1
|
Huang S, Qin X, Fu S, Hu J, Jiang Z, Hu M, Zhang B, Liu J, Chen Y, Wang M, Liu X, Chen Z, Wang L. STAMBPL1/TRIM21 Balances AXL Stability Impacting Mesenchymal Phenotype and Immune Response in KIRC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405083. [PMID: 39527690 PMCID: PMC11714167 DOI: 10.1002/advs.202405083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Kidney renal clear cell carcinoma (KIRC) is recognized as an immunogenic tumor, and immunotherapy is incorporated into its treatment landscape for decades. The acquisition of a tumor mesenchymal phenotype through epithelial-to-mesenchymal transition (EMT) is associated with immune evasion and can contribute to immunotherapy resistance. Here, the involvement of STAM Binding Protein Like 1 (STAMBPL1) is reported in the development of mesenchymal and immune evasion phenotypes in KIRC cells. Mechanistically, STAMBPL1 elevated protein abundance and surface accumulation of TAM Receptor AXL through diminishing the TRIM21-mediated K63-linked ubiquitination and subsequent lysosomal degradation of AXL, thereby enhancing the expression of mesenchymal genes while suppressing chemokines CXCL9/10 and HLA/B/C. In addition, STAMBPL1 enhanced PD-L1 transcription via facilitating nuclear translocation of p65, and knockdown (KD) of STAMBPL1 augmented antitumor effects of PD-1 blockade. Furthermore, STAMBPL1 silencing and the tyrosine kinase inhibitor (TKI) sunitinib also exhibited a synergistic effect on the suppression of KIRC. Collectively, targeting the STAMBPL1/TRIM21/AXL axis can decrease mesenchymal phenotype and potentiate anti-tumor efficacy of cancer therapy.
Collapse
Affiliation(s)
- Shiyu Huang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Xuke Qin
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Shujie Fu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Juncheng Hu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Zhengyu Jiang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Min Hu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Banghua Zhang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Hubei Key Laboratory of Digestive System DiseaseWuhan430060China
| | - Jiachen Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Yujie Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Minghui Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Xiuheng Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Zhiyuan Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Lei Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| |
Collapse
|
2
|
Bhadresha K, Mirza S, Penny C, Mughal MJ. Targeting AXL in Mesothelioma: from functional characterization to clinical implication. Crit Rev Oncol Hematol 2023:104043. [PMID: 37268175 DOI: 10.1016/j.critrevonc.2023.104043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Malignant pleural mesothelioma (MM) is a highly aggressive and lethal cancer with a poor survival rate. Current treatment approaches primarily rely on chemotherapy and radiation, but their effectiveness is limited. Consequently, there is an urgent need for alternative treatment strategies, a comprehensive understanding of the molecular mechanisms underlying MM, and the identification of potential therapeutic targets. Extensive studies over the past decade have emphasized the role of Axl in driving tumor development and metastasis, while high levels of Axl expression have been associated with immune evasion, drug resistance, and reduced patient survival in various cancer types. Ongoing clinical trials are investigating the efficacy of Axl inhibitors for different cancers. However, the precise role of Axl in MM progression, development, and metastasis, as well as its regulatory mechanisms within MM, remain inadequately understood. This review aims to comprehensively investigate the involvement of Axl in MM. We discuss Axl role in MM progression, development, and metastasis, along with its specific regulatory mechanisms. Additionally, we examined the Axl associated signaling pathways, the relationship between Axl and immune evasion, and the clinical implications of Axl for MM treatment. Furthermore, we discussed the potential utility of liquid biopsy as a non-invasive diagnostic technique for early detection of Axl in MM. Lastly, we evaluated the potential of a microRNA signature that targets Axl. By consolidating existing knowledge and identifying research gaps, this review contributes to a better understanding of Axl's role in MM and sets the stage for future investigations and the development of effective therapeutic interventions.
Collapse
Affiliation(s)
- Kinjal Bhadresha
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheefa Mirza
- Department of Internal Medicine, Common Epithelial Cancer Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Common Epithelial Cancer Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington DC, United States of America.
| |
Collapse
|
3
|
Al Kafri N, Ahnström J, Teraz-Orosz A, Chaput L, Singh N, Villoutreix BO, Hafizi S. The first laminin G-like domain of protein S is essential for binding and activation of Tyro3 receptor and intracellular signalling. Biochem Biophys Rep 2022; 30:101263. [PMID: 35518197 PMCID: PMC9065593 DOI: 10.1016/j.bbrep.2022.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nour Al Kafri
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Josefin Ahnström
- Faculty of Medicine, Dept. of Immunology and Inflammation, Imperial College London, UK
| | - Adrienn Teraz-Orosz
- Faculty of Medicine, Dept. of Immunology and Inflammation, Imperial College London, UK
| | - Ludovic Chaput
- University of Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Natesh Singh
- University of Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Bruno O. Villoutreix
- University of Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Sassan Hafizi
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Corresponding author. School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
4
|
m 6A Demethylase ALKBH5 Restrains PEDV Infection by Regulating GAS6 Expression in Porcine Alveolar Macrophages. Int J Mol Sci 2022; 23:ijms23116191. [PMID: 35682869 PMCID: PMC9181496 DOI: 10.3390/ijms23116191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a burdensome coronavirus for the global pig industry. Although its fecal-oral route has been well-recognized, increasing evidence suggests that PEDV can also spread through airborne routes, indicating that the infection may also occur in the respiratory tract. N6-methyladenosine (m6A) has been known to regulate viral replication and host immunity, yet its regulatory role and molecular mechanism regarding PEDV infection outside the gastrointestinal tract remain unexplored. In this study, we demonstrate that PEDV can infect porcine lung tissue and the 3D4/21 alveolar macrophage cell line, and the key m6A demethylase ALKBH5 is remarkably induced after PEDV infection. Interestingly, the disruption of ALKBH5 expression remarkably increases the infection’s capacity for PEDV. Transcriptome profiling identified dozens of putative targets of ALKBH5, including GAS6, which is known to regulate virus infectivity. Further, MeRIP-qPCR and mRNA stability analyses suggest that ALKBH5 regulates the expression of GAS6 via an m6A-YTHDF2-dependent mechanism. Overall, our study demonstrates that PEDV can infect porcine lung tissue and 3D4/21 cells and reveals the crucial role of ALKBH5 in restraining PEDV infections, at least partly, by influencing GAS6 through an m6A-YTHDF2-dependent mechanism.
Collapse
|
5
|
Zhou L, Matsushima GK. Tyro3, Axl, Mertk receptor-mediated efferocytosis and immune regulation in the tumor environment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:165-210. [PMID: 34074493 DOI: 10.1016/bs.ircmb.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three structurally related tyrosine receptor cell surface kinases, Tyro3, Axl, and Mertk (TAM) have been recognized to modulate immune function, tissue homeostasis, cardiovasculature, and cancer. The TAM receptor family appears to operate in adult mammals across multiple cell types, suggesting both widespread and specific regulation of cell functions and immune niches. TAM family members regulate tissue homeostasis by monitoring the presence of phosphatidylserine expressed on stressed or apoptotic cells. The detection of phosphatidylserine on apoptotic cells requires intermediary molecules that opsonize the dying cells and tether them to TAM receptors on phagocytes. This complex promotes the engulfment of apoptotic cells, also known as efferocytosis, that leads to the resolution of inflammation and tissue healing. The immune mechanisms dictating these processes appear to fall upon specific family members or may involve a complex of different receptors acting cooperatively to resolve and repair damaged tissues. Here, we focus on the role of TAM receptors in triggering efferocytosis and its consequences in the regulation of immune responses in the context of inflammation and cancer.
