1
|
He F, Jin X, Sun K, Zhao L, Yang W, Zhang X, Dong X, Zhao Y, Pan L, Bao N, Sun H. Bacillus subtilis JATP-3 Improves Nitrogen Metabolism by Regulating Intestinal Flora and AKG in Weaned Piglets. Probiotics Antimicrob Proteins 2025; 17:1265-1276. [PMID: 38079031 DOI: 10.1007/s12602-023-10196-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 05/07/2025]
Abstract
Recently, it has been reported that oral probiotics improve the apparent digestibility of nitrogen in weaned piglets; however, the underlying mechanism is unclear. A total of 12 crossbred piglets (Yorkshire × Landrace; 28 days old) were randomly divided into two groups. The control (Con) group was fed with a basic diet + Luria-Bertani (LB; sterile; 10 mL), whereas the subject (Sub) group was fed with a basic diet + B. subtilis JATP-3 (1 × 109 CFU/mL; 10 mL). The results showed that feeding B. subtilis JATP-3 increased the final body weight and nitrogen deposition rate of weaned piglets (P < 0.05); while the daily weight gain showed an upward trend (P < 0.1). The abundance of Pedicoccus, Collinella, Turiciator, Veillonella, Clostridium, and Escherichia were significantly increased in the jejunum (P < 0.05). The abundance of Olsenella and Pediococcus were significantly increased in the ileum (P < 0.05). The metabolomics analysis showed that the levels of l-lactic acid and Alpha-ketoglutaric acid (AKG) in portal vein plasma were significantly increased (P < 0.05). In addition, the content of AKG in muscle and liver increased significantly (P < 0.01). The metagenomics analysis showed that Veillonella encoded the functional genes of 2-oxoglutarate synthase and promoted AKG production. The protein expression of eIF4E-binding protein 1 (4EBP1) phosphorylated in the skeletal muscle increased (P < 0.05). In summary, B. subtilis JATP-3 promotes dietary nitrogen metabolism and skeletal muscle synthesis by modulating the intestinal microbiota and its metabolites, in which AKG may be one of the main mediators of the therapeutic effects of B. subtilis JATP-3.
Collapse
Affiliation(s)
- Feng He
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, People's Republic of China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Xueying Jin
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, People's Republic of China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Kecheng Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, People's Republic of China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Lei Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Wenyan Yang
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, People's Republic of China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Xuefeng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, People's Republic of China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Xiaoqing Dong
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, People's Republic of China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, People's Republic of China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Li Pan
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, People's Republic of China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, People's Republic of China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Hui Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun, 130118, People's Republic of China.
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
2
|
Zhan S, Wu L, Lv Y, Huang W, Ge C, Hu Z, Shen X, Lin G, Yu D, Liu B. Lactobacillus reuteri alleviates diquat induced hepatic impairment and mitochondrial dysfunction via activation of the Nrf2 antioxidant system and suppression of NF-κB inflammatory response. Poult Sci 2025; 104:104997. [PMID: 40073635 PMCID: PMC11951011 DOI: 10.1016/j.psj.2025.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Accumulating evidence has shown that elevated oxidative stress and inflammatory response leads to hepatic impairment and dysfunction of hens during the aging process. This study was conducted to investigate the potential regulatory mechanisms of Lactobacillus reuteri (L. reuteri) in alleviating hepatic oxidative stress and dysfunction induced by diquat (DQ) exposure. A total of 480 48-wk-old Jingbai hens were randomly assigned to 4 groups: control group (Con), L. reuteri group (L.R), diquat-challenged group (DQ), and L. reuteri protective group (L.R+DQ). The results demonstrated that DQ exposure induced oxidative damages and lipid metabolism disorders manifested as the elevated alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, triglyceride (TC) contents in serum and lipid accumulation in liver. L. reuteri supplementation alleviated DQ-induced liver oxidative injury, reflected by repairing the morphology of liver and decreasing the AST and ALT activities in serum. L. reuteri decreased the hepatic malonaldehyde (MDA) accumulation and enhanced the total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) activities in liver through regulating the nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) mediated antioxidant system. In addition, L. reuteri curtailed reactive oxygen species (ROS) production and mitigated the depletion of membrane potential and thus recovering mitochondrial function disturbed by DQ challenge. Moreover, L. reuteri inhibited hepatic toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-kappa B (NF-κB) pathway activation, downregulated the pro-inflammatory-response-related gene expressions (IL-1β, TNF-α, and IL-6) and the phosphorylation levels of IκBα, and p65 in liver and thus reducing hepatic inflammatory response and apoptosis. Overall, the findings indicate that L. reuteri provides significant protection against oxidative stress, mitochondrial impairment, inflammatory response and apoptosis caused by DQ in laying hens, and highlight its potential as a therapeutic probiotic for alleviating oxidative stress and mitochondrial dysfunction to prolong the health of aging poultry.
Collapse
Affiliation(s)
- Shenao Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weichen Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Xinchang 312500, China.
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Xinchang 312500, China.
| |
Collapse
|
3
|
Zhang Z, Ying S, Xiang R. Spatial analysis of airborne bacterial concentrations and microbial communities in a large-scale commercial layer facility. Poult Sci 2025; 104:105021. [PMID: 40090226 PMCID: PMC11957673 DOI: 10.1016/j.psj.2025.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025] Open
Abstract
This study investigated the spatial distribution patterns of airborne bacterial concentrations and microbial community structures in a modern commercial layer facility housing approximately 50,000 laying hens equipped with advanced environmental control systems. Air samples were systematically collected at 50 strategically distributed locations using a six-stage Andersen microbial air sampler, while environmental samples (dust, manure, intestinal contents) were characterized using 16S rRNA gene sequencing. Results demonstrated a distinct longitudinal gradient in airborne bacterial concentrations, progressively increasing from the air inlet (883±177 CFU/m³) to exhaust fans (12,650±813 CFU/m³), with a facility-wide mean concentration of 5,618±530 CFU/m³. Spatial analysis revealed significant bacterial concentration heterogeneity, with elevated bacterial loads (>8,000 CFU/m³) concentrated in central regions while peripheral areas maintained lower concentrations (<6,000 CFU/m³). Taxonomic profiling identified Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes as predominant phyla across all sample types, with significant compartment-specific distribution patterns: Firmicutes dominated intestinal samples (72.9 %), Proteobacteria and Bacteroidetes were enriched in posterior dust and manure samples, while Acinetobacter exhibited highest abundance (19.90 %) in anterior dust. Differential abundance analysis demonstrated significant enrichment of fecal-associated bacteria (particularly Bacteroides and Escherichia coli) in posterior sampling locations, establishing direct correlations between environmental parameters and microbial dissemination patterns. This comprehensive spatial-microbial analysis elucidates critical factors influencing bacterial dispersion within intensive poultry production environments, providing the empirical foundation for implementing concentration-based risk stratification management systems and targeted interventions to enhance biosecurity, minimize disease transmission, and optimize poultry health in commercial operations.
Collapse
Affiliation(s)
- Zhirong Zhang
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Senhong Ying
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Rong Xiang
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
4
|
Zhu X, Zhang X, Zhang Y, Li F. Supplemental Probiotics, Postbiotics, and Their Combination on the Growth, Slaughter Variables, Organ Development, Intestinal Morphology, and Cecal Microbiota of Broilers. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10494-6. [PMID: 40205163 DOI: 10.1007/s12602-025-10494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2025] [Indexed: 04/11/2025]
Abstract
This study was performed to evaluate the effects of dietary supplementation with viable Bacillus subtilis, inactivated Lactobacillus plantarum, and their combination on growth and slaughter performance, immune organ and small intestine development, and cecal microbiota of broilers. A total of 480 one-day-old broilers were used across a 42-day feeding experiment and were fed a basal diet, a basal diet + 300 mg/kg viable B. subtilis (probiotic), 320 mg/kg heat-killed L. plantarum (postbiotic), or their mixtures (combination). Each diet had six replicates, and each replicate had 20 broilers. Compared to the control group, the final body weight and average daily gain increased, and the feed conversion ratio decreased in the probiotic and postbiotic groups, while the combination group showed parameters comparable to those of the postbiotic group. Feeding broilers with probiotic, postbiotic, and their combination increased the dressing-out percentage, indices of the spleen and bursa of Fabricius, and lengths and weights of the small intestine. In addition, the villus height/crypt depth ratio of both the duodenum and jejunum was increased in the probiotic and postbiotic groups. Broilers in the combination group had a lower abundance of Proteobacteria, while those in the probiotic and postbiotic groups had a higher abundance of Desulfovibrio in the cecum. Overall, we concluded that dietary supplementation with viable B. subtilis and inactivated L. plantarum could improve growth and slaughter performance, organ development, intestinal morphology, and cecal microbiota of broilers. However, their combination had not yielded a synergistic and additive effect on broilers.
Collapse
Affiliation(s)
- Xin Zhu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xinjie Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yong Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Fangfang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
5
|
Wang L, Li A, Zhang X, Iqbal M, Aabdin ZU, Xu M, Mo Q, Li J. Effect of Bacillus subtilis isolated from yaks on D-galactose-induced oxidative stress and hepatic damage in mice. Front Microbiol 2025; 16:1550556. [PMID: 40109966 PMCID: PMC11920168 DOI: 10.3389/fmicb.2025.1550556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Acute hepatic injury is a severe condition that is always accompanied by oxidative stress and inflammation, seriously threatening the health of the host. Probiotics have been shown to be involved in the regulation of antioxidant system and gut microbiota activity, but studies on the effects of yak derived Bacillus subtilis (B. subtilis) on acute liver injury and oxidative stress remain scarce. Here, we aim to explore the ameliorative effects of B. subtilis isolated from yaks on oxidative stress and hepatic injury caused by D-galactose, as well as the underlying processes. Results indicated that B. subtilis administration, particularly the BS3, significantly mitigated hepatic damage induced by D-galactose in mice as evidenced by ameliorating liver tissue damage as well as decreasing ALT (p < 0.05) and AST (p < 0.05) levels. Additionally, the B. subtilis intervention was demonstrated to enhance the antioxidant system in D-galactose-exposed mice, as manifested by increased T-AOC and SOD, alongside a decrease in MDA levels (p < 0.05). Meanwhile, B. subtilis intervention could effectively mitigate oxidative damage via modulating the Keap1/Nrf2 signaling pathway. Importantly, B. subtilis exhibited a pronounced protective effect against D-galactose-induced intestinal barrier dysfunction through improving tight junction proteins. The gut microbiota results suggest that BS3 alters the abundance of some gut flora such as Firmicutes phylum and Oscillibacter and Lachnospiraceae_NK4A136 genera, which affects the composition of the gut microbiota and reverses the decrease in the microbial richness index in mice. In summary, these findings demonstrated that B. subtilis isolated from yaks serve as a promising candidate to ameliorate oxidative damage and hepatic injury. Meanwhile, the positive regulation effect of B. subtilis on gut microbiota and intestinal mucosal barrier may be one of its underlying mechanisms to alleviate oxidative stress and hepatic injury.
Collapse
Affiliation(s)
- Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaohu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zain Ul Aabdin
- Department of Preventive Veterinary Medicine and Public Health, Faculty of Veterinary and Animal Sciences, Ziauddin University, Karachi, Pakistan
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Nyingchi, China
| |
Collapse
|
6
|
Hu D, Wu X, Song P, Hou M, Pan L, Yang X, Sun Q, Ni Y. Dietary Supplementation with Multi-strain Probiotic Formulation (Bifidobacterium B8101, Lactobacillus L8603, Saccharomyces bayanus S9308, and Enterococcus SF9301), Betaine or their Combination Promotes Growth Performance Via Improving Intestinal Development in Broilers. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10434-w. [PMID: 39715924 DOI: 10.1007/s12602-024-10434-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
This study aimed to investigate the effect of a multi-strain probiotic (Bifidobacterium B8101, Lactobacillus L8603, Saccharomyces bayanus S9308, Enterococcus SF9301), betaine, and their combination on intestinal epithelial development and growth performance in broilers. A total of 2800 one-day-old Ross 308 chickens were randomly divided into four groups: control (Ctrl) fed with a basal diet, multi-strain probiotic (Pb) group fed with basal diet + 100 mg/day/bird probiotic (1-14 d), betaine (Bet) fed with basal diet + 0.1% betaine (1-35 d), and a combination (Pb&Bet) fed with both probiotics and betaine. Each group was set with 10 replicates, with 70 chickens in each replicate. Result showed that betaine significantly increased the body weight (BW) of broilers at 14 d of age and decreased the feed conversion ratio (FCR) from 1 to 14 d of age. Multi-strain probiotic significantly increased BW at 21 and 35 d of age, and decreased FCR from 15 to 21 d of age. Pb&Bet group exhibited a higher BW but lower FCR than Ctrl throughout entire experiment (p < 0.05). Consistently, Pb&Bet group had a higher pectoralis muscle weight, fiber diameter and cross-sectional area compared to Ctrl group (p < 0.05). Pb&Bet group also increased villus height and the ratio of villus height to crypt depth (V/C) in duodenum at both 21 d and 35 d of age. Moreover, at 35 d of age, the mucin 2 (MUC2) expression in duodenum and jejunum was significantly increased in Pb&Bet group, and the interaction of betaine and probiotics was observed on claudin 1 (CLDN1), zonula occludens 1 (ZO1), and junctional adhesion molecule 2 (JAM2) expression in the ileum (p < 0.05). In conclusion, the combination of probiotics and betaine shows better potential for improving growth performance and promoting small intestinal development.
