1
|
Quinot V, Höftberger R. Pathogenesis and immunopathology of paraneoplastic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:33-54. [PMID: 38494287 DOI: 10.1016/b978-0-12-823912-4.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Paraneoplastic neurologic syndromes (PNS) represent a rare group of immune-mediated complications associated with an underlying tumor. Ectopic protein expression in neoplastic cells or an aberrant immune regulation in the course of hematooncologic diseases or thymomas trigger an autoimmune response that may affect any part of the central and/or peripheral nervous system. Recent advances in drug therapies as well as novel animal models and neuropathologic studies have led to further insights on the immune pathomechanisms of PNS. Although the syndromes share common paths in pathogenesis, they may differ in the disease course, prognosis, and therapy targets, depending on the localization and type of antibody epitope. Neuropathologic hallmarks of PNS associated with antibodies directed against intracellular epitopes are characterized by T cell-dominated inflammation, reactive gliosis including microglial nodules, and neuronal degeneration. By contrast, the neuropathology of cell surface antibody-mediated PNS strongly depends on the targeted antigen and varies from B cell/plasma cell-dominated inflammation and well-preserved neurons together with a reduced expression of the target antigen in anti-NMDAR encephalitis to irreversible Purkinje cell loss in anti-P/Q-type VGCC antibody-associated paraneoplastic cerebellar degeneration. The understanding of different pathomechanisms in PNS is important because they strongly correspond with therapy response and prognosis, and should guide treatment decisions.
Collapse
Affiliation(s)
- Valérie Quinot
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Klinkovskij A, Shepelev M, Isaakyan Y, Aniskin D, Ulasov I. Advances of Genome Editing with CRISPR/Cas9 in Neurodegeneration: The Right Path towards Therapy. Biomedicines 2023; 11:3333. [PMID: 38137554 PMCID: PMC10741756 DOI: 10.3390/biomedicines11123333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The rate of neurodegenerative disorders (NDDs) is rising rapidly as the world's population ages. Conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), and dementia are becoming more prevalent and are now the fourth leading cause of death, following heart disease, cancer, and stroke. Although modern diagnostic techniques for detecting NDDs are varied, scientists are continuously seeking new and improved methods to enable early and precise detection. In addition to that, the present treatment options are limited to symptomatic therapy, which is effective in reducing the progression of neurodegeneration but lacks the ability to target the root cause-progressive loss of neuronal functioning. As a result, medical researchers continue to explore new treatments for these conditions. Here, we present a comprehensive summary of the key features of NDDs and an overview of the underlying mechanisms of neuroimmune dysfunction. Additionally, we dive into the cutting-edge treatment options that gene therapy provides in the quest to treat these disorders.
Collapse
Affiliation(s)
- Aleksandr Klinkovskij
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia; (A.K.); (D.A.)
| | - Mikhail Shepelev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Str., Moscow 119334, Russia
| | - Yuri Isaakyan
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya Str., Moscow 119991, Russia;
| | - Denis Aniskin
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia; (A.K.); (D.A.)
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia; (A.K.); (D.A.)
| |
Collapse
|
3
|
Akeret K, Weller M, Krayenbühl N. The anatomy of neuroepithelial tumours. Brain 2023:7171408. [PMID: 37201913 PMCID: PMC10393414 DOI: 10.1093/brain/awad138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
Many neurological conditions conceal specific anatomical patterns. Their study contributes to the understanding of disease biology and to tailored diagnostics and therapy. Neuroepithelial tumours exhibit distinct anatomical phenotypes and spatiotemporal dynamics that differ from those of other brain tumours. Brain metastases display a preference for the cortico-subcortical boundaries of watershed areas and have a predominantly spherical growth. Primary CNS lymphomas localize to the white matter and generally invade along fibre tracts. In neuroepithelial tumours, topographic probability mapping and unsupervised topological clustering have identified an inherent radial anatomy and adherence to ventriculopial configurations of specific hierarchical orders. Spatiotemporal probability and multivariate survival analyses have identified a temporal and prognostic sequence underlying the anatomical phenotypes of neuroepithelial tumours. Gradual neuroepithelial de-differentiation and declining prognosis follow (i) an expansion into higher order radial units; (ii) a subventricular spread; and (iii) the presence of mesenchymal patterns (expansion along white matter tracts, leptomeningeal or perivascular invasion, CSF spread). While different pathophysiological hypotheses have been proposed, the cellular and molecular mechanisms dictating this anatomical behaviour remain largely unknown. Here we adopt an ontogenetic approach towards the understanding of neuroepithelial tumour anatomy. Contemporary perception of histo- and morphogenetic processes during neurodevelopment permit us to conceptualize the architecture of the brain into hierarchically organized radial units. The anatomical phenotypes in neuroepithelial tumours and their temporal and prognostic sequences share remarkable similarities with the ontogenetic organization of the brain and the anatomical specifications that occur during neurodevelopment. This macroscopic coherence is reinforced by cellular and molecular observations that the initiation of various neuroepithelial tumours, their intratumoural hierarchy and tumour progression are associated with the aberrant reactivation of surprisingly normal ontogenetic programs. Generalizable topological phenotypes could provide the basis for an anatomical refinement of the current classification of neuroepithelial tumours. In addition, we have proposed a staging system for adult-type diffuse gliomas that is based on the prognostically critical steps along the sequence of anatomical tumour progression. Considering the parallels in anatomical behaviour between different neuroepithelial tumours, analogous staging systems may be implemented for other neuroepithelial tumour types and subtypes. Both the anatomical stage of a neuroepithelial tumour and the spatial configuration of its hosting radial unit harbour the potential to stratify treatment decisions at diagnosis and during follow-up. More data on specific neuroepithelial tumour types and subtypes are needed to increase the anatomical granularity in their classification and to determine the clinical impact of stage-adapted and anatomically tailored therapy and surveillance.
Collapse
Affiliation(s)
- Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Niklaus Krayenbühl
- Division of Paediatric Neurosurgery, University Children's Hospital, 8032 Zurich, Switzerland
| |
Collapse
|
4
|
Stevanovic M, Lazic A, Schwirtlich M, Stanisavljevic Ninkovic D. The Role of SOX Transcription Factors in Ageing and Age-Related Diseases. Int J Mol Sci 2023; 24:851. [PMID: 36614288 PMCID: PMC9821406 DOI: 10.3390/ijms24010851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The quest for eternal youth and immortality is as old as humankind. Ageing is an inevitable physiological process accompanied by many functional declines that are driving factors for age-related diseases. Stem cell exhaustion is one of the major hallmarks of ageing. The SOX transcription factors play well-known roles in self-renewal and differentiation of both embryonic and adult stem cells. As a consequence of ageing, the repertoire of adult stem cells present in various organs steadily declines, and their dysfunction/death could lead to reduced regenerative potential and development of age-related diseases. Thus, restoring the function of aged stem cells, inducing their regenerative potential, and slowing down the ageing process are critical for improving the health span and, consequently, the lifespan of humans. Reprograming factors, including SOX family members, emerge as crucial players in rejuvenation. This review focuses on the roles of SOX transcription factors in stem cell exhaustion and age-related diseases, including neurodegenerative diseases, visual deterioration, chronic obstructive pulmonary disease, osteoporosis, and age-related cancers. A better understanding of the molecular mechanisms of ageing and the roles of SOX transcription factors in this process could open new avenues for developing novel strategies that will delay ageing and prevent age-related diseases.
Collapse
Affiliation(s)
- Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | | |
Collapse
|
5
|
Arnaldos-Pérez C, Vilaseca A, Naranjo L, Sabater L, Dalmau J, Ruiz-García R, Graus F. Algorithm to improve the diagnosis of paraneoplastic neurological syndromes associated with SOX1 antibodies. Front Immunol 2023; 14:1173484. [PMID: 37207233 PMCID: PMC10191251 DOI: 10.3389/fimmu.2023.1173484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
SOX1 antibodies (SOX1-abs) are associated with paraneoplastic neurological syndromes (PNS) and small cell lung cancer (SCLC). In many clinical laboratories SOX1-abs are determined by commercial line blots without confirmation by cell-based assay (CBA) with HEK293 cells expressing SOX1. However, the diagnostic yield of commercial line blots is low and the accessibility to the CBA, that is not commercially available, limited. Here, we evaluated if the addition of the band intensity data of the line blot and the immunoreactivity in a tissue-based assay (TBA) improve the diagnostic performance of the line blot. We examined serum of 34 consecutive patients with adequate clinical information that tested positive for SOX1-abs in a commercial line blot. Samples were also assessed by TBA and CBA. SOX1-abs were confirmed by CBA in 17 (50%) patients, all (100%) had lung cancer (SCLC in 16) and 15/17 (88%) had a PNS. In the remaining 17 patients the CBA was negative and none had PNS associated with lung cancer. TBA was assessable in 30/34 patients and SOX1-abs reactivity was detected in 15/17 (88%) with positive and in 0/13 (0%) with negative CBA. Only 2 (13%) of the 15 TBA-negative patients were CBA-positive. The frequency of TBA-negative but CBA-positive increased from 10% (1/10) when the band intensity of the line blot was weak to 20% (1/5) in patients with a moderate or strong intensity band. Confirmation by CBA should be mandatory for samples (56% in this series) not assessable (4/34; 12%) or negative in the TBA (15/34; 44%).
Collapse
Affiliation(s)
| | - Andreu Vilaseca
- MS Center of Catalonia (CEMCAT), Neurooncology and Autoimmune Neurology Unit, Neurology Department, Vall d’Hebron University Hospital, Barcelona Autonoma University, Barcelona, Spain
| | - Laura Naranjo
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
| | - Lidia Sabater
- Neuroimmunology Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep Dalmau
- Neuroimmunology Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Raquel Ruiz-García
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
- Neuroimmunology Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Graus
- Neuroimmunology Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- *Correspondence: Francesc Graus,
| |
Collapse
|
6
|
Rac-deficient cerebellar granule neurons die before they migrate to the internal granule layer. Sci Rep 2022; 12:14848. [PMID: 36050459 PMCID: PMC9436960 DOI: 10.1038/s41598-022-19252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Granule neurons are the most common cell type in the cerebellum. They are generated in the external granule layer and migrate inwardly, forming the internal granule layer. Small Rho GTPases play various roles during development of the nervous system and may be involved in generation, differentiation and migration of granule neurons. We deleted Rac1, a member of small Rho GTPases, by GFAP-Cre driver in cerebellar granule neurons and Bergmann glial cells. Rac1flox/flox; Cre mice showed impaired migration and slight reduction in the number of granule neurons in the internal granule layer. Deletion of both Rac1 and Rac3 resulted in almost complete absence of granule neurons. Rac-deficient granule neurons differentiated into p27 and NeuN-expressing post mitotic neurons, but died before migration to the internal granule layer. Loss of Rac3 has little effect on granule neuron development. Rac1flox/flox; Rac3+/−; Cre mice showed intermediate phenotype between Rac1flox/flox; Cre and Rac1flox/flox; Rac3−/−; Cre mice in both survival and migration of granule neurons. Rac3 itself seems to be unimportant in the development of the cerebellum, but has some roles in Rac1-deleted granule neurons. Conversely, overall morphology of Rac1+/flox; Rac3−/−; Cre cerebella was normal. One allele of Rac1 is therefore thought to be sufficient to promote development of cerebellar granule neurons.