Collapse
Affiliation(s)
- Liwen Zhou
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC, United States
| | - Glenn K Matsushima
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC, United States; UNC Department of Microbiology & Immunology, University of North Carolina-CH, Chapel Hill, NC, United States; UNC Integrative Program for Biological & Genome Sciences, University of North Carolina-CH, Chapel Hill, NC, United States.
| |
Collapse
|
6
|
Jiang C, Cheng Z, Jiang T, Xu Y, Wang B. MicroRNA-34a inhibits cell invasion and epithelial-mesenchymal transition via targeting AXL/PI3K/AKT/Snail signaling in nasopharyngeal carcinoma. Genes Genomics 2020; 42:971-978. [PMID: 32648233 DOI: 10.1007/s13258-020-00963-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/29/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND MicroRNA-34a (miR-34a) has been reported to inhibit TGF-β (transforming growth factor-β)-induced epithelial-mesenchymal transition (EMT) in nasopharyngeal carcinoma (NPC). However, the underlying mechanism remain unclear. Using the bioinformatics, we found that the AXL receptor tyrosine kinase (AXL) is a predicted target of miR-34a. OBJECTIVE we aimed to reveal the relationship between miR-34a and AXL, and investigate the effect and mechanism of miR-34a in NPC progression. METHODS The expression patterns of miR-34a and AXL in 30 paired NPC tissues and the adjacent tissues were examined by quantitative real time PCR (qRT-PCR). The target relationship between miR-34a and AXL was evaluated by the luciferase gene reporter assay. Cell migration and invasion were assessed by wound healing and transwell chamber assays, respectively. RESULTS miR-34a level was dramatically decreased in the NPC tissues compared to the adjacent tissues, while AXL expression was increased. Overexpression of miR-34a significantly reduced the luciferase activity of the luciferase vector of AXL (pGL3-AXL-WT), whereas this effect was abrogated when binding sites between miR-34a and AXL were mutated. In addition, ectopic expression of miR-34a dramatically inhibited Sune-1 cell migration and invasion abilities, decreased the levels of N-cadherin and Vimentin and increased E-cadherin and γ-catenin expressions, as well as induced significant reductions in the expressions of p-AKT and Snail. However, these effects were attenuated when the cells were treated with recombinant human AXL protein. CONCLUSIONS Our results demonstrate that miR-34a/AXL can inhibit NPC cell migration, invasion and EMT through inhibition of AKT/Snail signaling.
Collapse
Affiliation(s)
- Chengyi Jiang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu City, 233004, Anhui Province, China.
| | - Zhongqiang Cheng
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu City, 233004, Anhui Province, China
| | - Tao Jiang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu City, 233004, Anhui Province, China
| | - Yajia Xu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu City, 233004, Anhui Province, China
| | - Bin Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu City, 233004, Anhui Province, China
| |
Collapse
|
7
|
Zhang H, Lu X, Hao Y, Tang L, He Z. MicroRNA-26a-5p alleviates neuronal apoptosis and brain injury in intracerebral hemorrhage by targeting RAN binding protein 9. Acta Histochem 2020; 122:151571. [PMID: 32622424 DOI: 10.1016/j.acthis.2020.151571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
Abstract
Emerging evidence has unraveled the important implications of microRNAs (miRNAs/miRs) in intracerebral hemorrhage (ICH). The aim of the present study was to assess the possible regulatory role of miR-26a-5p in ICH both in vivo and in vitro. ICH model of rats was constructed using stereotactic injection of VII collagenase, and ICH condition of PC-12 cells was stimulated by hemin. Exogenous overexpression of miR-26a-5p was achieved utilizing the transfection with miR-26a-5p agomir or miR-26a-5p mimics. We detected decreased miR-26a-5p and increased RAN binding protein 9 (RANBP9) levels in perihematomal tissues of ICH rats and in PC-12 cells following ICH. While miR-26a-5p overexpression alleviated behavioral deficits and neuronal apoptosis of rats with ICH. Apoptosis-related proteins Bax, Bcl-2 and cleaved caspase-3 in perihematomal region were also measured to further confirm the inhibitory effect of miR-26a-5p on neuronal apoptosis. In ICH models in vitro, we found that miR-26a-5p overexpression significantly decreased hemin-stimulated apoptosis of PC-12 cells. Additionally, RANBP9 knockdown could suppress the apoptosis of PC-12 cells, similar to the effects of PC-12 cells transfected with miR-26a-5p mimics. With dual-luciferase reporter assay, we identified that miR-26a-5p directly targeted RANBP9. In conclusion, exogenous miR-26a-5p alleviated neuronal apoptosis and brain injury partially by targeting RANBP9, and miR-26a-5p/RANBP9 axis may be a potential target for ICH treatment.
Collapse
|
8
|
Wang Q, Zhao Y, Zang B. Anti-inflammation and anti-apoptosis effects of growth arrest-specific protein 6 in acute liver injury induced by LPS/D-GalN in mice. Acta Cir Bras 2020; 35:e202000204. [PMID: 32294688 PMCID: PMC7158606 DOI: 10.1590/s0102-865020200020000004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To investigate the effect of growth arrest-specific protein 6 (Gas6) on acute liver injury in mice and related mechanisms. Methods Thirty C57BL/6 (6-8 weeks old) mice were randomly divided into control, LPS/D-GalN, and LPS/D-GalN+Gas6 groups (10 mice in each group). The LPS/D-GalN group was intraperitoneally administered with LPS (0.25 mg/Kg) and D-GalN (400 mg/Kg) for 5h. The LPS/D-GalN+Gas6 group was intraperitoneally administered with rmGas6 one hour before intraperitoneal application of LPS/D-GalN. All subjects were sacrificed at 5 h for blood and tissue analysis. The expression of protein and mRNA was assessed by western blotting and RT-PCR, respectively. Results Compared with the control group, AST, ALT, IL-1β, TNF-α, IL-6 IL-10, MPO activity were increased in the LPS/D-GalN group. However, they were significantly inhibited by Gas6. Gas6 markedly suppressed the expression of apoptosis-related protein induced by LPS/D-GalN. Moreover, Gas6 attenuated the activation of the NF-κB signaling pathway in acute liver injury induced by LPS/D-GalN. Conclusions Gas6 alleviates acute liver injury in mice through regulating NF-κB signaling pathways. Gas6 can be a potential therapeutic agent in treating LPS/D-GalN-induced acute liver injury in the future.
