS3 regions of genotype 3 HCV, either singly or in combination. Virol J 2012; 9:74. [PMID: 22452828 PMCID: PMC3349533 DOI: 10.1186/1743-422x-9-74] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/27/2012] [Indexed: 01/15/2023] Open
Abstract
Background Hepatitis C virus displays a high rate of mutation and exists as a quasispecies in infected patients. In the absence of an effective universal vaccine, genotype-specific vaccine development represents an alternative. We have attempted to develop a genotype 3 based, liposome encapsulated HCV vaccine with hypervariable region-1 (HVR1) and non-structural region-3 (NS3) components. Results HCV RNA extracted from serum samples of 49 chronically infected patients was PCR amplified to obtain HVR1 region. These amplified products were cloned to obtain 20 clones per sample in order to identify the quasispecies pattern. The HVR1 consensus sequence, along with three variants was reverse transcribed to obtain peptides. The peptides were checked for immunoreactivity individually, as a pool or as a single peptide tetramer interspersed with four glycine residues. Anti-HCV positivity varied from 42.6% (tetramer) to 92.2% (variant-4) when 115 anti-HCV positive sera representing genotypes 1, 3, 4 and 6 were screened. All the 95 anti-HCV negatives were scored negative by all antigens. Mice were immunized with different liposome encapsulated or Al(OH)3 adjuvanted formulations of HVR1 variants and recombinant NS3 protein, and monitored for anti-HVR1 and anti-NS3 antibody titres, IgG isotypes and antigen specific cytokine levels. A balanced Th1/Th2 isotyping response with high antibody titres was observed in most of the liposome encapsulated antigen groups. The effect of liposomes and aluminium hydroxide on the expression of immune response genes was studied using Taqman Low Density Array. Both Th1 (IFN-gamma, Il18) and Th2 (Il4) genes were up regulated in the liposome encapsulated HVR1 variant pool-NS3 combination group. In-vitro binding of the virus to anti-HVR1 antibodies was demonstrated. Conclusion The optimum immunogen was identified to be combination of peptides of HVR1 consensus sequence and its variants along with pNS3 encapsulated in liposomes, which could generate both cellular and humoral immune responses in mice deserving further evaluation in a suitable cell culture system/non-human primate model.
Collapse
Affiliation(s)
- Gouri M Gupte
- Hepatitis Division, National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune, India 411021
| | | |
Collapse
|
35
|
Weigand K, Voigt F, Encke J, Hoyler B, Stremmel W, Eisenbach C. Vaccination with dendritic cells pulsed with hepatitis C pseudo particles induces specific immune responses in mice. World J Gastroenterol 2012; 18:785-93. [PMID: 22371638 PMCID: PMC3286141 DOI: 10.3748/wjg.v18.i8.785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 03/26/2011] [Accepted: 06/13/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To explore dendritic cells (DCs) multiple functions in immune modulation. METHODS We used bone-marrow derived dendritic cells from BALB/c mice pulsed with pseudo particles from the hepatitis C virus to vaccinate naive BALB/c mice. Hepatitis C virus (HCV) pseudo particles consist of the genotype 1b derived envelope proteins E1 and E2, covering a non-HCV core structure. Thus, not a single epitope, but the whole "viral surface" induces immunogenicity. For vaccination, mature and activated DC were injected subcutaneously twice. RESULTS Humoral and cellular immune responses measured by enzyme-linked immunosorbent assay and interferon-gamma enzyme-linked immunosorbent spot test showed antibody production as well as T-cells directed against HCV. Furthermore, T-cell responses confirmed two highly immunogenic regions in E1 and E2 outside the hypervariable region 1. CONCLUSION Our results indicate dendritic cells as a promising vaccination model for HCV infection that should be evaluated further.