Collapse
Affiliation(s)
- Dan Hu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoting Wu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pin Song
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manman Hou
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li'an Pan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoran Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinwei Sun
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Xiao X, Cui T, Qin S, Wang T, Liu J, Sa L, Wu Y, Zhong Y, Yang C. Beneficial effects of Lactobacillus plantarum on growth performance, immune status, antioxidant function and intestinal microbiota in broilers. Poult Sci 2024; 103:104280. [PMID: 39305612 PMCID: PMC11437764 DOI: 10.1016/j.psj.2024.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Lactobacillus plantarum (L. plantarum) has been globally regarded as antibiotic alternative in animal farming in the past few years. However, the potential function of L. plantarum in broilers has not been systemically explored. In this study, a total of 560 one-day-old yellow-feathered broilers were randomly divided into 3 groups, fed with basal diet and drank with L. plantarum HJZW08 (LP) at the concentration of 0 (CON), 1000 × 10^5 (LP1000), and 2000 × 10^5 CFU/L (LP2000) for 70 d. Results showed that the body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), immunoglobulin A (IgA), IgY, and anti-inflammatory interleukin 10 (IL-10) were markedly improved (P < 0.05), while the levels of pro-inflammatory IL-2, IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in serum were decreased (P < 0.05) in the LP2000 group comparing with the CON group. Besides, LP treatment groups prominently increased the levels and activities of antioxidant enzymes and decreased the content of malondialdehyde (MDA). Additionally, the levels of isobutyric acid in the LP1000 and LP2000 groups and isovaleric acid in the LP2000 group were significantly improved. More importantly, the α-diversity and microbial structure of intestinal microbiota were pronounced altered by LP supplementation. The results showed that only the relative abundance of Actinobacteriota was significantly increased in the LP2000 group, while 6 kinds of bacteria on genus level were significantly changed. For further validation, linear discriminant analysis with effect size (LEfSe) plots revealed that 8 amplicon sequence variants (ASVs) were predominant in the CON group, while Bacteroides and other beneficial species such as Lactimicrobium massiliense (ASV4 and ASV36), Intestinimonas butyriciproducens (ASV71), and Barnesiella viscericola (ASV152 and ASV571) were enriched in the LP groups. Taken together, dietary supplementation with LP obviously enhanced the immune status, antioxidant capacity, and stabilized the cecal microbiota and SCFAs, contributing to the improvement of growth performance of broilers. Our study laid good foundation for the application of probiotic Lactobacillus in animal industry in the future.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Tiantian Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Songke Qin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Tao Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Lihan Sa
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Yifan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China.
| |
Collapse
|
8
|
Han M, Lu Q, Wang D, Zhou K, Jia C, Teng L, Hamuti A, Peng X, Hu Y, Li W, Yue M, Li Y. Oral co-administration of Lactiplantibacillus plantarum 16 and Lacticaseibacillus rhamnosus P118 improves host defense against influenza A virus infection. J Virol 2024; 98:e0095024. [PMID: 39258911 PMCID: PMC11494971 DOI: 10.1128/jvi.00950-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
Influenza is an important zoonotic disease that persistently threatens global public health. While it is widely acknowledged that probiotics can modulate the host response to protect the host against infectious disease, the prophylactic efficacy on respiratory viral infection and the detailed mechanism remains elusive. Lactobacillus, the most commonly used probiotic widely applied in food production, has garnered significant attention. In our study utilizing both C57BL/6 and BALB/c mouse models, we explored the protective effect against two strains of influenza virus, A/Mink/China/01/2014(H9N2) and A/California/04/2009(H1N1), through the administration of Lactiplantibacillus plantarum strain 16 (L. plantarum 16) and Lacticaseibacillus rhamnosus strain P118 (L. rhamnosus P118), aiming to identify robust probiotic strains with antiviral properties. Our findings indicate that administering L. plantarum 16 or L. rhamnosus P118 alone does not provide sufficient protection against influenza. However, the co-administration of L. plantarum 16 and L. rhamnosus P118 dramatically reduces viral titers in the respiratory tract and lung, thereby markedly alleviating the clinical symptoms, improving prognosis, and reducing mortality. The mechanisms underlying this effect involve the modulation of host gut microbiota and metabolism through the co-administration of L. plantarum 16 and L. rhamnosus P118, resulting in enrichment of Firmicutes and enhancement of phenylalanine-related metabolism, ultimately leading to an augmentation of the antiviral immune response. Notably, we identified that the circulating metabolic molecule 2-Hydroxycinnamic acid plays a significant role in combating influenza. Our data suggest the potential utility of L. plantarum 16 and L. rhamnosus P118 two-bacterium or 2-Hydroxycinnamic acid in preventing influenza.IMPORTANCEVaccination represents the most optimal strategy to control influenza. Nevertheless, influenza viruses constantly evolve due to antigenic drift and shift, leading to the need for regular updates on influenza vaccines. Additionally, vaccination failure poses significant challenges to influenza prevention. Therefore, it is essential and beneficial to identify novel or universal antiviral measures to protect against influenza. While cumulative data suggest that probiotics offer protection against infectious diseases, the specific mechanisms, such as the effective metabolites or components, remain largely unknown. Our research discovered the capacity of combinational two-bacterium Lactiplantibacillus plantarum 16 and Lacticaseibacillus rhamnosus P118 to fight against influenza infection in a mouse model. The protection may occur through modulating the host's gut microbiota and metabolism, further influencing the host's antiviral immune response. Notably, we have identified a novel metabolic molecule, 2-Hydroxycinnamic acid, capable of enhancing antiviral response and restricting viral replication in vivo.
Collapse
Affiliation(s)
- Meiqing Han
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Qi Lu
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Di Wang
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Kun Zhou
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Chenghao Jia
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Lin Teng
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Azeguli Hamuti
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Xianqi Peng
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Yixiang Hu
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Min Yue
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Li
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Dai L, Wang BW, Fan WL, Qian W, Zhang J, Wang BH, Zhang BB, Zhang MA. Effects of dietary propyl gallate and Lactobacillus plantarum addition on growth, intestinal morphology, antioxidant capacity, and immune functions of Pekin ducks. Animal 2024; 18:101324. [PMID: 39357490 DOI: 10.1016/j.animal.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
The interaction between probiotic bacteria and polyphenol antioxidants can potentially enhance animal health. The present study examined the effects of propyl gallate and Lactobacillus plantarum supplementation on the growth, intestinal morphology, antioxidant capacity, and immune functions of Pekin ducks. A total of 128 male Pekin ducks (7-day-old) were allocated to four treatment groups with four replicates of eight birds each. The ducks were fed the corn-soybean based diet (the control), supplemented with either propyl gallate (100 mg/kg), Lactobacillus plantarum (4 × 109 CFU/kg), or both, for 5 weeks. Dietary supplementation with propyl gallate and Lactobacillus plantarum had no significant effect on feed intake (P > 0.05), but increased average daily gain (P < 0.05). Lactobacillus plantarum also reduced the feed/gain ratio (P < 0.05). Villus height (VH) in the duodenum and ileum was increased by supplementation, while only propyl gallate supplement increased VH in the jejunum (P < 0.05). Supplementation had no effect on small intestine crypt depth (P > 0.05). Enhanced total superoxide dismutase activity was observed with supplementation (P < 0.05), but no effects were seen on catalase, malondialdehyde, total antioxidant capacity, and glutathione peroxidase values (P > 0.05). Serum immunoglobulin G was increased with Lactobacillus plantarum (P < 0.05), but not with propyl gallate (P > 0.05). No change in IgA and IgM concentrations was observed with supplementation. In conclusion, dietary supplementation with propyl gallate, Lactobacillus plantarum, or both, enhanced the villus height of the small intestines, improving the growth rate of Pekin ducks. The synergistic effects of both propyl gallate and Lactobacillus plantarum on the villus height and serum total superoxide dismutase activity surpassed the individual effects of each supplement in Pekin ducks.
Collapse
Affiliation(s)
- L Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - B W Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - W L Fan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - W Qian
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - J Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - B H Wang
- Qingdao Huihe Biotechnology Co., Ltd, Qingdao 266109, China
| | - B B Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - M A Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
10
|
Guo W, Liu T, Wang W, Yu Y, Neves ALA, Zhou M, Chen X. Survey of the fecal microbiota of indigenous small ruminants living in different areas of Guizhou. Front Microbiol 2024; 15:1415230. [PMID: 39176283 PMCID: PMC11340823 DOI: 10.3389/fmicb.2024.1415230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Gut microbiota are associated with the health and performance of ruminant species, and they are affected by altitude, host genetics, and sex. However, there has been little research on comparing the fecal microbiota of indigenous small ruminants such as sheep and goats in Guizhou province, China. In the present study, we revealed the effect of altitude, genetics, and sex on fecal microbiota profiles and enterotypes in indigenous small ruminants of Guizhou province, China. Methods Fecal samples were collected from Hei and Qianbei Ma goats and Weining sheep in the Chinese province of Guizhou. 16S rRNA gene sequencing targeting the V3-V4 region was performed using the Illumina MiSeq platform. Sequences were processed using QIIME2, and the qualified sequences were processed using the plugin DADA2 to generate amplicon sequence variants (ASVs). The statistical analysis was performed using R studio. Results The fecal microbial profile was found to vary by herd (influenced by genetics/altitude) and sex. All samples were categorized into two enterotypes. The first enterotype is dominated by UCG-005, and the second enterotype is dominated by the Christensenellaceae_R-7_group, which may be highly driven by the host's genetics (breed). The predicted functional profiles of the fecal microbiota were also assigned to two clusters that corresponded exactly to the enterotypes. Cluster 1 of the functional profiling was characterized by biosynthesis pathways, and cluster 2 was characterized by energy metabolism pathways. Discussion Our findings may provide new insights into the fecal microbial community and enterotypes in small ruminants by herds, offering clues for understanding the mechanisms by which the fecal microbiota contribute to divergent host phenotypes in indigenous small ruminants in Guizhou.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tingmei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Weiwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Yinshu Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - André Luis Alves Neves
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Wang L, Nabi F, Zhang X, Zhou G, Shah QA, Li S, Lu Y, Mu S, Zhu X, Lin Z, Li J. Effects of Lactobacillus plantarum on Broiler Health: Integrated Microbial and Metabolomics Analysis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10336-x. [PMID: 39090454 DOI: 10.1007/s12602-024-10336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Given China's prohibition on the utilization of antibiotics as feed additives in 2020, we aim to investigate nutrition additives that are both efficient and safe. Lactobacillus, a well-recognized beneficial probiotic, has explicitly been investigated for its effects on health status of the host and overall impact on food industry. To evaluate effects of Lactobacillus plantarum (LW) supplementation on broiler chicken, we conducted comprehensive multi-omics analysis, growth performance evaluation, RT-qPCR analysis, and immunofluorescence. The findings revealed that LW supplementation resulted in a substantial progress in growth performance (approximately 205 g increase in final body weight in comparison to the control group (p < 0.01)). Additionally, LW exhibited promising potential for enhancing antioxidant properties of serum and promoting gut integrity and growth as evidenced by improved antioxidant indices (p < 0.01), intestinal villus morphology (p < 0.01), and enhanced gut barrier function (p < 0.01). Meanwhile, the multi-omics analysis, including 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry, revealed an enrichment of beneficial microbes in the gut of broilers that were supplemented with LW, while simultaneously depleting harmful microorganisms. Moreover, a noteworthy modification was observed in gut metabolic profiling subsequent to the execution of the probiotic strategy. Specifically, variations were noticed in the levels of metabolites and metabolic pathways such as parathyroid hormone synthesis, inflammatory mediator regulation of TRP channels, oxidative phosphorylation, and mineral absorption. Taken together, our findings validate that LW administration produces valuable effects on the health and growth performance of broilers owing to its capability to boost the gut microbiota homeostasis and intestinal metabolism. Present findings signify the potential of LW as a dietary additive to promote growth and development in broiler chickens.