Collapse
Affiliation(s)
- Qian Wang
- China Medical University, China; China Medical University, China
| | | | | |
Collapse
|
9
|
The CTLH Complex in Cancer Cell Plasticity. JOURNAL OF ONCOLOGY 2019; 2019:4216750. [PMID: 31885576 PMCID: PMC6907057 DOI: 10.1155/2019/4216750] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Cancer cell plasticity is the ability of cancer cells to intermittently morph into different fittest phenotypic states. Due to the intrinsic capacity to change their composition and interactions, protein macromolecular complexes are the ideal instruments for transient transformation. This review focuses on a poorly studied mammalian macromolecular complex called the CTLH (carboxy-terminal to LisH) complex. Currently, this macrostructure includes 11 known members (ARMC8, GID4, GID8, MAEA, MKLN1, RMND5A, RMND5B, RANBP9, RANBP10, WDR26, and YPEL5) and it has been shown to have E3-ligase enzymatic activity. CTLH proteins have been linked to all fundamental biological processes including proliferation, survival, programmed cell death, cell adhesion, and migration. At molecular level, the complex seems to interact and intertwine with key signaling pathways such as the PI3-kinase, WNT, TGFβ, and NFκB, which are key to cancer cell plasticity. As a whole, the CTLH complex is overexpressed in the most prevalent types of cancer and may hold the key to unlock many of the biological secrets that allow cancer cells to thrive in harsh conditions and resist antineoplastic therapy.
Collapse
|
10
|
Al Kafri N, Hafizi S. Tumour-Secreted Protein S (ProS1) Activates a Tyro3-Erk Signalling Axis and Protects Cancer Cells from Apoptosis. Cancers (Basel) 2019; 11:cancers11121843. [PMID: 31766614 PMCID: PMC6966665 DOI: 10.3390/cancers11121843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022] Open
Abstract
The TAM subfamily (Tyro3, Axl, MerTK) of receptor tyrosine kinases are implicated in several cancers, where they have been shown to support primary tumorigenesis as well as secondary resistance to cancer therapies. Relatively little is known about the oncogenic role of Tyro3, including its ligand selectivity and signalling in cancer cells. Tyro3 showed widespread protein and mRNA expression in a variety of human cancer cell lines. In SCC-25 head and neck cancer cells expressing both Tyro3 and Axl, Western blotting showed that both natural TAM ligands ProS1 and Gas6 rapidly stimulated Tyro3 and Erk kinase phosphorylation, with ProS1 eliciting a greater effect. In contrast, Gas6 was the sole stimulator of Axl and Akt kinase phosphorylation. In MGH-U3 bladder cancer cells, which express Tyro3 alone, ProS1 was again the stronger stimulator of Tyro3 and Erk stimulation but additionally stimulated Akt phosphorylation. Conditioned medium from ProS1-secreting 786-0 kidney cancer cells replicated the kinase activation effects of recombinant ProS1 in SCC-25 cells, with specificity confirmed by ProS1 ligand traps and warfarin. In addition, ProS1 protected cancer cells from acute apoptosis induced by staurosporine, as well as additionally, long-term serum starvation-induced apoptosis in MGH-U3 cells (Tyro3 only), which reflects its additional coupling to Akt signalling in these cells. In conclusion, we have shown that ProS1 is a tumour-derived functional ligand for Tyro3 that supports cancer cell survival. Furthermore, the ProS1-Tyro3 interaction is primarily coupled to Erk signalling although it displays signalling diversity dependent upon its representative expression as a TAM receptor in tumour cells.
Collapse
|
11
|
Wolf B, Busso C, Gönczy P. Live imaging screen reveals that TYRO3 and GAK ensure accurate spindle positioning in human cells. Nat Commun 2019; 10:2859. [PMID: 31253758 PMCID: PMC6599018 DOI: 10.1038/s41467-019-10446-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
Proper spindle positioning is crucial for spatial cell division control. Spindle positioning in human cells relies on a ternary complex comprising Gαi1-3, LGN and NuMA, which anchors dynein at the cell cortex, thus enabling pulling forces to be exerted on astral microtubules. We develop a live imaging siRNA-based screen using stereotyped fibronectin micropatterns to uncover components modulating spindle positioning in human cells, testing 1280 genes, including all kinases and phosphatases. We thus discover 16 components whose inactivation dramatically perturbs spindle positioning, including tyrosine receptor kinase 3 (TYRO3) and cyclin G associated kinase (GAK). TYRO3 depletion results in excess NuMA and dynein at the cortex during metaphase, similar to the effect of blocking the TYRO3 downstream target phosphatidylinositol 3-kinase (PI3K). Furthermore, depletion of GAK leads to impaired astral microtubules, similar to the effect of downregulating the GAK-interactor Clathrin. Overall, our work uncovers components and mechanisms governing spindle positioning in human cells.
Collapse
Affiliation(s)
- Benita Wolf
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
12
|
Abstract
IMPACT STATEMENT Cancer is among the leading causes of death worldwide. In 2016, 8.9 million people are estimated to have died from various forms of cancer. The current treatments, including surgery with chemotherapy and/or radiation therapy, are not effective enough to provide full protection from cancer, which highlights the need for developing novel therapy strategies. In this review, we summarize the molecular biology of a unique member of a subfamily of receptor tyrosine kinase, TYRO3 and discuss the new insights in TYRO3-targeted treatment for cancer therapy.
Collapse
Affiliation(s)
- Pei-Ling Hsu
- 1 Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jonathan Jou
- 2 College of Medicine, University of Illinois, IL 60612, USA
| | - Shaw-Jenq Tsai
- 1 Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
13
|
Smart SK, Vasileiadi E, Wang X, DeRyckere D, Graham DK. The Emerging Role of TYRO3 as a Therapeutic Target in Cancer. Cancers (Basel) 2018; 10:cancers10120474. [PMID: 30501104 PMCID: PMC6316664 DOI: 10.3390/cancers10120474] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022] Open
Abstract
The TAM family (TYRO3, AXL, MERTK) tyrosine kinases play roles in diverse biological processes including immune regulation, clearance of apoptotic cells, platelet aggregation, and cell proliferation, survival, and migration. While AXL and MERTK have been extensively studied, less is known about TYRO3. Recent studies revealed roles for TYRO3 in cancer and suggest TYRO3 as a therapeutic target in this context. TYRO3 is overexpressed in many types of cancer and functions to promote tumor cell survival and/or proliferation, metastasis, and resistance to chemotherapy. In addition, higher levels of TYRO3 expression have been associated with decreased overall survival in patients with colorectal, hepatocellular, and breast cancers. Here we review the physiological roles for TYRO3 and its expression and functions in cancer cells and the tumor microenvironment, with emphasis on the signaling pathways that are regulated downstream of TYRO3 and emerging roles for TYRO3 in the immune system. Translational agents that target TYRO3 are also described.
