1
|
van der Kuyl AC. Mutation Rate Variation and Other Challenges in 2-LTR Dating of Primate Endogenous Retrovirus Integrations. J Mol Evol 2025; 93:62-82. [PMID: 39715846 DOI: 10.1007/s00239-024-10225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024]
Abstract
The time of integration of germline-targeting Long Terminal Repeat (LTR) retroposons, such as endogenous retroviruses (ERVs), can be estimated by assessing the nucleotide divergence between the LTR sequences flanking the viral genes. Due to the viral replication mechanism, both LTRs are identical at the moment of integration, when the provirus becomes part of the host genome. After that time, proviral sequences evolve within the host DNA. When the mutation rate is known, nucleotide divergence between the LTRs would then be a measure of time elapsed since integration. Though frequently used, the approach has been complicated by the choice of host mutation rate and, to a lesser extent, by the method selected to estimate nucleotide divergence. As a result, outcomes can be incompatible with, for instance, speciation events identified from the fossil record. The review will give an overview of research reporting LTR-retroposon dating, and a summary of important factors to consider, including the quality, assembly, and alignment of sequences, the mutation rate of foreign DNA in host genomes, and the choice of a distance estimation method. Primates will here be the focus of the analysis because their genomes, ERVs, and fossil record have been extensively studied. However, most of the factors discussed have a wide applicability in the vertebrate field.
Collapse
Affiliation(s)
- Antoinette Cornelia van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology & Infectious Diseases, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Rangel SC, da Silva MD, da Silva AL, dos Santos JDMB, Neves LM, Pedrosa A, Rodrigues FM, Trettel CDS, Furtado GE, de Barros MP, Bachi ALL, Romano CM, Nali LHDS. Human endogenous retroviruses and the inflammatory response: A vicious circle associated with health and illness. Front Immunol 2022; 13:1057791. [PMID: 36518758 PMCID: PMC9744114 DOI: 10.3389/fimmu.2022.1057791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Human Endogenous Retroviruses (HERVs) are derived from ancient exogenous retroviral infections that have infected our ancestors' germline cells, underwent endogenization process, and were passed throughout the generations by retrotransposition and hereditary transmission. HERVs comprise 8% of the human genome and are critical for several physiological activities. Yet, HERVs reactivation is involved in pathological process as cancer and autoimmune diseases. In this review, we summarize the multiple aspects of HERVs' role within the human genome, as well as virological and molecular aspects, and their fusogenic property. We also discuss possibilities of how the HERVs are possibly transactivated and participate in modulating the inflammatory response in health conditions. An update on their role in several autoimmune, inflammatory, and aging-related diseases is also presented.
Collapse
Affiliation(s)
- Sara Coelho Rangel
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Amanda Lopes da Silva
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | | | - Lucas Melo Neves
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Ana Pedrosa
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, (3004-504), Coimbra, Portugal
| | | | - Caio dos Santos Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - Guilherme Eustáquio Furtado
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços – S. Martinho do Bispo, Coimbra, Portugal
| | - Marcelo Paes de Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - André Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clínicas HCFMUSP (LIM52), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
3
|
Latifi T, Zebardast A, Marashi SM. The role of human endogenous retroviruses (HERVs) in Multiple Sclerosis and the plausible interplay between HERVs, Epstein-Barr virus infection, and vitamin D. Mult Scler Relat Disord 2022; 57:103318. [PMID: 35158423 DOI: 10.1016/j.msard.2021.103318] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022]
Abstract
Multiple Sclerosis (MS) is one of the chronic inflammatory diseases with neurological disability in the central nervous system (CNS). Although the exact cause of MS is still largely unknown, both genetic and environmental factors are thought to play a role in disease risk. Human Endogenous Retroviruses (HERVs) are endogenous viral elements of the human genome whose expression is associated with MS. HERVs are normally silenced or expressed at low levels, although their expression is higher in MS than in the healthy population. Several studies highlighted the plausible interaction between HERVs and other MS risk factors, including viral infection like Epstein-Barr viruses and vitamin D deficiency which may lead to high expression of HERVs in these patients. Understanding how HERVs act in this scenario can improve our understanding towards MS etiology and may lead to the development of antiretroviral therapies in these patients. Here in this review, we try to examine the different HERVs expression implicated in MS and their association with EBV infection and vitamin D status.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Jorritsma RN. How Well Does Evolution Explain Endogenous Retroviruses?-A Lakatosian Assessment. Viruses 2021; 14:v14010014. [PMID: 35062218 PMCID: PMC8781664 DOI: 10.3390/v14010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most sophisticated philosophies of science is the methodology of scientific research programmes (MSRP), developed by Imre Lakatos. According to MSRP, scientists are working within so-called research programmes, consisting of a hard core of fixed convictions and a flexible protective belt of auxiliary hypotheses. Anomalies are accommodated by changes to the protective belt that do not affect the hard core. Under MSRP, research programmes are appraised as 'progressive' if they successfully predict novel facts but are judged as 'degenerative' if they merely offer ad hoc solutions to anomalies. This paper applies these criteria to the evolutionary research programme as it has performed during half a century of ERV research. It describes the early history of the field and the emergence of the endogenization-amplification theory on the origins of retroviral-like sequences. It then discusses various predictions and postdictions that were generated by the programme, regarding orthologous ERVs in different species, the presence of target site duplications and the divergence of long terminal repeats, and appraises how the programme has dealt with data that did not conform to initial expectations. It is concluded that the evolutionary research programme has been progressive with regard to the issues here examined.
Collapse
Affiliation(s)
- Ruben N Jorritsma
- Philosophy Group, Wageningen University & Research, 6700 EW Wageningen, The Netherlands
| |
Collapse
|
5
|
Bustamante Rivera YY, Brütting C, Schmidt C, Volkmer I, Staege MS. Endogenous Retrovirus 3 - History, Physiology, and Pathology. Front Microbiol 2018; 8:2691. [PMID: 29379485 PMCID: PMC5775217 DOI: 10.3389/fmicb.2017.02691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/26/2017] [Indexed: 01/05/2023] Open
Abstract
Endogenous viral elements (EVE) seem to be present in all eukaryotic genomes. The composition of EVE varies between different species. The endogenous retrovirus 3 (ERV3) is one of these elements that is present only in humans and other Catarrhini. Conservation of ERV3 in most of the investigated Catarrhini and the expression pattern in normal tissues suggest a putative physiological role of ERV3. On the other hand, ERV3 has been implicated in the pathogenesis of auto-immunity and cancer. In the present review we summarize knowledge about this interesting EVE. We propose the model that expression of ERV3 (and probably other EVE loci) under pathological conditions might be part of a metazoan SOS response.
Collapse
Affiliation(s)
| | - Christine Brütting
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Caroline Schmidt
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ines Volkmer
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
6
|
Yoshikawa R, Miyaho RN, Hashimoto A, Abe M, Yasuda J, Miyazawa T. Suppression of production of baboon endogenous virus by dominant negative mutants of cellular factors involved in multivesicular body sorting pathway. Virus Res 2014; 196:128-34. [PMID: 25463055 DOI: 10.1016/j.virusres.2014.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022]
Abstract
Baboon endogenous virus (BaEV) is an infectious endogenous gammaretrovirus isolated from a baboon placenta. BaEV-related sequences have been identified in both Old World monkeys and African apes, but not in humans or Asian apes. Recently, it was reported that BaEV-like particles were produced from Vero cells derived from African green monkeys by chemical induction, and thus BaEV-like particles may contaminate biological products manufactured using Vero cells. In this study, we constructed an infectious molecular clone of BaEV strain M7. We found two putative L-domain motifs, PPPY and PSAP, in the pp15 region of Gag. To examine the function of the L-domain motifs, we conducted virus budding assay using L-domain motif mutants. We revealed that the PPPY motif, but not the PSAP motif, plays a major role as the L-domain in BaEV budding. We also demonstrated that Vps4A/B are involved in BaEV budding. These data suggest that BaEV Gag recruits the cellular endosomal sorting complex required for transport (ESCRT) machinery through the interaction of the PPPY L-domain with cellular factors. These data will be useful for controlling contamination of BaEV-like particles in biological products in the future.