Collapse
|
36
|
Sabo MC, Luca VC, Ray SC, Bukh J, Fremont DH, Diamond MS. Hepatitis C virus epitope exposure and neutralization by antibodies is affected by time and temperature. Virology 2011; 422:174-84. [PMID: 22078164 DOI: 10.1016/j.virol.2011.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/14/2011] [Accepted: 10/22/2011] [Indexed: 01/22/2023]
Abstract
A recent study with flaviviruses suggested that structural dynamics of the virion impact antibody neutralization via exposure of ostensibly cryptic epitopes. To determine whether this holds true for the distantly related hepatitis C virus (HCV), whose neutralizing epitopes may be obscured by a glycan shield, apolipoprotein interactions, and the hypervariable region on the E2 envelope protein, we assessed how time and temperature of pre-incubation altered monoclonal antibody (MAb) neutralization of HCV. Notably, several MAbs showed increased inhibitory activity when pre-binding was performed at 37°C or after longer pre-incubation periods, and a corresponding loss-of-neutralization was observed when pre-binding was performed at 4°C. A similar profile of changes was observed with acute and chronic phase sera from HCV-infected patients. Our data suggest that time and temperature of incubation modulate epitope exposure on the conformational ensembles of HCV virions and thus, alter the potency of antibody neutralization.
Collapse
Affiliation(s)
- Michelle C Sabo
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
37
|
Lapierre P, Troesch M, Alvarez F, Soudeyns H. Structural basis for broad neutralization of hepatitis C virus quasispecies. PLoS One 2011; 6:e26981. [PMID: 22046426 PMCID: PMC3202596 DOI: 10.1371/journal.pone.0026981] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 10/07/2011] [Indexed: 12/14/2022] Open
Abstract
Monoclonal antibodies directed against hepatitis C virus (HCV) E2 protein can neutralize cell-cultured HCV and pseudoparticles expressing envelopes derived from multiple HCV subtypes. For example, based on antibody blocking experiments and alanine scanning mutagenesis, it was proposed that the AR3B monoclonal antibody recognized a discontinuous conformational epitope comprised of amino acid residues 396-424, 436-447, and 523-540 of HCV E2 envelope protein. Intriguingly, one of these segments (436-447) overlapped with hypervariable region 3 (HVR3), a domain that exhibited significant intrahost and interhost genetic diversity. To reconcile these observations, amino-acid sequence variability was examined and homology-based structural modelling of E2 based on tick-borne encephalitis virus (TBEV) E protein was performed based on 413 HCV sequences derived from 18 subjects with chronic hepatitis C. Here we report that despite a high degree of amino-acid sequence variability, the three-dimensional structure of E2 is remarkably conserved, suggesting broad recognition of structural determinants rather than specific residues. Regions 396-424 and 523-540 were largely exposed and in close spatial proximity at the surface of E2. In contrast, region 436-447, which overlaps with HVR3, was >35 Å away, and estimates of buried surface were inconsistent with HVR3 being part of the AR3B binding interface. High-throughput structural analysis of HCV quasispecies could facilitate the development of novel vaccines that target conserved structural features of HCV envelope and elicit neutralizing antibody responses that are less vulnerable to viral escape.
Collapse
Affiliation(s)
- Pascal Lapierre
- Service de Gastroentérologie, Hépatologie et Nutrition, Centre de Recherche du Centre Hospitalier Universitaire, Sainte-Justine, Montreal, Quebec, Canada
| | - Myriam Troesch
- Unité d'Iimmunopathologie Virale, Centre de Recherche du Centre Hospitalier Universitaire, Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Fernando Alvarez
- Service de Gastroentérologie, Hépatologie et Nutrition, Centre de Recherche du Centre Hospitalier Universitaire, Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Hugo Soudeyns
- Unité d'Iimmunopathologie Virale, Centre de Recherche du Centre Hospitalier Universitaire, Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Helle F, Duverlie G, Dubuisson J. The hepatitis C virus glycan shield and evasion of the humoral immune response. Viruses 2011; 3:1909-32. [PMID: 22069522 PMCID: PMC3205388 DOI: 10.3390/v3101909] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/28/2011] [Accepted: 10/01/2011] [Indexed: 12/14/2022] Open
Abstract
Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV)-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review.