Collapse
Affiliation(s)
- Sherri K Smart
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| | - Eleana Vasileiadi
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Deborah DeRyckere
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| | - Douglas K Graham
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
Salemi LM, Maitland MER, McTavish CJ, Schild-Poulter C. Cell signalling pathway regulation by RanBPM: molecular insights and disease implications. Open Biol 2018; 7:rsob.170081. [PMID: 28659384 PMCID: PMC5493780 DOI: 10.1098/rsob.170081] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022] Open
Abstract
RanBPM (Ran-binding protein M, also called RanBP9) is an evolutionarily conserved, ubiquitous protein which localizes to both nucleus and cytoplasm. RanBPM has been implicated in the regulation of a number of signalling pathways to regulate several cellular processes such as apoptosis, cell adhesion, migration as well as transcription, and plays a critical role during development. In addition, RanBPM has been shown to regulate pathways implicated in cancer and Alzheimer's disease, implying that RanBPM has important functions in both normal and pathological development. While its functions in these processes are still poorly understood, RanBPM has been identified as a component of a large complex, termed the CTLH (C-terminal to LisH) complex. The yeast homologue of this complex functions as an E3 ubiquitin ligase that targets enzymes of the gluconeogenesis pathway. While the CTLH complex E3 ubiquitin ligase activity and substrates still remain to be characterized, the high level of conservation between the complexes in yeast and mammals infers that the CTLH complex could also serve to promote the degradation of specific substrates through ubiquitination, therefore suggesting the possibility that RanBPM's various functions may be mediated through the activity of the CTLH complex.
Collapse
Affiliation(s)
- Louisa M Salemi
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Matthew E R Maitland
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Christina J McTavish
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Caroline Schild-Poulter
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| |
Collapse
|
15
|
Puverel S, Kiris E, Singh S, Klarmann KD, Coppola V, Keller JR, Tessarollo L. RanBPM (RanBP9) regulates mouse c-Kit receptor level and is essential for normal development of bone marrow progenitor cells. Oncotarget 2018; 7:85109-85123. [PMID: 27835883 PMCID: PMC5341297 DOI: 10.18632/oncotarget.13198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023] Open
Abstract
c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies.
Collapse
Affiliation(s)
- Sandrine Puverel
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Erkan Kiris
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Satyendra Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Kimberly D Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA.,Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Vincenzo Coppola
- The Ohio State University, Department of Cancer, Biology and Genetics, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA.,Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| |
Collapse
|
16
|
Tang WH, Zhuang XJ, Song SD, Wu H, Zhang Z, Yang YZ, Zhang HL, Mao JM, Liu DF, Zhao LM, Lin HC, Hong K, Ma LL, Qiao J, Qin W, Tang Y, Jiang H. Ran-binding protein M is associated with human spermatogenesis and oogenesis. Mol Med Rep 2017; 17:2257-2262. [PMID: 29207172 PMCID: PMC5783472 DOI: 10.3892/mmr.2017.8147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 10/06/2017] [Indexed: 12/02/2022] Open
Abstract
The aim of the present study was to explore the underlying mechanism and diagnostic potential of Ran-binding protein M (RanBPM) in human spermatogenesis and oogenesis. RanBPM expression in human testis and ovaries was analysed using polymerase chain reaction (PCR) and western blotting, and immunofluorescence was performed on testis and ovary tissue sections during different developmental stages of spermatogenesis and oogenesis using RanBPM antibodies. Interactions with a variety of functional proteins were also investigated. RanBPM mRNA and protein expression levels were determined by PCR and western blotting in the tissue sections. Results revealed that the mRNA expression levels were highest in the testis followed by the ovary. The RanBPM protein was predominantly localized in the nucleus of germ cells, and the expression levels were highest in pachytene spermatocytes and cells surrounding spermatids in testis tissue. In ovary cells, RanBPM was localized in the nucleus and cytoplasm. In conclusion, the results suggested that RanBPM may have multiple roles in the regulation of germ cell proliferation during human spermatogenesis and oogenesis. This research may provide a novel insight into the underlying molecular mechanism of RanBPM and may have implications for the clinical diagnosis and treatment of human infertility.
Collapse
Affiliation(s)
- Wen-Hao Tang
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Xin-Jie Zhuang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Shi-De Song
- Department of Urology, Rizhao People's Hospital, Rizhao, Shandong 276500, P.R. China
| | - Han Wu
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Zhe Zhang
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Yu-Zhuo Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Hong-Liang Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jia-Ming Mao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, P.R. China
| | - De-Feng Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lian-Ming Zhao
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Hao-Cheng Lin
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Kai Hong
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Lu-Lin Ma
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Weibing Qin
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, Family Planning Research Institute of Guangdong Province, Guangzhou, Guangdong 510600, P.R. China
| | - Yunge Tang
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, Family Planning Research Institute of Guangdong Province, Guangzhou, Guangdong 510600, P.R. China
| | - Hui Jiang
- 1Department of Urology, The Third Hospital of Peking University, Beijing 100191, P.R. China
| |
Collapse
|
17
|
Das S, Suresh B, Kim HH, Ramakrishna S. RanBPM: a potential therapeutic target for modulating diverse physiological disorders. Drug Discov Today 2017; 22:1816-1824. [PMID: 28847759 DOI: 10.1016/j.drudis.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/26/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
The Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein involved in a variety of intracellular signaling pathways that control diverse cellular functions. RanBPM interacts with proteins that are linked to various diseases, including Alzheimer's disease (AD), schizophrenia (SCZ), and cancer. In this article, we define the characteristics of the scaffolding protein RanBPM and focus on its interaction partners in diverse physiological disorders, such as neurological diseases, fertility disorders, and cancer.
Collapse
Affiliation(s)
- Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
18
|
Li Y, Jia L, Ren D, Liu C, Gong Y, Wang N, Zhang X, Zhao Y. Axl mediates tumor invasion and chemosensitivity through PI3K/Akt signaling pathway and is transcriptionally regulated by slug in breast carcinoma. IUBMB Life 2014; 66:507-18. [PMID: 24984960 DOI: 10.1002/iub.1285] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/16/2014] [Indexed: 11/06/2022]
Abstract
The invasion and chemoresistance are crucial causes of morbidity and relapse for cancer patients. Axl is implicated in the modulation of cell invasion, cancer metastasis, and chemosensitivity in human breast carcinoma cell lines. Both breast cancer cell lines and tissues displayed increased expression of Axl, and it over expressed in highly metastatic breast cancer. The altered expression level of Axl was corresponding to the changed invasive phenotype and chemosensitivity of MDA-MB-231 cells both in vitro and in vivo. Further data indicated that experimental inhibition of Axl by RNAi assay inhibited phosphatidylinositol 3-kinase (PI3K)/Akt/GSK3β signaling pathway, resulted in the decrease of Slug expression, and further suppressed cell invasion properties and chemosensitivity. What is more, after the detection and statistics in human breast cancer specimens, we found the Axl expression was closely correlated with histological grade, lymph node metastasis, and clinical stage (P < 0.01). Taken together, these findings indicate that Axl exerts the role of tumor metastasis and chemosensitivity through activation of the PI3K/Akt/GSK3β signaling pathway, which is transcriptionally regulated by Slug. Our findings support the possibility that Axl is a novel regulator. It means by targeting Axl or its related signaling pathways, we can reduce the invasion and chemosensitivity of breast tumor.