Collapse
|
7
|
Endogenous Neural Stem Cell Mediated Oligodendrogenesis in the Adult Mammalian Brain. Cells 2022; 11:cells11132101. [PMID: 35805185 PMCID: PMC9265817 DOI: 10.3390/cells11132101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023] Open
Abstract
Oligodendrogenesis is essential for replacing worn-out oligodendrocytes, promoting myelin plasticity, and for myelin repair following a demyelinating injury in the adult mammalian brain. Neural stem cells are an important source of oligodendrocytes in the adult brain; however, there are considerable differences in oligodendrogenesis from neural stem cells residing in different areas of the adult brain. Amongst the distinct niches containing neural stem cells, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are considered the principle areas of adult neurogenesis. In addition to these areas, radial glia-like cells, which are the precursors of neural stem cells, are found in the lining of the third ventricle, where they are called tanycytes, and in the cerebellum, where they are called Bergmann glia. In this review, we will describe the contribution and regulation of each of these niches in adult oligodendrogenesis.
Collapse
|
8
|
Salih S, Nizamudeen ZA, De Melo N, Chakrabarti L, Sottile V. Sox-positive cell population in the adult cerebellum increases upon tissue degeneration. Exp Neurol 2021; 348:113950. [PMID: 34902356 DOI: 10.1016/j.expneurol.2021.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022]
Abstract
Adult neurogenesis is well-described in the subventricular and subgranular zones of the mammalian brain. Recent observations that resident glia express stem cell markers in some areas of the brain not traditionally associated with neurogenesis hint to a possible role in tissue repair. The Bergmann glia (BG) population in the cerebellum displays markers and in vitro features associated with neural stem cells (NSC), however the physiological relevance of this phenotypic overlap remains unclear in the absence of established in vivo evidence of tissue regeneration in the adult cerebellum. Here, this BG population was analysed in the adult cerebellum of different species and showed conservation of NSC-associated marker expression including Sox1, Sox2 and Sox9, in chick, primate and mouse cerebellum tissue. NSC-like cells isolated from adult mouse cerebellum showed slower growth when compared to lateral ventricle NSC, as well as differences upon differentiation. In a mouse model of cerebellar degeneration, progressive Purkinje cell loss was linked to cerebellar cortex disorganisation and a significant increase in Sox-positive cells compared to matching controls. These results show that this Sox-positive population responds to cerebellar tissue disruption, suggesting it may represent a mobilisable cellular resource for targeted strategies to promote tissue repair.
Collapse
Affiliation(s)
- Shelanah Salih
- Wolfson STEM Centre, School of Medicine, The University of Nottingham, Nottingham NG7 2RD, UK; College of Medical and Applied Sciences, Department of Medical Laboratory Sciences, Charmo University, Chamchamal 46023, Iraq
| | - Zubair Ahmed Nizamudeen
- Wolfson STEM Centre, School of Medicine, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Nigel De Melo
- Wolfson STEM Centre, School of Medicine, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, The University of Nottingham, UK
| | - Virginie Sottile
- Wolfson STEM Centre, School of Medicine, The University of Nottingham, Nottingham NG7 2RD, UK; Department of Molecular Medicine, The University of Pavia, Italy.
| |
Collapse
|
9
|
Leal-Galicia P, Chávez-Hernández ME, Mata F, Mata-Luévanos J, Rodríguez-Serrano LM, Tapia-de-Jesús A, Buenrostro-Jáuregui MH. Adult Neurogenesis: A Story Ranging from Controversial New Neurogenic Areas and Human Adult Neurogenesis to Molecular Regulation. Int J Mol Sci 2021; 22:11489. [PMID: 34768919 PMCID: PMC8584254 DOI: 10.3390/ijms222111489] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
The generation of new neurons in the adult brain is a currently accepted phenomenon. Over the past few decades, the subventricular zone and the hippocampal dentate gyrus have been described as the two main neurogenic niches. Neurogenic niches generate new neurons through an asymmetric division process involving several developmental steps. This process occurs throughout life in several species, including humans. These new neurons possess unique properties that contribute to the local circuitry. Despite several efforts, no other neurogenic zones have been observed in many years; the lack of observation is probably due to technical issues. However, in recent years, more brain niches have been described, once again breaking the current paradigms. Currently, a debate in the scientific community about new neurogenic areas of the brain, namely, human adult neurogenesis, is ongoing. Thus, several open questions regarding new neurogenic niches, as well as this phenomenon in adult humans, their functional relevance, and their mechanisms, remain to be answered. In this review, we discuss the literature and provide a compressive overview of the known neurogenic zones, traditional zones, and newly described zones. Additionally, we will review the regulatory roles of some molecular mechanisms, such as miRNAs, neurotrophic factors, and neurotrophins. We also join the debate on human adult neurogenesis, and we will identify similarities and differences in the literature and summarize the knowledge regarding these interesting topics.
Collapse
Affiliation(s)
- Perla Leal-Galicia
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Florencia Mata
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Jesús Mata-Luévanos
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
- Laboratorio de Neurobiología de la Alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Alejandro Tapia-de-Jesús
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| |
Collapse
|
10
|
Lee J, Cho Y. Potential roles of stem cell marker genes in axon regeneration. Exp Mol Med 2021; 53:1-7. [PMID: 33446881 PMCID: PMC8080715 DOI: 10.1038/s12276-020-00553-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 01/29/2023] Open
Abstract
Axon regeneration is orchestrated by many genes that are differentially expressed in response to injury. Through a comparative analysis of gene expression profiling, injury-responsive genes that are potential targets for understanding the mechanisms underlying regeneration have been revealed. As the efficiency of axon regeneration in both the peripheral and central nervous systems can be manipulated, we suggest that identifying regeneration-associated genes is a promising approach for developing therapeutic applications in vivo. Here, we review the possible roles of stem cell marker- or stemness-related genes in axon regeneration to gain a better understanding of the regeneration mechanism and to identify targets that can enhance regenerative capacity.
Collapse
Affiliation(s)
- Jinyoung Lee
- Laboratory of Axon Regeneration & Degeneration, Department of Life Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yongcheol Cho
- Laboratory of Axon Regeneration & Degeneration, Department of Life Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Yamagishi T, Inoue K, Ouchi H, Shibano K, Hara K. [A case of anti-SRY-Related HMG-Box Gene 1 (SOX1) antibody-positive chorea]. Rinsho Shinkeigaku 2020; 60:852-856. [PMID: 33229831 DOI: 10.5692/clinicalneurol.cn-001454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 77-year-old man with a history of lung cancer at the age of 71 developed involuntary right leg movement for a month. Neurological examination revealed a right-sided hemi-chorea. Autoimmune disease was suspected owing to the presence of oligoclonal bands and the elevated IgG-index in the cerebrospinal fluid. We detected anti-SRY-Related HMG-Box Gene 1 (SOX1) antibodies, known to be serological markers of Lambert-Eaton syndrome with small cell lung cancer, but not tumors. The results of tests for antiphospholipid, anti-LGI1, and anti-CASPR2 antibodies associated with non-paraneoplastic autoimmune chorea were all negative. This is the first suggestive case of autoimmune chorea in which anti-SOX1 antibodies were detected.
Collapse
Affiliation(s)
| | - Kana Inoue
- Department of Neurology, Akita Red Cross Hospital
| | - Haruka Ouchi
- Department of Neurology, Akita Red Cross Hospital
| | - Ken Shibano
- Department of Neurology, Akita Red Cross Hospital
| | - Kenju Hara
- Department of Neurology, Akita Red Cross Hospital
| |
Collapse
|
12
|
Rosa F, Grimm A, Ambjoernsen K, Pomper JK. A gaze-triggered downbeat nystagmus persisting in primary position in a patient with hypomagnesemia combined with anti-SOX1. J Neurol Sci 2020; 412:116732. [PMID: 32105977 DOI: 10.1016/j.jns.2020.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/19/2020] [Accepted: 02/11/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Filip Rosa
- Department of Neurology and Epileptology, Clinic for Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler Str. 3, 72076 Tübingen, Germany.
| | - Alexander Grimm
- Department of Neurology and Epileptology, Clinic for Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler Str. 3, 72076 Tübingen, Germany
| | - Katja Ambjoernsen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; Tübingen Center for Dizziness and Balance Disorders, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Jörn K Pomper
- Department of Cognitive Neurology, Clinic for Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler Str. 3, 72076 Tübingen, Germany; Tübingen Center for Dizziness and Balance Disorders, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany.
| |
Collapse
|
13
|
Abstract
Astrocytes, initially described as merely support cells, are now known as a heterogeneous population of cells actively involved in a variety of biological functions such as: neuronal migration and differentiation; regulation of cerebral blood flow; metabolic control of extracellular potassium concentration; and modulation of synapse formation and elimination; among others. Cerebellar glial cells have been shown to play a significant role in proliferation, differentiation, migration, and synaptogenesis. However, less evidence is available about the role of neuron-astrocyte interactions during cerebellar development and their impact on diseases of the cerebellum. In this review, we will focus on the mechanisms underlying cellular interactions, specifically neuron-astrocyte interactions, during cerebellar development, function, and disease. We will discuss how cerebellar glia, astrocytes, and Bergmann glia play a fundamental role in several steps of cerebellar development, such as granule cell migration, axonal growth, neuronal differentiation, and synapse formation, and in diseases associated with the cerebellum. We will focus on how astrocytes and thyroid hormones impact cerebellar development. Furthermore, we will provide evidence of how growth factors secreted by glial cells, such as epidermal growth factor and transforming growth factors, control cerebellar organogenesis. Finally, we will argue that glia are a key mediator of cerebellar development and that identification of molecules and pathways involved in neuron-glia interactions may contribute to a better understanding of cerebellar development and associated disorders.