Collapse
Affiliation(s)
- François Helle
- Laboratory of Virology, EA4294, Jules Verne University of Picardie, Amiens 80000, France; E-Mail:
| | - Gilles Duverlie
- Laboratory of Virology, EA4294, Jules Verne University of Picardie, Amiens 80000, France; E-Mail:
- Virology Department, Amiens University Hospital Center, South Hospital, Amiens 80000, France
| | - Jean Dubuisson
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille 59021, France; E-Mail:
| |
Collapse
|
39
|
Thomson EC, Smith JA, Klenerman P. The natural history of early hepatitis C virus evolution; lessons from a global outbreak in human immunodeficiency virus-1-infected individuals. J Gen Virol 2011; 92:2227-2236. [PMID: 21775583 PMCID: PMC3347798 DOI: 10.1099/vir.0.033910-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
New insights into the early viral evolution and cellular immune response during acute hepatitis C virus (HCV) infection are being gained following a global outbreak in human immunodeficiency virus-1 (HIV)-positive men who have sex with men. Cross-sectional and longitudinal sequence analysis at both the population and individual level have facilitated tracking of the HCV epidemic across the world and enabled the development of tests of viral diversity in individual patients in order to predict spontaneous clearance of HCV and response to treatment. Immunological studies in HIV-positive cohorts have highlighted the role of the CD4+ T-cell response in the control of early HCV infection and will increase the opportunity for the identification of protective epitopes that could be used in future vaccine development.
Collapse
Affiliation(s)
- Emma C Thomson
- Department of Hepatology, Imperial College London, Norfolk Place, London W2 1PG, UK.,Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Jennifer A Smith
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| |
Collapse
|
40
|
Sarwar MT, Kausar H, Ijaz B, Ahmad W, Ansar M, Sumrin A, Ashfaq UA, Asad S, Gull S, Shahid I, Hassan S. NS4A protein as a marker of HCV history suggests that different HCV genotypes originally evolved from genotype 1b. Virol J 2011; 8:317. [PMID: 21696641 PMCID: PMC3145594 DOI: 10.1186/1743-422x-8-317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/23/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The 9.6 kb long RNA genome of Hepatitis C virus (HCV) is under the control of RNA dependent RNA polymerase, an error-prone enzyme, for its transcription and replication. A high rate of mutation has been found to be associated with RNA viruses like HCV. Based on genetic variability, HCV has been classified into 6 different major genotypes and 11 different subtypes. However this classification system does not provide significant information about the origin of the virus, primarily due to high mutation rate at nucleotide level. HCV genome codes for a single polyprotein of about 3011 amino acids which is processed into structural and non-structural proteins inside host cell by viral and cellular proteases. RESULTS We have identified a conserved NS4A protein sequence for HCV genotype 3a reported from four different continents of the world i.e. Europe, America, Australia and Asia. We investigated 346 sequences and compared amino acid composition of NS4A protein of different HCV genotypes through Multiple Sequence Alignment and observed amino acid substitutions C22, V29, V30, V38, Q46 and Q47 in NS4A protein of genotype 1b. Furthermore, we observed C22 and V30 as more consistent members of NS4A protein of genotype 1a. Similarly Q46 and Q47 in genotype 5, V29, V30, Q46 and Q47 in genotype 4, C22, Q46 and Q47 in genotype 6, C22, V38, Q46 and Q47 in genotype 3 and C22 in genotype 2 as more consistent members of NS4A protein of these genotypes. So the different amino acids that were introduced as substitutions in NS4A protein of genotype 1 subtype 1b have been retained as consistent members of the NS4A protein of other known genotypes. CONCLUSION These observations indicate that NS4A protein of different HCV genotypes originally evolved from NS4A protein of genotype 1 subtype 1b, which in turn indicate that HCV genotype 1 subtype 1b established itself earlier in human population and all other known genotypes evolved later as a result of mutations in HCV genotype 1b. These results were further confirmed through phylogenetic analysis by constructing phylogenetic tree using NS4A protein as a phylogenetic marker.