Collapse
Affiliation(s)
- Rokusuke Yoshikawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Rie Nakaoka Miyaho
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Hashimoto
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masumi Abe
- Fifth Biology Section for Microbiology, First Department of Forensic Science, National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwai, Chiba 277-0882, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Disease, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
7
|
Kamath PL, Elleder D, Bao L, Cross PC, Powell JH, Poss M. The population history of endogenous retroviruses in mule deer (Odocoileus hemionus). J Hered 2013; 105:173-87. [PMID: 24336966 DOI: 10.1093/jhered/est088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mobile elements are powerful agents of genomic evolution and can be exceptionally informative markers for investigating species and population-level evolutionary history. While several studies have utilized retrotransposon-based insertional polymorphisms to resolve phylogenies, few population studies exist outside of humans. Endogenous retroviruses are LTR-retrotransposons derived from retroviruses that have become stably integrated in the host genome during past infections and transmitted vertically to subsequent generations. They offer valuable insight into host-virus co-evolution and a unique perspective on host evolutionary history because they integrate into the genome at a discrete point in time. We examined the evolutionary history of a cervid endogenous gammaretrovirus (CrERVγ) in mule deer (Odocoileus hemionus). We sequenced 14 CrERV proviruses (CrERV-in1 to -in14), and examined the prevalence and distribution of 13 proviruses in 262 deer among 15 populations from Montana, Wyoming, and Utah. CrERV absence in white-tailed deer (O. virginianus), identical 5' and 3' long terminal repeat (LTR) sequences, insertional polymorphism, and CrERV divergence time estimates indicated that most endogenization events occurred within the last 200000 years. Population structure inferred from CrERVs (F ST = 0.008) and microsatellites (θ = 0.01) was low, but significant, with Utah, northwestern Montana, and a Helena herd being particularly differentiated. Clustering analyses indicated regional structuring, and non-contiguous clustering could often be explained by known translocations. Cluster ensemble results indicated spatial localization of viruses, specifically in deer from northeastern and western Montana. This study demonstrates the utility of endogenous retroviruses to elucidate and provide novel insight into both ERV evolutionary history and the history of contemporary host populations.
Collapse
Affiliation(s)
- Pauline L Kamath
- the US Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT 59715
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Retroviral replication involves the formation of a DNA provirus integrated into the host genome. Through this process, retroviruses can colonize the germ line to form endogenous retroviruses (ERVs). ERV inheritance can have multiple adverse consequences for the host, some resembling those resulting from exogenous retrovirus infection but others arising by mechanisms unique to ERVs. Inherited retroviruses can also confer benefits on the host. To meet the different threats posed by endogenous and exogenous retroviruses, various host defences have arisen during evolution, acting at various stages on the retrovirus life cycle. In this Review, I describe our current understanding of the distribution and architecture of ERVs, the consequences of their acquisition for the host and the emerging details of the intimate evolutionary relationship between virus and vertebrate host.
Collapse
|
9
|
Chemical induction of endogenous retrovirus particles from the vero cell line of African green monkeys. J Virol 2011; 85:6579-88. [PMID: 21543506 DOI: 10.1128/jvi.00147-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endogenous retroviral sequences are present in high copy numbers in the genomes of all species and may be expressed as RNAs; however, the majority are defective for virus production. Although virus has been isolated from various Old World monkey and New World monkey species, there has been no report of endogenous retroviruses produced from African green monkey (AGM) tissues or cell lines. We have recently developed a stepwise approach for evaluating the presence of latent viruses by chemical induction (Khan et al., Biologicals 37:196-201, 2009). Based upon this strategy, optimum conditions were determined for investigating the presence of inducible, endogenous retroviruses in the AGM-derived Vero cell line. Low-level reverse transcriptase activity was produced with 5-azacytidine (AzaC) and with 5'-iodo-2'-deoxyuridine (IUdR); none was detected with sodium butyrate. Nucleotide sequence analysis of PCR-amplified fragments from the gag, pol, and env regions of RNAs, prepared from ultracentrifuged pellets of filtered supernatants, indicated that endogenous retrovirus particles related to simian endogenous type D betaretrovirus (SERV) sequences and baboon endogenous virus type C gammaretrovirus (BaEV) sequences were induced by AzaC, whereas SERV sequences were also induced by IUdR. Additionally, sequence heterogeneity was seen in the RNAs of SERV- and BaEV-related particles. Infectivity analysis of drug-treated AGM Vero cells showed no virus replication in cell lines known to be susceptible to type D simian retroviruses (SRVs) and to BaEV. The results indicated that multiple, inducible endogenous retrovirus loci are present in the AGM genome that can encode noninfectious, viruslike particles.
Collapse
|
10
|
Kjeldbjerg AL, Villesen P, Aagaard L, Pedersen FS. Gene conversion and purifying selection of a placenta-specific ERV-V envelope gene during simian evolution. BMC Evol Biol 2008; 8:266. [PMID: 18826608 PMCID: PMC2567338 DOI: 10.1186/1471-2148-8-266] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 09/30/2008] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Most human endogenous retroviruses (HERVs) invaded our genome at least 25 million years ago. The majority of the viral genes are degenerated, since no selection preserves them within the genome. However, a few intact and very old HERV genes exist, and likely are beneficial for the host. We here address evolutionary aspects of two HERV-V envelope genes, ENVV1 and ENVV2, located in tandem and containing a long open reading frame. RESULTS The ENVV2 gene is preserved with an intact reading frame during simian evolution, but none of the ENVV genes are found in the prosimian species tested. While we observe many transposon insertions in the gag and pol regions of the ERV-V2 provirus, the ENVV2 genes have escaped transposon crossfire in all species tested. Additional analysis of nucleotide substitutions provides further strong evidence of purifying selection on the ENVV2 gene during primate evolution. The other copy, ENVV1, seems to be involved in gene conversion of the major part of the envelope. Furthermore, ENVV1 and ENVV2 show placenta-specific expression in human and a baboon species. CONCLUSION Our analyses show that ERV-V entered our genome after the split between simian and prosimian primates. Subsequent purifying selection and gene conversion have preserved two copies of the ENVV envelope gene in most species. This is the first case of gene conversion involving long open reading frames in HERVs. Together with the placenta-specific expression of the human and baboon ENVV1 and ENVV2 envelope genes, these data provide strong evidence of a beneficial role for the host.
Collapse
Affiliation(s)
- Anders L Kjeldbjerg
- Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
11
|
Yi JM, Kim HS. Expression and phylogenetic analyses of human endogenous retrovirus HC2 belonging to the HERV-T family in human tissues and cancer cells. J Hum Genet 2007; 52:285-296. [PMID: 17277898 DOI: 10.1007/s10038-007-0115-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 12/26/2006] [Indexed: 11/28/2022]
Abstract
Recently, a new HERV-T family, representative of the HERV-S71 and HERV-HC2 family, was identified using a screen for envelope genes and a computer-assisted database search. Here, we investigate expression of pol fragments of HERV-HC2 belonging to the HERV-T family in various human tissues and cancer cells. The pol gene was expressed in nearly all human tissues examined and in all cancer cell lines. Expression analyses suggest that the pol gene of HERV-HC2 family is more actively transcribed in human cancer cells than in normal tissues, suggesting a functional role during carcinogenesis. Phylogenetic analysis of the HERV-HC2 pol family revealed three groups (I, II, and III) generated through evolutionary divergence during primate evolution, indicating that they were integrated into primate genomes approximately 56 million years (MY) ago and have evolved at a rate of 0.2% nucleotide differences per MY. Our data might contribute to an understanding of the information on the transcriptional and pathological potential of the HERV-T family in human disease, including cancer.
Collapse
Affiliation(s)
- Joo-Mi Yi
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, 21231, USA
- Division of Biological Sciences, College of Natural Sciences, Pusan National University, Pusan, 609-735, South Korea
| | - Heui-Soo Kim
- Division of Biological Sciences, College of Natural Sciences, Pusan National University, Pusan, 609-735, South Korea.
| |
Collapse
|
12
|
Yi JM, Kim HS. Molecular Phylogenetic Analysis of the Human Endogenous Retrovirus E (HERV-E) Family in Human Tissues and Human Cancers. Genes Genet Syst 2007; 82:89-98. [PMID: 17396023 DOI: 10.1266/ggs.82.89] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The human genome is estimated to contain up to 50 copies of full-length and truncated members of HERV-E family. They are thought to be involved in human gene transcription. Here we examine the expression pattern and phylogenetic relationships of the HERV-E in diverse human tissues and cancer cells using RT-PCR amplification and bioinformatic tools. The env gene was expressed in many human tissues (brain, prostate, testis, kidney, placenta, spleen, thymus and uterus) but not in heart, liver, lung and skeletal muscle, importantly, HERV-E expression was detected in all cancer cell lines examined (RT4, PFSK-1, BT-474, HCT-116, TE-1, UO-31, Jurkat, HepG2, A549, MCF7, OVCAR-3, MIA-PaCa-2, PC3, LOX-IMVI, AZ521, 2F7, U-937 and C-33A), suggesting that HERV-E family are expressed corresponding to the transcriptional program of human tissues and human cancer cells. Phylogenetic analysis of HERV-E env family from human tissues, cancer cells and our previous data identify two groups (I and II) through evolutionary divergence. Taken together, HERV-E family expression in human tissues and human cancer cells exhibited close relationships of the env gene sequences across human chromosomes. These active HERV-E elements deserve further investigation as potential pathogenic factors in human diseases such as cancers.