Collapse
|
14
|
Li C, Wang X, Sun L, Deng H, Han Y, Zheng W. Anti-SOX1 antibody-positive paraneoplastic neurological syndrome presenting with Lambert-Eaton myasthenic syndrome and small cell lung cancer: A case report. Thorac Cancer 2019; 11:465-469. [PMID: 31880403 PMCID: PMC6997017 DOI: 10.1111/1759-7714.13290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 11/26/2022] Open
Abstract
Paraneoplastic neurological syndromes (PNS) are rare disorders affecting any part of the central, peripheral or autonomic nervous system that occur in association with cancer. Among cancer patients, less than 1% overall develop PNS. Anti‐SOX1 antibodies' positive paraneoplastic neurological disorders are rare and are usually associated with small cell lung cancer (SCLC). Here, we report a case of a 61‐year‐old male patient who presented with an unusual anti‐SOX1 positive PNS. The right tibialis anterior showed noticeable low‐amplitude motor unit potentials and high amplitude motor potentials in electrodiagnostic study, suggesting the presence of Lambert‐Eaton myasthenic syndrome (LEMS). Typical MRI and PET‐CT found a hyperintense lesion with contrast enhancement in the thorax in front of 5–6 centrum of vertebrae, and thoracoscopic biopsy revealed pathological findings for SCLC. The patient underwent several lines of chemotherapy and radiotherapy and survived for 15 months after the diagnosis of SCLC.
Collapse
Affiliation(s)
- Chunyang Li
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiaolei Wang
- Department of Ultrasound, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lihua Sun
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hui Deng
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yanqiu Han
- Department of Clinical laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wenqi Zheng
- Department of Clinical laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
15
|
Weisner PA, Chen CY, Sun Y, Yoo J, Kao WC, Zhang H, Baltz ET, Troy JM, Stubbs L. A Mouse Mutation That Dysregulates Neighboring Galnt17 and Auts2 Genes Is Associated with Phenotypes Related to the Human AUTS2 Syndrome. G3 (BETHESDA, MD.) 2019; 9:3891-3906. [PMID: 31554716 PMCID: PMC6829118 DOI: 10.1534/g3.119.400723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/19/2019] [Indexed: 01/23/2023]
Abstract
AUTS2 was originally discovered as the gene disrupted by a translocation in human twins with Autism spectrum disorder, intellectual disability, and epilepsy. Since that initial finding, AUTS2-linked mutations and variants have been associated with a very broad array of neuropsychiatric disorders, sugg esting that AUTS2 is required for fundamental steps of neurodevelopment. However, genotype-phenotype correlations in this region are complicated, because most mutations could also involve neighboring genes. Of particular interest is the nearest downstream neighbor of AUTS2, GALNT17, which encodes a brain-expressed N-acetylgalactosaminyltransferase of unknown brain function. Here we describe a mouse (Mus musculus) mutation, T(5G2;8A1)GSO (abbreviated 16Gso), a reciprocal translocation that breaks between Auts2 and Galnt17 and dysregulates both genes. Despite this complex regulatory effect, 16Gso homozygotes model certain human AUTS2-linked phenotypes very well. In addition to abnormalities in growth, craniofacial structure, learning and memory, and behavior, 16Gso homozygotes display distinct pathologies of the cerebellum and hippocampus that are similar to those associated with autism and other types of AUTS2-linked neurological disease. Analyzing mutant cerebellar and hippocampal transcriptomes to explain this pathology, we identified disturbances in pathways related to neuron and synapse maturation, neurotransmitter signaling, and cellular stress, suggesting possible cellular mechanisms. These pathways, coupled with the translocation's selective effects on Auts2 isoforms and coordinated dysregulation of Galnt17, suggest novel hypotheses regarding the etiology of the human "AUTS2 syndrome" and the wide array of neurodevelopmental disorders linked to variance in this genomic region.
Collapse
Affiliation(s)
- P Anne Weisner
- Carl R. Woese Institute for Genomic Biology
- Neuroscience Program
| | - Chih-Ying Chen
- Carl R. Woese Institute for Genomic Biology
- Department of Cell and Developmental Biology, and
| | - Younguk Sun
- Carl R. Woese Institute for Genomic Biology
- Department of Cell and Developmental Biology, and
| | | | | | | | | | - Joseph M Troy
- Carl R. Woese Institute for Genomic Biology
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana IL 61802
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology,
- Neuroscience Program
- Department of Cell and Developmental Biology, and
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana IL 61802
| |
Collapse
|
16
|
GSK3β overexpression driven by GFAP promoter improves rotarod performance. Brain Res 2019; 1712:47-54. [DOI: 10.1016/j.brainres.2019.01.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/20/2022]
|
17
|
Miras-Portugal MT, Menéndez-Méndez A, Gómez-Villafuertes R, Ortega F, Delicado EG, Pérez-Sen R, Gualix J. Physiopathological Role of the Vesicular Nucleotide Transporter (VNUT) in the Central Nervous System: Relevance of the Vesicular Nucleotide Release as a Potential Therapeutic Target. Front Cell Neurosci 2019; 13:224. [PMID: 31156398 PMCID: PMC6533569 DOI: 10.3389/fncel.2019.00224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/02/2019] [Indexed: 01/07/2023] Open
Abstract
Vesicular storage of neurotransmitters, which allows their subsequent exocytotic release, is essential for chemical transmission in the central nervous system. Neurotransmitter uptake into secretory vesicles is carried out by vesicular transporters, which use the electrochemical proton gradient generated by a vacuolar H+-ATPase to drive neurotransmitter vesicular accumulation. ATP and other nucleotides are relevant extracellular signaling molecules that participate in a variety of biological processes. Although the active transport of nucleotides into secretory vesicles has been characterized from the pharmacological and biochemical point of view, the protein responsible for such vesicular accumulation remained unidentified for some time. In 2008, the human SLC17A9 gene, the last identified member of the SLC17 transporters, was found to encode the vesicular nucleotide transporter (VNUT). VNUT is expressed in various ATP-secreting cells and is able to transport a wide variety of nucleotides in a vesicular membrane potential-dependent manner. VNUT knockout mice lack vesicular storage and release of ATP, resulting in blockage of the purinergic transmission. This review summarizes the current studies on VNUT and analyzes the physiological relevance of the vesicular nucleotide transport in the central nervous system. The possible role of VNUT in the development of some pathological processes, such as chronic neuropathic pain or glaucoma is also discussed. The putative involvement of VNUT in these pathologies raises the possibility of the use of VNUT inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- María T Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Aida Menéndez-Méndez
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
18
|
Ruiz-García R, Martínez-Hernández E, García-Ormaechea M, Español-Rego M, Sabater L, Querol L, Illa I, Dalmau J, Graus F. Caveats and Pitfalls of SOX1 Autoantibody Testing With a Commercial Line Blot Assay in Paraneoplastic Neurological Investigations. Front Immunol 2019; 10:769. [PMID: 31031763 PMCID: PMC6473043 DOI: 10.3389/fimmu.2019.00769] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/25/2019] [Indexed: 01/15/2023] Open
Abstract
SOX1 autoantibodies are considered markers of small cell lung cancer (SCLC) and paraneoplastic neurological syndromes (PNS) and are usually determined by commercial line blot in many clinical services. Recent studies suggested that SOX1 autoantibodies also occur in patients with neuropathies unrelated to SCLC, questioning the value of SOX1 autoantibodies as paraneoplastic biomarkers. Here, we compared the specificity and sensitivity of a commercial line blot (Euroimmun, Lübeck, Germany) with those of an in house cell-based assay (CBA) with HEK293 cells transfected with SOX1. Overall, 210 patients were included in the study, 139 patients with polyneuropathies without SCLC, and 71 with disorders associated with SOX1 autoantibodies detected with the in-house CBA. Forty one of these 71 cases had been referred to our laboratory for onconeuronal antibody assessment and 30/71 were patients with known PNS and SCLC. None of the patients with polyneuropathies had SOX1 autoantibodies by either line blot or CBA (specificity of the immunoblot: 100%; 95%C.I.: 97.8-100). Among the 71 patients with CBA SOX1 autoantibodies, only 53 were positive by line blot (sensitivity: 74.6%; 95%C.I.: 62.9-84.2). Lung cancer was detected in 37/41 (90%; 34 with SCLC) patients referred for onconeuronal antibody assessment and 34 of them also had a PNS. Our study confirms the association of SOX1 autoantibodies with SCLC and PNS. The line blot test misses 25% of the cases; therefore, to minimize the frequency of false negative results we recommend the use of a confirmatory test, such as CBA, in patients suspected to have a SCLC-related PNS.
Collapse
Affiliation(s)
- Raquel Ruiz-García
- Immunology Department, Centre Diagnóstic Biomédic, Hospital Clínic, Barcelona, Spain
| | - Eugenia Martínez-Hernández
- Neuroimmunology Program, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Service of Neurology, Hospital Clinic, Barcelona, Spain
| | | | - Marta Español-Rego
- Immunology Department, Centre Diagnóstic Biomédic, Hospital Clínic, Barcelona, Spain
| | - Lidia Sabater
- Neuroimmunology Program, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Luis Querol
- Neuromuscular Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Valencia, Spain
| | - Isabel Illa
- Neuromuscular Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Valencia, Spain.,Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Josep Dalmau
- Neuroimmunology Program, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Francesc Graus
- Neuroimmunology Program, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
19
|
Cerrato V, Mercurio S, Leto K, Fucà E, Hoxha E, Bottes S, Pagin M, Milanese M, Ngan CY, Concina G, Ottolenghi S, Wei CL, Bonanno G, Pavesi G, Tempia F, Buffo A, Nicolis SK. Sox2 conditional mutation in mouse causes ataxic symptoms, cerebellar vermis hypoplasia, and postnatal defects of Bergmann glia. Glia 2018; 66:1929-1946. [PMID: 29732603 DOI: 10.1002/glia.23448] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 11/07/2022]
Abstract
Sox2 is a transcription factor active in the nervous system, within different cell types, ranging from radial glia neural stem cells to a few specific types of differentiated glia and neurons. Mutations in the human SOX2 transcription factor gene cause various central nervous system (CNS) abnormalities, involving hippocampus and eye defects, as well as ataxia. Conditional Sox2 mutation in mouse, with different Cre transgenes, previously recapitulated different essential features of the disease, such as hippocampus and eye defects. In the cerebellum, Sox2 is active from early embryogenesis in the neural progenitors of the cerebellar primordium; Sox2 expression is maintained, postnatally, within Bergmann glia (BG), a differentiated cell type essential for Purkinje neurons functionality and correct motor control. By performing Sox2 Cre-mediated ablation in the developing and postnatal mouse cerebellum, we reproduced ataxia features. Embryonic Sox2 deletion (with Wnt1Cre) leads to reduction of the cerebellar vermis, known to be commonly related to ataxia, preceded by deregulation of Otx2 and Gbx2, critical regulators of vermis development. Postnatally, BG is progressively disorganized, mislocalized, and reduced in mutants. Sox2 postnatal deletion, specifically induced in glia (with GLAST-CreERT2), reproduces the BG defect, and causes (milder) ataxic features. Our results define a role for Sox2 in cerebellar function and development, and identify a functional requirement for Sox2 within postnatal BG, of potential relevance for ataxia in mouse mutants, and in human patients.