Collapse
Affiliation(s)
- Yanyan Li
- Department of General Surgery, Dalian Medical University, Dalian, Liaoning Province, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Salemi LM, Almawi AW, Lefebvre KJ, Schild-Poulter C. Aggresome formation is regulated by RanBPM through an interaction with HDAC6. Biol Open 2014; 3:418-30. [PMID: 24795145 PMCID: PMC4058076 DOI: 10.1242/bio.20147021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In conditions of proteasomal impairment, the build-up of damaged or misfolded proteins activates a cellular response leading to the recruitment of damaged proteins into perinuclear aggregates called aggresomes. Aggresome formation involves the retrograde transport of cargo proteins along the microtubule network and is dependent on the histone deacetylase HDAC6. Here we show that ionizing radiation (IR) promotes Ran-Binding Protein M (RanBPM) relocalization into discrete perinuclear foci where it co-localizes with aggresome components ubiquitin, dynein and HDAC6, suggesting that the RanBPM perinuclear clusters correspond to aggresomes. RanBPM was also recruited to aggresomes following treatment with the proteasome inhibitor MG132 and the DNA-damaging agent etoposide. Strikingly, aggresome formation by HDAC6 was markedly impaired in RanBPM shRNA cells, but was restored by re-expression of RanBPM. RanBPM was found to interact with HDAC6 and to inhibit its deacetylase activity. This interaction was abrogated by a RanBPM deletion of its LisH/CTLH domain, which also prevented aggresome formation, suggesting that RanBPM promotes aggresome formation through an association with HDAC6. Our results suggest that RanBPM regulates HDAC6 activity and is a central regulator of aggresome formation.
Collapse
Affiliation(s)
- Louisa M Salemi
- Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ahmad W Almawi
- Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Karen J Lefebvre
- Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
20
|
Subramanian M, Hayes CD, Thome JJ, Thorp E, Matsushima GK, Herz J, Farber DL, Liu K, Lakshmana M, Tabas I. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J Clin Invest 2014; 124:1296-308. [PMID: 24509082 DOI: 10.1172/jci72051] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/21/2013] [Indexed: 01/02/2023] Open
Abstract
The phagocytosis of apoptotic cells (ACs), or efferocytosis, by DCs is critical for self-tolerance and host defense. Although many efferocytosis-associated receptors have been described in vitro, the functionality of these receptors in vivo has not been explored in depth. Using a spleen efferocytosis assay and targeted genetic deletion in mice, we identified a multiprotein complex--composed of the receptor tyrosine kinase AXL, LDL receptor-related protein-1 (LRP-1), and RAN-binding protein 9 (RANBP9)--that mediates DC efferocytosis and antigen cross-presentation. We found that AXL bound ACs, but required LRP-1 to trigger internalization, in murine CD8α+ DCs and human-derived DCs. AXL and LRP-1 did not interact directly, but relied on RANBP9, which bound both AXL and LRP-1, to form the complex. In a coculture model of antigen presentation, the AXL/LRP-1/RANBP9 complex was used by DCs to cross-present AC-associated antigens to T cells. Furthermore, in a murine model of herpes simplex virus-1 infection, mice lacking DC-specific LRP-1, AXL, or RANBP9 had increased AC accumulation, defective viral antigen-specific CD8+ T cell activation, enhanced viral load, and decreased survival. The discovery of this multiprotein complex that mediates functionally important DC efferocytosis in vivo may have implications for future studies related to host defense and DC-based vaccines.
Collapse
|
21
|
Zhang J, Ma W, Tian S, Fan Z, Ma X, Yang X, Zhao Q, Tan K, Chen H, Chen D, Huang BR. RanBPM interacts with TβRI, TRAF6 and curbs TGF induced nuclear accumulation of TβRI. Cell Signal 2013; 26:162-72. [PMID: 24103590 DOI: 10.1016/j.cellsig.2013.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/18/2013] [Accepted: 09/30/2013] [Indexed: 12/19/2022]
Abstract
Transforming growth factor β (TGF-β), a cytokine, and its receptors play a vital role during normal embryogenesis, cell proliferation, differentiation, apoptosis and migration. Ran-binding protein in the microtubule-organizing center (RanBPM) serves as a scaffold protein that has been shown to interact with many other proteins, such as MET, Axl/Sky, TRAF6, IFNR, TrKA and TrkB in addition to p75NTR. In the current study, we have identified RanBPM as a novel binding partner of TβRI by yeast two-hybrid assay. The TβRI and RanBPM association was confirmed by co-immunoprecipitation and GST pull-down experiments. Additionally, expression of RanBPM abrogated the interaction between TβRI and TRAF6. Furthermore, RanBPM could depress TGF-β induced TRAF6 ubiquitination, subsequent NF-κB signaling pathway, and block TGF-β induced TβRI nuclear accumulation. Taken together, our results reveal that RanBPM may modulate TGF-β-mediated downstream signaling and biological functions.
Collapse
Affiliation(s)
- Junwen Zhang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhao XL, Campos AR. Insulin signalling in mushroom body neurons regulates feeding behaviour in Drosophila larvae. J Exp Biol 2012; 215:2696-702. [DOI: 10.1242/jeb.066969] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Whereas the pivotal role of insulin signalling in cell division, growth and differentiation is well documented, its role in the regulation of neuronal function and behaviour has recently become the focus of intense investigation. The simple organization of the Drosophila larval brain and the availability of genetic tools to impair the function of insulin receptor signalling in a spatially specific manner makes Drosophila an attractive model to investigate the role of the insulin pathway in specific behaviours. Here, we show that impairment of insulin signalling in the mushroom body neurons, a structure involved in associative learning, impairs feeding behaviour in the Drosophila larva.
Collapse
Affiliation(s)
- Xiao Li Zhao
- Department of Biology, McMaster University, Hamilton, ON, CanadaL8S 4K1
| | - Ana Regina Campos
- Department of Biology, McMaster University, Hamilton, ON, CanadaL8S 4K1
| |
Collapse
|
23
|
Suresh B, Ramakrishna S, Baek KH. Diverse roles of the scaffolding protein RanBPM. Drug Discov Today 2011; 17:379-87. [PMID: 22094242 DOI: 10.1016/j.drudis.2011.10.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/08/2011] [Accepted: 10/31/2011] [Indexed: 11/27/2022]
Abstract
Ran-binding protein microtubule-organizing center (RanBPM) appears to function as a scaffolding protein in several signal transduction pathways. RanBPM is a crucial component of multiprotein complexes that regulate the cellular function by modulating and/or assembling with a wide range of proteins in different intracellular regions and thereby mediate diverse cellular functions. This suggests a role for RanBPM as a scaffolding protein. In this article, we have summarized the diverse functions of RanBPM and its interacting partners that have been investigated to date. Also, we have categorized the role of RanBPM into four divisions: RanBPM as a modulator/protein stabilizer, regulator of transcription activity, cell cycle and neurological functions.