Collapse
Affiliation(s)
- Joo-Mi Yi
- Division of Biological Sciences, College of Natural Sciences, Pusan National University, Korea
| | | |
Collapse
|
13
|
Lee ST, Chu K, Kim EH, Jung KH, Lee KB, Sinn DI, Kim SU, Kim M, Roh JK. Quantification of human neural stem cell engraftments in rat brains using ERV-3 real-time PCR. J Neurosci Methods 2006; 157:225-9. [PMID: 16735065 DOI: 10.1016/j.jneumeth.2006.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 02/20/2006] [Accepted: 04/21/2006] [Indexed: 11/17/2022]
Abstract
Few sensitive and reliable methods have been available for quantifying the number of transplanted human neural stem cells (hNSC) in the animal brain. To develop an accurate method for quantifying the number of hNSC incorporated in rat brain, we performed real-time PCR on hNSC-transplanted rat brains using a target sequence for ERV-3, which is an endogenous retrovirus present with a known copy number in all human cells, but not present in rodent cells. A standard curve was developed for known amount of different mixes of hNSC and rat fibroblasts, and test samples were prepared by manually incorporating variable, predefined numbers of hNSCs into rat brains. A cerebral rat hemisphere injected with 10(7) hNSC revealed 1.125% chimerism. Moreover, a linear correlation was found between hNSC numbers injected and their concentrations in the rat brain. In conclusion, the developed quantitative ERV-3 assay enables a simple, fast, and reproducible detection and quantitation of hNSC numbers in the rat brain.
Collapse
Affiliation(s)
- Soon-Tae Lee
- Stroke and Neural Stem Cell Laboratory in Clinical Research Institute, Stem Cell Research Center, Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim HS, Yi JM, Hirai H, Huh JW, Jeong MS, Jang SB, Kim CG, Saitou N, Hyun BH, Lee WH. Human Endogenous Retrovirus (HERV)-R family in primates: Chromosomal location, gene expression, and evolution. Gene 2006; 370:34-42. [PMID: 16443335 DOI: 10.1016/j.gene.2005.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/31/2005] [Accepted: 11/02/2005] [Indexed: 11/24/2022]
Abstract
Hitherto, full-length endogenous retrovirus (HERV)-R has been located at human chromosome 7q11.2, and mRNA and envelope proteins have been detected in placenta and a variety of other cell types. In the present study, using a probe derived from the gorilla fosmid library, we detected the paralogous locus (7q31.3) of the HERV-R env gene in human chromosome 7q11.2, and also determined the chromosomal location in apes and Old World monkeys. The HERV-R gene was not detected in New World monkeys or prosimians with FISH and PCR analyses. We determined the sequences of the HERV-R env genes obtained from the genomic DNA of primates using PCR and sequencing tools. Except for a HERV-R env sequence derived from gorilla DNA, the functional domains of putative envelope proteins are conserved, suggesting that those domains could have a functional capacity in the primate genome. In addition, we investigated the env gene expression of HERV-R in various human tissues and cancer cells. An RT-PCR approach indicated that the env gene was expressed in several human tissues (brain, prostate, testis, kidney, placenta, thymus, and uterus) and cancer cells (RT4, BT-474, MCF7, OVCAR-3, LOX-IMVI, and AZ521). Taken together, our data could be of great use for understanding the evolutionary dynamics of HERV-R through primate radiation as well as the implications of its functional role in human tissues and cancers cells.
Collapse
Affiliation(s)
- Heui-Soo Kim
- Division of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chiriva-Internati M, Grizzi F, Jumper CA, Cobos E, Hermonat PL, Frezza EE. Immunological treatment of liver tumors. World J Gastroenterol 2005; 11:6571-6576. [PMID: 16425346 PMCID: PMC4355746 DOI: 10.3748/wjg.v11.i42.6571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Revised: 02/15/2005] [Accepted: 02/18/2005] [Indexed: 02/06/2023] Open
Abstract
Although multiple options for the treatment of liver tumors have often been described in the past, including liver resection, radiofrequency ablation with or without hepatic pump insertion, laparoscopic liver resection and the use of chemotherapy, the potential of immunotherapy and gene manipulation is still largely unexplored. Immunological therapy by gene manipulation is based on the interaction between virus-based gene delivery systems and dendritic cells. Using viruses as vectors, it is possible to transduce dendritic cells with genes encoding tumor-associated antigens, thus inducing strong humoral and cellular immunity against the antigens themselves. Both chemotherapy and radiation therapy have the disadvantage of destroying healthy cells, thus causing severe side-effects. We need more precisely targeted therapies capable of killing cancer cells while sparing healthy cells. Our goal is to establish a new treatment for solid liver tumors based on the concept of cytoreduction, and propose an innovative algorithm.
Collapse
Affiliation(s)
- Maurizio Chiriva-Internati
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6591, USA.
| | | | | | | | | | | |
Collapse
|
16
|
de Parseval N, Heidmann T. Human endogenous retroviruses: from infectious elements to human genes. Cytogenet Genome Res 2005; 110:318-32. [PMID: 16093684 DOI: 10.1159/000084964] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 02/05/2004] [Indexed: 02/02/2023] Open
Abstract
Mammalian genomes contain a heavy load (42% in humans) of retroelements, which are mobile sequences requiring reverse transcription for their replicative transposition. A significant proportion of these elements is of retroviral origin, with thousands of sequences resembling the integrated form of infectious retroviruses, with two LTRs bordering internal regions homologous to the gag, prt, pol, and env genes. These elements, named endogenous retroviruses (ERVs), are most probably the proviral remnants of ancestral germ-line infections by active retroviruses, which have thereafter been transmitted in a Mendelian manner. The complete sequencing of the human genome now allows a comprehensive survey of human ERVs (HERVs), which can be grouped according to sequence homologies into approximately 80 distinct families, each containing a few to several hundred elements. As reviewed here, strong similarities between HERVs and present-day retroviruses can be inferred from phylogenetic analyses on the reverse transcriptase (RT) domain of the pol gene or the transmembrane subunit (TM) of the env gene, which disclose interspersion of both classes of elements and suggest a common history and shared ancestors. Similarities are also observed at the functional levels, since despite the fact that most HERVs have accumulated mutations, deletions, and/or truncations, several elements still possess some of the functions of retroviruses, with evidence for viral-like particle formation, and occurrence of envelope proteins allowing cell-cell fusion and even conferring infectivity to pseudotypes. Along this line, a genomewide screening for human retroviral genes with coding capacity has revealed 16 fully coding envelope genes. These genes are transcribed in several healthy tissues including the placenta, three of them at a very high level. Besides their impact in modelling the genome, HERVs thus appear to contain still active genes, which most probably have been subverted by the host for its benefit and should be considered as bona fide human genes. Some of their characteristic features and possible physiological roles, as well as potential pathological effects inherited from their retroviral ancestors are also reviewed.
Collapse
Affiliation(s)
- N de Parseval
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eukaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
17
|
Lee ST, Chu K, Park JE, Lee K, Kang L, Kim SU, Kim M. Intravenous administration of human neural stem cells induces functional recovery in Huntington's disease rat model. Neurosci Res 2005; 52:243-9. [PMID: 15896865 DOI: 10.1016/j.neures.2005.03.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/19/2005] [Accepted: 03/23/2005] [Indexed: 11/18/2022]
Abstract
An animal model induced by striatal quinolinic acid (QA) injection shows ongoing striatal degeneration mimicking Huntington's disease. To study the migratory ability and the neuroprotective effect of human neural stem cells (NSCs) in this model, we transplanted NSCs (5 x 10(6)) or saline intravenously at 7 days after unilateral QA injection. NSCs-group exhibited the reduced apomorphine-induced rotation and the reduced striatal atrophy compared to the control. PCR analysis for the human-specific ERV-3 gene supported an evidence of the engraftment of human NSCs in the rat brain. X-gal+ cells were found in and around the damaged striatum and migrated NSCs differentiated into neurons and glias. This result indicates that intravenously injected human NSCs can migrate into the striatal lesion, decrease the following striatal atrophy, and induce long-term functional improvement in a glutamate toxicity-induced striatal degeneration model.
Collapse
Affiliation(s)
- Soon-Tae Lee
- Department of Neurology, Clinical Research Institute, Seoul National University Hospital, 28, Yongon-Dong, Chongro-Gu, Seoul 110-744, South Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Macfarlane C, Simmonds P. Allelic variation of HERV-K(HML-2) endogenous retroviral elements in human populations. J Mol Evol 2005; 59:642-56. [PMID: 15693620 DOI: 10.1007/s00239-004-2656-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human endogenous retroviruses (HERVs) are the remnants of ancient germ cell infection by exogenous retroviruses and occupy up to 8% of the human genome. It has been suggested that HERV sequences have contributed to primate evolution by regulating the expression of cellular genes and mediating chromosome rearrangements. After integration approximately 28 million years ago, members of the HERV-K (HML-2) family have continued to amplify and recombine. To investigate the utility of HML-2 polymorphisms as markers for the study of more recent human evolution, we compiled a list of the structure and integration sites of sequences that are unique to humans and screened each insertion for polymorphism within the human genome databases. Of the total of 74 HML-2 sequences, 18 corresponded to complete or near-complete proviruses, 49 were solitary long terminal repeats (LTRs), 6 were incomplete LTRs, and 1 was a SVA retrotransposon. A number of different allelic configurations were identified including the alternation of a provirus and solitary LTR. We developed polymerase chain reaction-based assays for seven HML-2 loci and screened 109 human DNA samples from Africa, Europe, Asia, and Southeast Asia. Our results indicate that the diversity of HML-2 elements is higher in African than non-African populations, with population differentiation values ranging from 0.6 to 9.8%. These findings denote a recent expansion from Africa. We compare the phylogenetic relationships of HML-2 sequences that are unique to humans and consider whether these elements have played a role in the remodeling of the hominid genome.
