1
|
Kisla M, Yaman M, Zengin-Karadayi F, Korkmaz B, Bayazeid O, Kumar A, Peravali R, Gunes D, Tiryaki RS, Gelinci E, Cakan-Akdogan G, Ates-Alagoz Z, Konu O. Synthesis and Structure of Novel Phenothiazine Derivatives, and Compound Prioritization via In Silico Target Search and Screening for Cytotoxic and Cholinesterase Modulatory Activities in Liver Cancer Cells and In Vivo in Zebrafish. ACS OMEGA 2024; 9:30594-30614. [PMID: 39035947 PMCID: PMC11256110 DOI: 10.1021/acsomega.3c06532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024]
Abstract
Phenothiazines (PTZ) are antipsychotics known to modulate a variety of neurotransmitter activities that include dopaminergic and cholinergic signaling and have been identified as potential anticancer agents in vitro. However, it is important to also test whether a highly cytotoxic, repurposed, or novel PTZ has low toxicity and neuromodulatory activity in vivo using vertebrate model organisms, such as zebrafish. In this study, we synthesized novel phenothiazines and screened them in vitro in liver cancer and in vivo in zebrafish embryos/larvae. The syntheses of several intermediate PTZ 10-yl acyl chlorides were followed by elemental analysis and determination of 1H NMR and 13C NMR mass (ESI+) spectra of a large number of novel PTZ 10-carboxamides. Cytotoxicities of 28 PTZ derivatives (1-28) screened against Hep3B and SkHep1 liver cancer cell lines revealed five intermediate and five novel leads along with trifluoperazine (TFP), prochlorperazine (PCP), and perphenazine, which are relatively more cytotoxic than the basic PTZ core. Overall, the derivatives were more cytotoxic to Hep3B than SkHep1 cells. Moreover, in silico target screening identified cholinesterases as some of the commonest targets of the screened phenothiazines. Interestingly, molecular docking studies with acetylcholinesterase (AChE) and butyrylcholinesterase proteins showed that the most cytotoxic compounds 1, 3, PCP, and TFP behaved similar to Huprin W in their amino acid interactions with the AChE protein. The highly cytotoxic intermediate PTZ derivative 1 exhibited a relatively lower toxicity profile than those of 2 and 3 during the zebrafish development. It also modulated in vivo the cholinesterase activity in a dose-dependent manner while significantly increasing the total cholinesterase activity and/or ACHE mRNA levels, independent of the liver cancer cell type. Our screen also identified novel phenothiazines, i.e., 8 and 10, with significant cytotoxic and cholinesterase modulatory effects in liver cancer cells; yet both compounds had low levels of toxicity in zebrafish. Moreover, they modulated the cholinesterase activity or expression of ACHE in a cancer cell line-specific manner, and compound 10 significantly inhibited the cholinesterase activity in zebrafish. Accordingly, using a successful combination of in silico, in vitro, and in vivo approaches, we identified several lead anticancer and cholinesterase modulatory PTZ derivatives for future research.
Collapse
Affiliation(s)
- Mehmet
Murat Kisla
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
- Graduate
School of Health Sciences, Ankara University, 06100 Ankara, Turkey
| | - Murat Yaman
- Interdisciplinary
Program in Neuroscience, Bilkent University, 06800 Ankara, Turkey
| | - Fikriye Zengin-Karadayi
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
| | - Busra Korkmaz
- Department
of Molecular Biology and Genetics, Bilkent
University, 06800 Ankara, Turkey
| | - Omer Bayazeid
- Department
of Molecular Biology and Genetics, Bilkent
University, 06800 Ankara, Turkey
| | - Amrish Kumar
- Institute
of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology
(KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Ravindra Peravali
- Institute
of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology
(KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Damla Gunes
- Interdisciplinary
Program in Neuroscience, Bilkent University, 06800 Ankara, Turkey
| | - Rafed Said Tiryaki
- Department
of Molecular Biology and Genetics, Bilkent
University, 06800 Ankara, Turkey
| | - Emine Gelinci
- Izmir
Biomedicine
and Genome Center (IBG), 35340 Izmir, Turkey
| | - Gulcin Cakan-Akdogan
- Izmir
Biomedicine
and Genome Center (IBG), 35340 Izmir, Turkey
- Medical
Biology Department, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Zeynep Ates-Alagoz
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
| | - Ozlen Konu
- Interdisciplinary
Program in Neuroscience, Bilkent University, 06800 Ankara, Turkey
- Department
of Molecular Biology and Genetics, Bilkent
University, 06800 Ankara, Turkey
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
2
|
Gambardella MD, Wang Y, Pang J. The Cholinergic Selectivity of FDA-Approved and Metabolite Compounds Examined with Molecular-Docking-Based Virtual Screening. Molecules 2024; 29:2333. [PMID: 38792196 PMCID: PMC11124253 DOI: 10.3390/molecules29102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The search for selective anticholinergic agents stems from varying cholinesterase levels as Alzheimer's Disease progresses from the mid to late stage. In this computational study, we probed the selectivity of FDA-approved and metabolite compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with molecular-docking-based virtual screening. The results were evaluated using locally developed codes for the statistical methods. The docking-predicted selectivity for AChE and BChE was predominantly the consequence of differences in the volume of the active site and the narrower entrance to the bottom of the active site gorge of AChE.
Collapse
Affiliation(s)
- Michael D. Gambardella
- Department of Chemistry and Biochemistry, Southern Connecticut State University, New Haven, CT 06515, USA
| | - Yigui Wang
- Department of Chemistry and Biochemistry, Southern Connecticut State University, New Haven, CT 06515, USA
- Department of Chemistry and Chemical & Biochemical Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Jiongdong Pang
- Department of Chemistry and Biochemistry, Southern Connecticut State University, New Haven, CT 06515, USA
| |
Collapse
|
3
|
Mukhametgalieva AR, Nemtarev AV, Sykaev VV, Pashirova TN, Masson P. Activation/Inhibition of Cholinesterases by Excess Substrate: Interpretation of the Phenomenological b Factor in Steady-State Rate Equation. Int J Mol Sci 2023; 24:10472. [PMID: 37445649 DOI: 10.3390/ijms241310472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Cholinesterases (ChEs) display a non-michaelian behavior with positively charged substrates. In the steady-state rate equation, the b factor describes this behavior: if b > 1 there is substrate activation, if b < 1 there is substrate inhibition. The mechanistic significance of the b factor was investigated to determine whether this behavior depends on acylation, deacylation or on both steps. Kinetics of human acetyl- (AChE) and butyryl-cholinesterase (BChE) were performed under steady-state conditions and using a time-course of complete substrate hydrolysis. For the hydrolysis of short acyl(thio)esters, where acylation and deacylation are partly rate-limiting, steady-state kinetic analysis could not decide which step determines b. However, the study of the hydrolysis of an arylacylamide, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), where acetylation is rate-limiting, showed that b depends on the acylation step. The magnitude of b and opposite b values between AChE and BChE for the hydrolysis of acetyl(thio)- versus benzoyl-(thio) esters, then indicated that the productive adjustment of substrates in the active center at high concentration depends on motions of both the Ω and the acyl-binding loops. Benzoylcholine was shown to be a poor substrate of AChE, and steady-state kinetics showed a sudden inhibition at high concentration, likely due to the non-dissociation of hydrolysis products. The poor catalytic hydrolysis of this bulky ester by AChE illustrates the importance of the fine adjustment of substrate acyl moiety in the acyl-binding pocket. Molecular modeling and QM/MM simulations should definitively provide evidence for this statement.
Collapse
Affiliation(s)
- Aliya R Mukhametgalieva
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, 18 Ul. Kremlevskaya, 420008 Kazan, Russia
| | - Andrey V Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Ul. Arbuzov, 420088 Kazan, Russia
| | - Viktor V Sykaev
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Ul. Arbuzov, 420088 Kazan, Russia
| | - Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Ul. Arbuzov, 420088 Kazan, Russia
| | - Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, 18 Ul. Kremlevskaya, 420008 Kazan, Russia
| |
Collapse
|
4
|
Kim S, Seong KM, Lee SH. Acetylcholine titre regulation by non-neuronal acetylcholinesterase 1 and its putative roles in honey bee physiology. INSECT MOLECULAR BIOLOGY 2023. [PMID: 37130064 DOI: 10.1111/imb.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Similar to other insects, honey bees have two acetylcholinesterases (AChEs), AmAChE1 and AmAChE2. The primary catalytic enzyme for acetylcholine (ACh) hydrolysis in synapses is AmAChE2, which is predominantly expressed in neuronal tissues, whereas AmAChE1 is expressed in both neuronal and non-neuronal tissues, with limited catalytic activity. Unlike constitutively expressed AmAChE2, AmAChE1 expression is induced under stressful conditions such as heat shock and brood rearing suppression, but its role in regulating ACh titre remains unclear. In this paper, to elucidate the role of AmAChE1, the expression of AmAChE1 was suppressed via RNA interference (RNAi) in AmAChE1-induced worker bees. The ACh titre measurement following RNAi revealed that the expression of AmAChE1 downregulated the overall ACh titre in all tissues examined without altering AmAChE2 expression. Transcriptome analysis showed that AmAChE1 knockdown upregulated protein biosynthesis, cell respiration, and thermogenesis in the head. These findings suggest that AmAChE1 is involved in decreasing neuronal activity, enhancing energy conservation, and potentially extending longevity under stressful conditions via ACh titre regulation.
Collapse
Affiliation(s)
- Sanghyeon Kim
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Keon Mook Seong
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Si Hyeock Lee
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
Kašuba V, Tariba Lovaković B, Lucić Vrdoljak A, Katić A, Kopjar N, Micek V, Milić M, Pizent A, Želježić D, Žunec S. Evaluation of Toxic Effects Induced by Sub-Acute Exposure to Low Doses of α-Cypermethrin in Adult Male Rats. TOXICS 2022; 10:toxics10120717. [PMID: 36548550 PMCID: PMC9785956 DOI: 10.3390/toxics10120717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 05/14/2023]
Abstract
To contribute new information to the pyrethroid pesticide α-cypermethrin toxicity profile, we evaluated its effects after oral administration to Wistar rats at daily doses of 2.186, 0.015, 0.157, and 0.786 mg/kg bw for 28 days. Evaluations were performed using markers of oxidative stress, cholinesterase (ChE) activities, and levels of primary DNA damage in plasma/whole blood and liver, kidney, and brain tissue. Consecutive exposure to α-cypermethrin affected the kidney, liver, and brain weight of rats. A significant increase in concentration of the thiobarbituric acid reactive species was observed in the brain, accompanied by a significant increase in glutathione peroxidase (GPx) activity. An increase in GPx activity was also observed in the liver of all α-cypermethrin-treated groups, while GPx activity in the blood was significantly lower than in controls. A decrease in ChE activities was observed in the kidney and liver. Treatment with α-cypermethrin induced DNA damage in the studied cell types at almost all of the applied doses, indicating the highest susceptibility in the brain. The present study showed that, even at very low doses, exposure to α-cypermethrin exerts genotoxic effects and sets in motion the antioxidative mechanisms of cell defense, indicating the potential hazards posed by this insecticide.
