1
|
Zhao X, Gu C, Wang M, Huang S, Gong X, Kang M, Zhang T, Shen J, Yang X, Xi Y, Pan J. Human Neural Progenitor Cell-Derived Exosomes Deliver miR- 100 - 5p Targeting NOX4 mRNA to Alleviate Oxidative Stress in Acute Ischemia Injury. Mol Neurobiol 2025:10.1007/s12035-025-04952-z. [PMID: 40402409 DOI: 10.1007/s12035-025-04952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/13/2025] [Indexed: 05/23/2025]
Abstract
The prevention and treatment of acute ischemic stroke have been longstanding challenges. Therapies targeting angiogenesis hold promising potential for ischemic injury repair. Reactive oxygen species (ROS) production, induced by the overexpression of NADPH oxidase 4 (NOX4), is a key factor that inhibits angiogenesis during the acute phase of ischemia/reperfusion. Therefore, targeting NOX4 gene expression can reduce ROS production and promote angiogenesis. In this study, human neural progenitor cell (hNPC)-derived-exosomal miRNAs were identified using high-throughput sequencing and online database, with miR-100-5p showing potential to suppress NOX4 expression. We then incorporated exogenous miR-100-5p into hNPC-derived exosomes through electroporation. These miR-100-5p-loaded exosomes were then applied to in vitro models of mouse brain microvascular endothelial cells (bEND.3) subjected to oxygen glucose deprivation and reperfusion (OGD/R). The results showed that miR-100-5p could significantly reduce NOX4 expression and ROS levels induced by OGD/R in bEND.3 cells. Similarly, in vivo analysis showed that mice models of middle cerebral artery occlusion (MCAO) injected with hNPC-derived exosomes loaded with miR-100-5p exhibited smaller brain infarct size, reduced apoptosis, and improved neurological performance compared to MCAO mice receiving PBS. Our findings demonstrate the successful delivery of miR-100-5p via hNPC-derived exosomes and its protective effect on brain microvascular endothelial cells following ischemia injury.
Collapse
Affiliation(s)
- Xianlei Zhao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, 310000, China
- Center for Genetic Medicine, Zhejiang University Lnternational Institute of Medicine, Yiwu, 322000, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, 310000, China
- The Women's Hospital and Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chenjie Gu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Min Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, 310000, China
- Center for Genetic Medicine, Zhejiang University Lnternational Institute of Medicine, Yiwu, 322000, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, 310000, China
- The Women's Hospital and Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Sicong Huang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xinghan Gong
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, 310000, China
- Center for Genetic Medicine, Zhejiang University Lnternational Institute of Medicine, Yiwu, 322000, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, 310000, China
- The Women's Hospital and Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Muxue Kang
- The Women's Hospital and Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Tiesong Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jian Shen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaohang Yang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, 310000, China
- Center for Genetic Medicine, Zhejiang University Lnternational Institute of Medicine, Yiwu, 322000, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, 310000, China
- The Women's Hospital and Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongmei Xi
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, 310000, China.
- Center for Genetic Medicine, Zhejiang University Lnternational Institute of Medicine, Yiwu, 322000, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, 310000, China.
- The Women's Hospital and Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jianwei Pan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Zhao H, Yang P, Zhang M, Zheng W, Qi R, Zhu X, Li J, Li S. ROS-responsive dextran-benzeneboronic acid pinacol ester micelles encapsulating edaravone for the treatment and mechanism of cerebral ischemia-reperfusion injury. Metab Brain Dis 2025; 40:202. [PMID: 40358747 DOI: 10.1007/s11011-025-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
Reperfusion, while essential for restoring blood supply, paradoxically exacerbates neuronal damage through cerebral ischemia-reperfusion injury (CIRI). This study aimed to develop a reactive oxygen species (ROS)-responsive drug delivery system (DDS) loaded with edaravone (EDA) to enhance targeted therapy for CIRI. The stimuli-responsive DDS was synthesized using dextran (DEX) as the biocompatible carrier and benzeneboronic acid pinacol ester (BAPE) as the ROS-sensitive moiety. The physicochemical characteristics of the DEX-BAPE/EDA (DB/EDA) micelles were systematically evaluated. In vitro studies assessed the anti-inflammatory, antioxidant, and anti-apoptotic effects of DB/EDA. Moreover, the neuroprotective efficacy of DB/EDA in vivo was analyzed via behavioral tests, infarct volume measurement, ELISA assays of inflammatory cytokines and OS markers, and Western blot analysis of Nrf2-related pathways. Pharmacokinetics and biosafety were analyzed through plasma profiling and H&E staining. DB/EDA exhibited high stability, efficient drug encapsulation, and ROS-responsive drug release. Cellular uptake studies confirmed enhanced internalization of DB/EDA micelles in BV2 cells. In the oxygen-glucose deprivation/reoxygenation (OGD/R) model, DB/EDA significantly suppressed TNF-α, IL-1β, IL-6, and MDA, restored SOD levels, and attenuated apoptosis. In the middle cerebral artery occlusion/reperfusion (MCAO/R) mice, DB/EDA administration effectively improves cognition and mitigates neuronal damage. Mechanistically, DB/EDA activated the Nrf2/HO-1 pathway, amplifying antioxidant and anti-inflammatory responses. Pharmacokinetic analysis revealed prolonged circulation and increased brain accumulation, and histopathological analysis demonstrated the safety profile of DB/EDA. The ROS-responsive DB/EDA nano-micelles provided targeted EDA delivery to ischemic brain regions, alleviating CIRI via Nrf2 activation, suggesting that DB/EDA is a promising strategy for CIRI treatment.
Collapse
Affiliation(s)
- Hexiang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Ping Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Mou Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Wenshu Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Renli Qi
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Xiaofeng Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Jinghui Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Shipeng Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
3
|
Shu H, Liao Q, Chen Z, Liang M, Zhang S, Liu J, Wu Y, Hu P, Luo M, Zhu W, Zhu X, Yang L, Yan T. Flavonoids serve as a promising therapeutic agent for ischemic stroke. Brain Res 2025; 1853:149528. [PMID: 39999903 DOI: 10.1016/j.brainres.2025.149528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Ischemic stroke (IS) continues to be a major public health concern and is characterized by significantly high mortality and disabling rates. Inhibiting nerve cells death and enhancing the repair of ischemic tissue are important treatment concepts for IS. Currently, the mainstream treatment strategies mainly focus on short-term care, which underscores the urgent need for novel therapeutic strategies for long-term care. Emerging data reveal that flavonoids have surfaced as promising candidates for IS patients' long-term care. Flavonoids can alleviate neuroinflammation and anti-apoptosis due to their characteristic pharmacological mechanisms. Clinical evidence suggests that long-term flavonoids intake improves IS patients' long-term outcomes. Though the effect of flavonoids in IS treatment has been explored for decades, the neuroprotective pharmacodynamics have not been well established. Thereby, the aim of current review is to summarize the pathways involved in neuroprotective effect of flavonoids. This review will also advance the potential of flavonoids as a viable clinical candidate for the treatment of IS.
Collapse
Affiliation(s)
- Hongxin Shu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiuye Liao
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhihao Chen
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Mingyu Liang
- School of life sciences, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Si Zhang
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Junzhe Liu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yanze Wu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ping Hu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ming Luo
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wenping Zhu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xingen Zhu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Li Yang
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Tengfeng Yan
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
4
|
Feng J, Yang Q, Chen M, Wang Y, Luo D, Hu D, Cheng J, Song X, Zhou X, Meng Q, Lin Q, He F. Protective effects of 4-HBd on blood-brain barrier integrity in MCAO/R model rats based on brain pharmacokinetic characteristics. Front Pharmacol 2025; 16:1528839. [PMID: 40264675 PMCID: PMC12012380 DOI: 10.3389/fphar.2025.1528839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/03/2025] [Indexed: 04/24/2025] Open
Abstract
Objectives This study explored the brain-targeting properties and mechanisms of 4-hydroxybenzaldehyde (4-HBd), the primary active component of Gastrodia elata, in mitigating ischemic stroke (IS)-induced injury by preserving blood-brain barrier (BBB) integrity, based on brain pharmacokinetic characteristics. Methods The anti-IS effects of the G. elata extract were assessed using a rat middle cerebral artery occlusion/reperfusion (MCAO/R) model, leading to the identification of 4-HBd as the principal active ingredient. BBB protection was evaluated through neurological scoring, Evans Blue (EB) extravasation, cerebral infarct volume, and ultrastructural integrity. Oxidative stress markers, including superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO), and inducible nitric oxide synthase (iNOS), were quantified in ischemic brain tissue via biochemical assays. The expression levels of tight junction (TJ) proteins claudin-5 and occludin, as well as matrix metalloproteinase MMP-2/9 and aquaporin-4 (AQP-4), were analyzed by Western blotting. Microdialysis, combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), was employed to determine the temporal distribution of 4-HBd in the brains of both normal and MCAO/R model rats. The ability of 4-HBd to scavenge intracellular reactive oxygen species (ROS) in brain endothelial cells (bEnd.3) was evaluated using a single-cell biochemical analyzer. Results G. elata ethanol extract exhibited significant anti-IS effects. When compared with the model group, 4-HBd treatment markedly alleviated BBB disruption and neurological deficits, suppressed oxidative stress in ischemic brain tissue, reduced MDA and NO levels, and enhanced SOD activity. The expressions of claudin-5, occludin, MMP-2/9, and AQP-4 were significantly upregulated in the 4-HBd group relative to the model group. Additionally, 4-HBd selectively eliminated nuclear-derived ROS. Pharmacokinetic analysis demonstrated that 4-HBd preferentially accumulated in the striatum and cortex of both normal and MCAO/R model rats. Under ischemic conditions, 4-HBd exhibited accelerated cortical penetration, increased exposure, and prolonged retention. Conclusion These findings indicate that 4-HBd exerts a pronounced brain-targeting effect and preserves BBB integrity via the RNS/ROS-MMP-TJ signaling pathway, highlighting its potential as a therapeutic agent for IS.
Collapse
Affiliation(s)
- Jin Feng
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Yang
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Ming Chen
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Yan Wang
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Dan Luo
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongxiong Hu
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Jianjun Cheng
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Xuelan Song
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaonan Zhou
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Qingting Meng
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Qing Lin
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Fangyan He
- Department of Pharmacology, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
5
|
Li Q, Yang X, Li T. Natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in central nervous system diseases: current preclinical evidence and future perspectives. Front Pharmacol 2025; 16:1570069. [PMID: 40196367 PMCID: PMC11973303 DOI: 10.3389/fphar.2025.1570069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Flavonoids are a class of important polyphenolic compounds, renowned for their antioxidant properties. However, recent studies have uncovered an additional function of these natural flavonoids: their ability to inhibit ferroptosis. Ferroptosis is a key mechanism driving cell death in central nervous system (CNS) diseases, including both acute injuries and chronic neurodegenerative disorders, characterized by iron overload-induced lipid peroxidation and dysfunction of the antioxidant defense system. This review discusses the therapeutic potential of natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in CNS diseases, focusing on their molecular mechanisms, summarizing findings from preclinical animal models, and providing insights for clinical translation. We specifically highlight natural flavonoids such as Baicalin, Baicalein, Chrysin, Vitexin, Galangin, Quercetin, Isoquercetin, Eriodictyol, Proanthocyanidin, (-)-epigallocatechin-3-gallate, Dihydromyricetin, Soybean Isoflavones, Calycosin, Icariside II, and Safflower Yellow, which have shown promising results in animal models of acute CNS injuries, including ischemic stroke, cerebral ischemia-reperfusion injury, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury. Among these, Baicalin and its precursor Baicalein stand out due to extensive research and favorable outcomes in acute injury models. Mechanistically, these flavonoids not only regulate the Nrf2/ARE pathway and activate GPX4/GSH-related antioxidant pathways but also modulate iron metabolism proteins, thereby alleviating iron overload and inhibiting ferroptosis. While flavonoids show promise as ferroptosis inhibitors for CNS diseases, especially in acute injury settings, further studies are needed to evaluate their efficacy, safety, pharmacokinetics, and blood-brain barrier penetration for clinical application.