Collapse
Affiliation(s)
- Catriona Macfarlane
- Center for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh, Scotland EH9 1QH, UK.
| | | |
Collapse
|
19
|
Greenwood AD, Stengel A, Erfle V, Seifarth W, Leib-Mösch C. The distribution of pol containing human endogenous retroviruses in non-human primates. Virology 2005; 334:203-13. [PMID: 15780870 DOI: 10.1016/j.virol.2005.01.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/30/2004] [Accepted: 01/31/2005] [Indexed: 10/25/2022]
Abstract
Few human endogenous retroviruses (HERVs) have been extensively studied in non-human primates. Such investigations have demonstrated that several element classes are primate unique, contain members with important biological function, are conserved in specific primate lineages, and have in some cases expanded in copy number. We have examined multiple sub-families of all major groups of HERVs using a DNA microarray based on the reverse transcriptase (RT) domain of the viral polymerase gene (pol). The microarray was used to investigate the distribution of HERVs in non-human primates with particular focus on the differences between New World monkeys (NWMs) and other anthropoids. This is the first study examining most HERV families in multiple non-human primate DNAs using a uniform and sensitive method and suggests that major differences exist between primate groups. The results indicate that a major invasion and expansion of pol containing HERVs occurred after the platyrrhine (NWM) lineage separated from the catarrhines (Old World Monkeys and apes).
Collapse
Affiliation(s)
- Alex D Greenwood
- GSF-National Research Center for Environment and Health, Institute of Molecular Virology, D-85764 Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
20
|
Villesen P, Aagaard L, Wiuf C, Pedersen FS. Identification of endogenous retroviral reading frames in the human genome. Retrovirology 2004; 1:32. [PMID: 15476554 PMCID: PMC524368 DOI: 10.1186/1742-4690-1-32] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 10/11/2004] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) comprise a large class of repetitive retroelements. Most HERVs are ancient and invaded our genome at least 25 million years ago, except for the evolutionary young HERV-K group. The far majority of the encoded genes are degenerate due to mutational decay and only a few non-HERV-K loci are known to retain intact reading frames. Additional intact HERV genes may exist, since retroviral reading frames have not been systematically annotated on a genome-wide scale. RESULTS By clustering of hits from multiple BLAST searches using known retroviral sequences we have mapped 1.1% of the human genome as retrovirus related. The coding potential of all identified HERV regions were analyzed by annotating viral open reading frames (vORFs) and we report 7836 loci as verified by protein homology criteria. Among 59 intact or almost-intact viral polyproteins scattered around the human genome we have found 29 envelope genes including two novel gammaretroviral types. One encodes a protein similar to a recently discovered zebrafish retrovirus (ZFERV) while another shows partial, C-terminal, homology to Syncytin (HERV-W/FRD). CONCLUSIONS This compilation of HERV sequences and their coding potential provide a useful tool for pursuing functional analysis such as RNA expression profiling and effects of viral proteins, which may, in turn, reveal a role for HERVs in human health and disease. All data are publicly available through a database at http://www.retrosearch.dk.
Collapse
Affiliation(s)
- Palle Villesen
- Bioinformatics Research Center, University of Aarhus, Høegh-Guldbergs Gade 10, Bldg. 090, DK-8000 Aarhus, Denmark
| | - Lars Aagaard
- Bioinformatics Research Center, University of Aarhus, Høegh-Guldbergs Gade 10, Bldg. 090, DK-8000 Aarhus, Denmark
| | - Carsten Wiuf
- Bioinformatics Research Center, University of Aarhus, Høegh-Guldbergs Gade 10, Bldg. 090, DK-8000 Aarhus, Denmark
| | - Finn Skou Pedersen
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé, Bldg. 130, DK-8000 Aarhus, Denmark
- Department of Medical Microbiology and Immunology, University of Aarhus, DK-8000 Aarhus, Denmark
| |
Collapse
|
21
|
Roca AL, Pecon-Slattery J, O'Brien SJ. Genomically intact endogenous feline leukemia viruses of recent origin. J Virol 2004; 78:4370-5. [PMID: 15047851 PMCID: PMC374283 DOI: 10.1128/jvi.78.8.4370-4375.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We isolated and sequenced two complete endogenous feline leukemia viruses (enFeLVs), designated enFeLV-AGTT and enFeLV-GGAG. In enFeLV-AGTT, the open reading frames are reminiscent of a functioning FeLV genome, and the 5' and 3' long terminal repeat sequences are identical. Neither endogenous provirus is genetically fixed in cats but polymorphic, with 8.9 and 15.2% prevalence for enFeLV-AGTT and enFeLV-GGAG, respectively, among a survey of domestic cats. Neither provirus was found in the genomes of related species of the Felis genus, previously shown to harbor enFeLVs. The absence of mutational divergence, polymorphic incidence in cats, and absence in related species suggest that these enFeLVs may have entered the germ line more recently than previously believed, perhaps coincident with domestication, and reopens the question of whether some enFeLVs might be replication competent.
Collapse
Affiliation(s)
- Alfred L Roca
- Laboratory of Genomic Diversity, Basic Research Program, SAIC-Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
22
|
Tanaka S, Ikeda H, Otsuka N, Yamamoto Y, Sugaya T, Yoshiki T. Tissue specific high level expression of a full length human endogenous retrovirus genome transgene, HERV-R, under control of its own promoter in rats. Transgenic Res 2003; 12:319-28. [PMID: 12779120 DOI: 10.1023/a:1023381819572] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human endogenous retrovirus-R (HERV-R) is one of a full length HERV with a long open reading frame in the env region. The env transcripts are expressed in various human tissues. To investigate the biological role of HERV-R in vivo, we established two lines of transgenic rats carrying a full sequence of HERV-R under control of its own long terminal repeat (LTR) promoter. One line with tandem integration of multiple copies of the transgene expressed HERV-R mRNA in various organs with different expression levels and relatively higher in Harderian and submandibular salivary glands. In another line, the transgene was integrated as a single copy in a haploid and the expression was detected only in Harderian and submandibular salivary glands. In the placenta, one of the tissues with high levels of the HERV-R expression in humans, the transcription was evident starting the 12th day after gestation. A rabbit antiserum against synthetic peptides corresponding with the HERV-R env gene sequence led to detection of an 85 kDa product as a glycoprotein in the Harderian glands. While no pathological significance was observed in either line, the transgenic rat may prove to be a suitable model for analyzing the role of HERV-R function in vivo.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Department of Pathology/Pathophysiology, Division of Pathophysiological Science, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The retroviral capacity for integration into the host genome can give rise to endogenous retroviruses (ERVs): retroviral sequences that are transmitted vertically as part of the host germ line, within which they may continue to replicate and evolve. ERVs represent both a unique archive of ancient viral sequence information and a dynamic component of host genomes. As such they hold great potential as informative markers for studies of both virus evolution and host genome evolution. Numerous novel ERVs have been described in recent years, particularly as genome sequencing projects have advanced. This review discusses the evolution of ERV lineages, considering the processes by which ERV distribution and diversity is generated. The diversity of ERVs isolated so far is summarised in terms of both their distribution across host taxa, and their relationships to recognised retroviral genera. Finally the relevance of ERVs to studies of genome evolution, host disease and viral ecology is considered, and recent findings discussed.
Collapse
Affiliation(s)
- Robert Gifford
- Department of Biological Sciences, Imperial College, Silwood Park, Buckhurst Road, Ascot Berkshire, SL5 7PY, UK
| | | |
Collapse
|
24
|
Abstract
The study of viral molecular genetics has produced a considerable body of research into the sequences and phylogenetic relationships of human and animal viruses. A review of this literature suggests that humans have been afflicted by viruses throughout their evolutionary history, although the number and types have changed. Some viruses show evidence of long-standing intimate relationship and cospeciation with hominids, while others are more recently acquired from other species, including African monkeys and apes while our line was evolving in that continent, and domesticated animals and rodents since the Neolithic. Viral selection for specific resistance polymorphisms is unlikely, but in conjunction with other parasites, viruses have probably contributed to selection pressure maintaining major histocompatibility complex (MHC) diversity and a strong immune response. They may also have played a role in the loss in our lineage of N-glycolylneuraminic acid (Neu5Gc), a cell-surface receptor for many infectious agents. Shared viruses could have affected hominid species diversity both by promoting divergence and by weeding out less resistant host populations, while viruses carried by humans and other animals migrating out of Africa may have contributed to declines in other populations. Endogenous retroviral insertions since the divergence between humans and chimpanzees were capable of directly affecting hominid evolution through changes in gene expression and development.