Collapse
Affiliation(s)
- Muhammad T Sarwar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Identification and characterization of a natural inter-genotypic (2b/1b) recombinant hepatitis C virus in Japan. Arch Virol 2011; 156:1591-601. [DOI: 10.1007/s00705-011-1038-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/17/2011] [Indexed: 12/15/2022]
|
42
|
Akram M, Idrees M, Hussain A, Afzal S, Ilyas M, Zafar S, Aftab M, Badar S, Khubaib B. Characterization of hepatitis C Virus genotype 3a hypervariable region 1 in patients achieved rapid virological response to alpha interferon and ribavirin combination therapy. Virol J 2011; 8:253. [PMID: 21605410 PMCID: PMC3117844 DOI: 10.1186/1743-422x-8-253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 05/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatitis C virus roots a chronic liver disease. Currently approved treatment strategy includes administration of alpha interferon and ribavirin combined therapy for 24-48 weeks. One of the predictor of sustained virological response is an early virological response to treatment characterized as rapid response. Hyper variable region 1 (HVR1) of E2 protein is responsible for viral entry and acts as a target for neutralizing antibodies. Any mutation in this region would effect virus interaction with target cell and viral persistence. METHODS Thirty one clones of six pre-treatment samples subjected to combination therapy were investigated. Three of the patients were rapid responders (R1, R2 and R3) and two were breakthrough responders (BT1 and BT2). Envelope 2 gene was amplified, cloned and sequenced. Amino acid substitution, frequency, composition and antigenic properties of HVR 1 of E2 protein were studied. RESULTS In both rapid responders (R.R) (14 amino acid sites) and breakthrough responders (BT.R) (13 amino acid sites) half of the amino acid sites were either conserved or resistant to any physiochemical change due to amino acid substitution. It also indicated that average composition of hydrophilic and basic amino acids were comparatively lower in rapid responders than other samples affecting probable interaction of virus with target cells. A central non antigenic region was constant among the breakthrough responders but differed in length significantly among rapid responders reflecting the adaptive nature of HVR1 to the immune response. CONCLUSIONS We observed that although HVR1is quite variable region in HCV 3a patients responding differently to treatment it still maintains its physiochemical properties for its proper functioning and viability.
Collapse
Affiliation(s)
- Madiha Akram
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vieyres G, Dubuisson J, Patel AH. Characterization of antibody-mediated neutralization directed against the hypervariable region 1 of hepatitis C virus E2 glycoprotein. J Gen Virol 2011; 92:494-506. [PMID: 21084495 PMCID: PMC3081231 DOI: 10.1099/vir.0.028092-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 11/17/2010] [Indexed: 12/15/2022] Open
Abstract
The hypervariable region 1 (HVR1) comprising the first 27 aa of E2 glycoprotein is a target for neutralizing antibodies against hepatitis C virus (HCV), but the mechanisms of this neutralization in the cell-culture-infectious genotype 2a strain JFH1 HCV virus (HCVcc) system are unknown. Two rabbit polyclonal sera, R1020 and R140, recognizing the HVR1 of the genotype 1a isolates H77c and Glasgow (Gla), respectively, and a Gla HVR1-specific mouse mAb AP213 have been described previously. However, attempts to generate of antibodies to the JFH1 HVR1 were unsuccessful. Therefore, this study produced chimeric JFH1 HCVcc viruses harbouring the H77c or Gla HVR1 to assess the reactivity of antibodies to this region and their effects on virus infectivity. The inter-genotypic HVR1 swap did not significantly affect virus infectivity. The genotype 1a HVR1-specific antibodies neutralized chimeric viruses in an isolate-dependent manner, underlining the role of HVR1 in HCV infection. The neutralizing antibodies reacted mainly with the C-terminal portion of HVR1, and detailed mapping identified A17, F20 and Q21 in the Gla HVR1 sequence and T21 (and possibly L20) in the corresponding H77c sequence as key epitope residues for AP213 and R140, and R1020, respectively. Importantly, none of the antibodies inhibited in vitro binding of viral envelope glycoproteins to the best-characterized HCV receptor, CD81, or to the glycosaminoglycan attachment factors. However, the HVR1 antibodies were capable of post-attachment neutralization. Overall, this study emphasizes the role of HVR1 in HCVcc entry and provides new tools to study this region further in the context of complete virions.