Collapse
Affiliation(s)
- Qiuhe Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Tao G, Wang X, Wang J, Ye Y, Zhang M, Lang Y, Ding S. Identifying Specificity Protein 2 as a key marker for diabetic encephalopathy in the context of predictive, preventive, and personalized medicine. EPMA J 2025; 16:67-93. [PMID: 39991102 PMCID: PMC11842694 DOI: 10.1007/s13167-024-00394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/18/2024] [Indexed: 02/25/2025]
Abstract
Background Transcription factor specificity protein (SP2) regulates various cellular functions, including cell division, proliferation, invasion, metastasis, differentiation, and death; however, its role has not been studied in prominent medical conditions including diabetic encephalopathy (DE). Therefore, this study addressed its physiological function in the context of DE to also better characterize its possible use in the context of predictive, preventive, and personalized medicine (PPPM). Methods The anti-inflammatory and anti-DE actions of SP2 were investigated using three animal models (SP2-/- mice, streptozocin-treated mice, and db/db mice) and two cell lines (primary cultured hippocampal neurons and N2A cells). The db/db mice were a leptin deficiency model often used to study type 2 diabetes. An equal number of males and females (8-12 weeks of age) was selected. Behavioral changes in mice were determined using both morris water maze (MWM) test and Y-maze (YM) test. The alterations in oxidative stress and inflammation were examined via immunofluorescence assay, flow cytometry, co-immunoprecipitation, and immunoblotting. Results Mechanistically, SP2-knockout (SP2-/-) mice showed dysregulation of insulin/glucose homeostasis, neuroinflammation, and cognitive loss. Otherwise, in db/db DE mice and STZ-induced DE mice, neuroinflammation, neuroapoptosis, and cognitive decline were significantly attenuated when SP2 was overexpressed in the brain. On the other hand, SP2 overexpression activates the insulin signaling pathway and improves insulin resistance via targeting X-box binding protein 1 (XBP1) in neurons. Moreover, SP2 overexpression significantly reduces oxidative stress by interacting with XBP1 and nuclear factor erythroid 2-related factor 2 (NRF2) in neurons. Furthermore, SP2 enhances the suppression of inflammatory response triggered by nuclear factor kappa B (NFκB) through the recruitment of XBP1 and NRF2 and by the in vitro inactivation of IκB kinase (IKK) complex. Conclusions These findings highlight SP2 as key biological targets for DE and reveal the infammation-related potential molecular mechanism of DE, which is helpful for early risk prediction and targeted prevention of DE. In conclusion, our study provides a new perspective for developing a PPPM method for managing DE patients. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00394-0.
Collapse
Affiliation(s)
- Guorong Tao
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xuebao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Jian Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- Huangshi Love & Health Hospital, Hubei Polytechnic University, Huangshi, 435000 China
| | - Yiru Ye
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035 Zhejiang China
| | - Minxue Zhang
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Yan Lang
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Saidan Ding
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| |
Collapse
|
7
|
Mattingly A, Vickery Z, Ivankovic D, Farrell CL, Hakonarson H, Nguyen K, Boccuto L. Exploring the Therapeutic Potential for Breast Cancer of Phytochemicals and Secondary Metabolites in Marjoram, Thyme, and Persimmon. Metabolites 2024; 14:652. [PMID: 39728433 DOI: 10.3390/metabo14120652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Breast cancer is the most common cause of death in women worldwide and the most commonly diagnosed cancer. Although several therapeutic approaches are widely used against breast cancer, their adverse effects often lead to symptoms severely affecting the quality of life. Alternative methods have been explored to reduce these adverse effects, and nutraceuticals have yielded promising results. This review will discuss mechanisms of action and potential applications against breast cancer of some nutraceuticals, specifically marjoram, thyme, and persimmon leaves. Methods: A systematic search was conducted across the public databases of PubMed, PubChem, and Google Scholar, with a specific focus on the plant extracts and phytochemicals of interest, as well as the anticarcinogenic mechanisms. Results: Ethnopharmacological and biochemical evidence support the anticarcinogenic role of marjoram, thyme, and persimmon. Numerous phytochemicals contained in these herbs' extracts, like terpenes and flavonoids, possess remarkable potential to effectively treat breast cancer. Discussion: The phytochemicals contained in the reviewed nutraceuticals target the main cellular pathways involved in cell growth and disrupted in carcinogenesis, such as Nf-κB, MAPK/p38, TNF-α/IL-1β, and PI3K/Akt. The mechanisms of action of these compounds can successfully limit the abnormal growth and proliferation of cancerous breast cells. Conclusions: The potential use of the phytochemicals discussed in this review, either alone or in combination, may offer a valid alternative to chemotherapy against breast cancer with virtually no adverse effects, and further research on these molecules may lead to the identification of additional chemo-preventative and chemotherapeutic candidates.
Collapse
Affiliation(s)
- Aubrey Mattingly
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Zoe Vickery
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Diana Ivankovic
- Center for Cancer Research, Anderson University, Anderson, SC 29621, USA
| | - Christopher L Farrell
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Katie Nguyen
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Luigi Boccuto
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
8
|
Liu M, Li Z, Lv Z, Xie Y. Discussion of spinal cord neurons apoptosis and neuroprotection mechanism of NGF gene transfection mediated by recombinant adenovirus in EAE mice. Sci Rep 2024; 14:21654. [PMID: 39289437 PMCID: PMC11408680 DOI: 10.1038/s41598-024-72352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
To investigate the spinal cord neuron apoptosis and neuroprotective mechanism of nerve growth factorganismsor (NGF) gene mediated by recombinant adenovirus (Ad-NGF) via peripheral transfection in mice with experimental autoimmune encephalomyelitis (EAE). Forty healthy female C57BL/6 mice were randomly divided into a control group, adenovirus (AdV) group, EAE group, and Ad-NGF transfection group; the control group received no treatment; the AdV group received adenovirus injection via the tail vein; the EAE and Ad-NGF transfection groups were induced with experimental autoimmune encephalomyelitis (EAE) using myelin oligodendrocyte glycoprotein 35-55 (MOG35-55), Ad-NGF transfection group received Ad-NGF injection via the tail vein, and daily neurological impairment scores were obtained. AQThe TUNEL method was employed to observe spinal neuron apoptosis in each group of mice; protein immunoblotting (western blot) and RT-PCR were used to measure NGF levels in the spinal cord tissues of each group, and western blotting was used to assess levels of cleaved caspase-3, Bax, and Bcl-2. ELISA and RT-PCR were employed to detect protein and mRNA levels of neuron-specific enolase (NSE) in spinal cord tissues, respectively. The control group and AdV mice did not develop symptoms. Compared to the EAE group, in the Ad-NGF transfection group, neurological function scores, TUNEL-positive cell counts, the ratio of NeuN + TUNEL to NeuN, levels of Bax and cleaved caspase-3 apoptotic proteins were significantly reduced, while Bcl-2 protein expression was increased. Expression levels of NGF, NGF-mRNA, NSE, and NSE-mRNA in spinal cord tissues were significantly elevated (P < 0.01). Immunofluorescence labeling revealed a significant punctate aggregation of apoptotic cells in spinal neurons of the EAE group, while the aggregation phenomenon was less pronounced in the Ad-NGF transfection group. Ad-NGF transfected by the periphery has a protective effect on spinal cord neurons in EAE mice by up-regulation NGF level, down-regulating apoptotic protein Caspase-3 in spinal cord neurons, inhibiting spinal cord neuron apoptosis and promoting NSE expression.
Collapse
Affiliation(s)
- Menglan Liu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, Sichuan, China
| | - Zuoxiao Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, Sichuan, China
| | - Zhiyu Lv
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, Sichuan, China
| | - Yang Xie
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, Luzhou, Sichuan, China.
| |
Collapse
|
9
|
Neagu M, Constantin C, Surcel M, Munteanu A, Scheau C, Savulescu‐Fiedler I, Caruntu C. Diabetic neuropathy: A NRF2 disease? J Diabetes 2024; 16:e13524. [PMID: 38158644 PMCID: PMC11418408 DOI: 10.1111/1753-0407.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) has multifarious action with its target genes having redox-regulating functions and being involved in inflammation control, proteostasis, autophagy, and metabolic pathways. Therefore, the genes controlled by NRF2 are involved in the pathogenesis of myriad diseases, such as cardiovascular diseases, metabolic syndrome, neurodegenerative diseases, autoimmune disorders, and cancer. Amidst this large array of diseases, diabetic neuropathy (DN) occurs in half of patients diagnosed with diabetes and appears as an injury inflicted upon peripheral and autonomic nervous systems. As a complex effector factor, NRF2 has entered the spotlight during the search of new biomarkers and/or new therapy targets in DN. Due to the growing attention for NRF2 as a modulating factor in several diseases, including DN, this paper aims to update the recently discovered regulatory pathways of NRF2 in oxidative stress, inflammation and immunity. It presents the animal models that further facilitated the human studies in regard to NRF2 modulation and the possibilities of using NRF2 as DN biomarker and/or as target therapy.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
- Pathology DepartmentColentina Clinical HospitalBucharestRomania
- Doctoral School, Faculty of BiologyUniversity of BucharestBucharestRomania
| | - Carolina Constantin
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
- Pathology DepartmentColentina Clinical HospitalBucharestRomania
| | - Mihaela Surcel
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
| | - Adriana Munteanu
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
| | - Cristian Scheau
- Department of Physiology“Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Ilinca Savulescu‐Fiedler
- Department of Internal Medicine – Coltea Clinical Hospital, ”Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Constantin Caruntu
- Department of Physiology“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Dermatology“Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic DiseasesBucharestRomania
| |
Collapse
|
10
|
Rivero-Segura NA, Zepeda-Arzate EA, Castillo-Vazquez SK, Fleischmann-delaParra P, Hernández-Pineda J, Flores-Soto E, García-delaTorre P, Estrella-Parra EA, Gomez-Verjan JC. Exploring the Geroprotective Potential of Nutraceuticals. Nutrients 2024; 16:2835. [PMID: 39275153 PMCID: PMC11396943 DOI: 10.3390/nu16172835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Aging is the result of the accumulation of a wide variety of molecular and cellular damages over time, meaning that "the more damage we accumulate, the higher the possibility to develop age-related diseases". Therefore, to reduce the incidence of such diseases and improve human health, it becomes important to find ways to combat such damage. In this sense, geroprotectors have been suggested as molecules that could slow down or prevent age-related diseases. On the other hand, nutraceuticals are another set of compounds that align with the need to prevent diseases and promote health since they are biologically active molecules (occurring naturally in food) that, apart from having a nutritional role, have preventive properties, such as antioxidant, anti-inflammatory and antitumoral, just to mention a few. Therefore, in the present review using the specialized databases Scopus and PubMed we collected information from articles published from 2010 to 2023 in order to describe the role of nutraceuticals during the aging process and, given their role in targeting the hallmarks of aging, we suggest that they are potential geroprotectors that could be consumed as part of our regular diet or administered additionally as nutritional supplements.
Collapse
Affiliation(s)
| | | | - Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Jessica Hernández-Pineda
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, SSA, Mexico City 11000, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Alcaldía de Coyoacán, Mexico City 04510, Mexico
| | - Paola García-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Edgar Antonio Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | | |
Collapse
|
11
|
Dasdelen D, Solmaz M, Mogulkoc R, Baltaci AK, Erdogan E. Apoptosis of hippocampus and cerebellum induced with brain ischemia reperfusion prevented by 3',4'-dihydroxyflavonol (DiOHF). Biotech Histochem 2024; 99:225-237. [PMID: 38940209 DOI: 10.1080/10520295.2024.2360496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
The present study aimed to determine the effect of 3',4'-dihydroxyflavonol (DiOHF) on apoptosis in the cerebellum and hippocampus in rats with ischemia-reperfusion. A total of 38 Wistar albino male rats were used. Experimental groups were designed as Group 1-Sham; Group 2-Ischemia-reperfusion (IR), in which animals were anesthetized and carotid arteries ligated for 30 minutes (ischemia) and reperfused 30 minutes; Group 3- IR + DiOHF (10 mg/kg); Group 4- Ischemia + DiOHF (10 mg/kg) + reperfusion; Group 5-DiOHF + IR. DiOHF was supplemented as 10 mg/kg by intraperitoneal injection 30 minutes before IR. Following application, the animals were sacrificed under general anesthetic by cervical dislocation, and the cerebellum and hippocampus tissues were analyzed for apoptosis. IR significantly increased hippocampus and cerebellum apoptosis activity, confirmed by Hematoxylin-Eosin, TUNEL labeling, and Caspase-8 activity. However, these values were significantly suppressed by the administration of DiOHF, especially when used before the ischemia and reperfusion. The results of the study show that increased apoptosis in the cerebellum and hippocampus tissue was inhibited by intraperitoneal DiOHF supplementation.