Collapse
|
25
|
Herve CA, Lugli EB, Brand A, Griffiths DJ, Venables PJW. Autoantibodies to human endogenous retrovirus-K are frequently detected in health and disease and react with multiple epitopes. Clin Exp Immunol 2002; 128:75-82. [PMID: 11982593 PMCID: PMC1906363 DOI: 10.1046/j.1365-2249.2002.01735.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of studies have found increased levels of antibodies to human endogenous retroviruses (HERVs) in autoimmune rheumatic diseases. It is not clear whether this immune response is driven by the HERV itself or by cross-reactions with an exogenous virus or an autoantigen. To address this question, we examined the antibody response to the Env protein of two closely related members of the HERV-K family, HERV-K10 and IDDMK1,222. By immunoblotting of recombinant proteins, antibodies were found in 32-47% of 84 sera from patients with autoimmune rheumatic disease, and 29% of 35 normal controls. Epitope mapping with overlapping 15mers identified multiple reactive peptides on both antigens, with one (GKTCPKEIPKGSKNT) containing immunodominant epitope(s). By ELISA, the median titre of antibody to this peptide was significantly increased in 39 patients with SLE compared to 39 healthy controls and 86 patients with other rheumatic diseases (P < 0.003). We have shown that there is a high frequency of IgG antibodies to HERV-K env sequences in human sera, both in health and autoimmune rheumatic disease, and that the response is to multiple epitopes. This supports the hypothesis that the autoimmune response to HERV-K is antigen-driven and may be an early stage in the chain of events that leads to tolerance breakdown to other autoantigens.
Collapse
Affiliation(s)
- C A Herve
- Kennedy Institute of Rheumatology, London, UK.
| | | | | | | | | |
Collapse
|
26
|
Sacco MA, Venugopal K. Segregation of EAV-HP ancient endogenous retroviruses within the chicken population. J Virol 2001; 75:11935-8. [PMID: 11689680 PMCID: PMC114785 DOI: 10.1128/jvi.75.23.11935-11938.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J), an exogenous avian retrovirus, is thought to have evolved by recombination with the highly identical env gene of the endogenous avian retrovirus EAV-HP. Embryonic expression of EAV-HP env has been suggested to be associated with the induction of immunological tolerance, a feature observed in a significant proportion of meat-type chickens infected with ALV-J. In support of this hypothesis, we demonstrate that EAV-HP loci, some of which could be associated with tolerance, are still segregating within the chicken population.
Collapse
Affiliation(s)
- M A Sacco
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, United Kingdom
| | | |
Collapse
|
27
|
Turner G, Barbulescu M, Su M, Jensen-Seaman MI, Kidd KK, Lenz J. Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr Biol 2001; 11:1531-5. [PMID: 11591322 DOI: 10.1016/s0960-9822(01)00455-9] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human endogenous retrovirus K (HERV-K) is distinctive among the retroviruses in the human genome in that many HERV-K proviruses were inserted into the human germline after the human and chimpanzee lineages evolutionarily diverged [1, 2]. However, all full-length endogenous retroviruses described to date in humans are sufficiently old that all humans examined were homozygous for their presence [1]. Moreover, none are intact; all have lethal mutations [1, 3, 4]. Here, we describe the first endogenous retroviruses in humans for which both the full-length provirus and the preintegration site alleles are shown to be present in the human population today. One provirus, called HERV-K113, was present in about 30% of tested individuals, while a second, called HERV-K115, was found in about 15%. HERV-K113 has full-length open reading frames (ORFs) for all viral proteins and lacks any nonsynonymous substitutions in amino acid motifs that are well conserved among retroviruses. This is the first such endogenous retrovirus identified in humans. These findings indicate that HERV-K remained capable of reinfecting humans through very recent evolutionary times and that HERV-K113 is an excellent candidate for an endogenous retrovirus that is capable of reinfecting humans today.
Collapse
Affiliation(s)
- G Turner
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
28
|
Choi JY, Kim JS, Lee JM, Hyun BH, Kim HS. Isolation and phylogeny of new endogenous retroviral sequences belonging to the HERV-F family. AIDS Res Hum Retroviruses 2001; 17:367-70. [PMID: 11242523 DOI: 10.1089/08892220150503735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A new human endogenous retroviral family (HERV-F) has been identified from human chromosome 7q31.1-q31.3 that was identical to the XA34 cDNA clone isolated from a human glioma cDNA library with an ERV-9 env probe. We investigated pol gene sequences of the HERV-F family from a human monochromosomal DNA panel and analyzed these with HERV-F. The pol gene sequences of the HERV-F family were detected on chromosomes 3, 6, 7, 10, 11, 14, 19, 20, X, and Y as examined by PCR. Thirty-six pol gene sequences identified from the human chromosomes have a high degree of sequence similarity (80-99%) with that of the HERV-F. Phylogenetic analysis of pol gene sequences distinctively showed four groups, indicating that the HERV-F family could be amplified at least four times after the original integration into the human genome or represent integration events separately during hominid evolution. One clone (HFY-3) on chromosome Y shared 100% sequence identity with a clone (HF19-2) on chromosome 19, and a clone (HF20-6) on chromosome 20 suggests either a recent retrotransposition or a chromosomal translocation. The history of endogenous retroviral sequences may contribute to an understanding of evolutionary change in human genomes.
Collapse
Affiliation(s)
- J Y Choi
- Division of Biological Sciences, College of Natural Sciences, Pusan National University, Pusan 609-735, South Korea
| | | | | | | | | |
Collapse
|
29
|
Abstract
A novel approach to quantifying human cells using a real time PCR assay was developed. The target sequence used in the assay is a 135 bp segment within the unique 1.7 kb Hind III / Pst I fragment of the ERV-3 envelope gene. ERV-3 is a full-length human endogenous retrovirus present in known copy number in all human cells. The detection range of ERV-3 by real time PCR is from 10(6) to 10(1). The precision described, sensitivity and specificity of the assay indicate that the ERV-3 sequence is an accurate cell quantitation marker. The quantitative ERV-3 assay enables simple, fast, and reproducible detection and quantitation of the cell number. The assay can be used to determine the sample DNA conditions and also it can be used to adjust the quantitative DNA measurements of other target gene assays relative to the number of cell equivalents.
Collapse
Affiliation(s)
- C C Yuan
- Virus Epidemiology Section, AIDS Vaccine Program, SAIC Frederick, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
30
|
Medstrand P, Landry JR, Mager DL. Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J Biol Chem 2001; 276:1896-903. [PMID: 11054415 DOI: 10.1074/jbc.m006557200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To examine the potential regulatory involvement of retroelements in the human genome, we screened the transcribed sequences of GenBank and expressed sequence tag data bases with long terminal repeat (LTR) elements derived from different human endogenous retroviruses. These screenings detected human transcripts containing LTRs belonging to the human endogenous retrovirus-E family fused to the apolipoprotein CI (apoC-I) and the endothelin B receptor (EBR) genes. However, both genes are known to have non-LTR (native) promoters. Initial reverse transcription-polymerase chain reaction experiments confirmed and authenticated the presence of transcripts from both the native and LTR promoters. Using a 5'-rapid amplification of cDNA ends protocol, we showed that the alternative transcripts of apoC-I and EBR are initiated and promoted by the LTRs. The LTR-apoC-I fusion and native apoC-I transcripts are present in many of the tissues tested. As expected, we found apoC-I preferentially expressed in liver, where about 15% of the transcripts are derived from the LTR promoter. Transient transfections suggest that the expression is not dependent on the LTR itself, but the presence of the LTR increases activity of the apoC-I promoter from both humans and baboons. The native EBR-driven transcripts were also detected in many tissues, whereas the LTR-driven transcripts appear limited to placenta. In contrast to the LTR of apoC-I, the EBR LTR promotes a significant proportion of the total EBR transcripts, and transient transfection results indicate that the LTR acts as a strong promoter and enhancer in a placental cell line. This investigation reports two examples where LTR sequences contribute to increased transcription of human genes and illustrates the impact of mobile elements on gene and genome evolution.
Collapse
Affiliation(s)
- P Medstrand
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V5Z 1L3, Canada
| | | | | |
Collapse
|
31
|
Ghosh SK, Roy-Burman P, Faller DV. Long terminal repeat regions from exogenous but not endogenous feline leukemia viruses transactivate cellular gene expression. J Virol 2000; 74:9742-8. [PMID: 11000248 PMCID: PMC112408 DOI: 10.1128/jvi.74.20.9742-9748.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We have previously reported that the long terminal repeat (LTR) region of feline leukemia viruses (FeLVs) can enhance expression of certain cellular genes such as the collagenase IV gene and MCP-1 in trans (S. K. Ghosh and D. V. Faller, J. Virol. 73:4931-4940, 1999). Genomic DNA of all healthy feline species also contains LTR-like sequences that are related to exogenous FeLV LTRs. In this study, we evaluated the cellular gene transactivational potential of these endogenous FeLV LTR sequences. Unlike their exogenous FeLV counterparts, neither nearly full-length endogenous FeLV molecular clones (CFE-6 and CFE-16) nor their isolated LTRs were able to activate collagenase IV gene or MCP-1 expression in transient transfection assays. We had also demonstrated previously that production of an RNA transcript from exogenous FeLV LTRs correlates with their transactivational activity. In the present study, we demonstrate that the endogenous FeLV LTRs do not generate LTR-specific RNA transcripts in the feline embryo fibroblast cell line AH927. Furthermore, infection of AH927 cells by an exogenous FeLV subgroup A virus did not induce production of such LTR-specific transcripts from the endogenous proviral genomes, although the LTR-specific transcripts from the exogenous virus were readily detected. Finally, LTR-specific transcripts were not generated in BALB/3T3 cells transiently transfected with isolated CFE-6 LTR, in contrast to transfections with LTRs from exogenous viruses. Our data thus suggest that the inability of endogenous FeLV LTRs in gene transactivation is not due to cell line specificity or presence of any upstream inhibitory cis-acting element. Endogenous, nonleukemogenic FeLV LTRs, therefore, do not transactivate cellular gene expression, and this property appears to be specific to exogenous, leukemogenic FeLVs.