Collapse
Affiliation(s)
- Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Fazul Nabi
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Xiaohu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guangyu Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Siyuan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaozhong Lu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Siyang Mu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaohui Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhengrong Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
12
|
Li X, Li J, Yuan H, Chen Y, Li S, Jiang S, Zha Xi Y, Zhang G, Lu J. Effect of supplementation with Glycyrrhiza uralensis extract and Lactobacillus acidophilus on growth performance and intestinal health in broiler chickens. Front Vet Sci 2024; 11:1436807. [PMID: 39091388 PMCID: PMC11291472 DOI: 10.3389/fvets.2024.1436807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Intestinal microbiota community is an important factor affecting the nutritional and health status of poultry, and its balance is crucial for improving the overall health of poultry. The study aimed to investigate the effect of dietary supplementation with Glycyrrhiza uralensis extract (GUE), Lactobacillus acidophilus (Lac) and their combination (GL) on growth performance and intestinal health in broilers in an 84-day feeding experiment. Supplementary 0.1% GUE and 4.5×107 CFU/g Lac significantly increased average daily gain (ADG), and GL (0.1% GUE and 4.5×107 CFU/g Lac) increased ADG and average daily feed intake (ADFI), and decreased feed conversion rate (FCR) in broilers aged 29 to 84 d and 1 to 84 d. Dietary GUE, Lac and GL increased the superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity and decreased Malondialdehyde (MDA) content in the jejunum mucosa of broilers, and increased secretory IgA (sIgA) content in broilers at 84 d. Moreover, GUE, Lac and GL increased cecal microbial richness and diversity, and modulated microbial community composition. Both GUE and Lac reduced the harmful bacteria Epsilonbacteraeota, Helicobacter, and H. pullorum at 28 d and Proteobacteria, Escherichia, and E. coli at 84 d, while Lac and GL increased beneficial bacteria Lactobacillus and L. gallinarum at 28 d. Compared with individual supplementation, GL markedly increased the SOD activity and the sIgA content, and reduced Helicobacter and Helicobacter pullorum. In conclusion, GUE and Lactobacillus acidophilus as feed additives benefit growth performance and intestinal health, and their combined use shows an even more positive effect in broilers.
Collapse
Affiliation(s)
- Ximei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jiawei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Haotian Yuan
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yan Chen
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shuaibing Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Susu Jiang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
- Department of Animal Science and Technology, Gansu Agriculture Technology College, Lanzhou, China
| | - Yingpai Zha Xi
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Guohua Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jianxiong Lu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
13
|
Kerek Á, Román IL, Szabó Á, Papp M, Bányai K, Kardos G, Kaszab E, Bali K, Makrai L, Jerzsele Á. Comprehensive Metagenomic Analysis of Veterinary Probiotics in Broiler Chickens. Animals (Basel) 2024; 14:1927. [PMID: 38998039 PMCID: PMC11240415 DOI: 10.3390/ani14131927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Probiotics are widely used in broiler chickens to support the gut microbiome, gut health, and to reduce the amount of antibiotics used. Despite their benefits, there is concern over their ability to carry and spread antimicrobial resistance genes (ARGs), posing a significant public health risk. This study utilized next-generation sequencing to investigate ARGs in probiotics approved for poultry, focusing on their potential to be transferred via mobile genetic elements such as plasmids and phages. We examined the gut microbiome and resistome changes in 60 broiler chickens over their rearing period, correlating these changes with different probiotic treatments. Specific resistance mechanisms against critically important antibiotics were identified, including genes related to fluoroquinolone resistance and peptide antibiotic resistance. We also found genes with significant relevance to public health (aadK, AAC(6')-Ii) and multiple drug-resistance genes (vmlR, ykkC, ykkD, msrC, clbA, eatAv). Only one phage-encoded gene (dfrA43) was detected, with no evidence of plasmid or mobile genetic element transmission. Additionally, metagenomic analysis of fecal samples showed no significant changes corresponding to time or diet across groups. Our findings highlight the potential risks associated with the use of probiotics in poultry, particularly regarding the carriage of ARGs. It is crucial to conduct further research into the molecular genetics of probiotics to develop strategies that mitigate the risk of resistance gene transfer in agriculture, ensuring the safe and effective use of probiotics in animal husbandry.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
| | - István László Román
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
| | - Márton Papp
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- Centre for Bioinformatics, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Krisztián Bányai
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Gábor Kardos
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- National Public Health Center, Albert Flórián út 2-6, H-1097 Budapest, Hungary
- Department of Gerontology, Faculty of Health Sciences, University of Debrecen, Sóstói út 2-4, H-4400 Nyíregyháza, Hungary
| | - Eszter Kaszab
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- One Health Institute, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Krisztina Bali
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - László Makrai
- Autovakcina Kft., Szabadság sgrt. 57, H-1171 Budapest, Hungary;
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (I.L.R.); (Á.S.); (K.B.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary; (M.P.); (G.K.); (E.K.); (K.B.)
| |
Collapse
|
14
|
Stege PB, Schokker D, Harders F, Kar SK, Stockhofe N, Perricone V, Rebel JMJ, de Jong IC, Bossers A. Diet-induced changes in the jejunal microbiota of developing broilers reduce the abundance of Enterococcus hirae and Enterococcus faecium. BMC Genomics 2024; 25:627. [PMID: 38910254 PMCID: PMC11193906 DOI: 10.1186/s12864-024-10496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
Modern broiler breeds allow for high feed efficiency and rapid growth, which come at a cost of increased susceptibility to pathogens and disease. Broiler growth rate, feed efficiency, and health are affected by the composition of the gut microbiota, which in turn is influenced by diet. In this study, we therefore assessed how diet composition can affect the broiler jejunal gut microbiota. A total of 96 broiler chickens were divided into four diet groups: control, coated butyrate supplementation, medium-chain fatty acid supplementation, or a high-fibre low-protein content. Diet groups were sub-divided into age groups (4, 12 and 33 days of age) resulting in groups of 8 broilers per diet per age. The jejunum content was used for metagenomic shotgun sequencing to determine the microbiota taxonomic composition at species level. The composed diets resulted in a total of 104 differentially abundant bacterial species. Most notably were the butyrate-induced changes in the jejunal microbiota of broilers 4 days post-hatch, resulting in the reduced relative abundance of mainly Enterococcus faecium (-1.8 l2fc, Padj = 9.9E-05) and the opportunistic pathogen Enterococcus hirae (-2.9 l2fc, Padj = 2.7E-08), when compared to the control diet. This effect takes place during early broiler development, which is critical for broiler health, thus exemplifying the importance of how diet can influence the microbiota composition in relation to broiler health. Future studies should therefore elucidate how diet can be used to promote a beneficial microbiota in the early stages of broiler development.
Collapse
Affiliation(s)
- Paul B Stege
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands.
| | - Dirkjan Schokker
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Soumya K Kar
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Norbert Stockhofe
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Vera Perricone
- Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy
| | - Johanna M J Rebel
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| | - Ingrid C de Jong
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Alex Bossers
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, Netherlands
| |
Collapse
|
15
|
Navale VD, Yadav R, Khilari A, Dharne M, Shanmugam D, Vamkudoth KR. Dietary Supplementation of Lactococcus lactis subsp. lactis BIONCL17752 on Growth Performance, and Gut Microbiota of Broiler Chickens. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10313-4. [PMID: 38904895 DOI: 10.1007/s12602-024-10313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The rapid rise of antimicrobial resistance (AMR) is a global concern, being triggered by the overuse or misuse of antibiotics in poultry farming sector. We evaluated Lactococcus lactis subsp. lactis BIONCL17752 strain, and characterized its probiotic potential to endure hostile gastrointestinal conditions. Genome sequencing analysis revealed probiotics traits, and gene clusters involved in bacteriocins, lactococcin A, and sactipeptides production. The absence of genes for antibiotic resistance, virulence, and biogenic amine production indicates the potential of probiotic strain. The BIONCL17752 strain was explored for antibiotic-free feed supplement for growth promotor in broiler chicken. The feed supplemented with 4 × 109 CFU/kg of probiotic strain, in combination with various concentrations of fructooligosaccharides (FOS) 1.0, 2.5, and 5.0 kg/tonne in starter, grower, and finisher diets, respectively. A significant improvement of body weight 152 to 171 g/bird (p < 0.05), and a low feed conversion ratio (FCR) of 1.62, was achieved without using synthetic antibiotics for growth promotion. The results of biochemical, hematological, and histological examinations showed normal features, indicating that the treatment had no harmful effects on the bird's health. Reduced levels of cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) in serum are an indication of the health benefits for the treated birds. Microbial community analysis of fecal samples of poultry birds exhibited a higher abundance of Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, and Fusobacteria. Probiotic treatment resulted in reduced Firmicutes and increased Bacteroidetes (F/B ratio) in the broiler's gut which highlights the benefits of probiotic dietary supplements. Importantly, the probiotic-fed group exhibited a high abundance of carbohydrate-active enzymes (CAZyme) such as glycoside hydrolases (GH), glycoside transferases (GT), and carbohydrate-binding module (CBM) hydrolases which are essential for the degradation of complex sugar molecules. The probiotic potential of the BIONCL17752 strain contributes to broilers' health by positively affecting intestinal microbiota, achieving optimal growth, and lowering mortality, demonstrating the economic benefits of probiotic treatment in organic poultry farming.
Collapse
Affiliation(s)
- Vishwambar D Navale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakeshkumar Yadav
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ajinkya Khilari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mahesh Dharne
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhanasekaran Shanmugam
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Rao Z, Li Y, Yang X, Guo Y, Zhang W, Wang Z. Diet xylo-oligosaccharide supplementation improves growth performance, immune function, and intestinal health of broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:165-176. [PMID: 38779325 PMCID: PMC11109738 DOI: 10.1016/j.aninu.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 05/25/2024]
Abstract
The effects of xylo-oligosaccharides (XOS) on broiler growth performance, immune function, and intestinal health were investigated. A total of 540 one-d-old Arbor Acres Plus broilers were randomly divided into 5 groups with 6 replicates per group and 18 chickens per replicate. Broilers in the control (CON) group received a corn-soybean meal based basal diet, those in the antibiotics (ANT) group received the basal diet plus 500 mg/kg oxytetracycline, and those in XOS groups received the basal diet plus 150, 300, or 450 mg/kg XOS. Compared with CON, the body weight at 42 d and average daily gain from 1 to 42 d were significantly increased in the 150, 450 mg/kg XOS-added and ANT groups (P = 0.018), and the relative expression of claudin-1 and ZO-1 mRNA in the ileum was significantly higher in the 300 and 450 mg/kg XOS-added groups (P < 0.001). The feed conversion ratios (P < 0.001) and abdominal fat rates (P = 0.012) of broilers from 1 to 42 d of age were significantly lower in all XOS-added groups than in the control group. Splenic index (P = 0.036) and bursa of Fabricius index (P = 0.009) were significantly better in the ANT group and each XOS-added group than in the control group. Compared to CON and ANT, serum IgA (P = 0.007) and IgG (P = 0.002) levels were significantly higher in the 300 mg/kg XOS-added group, and the relative abundance of short-chain fatty acid-producing genera (Alistipes) was also significantly higher (P < 0.001). Meanwhile, ileal villus height (P < 0.001) and ratio of villus height to crypt depth (V:C) (P = 0.001) were significantly increased in XOS-added broilers. In analysis of relationships between cecal microbes and the physical barrier of the gut, [Ruminococcus]_torques_group was positively correlated with mRNA expression of ileal ZO-1 and claudin-1 (P < 0.05), and Bacteroides was positively correlated with increased ileal villus height and V:C (P < 0.05). Overall, XOS addition to broiler diets improved growth performance, promoted intestinal health by enhancing intestinal barrier function and regulating cecal microbiota diversity, and had positive effects on immunity.
Collapse
Affiliation(s)
- Zhiyong Rao
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue Li
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaopeng Yang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongpeng Guo
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Zhang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhixiang Wang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
17
|
Dang DX, Zou Q, Xu Y, Cui Y, Li X, Xiao Y, Wang T, Li D. Feeding Broiler Chicks with Bacillus subtilis, Clostridium butyricum, and Enterococcus faecalis Mixture Improves Growth Performance and Regulates Cecal Microbiota. Probiotics Antimicrob Proteins 2024; 16:113-124. [PMID: 36512203 DOI: 10.1007/s12602-022-10029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
A total of 300 day-old Arbor Acres Plus broiler chicks (mixed sex) was used to evaluate the effects of dietary supplementation of Bacillus subtilis, Clostridium butyricum, and Enterococcus faecalis mixture (PB) on growth performance, ileal morphology, and cecal microbiota. All birds were randomly assigned into 3 groups based on the initial body weight. There were 5 replicate cages per group and 20 birds per cage. The experimental period was 42 days. Dietary treatments were based on a basal diet and supplemented with 0, 0.05, or 0.10% PB. The results indicated that broiler chicks fed with the diet supplemented with graded levels of PB have quadratically improved their body weight gain and feed intake; the highest value was presented in 0.05% PB-containing group. In addition, villus to crypt ratio linearly increased with the concentration of PB increased in the diet. The alpha diversity linearly increased by PB supplementation, and the highest value was presented in 0.10% PB-containing group. In terms of growth performance, the suitable dose of PB used in the diet was 0.05%. However, ternary plot showed that the harmful bacteria, Escherichia-Shigella, was enriched in 0.05% PB-containing group. In brief, we considered that dietary supplementation of graded levels of PB improved growth performance and regulated cecal microbiota in broiler chicks.