Collapse
Affiliation(s)
- Bharathi Suresh
- Department of Biomedical Science, CHA University, CHA General Hospital, Seoul 135-081, Republic of Korea
| | | | | |
Collapse
|
24
|
Brindley MA, Hunt CL, Kondratowicz AS, Bowman J, Sinn PL, McCray PB, Quinn K, Weller ML, Chiorini JA, Maury W. Tyrosine kinase receptor Axl enhances entry of Zaire ebolavirus without direct interactions with the viral glycoprotein. Virology 2011; 415:83-94. [PMID: 21529875 PMCID: PMC3107944 DOI: 10.1016/j.virol.2011.04.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/28/2011] [Accepted: 04/04/2011] [Indexed: 12/27/2022]
Abstract
In a bioinformatics-based screen for cellular genes that enhance Zaire ebolavirus (ZEBOV) transduction, AXL mRNA expression strongly correlated with ZEBOV infection. A series of cell lines and primary cells were identified that require Axl for optimal ZEBOV entry. Using one of these cell lines, we identified ZEBOV entry events that are Axl-dependent. Interactions between ZEBOV-GP and the Axl ectodomain were not detected in immunoprecipitations and reduction of surface-expressed Axl by RNAi did not alter ZEBOV-GP binding, providing evidence that Axl does not serve as a receptor for the virus. However, RNAi knock down of Axl reduced ZEBOV pseudovirion internalization and α-Axl antisera inhibited pseudovirion fusion with cellular membranes. Consistent with the importance of Axl for ZEBOV transduction, Axl transiently co-localized on the surface of cells with ZEBOV virus particles and was internalized during virion transduction. In total, these findings indicate that endosomal uptake of filoviruses is facilitated by Axl.
Collapse
Affiliation(s)
| | | | | | - Jill Bowman
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Patrick L. Sinn
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242
| | - Paul B. McCray
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242
| | - Kathrina Quinn
- Molecular Physiology and Therapeutics Branch, National Dental and Craniofacial Research Branch, National Institutes of Health, Bethesda, MD 20892
| | - Melodie L. Weller
- Molecular Physiology and Therapeutics Branch, National Dental and Craniofacial Research Branch, National Institutes of Health, Bethesda, MD 20892
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, National Dental and Craniofacial Research Branch, National Institutes of Health, Bethesda, MD 20892
| | - Wendy Maury
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
25
|
Yin YX, Sun ZP, Huang SH, Zhao L, Geng Z, Chen ZY. RanBPM contributes to TrkB signaling and regulates brain-derived neurotrophic factor-induced neuronal morphogenesis and survival. J Neurochem 2010; 114:110-21. [PMID: 20403074 DOI: 10.1111/j.1471-4159.2010.06745.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Tropomyosin-related kinase (Trk) B is a receptor tyrosine kinase for brain-derived neurotrophic factor (BDNF) which plays a critical role in neuronal survival, differentiation and morphogenesis. Ran-binding protein in the microtubule-organizing center (RanBPM) is a cytosolic scaffold protein that has been shown to interact with protein-tyrosine kinase receptor MET, Axl/Sky, and TrkA in addition to the pan-neurotrophin receptor pan-neurotrophin receptor 75 kDa. In this study, we report RanBPM is a novel TrkB-interacting protein that contributes to BDNF-induced MAPK and Akt activation together with neuronal morphogenesis and survival. Over-expression of RanBPM in PC1210 cells (PC12 cells stably over-expressing TrkB) can significantly enhance BDNF-induced MAPK and Akt activation. Moreover, RanBPM can promote BDNF-induced hippocampal neuronal morphogenesis and enhance BDNF-mediated trophic effects after serum deprivation, while siRNA knock down of RanBPM in cells has the opposite effects. Together, these results suggest that RanBPM may modulate TrkB-mediated downstream signaling and biological functions.
Collapse
Affiliation(s)
- Yu-Xia Yin
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | | | | | | | | | | |
Collapse
|
26
|
Gong X, Ye W, Zhou H, Ren X, Li Z, Zhou W, Wu J, Gong Y, Ouyang Q, Zhao X, Zhang X. RanBPM is an acetylcholinesterase-interacting protein that translocates into the nucleus during apoptosis. Acta Biochim Biophys Sin (Shanghai) 2009; 41:883-91. [PMID: 19902122 DOI: 10.1093/abbs/gmp082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acetylcholinesterase (AChE) expression may be induced during apoptosis in various cell types. Here, we used the C-terminal of AChE to screen the human fetal brain library and found that it interacted with Ran-binding protein in the microtubule-organizing center (RanBPM). This interaction was further confirmed by coimmunoprecipitation analysis. In HEK293T cells, RanBPM and AChE were heterogeneously expressed in the cisplatin-untreated cytoplasmic extracts and in the cisplatin-treated cytoplasmic or nuclear extracts. Our previous studies performed using morphologic methods have shown that AChE translocates from the cytoplasm to the nucleus during apoptosis. Taken together, these results suggest that RanBPM is an AChE-interacting protein that is translocated from the cytoplasm into the nucleus during apoptosis, similar to the translocation observed in case of AChE.
Collapse
Affiliation(s)
- Xiaowen Gong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lakshmana MK, Yoon IS, Chen E, Bianchi E, Koo EH, Kang DE. Novel role of RanBP9 in BACE1 processing of amyloid precursor protein and amyloid beta peptide generation. J Biol Chem 2009; 284:11863-72. [PMID: 19251705 DOI: 10.1074/jbc.m807345200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Accumulation of the amyloid beta (Abeta) peptide derived from the proteolytic processing of amyloid precursor protein (APP) is the defining pathological hallmark of Alzheimer disease. We previously demonstrated that the C-terminal 37 amino acids of lipoprotein receptor-related protein (LRP) robustly promoted Abeta generation independent of FE65 and specifically interacted with Ran-binding protein 9 (RanBP9). In this study we found that RanBP9 strongly increased BACE1 cleavage of APP and Abeta generation. This pro-amyloidogenic activity of RanBP9 did not depend on the KPI domain or the Swedish APP mutation. In cells expressing wild type APP, RanBP9 reduced cell surface APP and accelerated APP internalization, consistent with enhanced beta-secretase processing in the endocytic pathway. The N-terminal half of RanBP9 containing SPRY-LisH domains not only interacted with LRP but also with APP and BACE1. Overexpression of RanBP9 resulted in the enhancement of APP interactions with LRP and BACE1 and increased lipid raft association of APP. Importantly, knockdown of endogenous RanBP9 significantly reduced Abeta generation in Chinese hamster ovary cells and in primary neurons, demonstrating its physiological role in BACE1 cleavage of APP. These findings not only implicate RanBP9 as a novel and potent regulator of APP processing but also as a potential therapeutic target for Alzheimer disease.