Collapse
Affiliation(s)
- Dervis Dasdelen
- Medical School, Deparment of Physiology, Selcuk University, Konya, Turkey
| | - Merve Solmaz
- Medical School Deparment of Histology, Selcuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Medical School, Deparment of Physiology, Selcuk University, Konya, Turkey
| | | | - Ender Erdogan
- Medical School Deparment of Histology, Selcuk University, Konya, Turkey
| |
Collapse
|
12
|
Zhu J, Dai X, Wang Y, Cui T, Huang B, Wang D, Pu W, Zhang C. Molybdenum and cadmium co-induce apoptosis and ferroptosis through inhibiting Nrf2 signaling pathway in duck (Anas platyrhyncha) testes. Poult Sci 2024; 103:103653. [PMID: 38537407 PMCID: PMC10987903 DOI: 10.1016/j.psj.2024.103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 04/07/2024] Open
Abstract
Cadmium (Cd) and high molybdenum (Mo) are injurious to the body. Previous research has substantiated that Cd and Mo exposure caused testicular injury of ducks, but concrete mechanism is not fully clarified. To further survey the toxicity of co-exposure to Cd and Mo in testis, 40 healthy 8-day-old Shaoxing ducks (Anas platyrhyncha) were stochasticly distributed to 4 groups and raised with basic diet embracing Cd (4 mg/kg Cd) or Mo (100 mg/kg Mo) or both. At the 16th wk, testis tissues were gathered. The characteristic ultrastructural changes related to apoptosis and ferroptosis were observed in Mo or Cd or both groups. Besides, Mo or Cd or both repressed nuclear factor erythroid 2-related factor 2 (Nrf2) pathway via decreasing Nrf2, Heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), Glutamate-cysteine ligase catalytic subunit (GCLC) and Glutamate-cysteine ligase modifier subunit (GCLM) mRNA expression of and Nrf2 protein expression, then stimulated apoptosis by elevating Bcl-2 antagonist/killer-1 (Bak-1), Bcl-2-associated X-protein (Bax), Cytochrome complex (Cyt-C), caspase-3 mRNA expression, cleaved-caspase-3 protein expression and apoptosis rate, as well as reducing B-cell lymphoma-2 (Bcl-2) mRNA expression and ratio of Bcl-2 to Bax, and triggered ferroptosis by upregulating Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4), transferrin receptor (TFR1) and Prostaglandin-Endoperoxide Synthase 2 (PTGS2) expression levels, and downregulating ferritin heavy chain 1 (FTH1), ferritin light chain 1 (FTL1), ferroportin 1 (FPN1), solute carrier family 7 member 11 (SCL7A11) and glutathione peroxidase 4 (GPX4) expression levels. The most obvious changes of these indexes were observed in co-treated group. Altogether, the results announced that Mo or Cd or both evoked apoptosis and ferroptosis by inhibiting Nrf2 pathway in the testis of ducks, and co-exposure to Mo and Cd exacerbated these variations.
Collapse
Affiliation(s)
- Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yan Wang
- College of Forestry/School of Landscape and Art, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
13
|
D’Apolito E, Sisalli MJ, Tufano M, Annunziato L, Scorziello A. Oxidative Metabolism in Brain Ischemia and Preconditioning: Two Sides of the Same Coin. Antioxidants (Basel) 2024; 13:547. [PMID: 38790652 PMCID: PMC11117774 DOI: 10.3390/antiox13050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Brain ischemia is one of the major causes of chronic disability and death worldwide. It is related to insufficient blood supply to cerebral tissue, which induces irreversible or reversible intracellular effects depending on the time and intensity of the ischemic event. Indeed, neuronal function may be restored in some conditions, such as transient ischemic attack (TIA), which may be responsible for protecting against a subsequent lethal ischemic insult. It is well known that the brain requires high levels of oxygen and glucose to ensure cellular metabolism and energy production and that damage caused by oxygen impairment is tightly related to the brain's low antioxidant capacity. Oxygen is a key player in mitochondrial oxidative phosphorylation (OXPHOS), during which reactive oxygen species (ROS) synthesis can occur as a physiological side-product of the process. Indeed, besides producing adenosine triphosphate (ATP) under normal physiological conditions, mitochondria are the primary source of ROS within the cell. This is because, in 0.2-2% of cases, the escape of electrons from complex I (NADPH-dehydrogenase) and III of the electron transport chain occurring in mitochondria during ATP synthesis leads to the production of the superoxide radical anion (O2•-), which exerts detrimental intracellular effects owing to its high molecular instability. Along with ROS, reactive nitrosative species (RNS) also contribute to the production of free radicals. When the accumulation of ROS and RNS occurs, it can cause membrane lipid peroxidation and DNA damage. Here, we describe the intracellular pathways activated in brain tissue after a lethal/sub lethal ischemic event like stroke or ischemic tolerance, respectively, highlighting the important role played by oxidative stress and mitochondrial dysfunction in the onset of the two different ischemic conditions.
Collapse
Affiliation(s)
- Elena D’Apolito
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| | - Maria Josè Sisalli
- Department of Translational Medicine, Federico II University of Naples, 80131 Napoli, Italy;
| | - Michele Tufano
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| | | | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| |
Collapse
|
14
|
Shah FA, Albaqami F, Alattar A, Alshaman R, Zaitone SA, Gabr AM, Abdel-Moneim AMH, dosoky ME, Koh PO. Quercetin attenuated ischemic stroke induced neurodegeneration by modulating glutamatergic and synaptic signaling pathways. Heliyon 2024; 10:e28016. [PMID: 38571617 PMCID: PMC10987936 DOI: 10.1016/j.heliyon.2024.e28016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Ischemic strokes originate whenever the circulation to the brain is interrupted, either temporarily or permanently, resulting in a lack of oxygen and other nutrients. This deprivation primarily impacts the cerebral cortex and striatum, resulting in neurodegeneration. Several experimental stroke models have demonstrated that the potent antioxidant quercetin offers protection against stroke-related damage. Multiple pathways have been associated with quercetin's ability to safeguard the brain from ischemic injury. This study examines whether the administration of quercetin alters glutamate NMDA and GluR1 receptor signaling in the cortex and striatum 72 h after transient middle cerebral artery occlusion. The administration of 10 mg/kg of quercetin shielded cortical and striatal neurons from cell death induced by ischemia in adult SD rats. Quercetin reversed the ischemia-induced reduction of NR2a/PSD95, consequently promoting the pro-survival AKT pathway and reducing CRMP2 phosphorylation. Additionally, quercetin decreased the levels of reactive oxygen species and inflammatory pathways while increasing the expression of the postsynaptic protein PSD95. Our results suggest that quercetin may be a promising neuroprotective drug for ischemic stroke therapy as it recovers neuronal damage via multiple pathways.
Collapse
Affiliation(s)
- Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Faisal Albaqami
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Attia M. Gabr
- Pharmacology and Therapeutics Department, College of Medicine, Qassim University, Qassim, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdel-Moneim Hafez Abdel-Moneim
- Department of Physiology, College of Medicine, Qassim University, Qassim, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Mansoura University, Egypt
| | - Mohamed El dosoky
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Phil Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| |
Collapse
|
15
|
Li YF, Zhu BW, Chen T, Chen LH, Wu D, Hu JN. Construction of Magnolol Nanoparticles for Alleviation of Ethanol-Induced Acute Gastric Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7933-7942. [PMID: 38546719 DOI: 10.1021/acs.jafc.3c09902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Ethanol (EtOH) has been identified as a potential pathogenic factor in gastric ulcer development primarily due to its association with gastric injury and excessive production of reactive oxygen species. Magnolol (Mag), the principal active compound in Magnolia officinalis extract, is well studied for its notable anti-inflammatory and antioxidant properties. However, its limited solubility, propensity for agglomeration, and low absorption and utilization rates significantly restrict its therapeutic use. This study aims to overcome these challenges by developing a Mag nanoparticle system targeting the treatment and prevention of EtOH-induced gastric ulcers in mice. Utilizing a click chemistry approach, we successfully synthesized this system by reacting thiolated bovine serum albumin (BSA·SH) with Mag. The in vitro analysis revealed effective uptake of the BSA·SH-Mag nanoparticle system by human gastric epithelial cells (GES-1), showcasing its antioxidant and anti-inflammatory capabilities. Additionally, BSA·SH-Mag exhibited gradual disintegration and release in simulated gastric fluid, resulting in a notable reduction of oxidative stress in gastric tissues and mucosal tissue repair and effectively reducing inflammatory expression. Furthermore, BSA·SH-Mag attenuated EtOH-induced gastric inflammation by decreasing the level of NOX4 protein expression and augmenting the level of Nrf2 protein expression. In conclusion, our findings indicate that BSA·SH-Mag represents a promising candidate as an oral therapeutic for gastric ulcer treatment.
Collapse
Affiliation(s)
- Yan-Fei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bei-Wei Zhu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
16
|
Sun X, Pan Y, Luo Y, Guo H, Zhang Z, Wang D, Li C, Sun X. Naoxinqing tablet protects against cerebral ischemic/reperfusion injury by regulating ampkα/NAMPT/SIRT1/PGC-1α pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117672. [PMID: 38159826 DOI: 10.1016/j.jep.2023.117672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
AIM OF THE STUDY Naoxinqing (NXQ) tablets are derived from persimmon leaves and are widely used in China for promoting blood circulation and removing blood stasis in China. We aimed to explore whether NXQ has the therapeutic effect on ischemic stroke and explored its possible mechanism. MATERIALS AND METHODS The cerebral artery occlusion/reperfusion (MCAO/R) surgery was used to establish the cerebral ischemic/reperfusion rat model. NXQ (60 mg/kg and 120 mg/kg) were administered orally. The TTC staining, whole brain water content, histopathology staining, immunofluorescent staining, enzyme-linked immunosorbent assay (ELISA) and Western blot analyses were performed to determine the therapeutical effect of NXQ on MCAO/R rats. RESULTS The study demonstrated that NXQ reduced the cerebral infarction volumes and neurologic deficits in MCAO/R rats. The neuroprotective effects of NXQ were accompanied by inhibited oxidative stress and inflammation. The nerve regeneration effects of NXQ were related to regulating the AMPKα/NAMPT/SIRT1/PGC-1α pathway. CONCLUSION In summary, our results revealed that NXQ had a significant protective effect on cerebral ischemia-reperfusion injury in rats. This study broadens the therapeutic scope of NXQ tablets and provides new neuroprotective mechanisms of NXQ as an anti-stroke therapeutic agent.
Collapse
Affiliation(s)
- Xiao Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Yunfeng Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Haibiao Guo
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou, China
| | - Zhixiu Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Deqin Wang
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou, China
| | - Chuyuan Li
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd., Guangzhou, China.
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.
| |
Collapse
|
17
|
Wang L, Ma J, Chen C, Lin B, Xie S, Yang W, Qian J, Zhang Y. Isoquercitrin alleviates pirarubicin-induced cardiotoxicity in vivo and in vitro by inhibiting apoptosis through Phlpp1/AKT/Bcl-2 signaling pathway. Front Pharmacol 2024; 15:1315001. [PMID: 38562460 PMCID: PMC10982373 DOI: 10.3389/fphar.2024.1315001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Due to the cardiotoxicity of pirarubicin (THP), it is necessary to investigate new compounds for the treatment of THP-induced cardiotoxicity. Isoquercitrin (IQC) is a natural flavonoid with anti-oxidant and anti-apoptosis properties. Thus, the present study aimed to investigate the influence of IQC on preventing the THP-induced cardiotoxicity in vivo and in vitro. Methods: The optimal concentration and time required for IQC to prevent THP-induced cardiomyocyte damage were determined by an MTT assay. The protective effect was further verified in H9c2 and HCM cells using dichlorodihydrofluorescein diacetate fluorescent probes, MitoTracker Red probe, enzyme-linked immunosorbent assay, JC-1 probe, and real time-quantitative polymerase chain reaction (RT-qPCR). Rats were administered THP to establish cardiotoxicity. An electrocardiogram (ECG) was performed, and cardiac hemodynamics, myocardial enzymes, oxidative stress indicators, and hematoxylin-eosin staining were studied. Voltage-dependent anion channel 1 (VDAC1), adenine nucleotide translocase 1 (ANT1), and cyclophilin D (CYPD) were detected by qRT-PCR, and the Phlpp1/AKT/Bcl-2 axis proteins were detected by western blot, confirming that IQC markedly increased cell viability and superoxide dismutase (SOD) levels, diminished the levels of ROS and MDA, and elevated mitochondrial function and apoptosis in vivo and in vitro. Results: Results showed that IQC reduced THP-induced myocardial histopathological injury, electrocardiogram (ECG) abnormalities, and cardiac dysfunction in vivo. IQC also decreased serum levels of MDA, BNP, CK-MB, c-TnT, and LDH, while increasing levels of SOD and GSH. We also found that IQC significantly reduced VDAC1, ANT1, and CYPD mRNA expression. In addition, IQC controlled apoptosis by modulating Phlpp1/AKT/Bcl-2 signaling pathways. IQC markedly increased H9c2 and HCM cell viability and SOD levels, diminished the levels of ROS and MDA, and elevated mitochondrial function in H9c2 and HCM cells to defend against THP-induced cardiomyocyte apoptosis in vitro. The AKT inhibitor IMQ demonstrated that IQC lacked antioxidant and anti-apoptotic properties. Moreover, our data showed that IQC regulates Phlpp1 expression, thereby influencing the expression levels of p-AKT, cytochrome c, caspase-3, caspase-9, Bcl-2, and Bax. Discussion: In conclusion, our results indicate that IQC protects the changes in mitochondrial membrane permeability in cardiomyocytes by regulating the Phlpp1/AKT/Bcl-2 signaling pathway, inhibits the release of cytc from the mitochondrial inner membrane to the cytoplasm, forms apoptotic bodies, induces cell apoptosis, and reduces THP induced cardiotoxicity.