Collapse
Affiliation(s)
- De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121001, China
- Department of Animal Resource & Science, Dankook University, Cheonan, 31116, South Korea
| | - Qiangqiang Zou
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yunhe Xu
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yan Cui
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Xu Li
- Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou, 121000, China
| | - Yingying Xiao
- Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou, 121000, China
| | - Tieliang Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
18
|
Zhou X, Hu M, Luo J, Xie B, Ma P, Wu G, Xue F. Resistant effects determination of Lactobacillus supplementation on broilers to consecutive hydrogen sulfide exposure. Poult Sci 2023; 102:103102. [PMID: 37783191 PMCID: PMC10551555 DOI: 10.1016/j.psj.2023.103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023] Open
Abstract
Hydrogen sulfide (H2S) is one of the most irritant gases present in rearing stalls that suppress broilers' healthy growth, which is seriously required an effective alleviation method. In this study, Lactobacillus was supplemented to investigate the alleviative effects on broilers reared under consecutive H2S exposure. A total of 180 healthy 1-day-old male AA broilers with similar body weight (40.8 ± 1.0 g) were randomly allotted into the control treatment (CON), the hydrogen sulfide treatment (H2S), and the Lactobacillus supplement under H2S exposure treatment (LAC) for a 42-d-long feeding process. Growth and carcass performances, immunity-related parameters, intestinal development and cecal microbial communities, and blood metabolites were measured. Results showed that Lactobacillus supplement significantly increased the body weight gain (BWG) while reduced the mortality rate, abdominal fat and bursa of fabricius weight during the whole rearing time compared with H2S treatment (P < 0.05). Serum LPS, IL-1β, IL-2, and IL-6 contents were observed significantly increased after H2S treatment while remarkably decreased after Lactobacillus supplementation(P < 0.05). Intestinal morphology results showed a significant higher in the development of ileum villus height (P < 0.05). Cecal microbiota results showed the bacterial composition was significantly altered after Lactobacillus supplement (P < 0.05). Specifically, Lactobacillus supplement significantly decreased the relative abundance of Faecalibacterium, while significantly proliferated the relative abundance of Lactobacillus, Bifidobacterium, Clostridium, and Campylobacter (P<0.05). Metabolic results indicated that Lactobacillus supplement may alleviate the harmful effects caused by H2S through regulating the pyrimidine metabolism, starch and sucrose metabolism, fructose and mannose degradation, and beta-alanine metabolism. In summary, Lactobacillus supplement effectively increased BWG and decreased mortality rate of broilers under H2S exposure by enhancing the body's immune capacity, proliferating beneficial microbes (e.g., Lactobacillus and Bifidobacterium), and regulating the physiological pyrimidine metabolism, starch and sucrose metabolism, and beta-alanine metabolism.
Collapse
Affiliation(s)
- Xiao Zhou
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, Hubei 442002, China
| | - Meijun Hu
- Nanchang key laboratory of animal health and safety production, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jiahui Luo
- Nanchang key laboratory of animal health and safety production, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Binghong Xie
- Nanchang key laboratory of animal health and safety production, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Pengyun Ma
- Nanchang key laboratory of animal health and safety production, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Guoyun Wu
- Nanchang key laboratory of animal health and safety production, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Fuguang Xue
- Nanchang key laboratory of animal health and safety production, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
19
|
Li J, Ma J, Wang W, Du H, Tang S, Li Y, Zhu W, Zhang R, Wan J. Alterations of ileal mucosa-associated microbiota in hypercholesterolemia patients. Heliyon 2023; 9:e22116. [PMID: 38076161 PMCID: PMC10709208 DOI: 10.1016/j.heliyon.2023.e22116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/11/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2025] Open
Abstract
Many metabolic diseases have been demonstrated to be associated with changes in the microbiome. However, no studies have yet been conducted to examine the characteristics of the mucosal microbiota of patients with hypercholesterolemia. We aimed to examine mucosa-associated microbiota in subjects with hypercholesterolemia. We conducted a case-control study, in which ileal mucosal samples were collected from 13 hypercholesterolemia patients and 13 controls for 16S rRNA gene sequencing. There were differences in the composition of ileal mucosal microbiota based on beta diversity between the hypercholesterolemia and control groups (P < 0.05). Compared with the control group, the phylum Bacteroidetes and the genera Bacteroides, Butyricicoccus, Parasutterella, Candidatus_Soleaferrea, and norank_f__norank_o__Izemoplasmatales were less abundant in the hypercholesterolemia group (P < 0.05), while the genus Anaerovibrio was enriched in the hypercholesterolemia group (P < 0.05). The relative abundance of Bacteroides was negatively correlated with total cholesterol and low-density lipoprotein cholesterol (P < 0.01). The relative abundance of Coprococcus was negatively correlated with triglycerides and body mass index (all P < 0.05). PICRUSt functional prediction analysis showed that pathways related to Glycerophospholipid metabolism, ABC transporters, Phosphotransferase system, and Biofilm formation - Escherichia coli, and infectious diseases of pathogenic Escherichia coli were enriched in the hypercholesterolemia group. This work suggests a potential role of ileal mucosal microbiota in the development of hypercholesterolemia.
Collapse
Affiliation(s)
- Jia Li
- Department of Gastroenterology, The 983rd Hospital of Joint Logistic Support Force of PLA, No. 60, Huangwei Road, Hebei District, Tianjin 300142, China
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Jinxia Ma
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Weihua Wang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Haitao Du
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuai Tang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Yi Li
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Wenya Zhu
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Ru Zhang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Jun Wan
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
20
|
Song D, Li A, Chen B, Feng J, Duan T, Cheng J, Chen L, Wang W, Min Y. Multi-omics analysis reveals the molecular regulatory network underlying the prevention of Lactiplantibacillus plantarum against LPS-induced salpingitis in laying hens. J Anim Sci Biotechnol 2023; 14:147. [PMID: 37978561 PMCID: PMC10655300 DOI: 10.1186/s40104-023-00937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Salpingitis is one of the common diseases in laying hen production, which greatly decreases the economic outcome of laying hen farming. Lactiplantibacillus plantarum was effective in preventing local or systemic inflammation, however rare studies were reported on its prevention against salpingitis. This study aimed to investigate the preventive molecular regulatory network of microencapsulated Lactiplantibacillus plantarum (MLP) against salpingitis through multi-omics analysis, including microbiome, transcriptome and metabolome analyses. RESULTS The results revealed that supplementation of MLP in diet significantly alleviated the inflammation and atrophy of uterus caused by lipopolysaccharide (LPS) in hens (P < 0.05). The concentrations of plasma IL-2 and IL-10 in hens of MLP-LPS group were higher than those in hens of LPS-stimulation group (CN-LPS group) (P < 0.05). The expression levels of TLR2, MYD88, NF-κB, COX2, and TNF-α were significantly decreased in the hens fed diet supplemented with MLP and suffered with LPS stimulation (MLP-LPS group) compared with those in the hens of CN-LPS group (P < 0.05). Differentially expressed genes (DEGs) induced by MLP were involved in inflammation, reproduction, and calcium ion transport. At the genus level, the MLP supplementation significantly increased the abundance of Phascolarctobacterium, whereas decreased the abundance of Candidatus_Saccharimonas in LPS challenged hens (P < 0.05). The metabolites altered by dietary supplementation with MLP were mainly involved in galactose, uronic acid, histidine, pyruvate and primary bile acid metabolism. Dietary supplementation with MLP inversely regulates LPS-induced differential metabolites such as LysoPA (24:0/0:0) (P < 0.05). CONCLUSIONS In summary, dietary supplementation with microencapsulated Lactiplantibacillus plantarum prevented salpingitis by modulating the abundances of Candidatus_Saccharimonas, Phascolarctobacterium, Ruminococcus_torques_group and Eubacterium_hallii_group while downregulating the levels of plasma metabolites, p-tolyl sulfate, o-cresol and N-acetylhistamine and upregulating S-lactoylglutathione, simultaneously increasing the expressions of CPNE4, CNTN3 and ACAN genes in the uterus, and ultimately inhibiting oviducal inflammation.
Collapse
Affiliation(s)
- Dan Song
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Aike Li
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Bingxu Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Jia Feng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Tao Duan
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Junlin Cheng
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Lixian Chen
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Weiwei Wang
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China.
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China.
| |
Collapse
|
21
|
Dou L, Liu C, Chen X, Yang Z, Hu G, Zhang M, Sun L, Su L, Zhao L, Jin Y. Supplemental Clostridium butyricum modulates skeletal muscle development and meat quality by shaping the gut microbiota of lambs. Meat Sci 2023; 204:109235. [PMID: 37301103 DOI: 10.1016/j.meatsci.2023.109235] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
This study evaluated the contributions of Clostridium butyricum on skeletal muscle development, gastrointestinal flora and meat quality of lambs. Eighteen Dorper (♂) × Small Tailed Han sheep (♀) crossed ewe lambs of similar weight (27.43 ± 1.94 kg; age, 88 ± 5 days) were divided into two dietary treatments. The control group was fed the basal diet (C group), and the probiotic group was supplemented with C. butyricum on the basis of the C group (2.5 × 108 cfu/g, 5 g/day/lamb; P group) for 90 d. The results showed that dietary C. butyricum elevated growth performance, muscle mass, muscle fiber diameter and cross-sectional area, and decreased the shear force value of meat (P < 0.05). Moreover, C. butyricum supplementation accelerated protein synthesis by regulating the gene expression of IGF-1/Akt/mTOR pathway. We identified 54 differentially expressed proteins that regulated skeletal muscle development through different mechanisms by quantitative proteomics. These proteins were associated with ubiquitin-protease, apoptosis, muscle structure, energy metabolism, heat shock, and oxidative stress. The metagenomics sequencing results showed that Petrimonas at the genus level and Prevotella brevis at the species level in the rumen, while Lachnoclostridium, Alloprevotella and Prevotella at the genus level in the feces, were significantly enriched in the P group. Also, butyric acid and valeric acid levels were elevated in both rumen and feces of the P group. Overall, our results support the idea that C. butyricum could change gastrointestinal flora, and affect skeletal muscle development and meat quality of lambs by modulating gut-muscle axis.
Collapse
Affiliation(s)
- Lu Dou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chang Liu
- Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010018, China
| | - Xiaoyu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihao Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guanhua Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
22
|
Moreira ALG, Silva GA, Silva PHF, Salvador SL, Vicente RM, Ferreira GC, Tanus-Santos JE, Mayer MPA, Ishikawa KH, de Souza SLS, Furlaneto FAC, Messora MR. Bifidobacterium animalis subspecies lactis HN019 can reduce the sequelae of experimental periodontitis in rats modulating intestinal parameters, expression of lipogenic genes, and levels of hepatic steatosis. J Periodontal Res 2023; 58:1006-1019. [PMID: 37482954 DOI: 10.1111/jre.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE To determine whether Bifidobacterium animalis subspecies lactis HN019 (B. lactis HN019) can reduce the sequelae of experimental periodontitis (EP) in rats modulating systemic parameters. BACKGROUND This study evaluated the effects of probiotic therapy (PROB) in the prevention of local and systemic damage resulting from EP. METHODS Forty-eight rats were allocated into four groups: C (control), PROB, EP, and EP-PROB. PROB (1 × 1010 CFU/mL) administration lasted 8 weeks and PE was induced on the 7th week by placing ligature on the animals' lower first molars. All animals were euthanized in the 9th week of the experiment. Biomolecular analyses, RT-PCR, and histomorphometric analyses were performed. The data obtained were analyzed statistically (ANOVA, Tukey, p < .05). RESULTS The EP group had higher dyslipidemia when compared to the C group, as well as higher levels of insulin resistance, proteinuria levels, percentages of systolic blood pressure, percentage of fatty hepatocytes in the liver, and expression of adipokines was up-regulated (LEPR, NAMPT, and FABP4). All these parameters (except insulin resistance, systolic blood pressure, LEPR and FABP4 gene expression) were reduced in the EP-PROB group when compared to the EP group. The EP group had lower villus height and crypt depth, as well as a greater reduction in Bacteroidetes and a greater increase in Firmicutes when compared to the EP-PROB group. Greater alveolar bone loss was observed in the EP group when compared to the EP-PROB group. CONCLUSION Bifidobacterium lactis HN019 can reduce the sequelae of EP in rats modulating intestinal parameters, attenuating expression of lipogenic genes and hepatic steatosis.