Collapse
|
6
|
Elumalai V, Trobec T, Grundner M, Labriere C, Frangež R, Sepčić K, Hansen JH, Svenson J. Development of potent cholinesterase inhibitors based on a marine pharmacophore. Org Biomol Chem 2022; 20:5589-5601. [PMID: 35796650 DOI: 10.1039/d2ob01064j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The management of neurological disorders such as dementia associated with Alzheimer's or Parkinson's disease includes the use of cholinesterase inhibitors. These compounds can slow down the progression of these diseases and can also be used in the treatment of glaucoma and myasthenia gravis. The majority of the cholinesterase inhibitors used in the clinic are derived from natural products and our current paper describes the use of a small marine pharmacophore to develop potent and selective cholinesterase inhibitors. Fourteen small inhibitors were designed based on recent discoveries about the inhibitory potential of a range of related marine secondary metabolites. The compounds were evaluated, in kinetic enzymatic assays, for their ability to inhibit three different cholinesterase enzymes and it was shown that compounds with a high inhibitory activity towards electric eel and human recombinant acetylcholinesterase (IC50 between 20-70 μM) could be prepared. It was also shown that this compound class was particularly active against horse serum butyrylcholinesterase, with IC50 values between 0.8-16 μM, which is an order of magnitude more potent than the clinically used positive control neostigmine. The compounds were further tested for off-target toxicity against both human umbilical vein endothelial cells and bovine and human erythrocytes and were shown to display a low mammalian cellular toxicity. Overall, the study illustrates how the brominated dipeptide marine pharmacophore can be used as a versatile natural scaffold for the design of potent, and selective cholinesterase inhibitors.
Collapse
Affiliation(s)
- Vijayaragavan Elumalai
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Tomaž Trobec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Grundner
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Christophe Labriere
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jørn H Hansen
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| |
Collapse
|
7
|
de Campos BG, do Prado E Silva MBM, Avelelas F, Maia F, Loureiro S, Perina F, Abessa DMDS, Martins R. Toxicity of innovative antifouling additives on an early life stage of the oyster Crassostrea gigas: short- and long-term exposure effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27534-27547. [PMID: 34981374 DOI: 10.1007/s11356-021-17842-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Recent advances in nanotechnology have allowed the encapsulation of hazardous antifouling (AF) biocides in silica mesoporous nanocapsules (SiNC) reducing their short-term toxicity. However, the chronic effects of such novel nanoadditives remain understudied. The present study aimed to assess short- and long-term sub-lethal effects of soluble forms (DCOIT and Ag) and nanostructured forms (SiNC-DCOIT and SiNC-DCOIT-Ag) of two AF biocides and the "empty" nanocapsule (SiNC) on juveniles of Crassostrea gigas after 96 h and 14 days of exposure. Juvenile oysters exposed for a short period to free DCOIT and AgNO3 presented worse physiological status comparing with those exposed to the nanostructured forms. The long-term exposure to DCOIT and Ag+ caused an extensive biochemical impairment comparing with the tested nanomaterials, which included oxidative damage, activation of the antioxidant defense system, and neurotransmission impairment. Despite the negative effects mostly observed on the health condition index and AChE, the encapsulation of the abovementioned AF biocides into SiNC seems to be a technological advantage towards the development of AF nanoadditives with lower long-term toxicity comparing with the soluble forms of such biocides.
Collapse
Affiliation(s)
- Bruno Galvão de Campos
- São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Paulo, São Vicente, 11330-900, Brazil.
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | | | - Francisco Avelelas
- MARE, School of Tourism and Maritime Technology, Polytechnic of Leiria, Leiria, Portugal
| | - Frederico Maia
- Smallmatek - Small Materials and Technologies, Lda, Rua dos Canhas, 3810-075, Aveiro, Portugal
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando Perina
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | - Roberto Martins
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
8
|
The ACE genes in Aphelenchoides besseyi isolates and their expression correlation to the fenamiphos treatment. Sci Rep 2022; 12:1975. [PMID: 35132122 PMCID: PMC8821594 DOI: 10.1038/s41598-022-05998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/12/2022] [Indexed: 11/15/2022] Open
Abstract
Aphelenchoides besseyi could cause great yield losses of rice and many economically important crops. Acetylcholinesterase (AChE) inhibitors were commonly used to manage plant-parasitic nematodes. However, nematodes resistant to AChE inhibitors have been increasingly reported due to the extensive use of these chemicals. The current study was aimed to establish the correlation between fenamiphos (an AChE-inhibitor) sensitivities and acetylcholinesterase genes (ace) by analyzing two isolates of A. besseyi (designated Rl and HSF), which displayed differential sensitivities to fenamiphos. The concentrations of fenamiphos that led to the death of 50% (LD50) of Rl and HSF were 572.2 ppm and 129.4 ppm, respectively. Three ace genes were cloned from A. besseyi and sequenced. Sequence searching and phylogenic analyses revealed that AChEs of R1 and HSF shared strong similarities with those of various vertebrate and invertebrate species. Molecular docking analysis indicated that AChEs-HSF had much higher affinities to fenamiphos than AChEs-R1. Quantitative reverse transcriptase-PCR analyses revealed that expression of three ace genes were downregulated in HSF but were upregulated in Rl after exposure to 100 ppm fenamiphos for 12 h. The results indicated that the expression of the ace genes was modulated in response to fenamiphos in different nematode strains. An increased expression of the ace genes might contribute to fenamiphos-insensitivity as seen in the Rl isolate.
Collapse
|
9
|
Deidda I, Russo R, Bonaventura R, Costa C, Zito F, Lampiasi N. Neurotoxicity in Marine Invertebrates: An Update. BIOLOGY 2021; 10:161. [PMID: 33670451 PMCID: PMC7922589 DOI: 10.3390/biology10020161] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Invertebrates represent about 95% of existing species, and most of them belong to aquatic ecosystems. Marine invertebrates are found at intermediate levels of the food chain and, therefore, they play a central role in the biodiversity of ecosystems. Furthermore, these organisms have a short life cycle, easy laboratory manipulation, and high sensitivity to marine pollution and, therefore, they are considered to be optimal bioindicators for assessing detrimental chemical agents that are related to the marine environment and with potential toxicity to human health, including neurotoxicity. In general, albeit simple, the nervous system of marine invertebrates is composed of neuronal and glial cells, and it exhibits biochemical and functional similarities with the vertebrate nervous system, including humans. In recent decades, new genetic and transcriptomic technologies have made the identification of many neural genes and transcription factors homologous to those in humans possible. Neuroinflammation, oxidative stress, and altered levels of neurotransmitters are some of the aspects of neurotoxic effects that can also occur in marine invertebrate organisms. The purpose of this review is to provide an overview of major marine pollutants, such as heavy metals, pesticides, and micro and nano-plastics, with a focus on their neurotoxic effects in marine invertebrate organisms. This review could be a stimulus to bio-research towards the use of invertebrate model systems other than traditional, ethically questionable, time-consuming, and highly expensive mammalian models.
Collapse
|
10
|
Xing Q, Liao H, Peng C, Zheng G, Yang Z, Wang J, Lu W, Huang X, Bao Z. Identification, characterization and expression analyses of cholinesterases genes in Yesso scallop (Patinopecten yessoensis) reveal molecular function allocation in responses to ocean acidification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105736. [PMID: 33422860 DOI: 10.1016/j.aquatox.2020.105736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Cholinesterases are key enzymes in central and peripheral cholinergic nerve system functioning on nerve impulse transmission in animals. Though cholinesterases have been identified in most vertebrates, the knowledge about the variable numbers and multiple functions of the genes is still quite meagre in invertebrates, especially in scallops. In this study, the complete cholinesterase (ChE) family members have been systematically characterized in Yesso scallop (Patinopecten yessoensis) via whole-genome scanning through in silico analysis. Ten ChE family members in the genome of Yesso scallop (designated PyChEs) were identified and potentially acted to be the largest number of ChE in the reported species to date. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of these genes. The expression profiles of PyChEs were determined in all developmental stages, in healthy adult tissues, and in mantles under low pH stress (pH 6.5 and 7.5). Spatiotemporal expression suggested the ubiquitous functional roles of PyChEs in all stages of development, as well as general and tissue-specific functions in scallop tissues. Regulation expressions revealed diverse up- and down-regulated expression patterns at most time points, suggesting different functional specialization of gene superfamily members in response to ocean acidification (OA). Evidences in gene number, phylogenetic relationships and expression patterns of PyChEs revealed that functional innovations and differentiations after gene duplication may result in altered functional constraints among PyChEs gene clusters. Collectively, our results provide the potential clues that the selection pressures coming from the environment were the potential inducement leading to function allocation of ChE family members in scallop.
Collapse
Affiliation(s)
- Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Guiliang Zheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wei Lu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
11
|
Quinolizidine-Derived Lucanthone and Amitriptyline Analogues Endowed with Potent Antileishmanial Activity. Pharmaceuticals (Basel) 2020; 13:ph13110339. [PMID: 33113777 PMCID: PMC7694037 DOI: 10.3390/ph13110339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Leishmaniases are neglected diseases that are endemic in many tropical and sub-tropical Countries. Therapy is based on different classes of drugs which are burdened by severe side effects, occurrence of resistance and high costs, thereby creating the need for more efficacious, safer and inexpensive drugs. Herein, sixteen 9-thioxanthenone derivatives (lucanthone analogues) and four compounds embodying the diarylethene substructure of amitriptyline (amitriptyline analogues) were tested in vitro for activity against Leishmania tropica and L. infantum promastigotes. All compounds were characterized by the presence of a bulky quinolizidinylalkyl moiety. All compounds displayed activity against both species of Leishmania with IC50 values in the low micromolar range, resulting in several fold more potency than miltefosine, comparable to that of lucanthone, and endowed with substantially lower cytotoxicity to Vero-76 cells, for the best of them. Thus, 4-amino-1-(quinolizidinylethyl)aminothioxanthen-9-one (14) and 9-(quinolizidinylmethylidene)fluorene (17), with selectivity index (SI) in the range 16-24, represent promising leads for the development of improved antileishmanial agents. These two compounds also exhibited comparable activity against intramacrophagic amastigotes of L. infantum. Docking studies have suggested that the inhibition of trypanothione reductase (TryR) may be at the basis (eventually besides other mechanisms) of the observed antileishmanial activity. Therefore, these investigated derivatives may deserve further structural improvements and more in-depth biological studies of their mechanisms of action in order to develop more efficient antiparasitic agents.