Collapse
Affiliation(s)
- Gabrielle Vieyres
- MRC – University of Glasgow Centre for Virus Research, University of Glasgow, Church Street, Glasgow G11 5JR, UK
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France
- Inserm U1019, F-59019 Lille, France
- CNRS UMR8204, F-59021 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
| | - Jean Dubuisson
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France
- Inserm U1019, F-59019 Lille, France
- CNRS UMR8204, F-59021 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
| | - Arvind H. Patel
- MRC – University of Glasgow Centre for Virus Research, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
44
|
Angus AGN, Patel AH. Immunotherapeutic potential of neutralizing antibodies targeting conserved regions of the HCV envelope glycoprotein E2. Future Microbiol 2011; 6:279-94. [DOI: 10.2217/fmb.11.9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HCV is a major cause of chronic liver disease worldwide. There is no vaccine available and the current antiviral therapies fail to cure approximately half of treated patients. Liver disease caused by HCV infection is the most common indication for orthotopic liver transplantation. Unfortunately, reinfection of the new liver is universal and often results in an aggressive form of the disease leading to graft loss and the need for retransplantation. Immunotherapies using antibodies that potently inhibit HCV infection have the potential to control or even prevent graft reinfection. The virion envelope glycoproteins E1 and E2, which are involved in HCV entry into host cells, are the targets of neutralizing antibodies. To date, a number of monoclonal antibodies targeting conserved regions of E2 have been described that display outstanding neutralizing capabilities against HCV infection in both in vitro and in vivo systems. This article will summarize the current literature on these neutralizing anti-E2 antibodies and discuss their potential immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Allan GN Angus
- MRC - University of Glasgow Centre for Virus Research, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | | |
Collapse
|
45
|
Kang KH, Yamamura Y, Carlos MP, Karvelas N, Kim IS, Sunkara D, Rivera R, Gardner MB, Anderson DE, Diaz-Mitoma F, Torres J, Marquez JP. Synthetic antigens representing the antigenic variation of human hepatitis C virus. Viral Immunol 2011; 23:497-508. [PMID: 20883164 DOI: 10.1089/vim.2010.0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immune responses against hepatitis C virus (HCV) have been studied by numerous groups. However, details concerning the production of antibodies to antigenically variable epitopes remain to be elucidated. Since the sequences of the variable regions of several HCV proteins are different among the virus strains infecting patients, we decided to design peptide combinations that represent the theoretical maximum antigenic variation of each epitope to be used as capture antigens. We prepared six peptide mixtures (hypervariable epitope constructs; HECs) representing six different epitopes from structural and non-structural proteins of HCV from genotypes 1-6. Plasma from 300 HCV patients was tested to determine if their antibodies recognize the synthetic constructs. All the patients were chronically infected with diverse HCV genotypes and did not receive antiviral treatment. Antibodies to one or more of the HECs were detected in all of the HCV-infected individuals. Immunogenicity of the HCV HECs was also evaluated in outbred and inbred mice. Strong HEC-specific antibodies were produced, and cellular responses were also induced that were Th-1 rather than Th-2. Our results show that HCV HECs are both antigens that can be used to detect the broad cross-reactivity of antibodies from HCV-infected patients, and strong immunogens that can induce antigen-specific humoral and cellular immune responses in mice.