Collapse
Affiliation(s)
- Madepalli K Lakshmana
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
28
|
Kurisetty VV, Johnston PG, Johnston N, Erwin P, Crowe P, Fernig DG, Campbell FC, Anderson IP, Rudland PS, El-Tanani MK. RAN GTPase is an effector of the invasive/metastatic phenotype induced by osteopontin. Oncogene 2008; 27:7139-7149. [PMID: 18794800 DOI: 10.1038/onc.2008.325] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 07/11/2008] [Accepted: 07/30/2008] [Indexed: 12/31/2022]
Abstract
Osteopontin (OPN) is a phosphorylated glycoprotein that binds to alpha v-containing integrins and is important in malignant transformation and cancer. Previously, we have utilized suppressive subtractive hybridization between mRNAs isolated from the Rama 37 (R37) rat mammary cell line and a subclone rendered invasive and metastatic by stable transfection with an expression vector for OPN to identify RAN GTPase (RAN) as the most overexpressed gene, in addition to that of OPN. Here we show that transfection of noninvasive R37 cells with an expression vector for RAN resulted in increased anchorage-independent growth, cell attachment and invasion through Matrigel in vitro, and metastasis in syngeneic rats. This induction of a malignant phenotype was induced independently of the expression of OPN, and was reversed by specifically reducing the expression of RAN using small-interfering RNAs. By using a combination of mutant protein and inhibitors, it was found that RAN signal transduction occurred through the c-Met receptor and PI3 kinase. This study therefore identifies RAN as a novel effector of OPN-mediated malignant transformation and some of its downstream signaling events in a mammary epithelial model of cancer invasion/metastasis.
Collapse
Affiliation(s)
- V V Kurisetty
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Valiyaveettil M, Bentley AA, Gursahaney P, Hussien R, Chakravarti R, Kureishy N, Prag S, Adams JC. Novel role of the muskelin-RanBP9 complex as a nucleocytoplasmic mediator of cell morphology regulation. J Cell Biol 2008; 182:727-39. [PMID: 18710924 PMCID: PMC2518711 DOI: 10.1083/jcb.200801133] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 07/23/2008] [Indexed: 12/22/2022] Open
Abstract
The evolutionarily conserved kelch-repeat protein muskelin was identified as an intracellular mediator of cell spreading. We discovered that its morphological activity is controlled by association with RanBP9/RanBPM, a protein involved in transmembrane signaling and a conserved intracellular protein complex. By subcellular fractionation, endogenous muskelin is present in both the nucleus and the cytosol. Muskelin subcellular localization is coregulated by its C terminus, which provides a cytoplasmic restraint and also controls the interaction of muskelin with RanBP9, and its atypical lissencephaly-1 homology motif, which has a nuclear localization activity which is regulated by the status of the C terminus. Transient or stable short interfering RNA-based knockdown of muskelin resulted in protrusive cell morphologies with enlarged cell perimeters. Morphology was specifically restored by complementary DNAs encoding forms of muskelin with full activity of the C terminus for cytoplasmic localization and RanBP9 binding. Knockdown of RanBP9 resulted in equivalent morphological alterations. These novel findings identify a role for muskelin-RanBP9 complex in pathways that integrate cell morphology regulation and nucleocytoplasmic communication.
Collapse
Affiliation(s)
- Manojkumar Valiyaveettil
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Enhancement of transactivation activity of Rta of Epstein-Barr virus by RanBPM. J Mol Biol 2008; 379:231-42. [PMID: 18455188 DOI: 10.1016/j.jmb.2008.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/01/2008] [Accepted: 04/01/2008] [Indexed: 12/16/2022]
Abstract
Epstein-Barr virus (EBV) expresses the immediate-early protein Rta to activate the transcription of EBV lytic genes and the lytic cycle. We show that RanBPM acts as a binding partner of Rta in yeast two-hybrid analysis. The binding was confirmed by glutathione-S-transferase pull-down assay. A coimmunoprecipitation experiment and confocal microscopy revealed that RanBPM and Rta interact in vivo and colocalize in the nucleus. The interaction appears to involve the SPRY domain in RanBPM and the region between amino acid residues 416 to 476 in Rta. The interaction promotes the transactivation activity of Rta in activating the transcription of BMLF1 and p21 in transient transfection assays. Additionally, RanBPM interacts with SUMO-E2 (Ubc9) to promote sumoylation of Rta by SUMO-1. This fact explains why the expression of RanBPM enhances the transactivation activity of Rta. Taken together, the present results indicate a new role of RanBPM in regulating a viral protein that is critical to EBV lytic activation.
Collapse
|
31
|
Linger RMA, Keating AK, Earp HS, Graham DK. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res 2008; 100:35-83. [PMID: 18620092 PMCID: PMC3133732 DOI: 10.1016/s0065-230x(08)00002-x] [Citation(s) in RCA: 576] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tyro-3, Axl, and Mer constitute the TAM family of receptor tyrosine kinases (RTKs) characterized by a conserved sequence within the kinase domain and adhesion molecule-like extracellular domains. This small family of RTKs regulates an intriguing mix of processes, including cell proliferation/survival, cell adhesion and migration, blood clot stabilization, and regulation of inflammatory cytokine release. Genetic or experimental alteration of TAM receptor function can contribute to a number of disease states, including coagulopathy, autoimmune disease, retinitis pigmentosa, and cancer. In this chapter, we first provide a comprehensive review of the structure, regulation, biologic functions, and downstream signaling pathways of these receptors. In addition, we discuss recent evidence which suggests a role for TAM receptors in oncogenic mechanisms as family members are overexpressed in a spectrum of human cancers and have prognostic significance in some. Possible strategies for targeted inhibition of the TAM family in the treatment of human cancer are described. Further research will be necessary to evaluate the full clinical implications of TAM family expression and activation in cancer.
Collapse
Affiliation(s)
- Rachel M A Linger
- Department of Pediatrics, University of Colorado at Denver and Health Sciences Center, Aurora, CO, USA
| | | | | | | |
Collapse
|
32
|
Prieto AL, O'Dell S, Varnum B, Lai C. Localization and signaling of the receptor protein tyrosine kinase Tyro3 in cortical and hippocampal neurons. Neuroscience 2007; 150:319-34. [PMID: 17980494 PMCID: PMC2231337 DOI: 10.1016/j.neuroscience.2007.09.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 07/31/2007] [Accepted: 10/03/2007] [Indexed: 11/29/2022]
Abstract
Protein phosphorylation serves as a critical biochemical regulator of short-term and long-term synaptic plasticity. Receptor protein tyrosine kinases (RPTKs) including members of the trk, eph and erbB subfamilies have been shown to modulate signaling cascades that influence synaptic function in the central nervous system (CNS). Tyro3 is one of three RPTKs belonging to the "TAM" receptor family, which also includes Axl and Mer. Tyro3 is the most widely expressed of these receptors in the CNS. Despite recent advances suggesting roles for members of this receptor family in the reproductive and immune systems, their functions in the CNS remain largely unexplored. In an effort to elucidate the roles of Tyro3 and its ligand, the protein growth arrest-specific gene6 (Gas6) in the hippocampus and cortex, we performed a detailed study of the localization and signaling of Tyro3 polypeptides in rat hippocampal and cortical neurons. Tyro3 was readily detected in dendrites and in the soma where it was distributed in a punctate pattern. Tyro3 exhibited only a limited level of co-localization with postsynaptic density protein-95 (PSD-95), suggesting that while located within dendrites, it was not confined to the postsynaptic compartment. In addition, Tyro3 was also identified in the axons and growth cones of immature neurons. The prominent expression of Tyro3 in dendrites suggested that it may be capable of modulating signaling pathways triggered by synaptic transmission. We have provided evidence in support of this role by demonstrating that Gas6 induced the phosphorylation of Tyro3 in cortical neurons in vitro, resulting in the recruitment of the mitogen-activated protein kinase (MAPK) and the phosphoinositide-3 kinase (PI(3)K) signaling pathways. As these pathways play critical roles in the induction of hippocampal long-term potentiation (LTP), these findings suggest that Tyro3 signaling may influence synaptic plasticity in the dendritic compartment of hippocampal and cortical neurons.