Collapse
|
12
|
Alves HHF, Silva AT, Pavão JMSJ, Matos-Rocha TJ, Souza MA, Costa JG, Fonseca SA, Pires LLS, Faé J, Santos AF. The acetylcholinesterase as indicative of intoxication for pesticide in farmers of conventional and organic cultivation. BRAZ J BIOL 2020; 81:632-641. [PMID: 32876158 DOI: 10.1590/1519-6984.227875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/09/2020] [Indexed: 11/22/2022] Open
Abstract
In this sense the objective of assessing the levels of pesticide poisoning in rural farmers of San Sebastian and take AL, using acetylcholinesterase enzymes Erythrocyte and plasma as biological indicator of intoxication. This is a prospective, transversal and descriptive variables analyzed were: year whose, sex, age group, education, location, condition, route of exposure. The data were acquired by collecting blood samples and socio demographic information of farmers. Was put as the determining factor the type of conventional and organic farming, and periods of drought and rainy. 56 volunteers were analyzed. The analyses were performed in the automatic biochemical Analyzer Cobas Integra 400 plus®. According to the results of the analyses, it was the largest number of individuals with reduced values of cholinesterase, specifically the Group of conventional farming, the period of greatest change index was in the rainy season, where the activity of AChE, expressive values presented in the city of São Sebastião, with 80% result of intoxicated, in the city of the foot - take, 21.73% over the same period. On analysis of the AChP, São Sebastião has obtained the highest number of contaminated with 18.75% and 30% respectively, in the District Take Foot stood between 10 and 21.73% of reduced levels of cholinesterase. This sets the organic system of cultivation, as the best alternative for prevention of future diseases, in addition to bringing quality of life for rural workers, as well as for consumers.
Collapse
Affiliation(s)
- H H F Alves
- Centro Universitário Cesmac, Maceió, AL, Brasil
| | - A T Silva
- Universidade Estadual de Alagoas - UNEAL, Arapiraca, AL, Brasil
| | | | | | - M A Souza
- Centro Universitário Cesmac, Maceió, AL, Brasil
| | - J G Costa
- Centro Universitário Cesmac, Maceió, AL, Brasil
| | - S A Fonseca
- Centro Universitário Cesmac, Maceió, AL, Brasil
| | - L L S Pires
- Centro Universitário Cesmac, Maceió, AL, Brasil
| | - J Faé
- Universidade Estadual de Alagoas - UNEAL, Arapiraca, AL, Brasil
| | - A F Santos
- Centro Universitário Cesmac, Maceió, AL, Brasil
| |
Collapse
|
13
|
Nachon F, Rosenberry TL, Silman I, Sussman JL. A Second Look at the Crystal Structures of Drosophila melanogaster Acetylcholinesterase in Complex with Tacrine Derivatives Provides Insights Concerning Catalytic Intermediates and the Design of Specific Insecticides. Molecules 2020; 25:molecules25051198. [PMID: 32155891 PMCID: PMC7179448 DOI: 10.3390/molecules25051198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 11/16/2022] Open
Abstract
Over recent decades, crystallographic software for data processing and structure refinement has improved dramatically, resulting in more accurate and detailed crystal structures. It is, therefore, sometimes valuable to have a second look at "old" diffraction data, especially when earlier interpretation of the electron density maps was rather difficult. Here, we present updated crystal structures of Drosophila melanogaster acetylcholinesterase (DmAChE) originally published in [Harel et al., Prot Sci (2000) 9:1063-1072], which reveal features previously unnoticed. Thus, previously unmodeled density in the native active site can be interpreted as stable acetylation of the catalytic serine. Similarly, a strong density in the DmAChE/ZA complex originally attributed to a sulfate ion is better interpreted as a small molecule that is covalently bound. This small molecule can be modeled as either a propionate or a glycinate. The complex is reminiscent of the carboxylate butyrylcholinesterase complexes observed in crystal structures of human butyrylcholinesterases from various sources, and demonstrates the remarkable ability of cholinesterases to stabilize covalent complexes with carboxylates. A very strong peak of density (10 σ) at covalent distance from the Cβ of the catalytic serine is present in the DmAChE/ZAI complex. This can be undoubtedly attributed to an iodine atom, suggesting an unanticipated iodo/hydroxyl exchange between Ser238 and the inhibitor, possibly driven by the intense X-ray irradiation. Finally, the binding of tacrine-derived inhibitors, such as ZA (1DX4) or the iodinated analog, ZAI (1QON) results in the appearance of an open channel that connects the base of the active-site gorge to the solvent. This channel, which arises due to the absence of the conserved tyrosine present in vertebrate cholinesterases, could be exploited to design inhibitors specific to insect cholinesterases. The present study demonstrates that updated processing of older diffraction images, and the re-refinement of older diffraction data, can produce valuable information that could not be detected in the original analysis, and strongly supports the preservation of the diffraction images in public data banks.
Collapse
Affiliation(s)
- Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
- Correspondence: ; Tel.: +33-178-65-1877
| | - Terrone L. Rosenberry
- Departments of Neuroscience and Pharmacology, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA;
| | - Israel Silman
- Department of Neurobiology, Weizmann Institute of Science, 7610001 Rehovot, Israel;
| | - Joel L. Sussman
- Department of Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel;
| |
Collapse
|
14
|
Mukhametgalieva AR, Aglyamova AR, Lushchekina SV, Goličnik M, Masson P. Time-course of human cholinesterases-catalyzed competing substrate kinetics. Chem Biol Interact 2019; 310:108702. [DOI: 10.1016/j.cbi.2019.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/23/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
|
15
|
Chatonnet A, Brazzolotto X, Hotelier T, Lenfant N, Marchot P, Bourne Y. An evolutionary perspective on the first disulfide bond in members of the cholinesterase-carboxylesterase (COesterase) family: Possible outcomes for cholinesterase expression in prokaryotes. Chem Biol Interact 2019; 308:179-184. [DOI: 10.1016/j.cbi.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
|
16
|
Lopes DFC, Assis CRDD, Sant'Anna MCSD, Silva JFD, Bezerra RDS, Frédou FL. Brain acetylcholinesterase of three perciformes: From the characterization to the in vitro effect of metal ions and pesticides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:494-503. [PMID: 30802738 DOI: 10.1016/j.ecoenv.2019.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Estuarine environments gather pollution from large regions including urban and industrial zones. The monitoring of environmental quality in these areas constitutes a real requirement for global sustainable development. Therefore, the aim of this study was to characterize the physicochemical and kinetic parameters of brain acetylcholinesterase (AChE) in the species Centropomus undecimalis, Diapterus auratus and Diapterus rhombeus and to assess the effects (in vitro) of pesticides and metal ions on their respective activities in order to investigate them as potential biomarkers. Physicochemical properties such as thermostability, optimal pH and temperature, as well as kinetic parameters were investigated. AChE was pointed as the predominant cholinesterase (ChE) in the brains of the species under study. The highest optimum pH value was observed for C. undecimalis (8.0), and the lowest for D. rhombeus and D. auratus, with 7.2 and 7.0, respectively. The optimal temperature was 35 °C for the three species. The AChEs of the three species presented moderate thermostability, since they retained 61%, 72% and 67% of the activity up to 45 °C (C. undecimalis, D. auratus and D. rhombeus, respectively). The carbamate carbofuran showed to be the strongest inhibitor even at very low concentrations (IC50: 0.182, 0.174 and 0.203 μmol/L - C. undecimalis, D. auratus and D. rhombeus, respectively), followed by dichlorvos and carbaryl. According to the findings, the AChE of these species may be proposed as in vitro biomarker of exposure to carbofuran and dichlorvos (all three species) and carbaryl (D. auratus and D. Rhombeus), as well as for exceeding limit concentrations of Hg2+ (D. rhombeus) and As3+ (D. auratus) in biomonitoring programs located or not at estuarine environments.
Collapse
Affiliation(s)
- Danilo Francisco Corrêa Lopes
- Universidade Federal do Maranhão (UFMA), Coordenação do Curso de Engenharia de Pesca, Pinheiro, Brazil; Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura, Recife, Brazil
| | - Caio Rodrigo Dias de Assis
- Universidade Federal de Pernambuco (UFPE), Departamento de Bioquímica e Biofísica, Recife, Brazil; Universidade Federal de Pernambuco (UFPE), Departamento de Oceanografia, Recife, Brazil.
| | | | - Janilson Felix da Silva
- Universidade Federal de Pernambuco (UFPE), Departamento de Bioquímica e Biofísica, Recife, Brazil
| | | | - Flávia Lucena Frédou
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura, Recife, Brazil
| |
Collapse
|
17
|
Sepčić K, Sabotič J, A. Ohm R, Drobne D, Jemec Kokalj A. First evidence of cholinesterase-like activity in Basidiomycota. PLoS One 2019; 14:e0216077. [PMID: 31039204 PMCID: PMC6490906 DOI: 10.1371/journal.pone.0216077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/13/2019] [Indexed: 11/28/2022] Open
Abstract
Cholinesterases (ChE), the enzymes whose primary function is the hydrolysis of choline esters, are widely expressed throughout the nature. Although they have already been found in plants and microorganisms, including ascomycete fungi, this study is the first report of ChE-like activity in fungi of the phylum Basidiomycota. This activity was detected in almost a quarter of the 45 tested aqueous fungal extracts. The ability of these extracts to hydrolyse acetylthiocholine was about ten times stronger than the hydrolytic activity towards butyrylthiocholine and propionylthiocholine. In-gel detection of ChE-like activity with acetylthiocholine indicated a great variability in the characteristics of these enzymes which are not characterized as vertebrate-like based on (i) differences in inhibition by excess substrate, (ii) susceptibility to different vertebrate acetylcholinesterase and butyrylcholinesterase inhibitors, and (iii) a lack of orthologs using phylogenetic analysis. Limited inhibition by single inhibitors and multiple activity bands using in-gel detection indicate the presence of several ChE-like enzymes in these aqueous extracts. We also observed inhibitory activity of the same aqueous mushroom extracts against insect acetylcholinesterase in 10 of the 45 samples tested; activity was independent of the presence of ChE-like activity in extracts. Both ChE-like activities with different substrates and the ability of extracts to inhibit insect acetylcholinesterase were not restricted to any fungal family but were rather present across all included Basidiomycota families. This study can serve as a platform for further research regarding ChE activity in mushrooms.
Collapse
Affiliation(s)
- Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Robin A. Ohm
- Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht, The Netherlands
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
18
|
Rotundo G, Paventi G, Barberio A, De Cristofaro A, Notardonato I, Russo MV, Germinara GS. Biological activity of Dittrichia viscosa (L.) Greuter extracts against adult Sitophilus granarius (L.) (Coleoptera, Curculionidae) and identification of active compounds. Sci Rep 2019; 9:6429. [PMID: 31015563 PMCID: PMC6478880 DOI: 10.1038/s41598-019-42886-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/05/2019] [Indexed: 01/25/2023] Open
Abstract
Dittrichia viscosa (L.) Greuter, a perennial weed of the Mediterranean area, was reported to be source of active substances. Here, by means of both ingestion and contact assays, the biological activity of three different extracts (n-hexane, methanol, and distilled water) of D. viscosa aerial part has been evaluated against Sitophilus granarius (L.) adults, an important pest of stored grains. Ingestion assays showed negligible mortality and food deterrence for all the extracts, whereas only a slight reduction of some nutritional parameters (relative growth rate, relative consumption rate, food efficiency conversion) was recorded for water extract. High contact toxicity was found only for the n-hexane extract (24 h median lethal dose LD50 = 53.20 μg/adult). This extract was further subfractioned by silica gel column chromatography and then by thin layer chromatography. Further contact toxicity bioassays highlighted two active subfractions which were analyzed by GC-MS. This revealed the occurrence, in both subfractions, of two major peaks that were identified as α- and γ- costic acid isomers. Moreover, D. viscosa active subfractions, did not cause acetylcholinesterase (AChE) inhibition; therefore, in the light of progressive limitation of compounds acting by this mechanism of action, D. viscosa represents a promising eco-sustainable source of natural products for pest control.