Collapse
Affiliation(s)
- André L G Moreira
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Giselle A Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Pedro H F Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio L Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Raphael M Vicente
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sérgio Luís Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Flávia A C Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Michel R Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
23
|
Du L, Chen W, Wang J, Huang L, Zheng Q, Chen J, Wang L, Cai C, Zhang X, Wang L, Zhong Q, Zhong W, Fang X, Liao Z. Beneficial Effects of Bacillus amyloliquefaciens D1 Soy Milk Supplementation on Serum Biochemical Indexes and Intestinal Health of Bearded Chickens. Microorganisms 2023; 11:1660. [PMID: 37512832 PMCID: PMC10385625 DOI: 10.3390/microorganisms11071660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the effects of dietary supplementation with Bacillus amyloliquefaciens D1 (B. amyloliquefaciens D1) on growth performance, serum anti-inflammatory cytokines, and intestinal microbiota composition and diversity in bearded chickens. To investigate the effects of Bacillus amyloliquefaciensa and fermented soy milk, 7-day-old broilers were orally fed different doses of Bacillus amyloliquefaciens D1 fermented soy milk for 35 days, with the unfermented soy milk group as the Placebo group. This study found that B. amyloliquefaciens D1 fermented soy milk improved the intestinal microbiota of broilers, significantly increasing the abundance of beneficial bacteria and decreasing the abundance of harmful bacteria in the gut. B. amyloliquefaciens D1 fermented soy milk also significantly reduced the serum lipopolysaccharide (LPS) content. The body weight and daily weight gain of broilers were increased. In conclusion, the results of this study are promising and indicate that supplementing the diets of bearded chickens with B. amyloliquefaciens D1 fermented soy milk has many beneficial effects in terms of maintaining intestinal microbiota balance and reducing inflammation in chickens.
Collapse
Affiliation(s)
- Liyu Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weizhe Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lingzhu Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qikai Zheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Linhao Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Changyu Cai
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangbin Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wujie Zhong
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
24
|
Liu L, Li L, Li C, Wang H, Zhang X, Ren Q, Zhang H, Jin N, Li C, Zhao C. Effects of Lactiplantibacillus plantarum LPJZ-658 Supplementation on the Production, Meat Quality, Intestinal Morphology, and Cecal Microbiota of Broilers Chickens. Microorganisms 2023; 11:1549. [PMID: 37375050 DOI: 10.3390/microorganisms11061549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the effects of L. plantarum LPJZ-658 on the production, meat quality, intestinal morphology, and cecal microbiota of broilers. White-feathered broilers (1 day old, n = 600) were randomly assigned to two groups and raised for six weeks. The individuals in the LPJZ-658 group were supplemented with 2.6 × 109 cfu/g LPJZ-658. The growth performance, meat quality, intestinal epithelium morphology, and cecal microbiota were observed. The results showed that the average daily gain, average daily feed intake, and feed conversion ratio of broilers in the LPJZ-658 group were significantly improved. In addition, the LPJZ-658 groups had a higher thigh muscle (TM) yield, TM color, TMpH24h, breast muscle (BM) pH24h, and BM color24h, while the BM cooking loss was significantly lower than the CON group. Moreover, supplementation with LPJZ-658 increased ileum and cecum length, duodenum and ileum villus height, and ileum villus height/crypt depth ratio. Furthermore, 16S rRNA sequencing revealed the dietary LPJZ-658 supplementation modulated the diversity and composition of cecal microflora. At the phylum level, the relative abundances of Proteobacteria, Actinobacteria, Verrucomicrobiota, and Acidobacteriota were significantly higher. In addition, LPJZ-658 substantially decreased the genus relative abundances of Streptococcus, Veillonella, Neisseria, and Haemophilus compared with the CON group and facilitated the growth and colonization of beneficial cecal bacteria, such as OBacteroides, Phascolarctobacterium, Bacillus, and Akkermansia. It was concluded that LPJZ-658 supplementation significantly increased growth production, improved meat quality and intestinal status, and modulated the intestinal microbiota in the broilers.
Collapse
Affiliation(s)
- Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Chunhua Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Haiyang Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Xiufeng Zhang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Qingdan Ren
- Jilin Provincial Animal Husbandry General Station, Changchun 130062, China
| | - Heping Zhang
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010010, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| |
Collapse
|
25
|
Betancur C, Martínez Y. Effect of Oral Administration with Lactobacillus plantarum CAM6 on the Hematological Profile, Relative Weight of Digestive Organs, and Cecal Traits in Growing Pigs. Animals (Basel) 2023; 13:1915. [PMID: 37370425 DOI: 10.3390/ani13121915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the effects of oral administration with L. plantarum CAM6 on the hematological profile, relative weight of digestive organs, and cecal traits in growing pigs. A total of 36 castrated male pigs [(Landrace × Pietrain) × Duroc] aged 49 to 139 days old were randomly assigned to 3 experimental groups with 12 animals per treatment. The treatments included a control diet without additives (CTRL), a positive control with subtherapeutic antibiotics (TRT1), and CTRL supplemented with 5 mL Lactobacillus plantarum CAM6 preparation providing 109 CFU/pig/day (TRT2). The TRT2 group showed a higher (p ≤ 0.05) small intestine length and the cecum relative weight compared to the CTRL group. Moreover, L. plantarum CAM6 supplementation promoted (p ≤ 0.05) increased thickness of the muscular and mucosal layers, as well as enhanced depth and width of the cecal crypts. The TRT2 group also showed well-defined crypts without lesions, while the CTRL and TRT1 groups exhibited congestion, lymphocytic infiltration in the crypt, and intestinal-associated lymphoid tissue atrophy, respectively. Additionally, TRT2 stimulated (p ≤ 0.05) the growth of the autochthonous cecal microbiota compared to other experimental groups. Overall, the results indicate that oral administration of L. plantarum CAM6 improved intestinal health and enhanced the growth of autochthonous cecal lactic acid bacteria and had no impact on the complete blood count in growing pigs.
Collapse
Affiliation(s)
- Cesar Betancur
- Departamento de Ciencias Pecuarias, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería 230002, Colombia
| | - Yordan Martínez
- Agricultural Science and Production Department, Zamorano University, Valle de Yeguare, San Antonio de Oriente, Francisco Morazán, Tegucigalpa 11101, Honduras
| |
Collapse
|
26
|
Wang B, Zhou Y, Wang Q, Xu S, Wang F, Yue M, Zeng Z, Li W. Lactiplantibacillus plantarum Lac16 Attenuates Enterohemorrhagic Escherichia coli O157:H7 Infection by Inhibiting Virulence Traits and Improving Intestinal Epithelial Barrier Function. Cells 2023; 12:1438. [PMID: 37408272 DOI: 10.3390/cells12101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/07/2023] Open
Abstract
Large-scale use of antimicrobials in agriculture and medicine contributes to antibiotic residues in raw foods, the spread of antimicrobial resistance (AMR) and drug pollution, which seriously threatens human health and imposes significant economic burdens on society, suggesting the need for novel therapeutic options that prevent or control zoonoses. In this study, four probiotics were selected to assess their capability to alleviate pathogen-induced damage. Results showed that a simulated gastrointestinal juice and bile tolerated L. plantarum Lac16 with high lactic acid secretion can significantly inhibit the growth of multiple zoonotic pathogens. Lac16 also significantly inhibited the biofilm formation and mRNA expression of virulence traits (genes related to virulence, toxins, flagella biogenesis and motility, antibiotic resistance, biofilm formation and AI-2 quorum sensing) of enterohemorrhagic E. coli O157:H7 (EHEC). Furthermore, Lac16 and Lac26 significantly protected C. elegans against zoonotic pathogen-induced (EHEC, S. typhimurium, C. perfringens) deaths. Moreover, Lac16 significantly promoted epithelial repair and ameliorated lipopolysaccharide (LPS)-induced intestinal epithelial apoptosis and barrier dysfunction by activating the Wnt/β-catenin signaling pathway, and markedly reduced LPS-induced inflammatory responses by inhibiting the TLR4/MyD88 signaling pathway. The present results indicate that Lac16 attenuates enterohemorrhagic E. coli infection-induced damage by inhibiting key virulence traits of E. coli, promoting epithelial repair and improving intestinal epithelial barrier function, which may be mediated by the activated Wnt/β-catenin signaling pathway and the inhibited TLR4/MyD88 signaling pathway of the intestinal epithelium.
Collapse
Affiliation(s)
- Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Shujie Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Fei Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310012, China
- Nanjing Kangyou Biotechnology Co., Ltd., Nanjing 211316, China
| | - Zhonghua Zeng
- Nanjing Kangyou Biotechnology Co., Ltd., Nanjing 211316, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Animal Nutrition and Feed Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Nanjing Kangyou Biotechnology Co., Ltd., Nanjing 211316, China
| |
Collapse
|
27
|
Chai C, Guo Y, Mohamed T, Bumbie GZ, Wang Y, Zeng X, Zhao J, Du H, Tang Z, Xu Y, Sun W. Dietary Lactobacillus reuteri SL001 Improves Growth Performance, Health-Related Parameters, Intestinal Morphology and Microbiota of Broiler Chickens. Animals (Basel) 2023; 13:ani13101690. [PMID: 37238120 DOI: 10.3390/ani13101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
It was assumed that dietary inclusion of Lactobacillus reuteri SL001 isolated from the gastric contents of rabbits could act as an alternative to feed antibiotics to improve the growth performance of broiler chickens. We randomly assigned 360 one-day-old AA white-feathered chicks in three treatments: basal diet (control), basal diet plus zinc bacitracin (antibiotic), and basal diet plus L. reuteri SL001 (SL001) treatment. The results showed the total BW gain and average daily gain (ADG) of broilers in SL001 treatment increased significantly (p < 0.05, respectively) compared with the control group from day 0 to 42. Moreover, we observed higher levels of immune globulins in both the SL001 group and the antibiotic group. Total antioxidant capacity and levels of antioxidant factors were also significantly increased (p ≤ 0.05, respectively) in the SL001 treatment group, while the interleukin 6, interleukin 4, creatinine, uric acid, total cholesterol, triglyceride, VLDL, LDL and malondialdehyde were remarkably decreased (p < 0.05, respectively). In the ileum of SL001 treatment broilers, the height of villi and the ratio of villi height to crypt depth were significantly increased (p < 0.05). Meanwhile, the crypt depth reduced (p < 0.01) and the ratio of villi height to crypt depth increased (p < 0.05) in the jejunum compared to the control. The abundance of microbiota increased in the gut of broilers supplemented with SL001. Dietary SL001 significantly increased the relative abundance of Actinobacteria in the cecal contents of broilers (p < 0.01) at the phylum level. In conclusion, L. reuteri SL001 supplementation promotes the growth performance of broiler chickens and exhibits the potential application value in the industry of broiler feeding.
Collapse
Affiliation(s)
- Chunli Chai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yaowen Guo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Taha Mohamed
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Gifty Z Bumbie
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yan Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaojing Zeng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jinghua Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Huamao Du
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yetong Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Weizhong Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
28
|
Ren J, He F, Yu D, Xu H, Li N, Cao Z, Wen J. 16S rRNA Gene Amplicon Sequencing of Gut Microbiota Affected by Four Probiotic Strains in Mice. Vet Sci 2023; 10:vetsci10040288. [PMID: 37104443 PMCID: PMC10145630 DOI: 10.3390/vetsci10040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Probiotics, also referred to as "living microorganisms," are mostly present in the genitals and the guts of animals. They can increase an animal's immunity, aid in digestion and absorption, control gut microbiota, protect against sickness, and even fight cancer. However, the differences in the effects of different types of probiotics on host gut microbiota composition are still unclear. In this study, 21-day-old specific pathogen-free (SPF) mice were gavaged with Lactobacillus acidophilus (La), Lactiplantibacillus plantarum (Lp), Bacillus subtilis (Bs), Enterococcus faecalis (Ef), LB broth medium, and MRS broth medium. We sequenced 16S rRNA from fecal samples from each group 14 d after gavaging. According to the results, there were significant differences among the six groups of samples in Firmicutes, Bacteroidetes, Proteobacteria, Bacteroidetes, Actinobacteria, and Desferribacter (p < 0.01) at the phylum level. Lactobacillus, Erysipelaceae Clostridium, Bacteroides, Brautella, Trichospiraceae Clostridium, Verummicroaceae Ruminococcus, Ruminococcus, Prevotella, Shigella, and Clostridium Clostridium differed significantly at the genus level (p < 0.01). Four kinds of probiotic changes in the composition and structure of the gut microbiota in mice were observed, but they did not cause changes in the diversity of the gut microbiota. In conclusion, the use of different probiotics resulted in different changes in the gut microbiota of the mice, including genera that some probiotics decreased and genera that some pathogens increased. According to the results of this study, different probiotic strains have different effects on the gut microbiota of mice, which may provide new ideas for the mechanism of action and application of microecological agents.