Collapse
Affiliation(s)
- Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10, Orbassano, (Torino), 10043, Italy
| | - Sara Mercurio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, Milano, 20126, Italy
| | - Ketty Leto
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10, Orbassano, (Torino), 10043, Italy
| | - Elisa Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10, Orbassano, (Torino), 10043, Italy
| | - Eriola Hoxha
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10, Orbassano, (Torino), 10043, Italy
| | - Sara Bottes
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, Milano, 20126, Italy
| | - Miriam Pagin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, Milano, 20126, Italy
| | - Marco Milanese
- Department of Pharmacy, Pharmacology and Toxicology Unit and Center of Excellence for Biomedical Research, University of Genova, Viale Cembrano 4, Genoa, 16148, Italy
| | - Chew-Yee Ngan
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Giulia Concina
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10, Orbassano, (Torino), 10043, Italy
| | - Sergio Ottolenghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, Milano, 20126, Italy
| | - Chia-Lin Wei
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Giambattista Bonanno
- Department of Pharmacy, Pharmacology and Toxicology Unit and Center of Excellence for Biomedical Research, University of Genova, Viale Cembrano 4, Genoa, 16148, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milano, 20100, Italy
| | - Filippo Tempia
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10, Orbassano, (Torino), 10043, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Torino, Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10, Orbassano, (Torino), 10043, Italy
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, Milano, 20126, Italy
| |
Collapse
|
20
|
Leung AW, Li JYH. The Molecular Pathway Regulating Bergmann Glia and Folia Generation in the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2018; 17:42-48. [PMID: 29218544 PMCID: PMC5809181 DOI: 10.1007/s12311-017-0904-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evolution of complex behaviors in higher vertebrates and primates require the development of sophisticated neuronal circuitry and the expansion of brain surface area to accommodate the vast number of neuronal and glial populations. To achieve these goals, the neocortex in primates and the cerebellum in amniotes have developed specialized types of basal progenitors to aid the folding of their cortices. In the cerebellum, Bergmann glia constitute such a basal progenitor population, having a distinctive morphology and playing a critical role in cerebellar corticogenesis. Here, we review recent studies on the induction of Bergmann glia and their crucial role in mediating folding of the cerebellar cortex. These studies uncover a key function of FGF-ERK-ETV signaling cascade in the transformation of Bergmann glia from radial glia in the ventricular zone. Remarkably, in the neocortex, the same signaling axis operates to facilitate the transformation of ventricular radial glia into basal radial glia, a Bergmann glia-like basal progenitor population, which have been implicated in the establishment of neocortical gyri. These new findings draw a striking similarity in the function and ontogeny of the two basal progenitor populations born in distinct brain compartments.
Collapse
Affiliation(s)
- Alan W Leung
- Department of Genetics and Yale Stem Cell Center, Yale University, 10 Amistad Street, New Haven, CT, 06520-8073, USA
| | - James Y H Li
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030-6403, USA.
- Institute for Systems Genomics, University of Connecticut, 400 Farmington Avenue, Farmington, CT, 06030-6403, USA.
| |
Collapse
|
21
|
Aoki H, Hara A, Kunisada T. Induced haploinsufficiency of Kit receptor tyrosine kinase impairs brain development. JCI Insight 2017; 2:94385. [PMID: 28978807 DOI: 10.1172/jci.insight.94385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023] Open
Abstract
Kit receptor tyrosine kinase is highly expressed in the developing mammalian brain, yet little is known about its contribution to neural cell development and function. Here we introduced a brain-specific conditional Kit loss-of-function mutation in mice and observed severe hypoplasia of the central nervous system. This was accompanied by an increase in apoptotic cell death in the early embryonic brain and the gradual loss of the self-renewal capacity of neuronal stem/precursor cells. A single copy of the brain-specific conditional Kit loss-of-function allele resulted in the observed phenotype, including impaired in vitro differentiation of neural cells from Kit-haploinsufficient embryonic stem (ES) cells. Our findings demonstrate that Kit signaling is required for the early development of neural cells. This potentially novel Kit-haploinsufficient lethal phenotype may represent an embryonic lethal phenomenon previously unobserved because of its dominantly acting nature.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development and
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | |
Collapse
|
22
|
Wefers AK, Lindner S, Schulte JH, Schüller U. Overexpression of Lin28b in Neural Stem Cells is Insufficient for Brain Tumor Formation, but Induces Pathological Lobulation of the Developing Cerebellum. THE CEREBELLUM 2017; 16:122-131. [PMID: 27039094 DOI: 10.1007/s12311-016-0774-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
LIN28B is a homologue of the RNA-binding protein LIN28A and regulates gene expression during development and carcinogenesis. It is strongly upregulated in a variety of brain tumors, such as medulloblastoma, embryonal tumor with multilayered rosettes (ETMR), atypical teratoid/rhabdoid tumor (AT/RT), or glioblastoma, but the effect of an in vivo overexpression of LIN28B on the developing central nervous system is unknown. We generated transgenic mice that either overexpressed Lin28b in Math1-positive cerebellar granule neuron precursors or in a broad range of Nestin-positive neural precursors. Sections of the cerebellar vermis from adult Math1-Cre::lsl-Lin28b mice had an additional subfissure in lobule IV. Vermes from p0 and p7 Nestin-Cre::lsl-Lin28b mice appeared normal, but we found a pronounced vermal hypersublobulation at p15 and p21 in these mice. Also, the external granule cell layer (EGL) was thicker at p15 than in controls, contained more proliferating cells, and persisted up to p21. Consistently, some Pax6- and NeuN-positive cells were present in the EGL of Nestin-Cre::lsl-Lin28b mice even at p21, and we detected more NeuN-positive granule neuron precursors in the molecular layer (ML) as compared to control. Finally, we found some residual Pax2-positive precursors of inhibitory interneurons in the ML of Nestin-Cre::lsl-Lin28b mice at p21, which have already disappeared in controls. We conclude that while overexpression of LIN28B in Nestin-positive cells does not lead to tumor formation, it results in a protracted development of granule cells and inhibitory interneurons and leads to a hypersublobulation of the cerebellar vermis.
Collapse
Affiliation(s)
- Annika K Wefers
- Center for Neuropathology, Ludwig-Maximilians-University, Feodor-Lynen-Strasse 23, D-81377, Munich, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Sven Lindner
- Department of Pediatric Oncology and Hematology, University Hospital Essen, Essen, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, University Hospital Essen, Essen, Germany.,Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Ulrich Schüller
- Center for Neuropathology, Ludwig-Maximilians-University, Feodor-Lynen-Strasse 23, D-81377, Munich, Germany.
| |
Collapse
|
23
|
Neurogenesis from Sox2 expressing cells in the adult cerebellar cortex. Sci Rep 2017; 7:6137. [PMID: 28733588 PMCID: PMC5522437 DOI: 10.1038/s41598-017-06150-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
We identified a rare undifferentiated cell population that is intermingled with the Bergmann glia of the adult murine cerebellar cortex, expresses the stem cell markers Sox2 and Nestin, and lacks markers of glial or neuronal differentiation. Interestingly, such Sox2+ S100- cells of the adult cerebellum expanded after adequate physiological stimuli in mice (exercise), and Sox2+ precursors acquired positivity for the neuronal marker NeuN over time and integrated into cellular networks. In human patients, SOX2+ S100- cells similarly increased in number after relevant pathological insults (infarcts), suggesting a similar expansion of cells that lack terminal glial differentiation.
Collapse
|
24
|
Abstract
Purpose of review Progress in stem cell research for blinding diseases over the past decade is now being applied to patients with retinal degenerative diseases and soon perhaps, glaucoma. However, the field still has much to learn about the conversion of stem cells into various retinal cell types, and the potential delivery methods that will be required to optimize the clinical efficacy of stem cells delivered into the eye. Recent findings Recent groundbreaking human clinical trials have demonstrated both the opportunities and current limitations of stem cell transplantation for retinal diseases. New progress in developing in vitro retinal organoids, coupled with the maturation of bio-printing technology, and non-invasive high-resolution imaging have created new possibilities for repairing and regenerating the diseased retina and rigorously validating its clinical impact in vivo. Summary While promising progress is being made, meticulous clinical trials with cells derived using good manufacturing practice, novel surgical methods, and improved methods to derive all of the neuronal cell types present in the retina will be indispensable for developing stem cell transplantation as a paradigm shift for the treatment of blinding diseases.