Collapse
Affiliation(s)
- S K Ghosh
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | |
Collapse
|
32
|
Tristem M. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol 2000; 74:3715-30. [PMID: 10729147 PMCID: PMC111881 DOI: 10.1128/jvi.74.8.3715-3730.2000] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human endogenous retroviruses (HERVs) were first identified almost 20 years ago, and since then numerous families have been described. It has, however, been difficult to obtain a good estimate of both the total number of independently derived families and their relationship to each other as well as to other members of the family Retroviridae. In this study, I used sequence data derived from over 150 novel HERVs, obtained from the Human Genome Mapping Project database, and a variety of recently identified nonhuman retroviruses to classify the HERVs into 22 independently acquired families. Of these, 17 families were loosely assigned to the class I HERVs, 3 to the class II HERVs and 2 to the class III HERVs. Many of these families have been identified previously, but six are described here for the first time and another four, for which only partial sequence information was previously available, were further characterized. Members of each of the 10 families are defective, and calculation of their integration dates suggested that most of them are likely to have been present within the human lineage since it diverged from the Old World monkeys more than 25 million years ago.
Collapse
Affiliation(s)
- M Tristem
- Department of Biology, Imperial College, Silwood Park, Ascot, Berkshire SL5 7PY, United Kingdom.
| |
Collapse
|
33
|
Abstract
Several distinct families of endogenous retrovirus-like elements (ERVs) exist in the genomes of primates. Despite the important evolutionary consequences that carrying these intragenomic parasites may have for their hosts, our knowledge about their evolution is still scarce. A matter of particular interest is whether evolution of ERVs occurs via a master lineage or through several lineages coexisting over long periods of time. In this work, the paleogenomic approach has been applied to the study of the evolution of ERV9, one of the human endogenous retrovirus families mobilized during primate evolution. By searching the GenBank database with the first 676 bp of the ERV9 long terminal repeat, we identified 156 different element insertions into the human genome. These elements were grouped into 14 subfamilies based on several characteristic nucleotide differences. The age of each subfamily was roughly estimated based on the average sequence divergence of its members from the subfamily consensus sequence. Determination of the sequential order of diagnostic substitutions led to the identification of four distinct lineages, which retained their capacity of transposition over extended periods of evolution. Strong evidence for mosaic evolution of some of these lineages is presented. Taken altogether, the available data indicate that the possibility of ERV9 still being active in the human lineage can not be discarded.
Collapse
Affiliation(s)
- J Costas
- Departamento de Bioloxía Fundamental, Facultade de Bioloxía, Universidade de Santiago de Compostela, Spain.
| | | |
Collapse
|
34
|
Abstract
Human endogenous retroviruses (HERVs), probably representing footprints of ancient germ-cell retroviral infections, occupy about 1% of the human genome. HERVs can influence genome regulation through expression of retroviral genes, either via genomic rearrangements following HERV integrations or through the involvement of HERV LTRs in the regulation of gene expression. Some HERVs emerged in the genome over 30 MYr ago, while others have appeared rather recently, at about the time of hominid and ape lineages divergence. HERVs might have conferred antiviral resistance on early human ancestors, thus helping them to survive. Furthermore, newly integrated HERVs could have changed the pattern of gene expression and therefore played a significant role in the evolution and divergence of Hominoidea superfamily. Comparative analysis of HERVs, HERV LTRs, neighboring genes, and their regulatory interplay in the human and ape genomes will help us to understand the possible impact of HERVs on evolution and genome regulation in the primates. BioEssays 22:161-171, 2000.
Collapse
Affiliation(s)
- E D Sverdlov
- Institute of Molecular Genetics RAS, Kurchatov Sq., 123182 Moscow, Russia.
| |
Collapse
|
35
|
Voisset C, Blancher A, Perron H, Mandrand B, Mallet F, Paranhos-Baccalà G. Phylogeny of a novel family of human endogenous retrovirus sequences, HERV-W, in humans and other primates. AIDS Res Hum Retroviruses 1999; 15:1529-33. [PMID: 10580403 DOI: 10.1089/088922299309810] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel human endogenous retrovirus, HERV-W, has been characterized on the basis of multiple sclerosis-associated retrovirus (MSRV) probes. We have analyzed the phylogenetic distribution of HERV-W in humans and other primate species. As HERV-W presents a C/D chimeric nature and is largely composed of deleted elements, Southern blots were performed using gag, pol, env, and LTR probes. The relative complexities observed for gag, pol, env, and LTR regions were similar in humans, apes, and Old World monkeys, the minimal number of bands observed after Southern blot analysis being 25, 50, 10, and at least 100, respectively. The HERV-W family entered the genome of catarrhines more than 25 million years ago.
Collapse
Affiliation(s)
- C Voisset
- Unité Mixte de Recherche 103 CNRS-bioMérieux, Ecole Normale Supérieure de Lyon, France
| | | | | | | | | | | |
Collapse
|
36
|
Johnson WE, Coffin JM. Constructing primate phylogenies from ancient retrovirus sequences. Proc Natl Acad Sci U S A 1999; 96:10254-60. [PMID: 10468595 PMCID: PMC17875 DOI: 10.1073/pnas.96.18.10254] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genomes of modern humans are riddled with thousands of endogenous retroviruses (HERVs), the proviral remnants of ancient viral infections of the primate lineage. Most HERVs are nonfunctional, selectively neutral loci. This fact, coupled with their sheer abundance in primate genomes, makes HERVs ideal for exploitation as phylogenetic markers. Endogenous retroviruses (ERVs) provide phylogenetic information in two ways: (i) by comparison of integration site polymorphism and (ii) by orthologous comparison of evolving, proviral, nucleotide sequence. In this study, trees are constructed with the noncoding long terminal repeats (LTRs) of several ERV loci. Because the two LTRs of an ERV are identical at the time of integration but evolve independently, each ERV locus can provide two estimates of species phylogeny based on molecular evolution of the same ancestral sequence. Moreover, tree topology is highly sensitive to conversion events, allowing for easy detection of sequences involved in recombination as well as correction for such events. Although other animal species are rich in ERV sequences, the specific use of HERVs in this study allows comparison of trees to a well established phylogenetic standard, that of the Old World primates. HERVs, and by extension the ERVs of other species, constitute a unique and plentiful resource for studying the evolutionary history of the Retroviridae and their animal hosts.
Collapse
Affiliation(s)
- W E Johnson
- Department of Molecular Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
37
|
Mang R, Goudsmit J, van der Kuyl AC. Novel endogenous type C retrovirus in baboons: complete sequence, providing evidence for baboon endogenous virus gag-pol ancestry. J Virol 1999; 73:7021-6. [PMID: 10400802 PMCID: PMC112789 DOI: 10.1128/jvi.73.8.7021-7026.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A complete endogenous type C viral genome has been isolated from a baboon genomic library. The provirus, Papio cynocephalus endogenous retrovirus (PcEV), is 8,572 nucleotides long, and 38 to 59 proviral copies per baboon genome are found. The PcEV provirus possesses the typical simple retroviral gene organization, including two long terminal repeats and genes encoding gag, pol, and env proteins. The open reading frames for gag-pol and env are complete but have premature stop codons or frameshift mutations. The primer binding site of PcEV is complementary to tRNAGly. The gag and pol genes of PcEV are closely related to those of the baboon endogenous virus (BaEV). The env coding region of PcEV is related to the env genes of type C retroviruses. This suggests that PcEV is one of the ancestors of BaEV contributing the type C gag-pol genome fragment to the type C/D recombinant virus BaEV. Earlier it was shown that another endogenous type D virus (simian endogenous retrovirus) provided the env gene for BaEV (A. C. van der Kuyl et al., J. Virol. 71:3666-3676, 1997).