Collapse
Affiliation(s)
- Jianwei Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fang He
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Detao Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Hang Xu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Nianfeng Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianxin Wen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
29
|
Chen Q, Wang M, Han M, Xu L, Zhang H. Molecular basis of Klebsiella pneumoniae colonization in host. Microb Pathog 2023; 177:106026. [PMID: 36773942 DOI: 10.1016/j.micpath.2023.106026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a common cause of nosocomial infection, which causing disseminated infections such as cystitis, pneumonia and sepsis. K. pneumoniae is intrinsic resistant to penicillin, and members of the population usually have acquired resistance to a variety of antibiotics, which makes it a major threat to clinical and public health. Bacteria can colonize on or within the hosts, accompanied by growth and reproduction of the organisms, but no clinical symptoms are presented. As the "first step" of bacterial infection, colonization in the hosts is of great importance. Colonization of bacteria can last from days to years, with resolution influenced by immune response to the organism, competition at the site from other organisms and, sometimes, use of antimicrobials. Colonized pathogenic bacteria cause healthcare-associated infections at times of reduced host immunity, which is an important cause of clinical occurrence of postoperative complications and increased mortality in ICU patients. Though, K. pneumoniae is one of the most common conditional pathogens of hospital-acquired infections, the mechanisms of K. pneumoniae colonization in humans are not completely clear. In this review, we made a brief summary of the molecular basis of K. pneumoniae colonization in the upper respiratory tract and intestinal niche, and provided new insights for understanding the pathogenesis of K. pneumoniae.
Collapse
Affiliation(s)
- Qi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingxiao Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Leyi Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
30
|
Xu YB, Li DL, Ding XQ, Wang YY, Liang S, Xie LY, Zhang YF, Fu AK, Yu WQ, Zhan XA. Probiotic characterization and comparison of broiler-derived lactobacillus strains based on technique for order preference by similarity to ideal solution analysis. Poult Sci 2023; 102:102564. [PMID: 36907127 PMCID: PMC10014310 DOI: 10.1016/j.psj.2023.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
A total of 10 lactobacillus strains were isolated from broiler chickens and their probiotic properties including tolerance to gastrointestinal fluids and heat treatment, antimicrobial activity, adhesion capacity to intestinal cells, surface hydrophobicity, autoaggregation, antioxidative activity, and immunomodulatory effects on chicken macrophages were evaluated. The Limosilactobacillus reuteri (LR) was the most frequently isolated species, followed by Lactobacillus johnsonii (LJ) and Ligilactobacillus salivarius (LS). All isolates showed good resistance to simulated gastrointestinal conditions and antimicrobial activity against 4 indicator strains including Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Proteus mirabilis LR 21 exhibited excellent performances on autoaggregation, hydrophobicity and adhesion capacity to Caco-2 intestinal cells. In the meantime, this strain also possessed considerable tolerance to heat treatment, which indicated great potential to be used in the feed industry. However, LJ 20 strain had the highest free radical scavenging activity compared with the other strains. Furthermore, qRT-PCR results revealed that all isolated strains significantly increased the transcriptional levels of proinflammatory genes and tended to induce the M1-type polarization on HD11 macrophages. Particularly, the technique for order preference by similarity to ideal solution (TOPSIS) was adopted in our study to compare and select the most promising probiotic candidate based on in vitro evaluation tests.
Collapse
Affiliation(s)
- Y B Xu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - D L Li
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - X Q Ding
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Y Y Wang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - S Liang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - L Y Xie
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Y F Zhang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - A K Fu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - W Q Yu
- Animal Husbandry and Veterinary Services Center of Haiyan, Jiaxing 314300, China
| | - X A Zhan
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China.
| |
Collapse
|
31
|
Effects of Lactobacillus fermentum Administration on Intestinal Morphometry and Antibody Serum Levels in Salmonella-Infantis-Challenged Chickens. Microorganisms 2023; 11:microorganisms11020256. [PMID: 36838221 PMCID: PMC9963312 DOI: 10.3390/microorganisms11020256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
There are no studies reporting the effects of Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) on intestinal architecture and immunoglobulin serum levels in chickens. Here, we measured these parameters and hypothesized whether probiotic administration could modulate the observed outcomes. Two-hundred 1-day-old COBB 500 male chicks were allocated into four groups: (I) the control, (II) the group treated with L. fermentum, (III) the group exposed to S. Infantis, and (IV) the group inoculated with both bacteria. At 11 days post infection, blood was gathered from animals which were then euthanized, and samples from the small intestine were collected. Intestinal conditions, as well as IgA and IgM serum levels, were assessed. S. Infantis reduced villus-height-to-crypt-depth (VH:CD) ratios in duodenal, jejunal, and ileal sections compared to control conditions, although no differences were found regarding the number of goblet cells, muc-2 expression, and immunoglobulin concentration. L. fermentum improved intestinal measurements compared to the control; this effect was also evidenced in birds infected with S. Infantis. IgM serum levels augmented in response to the probiotic in infected animals. Certainly, the application of L. fermentum elicited positive outcomes in S. Infantis-challenged chickens and thus must be considered for developing novel treatments designed to reduce unwanted infections.
Collapse
|
32
|
Liu Z, Zhang W, Huang T, Xiao M, Peng Z, Peng F, Guan Q, Xie MY, Xiong T. Isolation and characterization of potential Lactobacillus acidophilus strains isolated from pig feces. Anim Sci J 2023; 94:e13869. [PMID: 37751996 DOI: 10.1111/asj.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 09/28/2023]
Abstract
The aim of this study was to isolate and characterize Lactic Acid Bacteria (LAB) from 16 feces samples of pig farm, and to evaluate the probiotic potential of these isolates as potential oral probiotic candidates. The selection process was based on the isolation, identification, and a series of experiments for the selection of appropriate candidates with beneficial properties. The results demonstrated that most of LAB showed relatively strong resistance to pH 2.5 and high bile salts (1%), and had good survival in simulated gastric and intestinal juice. 9 isolates displayed antimicrobial activities against Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa and Enterobacter sakazakii. Almost all isolates were sensitive to ampicillin, chloramphenicol, vancomycin and amoxicillin, and most of isolates exhibited resistance against tetracycline and vancomycin. The adhesion rates of LAB varied greatly. The results of the study suggested that the Lactobacillus acidophilus NCUA065001 have the important functional property of probiotic candidates to enhance gut integrity and could considered to be the potential antibiotic alternatives in the pig feed industry.
Collapse
Affiliation(s)
- Zhanggen Liu
- State Key Laboratory of Food Science and Resources, Nanchang, Jiangxi, China
- School of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Wenjuan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang, Jiangxi, China
- School of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Tao Huang
- State Key Laboratory of Food Science and Resources, Nanchang, Jiangxi, China
- School of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Muyan Xiao
- State Key Laboratory of Food Science and Resources, Nanchang, Jiangxi, China
- School of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zhen Peng
- State Key Laboratory of Food Science and Resources, Nanchang, Jiangxi, China
- School of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Fei Peng
- State Key Laboratory of Food Science and Resources, Nanchang, Jiangxi, China
- School of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Qianqian Guan
- State Key Laboratory of Food Science and Resources, Nanchang, Jiangxi, China
- School of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Resources, Nanchang, Jiangxi, China
- School of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, Nanchang, Jiangxi, China
- School of Food Science & Technology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
33
|
Liu Z, Lei X, Li J, Zhong Y, Tan D, Zhang Q, Kong Z. Effects of fermented Andrographis paniculata on growth performance, carcass traits, immune function, and intestinal health in Muscovy ducks. Poult Sci 2022; 102:102461. [PMID: 36709554 PMCID: PMC9900618 DOI: 10.1016/j.psj.2022.102461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/15/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
The study aimed to examine the effects of unfermented and fermented Andrographis paniculata on growth performance, carcass traits, immune function, and intestinal health in Muscovy ducks. A total of 450 (16-day-old) Muscovy ducks weighing 271.44 ± 8.25 g were randomly assigned to 5 dietary treatments (6 replicate pens of 15 ducks per treatment), consisting of one control treatment (basal diet without A. paniculata), one unfermented A. paniculata treatment (basal diet plus 30 g/kg unfermented A. paniculata) and 3 fermented A. paniculata treatments (basal diet plus 10, 30, and 50 g/kg). 30 g/kg unfermented A. paniculata increased the ADG, thymus index, peripheral blood lymphocyte conversion rate, villi height, intestinal thickness, villi surface area, intraepithelial lymphocytes rate, while decreased the FCR. 10 g/kg fermented A. paniculata markedly boosted ADG, bursa of fabricius index, thymus index, serum lysozyme, lymphocyte conversion rate, villi height, vilii width, intestinal thickness, villi surface area, while decreased the FCR. 30 g/kg fermented A. paniculata clearly improved ADG, bursa of fabricius index, thymus index, serum lysozyme, lymphocyte conversion rate, villi height, vilii width, intestinal thickness, villi surface area, intraepithelial lymphocytes, while decreased FCR. 50 g/kg fermented A. paniculata significantly increased villi height, vilii width, and villi surface area, while clearly reduced BW. Additionally, compared to 30 g/kg unfermented A. paniculata, 30 g/kg fermented A. paniculata obviously increased bursa of fabricius indices, lymphocyte conversion rate, vilii width, villi surface area. On top of that, supplementation with unfermented and fermented A. paniculata (30 g/kg each) decreased the relative abundance of harmful bacteria (Succinivibrio, Succinatimonas, Sphaerochaeta, and Mucispirillum) and increase the abundance of beneficial bacteria (Rikenellaceae, Methanocorpusculum, Fournierella, Ruminococcaceae) in the ceca of the ducks. However, fermented A. paniculata had considerable better effects than unfermented A. paniculate on all above measured indices. Overall, these results revealed that supplementation with unfermented and fermented A. paniculata across different treatments improved growth, immune status, intestinal morphology, and intestinal microbiota composition and structure in Muscovy ducks, making it a potential alternative to antibiotics in poultry production.
Collapse
Affiliation(s)
| | - Xiaowen Lei
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences, Ganzhou, 341000, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
34
|
Wang F, Zou P, Xu S, Wang Q, Zhou Y, Li X, Tang L, Wang B, Jin Q, Yu D, Li W. Dietary supplementation of Macleaya cordata extract and Bacillus in combination improve laying performance by regulating reproductive hormones, intestinal microbiota and barrier function of laying hens. J Anim Sci Biotechnol 2022; 13:118. [PMID: 36224643 PMCID: PMC9559840 DOI: 10.1186/s40104-022-00766-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate whether the combination of Macleaya cordata extract (MCE) and Bacillus could improve the laying performance and health of laying hens better. METHODS A total of 360 29-week-old Jingbai laying hens were randomly divided into 4 treatments: control group (basal diet), MCE group (basal diet + MCE), Probiotics Bacillus Compound (PBC) group (basal diet + compound Bacillus), MCE + PBC group (basal diet + MCE + compound Bacillus). The feeding experiment lasted for 42 d. RESULTS The results showed that the laying rate and the average daily egg mass in the MCE + PBC group were significantly higher than those in the control group (P < 0.05) and better than the MCE and PBC group. Combination of MCE and Bacillus significantly increased the content of follicle-stimulating hormone (FSH) in the serum and up-regulated the expression of related hormone receptor gene (estrogen receptor-β, FSHR and luteinizing hormone/choriogonadotropin receptor) in the ovary of laying hens (P < 0.05). In the MCE + PBC group, the mRNA expressions of zonula occluden-1, Occludin and mucin-2 in jejunum was increased and the intestinal epithelial barrier detected by transmission electron microscopy was enhanced compared with the control group (P < 0.05). In addition, compared with the control group, combination of MCE and Bacillus significantly increased the total antioxidant capacity and catalase activity (P < 0.05), and down-regulated the mRNA expressions of inflammation-related genes (interleukin-1β and tumor necrosis factor-α) as well as apoptosis-related genes (Caspase 3, Caspase 8 and P53) (P < 0.05). The concentration of acetic acid and butyric acid in the cecum content of laying hens in the MCE + PBC group was significantly increased compared with the control group (P < 0.05). CONCLUSIONS Collectively, dietary supplementation of 600 μg/kg MCE and 5 × 108 CFU/kg compound Bacillus can improve laying performance by improving microbiota to enhance antioxidant capacity and intestinal barrier, regulate reproductive hormones and the concentration of cecal short-chain fatty acids of laying hens, and the combined effect of MCE and Bacillus is better than that of single supplementation.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Peng Zou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Dongyou Yu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| |
Collapse
|
35
|
Wang Q, Zhan X, Wang B, Wang F, Zhou Y, Xu S, Li X, Tang L, Jin Q, Li W, Gong L, Fu A. Modified Montmorillonite Improved Growth Performance of Broilers by Modulating Intestinal Microbiota and Enhancing Intestinal Barriers, Anti-Inflammatory Response, and Antioxidative Capacity. Antioxidants (Basel) 2022; 11:antiox11091799. [PMID: 36139873 PMCID: PMC9495330 DOI: 10.3390/antiox11091799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
This study aims to explore the effects of modified montmorillonite (MMT, copper loading) on the growth performance, gut microbiota, intestinal barrier, antioxidative capacity and immune function of broilers. Yellow-feathered broilers were randomly divided into control (CTR), modified montmorillonite (MMT), and antibiotic (ANTI) groups. Results revealed that MMT supplementation increased the BW and ADG and decreased the F/R during the 63-day experiment period. 16S rRNA sequencing showed that MMT modulated the cecal microbiota composition of broilers by increasing the relative abundance of two phyla (Firmicutes and Bacteroidetes) and two genera (Bacteroides and Faecalibacterium) and decreasing the abundance of genus Olsenella. MMT also improved the intestinal epithelial barrier indicated by the up-regulated mRNA expression of claudin-1, occludin, and ZO-1 and the increased length of microvilli in jejunum and the decreased levels of DAO and D-LA in serum. In addition, MMT enhanced the immune function indicated by the increased levels of immunoglobulins, the decreased levels of MPO and NO, the down-regulated mRNA expression of IL-1β, IL-6, and TNF-α, and the up-regulated mRNA expression of IL-4 and IL-10. Moreover, MMT down-regulated the expression of jejunal TLRs/MAPK/NF-κB signaling pathway-related genes (TLR2, TLR4, Myd88, TRAF6, NF-κB, and iNOS) and related proteins (TRAF6, p38, ERK, NF-κB, and iNOS). In addition, MMT increased the antioxidant enzyme activities and the expression of Nrf2/HO-1 signaling pathway-related genes and thereby decreased the apoptosis-related genes expression. Spearman’s correlation analysis revealed that Bacteroides, Faecalibacterium, and Olsenella were related to the inflammatory index (MPO and NO), oxidative stress (T-AOC, T-SOD, and CAT) and intestinal integrity (D-LA and DAO). Taken together, MMT supplementation improved the growth performance of broilers by modulating intestinal microbiota, enhancing the intestinal barrier function, and improving inflammatory response, which might be mediated by inhibiting the TLRs/MAPK/NF-κB signaling pathway, and antioxidative capacity mediated by the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Zhan
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Fenghong Biological Technology Co., Ltd., Huzhou 313000, China
| | - Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Gong
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
- Correspondence: (L.G.); (A.F.)
| | - Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (L.G.); (A.F.)
| |
Collapse
|
36
|
Wu Y, Wang Y, Hu A, Shu X, Huang W, Liu J, Wang B, Zhang R, Yue M, Yang C. Lactobacillus plantarum-derived postbiotics prevent Salmonella-induced neurological dysfunctions by modulating gut-brain axis in mice. Front Nutr 2022; 9:946096. [PMID: 35967771 PMCID: PMC9365972 DOI: 10.3389/fnut.2022.946096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 01/04/2023] Open
Abstract
Postbiotics are the inactive bacteria and/or metabolites of beneficial microbes which have been recently found to be as effective as their live probiotic. This study aimed to evaluate the benefits of Lactobacillus plantarum (LP)-derived postbiotics on ameliorating Salmonella-induced neurological dysfunctions. Mice were pretreated with LP postbiotics (heat-killed bacteria or the metabolites) or active bacteria, and then challenged with Salmonella enterica Typhimurium (ST). Results showed that LP postbiotics, particularly the metabolites, effectively prevented ST infection in mice, as evidenced by the inhibited weight loss, bacterial translocation, and tissue damages. The LP postbiotics markedly suppressed brain injuries and neuroinflammation (the decreased interleukin (IL)-1β and IL-6, and the increased IL-4 and IL-10). Behavior tests indicated that LP postbiotics, especially the metabolites, protected mice from ST-induced anxiety and depressive-like behaviors and cognitive impairment. A significant modulation of neuroactive molecules (5-hydroxytryptamine, gamma-aminobutyric acid, brain-derived neurotrophic factor, dopamine, acetylcholine, and neuropeptide Y) was also found by LP postbiotic pretreatment. Microbiome analysis revealed that LP postbiotics optimized the cecal microbial composition by increasing Helicobacter, Lactobacillus and Dubosiella, and decreasing Mucispirillum, norank_f_Oscillospiraceae, and Eubacterium_siraeum_group. Moreover, LP postbiotics inhibited the reduction of short-chain fatty acids caused by ST infection. Pearson's correlation assays further confirmed the strong relationship of LP postbiotics-mediated benefits and gut microbiota. This study highlights the effectiveness of postbiotics and provide a promising strategy for preventing infection-induced brain disorders by targeting gut–brain axis.
Collapse
Affiliation(s)
- Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yan Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Aixin Hu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Xin Shu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Wenxia Huang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou, China
| | - Baikui Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Min Yue
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|
37
|
Potential Probiotic Acceptability of a Novel Strain of Paenibacillus konkukensis SK 3146 and Its Dietary Effects on Growth Performance, Intestinal Microbiota, and Meat Quality in Broilers. Animals (Basel) 2022; 12:ani12111471. [PMID: 35681935 PMCID: PMC9179277 DOI: 10.3390/ani12111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
This study evaluates the in vitro probiotic characteristics of P. konkukensis sp. nov. SK-3146, which was isolated from animal feed, and its dietary effects on growth performance, intestinal characteristics, intestinal microbiota, and meat quality in broilers. In vitro experiments revealed that P. konkukensis was non-hemolytic with variable antibiotic susceptibility, and acid as well as bile tolerance. To assess the effect of P. konkukensis on broilers, a total of four hundred eighty 1-day-old Ross 308 broiler chicks were allocated to 3 treatment groups with 4 replicates of 40 birds each; the negative control group was fed a basal diet without any feed additives (NC), the positive control group was fed a basal diet containing 0.01% enramycin (PC), and the experimental group was fed a basal diet containing P. konkukensis bacterial culture (PK) at 104 CFU/g of the diet based on bacterial count. The experiment lasted for 35 days. Results indicated that there were no significant differences in any growth performance parameters among the dietary treatments (p > 0.05). In addition, the inclusion of P. konkukensis in the broilers’ diet did not affect meat cooking loss, color, and pH but increased the relative weight of breast meat (p < 0.05). The PK group showed heavier intestinal weight and shorter intestinal length than the NC group (p < 0.05). The ratio of the intestinal weight to length of jejunum was the highest in the PK group (p < 0.05). The PK group showed increased counts of Streptococcus thermophilus (p < 0.05) with no adverse effects of P. konkukensis on other intestinal microbiota in the jejunum. This study implies that P. konkukensis might have the potential to be applied as a probiotic feed additive in poultry.
Collapse
|
38
|
Sun X, Chen DD, Deng S, Zhang G, Peng X, SA R. Using combined Lactobacillus and quorum quenching enzyme supplementation as an antibiotic alternative to improve broiler growth performance, anti-oxidative status, immune response, and gut microbiota. Poult Sci 2022; 101:101997. [PMID: 35841646 PMCID: PMC9289872 DOI: 10.1016/j.psj.2022.101997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/03/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022] Open
|
39
|
Mao J, Wang Y, Wang W, Duan T, Yin N, Guo T, Guo H, Liu N, An X, Qi J. Effects of Taraxacum mongolicum Hand.-Mazz. (dandelion) on growth performance, expression of genes coding for tight junction protein and mucin, microbiota composition and short chain fatty acids in ileum of broiler chickens. BMC Vet Res 2022; 18:180. [PMID: 35568942 PMCID: PMC9107267 DOI: 10.1186/s12917-022-03278-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Dandelion is becoming an exploitable alternative to the widely prohibited antibiotics in the poultry production. This research aimed to investigate the effects of dandelion on the growth performance and intestinal barrier function of broiler chickens maintained under standard condition of management. One-hundred and sixty 1-day-old Arbor Acres (AA) male broiler chickens were randomly divided into four groups, with five replicates of eight birds each. The birds were fed a basal diet supplemented without (control group, [CON]) or with 500 (low dose [LD]) or 1000 (high dose [HD]) mg/kg dandelion or with 250 mg/kg chlortetracycline 20% premix (CTC) for 42 days, including the starter phase (d 1 to 21) and the grower phase (d 22 to 42). Body weight (BW) of each bird and feed consumption of each replicate were measured at d 21 and d 42. The ileal tissues were collected on day 21 and 42 to determine expression of genes coding for tight junction protein and mucin as well as ELISA analysis for immune factor. The ileal digesta was collected for microbiota and short chain fatty acids analysis. Results Compared with CON group, during day 1–21, the average daily feed intake (ADFI) and feed/gain ratio (F/G) of LD group were lower (P < 0.05); during day 22–42, the F/G of LD and CTC group tended to be lower (P = 0.07); during the overall phase, the ADFI of HD and CTC groups were decreased (P < 0.05), and the F/G of dandelion and CTC groups tended to be decreased (P = 0.07). On day 21, the relative mRNA expression of claudin, occludin-1 and mucin1 in dandelion groups were up-regulated (P < 0.05), and the ZO-1 mRNA expression in CTC group was increased (P < 0.05); on day 42, the claudin and mucin1 transcripts in LD group and ZO-1 transcripts in HD and CTC group were up-regulated (P < 0.05), while the occludin-1 and mucin1 transcripts in CTC group was significantly down-regulated (P < 0.05). In addition, the contents of TNF-α in dandelion groups were lower than that in CTC group (P < 0.05). In the analysis of ileal microbiota, on day 21, decreased α-diversity was observed in HD and CTC groups (P < 0.05). Meanwhile, on day 21, the relative abundance of Firmicutes in dandelion groups tended to be higher (P = 0.09), the relative abundance of Lactobacillus in LD and CTC group were increased (P < 0.05), while Bacteroidete, Bacteroides, and Alistipes relative abundance in dandelion and CTC groups were decreased (P < 0.05). On day 42, the Actinobacteriota relative abundance in CTC group tended to be higher (P = 0.05), and Lysinibacillus relative abundance of CTC group was higher (P = 0.02). Compared with CON group, on day 21, the propionic acid and butyric acid content in CTC group were higher, the butyric acid content in HD group was lower (P < 0.10). Conclusion In summary, dietary dandelion supplementation at 500 mg/kg of diet enhanced growth performance of broilers by improving the intestinal barrier function. Dandelion can be supplemented in the diet as an antibiotics alternative to enhance production in poultry industry.
Collapse
Affiliation(s)
- Jinju Mao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China. .,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China. .,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China.
| | - Wenwen Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Ting Duan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Na Yin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Tao Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Hui Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Na Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Xiaoping An
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.,Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| |
Collapse
|
40
|
Effect of Bacillus species–fermented products and essential oils on growth performance, gut morphology, cecal short-chain fatty acid levels, and microbiota community in broilers. Poult Sci 2022; 101:101970. [PMID: 35760005 PMCID: PMC9241036 DOI: 10.1016/j.psj.2022.101970] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, the effects of Bacillus species–fermented products (synbiotics [SYNs]) and essential oils (EOs) on the growth performance, gut morphology, cecal short-chain fatty acid (SCFA) levels, and microbiota of broilers were investigated. A total of 180 one-day-old unsexed broiler chicks (Ross 308) were randomly assigned to 5 dietary treatments as follows: basal diet (control group), basal diet plus enramycin (10 mg/kg; A group), basal diet plus SYNs (3 × 1011 CFU spore/kg of feed; SYN group), basal diet plus EOs (100 mg/kg; EO group), and basal diet plus SYNs and EOs (SYN + EO group), with 6 replicate cages per treatment group and 6 birds per cage. The SYN+EO treatment resulted in a higher (P = 0.003) average daily gain at 1 to 14 d of age than did the control and EO treatments. SYNs had a significant effect on the average daily gain at 1 to 14 d (P < 0.001) and 1 to 35 d (P = 0.045) of age. EOs had a significant effect on the villus height of the duodenum (P = 0.015) and jejunum (P = 0.027). Superoxide dismutase (SOD) and mucin 2 (MUC2) mRNA expression in the duodenum, jejunum, and ileum in the SYN + EO group was higher (P < 0.001) than that in any of the other groups. The SYN+EO treatment resulted in higher (P < 0.001) 2-methylbutyric acid and 3-methylbutyric acid levels in the cecal digesta of the broilers than did the control treatment. Cecal species evenness in the SYN + EO group was higher (P < 0.001) than that in the control group. The abundance of the phylum Firmicutes in the cecal digesta of the broilers was higher (P < 0.001) in the SYN+EO group than in the control group. SYNs had a significant effect (P < 0.001) on the abundance of the genus Lactobacillus in the cecal digesta of the broilers. The abundance of the genus Lactobacillus was positively associated with 2-methylbutyric acid and 3-methylbutyric acid levels. The 2-methylbutyric acid and 3-methylbutyric acid levels were positively correlated with the villus height of the duodenum and ileum. These results suggest that simultaneous supplementation with SYNs and EOs can increase the average daily gain, improve gut health–associated gene expression, increase SCFA levels, and modulate the gut microbiota composition of broilers.