Collapse
|
25
|
Heng X, Guo Q, Leung AW, Li JY. Analogous mechanism regulating formation of neocortical basal radial glia and cerebellar Bergmann glia. eLife 2017; 6. [PMID: 28489004 PMCID: PMC5457141 DOI: 10.7554/elife.23253] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/09/2017] [Indexed: 12/29/2022] Open
Abstract
Neocortical basal radial glia (bRG) and cerebellar Bergmann glia (BG) are basal progenitors derived from ventricular apical radial glia (aRG) that selectively lose their apical processes. bRG and BG have been implicated in the expansion and folding of the cerebrum and cerebellum, respectively. Here, we analyzed the molecular characteristics and development of bRG and BG. Transcriptomic comparison revealed striking similarity of the molecular features of bRG and BG. We found that heightened ERK signaling activity in aRG is tightly linked to the temporal formation and the relative abundance of bRG in human and mouse cortices. Forced activation of an FGF-ERK-ETV axis that is crucial to BG induction specifically induced bRG with canonical human bRG features in mice. Therefore, our data point to a common mechanism of bRG and BG generation, bearing implications to the role for these basal progenitors in the evolution of cortical folding of the cerebrum and cerebellum. DOI:http://dx.doi.org/10.7554/eLife.23253.001 The outer layer of the brain of a mammal, called the cortex, helps support mental abilities such as memory, attention and thought. In rodents, the cortex is smooth whereas in primates it is organized into folds. These folds increase the surface area of the brain and thus the number of neurons it can contain, which may in turn increase its processing power. Folding occurs as the brain develops in the womb. Specialized cells called basal or outer radial glia, which are more abundant in humans than in rodents, are believed to trigger the folding process. Another area of the brain, called the cerebellum, is intricately folded in both rodents and humans. As the brain develops, cells within the cerebellum called Bergmann glia cause the tissue to fold. Bergmann glia and basal radial glia share a number of similarities, but it was not known whether the same molecular pathway might regulate both types of cell. Now, Heng et al. show that Bergmann glia in the cerebellums of mice and basal radial glia in human cortex contain similar sets of active genes. Moreover, the molecular pathway that gives rise to Bergmann glia in mice is also active in the cortex of both mice and humans. However, it is much more active in humans, leading Heng et al. to speculate that high levels of activity in this pathway might give rise to basal radial glia. Consistent with this prediction, artificially activating the pathway at high levels in mouse cortex triggered the formation of basal radial glia in mice too. These results thus suggest that a common mechanism generates both types of glial cells involved in brain folding. The work of Heng et al. lays the foundations for further studies into how these cells fold the brain and thus how they contribute to more complex mental abilities. Remaining questions to address are whether other species with Bergmann glia also have folded cerebellums, and whether incorrect development of basal radial glia in humans leads to disorders in which the cortex folds abnormally. DOI:http://dx.doi.org/10.7554/eLife.23253.002
Collapse
Affiliation(s)
- Xin Heng
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Qiuxia Guo
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Alan W Leung
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - James Yh Li
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States.,Institute for Systems Genomics, University of Connecticut, Farmington, United States
| |
Collapse
|
26
|
Berger B, Dersch R, Ruthardt E, Rasiah C, Rauer S, Stich O. Prevalence of anti-SOX1 reactivity in various neurological disorders. J Neurol Sci 2016; 369:342-346. [PMID: 27653921 DOI: 10.1016/j.jns.2016.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Anti-SOX1 antibodies are associated with small cell lung cancer (SCLC) and predict a paraneoplastic etiology in Lambert-Eaton myasthenic syndrome (LEMS). In 2010, a study described these antibodies in a small cohort of putative non-paraneoplastic, immune-mediated neuropathies. In this respect, we investigated the seroprevalence and specificity of anti-SOX1 antibodies in a large cohort of neurological disorders. METHODS Overall, serum samples of 1493 consecutive patients were screened for anti-SOX1 reactivity by an ELISA: 471 with well-defined neurological disorders (multiple sclerosis, motor neuron disease, Guillain-Barré syndrome, and chronic inflammatory demyelinating polyneuropathy), 185 with polyneuropathy (PNP) of unknown origin, and 837 with neurological syndromes of suspicious paraneoplastic etiology. These were compared to eight positive controls with definite paraneoplastic neurological syndromes (PNS) and 92 healthy individuals. We also collected demographic and clinical data, including well-characterized onconeural antibodies in anti-SOX1-positive patients. RESULTS Fifteen patients (1.0%) showed anti-SOX1 reactivity: two with multiple sclerosis, two with PNP of unknown origin, and 11 suspicious PNS cases. Remarkably, 9/15 anti-SOX1-positive patients had a PNP. However, antibody concentrations were significantly lower compared to positive controls, and none additionally harbored well-characterized onconeural antibodies. During a follow-up of at least four years, only five patients had cancer: one thyroid, one Hodgkin lymphoma, two breast, and one patient had multiple malignancies - prostate, penis, cecum, liver, and non-small cell lung cancer. However, none had SCLC, typically associated with SOX1 antibodies. CONCLUSIONS The seroprevalence of anti-SOX1 antibodies in patients with various neurological disorders is low. These patients predominantly have PNPs, which might represent a group of immune-mediated diseases.
Collapse
Affiliation(s)
- Benjamin Berger
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, Breisacher Strasse 64, D-79106 Freiburg, Germany.
| | - Rick Dersch
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, Breisacher Strasse 64, D-79106 Freiburg, Germany
| | - Elisabeth Ruthardt
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, Breisacher Strasse 64, D-79106 Freiburg, Germany
| | | | - Sebastian Rauer
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, Breisacher Strasse 64, D-79106 Freiburg, Germany
| | - Oliver Stich
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, Breisacher Strasse 64, D-79106 Freiburg, Germany
| |
Collapse
|
27
|
Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med 2015; 5:117-28. [PMID: 26582909 DOI: 10.5966/sctm.2015-0111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/16/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED : Although isolation of oral mucosal stromal stem cells has been previously reported, complex isolation methods are not suitable for clinical application. The neurosphere culture technique is a convenient method for the isolation of neural stem cells and neural crest stem cells (NCSCs); neurosphere generation is a phenotype of NCSCs. However, the molecular details underlying the isolation and characterization of human oral mucosa stromal cells (OMSCs) by neurosphere culture are not understood. The purpose of the present study was to isolate NCSCs from oral mucosa using the neurosphere technique and to establish effective in vivo bone tissue regeneration methods. Human OMSCs were isolated from excised human oral mucosa; these cells formed spheres in neurosphere culture conditions. Oral mucosa sphere-forming cells (OMSFCs) were characterized by biological analyses of stem cells. Additionally, composites of OMSFCs and multiporous polylactic acid scaffolds were implanted subcutaneously into immunocompromised mice. OMSFCs had the capacity for self-renewal and expressed neural crest-related markers (e.g., nestin, CD44, slug, snail, and MSX1). Furthermore, upregulated expression of neural crest-related genes (EDNRA, Hes1, and Sox9) was observed in OMSFCs, which are thought to contain an enriched population of neural crest-derived cells. The expression pattern of α2-integrin (CD49b) in OMSFCs also differed from that in OMSCs. Finally, OMSFCs were capable of differentiating into neural crest lineages in vitro and generating ectopic bone tissues even in the subcutaneous region. The results of the present study suggest that OMSFCs are an ideal source of cells for the neural crest lineage and hard tissue regeneration. SIGNIFICANCE The sphere culture technique is a convenient method for isolating stem cells. However, the isolation and characterization of human oral mucosa stromal cells (OMSCs) using the sphere culture system are not fully understood. The present study describes the isolation of neural crest progenitor cells from oral mucosa using this system. Human OMSCs form spheres that exhibit self-renewal capabilities and multipotency, and are enriched with neural crest-derived cells. These oral mucosa sphere-forming cells can generate ectopic bone tissue in vivo. Therefore, the results of the present study show that the sphere culture system can be applied, without the need for complex isolation techniques, to produce multipotent spheres with the properties of neural crest stem cells. Furthermore, a convenient strategy is demonstrated for the isolation and culture of human OMSCs that could have clinical applications.
Collapse
Affiliation(s)
- Shigehiro Abe
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Yamaguchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Sato
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoshi Harada
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
28
|
Cheah PS, Thomas PQ. SOX3 expression in the glial system of the developing and adult mouse cerebellum. SPRINGERPLUS 2015; 4:400. [PMID: 26261758 PMCID: PMC4527974 DOI: 10.1186/s40064-015-1194-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/29/2015] [Indexed: 11/17/2022]
Abstract
Background The cerebellum plays a vital role in equilibrium, motor control, and motor learning. The discrete neural and glial fates of cerebellar cells are determined by the molecular specifications (e.g. transcription factors) of neuroprogenitor cells that are influenced by local microenvironment signals. In this study, we evaluated the expression and function of Sox3, a single-exon gene located on the X chromosome, in the developing cerebellum. Result In the embryonic and early postnatal cerebellum, SOX3-positive-cells were detected in the ventricular zone, indicating that SOX3 expression is present in a subset of the cerebellar precursor cell population. In the young adult cerebellum, this expression was diminished in cerebellar cells, suggesting its limited role in cerebellar progenitors. SOX3-positive-cells were also found in the cerebellar mantle zone. Further immunohistochemistry analyses revealed that SOX3 was not expressed in Purkinje neurons. Using glial markers in the early postnatal cerebellum, we found that virtually all of the SOX3-positive-cells were glial cells, although not all glial cells were SOX3-positive-cells. We also determined the impact of transgenic expression using a loss-of-function (Sox3 null) model. We did not observe any developmental defects in the cerebellum of the Sox3 null mice. Conclusions Our results indicate that the SOX3 protein is not expressed in cerebellar neurons and is instead expressed exclusively in the cerebellar glial system in a subset of mature glial cells. Although the expression of Sox3 cerebellar glial development is lineage-restricted, it appears that the absence of Sox3 in the ventricular germinal epithelium and migrating glia does not affect cerebellar development, suggesting functional redundancy with other SoxB1 subgroup genes. Electronic supplementary material The online version of this article (doi:10.1186/s40064-015-1194-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine, Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Malaysia ; Neurobiology and Genetics Group, Genetics and Regenerative Medicine Research Center, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Malaysia
| | - Paul Q Thomas
- Discipline of Biochemistry, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
29
|
Cervetto C, Frattaroli D, Venturini A, Passalacqua M, Nobile M, Alloisio S, Tacchetti C, Maura G, Agnati LF, Marcoli M. Calcium-permeable AMPA receptors trigger vesicular glutamate release from Bergmann gliosomes. Neuropharmacology 2015; 99:396-407. [PMID: 26260232 DOI: 10.1016/j.neuropharm.2015.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 11/29/2022]
Abstract
The Bergmann glia is equipped with Ca2+-permeable AMPA receptors for glutamate, indispensable for structural and functional relations between the Bergmann glia and parallel/climbing fibers-Purkinje cell synapses. To better understand roles for the Bergmann AMPA receptors, herein we investigate on gliotransmitter release and Ca2+ signals in isolated Bergmann glia processes obtained from adult rat cerebellum. We found that: 1) the rat cerebellar purified astrocyte processes (gliosomes) expressed astrocytic and Bergmann markers and exhibited negligible contamination by nerve terminals, microglia, or oligodendrocytes; 2) activation of Ca2+-permeable AMPA receptors caused Ca2+ signals in the processes, and the release of glutamate from the processes; 3) effectiveness of rose bengal, trypan blue or bafilomycin A1, indicated that activation of the AMPA receptors evoked vesicular glutamate release. Cerebellar purified nerve terminals appeared devoid of glutamate-releasing Ca2+-permeable AMPA receptors, indicating that neuronal contamination may not be the source of the signals detected. Ultrastructural analysis indicated the presence of vesicles in the cytoplasm of the processes; confocal imaging confirmed the presence of vesicular glutamate transporters in Bergmann glia processes. We conclude that: a vesicular mechanism for release of the gliotransmitter glutamate is present in mature Bergmann processes; entry of Ca2+ through the AMPA receptors located on Bergmann processes is coupled with vesicular glutamate release. The findings would add a new role for a well-known Bergmann target for glutamate (the Ca2+-permeable AMPA receptors) and a new actor (the gliotransmitter glutamate) at the cerebellar excitatory synapses onto Purkinje cells.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy
| | - Daniela Frattaroli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Arianna Venturini
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry, Italian Institute of Biostructures and Biosystems, University of Genova, Via L.B. Alberti 2, 16132 Genova, Italy
| | - Mario Nobile
- CNR, Biophysics Institute, Via de Marinis 6, 16146 Genova, Italy
| | - Susanna Alloisio
- CNR, Biophysics Institute, Via de Marinis 6, 16146 Genova, Italy
| | - Carlo Tacchetti
- Department of Experimental Medicine, University of Genova, Via L. B. Alberti 2, 16132 Genova, Italy; Experimental Imaging Center, Scientific Institute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy
| | - Luigi Francesco Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm, Sweden
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy.