Collapse
Affiliation(s)
- Kyung Hee Kang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California-Davis, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chayama K, Hayes CN. Hepatitis C virus: How genetic variability affects pathobiology of disease. J Gastroenterol Hepatol 2011; 26 Suppl 1:83-95. [PMID: 21199518 DOI: 10.1111/j.1440-1746.2010.06550.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As an RNA virus, hepatitis C virus (HCV) shows a characteristically high level of nucleotide diversity. Accumulation of nucleotide substitutions in the virus has resulted in diversification into quasispecies, subtypes and distinct genotypes. Pathobiological studies linking nucleotide and amino acid sequences with clinical findings have identified relationships between certain genotypes and characteristic biological properties. Genotype 3 HCV infection was found to be associated with a high level of liver steatosis. Genotypes 1 and 4 were found to be more resistant to interferon (IFN) based therapies than genotypes 2 and 3. Studies of genotype 1 sequences obtained from patients treated with IFN have identified a relationship between favorable response to interferon therapy and amino acid substitutions in the NS5A region (interferon response determining region; ISDR). Further studies have identified a relationship between the effect of IFN therapy and other regions of the NS5A protein. More recently, a relationship has been found between poor response to peg-IFN plus ribavirin combination therapy and substitutions at amino acid 70 and 91 in the core protein. Furthermore, a correlation between human genetic variation in the IL28B (IFN-lamda 3) locus and core amino acid substitutions has been characterized. In this review we briefly summarize the discovery, classification and nomenclature of HCV genotypes and subtypes. We also discuss amino acid substitutions within specific regions that have been reported to be associated with outcome of IFN and peg-IFN plus ribavirin combination therapy.
Collapse
Affiliation(s)
- Kazuaki Chayama
- Department of Medicine and Molecular Science, Hiroshima University, Japan.
| | | |
Collapse
|
47
|
El-Attar LMR, Partidos CD, Howard CR. A peptide mimotope of hepatitis C virus E2 protein is immunogenic in mice and block human anti-HCV sera. J Med Virol 2010; 82:1655-65. [PMID: 20827761 DOI: 10.1002/jmv.21857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Conformational B-cell epitopes on the HCV E2 protein recognized by human antibodies were characterized by the use of a peptide mimotope named K1. K1 was identified by two HCV anti-E2 monoclonal antibodies (mAbs) following selection and purification of phage clones containing a 15-mer random peptide insert. Murine antisera to the mimotope K1 recognized the E2 protein. Five of eight human sera from patients who had cleared HCV recognized the K1 mimotope. Binding to E2 in four individuals with the capacity to block E2-CD81 interaction was inhibited by the mimotope K1. The results demonstrate that anti-E2 antibodies in sera from patients who have cleared HCV infection are directed against a conformational B-cell epitope on E2 that can be mimicked with linear synthetic peptides. These findings could have implications for vaccine design by employing linear mimotopes to direct B-cell responses against those specific E2 epitopes that may correlate with immunity.
Collapse
Affiliation(s)
- L M R El-Attar
- Department of Pathology and Infectious Diseases, Royal Veterinary College, London, UK.
| | | | | |
Collapse
|
48
|
Acute hepatitis C infection with evidence of heterosexual transmission. J Clin Virol 2010; 49:65-8. [PMID: 20667768 DOI: 10.1016/j.jcv.2010.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/06/2010] [Accepted: 06/17/2010] [Indexed: 12/23/2022]
Abstract
A 62-year-old woman acquired acute hepatitis C virus (HCV) infection after heterosexual contact with a known HCV positive former injecting drug user. There were no known sexual or other risk factors for HCV acquisition. Phylogenetic analysis confirmed the case and index were infected with identical genotype 3a strains, consistent with heterosexual transmission in the absence of specific risk factors.