Collapse
Affiliation(s)
- Lei Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Chen Chen
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Huzhou, China
| | - Sicong Xie
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Yang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiajia Qian
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Huzhou, China
| |
Collapse
|
18
|
Shen J, Xue X, Yuan H, Song Y, Wang J, Cui R, Ke K. Deubiquitylating Enzyme OTUB1 Facilitates Neuronal Survival After Intracerebral Hemorrhage Via Inhibiting NF-κB-triggered Apoptotic Cascades. Mol Neurobiol 2024; 61:1726-1736. [PMID: 37775718 DOI: 10.1007/s12035-023-03676-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
The deubiquitylase OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) has been implicated in the pathogenesis of various human diseases. However, the molecular mechanism by which OTUB1 participates in the pathogenesis of intracerebral hemorrhage (ICH) remains elusive. In the present study, we established an autologous whole blood fusion-induced ICH model in C57BL/6 J mice. We showed that the upregulation of OTUB1 contributes to the attenuation of Nuclear factor kappa B (NF-κB) and its downstream apoptotic signaling after ICH. OTUB1 directly associates with NF-κB precursors p105 and p100 after ICH, leading to attenuated polyubiquitylation of p105 and p100. Moreover, we revealed that NF-κB signaling was modestly activated both in ICH tissues and hemin-exposed HT-22 neuronal cells, accompanied with the activation of NF-κB downstream pro-apoptotic signaling. Notably, overexpression of OTUB1 strongly inhibited hemin-induced NF-κB activation, whereas interference of OTUB1 led to the opposite effect. Finally, we revealed that lentiviral transduction of OTUB1 markedly ameliorated hemin-induced apoptotic signaling and HT-22 neuronal death. Collectively, these findings suggest that the upregulation of OTUB1 serves as a neuroprotective mechanism in antagonizing neuroinflammation-induced NF-κB signaling and neuronal death, shed new light on manipulating intracellular deubiquitylating pathways as novel interventive approaches against ICH-induced secondary neuronal damage and death.
Collapse
Affiliation(s)
- Jiabing Shen
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Xiaoli Xue
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Qidong People's Hospital, Qidong, Jiangsu, People's Republic of China
| | - Huimin Yuan
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Qidong People's Hospital, Qidong, Jiangsu, People's Republic of China
| | - Yan Song
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Jinglei Wang
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Affiliated Hai'an Hospital of Nantong University and Hai'an People's Hospital, Hai'an, People's Republic of China
| | - Ronghui Cui
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
19
|
Khassafi N, Azami Tameh A, Mirzaei H, Rafat A, Barati S, Khassafi N, Vahidinia Z. Crosstalk between Nrf2 signaling pathway and inflammation in ischemic stroke: Mechanisms of action and therapeutic implications. Exp Neurol 2024; 373:114655. [PMID: 38110142 DOI: 10.1016/j.expneurol.2023.114655] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
One of the major causes of long-term disability and mortality is ischemic stroke that enjoys limited treatment approaches. On the one hand, oxidative stress, induced by excessive generation of reactive oxygen species (ROS), plays a critical role in post-stroke inflammatory response. Increased ROS generation is one of the basic factors in the progression of stroke-induced neuroinflammation. Moreover, intravenous (IV) thrombolysis using recombinant tissue plasminogen activator (rtPA) as the only medication approved for patients with acute ischemic stroke who suffer from some clinical restrictions it could not cover the complicated episodes that happen after stroke. Thus, identifying novel therapeutic targets is crucial for successful preparation of new medicines. Recent evidence indicates that the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) contributes significantly to regulating the antioxidant production in cytosol, which causes antiinflammatory effects on neurons. New findings have shown a relationship between activation of the Nrf2 and glial cells, nuclear factor kappa B (NF-κB) pathway, the nucleotide-binding domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling, and expression of inflammatory markers, suggesting induction of Nrf2 activation can represent a promising therapeutic alternative as the modulators of Nrf2 dependent pathways for targeting inflammatory responses in neural tissue. Hence, this review addresses the relationship of Nrf2 signaling with inflammation and Nrf2 activators' potential as therapeutic agents. This review helps to improve required knowledge for focused therapy and the creation of modern and improved treatment choices for patients with ischemic stroke.
Collapse
Affiliation(s)
- Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Negin Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
20
|
Liu Y, Li TQ, Bai J, Liu WL, Wang ZR, Feng C, Pu LL, Wang XX, Liu H. Isoquercitrin attenuates the osteoclast-mediated bone loss in rheumatoid arthritis via the Nrf2/ROS/NF-κB pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166977. [PMID: 38065271 DOI: 10.1016/j.bbadis.2023.166977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
An excess of osteoclastogenesis significantly contributes to the development of rheumatoid arthritis (RA). Activation of the nuclear factor erythroid-2 related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB) ligand (RANKL)-induced reactive oxygen species (ROS)-to-NF-κB signaling cascade are important mechanisms regulating osteoclastogenesis; however, whether Nrf2 is involved in RANKL-induced NF-κB activation is controversial. Isoquercitrin, a natural flavonoid compound, has been shown to have Nrf2-dependent antioxidant effects inprevious studies. We sought to verify whether isoquercitrin could modulate RANKL-induced NF-κB activation by activating Nrf2, thereby affecting osteoclastogenesis. Tartrate-resistant acid phosphatase staining, F-actin ring staining and resorption pit assay suggested that isoquercitrin significantly inhibited osteoclastogenesis and osteolytic function. Mitosox staining showed that RANKL-induced ROS generation was significantly inhibited by isoquercitrin from day 3 of the osteoclast differentiation cycle. Quantitative real-time PCR, Western blot, and immunofluorescence indicated that isoquercitrin activated the Nrf2 signaling pathway and inhibited NF-κB expression. And when we used the Nrf2-specific inhibitor ML385, the inhibition of NF-κB by isoquercitrin disappeared. Moreover, we found that Nrf2 is not uninvolved in RANKL-induced NF-κB activation and may be related to the timing of ROS regulation. When we limited isoquercitrin administration to 2 days, Nrf2 remained activated and the inhibition of NF-κB disappeared. In vivo experiments suggested that isoquercitrin attenuated RA modeling-induced bone loss. Overall, isoquercitrin-activated Nrf2 blocked the RANKL-induced ROS-to-NF-κB signaling cascade response, thereby inhibiting osteoclastogenesis and bone loss. These findings provide new ideas for the treatment of RA.
Collapse
Affiliation(s)
- Yan Liu
- Lanzhou University, Lanzhou 730000, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Tian-Qi Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jin Bai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wei-Li Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zi-Rou Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chong Feng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Ling-Ling Pu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xin-Xing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Hui Liu
- Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
21
|
Calabrese EJ, Hayes AW, Pressman P, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Quercetin induces its chemoprotective effects via hormesis. Food Chem Toxicol 2024; 184:114419. [PMID: 38142767 DOI: 10.1016/j.fct.2023.114419] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Quercetin is a polyphenol present in numerous fruits and vegetables and therefore widely consumed by humans with average daily dietary intakes of 10-20 mg/day. It is also a popular dietary supplement of 250-1000 mg/day. However, despite the widespread consumer interest in quercetin, due to its possible chemopreventive properties, the extensively studied quercetin presents a highly diverse and complex array of biological effects. Consequently, the present paper provides the first assessment of quercetin-induced hormetic concentration/dose responses, their quantitative features and mechanistic foundations, and their biological, biomedical, clinical, and public health implications. The findings indicate that quercetin-induced hormetic dose responses are widespread, being independent of biological model, cell type, and endpoint. These findings have the potential to enlighten future experimental studies with quercetin especially with respect to study design parameters and may also affect the appraisal of possible public health benefits and risks associated with highly diverse consumer consumption practices.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
22
|
Petrović A, Madić V, Stojanović G, Zlatanović I, Zlatković B, Vasiljević P, Đorđević L. Antidiabetic effects of polyherbal mixture made of Centaurium erythraea, Cichorium intybus and Potentilla erecta. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117032. [PMID: 37582477 DOI: 10.1016/j.jep.2023.117032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The polyherbal mixture made of Centaurium erythraea aerial parts and Cichorium intybus roots and Potentilla erecta rhizomes has been used for centuries to treat both the primary and secondary complications of diabetes. AIM OF THE STUDY As a continuation of our search for the most effective herbal mixture used as an ethnopharmacological remedy for diabetes, this study aimed to compare the in vitro biological activities of this polyherbal mixture and its individual ingredients, and, most importantly, to validate the ethnopharmacological value of the herbal mixture through evaluation of its phytochemical composition, its potential in vivo toxicity and its effect on diabetes complications. MATERIALS AND METHODS Phytochemical analysis was performed using HPLC-UV. Antioxidant activity was estimated via the DPPH test. Potential cytotoxicity/anticytotoxicity was assessed using an in vitro RBCs antihemolytic assay and an in vivo sub-chronic oral toxicity method. Antidiabetic activity was evaluated using an in vitro α-amylase inhibition assay and in vivo using a chemically induced diabetic rat model. RESULTS The HPLC-UV analysis revealed the presence of p-hydroxybenzoic acid, p-hydroxybenzoic acid derivative, catechin, five catechin derivatives, epicatechin, isoquercetin, hyperoside, rutin, four quercetin derivatives, caffeic acid, and four caffeic acid derivatives in the polyherbal mixture decoction. Treatment with the decoction has shown no toxic effects. The antioxidant and cytoprotective activities of the polyherbal mixture were higher than the reference's ones. Its antidiabetic activity was high in both in vitro and in vivo studies. Fourteen days of treatment with the decoction (15 g/kg) completely normalized blood glucose levels of diabetic animals, while treatments with insulin and glimepiride only slightly lowered glycemic values. In addition, lipid status of treated animals as well as levels of serum AST, ALT, ALP, creatinine, urea and MDA were completely normalized. In addition, the polyherbal mixture completely restored the histopathological changes of the liver, kidneys and all four Cornu ammonis regions of the hippocampus. CONCLUSIONS The polyherbal mixture was effective in the prevention of both primary and secondary diabetic complications such as hyperlipidemia, increased lipid peroxidation, non-alcoholic fatty liver disease, nephropathy and neurodegeneration.
Collapse
Affiliation(s)
- Aleksandra Petrović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Višnja Madić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Gordana Stojanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Ivana Zlatanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Bojan Zlatković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Perica Vasiljević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Ljubiša Đorđević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| |
Collapse
|
23
|
Feng W, Kao TC, Jiang J, Zeng X, Chen S, Zeng J, Chen Y, Ma X. The dynamic equilibrium between the protective and toxic effects of matrine in the development of liver injury: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1315584. [PMID: 38348397 PMCID: PMC10859759 DOI: 10.3389/fphar.2024.1315584] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background: Matrine, an alkaloid derived from the dried roots of Sophora flavescens Aiton, has been utilized for the treatment of liver diseases, but its potential hepatotoxicity raises concerns. However, the precise condition and mechanism of action of matrine on the liver remain inconclusive. Therefore, the objective of this systematic review and meta-analysis is to comprehensively evaluate both the hepatoprotective and hepatotoxic effects of matrine and provide therapeutic guidance based on the findings. Methods: The meta-analysis systematically searched relevant preclinical literature up to May 2023 from eight databases, including PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure, WanFang Med Online, China Science and Technology Journal Database, and China Biomedical Literature Service System. The CAMARADES system assessed the quality and bias of the evidence. Statistical analysis was conducted using STATA, which included the use of 3D maps and radar charts to display the effects of matrine dosage and frequency on hepatoprotection and hepatotoxicity. Results: After a thorough screening, 24 studies involving 657 rodents were selected for inclusion. The results demonstrate that matrine has bidirectional effects on ALT and AST levels, and it also regulates SOD, MDA, serum TG, serum TC, IL-6, TNF-α, and CAT levels. Based on our comprehensive three-dimensional analysis, the optimal bidirectional effective dosage of matrine ranges from 10 to 69.1 mg/kg. However, at a dose of 20-30 mg/kg/d for 0.02-0.86 weeks, it demonstrated high liver protection and low toxicity. The molecular docking analysis revealed the interaction between MT and SERCA as well as SREBP-SCAP complexes. Matrine could alter Ca2+ homeostasis in liver injury via multiple pathways, including the SREBP1c/SCAP, Notch/RBP-J/HES1, IκK/NF-κB, and Cul3/Rbx1/Keap1/Nrf2. Conclusion: Matrine has bidirectional effects on the liver at doses ranging from 10 to 69.1 mg/kg by influencing Ca2+ homeostasis in the cytoplasm, endoplasmic reticulum, Golgi apparatus, and mitochondria. Systematic review registration: https://inplasy.com/, identifier INPLASY202340114.