| |
Collapse
|
30
|
Ilkhanizadeh S, Lau J, Huang M, Foster DJ, Wong R, Frantz A, Wang S, Weiss WA, Persson AI. Glial progenitors as targets for transformation in glioma. Adv Cancer Res 2015; 121:1-65. [PMID: 24889528 DOI: 10.1016/b978-0-12-800249-0.00001-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glioma is the most common primary malignant brain tumor and arises throughout the central nervous system. Recent focus on stem-like glioma cells has implicated neural stem cells (NSCs), a minor precursor population restricted to germinal zones, as a potential source of gliomas. In this review, we focus on the relationship between oligodendrocyte progenitor cells (OPCs), the largest population of cycling glial progenitors in the postnatal brain, and gliomagenesis. OPCs can give rise to gliomas, with signaling pathways associated with NSCs also playing key roles during OPC lineage development. Gliomas can also undergo a switch from progenitor- to stem-like phenotype after therapy, consistent with an OPC-origin even for stem-like gliomas. Future in-depth studies of OPC biology may shed light on the etiology of OPC-derived gliomas and reveal new therapeutic avenues.
Collapse
Affiliation(s)
- Shirin Ilkhanizadeh
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Jasmine Lau
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Miller Huang
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Daniel J Foster
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - Robyn Wong
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Aaron Frantz
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - Susan Wang
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Department of Neurology, University of California, San Francisco, California, USA
| | - Anders I Persson
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA.
| |
Collapse
|
31
|
Vong KI, Leung CKY, Behringer RR, Kwan KM. Sox9 is critical for suppression of neurogenesis but not initiation of gliogenesis in the cerebellum. Mol Brain 2015; 8:25. [PMID: 25888505 PMCID: PMC4406026 DOI: 10.1186/s13041-015-0115-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/27/2015] [Indexed: 01/20/2023] Open
Abstract
Background The high mobility group (HMG) family transcription factor Sox9 is critical for induction and maintenance of neural stem cell pool in the central nervous system (CNS). In the spinal cord and retina, Sox9 is also the master regulator that defines glial fate choice by mediating the neurogenic-to-gliogenic fate switch. On the other hand, the genetic repertoire governing the maintenance and fate decision of neural progenitor pool in the cerebellum has remained elusive. Results By employing the Cre/loxP strategy, we specifically inactivated Sox9 in the mouse cerebellum. Unexpectedly, the self-renewal capacity and multipotency of neural progenitors at the cerebellar ventricular zone (VZ) were not perturbed upon Sox9 ablation. Instead, the mutants exhibited an increased number of VZ-derived neurons including Purkinje cells and GABAergic interneurons. Simultaneously, we observed continuous neurogenesis from Sox9-null VZ at late gestation, when normally neurogenesis ceases to occur and gives way for gliogenesis. Surprisingly, glial cell specification was not affected upon Sox9 ablation. Conclusion Our findings suggest Sox9 may mediate the neurogenic-to-gliogenic fate switch in mouse cerebellum by modulating the termination of neurogenesis, and therefore indicate a functional discrepancy of Sox9 between the development of cerebellum and other major neural tissues.
Collapse
Affiliation(s)
- Keng Ioi Vong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China.
| | | | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China. .,RGC-AoE Centre for Organelle Biogenesis and Function, The Chinese University of Hong Kong, Hong Kong, P.R. China. .,Partner State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Hong Kong, P.R. China.
| |
Collapse
|
32
|
Swartling FJ, Čančer M, Frantz A, Weishaupt H, Persson AI. Deregulated proliferation and differentiation in brain tumors. Cell Tissue Res 2015; 359:225-54. [PMID: 25416506 PMCID: PMC4286433 DOI: 10.1007/s00441-014-2046-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/22/2014] [Indexed: 01/24/2023]
Abstract
Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment resistance, suppress tumor growth, and prevent recurrence in patients.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Matko Čančer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Aaron Frantz
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Anders I Persson
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
33
|
Okamura-Oho Y, Shimokawa K, Nishimura M, Takemoto S, Sato A, Furuichi T, Yokota H. Broad integration of expression maps and co-expression networks compassing novel gene functions in the brain. Sci Rep 2014; 4:6969. [PMID: 25382412 PMCID: PMC4225549 DOI: 10.1038/srep06969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022] Open
Abstract
Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas.
Collapse
Affiliation(s)
- Yuko Okamura-Oho
- Brain Research Network (BReNt), 2-2-41 Sakurayama, Zushi-shi, Kanagawa, 249-0005, Japan
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Kazuro Shimokawa
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-chou Aoba-ku Sendai-shi Miyagi, 980-8573, Japan
| | - Masaomi Nishimura
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Satoko Takemoto
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Akira Sato
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Hideo Yokota
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| |
Collapse
|
34
|
González-Fernández C, Fernández-Martos CM, Shields SD, Arenas E, Javier Rodríguez F. Wnts are expressed in the spinal cord of adult mice and are differentially induced after injury. J Neurotrauma 2014; 31:565-81. [PMID: 24367909 DOI: 10.1089/neu.2013.3067] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Wnt family of proteins plays key roles during central nervous system development and has been involved in several neuropathologies during adulthood, including spinal cord injury (SCI). However, Wnts expression knowledge is relatively limited during adult stages. Here, we sought to define the Wnt family expression pattern after SCI in adult mice by using quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). Under physiological conditions, the messenger RNAs (mRNAs) of most Wnt ligands, inhibitors, receptors, and coreceptors are constitutively expressed in healthy adult mice. After dorsal hemisection, we found significant time-dependent variations, with a prominent up-regulation of Wnt inhibitory factor 1 (Wif1). IHC against Frizzled (Fz) 1 and Fz4, as representatives of late and acute up-regulated receptors, showed a differential expression in the uninjured spinal cord of Fz1 by neurons and oligodendrocytes and Fz4 by astrocytes. After injury, both receptors were maintained in the same type of cells. Finally, by using BATgal reporter mice, our results revealed active β-catenin signaling in neurons of the dorsal horn and cells of the central canal of uninjured spinal cords, besides a lack of additional SCI-induced activation. In conclusion, we demonstrate Wnt expression in the adult spinal cord of mice that is modulated by SCI, which differs from that previously described in rats. Further, Fz receptors are differentially expressed by neurons and glial cells, suggestive for cell-specific patterns and thus diverse physiological roles. Further studies will help toward in-depth characterization of the role of all Wnt factors and receptors described and eventually allow for the design of novel therapies.
Collapse
|
35
|
Swartling FJ, Bolin S, Phillips JJ, Persson AI. Signals that regulate the oncogenic fate of neural stem cells and progenitors. Exp Neurol 2014; 260:56-68. [PMID: 23376224 PMCID: PMC3758390 DOI: 10.1016/j.expneurol.2013.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/19/2013] [Accepted: 01/24/2013] [Indexed: 12/16/2022]
Abstract
Brain tumors have frequently been associated with a neural stem cell (NSC) origin and contain stem-like tumor cells, so-called brain tumor stem cells (BTSCs) that share many features with normal NSCs. A stem cell state of BTSCs confers resistance to radiotherapy and treatment with alkylating agents. It is also a hallmark of aggressive brain tumors and is maintained by transcriptional networks that are also active in embryonic stem cells. Advances in reprogramming of somatic cells into induced pluripotent stem (iPS) cells have further identified genes that drive stemness. In this review, we will highlight the possible drivers of stemness in medulloblastoma and glioma, the most frequent types of primary malignant brain cancer in children and adults, respectively. Signals that drive expansion of developmentally defined neural precursor cells are also active in corresponding brain tumors. Transcriptomal subgroups of human medulloblastoma and glioma match features of NSCs but also more restricted progenitors. Lessons from genetically-engineered mouse (GEM) models show that temporally and regionally defined NSCs can give rise to distinct subgroups of medulloblastoma and glioma. We will further discuss how acquisition of stem cell features may drive brain tumorigenesis from a non-NSC origin. Genetic alterations, signaling pathways, and therapy-induced changes in the tumor microenvironment can drive reprogramming networks and induce stemness in brain tumors. Finally, we propose a model where dysregulation of microRNAs (miRNAs) that normally provide barriers against reprogramming plays an integral role in promoting stemness in brain tumors.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sara Bolin
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, USA; Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, USA
| | - Anders I Persson
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, USA; Department of Neurology, Sandler Neurosciences Center, University of California, San Francisco, USA.
| |
Collapse
|
36
|
Fan Y, Marcy G, Lee ESM, Rozen S, Mattar CNZ, Waddington SN, Goh ELK, Choolani M, Chan JKY. Regionally-specified second trimester fetal neural stem cells reveals differential neurogenic programming. PLoS One 2014; 9:e105985. [PMID: 25181041 PMCID: PMC4152177 DOI: 10.1371/journal.pone.0105985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/30/2014] [Indexed: 01/30/2023] Open
Abstract
Neural stem/progenitor cells (NSC) have the potential for treatment of a wide range of neurological diseases such as Parkinson Disease and multiple sclerosis. Currently, NSC have been isolated only from hippocampus and subventricular zone (SVZ) of the adult brain. It is not known whether NSC can be found in all parts of the developing mid-trimester central nervous system (CNS) when the brain undergoes massive transformation and growth. Multipotent NSC from the mid-trimester cerebra, thalamus, SVZ, hippocampus, thalamus, cerebellum, brain stem and spinal cord can be derived and propagated as clonal neurospheres with increasing frequencies with increasing gestations. These NSC can undergo multi-lineage differentiation both in vitro and in vivo, and engraft in a developmental murine model. Regionally-derived NSC are phenotypically distinct, with hippocampal NSC having a significantly higher neurogenic potential (53.6%) over other sources (range of 0%–27.5%, p<0.004). Whole genome expression analysis showed differential gene expression between these regionally-derived NSC, which involved the Notch, epidermal growth factor as well as interleukin pathways. We have shown the presence of phenotypically-distinct regionally-derived NSC from the mid-trimester CNS, which may reflect the ontological differences occurring within the CNS. Aside from informing on the role of such cells during fetal growth, they may be useful for different cellular therapy applications.