Collapse
|
49
|
Frey SE, Houghton M, Coates S, Abrignani S, Chien D, Rosa D, Pileri P, Ray R, Di Bisceglie AM, Rinella P, Hill H, Wolff MC, Schultze V, Han JH, Scharschmidt B, Belshe RB. Safety and immunogenicity of HCV E1E2 vaccine adjuvanted with MF59 administered to healthy adults. Vaccine 2010; 28:6367-73. [PMID: 20619382 DOI: 10.1016/j.vaccine.2010.06.084] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 06/17/2010] [Accepted: 06/25/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) causes chronic liver disease that often leads to cirrhosis and hepatocellular carcinoma. In animal studies, chimpanzees were protected against chronic infection following experimental challenge with either homologous or heterologous HCV genotype 1a strains which predominate in the USA and Canada. We describe the first in humans clinical trial of this prophylactic HCV vaccine. METHODS HCV E1E2 adjuvanted with MF59C.1 (an oil-in-water emulsion) was given at 3 different dosages on day 0 and weeks 4, 24 and 48 in a phase 1, placebo-controlled, dose escalation trial to healthy HCV-negative adults. RESULTS There was no significant difference in the proportion of subjects reporting adverse events across the groups. Following vaccination subjects developed antibodies detectable by ELISA, CD81 neutralization and VSV/HCV pseudotype neutralization. There were no significant differences between vaccine groups in the number of responders and geometric mean titers for each of the three assays. All subjects developed lymphocyte proliferation responses to E1E2 and an inverse response to increasing amounts of antigen was noted. CONCLUSIONS The vaccine was safe and generally well-tolerated at each of the 3 dosage levels and induced antibody and lymphoproliferative responses. A larger study to further evaluate safety and immunogenicity is warranted.
Collapse
Affiliation(s)
- Sharon E Frey
- Saint Louis University School of Medicine, Division of Infectious Diseases and Immunology, St. Louis, MO 63104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Winters MA, Chary A, Eison R, Asmuth D, Holodniy M. Impact of highly active antiretroviral therapy on hepatitis C virus protease quasispecies diversity in HIV co-infected patients. J Med Virol 2010; 82:791-8. [PMID: 20336744 DOI: 10.1002/jmv.21679] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many hepatitis C virus (HCV)-infected patients are also infected with HIV, and undergo antiretroviral (ARV) treatment for their human immunodeficiency virus (HIV) infection. Due to changes in HIV burden and immunologic status, HIV ARV treatment may have indirect effects on the HCV population, which could impact the effectiveness of subsequent HCV protease inhibitor (PI) treatment. The genetic variability of the protease-encoding HCV NS3 gene was evaluated in 10 co-infected patients initiating ARVs (both before and after ARV initiation), and compared to the genetic variability in 10 patients on stable ARV therapy. After RT-PCR of plasma-derived HCV RNA, a mean of 20 clones per patient time-point were sequenced and analyzed for changes in the HCV quasispecies population. No significant differences in sequence diversity or complexity at the nucleic acid or amino acid levels were seen at baseline between groups or between the two time points in either group. HCV protease diversity in the pre- and post-ARV treatment samples was not significantly different than samples from patients on stable ARV therapy. There was no significant development of amino acid substitutions known to confer HCV PI resistance in either group. Initiation of ARV for HIV infection does not significantly alter the genetic diversity or complexity of the HCV NS3 gene or result in increased number of HCV PI-associated amino acid changes. These results suggest ARV treatment for HIV would not affect the efficacy of HCV PI treatment.
Collapse
Affiliation(s)
- Mark A Winters
- AIDS Research Center, VA Palo Alto Health Care System, Palo Alto, California 94304, USA.
| | | | | | | | | |
Collapse
|