Collapse
Affiliation(s)
- Weiyi Feng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Te-chan Kao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajie Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
24
|
Almarfadi OM, Siddiqui NA, Shahat AA, Fantoukh OI, El Gamal AA, Raish M, Bari A, Iqbal M, Alqahtani AS. Isolation of a novel isoprenylated phenolic compound and neuroprotective evaluation of Dodonaea viscosa extract against cerebral ischaemia-reperfusion injury in rats. Saudi Pharm J 2024; 32:101898. [PMID: 38192384 PMCID: PMC10772285 DOI: 10.1016/j.jsps.2023.101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Dodonaea viscosa grows widely in Saudi Arabia, but studies evaluating its neuroprotective activity are lacking. Thus, this study aimed to isolate and identify the secondary metabolites and evaluate the neuroprotective effects of D. viscosa leaves. The isolation and identification of phytochemicals were performed using chromatographic and spectroscopic techniques. The neuroprotective potential of the extract was evaluated against focal cerebral ischaemia-reperfusion injury in rat model. Neurobehavioural deficits in the rats were evaluated, and their brains were harvested to measure infarct volume and oxidative biomarkers. Results revealed the presence of three compounds: a novel isoprenylated phenolic derivative that was elucidated as 4-hydroxy-3-(3'-methyl-2'-butenyl) phenyl 1-O-β-D-apiosyl-(1''' → 6'')- β-D-glucopyranoside (named Viscomarfadol) and two known compounds (isorhamnetin-3-O-rutinoside and epicatechin (4-8) catechin). Pre-treatment of the rats with the extract improved neurological outcomes. It significantly reduced neurological deficits and infarct volume; significantly reduced lipid peroxidation, as evidenced by decreased malondialdehyde levels; and significantly elevated antioxidant (superoxide dismutase, catalase, and glutathione) activities. These results indicate that D. viscosa is a promising source of bioactive compounds that can improve neurological status, decrease infarct volume, and enhance antioxidant activities in rats with cerebral ischaemic injury. Thus, D. viscosa could be developed into an adjuvant therapy for ischaemic stroke and other oxidative stress-related neurodegenerative disorders. Further investigations are warranted to explore other bioactive compounds in D. viscosa and evaluate their potential neuroprotective activities.
Collapse
Affiliation(s)
- Omer M. Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasir A. Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali A. El Gamal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Penalva-Olcina R, Juan C, Fernández-Franzón M, Juan-García A. Cell cycle and enzymatic activity alterations induced by ROS production in human neuroblastoma cells SH-SY5Y exposed to Fumonisin B1, Ochratoxin A and their combination. Toxicol In Vitro 2023; 93:105670. [PMID: 37633472 DOI: 10.1016/j.tiv.2023.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The presence of mycotoxins such as Fumonisin B1(FB1) and Ochratoxin A (OTA) in food and feed has become a threat to human and animal health since they can produce several afflictions. Different mechanisms of action by which they exercise their cytotoxic activity have been attributed to them, including the production of reactive oxygen species (ROS). For this reason, a measurement of the production of ROS species, and an evaluation of the intrinsic cell enzymatic antioxidant activity, including glutathione peroxidase (GPx), glutathione transferase (GTS), and catalase (CAT) together with a cytotoxicity and cell cycle assay have been performed in undifferentiated SH-SY5Y cells exposed to FB1, OTA and [FB1 + OTA] after 24 h and 48 h. FB1 and OTA. Monitoring of intracellular ROS production was carried out by the H2-DCFDA probe; while spectrometry analysis of absorbances was used for measuring GPx, GST and CAT activity. Finally, cell proliferation and cell cycle distribution were studied by flow cytometry. When cells were treated with OTA, an increase in GPx and GST activity was observed compared to FB1 and [FB1 + OTA]; conversely, a decrease in CAT activity was observed when cells were exposed to OTA coinciding with the results observed for ROS measurement. Regarding the cell cycle, when cells were exposed to OTA, a decrease in G0/G1 was detected, revealing an arrest of cell division for SH-SY5Y cells at the concentrations studied.
Collapse
Affiliation(s)
- Raquel Penalva-Olcina
- Laboratory of food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Mónica Fernández-Franzón
- Laboratory of food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| |
Collapse
|
26
|
Sadeghzadeh J, Hosseini L, Mobed A, Zangbar HS, Jafarzadeh J, Pasban J, Shahabi P. The Impact of Cerebral Ischemia on Antioxidant Enzymes Activity and Neuronal Damage in the Hippocampus. Cell Mol Neurobiol 2023; 43:3915-3928. [PMID: 37740074 PMCID: PMC11407731 DOI: 10.1007/s10571-023-01413-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Cerebral ischemia and subsequent reperfusion, leading to reduced blood supply to specific brain areas, remain significant contributors to neurological damage, disability, and mortality. Among the vulnerable regions, the subcortical areas, including the hippocampus, are particularly susceptible to ischemia-induced injuries, with the extent of damage influenced by the different stages of ischemia. Neural tissue undergoes various changes and damage due to intricate biochemical reactions involving free radicals, oxidative stress, inflammatory responses, and glutamate toxicity. The consequences of these processes can result in irreversible harm. Notably, free radicals play a pivotal role in the neuropathological mechanisms following ischemia, contributing to oxidative stress. Therefore, the function of antioxidant enzymes after ischemia becomes crucial in preventing hippocampal damage caused by oxidative stress. This study explores hippocampal neuronal damage and enzymatic antioxidant activity during ischemia and reperfusion's early and late stages.
Collapse
Affiliation(s)
- Jafar Sadeghzadeh
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ahmad Mobed
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jaber Jafarzadeh
- Department of Community Nutrition Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jamshid Pasban
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Parviz Shahabi
- Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
27
|
Guo Y, Ou C, Zhang N, Liu Q, Xiong K, Yu J, Cheng H, Chen L, Ma M, Xu J, Wu J. Roflumilast attenuates neuroinflammation post retinal ischemia/reperfusion injury by regulating microglia phenotype via the Nrf2/STING/NF-κB pathway. Int Immunopharmacol 2023; 124:110952. [PMID: 37751655 DOI: 10.1016/j.intimp.2023.110952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE The abnormal polarisation of microglial cells (MGs) following retinal ischemia/reperfusion (RIR) initiates neuroinflammation and progressive death of retinal ganglion cells (RGCs), causing increasingly severe and irreversible visual dysfunction. Roflumilast (Roflu) is a promising candidate for treating neuroinflammatory diseases. This study aimed to explore whether Roflu displayed a cytoprotective effect against RIR-induced neuroinflammation and to characterise the underlying signalling pathway. METHODS The effects and mechanism of Roflu against RIR injury were investigated in C57BL/6J mice and the BV2 cell line. We used quantitative real-time PCR and enzyme-linked immunosorbent assay to examine the levels of inflammatory factors. Furthermore, haematoxylin and eosin and immunofluorescence (IF) stainings were used to assess the morphology of the retina and the states of MGs and RGCs. Reactive oxygen species (ROS) levels were examined using a ROS assay kit, while whole-genome sequencing analysis was conducted to identify altered pathways and molecules. Western blotting and IF staining were used to quantify the proteins associated with the nuclear factor erythroid 2-related factor 2 (Nrf2)/stimulator of interferon gene (STING)/nuclear factor kappa beta (NF-κB) pathway. RESULTS MG polarisation includes the pro-inflammatory and neurotoxic M1 phenotype as well as the anti-inflammatory and neuroprotective M2 phenotype. Roflu significantly attenuated MG activation and contributed to a shift in the MG phenotype from M1 to M2. Moreover, Roflu decreased ROS release and increased heme oxygenase 1 and NAD(P)H quinone oxidoreductase 1 expression. In vitro and in vivo experiments validated that Roflu exerted its neuroprotective effects primarily by upregulating the Nrf2/STING/NF-κB pathway. However, these effects were abrogated when the Nrf2 expression was inhibited by pharmacological or genetic manipulation. CONCLUSIONS Roflu suppressed RIR-induced neuroinflammation by driving the shift of MG polarisation from M1 to M2 phenotype, which was mediated by the upregulation of the Nrf2/STING/NK-κB pathway.
Collapse
Affiliation(s)
- Yuyan Guo
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Chunlian Ou
- Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Naiyuan Zhang
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qiong Liu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jian Yu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hao Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Linjiang Chen
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ming Ma
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Jing Wu
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
28
|
Li X, Yi L, Liu X, Chen X, Chen S, Cai S. Isoquercitrin Played a Neuroprotective Role in Rats After Cerebral Ischemia/Reperfusion Through Up-Regulating Neuroglobin and Anti-Oxidative Stress. Transplant Proc 2023; 55:1751-1761. [PMID: 37391332 DOI: 10.1016/j.transproceed.2023.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND This study aims to investigate whether isoquercitrin (Iso) exerts a neuroprotective role effect after cerebral ischemia-reperfusion (CIR) via up-regulating neuroglobin (Ngb) or reducing oxidative stress. METHODS The middle cerebral artery occlusion/reperfusion (MCAO/R) model was constructed using Sprague Dawley rats. First, we divided 40 mice into 5 groups (n = 8): sham, MCAO/R, Low-dosed Iso (5 mg/kg Iso), Mid-dosed Iso (10 mg/kg Iso), and High-dosed Iso (20 mg/kg Iso). Then, 48 rats were separated into 6 groups (n = 8): sham, MCAO/R, Iso, artificial cerebrospinal fluid, Ngb antisense oligodeoxynucleotides (AS-ODNs), and AS-ODNs ± Iso. The effects of Iso on brain tissue injury and oxidative stress were evaluated using hematoxylin-eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, immunofluorescence, western blotting, and real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and reactive oxygen species (ROS) detection. RESULTS The neurologic score, infarct volume, histopathology, apoptosis rate, and ROS production were reduced in Iso dose-dependent. The Ngb expression enhanced in Iso dose-dependent. The oxidative stress-related factors SOD, GSH, CAT, Nrf2, HO-1, and HIF-1α levels also increased in Iso dose-dependent, whereas the MDA levels decreased. However, related regulation of Iso on brain tissue damage and oxidative stress were reversed after low expression of Ngb. CONCLUSION Isoquercitrin played a neuroprotective role after CIR through up-regulating of Ngb and anti-oxidative stress.
Collapse
Affiliation(s)
- Xiuping Li
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Liming Yi
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xing Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xia Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Sanchun Chen
- Hunan Bestcome Traditional Medicine Co, Ltd, Huaihua, China
| | - Shichang Cai
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China.
| |
Collapse
|
29
|
Bhuia MS, Wilairatana P, Ferdous J, Chowdhury R, Bappi MH, Rahman MA, Mubarak MS, Islam MT. Hirsutine, an Emerging Natural Product with Promising Therapeutic Benefits: A Systematic Review. Molecules 2023; 28:6141. [PMID: 37630393 PMCID: PMC10458569 DOI: 10.3390/molecules28166141] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Fruits and vegetables are used not only for nutritional purposes but also as therapeutics to treat various diseases and ailments. These food items are prominent sources of phytochemicals that exhibit chemopreventive and therapeutic effects against several diseases. Hirsutine (HSN) is a naturally occurring indole alkaloid found in various Uncaria species and has a multitude of therapeutic benefits. It is found in foodstuffs such as fish, seafood, meat, poultry, dairy, and some grain products among other things. In addition, it is present in fruits and vegetables including corn, cauliflower, mushrooms, potatoes, bamboo shoots, bananas, cantaloupe, and citrus fruits. The primary emphasis of this study is to summarize the pharmacological activities and the underlying mechanisms of HSN against different diseases, as well as the biopharmaceutical features. For this, data were collected (up to date as of 1 July 2023) from various reliable and authentic literature by searching different academic search engines, including PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. Findings indicated that HSN exerts several effects in various preclinical and pharmacological experimental systems. It exhibits anti-inflammatory, antiviral, anti-diabetic, and antioxidant activities with beneficial effects in neurological and cardiovascular diseases. Our findings also indicate that HSN exerts promising anticancer potentials via several molecular mechanisms, including apoptotic cell death, induction of oxidative stress, cytotoxic effect, anti-proliferative effect, genotoxic effect, and inhibition of cancer cell migration and invasion against various cancers such as lung, breast, and antitumor effects in human T-cell leukemia. Taken all together, findings from this study show that HSN can be a promising therapeutic agent to treat various diseases including cancer.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (R.C.); (M.H.B.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman, Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (R.C.); (M.H.B.)