Collapse
Affiliation(s)
- Giuseppe Rotundo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy.
| | - Gianluca Paventi
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, via de Sanctis, 86100, Campobasso, Italy.
| | - Antonia Barberio
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy
| | - Ivan Notardonato
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy
| | - Mario V Russo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy
| | - Giacinto S Germinara
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71100, Foggia, Italy
| |
Collapse
|
19
|
Araújo MC, Assis CRD, Silva KCC, Souza KS, Azevedo RS, Alves MHME, Silva LC, Silva VL, Adam ML, Carvalho Junior LB, Souza Bezerra R, Oliveira MBM. Characterization of brain acetylcholinesterase of bentonic fish Hoplosternum littorale: Perspectives of application in pesticides and metal ions biomonitoring. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:213-226. [PMID: 30408655 DOI: 10.1016/j.aquatox.2018.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Acetylcholinesterase (AChE; EC 3.1.1.7) is a serine hydrolase, whose main function is to modulate neurotransmission at cholinergic synapses. It is, therefore, the primary target of some pesticides and heavy metals. Its inhibition in aquatic organisms has been used as an indicator of the presence of these pollutants in water bodies. The present study aimed to characterize physicochemical and kinetic parameters of brain AChE in the benthic fish Hoplosternum littorale and to analyze the in vitro effects of pesticides (dichlorvos, diazinon, chlorpyrifos, parathion-methyl, temephos, carbaryl, carbofuran, aldicarb, diflubenzuron, novaluron and pyriproxyfen) and metal ions (As3+, Cd2+, Cu2+, Fe2+, Mn2+, Mg2+, K+, Pb2+, Hg2+, Zn2+) investigating the potential of this enzyme as environmental biomarker based on current regulations. Specific substrates and inhibitors have indicated AChE to be the predominant cholinesterase (ChE) in the brain of H. littorale. Peak activity was observed at pH 8.0 and 30 °C. The enzymatic activity is otherwise moderately thermostable (≈ 50% activity at 45 °C). The enzyme can reduce the activation energy of acetylthiocholine hydrolysis reaction to 8.34 kcal mol-1 while reaching a rate enhancement of 106. Among the pesticides under study, dichlorvos presented an IC50 value below the maximum concentrations allowed by legislation. This study presents the first report on the inhibition of brain AChE activity from Siluriformes by the pesticides novaluron and pyriproxyfen. Mercury ion also exerted a strong inhibitory effect on its enzymatic activity. The H. littorale enzyme thus has the potential to function as an in vitro biomarker for the presence of the pesticide dichlorvos as well as mercury in areas of mining and industrial discharge.
Collapse
Affiliation(s)
- Marlyete Chagas Araújo
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brasil; Laboratório de Biologia Molecular - BioMol, Departamento de Bioquímica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Caio Rodrigo Dias Assis
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brasil; Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos - OrganoMAR, Departamento de Oceanografia, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Kaline Catiely Campos Silva
- Departamento de Educação, Colegiado de Biologia, Universidade do Estado da Bahia - UNEB, Paulo Afonso, BA, Brazil
| | - Kelma Sirleide Souza
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Rafael Souto Azevedo
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | | | - Luciano Clemente Silva
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brasil; Laboratório de Fisiologia Comparada e Comportamento Animal - LabFCCA, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Valdir Luna Silva
- Laboratório de Fisiologia Comparada e Comportamento Animal - LabFCCA, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Mônica Lúcia Adam
- Centro Acadêmico de Vitória de Santo Antão - CAV, Universidade Federal de Pernambuco - UFPE, Vitória de Santo Antão, PE, Brazil
| | | | - Ranilson Souza Bezerra
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Maria Betânia Melo Oliveira
- Laboratório de Biologia Molecular - BioMol, Departamento de Bioquímica, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil.
| |
Collapse
|
20
|
Assis CRD, Linhares AG, Cabrera MP, Oliveira VM, Silva KCC, Marcuschi M, Maciel Carvalho EVM, Bezerra RS, Carvalho LB. Erythrocyte acetylcholinesterase as biomarker of pesticide exposure: new and forgotten insights. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18364-18376. [PMID: 29797194 DOI: 10.1007/s11356-018-2303-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Acetylcholinesterase (AChE) acts on the hydrolysis of acetylcholine, rapidly removing this neurotransmitter at cholinergic synapses and neuromuscular junctions as well as in neuronal growth and differentiation, modulation of cell adhesion ("electrotactins") and aryl-acylamidase activity (AAA). This enzyme is also found in erythrocyte, as 160 kDa dimer that anchors to the plasma membrane via glycophosphatidylinositol. The function of this enzyme in erythrocytes has not yet been elucidated; however, it is suspected to participate in cell-to-cell interactions. Here, a review on erythrocyte AChE characteristics and use as biomarker for organophosphorus and carbamate insecticides is presented since it is the first specific target/barrier of the action of these pesticides, besides plasma butyrylcholinesterase (BChE). However, some past and current methods have disadvantages: (a) not discriminating the activities of AChE and BChE; (b) low accuracy due to interference of hemoglobin in whole blood samples. On the other hand, extraction methods of hemoglobin-free erythrocyte AChE allows: (a) the freezing and transporting of samples; (b) samples free of colorimetric interference; (c) data from only erythrocyte AChE activity; (d) erythrocyte AChE specific activity presents higher correlation with the central nervous system AChE than other peripheral ChEs; (e) slow spontaneous regeneration against anti-ChEs agents of AChE in comparison to BChE, thus increasing the chances of detecting such compounds following longer interval after exposure. As monitoring perspectives, hemoglobin-free methodologies may be promising alternatives to assess the degree of exposure since they are not influenced by this interfering agent.
Collapse
Affiliation(s)
- Caio R D Assis
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
| | - Amanda G Linhares
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Mariana P Cabrera
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Vagne M Oliveira
- Laboratório de Tecnologia de Produtos Bioativos, Departamento de Morfologia e Fisiologia Animal, DMFA, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Kaline C C Silva
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Universidade Estadual da Bahia, Paulo Afonso, Bahia, Brazil
| | - Marina Marcuschi
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Elba V M Maciel Carvalho
- Laboratório de Glicoproteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ranilson S Bezerra
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Luiz B Carvalho
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| |
Collapse
|
21
|
Pope CN, Brimijoin S. Cholinesterases and the fine line between poison and remedy. Biochem Pharmacol 2018; 153:205-216. [PMID: 29409903 PMCID: PMC5959757 DOI: 10.1016/j.bcp.2018.01.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) are related enzymes found across the animal kingdom. The critical role of acetylcholinesterase in neurotransmission has been known for almost a century, but a physiological role for butyrylcholinesterase is just now emerging. The cholinesterases have been deliberately targeted for both therapy and toxicity, with cholinesterase inhibitors being used in the clinic for a variety of disorders and conversely for their toxic potential as pesticides and chemical weapons. Non-catalytic functions of the cholinesterases (ChEs) participate in both neurodevelopment and disease. Manipulating either the catalytic activities or the structure of these enzymes can potentially shift the balance between beneficial and adverse effect in a wide number of physiological processes.
Collapse
Affiliation(s)
- Carey N Pope
- Department of Physiological Sciences, Interdisciplinary Toxicology Program, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
22
|
Hagstrom D, Zhang S, Ho A, Tsai ES, Radić Z, Jahromi A, Kaj KJ, He Y, Taylor P, Collins EMS. Planarian cholinesterase: molecular and functional characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity. Arch Toxicol 2017; 92:1161-1176. [PMID: 29167930 DOI: 10.1007/s00204-017-2130-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
The asexual freshwater planarian Dugesia japonica has emerged as a medium-throughput alternative animal model for neurotoxicology. We have previously shown that D. japonica are sensitive to organophosphorus pesticides (OPs) and characterized the in vitro inhibition profile of planarian cholinesterase (DjChE) activity using irreversible and reversible inhibitors. We found that DjChE has intermediate features of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Here, we identify two candidate genes (Djche1 and Djche2) responsible for DjChE activity. Sequence alignment and structural homology modeling with representative vertebrate AChE and BChE sequences confirmed our structural predictions, and show that both DjChE enzymes have intermediate sized catalytic gorges and disrupted peripheral binding sites. Djche1 and Djche2 were both expressed in the planarian nervous system, as anticipated from previous activity staining, but with distinct expression profiles. To dissect how DjChE inhibition affects planarian behavior, we acutely inhibited DjChE activity by exposing animals to either an OP (diazinon) or carbamate (physostigmine) at 1 µM for 4 days. Both inhibitors delayed the reaction of planarians to heat stress. Simultaneous knockdown of both Djche genes by RNAi similarly resulted in a delayed heat stress response. Furthermore, chemical inhibition of DjChE activity increased the worms' ability to adhere to a substrate. However, increased substrate adhesion was not observed in Djche1/Djche2 (RNAi) animals or in inhibitor-treated day 11 regenerates, suggesting this phenotype may be modulated by other mechanisms besides ChE inhibition. Together, our study characterizes DjChE expression and function, providing the basis for future studies in this system to dissect alternative mechanisms of OP toxicity.
Collapse
Affiliation(s)
- Danielle Hagstrom
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Siqi Zhang
- Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alicia Ho
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Eileen S Tsai
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zoran Radić
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Aryo Jahromi
- Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kelson J Kaj
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yingtian He
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Eva-Maria S Collins
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA. .,Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA. .,Biology Department, Swarthmore College, Swarthmore, PA, 19081, USA.
| |
Collapse
|
23
|
Enzymatic degradation of organophosphorus insecticides decreases toxicity in planarians and enhances survival. Sci Rep 2017; 7:15194. [PMID: 29123147 PMCID: PMC5680213 DOI: 10.1038/s41598-017-15209-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/24/2017] [Indexed: 11/08/2022] Open
Abstract
Organophosphorus insecticides (OPs) are toxic compounds used for agricultural purposes and responsible for severe types of contamination worldwide. OPs may also induce chronic deleterious effects and developmental disruption. Finding remediation strategies is a major concern to diminish their impact on environment and human health. Enzymes have emerged as a promising eco-friendly route for decontaminating OPs. The enzyme SsoPox from the archaea Sulfolobus solfataricus has been particularly studied, considering both its tremendous stability and phosphotriesterase activity. However, the toxicity of the degradation products generated through enzyme hydrolysis has been poorly investigated. To address both neurotoxicity and developmental perturbation, freshwater planarians from Platyhelminthes were considered to evaluate the impact of OP and degradation product exposure. Planarians have a large proportion of stem cells that give them an unconventional capacity for regeneration. OPs were found to be highly toxic to planarians and enzyme decontamination drastically enhanced survival rate. Although not completely innocuous, the degradation products were found to be less toxic than insecticides and reduced poisoning effects by increasing NOEC values by up to eight-fold. SsoPox also limited detrimental consequences on planarian mobility and enabled them to recover a non-exposed type regeneration process suggesting that enzymatic decontamination is a promising alternative to bioremediation.