Collapse
|
41
|
Dietary Supplementation of a New Probiotic Compound Improves the Growth Performance and Health of Broilers by Altering the Composition of Cecal Microflora. BIOLOGY 2022; 11:biology11050633. [PMID: 35625361 PMCID: PMC9138300 DOI: 10.3390/biology11050633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary In most countries, antibiotic growth promoters are restricted or banned in the livestock industry, and probiotics have been widely explored to replace them. Lactobacillus LP184 and Yeast SC167 were selected as probiotic strains that could remain viable in feed and the gastrointestinal tract and were combined to form a compound to act as a substitute for antibiotics in broilers’ diets. This study aimed to investigate the effects of the compound probiotics as a potential alternative to antibiotics in broiler production. The feeding trial contained three dietary treatments and lasted for 42 days. The negative control group was fed the basal diet. The positive control group was fed the basal diet supplemented with commercial antibiotics. The probiotics group was fed the basal diet containing the compound probiotics. The results showed that the compound probiotics were a competent alternative for synthetic antibiotics to improve the production of broilers. The compound probiotics enhanced the immune and antioxidant capacities of broilers, which could not be achieved using antibiotics. The positive effects of the compound probiotics on the growth performance and health of broilers can likely be attributed to the improvement of intestinal morphology and cecal microbial diversity, effects which are distinct from those of antibiotics. These findings demonstrate the feasibility of replacing antibiotics with compound probiotics in broilers’ diets. Abstract The current study aimed to investigate the effects of a new probiotic compound developed as a potential alternative to synthetic antibiotics for broilers. A total of 360 newly hatched Arbor Acres male chicks were randomly divided into three treatment groups. Each treatment consisted of six replicates with 20 birds in each replicate. The negative control group was fed the basal diet. The positive control group was fed the basal diet supplemented with a commercial antimicrobial, virginiamycin, at 30 mg/kg of basal feed. The compound probiotics group was fed a basal diet containing 4.5 × 106 CFU of Lactobacillus LP184 and 2.4 × 106 CFU of Yeast SC167 per gram of basal feed. The feeding trial lasted for 42 days. The results showed that the compound probiotics were a competent alternative to synthetic antibiotics for improving the growth performance and carcass traits of broilers. The compound probiotics enhanced the immune and antioxidant capacities of the broilers, while antibiotics lacked such merits. The positive effects of compound probiotics could be attributed to an improvement in the intestinal morphology and cecal microbial diversity of broilers, effects which are distinct from those of antibiotics. These findings revealed the differences between probiotics and antibiotics in terms of improving broilers’ performance and enriched the basic knowledge surrounding the intestinal microbial structure of broilers.
Collapse
|
42
|
Gyawali I, Zeng Y, Zhou J, Li J, Wu T, Shu G, Jiang Q, Zhu C. Effect of Novel Lactobacillus paracaesi microcapsule on growth performance, gut health and microbiome community of broiler chickens. Poult Sci 2022; 101:101912. [PMID: 35689995 PMCID: PMC9190013 DOI: 10.1016/j.psj.2022.101912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 01/19/2023] Open
Abstract
The beneficial action of probiotics is questioned time and again due to the loss of their survivability under gastrointestinal conditions, particularly gastric acid. In this experiment, a probiotic species was encapsulated to improve its delivery to the distal parts, and its effects on production performance, gut health, and microbial profile in broilers were investigated. A total of 240 Arbor acres (AA) broilers were randomly allotted into 3 treatments with 8 replicate pens per treatment and 10 broilers in each pen for 42 d. Dietary treatments were 1) basal feed without any additives (CON), 2) CON+15 ppm Virginiamycin (ANT), and 3) CON+500 ppm encapsulated Lactobacillus paracaesi (ELP). The result showed that the addition of ELP to the feed did not affect growth performance and carcass characteristics significantly. However, ELP increased the ratio of villus height to crypt depth (P < 0.05) and mRNA expression of ZO-1 (P < 0.05) relative to the CON or ANT group. Similarly, qPCR showed that dietary supplementation of ELP raised gene expression of the anti-inflammatory cytokine and tended to decrease proinflammatory cytokines resulting improve in immunity. Moreover, chicks fed with ELP had lower malondialdehyde (MDA) (P < 0.05) than CON and lower reactive oxygen species (ROS) (P < 0.05) level than ANT in serum. In contrast, the total antioxidant capacity (TAOC) level was tended to increase. The ammonia level of ileum and cecum chyme was decreased (P < 0.05) in the ELP group than CON while the level of propionic acid of cecal content was increased (P < 0.05). 16S rRNA sequencing revealed the dietary treatment modulated the diversity and composition of cecal microflora. At the phylum level, Bacteroidetes was enriched, and Proteobacteria was depleted in the ELP group. At the genus level, ELP increased Bacteroides (P < 0.05) compared to control. The results indicate that oral delivery of probiotics via microcapsule could impart beneficial effects on birds and be used as an alternative to antibiotics.
Collapse
Affiliation(s)
- Ishwari Gyawali
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Yuxian Zeng
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Jingjing Zhou
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Jincheng Li
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Ting Wu
- Anhui maitebao Bioengineering Co., Ltd, Hefei, China
| | - Gang Shu
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Qingyan Jiang
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Canjun Zhu
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China.
| |
Collapse
|
43
|
An K, Gao W, Li P, Li L, Xia Z. Dietary Lactobacillus plantarum improves the growth performance and intestinal health of Pekin ducks. Poult Sci 2022; 101:101844. [PMID: 35413596 PMCID: PMC9018153 DOI: 10.1016/j.psj.2022.101844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
|
44
|
Zou XY, Zhang M, Tu WJ, Zhang Q, Jin ML, Fang RD, Jiang S. Bacillus subtilis inhibits intestinal inflammation and oxidative stress by regulating gut flora and related metabolites in laying hens. Animal 2022; 16:100474. [PMID: 35220172 DOI: 10.1016/j.animal.2022.100474] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Bacillus subtilis is one of the most popular commercial probiotics used in farm animal production. However, its potential mechanisms are not very clear. The aim of this study was to investigate the effects of dietary Bacillus subtilis on intestinal histomorphology, innate immunity, microbiota composition, transcriptomics, and related metabolomics. Twenty-four 48-week-old Lohman Pink-shell laying hens were randomly divided into two groups: a basic diet and the basic diet supplemented with Bacillus subtilis (0.5 g/kg) for a 9-week experiment. At the end of the experiment, tissues of the duodenum, ileum, and jejunum as well as cecal content of each bird were collected for microstructure, PCR, transcriptome, metabolome, and 16S rRNA analyses. The results showed that dietary Bacillus subtilis supplement had no effect on the intestinal microstructure. However, Bacillus subtilis increased mRNA expression of tight junction protein occludin (P < 0.05), while reduced mRNA expression of lipopolysaccharide-induced TNF factor (P < 0.01) in the duodenum. Moreover, transcriptomic results indicated that most of Bacillus subtilis supplement-induced differential genes were associated with inflammation and immunity, including cytochrome b-245 beta chain, transferrin, and purinergic receptor P2X 7, resulting in a decrease in Malondialdehyde level (P < 0.05) in the duodenum. In addition, at the genus level, Bacillus subtilis supplement enriched the potential beneficial bacteria, Candidatus_Soleaferrea (P = 0.02) but inhibited the harmful bacteria including Lachnospiraceae_FCS020_group, Ruminiclostridium, Lachnospiraceae_UCG-010, and Oxalobacter. Metabolomic results revealed that N-Acetylneuraminic acid and ADP were increased by fed Bacillus subtilis. These results suggest that dietary Bacillus subtilis could inhibit gut inflammation and improve antioxidative status and barrier integrity of the duodenum via regulating gut microbial composition in laying hens.
Collapse
Affiliation(s)
- X Y Zou
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - M Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - W J Tu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - Q Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - M L Jin
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China
| | - R D Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, PR China
| | - S Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, PR China.
| |
Collapse
|
45
|
Li L, lv X, Han X, Sun C, An K, Gao W, Xia Z. Effect of Dietary Bacillus licheniformis Supplementation on Growth Performance and Microbiota Diversity of Pekin Ducks. Front Vet Sci 2022; 9:832141. [PMID: 35265695 PMCID: PMC8899091 DOI: 10.3389/fvets.2022.832141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
This experiment was conducted to investigate the effects of different concentrations of Bacillus licheniformis (B. licheniformis) on growth performance and microbiota diversity of Pekin ducks. Three hundred 1-day-old healthy Pekin ducks were randomly divided into 5 groups with 6 replicates per group and 10 ducks per replicate. The five treatments supplemented with basal diets containing: either 0 (group CON), 200 (group LLB), 400 (group MLB), and 800 (group HLB) mg/kg B. licheniformis or 150 mg/kg aureomycin (group ANT) for 42 days, respectively, and were sacrificed and sampled in the morning of the 42nd day for detection of relevant indexes. The results showed as follows: The feed conversion ratio of the LLB group and MLB groups were lower than the CON group (P < 0.05). The body weight and average daily feed intake of the MLB group were significantly higher than that of the CON group and ANT group (P < 0.05). Compared with the CON group, the MLB group significantly increased the content of IgA (P < 0.05) and proinflammatory IL-6 were significantly decreased (P < 0.05), besides, the activity of SOD and T-AOC were also significantly increased in the MLB group (P < 0.05). The 16S rRNA analysis showed that B. licheniformis treatments had no effect (P > 0.05) on the alpha diversities of the intestine. The addition of B. licheniformis had a dynamic effect on the abundance of cecal microflora of Pekin ducks, and 1-21 d increased the diversity of microflora, while 21d-42 d decreased it. Compared with the CON group, the relative abundance of Epsilonbacteraeota in the MLB group was significantly increased on Day 21 (P < 0.05), and that of Tenericutes in the LLB group was significantly increased as well (P < 0.05). At 42 d, the relative abundance of Bacteroidetes in LLB, MBL, HBL, and ANT groups was significantly increased (P < 0.05). In addition, the addition of B. licheniformis increased the amount of SCAF-producing bacteria in the intestinal microbiota, such as Lachnospiraceae, Collinsella, Christensenellaceae, and Bilophila. The PICRUSt method was used to predict the intestinal microbiota function, and it was found that lipid transport and metabolism of intestinal microbiota in the MLB group were significantly affected. Overall, these results suggest diet supplemented with B. licheniformis improved growth performance, immune status, antioxidant capacity, and modulated intestinal microbiota in Pekin ducks. The optimal dietary supplement dose is 400 mg/kg.
Collapse
Affiliation(s)
- Lei Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xueze lv
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Xu Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chenglei Sun
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Keying An
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenwen Gao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Zhaofei Xia
| |
Collapse
|
46
|
Shehata AM, Paswan VK, Attia YA, Abdel-Moneim AME, Abougabal MS, Sharaf M, Elmazoudy R, Alghafari WT, Osman MA, Farag MR, Alagawany M. Managing Gut Microbiota through In Ovo Nutrition Influences Early-Life Programming in Broiler Chickens. Animals (Basel) 2021; 11:3491. [PMID: 34944266 PMCID: PMC8698130 DOI: 10.3390/ani11123491] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
The chicken gut is the habitat to trillions of microorganisms that affect physiological functions and immune status through metabolic activities and host interaction. Gut microbiota research previously focused on inflammation; however, it is now clear that these microbial communities play an essential role in maintaining normal homeostatic conditions by regulating the immune system. In addition, the microbiota helps reduce and prevent pathogen colonization of the gut via the mechanism of competitive exclusion and the synthesis of bactericidal molecules. Under commercial conditions, newly hatched chicks have access to feed after 36-72 h of hatching due to the hatch window and routine hatchery practices. This delay adversely affects the potential inoculation of the healthy microbiota and impairs the development and maturation of muscle, the immune system, and the gastrointestinal tract (GIT). Modulating the gut microbiota has been proposed as a potential strategy for improving host health and productivity and avoiding undesirable effects on gut health and the immune system. Using early-life programming via in ovo stimulation with probiotics and prebiotics, it may be possible to avoid selected metabolic disorders, poor immunity, and pathogen resistance, which the broiler industry now faces due to commercial hatching and selection pressures imposed by an increasingly demanding market.
Collapse
Affiliation(s)
- Abdelrazeq M. Shehata
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India;
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
| | - Vinod K. Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Youssef A. Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdel-Moneim Eid Abdel-Moneim
- Nuclear Research Center, Biological Applications Department, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt;
| | - Mohammed Sh. Abougabal
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Reda Elmazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (R.E.); (M.A.O.)
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Wejdan T. Alghafari
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed A. Osman
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (R.E.); (M.A.O.)
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|