Collapse
Affiliation(s)
- R Mang
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
38
|
Lindeskog M, Mager DL, Blomberg J. Isolation of a human endogenous retroviral HERV-H element with an open env reading frame. Virology 1999; 258:441-50. [PMID: 10366582 DOI: 10.1006/viro.1999.9750] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
About 100 elements of the human endogenous retroviral HERV-H family have full-length env genes potentially coding for Env proteins with sequences highly similar to the immunosuppressive peptide CKS-17 from the MLV transmembrane protein p15E. However, previously sequenced HERV-H env genes have contained stop codons or framehifts. To isolate elements with open env reading frames, we first tried to assess the diversity of HERV-H env genes by comparing PCR-generated env sequences from genomic DNA with published HERV-H sequences. A region at the beginning of env displayed a similarity of 84-98% among 15 different elements. We then used a probe from one of the PCR-generated clones, 98% similar to the consensus sequence in this region, to screen a human genomic lambda library. Three HERV-H elements displaying ca. 98% identity in the env gene were isolated and were shown to have integrated relatively recently, after the divergence of the orangutan and the african great ape lineages. One of these elements, HERV-H19, had a 1752-bp open env reading frame, producing a 77-kDa Env protein in in vitro translation reactions. This is the first demonstration of a coding competent member of the HERV-H family. These findings raise the possibility that HERV-H Env proteins may play a biological role in human cells.
Collapse
Affiliation(s)
- M Lindeskog
- Section of Virology, Lund University, Sölvegatan 23, Lund, S-22362, Sweden.
| | | | | |
Collapse
|
39
|
Medstrand P, Mager DL. Human-specific integrations of the HERV-K endogenous retrovirus family. J Virol 1998; 72:9782-7. [PMID: 9811713 PMCID: PMC110489 DOI: 10.1128/jvi.72.12.9782-9787.1998] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1998] [Accepted: 09/10/1998] [Indexed: 12/24/2022] Open
Abstract
Several distinct families of endogenous retrovirus-like sequences (HERVs) exist in the genomes of humans and other primates. One of these families, the HERV-K group, contains members that encode functional proteins and that have been implicated in the etiology of insulin-dependent diabetes mellitus (IDDM). Because of potential functional and disease relevance, it is important to determine if there are HERV-K-associated genetic differences between individuals. In this study, we have investigated the divergence and evolutionary age of HERV-K long terminal repeats (LTRs). Thirty-seven LTRs, taken primarily from random human clones in GenBank, were aligned and grouped into nine clusters with decreasing sequence divergence. Cluster 1 sequences are 8.6% divergent, on average, whereas cluster 9 LTRs, represented by the LTRs of the fully sequenced HERV-K10 clone, show an average of only 1.1% divergence from each other. The evolutionary age of 18 LTRs from different clusters was then investigated by genomic PCR to determine presence or absence of the retroviral element in different primate species. LTRs from clusters of higher divergence were detected in monkeys and apes, whereas LTRs in clusters with lower divergence were acquired later in evolution. Notably, LTRs of cluster 9 were found only in humans at all nine loci examined. Genomic Southern analysis with an oligonucleotide probe specific for cluster 9 LTRs suggests that HERV-K elements with this type of LTR expanded independently in the genomes of humans and the great apes. This is the first report of endogenous retroviral integrations that are specific to humans and indicates that some HERVs have amplified much later than previously thought. These elements may still be actively transposing and may therefore represent a source of genetic variation linked to disease development.
Collapse
Affiliation(s)
- P Medstrand
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 1L3
| | | |
Collapse
|
40
|
Schulte AM, Wellstein A. Structure and phylogenetic analysis of an endogenous retrovirus inserted into the human growth factor gene pleiotrophin. J Virol 1998; 72:6065-72. [PMID: 9621070 PMCID: PMC110412 DOI: 10.1128/jvi.72.7.6065-6072.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1997] [Accepted: 04/06/1998] [Indexed: 02/07/2023] Open
Abstract
A human endogenous retrovirus-like element (HERV), flanked by long terminal repeats of 502 and 495 nucleotides is inserted into the human pleiotrophin (PTN) gene upstream of the open reading frame. Based on its Glu-tRNA primer binding site specificity and the location within the PTN gene, we named this element HERV-E.PTN. HERV-E.PTN appears to be a recombined viral element based on its high homology (70 to 86%) in distinct areas to members of two distantly related HERV type C families, HERV-E and retrovirus-like element I (RTVL-I). Furthermore, its pseudogene region is organized from 5' to 3' into gag-, pol-, env-, pol-, env-similar sequences. Interestingly, full-length and partial HERV-E.PTN-homologous sequences were found in the human X chromosome, the human hereditary haemochromatosis region, and the BRCA1 pseudogene. Finally, Southern analyses indicate that the HERV-E.PTN element is present in the PTN gene of humans, chimpanzees, and gorillas but not of rhesus monkeys, suggesting that genomic insertion occurred after the separation of monkeys and apes about 25 million years ago.
Collapse
Affiliation(s)
- A M Schulte
- Lombardi Cancer Center and Department of Pharmacology, Georgetown University, Washington, D.C. 20007, USA
| | | |
Collapse
|
41
|
de Parseval N, Heidmann T. Physiological knockout of the envelope gene of the single-copy ERV-3 human endogenous retrovirus in a fraction of the Caucasian population. J Virol 1998; 72:3442-5. [PMID: 9525678 PMCID: PMC109847 DOI: 10.1128/jvi.72.4.3442-3445.1998] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
ERV-3 is an evolutionarily conserved single-copy human endogenous retrovirus with a coding envelope gene potentially involved in important placental functions. We have investigated the sequence variability of this gene among 150 unrelated Caucasian individuals and found eight polymorphic sites. One of them corresponds to the introduction of a stop codon resulting in the production of a severely truncated ERV-3 envelope protein lacking both the fusion peptide and the immunosuppressive domain of the protein. The stop codon is observed in a homozygous state in approximately 1% of Caucasian individuals without evidence for counterselection, thus precluding the involvement of any essential function of the gene in placental implantation and development. This natural knockout provides a mean to investigate other potential roles for this otherwise highly conserved gene.
Collapse
Affiliation(s)
- N de Parseval
- Unité des Rétrovirus Endogènes et Eléments Retroïdes des Eucaryotes Supérieurs, CNRS UMR 1573, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
42
|
Evidence for Copurification of HERV-K–Related Transcripts and a Reverse Transcriptase Activity in Human Platelets From Patients With Essential Thrombocythemia. Blood 1997. [DOI: 10.1182/blood.v90.10.4022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe have previously reported that particles resembling retroviral particles and possessing an RNA-directed DNA polymerase activity can be prepared from platelets. Furthermore, we and others have shown that these particles are present at higher levels in patients with essential thrombocythemia and polycythemia vera. We show here that these particles package RNA molecules that encode HERV-K–related pol genes. A subset of the RNA molecules that are packaged are likely to encode the RNA directed DNA polymerase activity and, because these RNAs possess long/full-length open reading frames for the reverse transcriptase and RNaseH (also for part of the integrase domains in genomic clones) of HERV-K, we propose that these transcripts are indeed strong candidates for encoding the enzyme activity found in these particles. Moreover, by using a modification of the polymerase chain reaction-based reverse transcriptase assay in which activated DNA is added during cDNA synthesis to suppress DNA polymerase-mediated RNA-directed DNA synthesis, we have found that the particle-associated enzyme behaves like a retroviral reverse transcriptase, further supporting the conclusion that retrovirus-like, perhaps HERV-K sequences, encode this enzyme activity.
Collapse
|
43
|
Sugino H, Oshimura M, Mastubara K. Distribution of human endogenous retroviral RTVL-H2 LTR sequences among human chromosomes. Gene 1997; 198:83-7. [PMID: 9370267 DOI: 10.1016/s0378-1119(97)00296-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human genome carries multiple copies of sequences related to endogenous retroviral DNA. We report here the distribution of a new multicopy long terminal repeat (LTR) sequence that has been a part of an endogenous retrovirus-like sequence RTVL-H2. Twenty-four human chromosomes were either separated by flow sorting or by using rodent cells carrying a single human chromosome, and the DNA was subjected to Southern analyses using the RTVL-H2 DNA as a probe. The RTVL-H2 LTRs were distributed among all the human chromosomes, but the density and the profile differed from chromosome to chromosome. The same chromosome obtained from different individuals showed essentially the same chromosome-specific patterns. The distribution of the RTVL-H2 LTRs among different chromosomes did not correlate with the distribution of LTRs from another endogenous retroviral DNA, HERV-A, strongly suggesting that there is no preferred chromosome or a region thereof, for the integration. The possibility of rearrangement or amplification after integration is discussed.
Collapse
Affiliation(s)
- H Sugino
- Institute for Molecular and Cellular Biology, Osaka University, Suita, Japan
| | | | | |
Collapse
|
44
|
Anderssen S, Sjøttem E, Svineng G, Johansen T. Comparative analyses of LTRs of the ERV-H family of primate-specific retrovirus-like elements isolated from marmoset, African green monkey, and man. Virology 1997; 234:14-30. [PMID: 9234943 DOI: 10.1006/viro.1997.8590] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have isolated 8 different long terminal repeat (LTR) sequences of the ERV-H family of endogenous retrovirus-like elements from human chromosome 18, 9 from African green monkey, and 28 from marmoset. Human ERV-H LTRs have been divided into three types designated Type I, Type Ia, and Type II. Comparative analyses of the 45 isolated LTRs and 60 human ERV-H LTRs enabled a further subdivision into 13 subtypes. Type I elements were widely distributed in all three species. Their average evolutionary age (40 MYr), estimated by a consensus sequence approach, suggests that they first expanded in the genomes at the time New- and Old World monkeys diverged. The occurence of some very old Type I sequences indicate that ERV-H elements may have integrated even before prosimians and primates diverged. Type Ia and - II elements were found in both monkey species. Promoter active Type I and Type Ia LTRs were found while Type II LTRs were inactive. Promoter active Type I LTRs generally contained a functional GC/GT box immediately 3' to the TATA box, providing strong binding of Sp1 family proteins, while the highly promoter active Type Ia element H6 contained synergistically acting Sp1 binding sites located in the U3 enhancer region.