Collapse
|
24
|
Botić T, Defant A, Zanini P, Žužek MC, Frangež R, Janussen D, Kersken D, Knez Ž, Mancini I, Sepčić K. Discorhabdin alkaloids from Antarctic Latrunculia spp. sponges as a new class of cholinesterase inhibitors. Eur J Med Chem 2017; 136:294-304. [PMID: 28505534 DOI: 10.1016/j.ejmech.2017.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 11/19/2022]
Abstract
The brominated pyrroloiminoquinone alkaloids discorhabdins B, L and G and 3-dihydro-7,8- dehydrodiscorhabdin C, isolated from methanol extracts of two specimens of Latrunculia sp. sponges collected near the Antarctic Peninsula, are here demonstrated for the first time to be reversible competitive inhibitors of cholinesterases. They showed Ki for electric eel acetylcholinesterase of 1.6-15.0 μM, for recombinant human acetylcholinesterase of 22.8-98.0 μM, and for horse serum butyrylcholinesterase of 5.0-76.0 μM. These values are promising when compared to the current cholinesterase inhibitors used for treatment of patients with Alzheimer's disease, to counteract the acetylcholine deficiency in the brain. Good correlation was obtained between IC50 data and results by molecular docking calculation on the binding interactions within the acetylcholinesterase active site, which also indicated the moieties in discorhabdin structures involved. To avoid unwanted peripheral side effects that can appear in patients using some acetylcholinesterase inhibitors, electrophysiological experiments were carried out on one of the most active of these compounds, discorhabdin G, which confirmed that it had no detectable undesirable effects on neuromuscular transmission and skeletal muscle function. These findings are promising for development of cholinesterase inhibitors based on the scaffold of discorhabdins, as potential new agents for treatment of patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Tanja Botić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Andrea Defant
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, via Sommarive, 14, I-38123 Povo-Trento, Italy
| | - Pietro Zanini
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, via Sommarive, 14, I-38123 Povo-Trento, Italy
| | - Monika Cecilija Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Slovenia
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Slovenia
| | - Dorte Janussen
- Marine Zoology Department, Senckenberg Research Institute and Nature Museum, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - Daniel Kersken
- Marine Zoology Department, Senckenberg Research Institute and Nature Museum, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Ines Mancini
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, via Sommarive, 14, I-38123 Povo-Trento, Italy.
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
25
|
Chatonnet A, Lenfant N, Marchot P, Selkirk ME. Natural genomic amplification of cholinesterase genes in animals. J Neurochem 2017; 142 Suppl 2:73-81. [PMID: 28382676 DOI: 10.1111/jnc.13990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/31/2022]
Abstract
Tight control of the concentration of acetylcholine at cholinergic synapses requires precise regulation of the number and state of the acetylcholine receptors, and of the synthesis and degradation of the neurotransmitter. In particular, the cholinesterase activity has to be controlled exquisitely. In the genome of the first experimental models used (man, mouse, zebrafish and drosophila), there are only one or two genes coding for cholinesterases, whereas there are more genes for their closest relatives the carboxylesterases. Natural amplification of cholinesterase genes was first found to occur in some cancer cells and in insect species subjected to evolutionary pressure by insecticides. Analysis of the complete genome sequences of numerous representatives of the various metazoan phyla show that moderate amplification of cholinesterase genes is not uncommon in molluscs, echinoderms, hemichordates, prochordates or lepidosauria. Amplification of acetylcholinesterase genes is also a feature of parasitic nematodes or ticks. In these parasites, over-production of cholinesterase-like proteins in secreted products and the saliva are presumed to have effector roles related to host infection. These amplification events raise questions about the role of the amplified gene products, and the adaptation processes necessary to preserve efficient cholinergic transmission. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Arnaud Chatonnet
- Dynamique Musculaire et Métabolisme, INRA, Université Montpellier, Place Viala, Montpellier France
| | - Nicolas Lenfant
- Dynamique Musculaire et Métabolisme, INRA, Université Montpellier, Place Viala, Montpellier France.,Aix-Marseille Université / Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Marseille, France
| | - Pascale Marchot
- Aix-Marseille Université / Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Marseille, France
| | - Murray E Selkirk
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
26
|
Hagstrom D, Hirokawa H, Zhang L, Radic Z, Taylor P, Collins EMS. Planarian cholinesterase: in vitro characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity and reactivation. Arch Toxicol 2016; 91:2837-2847. [PMID: 27990564 DOI: 10.1007/s00204-016-1908-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022]
Abstract
The freshwater planarian Dugesia japonica has recently emerged as an animal model for developmental neurotoxicology and found to be sensitive to organophosphorus (OP) pesticides. While previous activity staining of D. japonica, which possess a discrete cholinergic nervous system, has shown acylthiocholine catalysis, it is unknown whether this is accomplished through an acetylcholinesterase (AChE), butyrylcholinesterase (BChE), or a hybrid esterase and how OP exposure affects esterase activity. Here, we show that the majority of D. japonica cholinesterase (DjChE) activity departs from conventional AChE and BChE classifications. Inhibition by classic protonable amine and quaternary reversible inhibitors (ethopropazine, donepezil, tacrine, edrophonium, BW284c51, propidium) shows that DjChE is far less sensitive to these inhibitors than human AChE, suggesting discrete differences in active center and peripheral site recognition and structures. Additionally, we find that different OPs (chlorpyrifos oxon, paraoxon, dichlorvos, diazinon oxon, malaoxon) and carbamylating agents (carbaryl, neostigmine, physostigmine, pyridostigmine) differentially inhibit DjChE activity in vitro. DjChE was most sensitive to diazinon oxon and neostigmine and least sensitive to malaoxon and carbaryl. Diazinon oxon-inhibited DjChE could be reactivated by the quaternary oxime, pralidoxime (2-PAM), and the zwitterionic oxime, RS194B, with RS194B being significantly more potent. Sodium fluoride (NaF) reactivates OP-DjChE faster than 2-PAM. As one of the most ancient true cholinesterases, DjChE provides insight into the evolution of a hybrid enzyme before the separation into distinct AChE and BChE enzymes found in higher vertebrates. The sensitivity of DjChE to OPs and capacity for reactivation validate the use of planarians for OP toxicology studies.
Collapse
Affiliation(s)
- Danielle Hagstrom
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hideto Hirokawa
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Limin Zhang
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zoran Radic
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Eva-Maria S Collins
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA. .,Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
27
|
Olsen EK, Hansen E, W K Moodie L, Isaksson J, Sepčić K, Cergolj M, Svenson J, Andersen JH. Marine AChE inhibitors isolated from Geodia barretti: natural compounds and their synthetic analogs. Org Biomol Chem 2016; 14:1629-40. [PMID: 26695619 DOI: 10.1039/c5ob02416a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Barettin, 8,9-dihydrobarettin, bromoconicamin and a novel brominated marine indole were isolated from the boreal sponge Geodia barretti collected off the Norwegian coast. The compounds were evaluated as inhibitors of electric eel acetylcholinesterase. Barettin and 8,9-dihydrobarettin displayed significant inhibition of the enzyme, with inhibition constants (Ki) of 29 and 19 μM respectively towards acetylcholinesterase via a reversible noncompetitive mechanism. These activities are comparable to those of several other natural acetylcholinesterase inhibitors of marine origin. Bromoconicamin was less potent against acetylcholinesterase, and the novel compound was inactive. Based on the inhibitory activity, a library of 22 simplified synthetic analogs was designed and prepared to probe the role of the brominated indole, common to all the isolated compounds. From the structure-activity investigation it was shown that the brominated indole motif is not sufficient to generate a high acetylcholinesterase inhibitory activity, even when combined with natural cationic ligands for the acetylcholinesterase active site. The four natural compounds were also analysed for their butyrylcholinesterase inhibitory activity in addition and shown to display comparable activities. The study illustrates how both barettin and 8,9-dihydrobarettin display additional bioactivities which may help to explain their biological role in the producing organism. The findings also provide new insights into the structure-activity relationship of both natural and synthetic acetylcholinesterase inhibitors.
Collapse
Affiliation(s)
- Elisabeth K Olsen
- MabCent-SFI, UiT The Arctic University of Norway, Breivika, N-9037, Tromsø, Norway
| | - Espen Hansen
- Marbio, UiT The Arctic University of Norway, Breivika, N-9037, Tromsø, Norway.
| | - Lindon W K Moodie
- Department of Chemistry, University of Umeå, SE-901 87, Umeå, Sweden
| | - Johan Isaksson
- Department of Chemistry, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marija Cergolj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia and Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Johan Svenson
- Department of Chemistry, Materials and Surfaces SP Technical Research Institute of Sweden, Box 857, SE-501 15 Borås, Sweden.
| | - Jeanette H Andersen
- Marbio, UiT The Arctic University of Norway, Breivika, N-9037, Tromsø, Norway.
| |
Collapse
|
28
|
Araújo MCD, Assis CRD, Silva LC, Machado DC, Silva KCC, Lima AVA, Carvalho LB, Bezerra RDS, Oliveira MBMD. Brain acetylcholinesterase of jaguar cichlid (Parachromis managuensis): From physicochemical and kinetic properties to its potential as biomarker of pesticides and metal ions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:182-189. [PMID: 27288599 DOI: 10.1016/j.aquatox.2016.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
This contribution aimed to characterize physicochemical and kinetic parameters of the brain cholinesterases (ChEs) from Parachromis managuensis and investigate the in vitro effects of pesticides and metal ions on its activity intending to propose as biomarker. This species is suitable for this investigation because (1) it was recently introduced in Brazil becoming invasive (no restrictions on capture) and (2) occupies the top of the food chain (being subject to bioaccumulation). The enzyme extract was exposed to 10 metal ions (Al(3+), Ba(2+), Cd(2+), Cu(2+), Hg(2+), Mg(2+), Mn(2+), Pb(2+), Fe(2+) and Zn(2+)) and ChEs selective inhibitors (BW284c51, Iso-OMPA, neostigmine and serine). The extract was also incubated with organophosphate (dichlorvos) and carbamate pesticides (carbaryl and carbofuran). Inhibition parameters (IC20, IC50 and ki) were determined. Selective inhibitors and kinetic parameters confirmed acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) -like as responsible for the ChE activities, most AChE. The IC50 values for pesticides were: 1.68μM (dichlorvos); 4.35μM (carbaryl) and 0.28μM (carbofuran). Most of the analyzed ions did not show significant effect at 1mM (p=0.05), whereas the following ions inhibited the enzyme activity in the order: Hg(2+)>Cu(2+)>Cd(2+)>Zn(2+). Mercury ion strongly inhibited the enzyme activity (IC20=0.7μM). The results about allow to conclude that P. managuensis brain AChE is a potential biomarker for heavy metals and pesticides under study, mainly for the carbamate carbofuran once it was capable to detect 6-fold lower levels than the limit concentration internationally recommended.