Collapse
Affiliation(s)
- Yiping Fan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Guillaume Marcy
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eddy S. M. Lee
- Richard M. Lucas Center for Imaging, Radiology Department, Stanford University, Stanford, California, United States of America
| | - Steve Rozen
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Citra N. Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Simon N. Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom
- Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Eyleen L. K. Goh
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- * E-mail: (JKYC); (MC)
| | - Jerry K. Y. Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- * E-mail: (JKYC); (MC)
| |
Collapse
|
37
|
Meier F, Giesert F, Delic S, Faus-Kessler T, Matheus F, Simeone A, Hölter SM, Kühn R, Weisenhorn DMV, Wurst W, Prakash N. FGF/FGFR2 signaling regulates the generation and correct positioning of Bergmann glia cells in the developing mouse cerebellum. PLoS One 2014; 9:e101124. [PMID: 24983448 PMCID: PMC4077754 DOI: 10.1371/journal.pone.0101124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/03/2014] [Indexed: 12/02/2022] Open
Abstract
The normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2)-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice. We show that during embryonic mouse development, Fgfr2 expression is higher in the anterior cerebellar primordium and excluded from the proliferative ventricular neuroepithelium. Consistent with this finding, conditional Fgfr2 single mutant mice display the most prominent defects in the anterior lobules of the adult cerebellum. In this context, FGFR2-mediated signaling is required for the proper generation of Bergmann glia cells and the correct positioning of these cells within the Purkinje cell layer, and for cell survival in the developing cerebellar primordium. Using cerebellar microexplant cultures treated with an FGFR agonist (FGF9) or antagonist (SU5402), we also show that FGF9/FGFR-mediated signaling inhibits the outward migration of radial glia and Bergmann glia precursors and cells, and might thus act as a positioning cue for these cells. Altogether, our findings reveal the specific functions of the FGFR2-mediated signaling pathway in the generation and positioning of Bergmann glia cells during cerebellar development in the mouse.
Collapse
Affiliation(s)
- Florian Meier
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Sabit Delic
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Theresa Faus-Kessler
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Friederike Matheus
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Antonio Simeone
- Centre of Genetics Engineering (CEINGE) Biotecnologie Avanzate, European School of Molecular Medicine and Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Naples, Italy
| | - Sabine M. Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Ralf Kühn
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniela M. Vogt. Weisenhorn
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Neuherberg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Standort München, München, Germany
- Max-Planck Institute of Psychiatry, München, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Neuherberg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Standort München, München, Germany
- Max-Planck Institute of Psychiatry, München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, München, Germany
- * E-mail: (WW) (WW); (NP) (NP)
| | - Nilima Prakash
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail: (WW) (WW); (NP) (NP)
| |
Collapse
|
38
|
Mecklenburg N, Martinez-Lopez JE, Moreno-Bravo JA, Perez-Balaguer A, Puelles E, Martinez S. Growth and differentiation factor 10 (Gdf10) is involved in Bergmann glial cell development under Shh regulation. Glia 2014; 62:1713-23. [PMID: 24963847 DOI: 10.1002/glia.22710] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 12/17/2022]
Abstract
Growth differentiation factor 10 (Gdf10), also known as Bmp3b, is a member of the transforming growth factor (TGF)-ß superfamily. Gdf10 is expressed in Bergmann glial cells, which was investigated by single-cell transcriptional profiling (Koirala and Corfas, (2010) PLoS ONE 5: e9198). Here we provide a detailed characterization of Gdf10 expression from E14, the stage at which Gdf10 is expressed for the first time in the cerebellum, until P28. We detected Gdf10 expression in both germinal zones: in the ventricular zone (VZ) of the 4th ventricle as well as in the rhombic lip (RL). The VZ has been postulated to give rise to GABAergic neurons and glial cells, whereas the RL gives rise to glutamatergic neurons. Thus, it was very surprising to discover a gene that is expressed exclusively in glial cells and is not restricted to an expression in the VZ, but is also present in the RL. At postnatal stages Gdf10 was distributed equally in Bergmann glial cells of the cerebellum. Furthermore, we found Gdf10 to be regulated by Sonic hedgehog (Shh), which is secreted by Purkinje cells of the cerebellum. In the conditional Shh mutants, glial cells showed a reduced expression of Gdf10, whereas the expression of Nestin and Vimentin was unchanged. Thus, we show for the first time, that Gdf10, expressed in Bergmann glial cells, is affected by the loss of Shh as early as E18.5, suggesting a regulation of glial development by Shh.
Collapse
Affiliation(s)
- Nora Mecklenburg
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC), E-03550, Alicante, Spain; Max-Delbrück-Center for Molecular Medicine, D-13125, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Cerebellar stem cells do not produce neurons and astrocytes in adult mouse. Biochem Biophys Res Commun 2014; 450:378-83. [PMID: 24944019 DOI: 10.1016/j.bbrc.2014.05.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 11/22/2022]
Abstract
Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU(+) cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU(+) cells, very few are mash1(+) or nestin(+) stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1(+) microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.
Collapse
|
40
|
Eskilsson A, Tachikawa M, Hosoya KI, Blomqvist A. Distribution of microsomal prostaglandin E synthase-1 in the mouse brain. J Comp Neurol 2014; 522:3229-44. [DOI: 10.1002/cne.23593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Anna Eskilsson
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences; Linköping University; Linköping Sweden
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences; Tohoku University; Sendai Japan
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Ken-ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Anders Blomqvist
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences; Linköping University; Linköping Sweden
| |
Collapse
|
41
|
Adorjan I, Bindics K, Galgoczy P, Kalman M. Phases of intermediate filament composition in Bergmann glia following cerebellar injury in adult rat. Exp Brain Res 2014; 232:2095-104. [DOI: 10.1007/s00221-014-3900-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 03/03/2014] [Indexed: 02/02/2023]
|
42
|
Shp2-dependent ERK signaling is essential for induction of Bergmann glia and foliation of the cerebellum. J Neurosci 2014; 34:922-31. [PMID: 24431450 DOI: 10.1523/jneurosci.3476-13.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Folding of the cortex and the persistence of radial glia (RG)-like cells called Bergmann glia (BG) are hallmarks of the mammalian cerebellum. Similar to basal RG in the embryonic neocortex, BG maintain only basal processes and continuously express neural stem cell markers. Past studies had focused on the function of BG in granule cell migration and how granule cell progenitors (GCP) regulate cerebellar foliation. The molecular control of BG generation and its role in cerebellar foliation are less understood. Here, we have analyzed the function of the protein tyrosine phosphatase Shp2 in mice by deleting its gene Ptpn11 in the entire cerebellum or selectively in the GCP lineage. Deleting Ptpn11 in the entire cerebellum by En1-cre blocks transformation of RG into BG but preserves other major cerebellar cell types. In the absence of BG, inward invagination of GCP persists but is uncoupled from the folding of the Purkinje cell layer and the basement membrane, leading to disorganized lamination and an absence of cerebellar folia. In contrast, removing Ptpn11 in the GCP lineage by Atoh1-cre has no effect on cerebellar development, indicating that Shp2 is not cell autonomously required in GCP. Furthermore, we demonstrate that Ptpn11 interacts with Fgf8 and is essential for ERK activation in RG and nascent BG. Finally, expressing constitutively active MEK1 rescues BG formation and cerebellar foliation in Shp2-deficient cerebella. Our results demonstrate an essential role of Shp2 in BG specification via fibroblast growth factor/extracellular signal-regulated protein kinase signaling, and reveal a crucial function of BG in organizing cerebellar foliation.
Collapse
|
43
|
Yoo JYJ, Larouche M, Goldowitz D. The expression of HDAC1 and HDAC2 during cerebellar cortical development. THE CEREBELLUM 2014; 12:534-46. [PMID: 23436026 DOI: 10.1007/s12311-013-0459-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Histone deacetylases (HDACs) are epigenetic regulatory proteins that repress gene transcription by changing DNA conformation. The regulation of gene expression through histone deacetylation is an important mechanism for the development of the central nervous system. Although the disruption of the balance in epigenetic gene regulation has been implicated in many CNS developmental abnormalities and diseases, the expression pattern of HDACs in various cell types in the brain during its maturation process has had limited exploration. Therefore, in this study, we investigate the cell type-specific and developmental stage-specific expression pattern of HDAC1 and HDAC2 in the mouse cerebellum. Our experimental results show that the cerebellar progenitors and glial cells express high levels of HDAC1 and low levels of HDAC2. On the other hand, the post-mitotic migrating neuronal cells of the cerebellar cortex show strong HDAC2 and weak HDAC1 expressions. In more differentiated neuronal cells, including Purkinje cells, granule cells, unipolar brush cells, and GABAergic interneurons, we found a consistent expression pattern, high levels of HDAC2 and low levels of HDAC1. Therefore, our data provide support for the potential important roles of HDAC1 in cell proliferation and HDAC2 in migration and differentiation.
Collapse
Affiliation(s)
- Ji Young Janice Yoo
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Avenue, Vancouver, BC, Canada
| | | | | |
Collapse
|
44
|
Oyarce K, Bongarzone ER, Nualart F. Unconventional Neurogenic Niches and Neurogenesis Modulation by Vitamins. ACTA ACUST UNITED AC 2014. [PMID: 26203401 DOI: 10.4172/2157-7633.1000184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the generation of new neurons occurs in adult mammals, it has been classically described in two defined regions of the brain denominated neurogenic niches: the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus. In these regions, neural stem cells give rise to new neurons and glia, which functionally integrate into the existing circuits under physiological conditions. However, accumulating evidence indicates the presence of neurogenic potential in other brain regions, from which multipotent precursors can be isolated and differentiated in vitro. In some of these regions, neuron generation occurs at low levels; however, the addition of growth factors, hormones or other signaling molecules increases the proliferation and differentiation of precursor cells. In addition, vitamins, which are micronutrients necessary for normal brain development, and whose deficiency produces neurological impairments, have a regulatory effect on neural stem cells in vitro and in vivo. In the present review, we will describe the progress that has been achieved in determining the neurogenic potential in other regions, known as unconventional niches, as well as the characteristics of the neural stem cells described for each region. Finally, we will revisit the roles of commonly known vitamins as modulators of precursor cell proliferation and differentiation, and their role in the complex and tight molecular signaling that impacts these neurogenic niches.