Collapse
Affiliation(s)
- S Anderssen
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, Norway
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- L P Villarreal
- Center for Viral Vector Design, Department of Molecular Biology and Biochemistry, University of California, Irvine 92697, USA.
| | | |
Collapse
|
46
|
Martin J, Herniou E, Cook J, Waugh O'Neill R, Tristem M. Human endogenous retrovirus type I-related viruses have an apparently widespread distribution within vertebrates. J Virol 1997; 71:437-43. [PMID: 8985368 PMCID: PMC191069 DOI: 10.1128/jvi.71.1.437-443.1997] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Retroviruses from lower vertebrate hosts have been poorly characterized to date. Few sequences have been isolated, and those which have been reported are all highly divergent when compared to the retroviruses known to be harbored by mammals and birds. Here we show that retroviruses with significant homology to the human endogenous retrovirus type I (HERV-I) are present within the genomes of fish, reptiles, birds, and mammals and that they may well be widespread within many vertebrates. Phylogenetic analysis of nucleotide sequences strongly supported the inclusion of viruses from each of these vertebrate classes into one monophyletic group. This analysis also demonstrated that the HERV-I-related viruses are more closely related to retroviruses belonging to the murine leukemia virus genus than to members of the other retroviral genera. The presence of HERV-I-related retroviruses in so many disparate vertebrate hosts suggests that other endogenous human retroviruses may also have a much wider distribution than is currently appreciated.
Collapse
Affiliation(s)
- J Martin
- Department of Biology, Imperial College, Ascot, Berkshire, United Kingdom
| | | | | | | | | |
Collapse
|
47
|
Schulte AM, Lai S, Kurtz A, Czubayko F, Riegel AT, Wellstein A. Human trophoblast and choriocarcinoma expression of the growth factor pleiotrophin attributable to germ-line insertion of an endogenous retrovirus. Proc Natl Acad Sci U S A 1996; 93:14759-64. [PMID: 8962128 PMCID: PMC26209 DOI: 10.1073/pnas.93.25.14759] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/1996] [Accepted: 10/03/1996] [Indexed: 02/03/2023] Open
Abstract
Retroviral elements are found in abundance throughout the human genome but only rarely have alterations of endogenous genes by retroviral insertions been described. Herein we report that a human endogenous retrovirus (HERV) type C is inserted in the human growth factor gene pleiotrophin (PTN) between the 5' untranslated and the coding region. This insert in the human genome expands the region relative to the murine gene. Studies with promoter-reporter constructs show that the HERV insert in the human PTN gene generates an additional promoter with trophoblast-specific activity. Due to this promoter function, fusion transcripts between HERV and the open reading frame of PTN (HERV-PTN) were detected in all normal human trophoblast cell cultures as early as 9 weeks after gestation (n = 7) and in all term placenta tissues (n = 5) but not in other normal adult tissues. Furthermore, only trophoblast-derived choriocarcinoma cell lines expressed HERV-PTN mRNA whereas tumor cell lines derived from the embryoblast (teratocarcinoma) or from other lineages failed to do so. We investigated the significance of HERV-PTN mRNA in a choriocarcinoma model by targeting this transcript with ribozymes and found that the depletion of HERV-PTN mRNA prevents human choriocarcinoma growth, invasion, and angiogenesis in mice. This suggests that the tissue-specific expression of PTN due to the HERV insertion in the human genome supports the highly aggressive growth of human choriocarcinoma and possibly of the human trophoblast.
Collapse
Affiliation(s)
- A M Schulte
- Lombardi Cancer Center, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
48
|
Tristem M, Kabat P, Lieberman L, Linde S, Karpas A, Hill F. Characterization of a novel murine leukemia virus-related subgroup within mammals. J Virol 1996; 70:8241-6. [PMID: 8892961 PMCID: PMC190910 DOI: 10.1128/jvi.70.11.8241-8246.1996] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The murine leukemia virus (MuLV)-related retroviruses are one of seven genera which together constitute the family Retroviridae. They are widespread as both endogenous and exogenous agents within vertebrates and have been associated with a variety of malignancies and other disorders. We isolated and characterized 12 endogenous representatives of this genus from a number of mammalian hosts. Subsequent sequence analysis revealed that the isolated viruses cluster into two clearly distinct groups. All of the exogenous MuLV-related retroviruses which have been isolated to date, as well as several endogenous examples, fall into the first group, whereas the second group is represented solely by endogenous representatives, including human endogenous retrovirus type E (HERV.E). The two groups are widespread within mammals, with both often present within one animal species. Despite this, there is no evidence to date that recombination between members of the different groups has occurred. Genetic distances and several other properties of the HERV.E genome suggest that if exogenous members of this subgroup exist, they are likely to have biological properties different from those of the other exogenous viruses of this genus. Several of these viruses are known to have been integrated within their hosts' genomes for a long period of time, and a most recent divergence date for the MuLV and HERV.E subgroups can thus be proposed. This date, approximately 30 million years ago, is the most recent date possible, and it is probable that the actual period of time since their divergence is significantly longer.
Collapse
Affiliation(s)
- M Tristem
- Department of Biology, Imperial College, Ascot, Berkshire, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Switzer WM, Black FL, Pieniazek D, Biggar RJ, Lal RB, Heneine W. Endemicity and phylogeny of the human T cell lymphotropic virus type II subtype A from the Kayapo Indians of Brazil: evidence for limited regional dissemination. AIDS Res Hum Retroviruses 1996; 12:635-40. [PMID: 8743089 DOI: 10.1089/aid.1996.12.635] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Long terminal repeat (LTR)-based restriction fragment length polymorphism (RFLP) analysis of human T cell lymphotropic virus type II (HTLV-II) from 17 seropositive Kayapo Indians from Brazil showed that all 17 samples contained a unique HTLV-IIa subtype (A-II). Additional RFLP screening demonstrated the presence of this subtype in two of three Brazilian blood donors and a Mexican prostitute and her child. In contrast, 129 samples from blood donors and intravenous drug users (IDUs) from the United States, two Pueblo Indian samples, five samples from Norwegian IDUs, and two samples from blood donors from Denmark were all found to be a different HTLV-IIa subtype (A-III). Phylogenetic analysis of two Kayapo and one Mexican LTR sequences showed that they cluster with a subtype A-II sequence from a Brazilian blood donor and with sequences from two prostitutes from Ghana and Cameroon. These results demonstrate that infection with the A-II subtype is endemic among the Kayapo Amerindians, has disseminated to non-Indian populations in Brazil, and is also present in Mexico. Furthermore, the A-II subtype does not appear to represent an origin for the HTLV-IIa infection in urban areas of the United States and Europe. This study provides evidence that HTLV-IIa may be a Paleo-Indian subtype as previously suggested for HTLV-IIb.
Collapse
Affiliation(s)
- W M Switzer
- Retrovirus Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | |
Collapse
|
50
|
Heneine W. The phylogeny and molecular epidemiology of human T-cell lymphotropic virus type II. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1996; 13 Suppl 1:S236-41. [PMID: 8797729 DOI: 10.1097/00042560-199600001-00035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phylogenetic analysis of long terminal repeat (LTR) sequences from 29 human T-cell lymphotropic virus type II (HTLV-II) strains from endemic and nonendemic populations led to the proposition of three HTLV-IIa phylogroups (A-I, A-II, and A-III) and four HTLV-IIb phylogroups (B-I, B-II, B-III, B-IV). B-I and B-II represented sequences from U.S. and European intravenous drug users, and B-IV included Amerindian sequences from the Guaymi and Wayuu. Interestingly, sequences from an African Pygmy and Seminole and Pueblo Indians and other non-India U.S. samples clustered together in B-III. Similarly, sequences from the Kayapo Indians from Brazil, a Brazilian blood donor, a Cameroonian, and a Ghanaian prostitute clustered together in A-II. Sequences from non-Indian U.S./European samples and a Pueblo Indian formed A-III. A restriction fragment length polymorphism (RFLP) assay was developed to identify rapidly the prevalence of the A and B phylogroups in 246 HTLV-II samples. The RFLP results suggest that A-III and B-II may represent cosmopolitan subtypes because of global distribution in urban areas. In contrast, B-IV and A-II infections were restricted primarily to Central and South America. The phylogenetic data suggest a possible Amerindian origin for B-III, A-II, and A-III infections in non-Indians and an evolution into A and B subtypes that preceded population migrations to the Americas.
Collapse
Affiliation(s)
- W Heneine
- Retrovirus Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| |
Collapse
|