Collapse
Affiliation(s)
| | | | - Luciano Clemente Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, Brazil; Laboratório de Fisiologia Comparada e Comportamental, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Dijanah Cota Machado
- Laboratório de Fisiologia Comparada e Comportamental, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Luiz Bezerra Carvalho
- Laboratório de Imunopatologia Keizo Asami-LIKA, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | |
Collapse
|
29
|
Meng X, Li C, Xiu C, Zhang J, Li J, Huang L, Zhang Y, Liu Z. Identification and Biochemical Properties of Two New Acetylcholinesterases in the Pond Wolf Spider (Pardosa pseudoannulata). PLoS One 2016; 11:e0158011. [PMID: 27337188 PMCID: PMC4919072 DOI: 10.1371/journal.pone.0158011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/08/2016] [Indexed: 01/17/2023] Open
Abstract
Acetylcholinesterase (AChE), an important neurotransmitter hydrolase in both invertebrates and vertebrates, is targeted by organophosphorus and carbamate insecticides. In this study, two new AChEs were identified in the pond wolf spider Pardosa pseudoannulata, an important predatory natural enemy of several insect pests. In total, four AChEs were found in P. pseudoannulata (including two AChEs previously identified in our laboratory). The new putative AChEs PpAChE3 and PpAChE4 contain most of the common features of the AChE family, including cysteine residues, choline binding sites, the conserved sequence 'FGESAG' and conserved aromatic residues but with a catalytic triad of 'SDH' rather than 'SEH'. Recombinant enzymes expressed in Sf9 cells showed significant differences in biochemical properties compared to other AChEs, such as the optimal pH, substrate specificity, and catalytic efficiency. Among three test substrates, PpAChE1, PpAChE3 and PpAChE4 showed the highest catalytic efficiency (Vmax/KM) for ATC (acetylthiocholine iodide), with PpAChE3 exhibiting a clear preference for ATC based on the VmaxATC/VmaxBTC ratio. In addition, the four PpAChEs were more sensitive to the AChE-specific inhibitor BW284C51, which acts against ATC hydrolysis, than to the BChE-specific inhibitor ISO-OMPA, which acts against BTC hydrolysis, with at least a 8.5-fold difference in IC50 values for each PpAChE. PpAChE3, PpAChE4, and PpAChE1 were more sensitive than PpAChE2 to the tested Carb insecticides, and PpAChE3 was more sensitive than the other three AChEs to the tested OP insecticides. Based on all the results, two new functional AChEs were identified from P. pseudoannulata. The differences in AChE sequence between this spider and insects enrich our knowledge of invertebrate AChE diversity, and our findings will be helpful for understanding the selectivity of insecticides between insects and natural enemy spiders.
Collapse
Affiliation(s)
- Xiangkun Meng
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Chunrui Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Chunli Xiu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jianhua Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jingjing Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Lixin Huang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
- * E-mail: (ZWL); (YXZ)
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
- * E-mail: (ZWL); (YXZ)
| |
Collapse
|
30
|
Moodie LWK, Žužek MC, Frangež R, Andersen JH, Hansen E, Olsen EK, Cergolj M, Sepčić K, Hansen KØ, Svenson J. Synthetic analogs of stryphnusin isolated from the marine sponge Stryphnus fortis inhibit acetylcholinesterase with no effect on muscle function or neuromuscular transmission. Org Biomol Chem 2016; 14:11220-11229. [DOI: 10.1039/c6ob02120d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The current study describes the AChE inhibitory effect of natural marine neuroactive compounds.
Collapse
Affiliation(s)
| | - Monika C. Žužek
- Institute of Preclinical Sciences
- Veterinary faculty
- University of Ljubljana
- Ljubljana
- Slovenia
| | - Robert Frangež
- Institute of Preclinical Sciences
- Veterinary faculty
- University of Ljubljana
- Ljubljana
- Slovenia
| | | | - Espen Hansen
- Marbio
- UiT The Arctic University of Norway
- Tromsø
- Norway
| | | | - Marija Cergolj
- Department of Biology
- Biotechnical Faculty
- University of Ljubljana
- Ljubljana
- Slovenia
| | - Kristina Sepčić
- Department of Biology
- Biotechnical Faculty
- University of Ljubljana
- Ljubljana
- Slovenia
| | | | - Johan Svenson
- Department of Chemistry
- UiT The Arctic University of Norway
- Tromsø
- Norway
- Department of Chemistry
| |
Collapse
|
31
|
Hepatocyte Growth Factor and Satellite Cell Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:1-25. [PMID: 27003394 DOI: 10.1007/978-3-319-27511-6_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Satellite cells are the "currency" for the muscle growth that is critical to meat production in many species, as well as to phenotypic distinctions in development at the level of species or taxa, and for human muscle growth, function and regeneration. Careful research on the activation and behaviour of satellite cells, the stem cells in skeletal muscle, including cross-species comparisons, has potential to reveal the mechanisms underlying pathological conditions in animals and humans, and to anticipate implications of development, evolution and environmental change on muscle function and animal performance.
Collapse
|
32
|
Berne S, Kalauz M, Lapat M, Savin L, Janussen D, Kersken D, Ambrožič Avguštin J, Zemljič Jokhadar Š, Jaklič D, Gunde-Cimerman N, Lunder M, Roškar I, Eleršek T, Turk T, Sepčić K. Screening of the Antarctic marine sponges (Porifera) as a source of bioactive compounds. Polar Biol 2015. [DOI: 10.1007/s00300-015-1835-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Lü FG, Fu KY, Li Q, Guo WC, Ahmat T, Li GQ. Identification of carboxylesterase genes and their expression profiles in the Colorado potato beetle Leptinotarsa decemlineata treated with fipronil and cyhalothrin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 122:86-95. [PMID: 26071812 DOI: 10.1016/j.pestbp.2014.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/12/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Based on the Leptinotarsa decemlineata transcriptome dataset and the GenBank sequences, 70 novel carboxylesterases and 2 acetylcholinesterases were found. The 72 members belong to a multifunctional carboxylesterase/cholinesterase superfamily (CCE). A phylogenetic tree including the 72 LdCCEs and the CCEs from Tribolium castaneum, Drosophila melanogaster and Apis mellifera revealed that all CCEs fell into three main phylogenetic groups: dietary/detoxification, hormone/semiochemical processing, and neurodevelopmental classes. Numbers of L. decemlineata CCEs in the three classes were 52, 12 and 8, respectively. The dietary/detoxification class includes two clades: coleopteran xenobiotic metabolizing and α-esterase type CCEs. CCEs in the two clades have independently expanded in L. decemlineata. The hormone/semiochemical processing class has three clades: integument CCEs, β- and pheromone CCEs and juvenile hormone CCEs. Integument CCEs in L. decemlineata have also expanded. The neurodevelopmental CCEs are implicated the most ancient class, containing acetylcholinesterase, neuroligin, neurotactin, glutactin, gliotactin and others. Among the 70 novel CCE genes, KM220566, KM220530, KM220576, KM220527 and KM220541 were fipronil-inducible, and KM220578, KM220566, KM220542, KM220564, KM220561, KM220554, KM220527, KM220538 and KM220541 were cyhalothrin-inducible. They were the candidates involving in insecticide detoxification. Moreover, our results also provided a platform to understand the functions and evolution of L. decemlineata CCE genes.
Collapse
Affiliation(s)
- Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Tursun Ahmat
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
34
|
Cha DJ, Lee SH. Evolutionary origin and status of two insect acetylcholinesterases and their structural conservation and differentiation. Evol Dev 2015; 17:109-19. [DOI: 10.1111/ede.12111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deok Jea Cha
- Department of Agricultural Biotechnology; Seoul National University; Gwanakno; Gwanakgu Seoul 151-742 Republic of Korea
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology; Seoul National University; Gwanakno; Gwanakgu Seoul 151-742 Republic of Korea
- Research Institute for Agriculture and Life Science; Seoul National University; Seoul 151-742 Republic of Korea
| |
Collapse
|
35
|
Pezzementi L, Geiss C, King W, Lenfant N, Chatonnet A. Molecular characterization of an acetylcholinesterase from the hemichordate Saccoglossus kowalevskii. Comp Biochem Physiol B Biochem Mol Biol 2014; 181:50-8. [PMID: 25475711 DOI: 10.1016/j.cbpb.2014.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/21/2014] [Accepted: 11/23/2014] [Indexed: 01/12/2023]
Abstract
Our goal is to understand the evolution of the structure and function of cholinesterases (ChEs) in the deuterostome lineage and in particular to understand the role of paralogous enzymes such as the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) of the vertebrates. We have, in the past, characterized ChEs in two acraniate deuterostomes: amphioxus (a cephalochordate) and Ciona intestinalis (a urochordate). Here we present results on an AChE from a basal deuterostome, a model hemichordate, the acorn worm Saccoglossus kowalevskii. Of the eight genes coding for putative ChE-like proteins possessing Trp84, a characteristic of the choline-binding catalytic subsite of ChEs, we cloned a full length cDNA with a coding sequence typical of an acraniate AChE possessing a C-terminal exon coding for a typical T-peptide. We then used in vitro expression of the cDNA in COS-7 cells to characterize the AChE kinetically, pharmacologically, and biochemically. The cDNA codes for an AChE (AChE1), which is found in monomeric (G1), dimeric (G2), and tetrameric (G4) forms; and interacts with poly-L-proline, PRiMA, and ColQ, characteristic of an AChE possessing a T-peptide. The expression of the AChE is temperature dependent, with greater expression at 30 °C. We discuss the implications of these data for the evolution of the ChEs in the deuterostomes.
Collapse
Affiliation(s)
- Leo Pezzementi
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA.
| | - Cybil Geiss
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - William King
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Nicolas Lenfant
- INRA Dynamique Musculaire et Métabolisme, 34000 Montpellier, France; Université de Montpellier, 34000 Montpellier, France
| | - Arnaud Chatonnet
- INRA Dynamique Musculaire et Métabolisme, 34000 Montpellier, France; Université de Montpellier, 34000 Montpellier, France
| |
Collapse
|
36
|
de Assis CRD, Linhares AG, Oliveira VM, França RCP, Santos JF, Marcuschi M, Carvalho EVMM, Bezerra RS, Carvalho LB. Characterization of catalytic efficiency parameters of brain cholinesterases in tropical fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1659-1668. [PMID: 24980148 DOI: 10.1007/s10695-014-9956-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
Brain cholinesterases from four fish (Arapaima gigas, Colossoma macropomum, Rachycentron canadum and Oreochromis niloticus) were characterized using specific substrates and selective inhibitors. Parameters of catalytic efficiency such as activation energy (AE), k(cat) and k(cat)/k(m) as well as rate enhancements produced by these enzymes were estimated by a method using crude extracts described here. Despite the BChE-like activity, specific substrate kinetic analysis pointed to the existence of only acetylcholinesterase (AChE) in brain of the species studied. Selective inhibition suggests that C. macropomum brain AChE presents atypical activity regarding its behavior in the presence of selective inhibitors. AE data showed that the enzymes increased the rate of reactions up to 10(12) in relation to the uncatalyzed reactions. Zymograms showed the presence of AChE isoforms with molecular weights ranging from 202 to 299 kDa. Values of k(cat) and k(cat)/k(m) were similar to those found in the literature.