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (R.C.); (M.H.B.)
| | - Md Anisur Rahman
- Department of Pharmacy, Islamic University, Kushtia 7003, Bangladesh;
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (R.C.); (M.H.B.)
| |
Collapse
|
30
|
Pluta R, Miziak B, Czuczwar SJ. Apitherapy in Post-Ischemic Brain Neurodegeneration of Alzheimer's Disease Proteinopathy: Focus on Honey and Its Flavonoids and Phenolic Acids. Molecules 2023; 28:5624. [PMID: 37570596 PMCID: PMC10420307 DOI: 10.3390/molecules28155624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Neurodegeneration of the brain after ischemia is a major cause of severe, long-term disability, dementia, and mortality, which is a global problem. These phenomena are attributed to excitotoxicity, changes in the blood-brain barrier, neuroinflammation, oxidative stress, vasoconstriction, cerebral amyloid angiopathy, amyloid plaques, neurofibrillary tangles, and ultimately neuronal death. In addition, genetic factors such as post-ischemic changes in genetic programming in the expression of amyloid protein precursor, β-secretase, presenilin-1 and -2, and tau protein play an important role in the irreversible progression of post-ischemic neurodegeneration. Since current treatment is aimed at preventing symptoms such as dementia and disability, the search for causative therapy that would be helpful in preventing and treating post-ischemic neurodegeneration of Alzheimer's disease proteinopathy is ongoing. Numerous studies have shown that the high contents of flavonoids and phenolic acids in honey have antioxidant, anti-inflammatory, anti-apoptotic, anti-amyloid, anti-tau protein, anticholinesterase, serotonergic, and AMPAK activities, influencing signal transmission and neuroprotective effects. Notably, in many preclinical studies, flavonoids and phenolic acids, the main components of honey, were also effective when administered after ischemia, suggesting their possible use in promoting recovery in stroke patients. This review provides new insight into honey's potential to prevent brain ischemia as well as to ameliorate damage in advanced post-ischemic brain neurodegeneration.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (S.J.C.)
| | | | | |
Collapse
|
31
|
Xie K, Mo Y, Yue E, Shi N, Liu K. Exosomes derived from M2-type microglia ameliorate oxygen-glucose deprivation/reoxygenation-induced HT22 cell injury by regulating miR-124-3p/NCOA4-mediated ferroptosis. Heliyon 2023; 9:e17592. [PMID: 37424595 PMCID: PMC10328844 DOI: 10.1016/j.heliyon.2023.e17592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
Background Although it has been reported that miRNA carried by M2 microglial exosomes protects neurons from ischemia-reperfusion brain injury, the mechanism of action remains poorly understood. This study aimed to explore the miRNA signaling pathway by which M2-type microglia-derived exosomes (M2-exosomes) ameliorate oxygen-glucose deprivation/reoxygenation (OGD/R)-induced cytotoxicity in HT22 cells. Methods BV2 microglia were induced by M2 polarization. Then, M2-exosomes were identified via transmission electron microscopy and special biomarker detection and co-cultured with HT22 cells. Cell proliferation was evaluated using the Cell Counting Kit-8 (CCK-8) assay. Intracellular concentrations of reactive oxygen species (ROS), Fe2+, glutathione (GSH), and malondialdehyde (MDA) were determined using dichlorofluorescein fluorescence and biochemical determination. miR-124-3p levels were determined using qRT-PCR, and protein expressions were examined via western blotting. Results OGD/R suppressed the proliferation and induced the accumulation of Fe2+, ROS, and MDA and reduction of GSH in mouse HT22 cells, suggesting ferroptosis of HT22 cells. OGD/R-induced changes in the above mentioned indexes was ameliorated by M2-exosomes but restored by the exosome inhibitor GW4869. M2-exosomes with (mimic-exo) or without miR-124-3p (inhibitor-exo) promoted and suppressed proliferation and ferroptosis-associated indexes of HT22 cells, respectively. Moreover, mimic-exo and inhibitor-exo inhibited and enhanced NCOA4 expression in HT22 cells, respectively. NCOA4 overexpression reversed the protective effects of miR-124-3p mimic-exo in OGD/R-conditioned cells. NCOA4 was targeted and regulated by miR-124-3p. Conclusions M2-exosome protects HT22 cells against OGD/R-induced ferroptosis injury by transferring miR-124-3p and NCOA4 into HT22 cells, with the latter being a target gene for miR-124-3p.
Collapse
Affiliation(s)
- Ke Xie
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai, 201318, China
| | - Yun Mo
- Department of Neurology, Guizhou Medical University, China
| | - Erli Yue
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai, 201318, China
| | - Nan Shi
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai, 201318, China
| | - Kangyong Liu
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai, 201318, China
| |
Collapse
|
32
|
Aboouf MA, Thiersch M, Soliz J, Gassmann M, Schneider Gasser EM. The Brain at High Altitude: From Molecular Signaling to Cognitive Performance. Int J Mol Sci 2023; 24:10179. [PMID: 37373327 DOI: 10.3390/ijms241210179] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The brain requires over one-fifth of the total body oxygen demand for normal functioning. At high altitude (HA), the lower atmospheric oxygen pressure inevitably challenges the brain, affecting voluntary spatial attention, cognitive processing, and attention speed after short-term, long-term, or lifespan exposure. Molecular responses to HA are controlled mainly by hypoxia-inducible factors. This review aims to summarize the cellular, metabolic, and functional alterations in the brain at HA with a focus on the role of hypoxia-inducible factors in controlling the hypoxic ventilatory response, neuronal survival, metabolism, neurogenesis, synaptogenesis, and plasticity.
Collapse
Affiliation(s)
- Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Jorge Soliz
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057 Zurich, Switzerland
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
33
|
Oh S, Seo SB, Kim G, Batsukh S, Park CH, Son KH, Byun K. Poly-D,L-Lactic Acid Filler Increases Extracellular Matrix by Modulating Macrophages and Adipose-Derived Stem Cells in Aged Animal Skin. Antioxidants (Basel) 2023; 12:1204. [PMID: 37371934 DOI: 10.3390/antiox12061204] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Poly-D,L-lactic acid (PDLLA) filler corrects soft tissue volume loss by increasing collagen synthesis in the dermis; however, the mechanism is not fully understood. Adipose-derived stem cells (ASCs) are known to attenuate the decrease in fibroblast collagen synthesis that occurs during aging, and nuclear factor (erythroid-derived 2)-like-2 factor (NRF2) increases ASCs survival by inducing M2 macrophage polarization and IL-10 expression. We evaluated the ability of PDLLA to induce collagen synthesis in fibroblasts by modulating macrophages and ASCs in a H2O2-induced cellular senescence model and aged animal skin. PDLLA increased M2 polarization and NRF2 and IL-10 expression in senescence-induced macrophages. Conditioned media from senescent macrophages treated with PDLLA (PDLLA-CMMΦ) reduced senescence and increased proliferation and expression of transforming growth factor-β (TGF-β) and fibroblast growth factor (FGF) 2 in senescence-induced ASCs. Conditioned media from senescent ASCs treated with PDLLA-CMMΦ (PDLLA-CMASCs) increased the expression of collagen 1a1 and collagen 3a1 and reduced the expression of NF-κB and MMP2/3/9 in senescence-induced fibroblasts. Injection of PDLLA in aged animal skin resulted in increased expression of NRF2, IL-10, collagen 1a1, and collagen 3a1 and increased ASCs proliferation in aged animal skin. These results suggest that PDLLA increases collagen synthesis by modulating macrophages to increase NRF2 expression, which stimulates ASCs proliferation and secretion of TGF-β and FGF2. This leads to increased collagen synthesis, which can attenuate aging-induced soft tissue volume loss.
Collapse
Affiliation(s)
- Seyeon Oh
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Suk Bae Seo
- SeoAh Song Dermatologic Clinic, Seoul 05557, Republic of Korea
| | - Gunpoong Kim
- VAIM Co., Ltd., Okcheon 29055, Republic of Korea
| | - Sosorburam Batsukh
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Chul-Hyun Park
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
34
|
Qi Z, Zhang C, Jian H, Hou M, Lou Y, Kang Y, Wang W, Lv Y, Shang S, Wang C, Li X, Feng S, Zhou H. N 1-Methyladenosine modification of mRNA regulates neuronal gene expression and oxygen glucose deprivation/reoxygenation induction. Cell Death Discov 2023; 9:159. [PMID: 37173310 PMCID: PMC10182019 DOI: 10.1038/s41420-023-01458-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
N1-Methyladenosine (m1A) is an abundant modification of transcripts, plays important roles in regulating mRNA structure and translation efficiency, and is dynamically regulated under stress. However, the characteristics and functions of mRNA m1A modification in primary neurons and oxygen glucose deprivation/reoxygenation (OGD/R) induced remain unclear. We first constructed a mouse cortical neuron OGD/R model and then used methylated RNA immunoprecipitation (MeRIP) and sequencing technology to demonstrate that m1A modification is abundant in neuron mRNAs and dynamically regulated during OGD/R induction. Our study suggests that Trmt10c, Alkbh3, and Ythdf3 may be m1A-regulating enzymes in neurons during OGD/R induction. The level and pattern of m1A modification change significantly during OGD/R induction, and differential methylation is closely associated with the nervous system. Our findings show that m1A peaks in cortical neurons aggregate at both the 5' and 3' untranslated regions. m1A modification can regulate gene expression, and peaks in different regions have different effects on gene expression. By analysing m1A-seq and RNA-seq data, we show a positive correlation between differentially methylated m1A peaks and gene expression. The correlation was verified by using qRT-PCR and MeRIP-RT-PCR. Moreover, we selected human tissue samples from Parkinson's disease (PD) and Alzheimer's disease (AD) patients from the Gene Expression Comprehensive (GEO) database to analyse the selected differentially expressed genes (DEGs) and differential methylation modification regulatory enzymes, respectively, and found similar differential expression results. We highlight the potential relationship between m1A modification and neuronal apoptosis following OGD/R induction. Furthermore, by mapping mouse cortical neurons and OGD/R-induced modification characteristics, we reveal the important role of m1A modification in OGD/R and gene expression regulation, providing new ideas for research on neurological damage.
Collapse
Affiliation(s)
- Zhangyang Qi
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Chi Zhang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Mengfan Hou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Wei Wang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Shenghui Shang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Chaoyu Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China
| | - Xueying Li
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China.
| | - Hengxing Zhou
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P.R. China.
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
35
|
Gola L, Bierhansl L, Csatári J, Schroeter CB, Korn L, Narayanan V, Cerina M, Abdolahi S, Speicher A, Hermann AM, König S, Dinkova-Kostova AT, Shekh-Ahmad T, Meuth SG, Wiendl H, Gorji A, Pawlowski M, Kovac S. NOX4-derived ROS are neuroprotective by balancing intracellular calcium stores. Cell Mol Life Sci 2023; 80:127. [PMID: 37081190 PMCID: PMC10119225 DOI: 10.1007/s00018-023-04758-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023]
Abstract
Hyperexcitability is associated with neuronal dysfunction, cellular death, and consequently neurodegeneration. Redox disbalance can contribute to hyperexcitation and increased reactive oxygen species (ROS) levels are observed in various neurological diseases. NOX4 is an NADPH oxidase known to produce ROS and might have a regulating function during oxidative stress. We, therefore, aimed to determine the role of NOX4 on neuronal firing, hyperexcitability, and hyperexcitability-induced changes in neural network function. Using a multidimensional approach of an in vivo model of hyperexcitability, proteomic analysis, and cellular function analysis of ROS, mitochondrial integrity, and calcium levels, we demonstrate that NOX4 is neuroprotective by regulating ROS and calcium homeostasis and thereby preventing hyperexcitability and consequently neuronal death. These results implicate NOX4 as a potential redox regulator that is beneficial in hyperexcitability and thereby might have an important role in neurodegeneration.
Collapse
Affiliation(s)
- Lukas Gola
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Laura Bierhansl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Júlia Csatári
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lisanne Korn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Venu Narayanan
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Manuela Cerina
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Anna Speicher
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Alexander M Hermann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, 48149, Münster, Germany
| | | | - Tawfeeq Shekh-Ahmad
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Matthias Pawlowski
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany.
| |
Collapse
|
36
|
Jazvinšćak Jembrek M, Oršolić N, Karlović D, Peitl V. Flavonols in Action: Targeting Oxidative Stress and Neuroinflammation in Major Depressive Disorder. Int J Mol Sci 2023; 24:ijms24086888. [PMID: 37108052 PMCID: PMC10138550 DOI: 10.3390/ijms24086888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Major depressive disorder is one of the most common mental illnesses that highly impairs quality of life. Pharmacological interventions are mainly focused on altered monoamine neurotransmission, which is considered the primary event underlying the disease's etiology. However, many other neuropathological mechanisms that contribute to the disease's progression and clinical symptoms have been identified. These include oxidative stress, neuroinflammation, hippocampal atrophy, reduced synaptic plasticity and neurogenesis, the depletion of neurotrophic factors, and the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. Current therapeutic options are often unsatisfactory and associated with adverse effects. This review highlights the most relevant findings concerning the role of flavonols, a ubiquitous class of flavonoids in the human diet, as potential antidepressant agents. In general, flavonols are considered to be both an effective and safe therapeutic option in the management of depression, which is largely based on their prominent antioxidative and anti-inflammatory effects. Moreover, preclinical studies have provided evidence that they are capable of restoring the neuroendocrine control of the HPA axis, promoting neurogenesis, and alleviating depressive-like behavior. Although these findings are promising, they are still far from being implemented in clinical practice. Hence, further studies are needed to more comprehensively evaluate the potential of flavonols with respect to the improvement of clinical signs of depression.