Collapse
Affiliation(s)
- A L Prieto
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
33
|
Palgova IV, Korobko EV, Korobko IV. Multiadaptor proteins of the 4.1 family and RanBP9 as potential interaction partners for VARP, a Rab21 GTPase guanine nucleotide exchange factor. Mol Biol 2007. [DOI: 10.1134/s0026893307060088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Kobayashi N, Yang J, Ueda A, Suzuki T, Tomaru K, Takeno M, Okuda K, Ishigatsubo Y. RanBPM, Muskelin, p48EMLP, p44CTLH, and the armadillo-repeat proteins ARMC8alpha and ARMC8beta are components of the CTLH complex. Gene 2007; 396:236-47. [PMID: 17467196 DOI: 10.1016/j.gene.2007.02.032] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 02/13/2007] [Accepted: 02/23/2007] [Indexed: 11/17/2022]
Abstract
Ran-binding protein in microtubule organising centre (RanBPM) was originally isolated as a protein that binds to the small GTPase Ran. Recently our group and other groups reported that RanBPM was associated with several proteins and composed a large protein complex. Here, we used tandem MS with an antibody against RanBPM to purify this complex from a soluble extract of HEK293 cells: we identified Muskelin, p48EMLP, p44CTLH, and the novel armadillo-repeat proteins ARMC8alpha and ARMC8beta as components. In RanBPM, Muskelin, p48EMLP, and p44CTLH we found LisH/CTLH motifs, which are present in proteins involved in microtubule dynamics, cell migration, nucleokinesis, and chromosome segregation. We renamed the 20S large protein complex the CTLH complex. The N-terminal 364 amino acids of ARMC8alpha and ARMC8beta were completely conserved, suggesting that these proteins are probably alternatively spliced products from the same gene. We confirmed the in vivo association of each component by co-immunoprecipitation assays with Cos-7 cells in which these components were exogenously overexpressed. A pull-down assay with bacterially-expressed Twa1 revealed binding of each in vitro-translated component to Twa1. Finally, we confirmed the cellular localization of these proteins. Taken together, our results reveal that RanBPM, ARMC8alpha, ARMC8beta, Muskelin, p48EMLP, and p44CTLH form complexes in cells.
Collapse
Affiliation(s)
- Nobuaki Kobayashi
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama-City 236-0004, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yuan Y, Fu C, Chen H, Wang X, Deng W, Huang BR. The Ran binding protein RanBPM interacts with TrkA receptor. Neurosci Lett 2006; 407:26-31. [PMID: 16959415 DOI: 10.1016/j.neulet.2006.06.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/20/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
RanBPM as a novel binding protein can interact with neurotrophin receptor p75NTR and tyrosine kinase receptor Met which has a similar tyrosine kinase structure as receptor TrkA has. Whether RanBPM interacts with neurotrophin receptor TrkA has not been established to date. In this study, using yeast two-hybrid system, it was identified that RanBPM bound to the intracellular domain (ICD) of neurotrophin receptor TrkA through its SPRY motif. We confirmed the formation of complexes between RanBPM and TrkA by co-immunoprecipitation studies and GST pull-down assays. The region of TrkA interacted with the SPRY domain of RanBPM was located in its tyrosine kinase domain. Furthermore, coimmunoprecipitaiton revealed endogenous RanBPM and receptors TrkA did interact in several mammalian cell lines. It was found that the overexpression of RanBPM could inhibit NGF-induced increase of nuclear factor of activated T cells (NFAT) dependent luciferase expression through its interaction with receptor TrkA, and NFAT transcriptional activity plays an important role in neuronal signal transduction. These data suggested that RanBPM could participate in neurotrophin-mediated gene transcription and expression by its binding to TrkA.
Collapse
Affiliation(s)
- Yuhe Yuan
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | |
Collapse
|
36
|
Togashi H, Schmidt EF, Strittmatter SM. RanBPM contributes to Semaphorin3A signaling through plexin-A receptors. J Neurosci 2006; 26:4961-9. [PMID: 16672672 PMCID: PMC2846289 DOI: 10.1523/jneurosci.0704-06.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Revised: 04/01/2006] [Accepted: 04/03/2006] [Indexed: 12/30/2022] Open
Abstract
Secreted Semaphorin3A (Sema3A) proteins are known to act as diffusible and repellant axonal guidance cues during nervous system development. A receptor complex consisting of a Neuropilin and a Plexin-A mediates their effects. Plexin-A signal transduction has remained poorly defined despite the documented involvement of collapsin response mediator protein and molecule interacting with CasL proteins (MICALs) as mediators of Plexin-A activation. Here, we defined a domain of Plexin-A1 required for Sema3A signaling in a reconstituted environment and then searched for proteins interacting with this domain. RanBPM is shown to physically interact with Plexin-A1, and the RanBPM/Plexin complex is regulated by MICAL expression. Overexpression of RanBPM cooperates with PlexinA1 to reduce non-neuronal cell spreading and strongly inhibit axonal outgrowth in vitro and in vivo. A truncated RanBPM protein blocks Sema3A responsiveness in non-neuronal and neuronal cells. Suppression of RanBPM expression reduces Sema3A responsiveness. Thus, RanBPM is a mediator of Sema3A signaling through Plexin-A. RanBPM has the potential to link Plexin-A receptors to retrograde transport and microtubule function in axonal guidance.
Collapse
|
37
|
Johnson SE, Winner DG, Wang X. Ran binding protein 9 interacts with Raf kinase but does not contribute to downstream ERK1/2 activation in skeletal myoblasts. Biochem Biophys Res Commun 2006; 340:409-16. [PMID: 16364241 DOI: 10.1016/j.bbrc.2005.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/06/2005] [Indexed: 10/25/2022]
Abstract
Raf kinase is the upstream activator of MEK1/2 leading to phosphorylation and activation of ERK1/2. Sustained activation of Raf represses skeletal muscle-specific reporter gene transcription and formation of multinucleated myofibers. Inhibition of myogenesis by activated Raf involves downstream ERK1/2 as well as undefined mediators. To identify Raf-interacting proteins that may influence repression of muscle formation, a yeast two-hybrid screen was performed using a MEK1-binding defective Raf (RafBXB-T481A) as bait. Twenty cDNAs coding for Raf-interacting proteins were identified including Ran binding protein 9 (RanBP9), a protein previously reported to interact with receptor tyrosine kinases. Forced expression of RanBP9 in myogenic cells did not alter myogenesis. Co-expression of RanBP9 with constitutively active RafBXB, but not RafBXB-T481A, synergistically inhibited MyoD-directed muscle reporter gene transcription. Knockdown of RanBP9 expression did not restore the differentiation program to Raf-expressing myoblasts. Thus, RanBP9 physically associates with Raf but does not substantially contribute to the inhibitory actions of the kinase.
Collapse
|