Collapse
Affiliation(s)
- Caio Rodrigo Dias de Assis
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica and Laboratório de Imunopatologia Keizo Asami - LIKA, Universidade Federal de Pernambuco, Campus Universitário, Recife, PE, 50670-901, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tracking the Origin and Divergence of Cholinesterases and Neuroligins: The Evolution of Synaptic Proteins. J Mol Neurosci 2014; 53:362-9. [DOI: 10.1007/s12031-013-0194-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
|
38
|
Zein MA, McElmurry SP, Kashian DR, Savolainen PT, Pitts DK. Optical bioassay for measuring sublethal toxicity of insecticides in Daphnia pulex. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:144-151. [PMID: 24115287 DOI: 10.1002/etc.2404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/19/2013] [Indexed: 06/02/2023]
Abstract
Many emerging contaminants tend to be biologically active at very low concentrations, occur in water as part of complex mixtures, and impact biota in ways that are not detected using traditional toxicity tests (e.g., median lethal concentration). To evaluate emerging contaminants, the authors developed a method for detecting sublethal behavioral effects by quantifying the swimming behavior of Daphnia pulex, a model organism for studying aquatic toxicity. This optical tracking technique is capable of measuring many swimming parameters, 2 of which-cumulative distance and angular change-are presented. To validate this technique, 2 prototypical compounds that exhibit different modes of action as well as corresponding insecticides that are commonly found in surface waters were investigated. The acetylcholinesterase (AChE) inhibitor physostigmine was used as the prototypical compound for the large number of AChE inhibitor insecticides (e.g., chlorpyrifos). Nicotine was used as the prototypical compound for neonicotinoid insecticides (e.g., imidacloprid). Results demonstrate that this assay is capable of detecting sublethal behavioral effects that are concentration-dependent and that insecticides with the same mode of action yield similar results. The method can easily be scaled up to serve as a high-throughput screening tool to detect sublethal toxic effects of a variety of chemicals. This method is likely to aid in enhancing the current understanding of emerging contaminants and to serve as a novel water-quality screening tool.
Collapse
Affiliation(s)
- Maya A Zein
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|
39
|
Influence of the cholinergic system on the immune response of teleost fishes: potential model in biomedical research. Clin Dev Immunol 2013; 2013:536534. [PMID: 24324508 PMCID: PMC3845846 DOI: 10.1155/2013/536534] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 02/01/2023]
Abstract
Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh) on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system); however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals.
Collapse
|
40
|
Gambardella C, Aluigi MG, Ferrando S, Gallus L, Ramoino P, Gatti AM, Rottigni M, Falugi C. Developmental abnormalities and changes in cholinesterase activity in sea urchin embryos and larvae from sperm exposed to engineered nanoparticles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 130-131:77-85. [PMID: 23376697 DOI: 10.1016/j.aquatox.2012.12.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 12/27/2012] [Accepted: 12/29/2012] [Indexed: 05/02/2023]
Abstract
The objective of this study is to examine the toxicity of engineered nanoparticles (NPs) that are dispersed in sea water by using an in vivo model. Because many products of nanotechnology contain NPs and are commonly used and well-established in the market, the accidental release of NPs into the air and water is quite possible. Indeed, at the end of their life cycle, some NPs are inevitably released into waste water and can reach marine ecosystem and affect the organisms there. Although there are few data on the presence of NPs in the marine environment, our awareness of their potential impact on environmental and organismal health is growing. Shallow-water benthonic organisms such as sea urchins provide planktonic larvae as a trophic base for finfish juveniles and are exposed to water from estuaries and precipitation. Such organisms can therefore be directly affected by NPs that are dispersed into those media. We evaluated the effects of exposure to different concentrations of nanosilver, titanium oxide and cobalt NPs on the sperm of the sea urchin Paracentrotus lividus by analyzing the functionality and the morphology and biochemistry of the first developmental stages of the sea urchin. Sperm were exposed to sea water containing suspensions of NPs ranging from 0.0001 mg/L to 1 mg/L. Fertilization ability was not affected, but developmental anomalies were identified in embryos from the gastrula to pluteus stages, including morphological alterations of the skeletal rods. In addition, the enzymatic activity (cholinesterase, ChE) of the larvae was measured. Acetylcholinesterase (AChE) and propionylcholinesterase activity (PrChE) was affected in all of the exposed samples. The results did not vary consistently with the concentration of NP, but controls were significantly different from exposed samples. Exposure of sea urchin to these NPs may cause neurotoxic damage, and the altered ChE activity may be involved in skeletogenic aberrations. In conclusion, the sea urchin represents a suitable and sensitive model for testing the toxicity and effects of engineered NPs that are dispersed in sea water.
Collapse
Affiliation(s)
- Chiara Gambardella
- Dipartimento per lo Studio del Territorio, dell'Ambiente e della Vita (DISTAV), Università di Genova, Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Silva KCC, Assis CRD, Oliveira VM, Carvalho LB, Bezerra RS. Kinetic and physicochemical properties of brain acetylcholinesterase from the peacock bass (Cichla ocellaris) and in vitro effect of pesticides and metal ions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:191-197. [PMID: 23220411 DOI: 10.1016/j.aquatox.2012.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/02/2012] [Accepted: 11/02/2012] [Indexed: 06/01/2023]
Abstract
Brain acetylcholinesterase (AChE; EC 3.1.1.7) from peacock bass (Cichla ocellaris) was characterized and the effect of organophosphorus and carbamate pesticides as well as ions and heavy metals was evaluated. The kinetic parameters K(m) and V(max) were determined as 0.769 mM and 0.189 U/mg of protein respectively. Optimal pH and temperature were found to be 8.0 and 45°C. The enzyme retained approximately half of the activity after incubation at 50°C for 30 min. Total cholinesterase activity on brain of this species can be ascribed to AChE according to selective inhibitors analysis (neostigmine, eserine and BW284c5 reduced its activity whereas no effect was noticed for Iso-OMPA). Seven pesticides (five organophosphates: dichlorvos, diazinon, chlorpyrifos, temephos, tetraethyl pyrophosphate - TEPP and two carbamates: carbaryl and carbofuran) showed inhibitory effects on C. ocellaris AChE. However, the strongest effect was observed with carbofuran (IC(50)=0.21 μM and K(i)=2.57 × 10(-3) μM). The following ions (1 mM) showed to inhibit its activity (decrescent order): Hg(2+)>As(3+)>Cu(2+)>Zn(2+). EDTA(2-) did not affect enzyme activity. The present study provides assay conditions and data to suggest this enzyme as in vitro biomarker of organophosphorus and carbamate pesticides in routine environmental screening programs.
Collapse
|
42
|
Kim YH, Lee SH. Which acetylcholinesterase functions as the main catalytic enzyme in the Class Insecta? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:47-53. [PMID: 23168079 DOI: 10.1016/j.ibmb.2012.11.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 06/01/2023]
Abstract
Most insects possess two different acetylcholinesterases (AChEs) (i.e., AChE1 and AChE2; encoded by ace1 and ace2 genes, respectively). Between the two AChEs, AChE1 has been proposed as a major catalytic enzyme based on its higher expression level and frequently observed point mutations associated with insecticide resistance. To investigate the evolutionary distribution of AChE1 and AChE2, we determined which AChE had a central catalytic function in several insect species across 18 orders. The main catalytic activity in heads was determined by native polyacrylamide gel electrophoresis in conjunction with Western blotting using AChE1- and AChE2-specific antibodies. Of the 100 insect species examined, 67 species showed higher AChE1 activity; thus, AChE1 was considered as the main catalytic enzyme. In the remaining 33 species, ranging from Palaeoptera to Hymenoptera, however, AChE2 was predominantly expressed as the main catalytic enzyme. These findings challenge the common notion that AChE1 is the only main catalytic enzyme in insects with the exception of Cyclorrhapha, and further demonstrate that the specialization of AChE2 as the main enzyme or the replacement of AChE1 function with AChE2 were rather common events, having multiple independent origins during insect evolution. It was hypothesized that the generation of multiple AChE2 isoforms by alternative splicing allowed the loss of ace1 during the process of functional replacement of AChE1 with AChE2 in Cyclorrhapha. However, the presence of AChE2 as the main catalytic enzyme in higher social Hymenoptera provides a case for the functional replacement of AChE1 with AChE2 without the loss of ace1. The current study will provide valuable insights into the evolution of AChE: which AChE has been specialized as the main catalytic enzyme and to become the main target for insecticides in different insect species.
Collapse
Affiliation(s)
- Young Ho Kim
- Research Institute for Agriculture and Life Sciences, Seoul National University, 599 Gwanakno, Gwanakgu, Seoul 151-742, Republic of Korea
| | | |
Collapse
|
43
|
Assis CRD, Linhares AG, Oliveira VM, França RCP, Carvalho EVMM, Bezerra RS, de Carvalho LB. Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 441:141-150. [PMID: 23137979 DOI: 10.1016/j.scitotenv.2012.09.058] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/28/2012] [Accepted: 09/23/2012] [Indexed: 06/01/2023]
Abstract
Monitoring of pesticides based on acetylcholinesterase (AChE; EC 3.1.1.7) inhibition in vitro avoids interference of detoxification defenses and bioactivation of some of those compounds in non-target tissues. Moreover, environmental temperature, age and stress are able to affect specific enzyme activities when performing in vivo studies. Few comparative studies have investigated the inter-specific differences in AChE activity in fish. Screening studies allow choosing the suitable species as source of AChE to detect pesticides in a given situation. Brain AChE from the tropical fish: pirarucu (Arapaima gigas), cobia (Rachycentron canadum) and Nile tilapia (Oreochromis niloticus) were characterized and their activities were assayed in the presence of pesticides (the organophosphates: dichlorvos, diazinon, chlorpyrifos, temephos, tetraethyl pyrophosphate- TEPP and the carbamates: carbaryl and carbofuran). Inhibition parameters (IC₅₀ and Ki) for each species were found and compared with commercial AChE from electric eel (Electrophorus electricus). Optimal pH and temperature were found to be 8.0 and 35-45 °C, respectively. A. gigas AChE retained 81% of the activity after incubation at 50 °C for 30 min. The electric eel enzyme was more sensitive to the compounds (mainly carbofuran, IC₅₀ of 5 nM), excepting the one from A. gigas (IC₅₀ of 9 nM) under TEPP inhibition. These results show comparable sensitivity between purified and non-purified enzymes suggesting them as biomarkers for organophosphorus and carbamate detection in routine environmental and food monitoring programs for pesticides.