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| |
Collapse
|
37
|
Ma Z, Yu P, Li X, Dai F, Jiang H, Liu J. Anemonin reduces hydrogen peroxide-induced oxidative stress, inflammation and extracellular matrix degradation in nucleus pulposus cells by regulating NOX4/NF-κB signaling pathway. J Orthop Surg Res 2023; 18:189. [PMID: 36899420 PMCID: PMC10007850 DOI: 10.1186/s13018-023-03679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Excessive oxidative stress plays a critical role in the progression of various diseases, including intervertebral disk degeneration (IVDD). Recent studies have found that anemonin (ANE) possesses antioxidant and anti-inflammatory effects. However, the role of ANE in IVDD is still unclear. Therefore, this study investigated the effect and mechanism of ANE on H2O2 induced degeneration of nucleus pulposus cells (NPCs). METHODS NPCs were pretreated with ANE, and then treated with H2O2. NOX4 was upregulated by transfection of pcDNA-NOX4 into NPCs. Cytotoxicity was detected by MTT, oxidative stress-related indicators and inflammatory factors were measured by ELISA, mRNA expression was assessed by RT-PCR, and protein expression was tested by western blot. RESULTS ANE attenuated H2O2-induced inhibition of NPCs activity. H2O2 enhanced oxidative stress, namely, increased ROS and MDA levels and decreased SOD level. However, these were suppressed and pretreated by ANE. ANE treatment repressed the expression of inflammatory factors (IL-6, IL-1β and TNF-α) in H2O2-induced NPCs. ANE treatment also prevented the degradation of extracellular matrix induced by H2O2, showing the downregulation of MMP-3, 13 and ADAMTS-4, 5 and the upregulation of collagen II. NOX4 is a key factor regulating oxidative stress. Our study confirmed that ANE could restrain NOX4 and p-NF-κB. In addition, overexpression of NOX4 counteracted the antioxidant and anti-inflammatory activities of ANE in H2O2-induced NPCs, and the inhibition of the degradation of extracellular matrix induced by ANE was also reversed by overexpression of NOX4. CONCLUSION ANE repressed oxidative stress, inflammation and extracellular matrix degradation in H2O2-induced NPCs by inhibiting NOX4/NF-κB pathway. Our study indicated that ANE might be a candidate drug for the treatment of IVDD.
Collapse
Affiliation(s)
- Zhijia Ma
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Pengfei Yu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Xiaochun Li
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Feng Dai
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China
| | - Hong Jiang
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China.
| | - Jintao Liu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 889, Wuzhong West Road, Gusu District, Suzhou, 215009, Jiangsu, China.
| |
Collapse
|
38
|
Zhao N, Gao Y, Jia H, Jiang X. Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia-reperfusion injury. Apoptosis 2023; 28:702-729. [PMID: 36892639 DOI: 10.1007/s10495-023-01824-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cerebral ischemia, one of the leading causes of neurological dysfunction of brain cells, muscle dysfunction, and death, brings great harm and challenges to individual health, families, and society. Blood flow disruption causes decreased glucose and oxygen, insufficient to maintain normal brain tissue metabolism, resulting in intracellular calcium overload, oxidative stress, neurotoxicity of excitatory amino acids, and inflammation, ultimately leading to neuronal cell necrosis, apoptosis, or neurological abnormalities. This paper summarizes the specific mechanism of cell injury that apoptosis triggered by reperfusion after cerebral ischemia, the related proteins involved in apoptosis, and the experimental progress of herbal medicine treatment through searching, analyzing, and summarizing the PubMed and Web Of Science databases, which includes active ingredients of herbal medicine, prescriptions, Chinese patent medicines, and herbal extracts, providing a new target or new strategy for drug treatment, and providing a reference for future experimental directions and using them to develop suitable small molecule drugs for clinical application. With the research of anti-apoptosis as the core, it is important to find highly effective, low toxicity, safe and cheap compounds from natural plants and animals with abundant resources to prevent and treat Cerebral ischemia/reperfusion (I/R) injury (CIR) and solve human suffering. In addition, understanding and summarizing the apoptotic mechanism of cerebral ischemia-reperfusion injury, the microscopic mechanism of CIR treatment, and the cellular pathways involved will help to develop new drugs.
Collapse
Affiliation(s)
- Nan Zhao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuhe Gao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hongtao Jia
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xicheng Jiang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China.
| |
Collapse
|
39
|
Yu J, Zhou L, Song H, Huang Q, Yu J, Wang S, Zhang X, Li W, Niu X. (-)-Epicatechin gallate blocked cellular foam formation in atherosclerosis by modulating CD36 expression in vitro and in vivo. Food Funct 2023; 14:2444-2458. [PMID: 36786689 DOI: 10.1039/d2fo03218j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Green tea is popular worldwide, so its main active ingredients have attracted people's attention. (-)-Epicatechin gallate (ECG) is the main active component of green tea polyphenols, which has good antioxidant activity, but its cardiovascular intervention is unknown. This study established in vitro and in vivo models of ox-LDL-induced macrophages and HFD-induced ApoE-/- mice to study the effects of ECG on atherosclerotic lesions. Firstly, the study confirmed that ECG has a therapeutic effect in different stages of atherosclerotic plaques. Subsequently, the results showed that the ox-LDL-induced release of pro-inflammatory mediators and the expression of the related protein CD86 in macrophages were inhibited by ECG. ECG blocked the formation of cellular foam by downregulating the expression of CD36 and LOX-1 proteins, thereby increasing SOD activity and reducing MDA production in cells. ECG also prevented ox-LDL-induced apoptosis, promoted macrophage migration, and increased plaque stability. The results confirmed that ECG attenuated ox-LDL-induced green fluorescence of ROS in macrophages by inhibiting the expression of related proteins in the NF-κB signaling pathway and activating the HO-1/Nrf2 signaling pathway. These results indicated that ECG has anti-oxidative stress and anti-inflammatory potential, and its molecular mechanism may be related to the inhibition of intracellular NF-κB signaling pathway proteins and activation of the HO-1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Xinya Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| |
Collapse
|
40
|
Olędzka AJ, Czerwińska ME. Role of Plant-Derived Compounds in the Molecular Pathways Related to Inflammation. Int J Mol Sci 2023; 24:ijms24054666. [PMID: 36902097 PMCID: PMC10003729 DOI: 10.3390/ijms24054666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Inflammation is the primary response to infection and injury. Its beneficial effect is an immediate resolution of the pathophysiological event. However, sustained production of inflammatory mediators such as reactive oxygen species and cytokines may cause alterations in DNA integrity and lead to malignant cell transformation and cancer. More attention has recently been paid to pyroptosis, which is an inflammatory necrosis that activates inflammasomes and the secretion of cytokines. Taking into consideration that phenolic compounds are widely available in diet and medicinal plants, their role in the prevention and support of the treatment of chronic diseases is apparent. Recently, much attention has been paid to explaining the significance of isolated compounds in the molecular pathways related to inflammation. Therefore, this review aimed to screen reports concerning the molecular mode of action assigned to phenolic compounds. The most representative compounds from the classes of flavonoids, tannins, phenolic acids, and phenolic glycosides were selected for this review. Our attention was focused mainly on nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinase (MAPK) signaling pathways. Literature searching was performed using Scopus, PubMed, and Medline databases. In conclusion, based on the available literature, phenolic compounds regulate NF-κB, Nrf2, and MAPK signaling, which supports their potential role in chronic inflammatory disorders, including osteoarthritis, neurodegenerative diseases, cardiovascular, and pulmonary disorders.
Collapse
Affiliation(s)
- Agata J. Olędzka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-116-61-85
| |
Collapse
|
41
|
Alshammari GM, Al-Ayed MS, Abdelhalim MA, Al-Harbi LN, Yahya MA. Effects of Antioxidant Combinations on the Renal Toxicity Induced Rats by Gold Nanoparticles. Molecules 2023; 28:molecules28041879. [PMID: 36838869 PMCID: PMC9959587 DOI: 10.3390/molecules28041879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
This study investigated some possible mechanisms underlying the nephrotoxic effect of gold nanoparticles (AuNPs) in rats and compared the protective effects of selected known antioxidants-namely, melanin, quercetin (QUR), and α-lipoic acid (α-LA). Rats were divided into five treatment groups (eight rats per group): control, AuNPs (50 nm), AuNPs + melanin (100 mg/kg), AuNPs + QUR (200 mg/kg), and AuNPs + α-LA (200 mg/kg). All treatments were administered i.p., daily, for 30 days. AuNPs promoted renal glomerular and tubular damage and impaired kidney function, as indicated by the higher serum levels of creatinine (Cr), urinary flow, and urea and albumin/Cr ratio. They also induced oxidative stress by promoting mitochondrial permeability transition pore (mtPTP) opening, the expression of NOX4, increasing levels of malondialdehyde (MDA), and suppressing glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). In addition, AuNPs induced renal inflammation and apoptosis, as evidenced by the increase in the total mRNA and the cytoplasmic and nuclear levels of NF-κB, mRNA levels of Bax and caspase-3, and levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Treatment with melanin, QUR, and α-lipoic acid (α-LA) prevented the majority of these renal damage effects of AuNPs and improved kidney structure and function, with QUR being the most powerful. In conclusion, in rats, AuNPs impair kidney function by provoking oxidative stress, inflammation, and apoptosis by suppressing antioxidants, promoting mitochondrial uncoupling, activating NF-κB, and upregulating NOX4. However, QUR remains the most powerful drug to alleviate this toxicity by reversing all of these mechanisms.
Collapse
Affiliation(s)
- Ghedeir M. Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Mohammed S. Al-Ayed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Anwar Abdelhalim
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
42
|
Li B, Lu Y, Wang R, Xu T, Lei X, Jin H, Gao X, Xie Y, Liu X, Zeng J. MiR-29c Inhibits TNF-α-Induced ROS Production and Apoptosis in Mouse Hippocampal HT22 Cell Line. Neurochem Res 2023; 48:519-536. [PMID: 36309937 DOI: 10.1007/s11064-022-03776-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/18/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023]
Abstract
Recent reports have suggested that abnormal miR-29c expression in hippocampus have been implicated in the pathophysiology of some neurodegenerative and neuropsychiatric diseases. However, the underlying effect of miR-29c in regulating hippocampal neuronal function is not clear. In this study, HT22 cells were infected with lentivirus containing miR-29c or miR-29c sponge. Cell counting kit-8 (CCK8) and lactate dehydrogenase (LDH) assay kit were applied to evaluate cell viability and toxicity before and after TNF-α administration. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Hoechst 33258 staining and TUNEL assay were used to evaluate cell apoptosis. The expression of key mRNA/proteins (TNFR1, Bcl-2, Bax, TRADD, FADD, caspase-3, -8 and -9) in the apoptosis pathway was detected by PCR or WB. In addition, the protein expression of microtubule-associated protein-2 (MAP-2), nerve growth-associated protein 43 (GAP-43) and synapsin-1 (SYN-1) was detected by WB. As a result, we found that miR-29c overexpression could improve cell viability, attenuate LDH release, reduce ROS production and inhibit MMP depolarization in TNF-α-treated HT22 cells. Furthermore, miR-29c overexpression was found to decrease apoptotic rate, along with decreased expression of Bax, cleaved caspase-3, cleaved caspase-9, and increased expression of Bcl-2 in TNF-α-treated HT22 cells. However, miR-29c sponge exhibited an opposite effects. In addition, in TNF-α-treated HT22 cells, miR-29c overexpression could decrease the expressions of TNFR1, TRADD, FADD and cleaved caspase-8. However, in HT22 cells transfected with miR-29c sponge, TNF-α-induced the expressions of TNFR1, TRADD, FADD and cleaved caspase-8 was significantly exacerbated. At last, TNF-α-induced the decreased expression of MAP-2, GAP-43 and SYN-1 was reversed by miR-29c but exacerbated by miR-29c sponge. Overall, our study demonstrated that miR-29c protects against TNF-α-induced HT22 cells injury through alleviating ROS production and reduce neuronal apoptosis. Therefore, miR-29c might be a potential therapeutic agent for TNF-α accumulation and toxicity-related brain diseases.