Collapse
Affiliation(s)
- Karina Oyarce
- Laboratory of Neurobiology and Stem Cells, Center for Advanced Microscopy CMA BIO BIO, Concepcion University, Concepción, Chile
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, USA
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, Center for Advanced Microscopy CMA BIO BIO, Concepcion University, Concepción, Chile
| |
Collapse
|
45
|
Di Giovannantonio LG, Di Salvio M, Omodei D, Prakash N, Wurst W, Pierani A, Acampora D, Simeone A. Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development 2013; 141:377-88. [PMID: 24335253 DOI: 10.1242/dev.102954] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During embryonic development, the rostral neuroectoderm is regionalized into broad areas that are subsequently subdivided into progenitor compartments with specialized identity and fate. These events are controlled by signals emitted by organizing centers and interpreted by target progenitors, which activate superimposing waves of intrinsic factors restricting their identity and fate. The transcription factor Otx2 plays a crucial role in mesencephalic development by positioning the midbrain-hindbrain boundary (MHB) and its organizing activity. Here, we investigated whether Otx2 is cell-autonomously required to control identity and fate of dorsal mesencephalic progenitors. With this aim, we have inactivated Otx2 in the Pax7(+) dorsal mesencephalic domain, previously named m1, without affecting MHB integrity. We found that the Pax7(+) m1 domain can be further subdivided into a dorsal Zic1(+) m1a and a ventral Zic1(-) m1b sub-domain. Loss of Otx2 in the m1a (Pax7(+) Zic1(+)) sub-domain impairs the identity and fate of progenitors, which undergo a full switch into a coordinated cerebellum differentiation program. By contrast, in the m1b sub-domain (Pax7(+) Zic1(-)) Otx2 is prevalently required for post-mitotic transition of mesencephalic GABAergic precursors. Moreover, genetic cell fate, BrdU cell labeling and Otx2 conditional inactivation experiments indicate that in Otx2 mutants all ectopic cerebellar cell types, including external granule cell layer (EGL) precursors, originate from the m1a progenitor sub-domain and that reprogramming of mesencephalic precursors into EGL or cerebellar GABAergic progenitors depends on temporal sensitivity to Otx2 ablation. Together, these findings indicate that Otx2 intrinsically controls different aspects of dorsal mesencephalic neurogenesis. In this context, Otx2 is cell-autonomously required in the m1a sub-domain to suppress cerebellar fate and promote mesencephalic differentiation independently of the MHB organizing activity.
Collapse
Affiliation(s)
- Luca G Di Giovannantonio
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Nishizaki Y, Takagi T, Matsui F, Higashi Y. SIP1 expression patterns in brain investigated by generating a SIP1-EGFP reporter knock-in mouse. Genesis 2013; 52:56-67. [PMID: 24243579 DOI: 10.1002/dvg.22726] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/23/2013] [Accepted: 11/08/2013] [Indexed: 12/27/2022]
Abstract
A loss of function of SIP1 (Smad interacting protein 1) in the mouse as well as in human of Mowat-Wilson syndrome results in severe and multiple defects in neural tissue development, especially in the brain. However, no detailed expression analysis of SIP1 during brain development has been previously reported. In this study, we describe the generation of an EGFP knock-in reporter mouse for the Sip1 locus and our subsequent analysis of SIP1-EGFP fusion protein expression during brain development. SIP1-EGFP expression was observed in the pyramidal neurons of the hippocampus, the dentate gyrus, and the postmitotic neurons in the cerebral cortex. In layer 5 of the cerebral cortex, SIP1-EGFP expression was complementary to the Ctip2-expressing neurons, most of which are thought to be the cortico-spinal neurons. This suggested that SIP1-EGFP expressing cells might have the specific trajectory targets other than the spinal region. We further observed SIP1-EGFP expression in oligodendrocytes of the corpus callosum and fimbria, Bergmann glial cells of the cerebellum, the olfactory bulb, and in the serotonergic and dopaminergic neurons of the raphe nuclei in the brainstem. These findings may help to clarify the unknown roles of SIP1 in these cells and the pathoetiology of Mowat-Wilson syndrome.
Collapse
Affiliation(s)
- Yuriko Nishizaki
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | | | | | | |
Collapse
|
47
|
Radmis, a novel mitotic spindle protein that functions in cell division of neural progenitors. PLoS One 2013; 8:e79895. [PMID: 24260314 PMCID: PMC3832648 DOI: 10.1371/journal.pone.0079895] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022] Open
Abstract
Developmental dynamics of neural stem/progenitor cells (NSPCs) are crucial for embryonic and adult neurogenesis, but its regulatory factors are not fully understood. By differential subtractive screening with NSPCs versus their differentiated progenies, we identified the radmis (radial fiber and mitotic spindle)/ckap2l gene, a novel microtubule-associated protein (MAP) enriched in NSPCs. Radmis is a putative substrate for the E3-ubiquitin ligase, anaphase promoting complex/cyclosome (APC/C), and is degraded via the KEN box. Radmis was highly expressed in regions of active neurogenesis throughout life, and its distribution was dynamically regulated during NSPC division. In embryonic and perinatal brains, radmis localized to bipolar mitotic spindles and radial fibers (basal processes) of dividing NSPCs. As central nervous system development proceeded, radmis expression was lost in most brain regions, except for several neurogenic regions. In adult brain, radmis expression persisted in the mitotic spindles of both slowly-dividing stem cells and rapid amplifying progenitors. Overexpression of radmis in vitro induced hyper-stabilization of microtubules, severe defects in mitotic spindle formation, and mitotic arrest. In vivo gain-of-function using in utero electroporation revealed that radmis directed a reduction in NSPC proliferation and a concomitant increase in cell cycle exit, causing a reduction in the Tbr2-positive basal progenitor population and shrinkage of the embryonic subventricular zone. Besides, radmis loss-of-function by shRNAs induced the multipolar mitotic spindle structure, accompanied with the catastrophe of chromosome segregation including the long chromosome bridge between two separating daughter nuclei. These findings uncover the indispensable role of radmis in mitotic spindle formation and cell-cycle progression of NSPCs.
Collapse
|
48
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
49
|
Constitutive activation of β-catenin in neural progenitors results in disrupted proliferation and migration of neurons within the central nervous system. Dev Biol 2012; 374:319-32. [PMID: 23237957 DOI: 10.1016/j.ydbio.2012.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 11/20/2022]
Abstract
Wnt signaling is known to play crucial roles in the development of multiple organs as well as in cancer. In particular, constitutive activation of Wnt/β-Catenin signaling in distinct populations of forebrain or brainstem precursor cells has previously been shown to result in dramatic brain enlargement during embryonic stages of development as well as in the formation of medulloblastoma, a malignant brain tumor in childhood. In order to extend this knowledge to postnatal stages of both cerebral and cerebellar cortex development, we conditionally activated Wnt signaling by introducing a dominant active form of β-catenin in hGFAP-positive neural precursors. Such mutant mice survived up to 21 days postnatally. While the mice revealed enlarged ventricles and an initial expansion of the Pax6-positive ventricular zone, Pax6 expression and proliferative activity in the ventricular zone was virtually lost by embryonic day 16.5. Loss of Pax6 expression was not followed by expression of the subventricular zone marker Tbr2, indicating insufficient neuronal differentiation. In support of this finding, cortical thickness was severely diminished in all analyzed stages from embryonic day 14.5 to postnatal day 12, and appropriate layering was not detectable. Similarly, cerebella of hGFAP-cre::Ctnnb1(ex3)(Fl/+) mice were hypoplastic and displayed severe lamination defects. Constitutively active β-Catenin induced inappropriate proliferation of granule neurons and inadequate development of Bergmann glia, thereby preventing regular migration of granule cells and normal cortical layering. We conclude that Wnt signaling has divergent roles in the central nervous system and that Wnt needs to be tightly controlled in a time- and cell type-specific manner.
Collapse
|
50
|
Santana MM, Chung KF, Vukicevic V, Rosmaninho-Salgado J, Kanczkowski W, Cortez V, Hackmann K, Bastos CA, Mota A, Schrock E, Bornstein SR, Cavadas C, Ehrhart-Bornstein M. Isolation, characterization, and differentiation of progenitor cells from human adult adrenal medulla. Stem Cells Transl Med 2012. [PMID: 23197690 DOI: 10.5966/sctm.2012-0022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromaffin cells, sympathetic neurons of the dorsal ganglia, and the intermediate small intensely fluorescent cells derive from a common neural crest progenitor cell. Contrary to the closely related sympathetic nervous system, within the adult adrenal medulla a subpopulation of undifferentiated progenitor cells persists, and recently, we established a method to isolate and differentiate these progenitor cells from adult bovine adrenals. However, no studies have elucidated the existence of adrenal progenitor cells within the human adrenal medulla. Here we describe the isolation, characterization, and differentiation of chromaffin progenitor cells obtained from adult human adrenals. Human chromaffin progenitor cells were cultured in low-attachment conditions for 10-12 days as free-floating spheres in the presence of fibroblast growth factor-2 (FGF-2) and epidermal growth factor. These primary human chromosphere cultures were characterized by the expression of several progenitor markers, including nestin, CD133, Notch1, nerve growth factor receptor, Snai2, Sox9, Sox10, Phox2b, and Ascl1 on the molecular level and of Sox9 on the immunohistochemical level. In opposition, phenylethanolamine N-methyltransferase (PNMT), a marker for differentiated chromaffin cells, significantly decreased after 12 days in culture. Moreover, when plated on poly-l-lysine/laminin-coated slides in the presence of FGF-2, human chromaffin progenitor cells were able to differentiate into two distinct neuron-like cell types, tyrosine hydroxylase (TH)(+)/β-3-tubulin(+) cells and TH(-)/β-3-tubulin(+) cells, and into chromaffin cells (TH(+)/PNMT(+)). This study demonstrates the presence of progenitor cells in the human adrenal medulla and reveals their potential use in regenerative medicine, especially in the treatment of neuroendocrine and neurodegenerative diseases.
Collapse
|