Collapse
Affiliation(s)
- Caio Rodrigo Dias Assis
- Laboratório de Imunopatologia Keizo Asami-LIKA and Laboratório de Enzimologia-LABENZ, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife-PE, Brazil
| | | | | | | | | | | | | |
Collapse
|
44
|
Kim YH, Cha DJ, Jung JW, Kwon HW, Lee SH. Molecular and kinetic properties of two acetylcholinesterases from the western honey bee, Apis mellifera. PLoS One 2012; 7:e48838. [PMID: 23144990 PMCID: PMC3492254 DOI: 10.1371/journal.pone.0048838] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/01/2012] [Indexed: 01/22/2023] Open
Abstract
We investigated the molecular and kinetic properties of two acetylcholinesterases (AmAChE1 and AmAChE2) from the Western honey bee, Apis mellifera. Western blot analysis revealed that AmAChE2 has most of catalytic activity rather than AmAChE1, further suggesting that AmAChE2 is responsible for synaptic transmission in A. mellifera, in contrast to most other insects. AmAChE2 was predominately expressed in the ganglia and head containing the central nervous system (CNS), while AmAChE1 was abundantly observed not only in the CNS but also in the peripheral nervous system/non-neuronal tissues. Both AmAChEs exist as homodimers; the monomers are covalently connected via a disulfide bond under native conditions. However, AmAChE2 was associated with the cell membrane via the glycophosphatidylinositol anchor, while AmAChE1 was present as a soluble form. The two AmAChEs were functionally expressed with a baculovirus system. Kinetic analysis revealed that AmAChE2 has approximately 2,500-fold greater catalytic efficiency toward acetylthiocholine and butyrylthiocholine than AmAChE1, supporting the synaptic function of AmAChE2. In addition, AmAChE2 likely serves as the main target of the organophosphate (OP) and carbamate (CB) insecticides as judged by the lower IC50 values against AmAChE2 than against AmAChE1. When OP and CB insecticides were pre-incubated with a mixture of AmAChE1 and AmAChE2, a significant reduction in the inhibition of AmAChE2 was observed, suggesting a protective role of AmAChE1 against xenobiotics. Taken together, based on their tissue distribution pattern, molecular and kinetic properties, AmAChE2 plays a major role in synaptic transmission, while AmAChE1 has non-neuronal functions, including chemical defense.
Collapse
Affiliation(s)
- Young Ho Kim
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Deok Jea Cha
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Je Won Jung
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Hyung Wook Kwon
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Si Hyeock Lee
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
45
|
Johnson G, Moore SW. Why has butyrylcholinesterase been retained? Structural and functional diversification in a duplicated gene. Neurochem Int 2012; 61:783-97. [PMID: 22750491 DOI: 10.1016/j.neuint.2012.06.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/18/2012] [Accepted: 06/22/2012] [Indexed: 02/07/2023]
Abstract
While acetylcholinesterase (EC 3.1.1.7) has a clearly defined role in neurotransmission, the functions of its sister enzyme butyrylcholinesterase (EC 3.1.1.8) are more obscure. Numerous mutations, many inactivating, are observed in the human butyrylcholinesterase gene, and the butyrylcholinesterase knockout mouse has an essentially normal phenotype, suggesting that the enzyme may be redundant. Yet the gene has survived for many millions of years since the duplication of an ancestral acetylcholinesterase early in vertebrate evolution. In this paper, we ask the questions: why has butyrylcholinesterase been retained, and why are inactivating mutations apparently tolerated? Butyrylcholinesterase has diverged both structurally and in terms of tissue and cellular expression patterns from acetylcholinesterase. Butyrylcholinesterase-like activity and enzymes have arisen a number of times in the animal kingdom, suggesting the usefulness of such enzymes. Analysis of the published literature suggests that butyrylcholinesterase has specific roles in detoxification as well as in neurotransmission, both in the brain, where it appears to control certain areas and functions, and in the neuromuscular junction, where its function appears to complement that of acetylcholinesterase. An analysis of the mutations in human butyrylcholinesterase and their relation to the enzyme's structure is shown. In conclusion, it appears that the structure of butyrylcholinesterase's catalytic apparatus is a compromise between the apparently conflicting selective demands of a more generalised detoxifier and the necessity for maintaining high catalytic efficiency. It is also possible that the tolerance of mutation in human butyrylcholinesterase is a consequence of the detoxification function. Butyrylcholinesterase appears to be a good example of a gene that has survived by subfunctionalisation.
Collapse
Affiliation(s)
- Glynis Johnson
- Division of Paediatric Surgery, Faculty of Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa.
| | | |
Collapse
|
46
|
Johnson G, Moore SW. The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:83-93. [DOI: 10.1016/j.cbd.2011.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/22/2011] [Accepted: 11/22/2011] [Indexed: 01/03/2023]
|
47
|
Falugi C, Aluigi MG, Chiantore MC, Privitera D, Ramoino P, Gatti MA, Fabrizi A, Pinsino A, Matranga V. Toxicity of metal oxide nanoparticles in immune cells of the sea urchin. MARINE ENVIRONMENTAL RESEARCH 2012; 76:114-121. [PMID: 22104963 DOI: 10.1016/j.marenvres.2011.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/30/2011] [Accepted: 10/19/2011] [Indexed: 05/31/2023]
Abstract
The potential toxicity of stannum dioxide (SnO₂), cerium dioxide (CeO₂) and iron oxide (Fe₃O₄) nanoparticles (NPs) in the marine environment was investigated using the sea urchin, Paracentrotus lividus, as an in vivo model. We found that 5 days after force-feeding of NPs in aqueous solutions, the three NPs presented different toxicity degrees, depending on the considered biomarkers. We examined: 1) the presence of the NPs in the coelomic fluid and the uptake into the immune cells (coelomocytes); 2) the cholinesterase activity and the expression of the stress-related proteins HSC70 and GRP78; 3) the morphological changes affecting cellular compartments, such as the endoplasmic reticulum (ER) and lysosomes. By Environmental Scanning Electron Microscope (ESEM) analysis, coupled with Energy Dispersive X-ray Spectroscopy (EDS) we found that NPs were uptaken inside coelomocytes. The cholinesterases activity, a well known marker of blood intoxication in vertebrates, was greatly reduced in specimens exposed to NPs. We found that levels of stress proteins were down-regulated, matching the observed ER and lysosomes morphological alterations. In conclusion, this is the first study which utilizes the sea urchin as a model organism for biomonitoring the biological impact of NPs and supports the efficacy of the selected biomarkers.
Collapse
Affiliation(s)
- C Falugi
- Dipartimento per lo Studio del Territorio e delle sue Risorse, Università di Genova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Falugi C, Aluigi MG. Early appearance and possible functions of non-neuromuscular cholinesterase activities. Front Mol Neurosci 2012; 5:54. [PMID: 22529777 PMCID: PMC3330712 DOI: 10.3389/fnmol.2012.00054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022] Open
Abstract
The biological function of the cholinesterase (ChE) enzymes has been studied since the beginning of the twentieth century. Acetylcholinesterase plays a key role in the modulation of neuromuscular impulse transmission in vertebrates, while in invertebrates pseudo cholinesterases are preeminently represented. During the last 40 years, awareness of the role of ChEs role in regulating non-neuromuscular cell-to-cell interactions has been increasing such as the ones occurring during gamete interaction and embryonic development. Moreover, ChE activities are responsible for other relevant biological events, including regulation of the balance between cell proliferation and cell death, as well as the modulation of cell adhesion and cell migration. Understanding the mechanisms of the regulation of these events can help us foresee the possible impact of neurotoxic substances on the environmental and human health.
Collapse
Affiliation(s)
- Carla Falugi
- Dipartimento per lo studio del Territorio e delle sue Risorse, Laboratory of Experimental Embryology, Università di Genova Genova, Italy
| | | |
Collapse
|
49
|
Seong KM, Kim YH, Kwon DH, Lee SH. Identification and characterization of three cholinesterases from the common bed bug, Cimex lectularius. INSECT MOLECULAR BIOLOGY 2012; 21:149-159. [PMID: 22136067 DOI: 10.1111/j.1365-2583.2011.01118.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We identified and characterized the full-length cDNA sequences encoding two acetylcholinesterases (ClAChE1 and ClAChE2) and a salivary gland-specific cholinesterase-like protein (ClSChE) from the common bed bug, Cimex lectularius. All three cholinesterase genes (Clac1, Clace2 and Clsce) have conserved motifs, including a catalytic triad, a choline-binding site and an acyl pocket. Phylogenetic analysis showed that ClAChE1 belongs to the insect AChE1 clade, whereas ClAChE2 belongs to the insect AChE2 clade. ClSChE was grouped into the clade containing all AChE1s, suggesting a paralogous relationship to ClAChE1. Transcription levels of Clace1 were higher than those of Clace2 in all tissues examined, including the central nervous system (CNS). In contrast, the Clsce transcript was not detected in the CNS but specifically found in the salivary gland at much higher levels (>3000-fold) than those of Clace1 and Clace2. Western blot analysis using anti-ClAChE antibodies, in conjunction with activity staining, revealed that ClAChE1 is more active than ClAChE2, whereas ClSChE has little enzyme activity. Three-dimensional structure modelling suggested that ClAChEs and ClSChE shared structural similarities, but had some differences in the residues forming the acyl pocket and oxyanion hole. The current findings should provide valuable insights into the evolution and functional diversification of insect cholinesterase.
Collapse
Affiliation(s)
- K M Seong
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
50
|
Pezzementi L, Krejci E, Chatonnet A, Selkirk ME, Matthews JB. A tetrameric acetylcholinesterase from the parasitic nematode Dictyocaulus viviparus associates with the vertebrate tail proteins PRiMA and ColQ. Mol Biochem Parasitol 2011; 181:40-8. [PMID: 22027027 DOI: 10.1016/j.molbiopara.2011.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/26/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
Abstract
Dictyocaulus viviparus causes a serious lung disease of cattle. Similar to other parasitic nematodes, D. viviparus possesses several acetylcholinesterase (AChE) genes, one of which encodes a putative neuromuscular AChE, which contains a tryptophan (W) amphiphilic tetramerization (WAT) domain at its C-terminus. In the current study, we describe the biochemical characterization of a recombinant version of this WAT domain-containing AChE. To assess if the WAT domain is biologically functional, we investigated the association of the recombinant enzyme with the vertebrate tail proteins, proline-rich membrane anchor (PRiMA) and collagen Q (ColQ), as well as the synthetic polypeptide poly-l-proline. The results indicate that the recombinant enzyme hydrolyzes acetylthiocholine preferentially and exhibits inhibition by excess substrate, a characteristic of AChEs but not butyrylcholinesterases (BChEs). The enzyme is inhibited by the AChE inhibitor, BW284c51, but not by the BChE inhibitors, ethopropazine or iso-OMPA. The enzyme is able to assemble into monomeric (G(1)), dimeric (G(2)), and tetrameric (G(4)) globular forms and can also associate with PRiMA and ColQ, which contain proline-rich attachment domains (PRADs). This interaction is likely to be mediated via WAT-PRAD interactions, as the enzyme also assembles into tetramers with the synthetic polypeptide poly-l-proline. These interactions are typical of AChE(T) subunits. This is the first demonstration of an AChE(T) from a parasitic nematode that can assemble into heterologous forms with vertebrate proteins that anchor the enzyme in cholinergic synapses. We discuss the implications of our results for this particular host/parasite system and for the evolution of AChE.
Collapse
Affiliation(s)
- Leo Pezzementi
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA.
| | | | | | | | | |
Collapse
|