Collapse
Affiliation(s)
- Bo Li
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ying Lu
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Rong Wang
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Tao Xu
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaolu Lei
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Huan Jin
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaohong Gao
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ye Xie
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaohong Liu
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
43
|
FTO inhibits oxidative stress by mediating m6A demethylation of Nrf2 to alleviate cerebral ischemia/reperfusion injury. J Physiol Biochem 2023; 79:133-146. [PMID: 36327034 DOI: 10.1007/s13105-022-00929-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Current therapies are of limited efficacy in cerebral ischemia/reperfusion (I/R) injury. Based on the important role of oxidative stress in cerebral I/R injury, this study aimed to explore how the N6-adenosine methylation (m6A) demethylase FTO affects oxidative stress. Middle cerebral artery occlusion/reperfusion (MCAO/R)-induced rat model and oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced SH-SY5Y cells were established as in vivo and in vitro model, respectively. The neurological score of rats was measured, and the volume of cerebral infarction was measured by TTC staining. The levels of FTO, nuclear factor-erythroid 2-related factor (Nrf2), and the activity of m6A demethylase FTO were detected. The m6A methylation level of Nrf2 mRNA was detected by MeRIP experiment. Flow cytometry and MTT assay were used to detect apoptosis and proliferation in vitro. TUNEL assay was used to detect apoptosis in brain tissues. FTO and Nrf2 expressions were decreased in the MCAO/R rat brain tissues and OGD/R SH-SY5Y cells, while the m6A methylation level of Nrf2 mRNA was significantly increased. Overexpression of FTO upregulated Nrf2 expression by decreasing the m6A methylation level of Nrf2 mRNA. m6A binding protein YT521-B homology (YTH) domain family protein 2 (YTHDF2) promoted the degradation of Nrf2 by promoting the m6A methylation level of Nrf2 mRNA. Furthermore, SH-SY5Y cell apoptosis was increased and cell viability was decreased after the addition of methyltransferases METTL 3/14, thus blocking FTO to protect SH-SY5Y cells from oxidative stress injury. In vivo, overexpression of FTO decreased the area of cerebral ischemia infarction and the extent of cell apoptosis. In conclusion, FTO increases Nrf2 expression by mediating m6A demethylation of Nrf2 mRNA, thereby inhibiting oxidative stress response and ultimately alleviating cerebral I/R injury.
Collapse
|
44
|
Bellavite P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants (Basel) 2023; 12:antiox12020280. [PMID: 36829840 PMCID: PMC9951959 DOI: 10.3390/antiox12020280] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Neurological and neurodegenerative diseases, particularly those related to aging, are on the rise, but drug therapies are rarely curative. Functional disorders and the organic degeneration of nervous tissue often have complex causes, in which phenomena of oxidative stress, inflammation and cytotoxicity are intertwined. For these reasons, the search for natural substances that can slow down or counteract these pathologies has increased rapidly over the last two decades. In this paper, studies on the neuroprotective effects of flavonoids (especially the two most widely used, hesperidin and quercetin) on animal models of depression, neurotoxicity, Alzheimer's disease (AD) and Parkinson's disease are reviewed. The literature on these topics amounts to a few hundred publications on in vitro and in vivo models (notably in rodents) and provides us with a very detailed picture of the action mechanisms and targets of these substances. These include the decrease in enzymes that produce reactive oxygen and ferroptosis, the inhibition of mono-amine oxidases, the stimulation of the Nrf2/ARE system, the induction of brain-derived neurotrophic factor production and, in the case of AD, the prevention of amyloid-beta aggregation. The inhibition of neuroinflammatory processes has been documented as a decrease in cytokine formation (mainly TNF-alpha and IL-1beta) by microglia and astrocytes, by modulating a number of regulatory proteins such as Nf-kB and NLRP3/inflammasome. Although clinical trials on humans are still scarce, preclinical studies allow us to consider hesperidin, quercetin, and other flavonoids as very interesting and safe dietary molecules to be further investigated as complementary treatments in order to prevent neurodegenerative diseases or to moderate their deleterious effects.
Collapse
|
45
|
Agrawal K, Chakraborty P, Dewanjee S, Arfin S, Das SS, Dey A, Moustafa M, Mishra PC, Jafari SM, Jha NK, Jha SK, Kumar D. Neuropharmacological interventions of quercetin and its derivatives in neurological and psychological disorders. Neurosci Biobehav Rev 2023; 144:104955. [PMID: 36395983 DOI: 10.1016/j.neubiorev.2022.104955] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
Quercetin is a naturally occurring bioactive flavonoid abundant in many plants and fruits. Quercetin and its derivatives have shown an array of pharmacological activities in preclinical tests against various illnesses and ailments. Owing to its protective role against oxidative stress and neuroinflammation, quercetin is a possible therapeutic choice for the treatment of neurological disorders. Quercetin and its derivatives can modulate a variety of signal transductions, including neuroreceptor, neuroinflammatory receptor, and redox signaling events. The research on quercetin and its derivatives in neurology-related illnesses mainly focused on the targets, such as redox stress, neuroinflammation, and signaling pathways; however, the function of quercetin and its derivatives on specific molecular targets, such as nuclear receptors and proinflammatory mediators are yet to be explored. Findings showed that various molecular targets of quercetin and its derivatives have therapeutic potential against psychological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kirti Agrawal
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Saniya Arfin
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007
| | - Sabya Sachi Das
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Dhruv Kumar
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007.
| |
Collapse
|
46
|
Resveratrol Inhibits Oxidative Stress and Regulates M1/M2-Type Polarization of Microglia via Mediation of the Nrf2/Shh Signaling Cascade after OGD/R Injury In Vitro. J Pers Med 2022; 12:jpm12122087. [PMID: 36556306 PMCID: PMC9782981 DOI: 10.3390/jpm12122087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
AIMS Microglia are closely related to the occurrence and development of oxidative stress. Cerebral ischemia leads to abnormal activation of microglia. Resveratrol can regulate M1/M2-type microglia polarization, but the underlying mechanism is not well understood, although the Nrf2 and Shh signaling pathways may be involved. Given that resveratrol activates Shh, the present study examined whether this is mediated by Nrf2 signaling. METHODS N9 microglia were pretreated with drugs before oxygen-glucose deprivation/reoxygenation (OGD/R). HT22 neurons were also used for conditional co-culture with microglia. Cell viability was measured by CCK-8 assay. MDA levels and SOD activity in the supernatant were detected by TBA and WST-1, respectively. Immunofluorescence detected Nrf2 and Gli1 nuclear translocation. The levels of CD206, Arg1, iNOS, TNF-α, Nrf2, HO-1, NQO1, Shh, Ptc, Smo, Gli1 protein and mRNA were measured by Western blotting or RT-qPCR. Annexin V-FITC Flow Cytometric Analysis detected apoptosis. RESULTS Resveratrol and Nrf2 activator RTA-408 enhanced the viability of microglia, reduced oxidative stress, promoted M2-type microglia polarization and activated Nrf2 and Shh signaling. ML385, a selective inhibitor of Nrf2, decreased the viability of microglia, aggravated oxidative stress, promoted M1-type microglia polarization and inhibited Nrf2 and Shh signaling. Moreover, resveratrol and RTA-408-treated microglia can reduce the apoptosis and increase the viability of HT22 neurons, while ML385-treated microglia aggravated the apoptosis and weakened the viability of HT22 neurons. CONCLUSIONS These results demonstrated that resveratrol may inhibit oxidative stress, regulate M1/M2-type polarization of microglia and decrease neuronal injury in conditional co-culture of neurons and microglia via the mediation of the Nrf2/Shh signaling cascade after OGD/R injury in vitro.
Collapse
|
47
|
Jeong SY, Choi WS, Kwon OS, Lee JS, Son SY, Lee CH, Lee S, Song JY, Lee YJ, Lee JY. Extract of Pinus densiflora needles suppresses acute inflammation by regulating inflammatory mediators in RAW264.7 macrophages and mice. PHARMACEUTICAL BIOLOGY 2022; 60:1148-1159. [PMID: 35695008 PMCID: PMC9196672 DOI: 10.1080/13880209.2022.2079679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Pinus densiflora Siebold & Zucc. (Pinaceae) needle extracts ameliorate oxidative stress, but research into their anti-inflammatory effects is limited. OBJECTIVE To investigate antioxidant and anti-inflammatory effects of a Pinus densiflora needles (PINE) ethanol extract in vitro and in vivo. MATERIALS AND METHODS We measured levels of reactive oxygen species (ROS), superoxide dismutase (SOD) and inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW264.7 cells at various PINE concentrations (25, 50 and 100 μg/mL; but 6.25, 12.5 and 25 μg/mL for interleukin-1β and prostaglandin E2 (PGE2)). Thirty ICR mice were randomized to six groups: vehicle, control, PINE pre-treatment (0.1, 0.3 and 1 mg/left ear for 10 min followed by arachidonic acid treatment for 30 min) and dexamethasone. The posttreatment ear thickness and myeloperoxidase (MPO) activity were measured. RESULTS PINE 100 μg/mL significantly decreased ROS (IC50, 70.93 μg/mL, p < 0.01), SOD (IC50, 30.99 μg/mL, p < 0.05), malondialdehyde (p < 0.01), nitric oxide (NO) (IC50, 27.44 μg/mL, p < 0.01) and tumour necrosis factor-alpha (p < 0.05) levels. Interleukin-1β (p < 0.05) and PGE2 (p < 0.01) release decreased significantly with 25 μg/mL PINE. PINE 1 mg/ear inhibited LPS-stimulated expression of cyclooxygenase-2 and inducible NO synthase in RAW264.7 macrophages and significantly inhibited ear oedema (36.73-15.04% compared to the control, p < 0.01) and MPO activity (167.94-105.59%, p < 0.05). DISCUSSION AND CONCLUSIONS PINE exerts antioxidant and anti-inflammatory effects by inhibiting the production of inflammatory mediators. Identified flavonoids such as taxifolin and quercetin glucoside can be attributed to effect of PINE.
Collapse
Affiliation(s)
- Seul-Yong Jeong
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Oh Seong Kwon
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jong Seok Lee
- National Institute of Biological Resources, Incheon, Republic of Korea
| | - Su Young Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, Republic of Korea
| | - Sarah Lee
- National Institute of Biological Resources, Incheon, Republic of Korea
| | - Jin Yong Song
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Yeon Jin Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Ji-Yun Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
49
|
Cho WK, Lee MM, Ma JY. Antiviral Effect of Isoquercitrin against Influenza A Viral Infection via Modulating Hemagglutinin and Neuraminidase. Int J Mol Sci 2022; 23:13112. [PMID: 36361900 PMCID: PMC9653704 DOI: 10.3390/ijms232113112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Isoquercitrin (IQC) is a component abundantly present in many plants and is known to have an anti-viral effect against various viruses. In this study, we demonstrate that IQC exhibits strong anti-influenza A virus infection, and its effect is closely related to the suppression of hemagglutinin (HA) and neuraminidase (NA) activities. We used green fluorescent protein-tagged Influenza A/PR/8/34 (H1N1), A/PR/8/34 (H1N1), and HBPV-VR-32 (H3N2) to evaluate the anti-IAV effect of IQC. The fluorescence microscopy and fluorescence-activated cell sorting analysis showed that IQC significantly decreases the levels of GFP expressed by IAV infection, dose-dependently. Consistent with that, IQC inhibited cytopathic effects by H1N1 or H3N2 IAV infection. Immunofluorescence analysis confirmed that IQC represses the IAV protein expression. Time-of-addition assay showed that IQC inhibits viral attachment and entry and exerts a strong virucidal effect during IAV infection. Hemagglutination assay confirmed that IQC affects IAV HA. Further, IQC potently reduced the NA activities of H1N1 and H3N2 IAV. Collectively, IQC prevents IAV infection at multi-stages via virucidal effects, inhibiting attachment, entry and viral release. Our results indicate that IQC could be developed as a potent antiviral drug to protect against influenza viral infection.
Collapse
Affiliation(s)
- Won-Kyung Cho
- Correspondence: (W.-K.C.); (J.Y.M.); Tel.: +82-53-940-3870 (W.-K.C.); +82-53-940-3812 (J.Y.M.)
| | | | - Jin Yeul Ma
- Correspondence: (W.-K.C.); (J.Y.M.); Tel.: +82-53-940-3870 (W.-K.C.); +82-53-940-3812 (J.Y.M.)
| |
Collapse
|
50
|
Almutairi FM, Ullah A, Althobaiti YS, Irfan HM, Shareef U, Usman H, Ahmed S. A Review on Therapeutic Potential of Natural Phytocompounds for Stroke. Biomedicines 2022; 10:biomedicines10102566. [PMID: 36289828 PMCID: PMC9599280 DOI: 10.3390/biomedicines10102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Stroke is a serious condition that results from an occlusion of blood vessels that leads to brain damage. Globally, it is the second highest cause of death, and deaths from strokes are higher in older people than in the young. There is a higher rate of cases in urban areas compared to rural due to lifestyle, food, and pollution. There is no effective single medicine for the treatment of stroke due to the multiple causes of strokes. Thrombolytic agents, such as alteplase, are the main treatment for thrombolysis, while multiple types of surgeries, such ascraniotomy, thrombectomy, carotid endarterectomy, and hydrocephalus, can be performed for various forms of stroke. In this review, we discuss some promising phytocompounds, such as flavone C-glycoside (apigenin-8-C-β-D-glucopyranoside), eriodictyol, rosamirinic acid, 6″-O-succinylapigenin, and allicin, that show effectiveness against stroke. Future study paths are given, as well as suggestions for expanding the use of medicinal plants and their formulations for stroke prevention.
Collapse
Affiliation(s)
- Farooq M. Almutairi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | - Aman Ullah
- Saba Medical Center, Abu Dhabi P.O. Box 20316, United Arab Emirates
- Correspondence: (A.U.); (S.A.)
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, Taif 21944, Saudi Arabia
| | | | - Usman Shareef
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Halima Usman
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Sagheer Ahmed
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Correspondence: (A.U.); (S.A.)
| |
Collapse
|